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Abstract. As low-latency designs tend to have a small number of rounds
to decrease latency, the differential-type cryptanalysis can become a sig-
nificant threat to them. In particular, since a multiple-branch-based de-
sign, such as Orthros can have the strong clustering effect on differential
attacks due to its large internal state, it is crucial to investigate the im-
pact of the clustering effect in such a design. In this paper, we present
a new SAT-based automatic search method for evaluating the cluster-
ing effect in the multiple-branch-based design. By exploiting an inherent
trait of multiple-branch-based designs, our method enables highly effi-
cient evaluations of clustering effects on this-type designs. We apply our
method to the low-latency PRF Orthros, and show a best differential
distinguisher reaching up to 7 rounds of Orthros with 2116.806 time/data
complexity and 9-round distinguisher for each underlying permutation
which is 2 more rounds than known longest distinguishers. Besides, we
update the designer’s security bound for differential attacks based on
the lower bounds for the number of active S-boxes, and obtain the opti-
mal differential characteristic of Orthros, Branch 1, and Branch 2 for the
first time. Consequently, we improve the designer’s security bound from
9/12/12 to 7/10/10 rounds for Orthros/Branch 1/Branch 2 based on a
single differential characteristic.

Keywords: Differential cryptanalysis · Clustering effect · Multiple-branch-
based designs · Orthros · SAT-based automatic search method.

1 Introduction

The design of lightweight cryptography is one of the prime topics in the field of
symmetric cryptography, particularly since the emergence of the first lightweight
block cipher PRESENT [9]. Many lightweight proposals tend to put effort into
reducing the hardware circuit size as small as possible similar to PRESENT. Aside
from minimizing the hardware circuit, minimizing the latency of the overall
design has also become an area of emphasis. Since a quick response time of
encryption is desirable for some applications, such as automotive communication,



2 K. Taka et al.

memory bus encryption, and industrial control network, low-latency designs are
recently getting more attention.

PRINCE, proposed by Borghoff et al. [10], is the first low-latency design
that has reflection construction based on the substitution-permutation network
(SPN). A low latency tweakable block cipher QARMA, proposed by Avanzi [2],
follows this design strategy, and both PRINCE and QARMA realize very small
latency. MIDORI, proposed by Banik et al. [4], is an SPN-based block cipher tar-
geting low-energy applications, while its latency is quite small. Since SPN-based
designs seem more promising in terms of latency than Feistel-based design, sev-
eral other low-latency designs, such as Mantis [7], Orthros [5], SPEEDY [16] also
have an SPN-based construction.

For these low-latency designs, a thorough security analysis is essential, as
these designs typically feature a small number of rounds to achieve low la-
tency. Among the variety of attack vectors, a differential-type cryptanalysis has
emerged as the most significant threat for low-latency designs because the growth
of the differential probability is not sufficient at the beginning of the rounds. In
fact, the best attack on the first low-latency design PRINCE is a (multiple) differ-
ential cryptanalysis, and one variant of SPEEDY and MANTIS are broken by the
differential cryptanalysis [11,13]. Besides, the designers of Orthros and SPEEDY
pay a lot of effort into ensuring a resistance against the differential cryptanalysis.
Given these facts, a thorough security analysis of differential-type cryptanalysis
is essential for such low-latency designs.

Among the low-latency designs, Orthros has an interesting construction in
which the output is computed by summing the outputs of two keyed permuta-
tions. Such two-branch-based designs do not have a decryption function, namely,
these designs are PRF not PRP, but they can still be applied into many popular
modes, e.g., CTR, CMAC, and GCM. The advantage of a two-branch construction
in terms of security is that it is difficult to add the key-recovery rounds for the
attacker, as discussed in [5]. This means that additional rounds required for a
security margin can be small in these designs, which directly results in a reduc-
tion in latency. Therefore, such multiple-branch-based designs seem promising
for the construction of future ultra-low-latency PRFs.

A downside of such a two-branch-based construction is the difficulty in evalu-
ating their security. Specifically, Orthros is based on two “weak” keyed permuta-
tions, i.e., each keyed permutation cannot be used as a standalone PRP by itself.
This makes a discussion in the context of the provable security so hard that the
authors of Orthros carefully investigated the security of the sum of permutations
from the perspective of cryptanalysis [5]. In the designer’s analysis, the most
powerful attack on Orthros is the integral cryptanalysis, which can distinguish
up to 7 rounds. For the differential cryptanalysis, they only presented the lower
bound for the number of active S-boxes (AS) for each branch independently,
and provide the lower bound for # AS as the sum of them. More specifically,
they independently evaluate the lower bound for # AS in the first four rounds
in a bit-wise level and the remaining eight rounds in a nibble-wise level for each
Branch 1 and Branch 2. Then, they provide the lower bound for # AS of Orthros
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as the sum of these independent four lower bounds. Hence, the provided security
bound is rough in their work. Additionally, they only considered a single charac-
teristic, not taking the clustering effect into consideration in their work. Given
that the two-branch-based construction seems easy to happen the clustering ef-
fect due to a large space in its internal state, evaluating the clustering effect on
such construction is of great importance.

Our Contribution. In this paper, we study how to efficiently evaluate the clus-
tering effect on multiple-branch-based designs such as Orthros. With the SAT-
based automatic search tool for differential characteristics proposed by Sun et
al. [19], we can efficiently evaluate the optimal differential characteristic. How-
ever, evaluating the clustering effect is challenging task, particularly for the de-
signs with a large state size, such as multiple-branch-based designs. To address
this issue, we propose a new method for efficiently evaluating the clustering ef-
fect on multiple-branch-based designs by exploiting an inherent trait of these
designs. Our main contributions are as follows:

– We present a SAT-based automatic search method for evaluating the cluster-
ing effect on multiple-branch-based designs. This method can evaluate the
clustering effect on a given pair of input and output differences, which is
called differential in literature, not only two-branch-based designs such as
Orthros, but also multiple-branch-based designs without limitation of the
number of branches. A general approach to evaluate the clustering effect
by automatic search tools is to count the differential characteristics of the
entire construction under a given differential. The drawback of the general
approach is that the computational cost will become heavy due to the large
size of the internal state in a multiple-branch-based design. This drawback
becomes more serious with the number of branches increasing. To address
this issue, our method independently evaluates the clustering effect on each
branch under a give differential. It allows us to efficiently obtain many differ-
ential characteristics that contribute to the probability of a given differential.
While run-time is traditionally used as a metric to evaluate the efficiency of
automatic search tools, this metric is highly dependent on the computational
environment and mathematical solver used. Therefore, we introduce a new
metric, “the number of invocations of a SAT solver (#SAT )” to assess the
efficiency of of the evaluation for the clustering effect by SAT. Since the eval-
uation of the clustering effect requires multiple invocations of a SAT solver,
and these invocation dominates the most part of the evaluation, we can fairly
assess the efficiency of each method by #SAT to a certain extent.

– We improve the designer’s security bound of Orthros against the differential
cryptanalysis. We first show the strict lower bound for # AS for the first time
and update the designer’s security bound based on # AS. More specifically, in
the designer’s evaluation, the 9-round Orthros is expected to resist differential
cryptanalysis based on # AS, while we show that 8 rounds is enough. We also
improve the designer’s bound by 1 round for Branch 1 and Branch 2, both
of which are the underlying keyed permutations of Orthros. Furthermore, we
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reveal the optimal differential characteristics for up to 7 rounds of Orthros
and full rounds of each branch for the first time. Our result shows that
the distinguishing attack can be applied to 6/9/9 rounds of Orthros/Branch
1/Branch 2. Table 1 summarizes these results.

Table 1: Summary of our results for the AS-based evaluation and optimal dif-
ferential characteristics to Orthros, Branch 1, and Branch 2.

Lower bounds for the number of active S-boxes

Target
Rounds

1 2 3 4 5 6 7 8 9 10 11
12

Ref.
(full round)

Branch 1
1 4 6 8 9 12 16 24 33 44 58 68 [5]
1 4 6 8 11 18 28 37 48 58 67 80 Sect. 4.3

Branch 2
1 4 5 8 9 12 16 24 33 44 59 68 [5]
1 4 5 8 10 16 26 36 49 58 70 80 Sect. 4.3

Orthros
2 8 12 16 18 24 36 56 84 88 117 136 [5]
2 8 12 16 22 36 58 79 98 129 188 196 Sect. 4.3

Weight of optimal differential characteristics

Branch 1 2 8 14 19 29 41 61 91 113 142 160 181 Sect. 4.3
Branch 2 2 8 13 19 26 38 58 82 117 136 163 180 Sect. 4.3

Orthros 4 16 29 42 59 90 136 - - - - - Sect. 4.3

– We apply our method to 7 rounds of Orthros whose the probability of the
optimal differential characteristic is 2−136. To demonstrate the efficiency of
our method, we compare our method with the general one. As a result, our
method yields a significant improvement, raising the probability of a differ-
ential corresponding to the optimal differential characteristic from 2−136 to
2−116.806, whereas the conventional method can only achieve 2−127.395. More-
over, our method improves # SAT and a practical run-time 93.6% and 99.5%
in comparison to the general method, respectively. It should be mentioned
that our result is the best distinguishing attack to Orthros. Table 2 shows the
result of our method in comparison with the previous distinguishing attack
to Orthros.

Table 2: Summary of the distinguishing attacks to Orthros, Branch 1, and Branch
2.

Target Round Method Time/Data Ref.

Branch1
7 Integral 2127.0 [5]
9 Differential 2113.0 Sect. 4.3

Branch2
7 Integral 2127.0 [5]
9 Differential 2117.0 Sect. 4.3

Orthros
7 Integral 2127 [5]
7 Differential 2116.8 Sect. 4.6
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As a multiple-branch-based design can dramatically decrease latency, it is a
promising approach for the development of ultra-low-latency designs. Therefore,
we believe that our method has the potential to be widely utilized in future
multiple-branch-based designs and aid in the examination of the behavior of a
differential in such designs.

Outline. The organization of this paper is as follows: In Sect. 2, we provide
a brief explanation of differential cryptanalysis and the SAT-based automatic
evaluation for differential characteristics and differentials. In Sect. 3, we first
describe our target construction. We then introduce a new metric # SAT for
assessing the efficiency of the evaluation of the clustering effect. Subsequently,
we elaborate our SAT-based automatic method for evaluating the clustering
effects in multiple-branch-based designs. In Sect. 4, we first evaluate the lower
bound fot # AS for Orthros and each branch in Orthros, and search for the
optimal differential characteristics for them. Then, we apply our and the general
method to Orthros and compare the efficiency and probability. Additionally, we
discuss the good parameters in our method and further improve the probability
with a found good parameter. Finally, we conclude this paper in Sect. 5.

2 Preliminary

2.1 Differential Cryptanalysis

The differential cryptanalysis, proposed by Biham and Shamir, is one of the
most powerful cryptanalysis techniques for symmetric-key primitives [8]. In the
differential cryptanalysis, the attacker attempts to find a pair of input and output
differences with a high probability, i.e., EK(∆P ) = ∆C, (∆C = C ⊕ C ′, ∆P =
P ⊕ P ′) occurs with high probability on a symmetric-key primitives Ek, where
(P, P ′) and (C ′, C) denote a pair of plaintexts and ciphertexts, respectively.
A pair of input and output differences (∆P,∆C) is called a differential in the
differential cryptanalysis. The probability of a differential, called a differential
probability, is calculated by investigating all pairs of plaintext following ∆P =
P ⊕ P ′ on EK . We define a differential and its probability on a symmetric-key
primitive EK as follows.

Definition 1 (Differential) A differential is a pair of input and output differ-
ences. The probability of a differential (∆P,∆C) is calculated as follows:

DP(∆P
EK−−→ ∆C) = Pr

P
(EK(P )⊕ EK(P ⊕∆P ) = ∆C),

where P are chosen from a uniformly distributed random variable.

Generally, calculating such a probability is computationally infeasible in most
symmetric-key primitives. Therefore, a differential characteristic is usually em-
ployed to estimate a differential probability. Let EK be a r-round iterated block
cipher as EK(·) = fr(·) ◦ fr−1(·) ◦ · · · ◦ f1(·). A differential characteristic can
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be defined as a sequence of differences over all rounds in EK , and its proba-
bility can be estimated as a product of differential probabilities of each round
under the well-known Markov cipher assumption [15]. We give the definition of
a differential characteristic and its probability on a block cipher EK as follows.

Definition 2 (Differential characteristic) A differential characteristic is a
sequence of differences over all rounds in a block cipher EK as follows:

C = (c0
f1−→ c1

f2−→ · · · fr−→ cr) := (c0, c1, · · · , cr),

where (c0, c1, · · · , cr) denotes differences of the output of each round, i.e., c0 and
cr denote differences of a plaintext and ciphertext, respectively. The probability
of a differential characteristic C is estimated as follows:

DP(C) =

r∏
i=1

DP(ci−1
fi−→ ci).

From the attacker aspect, the attacker is interested in only a differential, that
is, information about internal differences is not necessary. Hence, the attacker
can construct a differential by gathering the differential characteristics sharing
the same (c0, cr) and try to enhance the probability of a differential (c0, cr).
Such an endeavor is called “considering the clustering effect”. In that case, we
can view a differential (c0, cr) as a bunch of multiple differential characteristics.
Therefore, the probability of (c0, cr) can be calculated by sum of probabilities
of all differential characteristics constructing (c0, cr) as follows:

DP (c0
EK−−→ cr) ≈

∑
C∈Call

DP (C),

where Call denotes the set of all differential characteristics constructing a dif-
ferential (c0, cr).

From the viewpoint of the designer, guaranteeing the upper bound of DP (C)
is enough instead of showing the optimal differential characteristic. Many mod-
ern block ciphers take an approach to constructing non-linear layers only by
an S-box. Let DPs be the maximum differential probability of an S-box, we
can estimate the upper bound of DP (C) by the lower bound for # AS, i.e.,
2−(DPs×#AS) ≤ 2−n is sufficient to resist against the distinguishing attack,
where n denotes the block size. Nowadays, it is common to evaluate the op-
timal differential characteristic and the lower bound for # AS with automatic
search tools by MILP, SAT/SMT, and CP.

Finally, We define “weight” which is frequently used to express the probabil-
ity of a differential characteristic and a differential in this paper.

Definition 3 (Weight) A weight w is a negative value of the binary logarithm
of the differential probability DP defined as follows:

w = − log2 DP.
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2.2 Automatic Search Tools for Differential Characteristics and
Differentials

Automatic search tools by MILP, SAT/SMT, and CP have been very popu-
lar for evaluating a differential characteristic and differential [1, 14, 17–20]. The
advantage of such automatic search tools compared to conventional Matsui’s al-
gorithm is the simplicity of implementation and its efficiency. As the procedure
of implementing these automatic search tools, we first convert the differential
propagation over all operations in a cipher into their languages, such as linear
inequalities and a Conjunctive Normal Form (CNF), and then the minimum
weight can be obtained by minimizing the objective function.

Several previous works on automatic search tools try to find a better differ-
ential not only the optimal differential characteristic [1,19,21,22]. To construct a
better differential, these works first search for the optimal differential character-
istic and then construct a differential based on it. This strategy comes from the
observation that the most contributing differential characteristics to increasing
the probability of a differential are the optimal one. As mentioned in Sect. 2.1,
since a differential can be seen as a bunch of multiple differential characteristics
sharing the same input and output differences, we enumerate these differential
characteristics by automatic search tools. Thus, the probability of such a differen-
tial constructed by multiple differential characteristics depends on the number of
differential characteristics and their probabilities (weights). Because The number
of differential characteristics that we can find highly depends on the efficiency
of a solver and how to count such differential characteristics, sophisticating a
counting strategy is important for constructing a differential.

2.3 SAT-Based Automatic Search for Differential Characteristics

Satisfiability problem A formula consisting of only AND(∧),OR(∨),NOT(¬)
is called Boolean formulas. In a SAT problem, we judge whether a given Boolean
formula is “SAT”, which means there is an assignment of Boolean variables
satisfying a given Boolean formula, or not. A SAT problem is widely known as
NP-complex [12], however, nowadays many SAT solvers can solve a SAT problem
efficiently thanks to numerous studies on a SAT.

In a Boolean formula, we call a Boolean variable x and its negation ¬x as
a literal. These Boolean variables construct CNF by the conjunction (∧) of the
disjunction (∨) on themselves such as

∧i
a=0(

∨ja
b=0 ci,j), where ci,j is Boolean

variables. We call each disjunction
∨ja

b=0 ci,j in a Boolean formula a clause. It is
known that any Boolean formulas can be expressed by CNF.

Overview of SAT modeling Since our method is implemented as the real
SAT method rather than an SMT method, we construct SAT models to depict
a differential propagation over the basic operations outlined in the work of Sun
et al. [20]. A SAT model of Orthros can be divided into 4bit S-box (nonlinear
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transformation), Matrix Multiplication (linear transformation) and Boolean car-
dinality constraints. Therefore, we only describe SAT models (clauses) of these
operations.

S-box Let (a0, a1, ..., ai−1) and (b0, b1, ..., bi−1) be the input and output differ-
ences of an i-bit S-box, respectively. To express the weight through an S-box,
we need to introduce additional binary variables w = (w0, w1, ..., wj−1) where
j is the maximum weight of the differential propagation in an S-box. With the
above variables, we introduce a function g as follows:

g(a, b, w) =

{
1 if Pr(a→ b) = 2−

∑j−1
q=0 wq ,

0 otherwise.

Then, we extract the set A that contains all vectors satisfying f(x, y, z) = 0 as
follows:

A = {(x, y, z) ∈ F2i+j
2 |f(x, y, z) = 0}.

Since A is the set of invalid patterns in the S-box model, it is excluded from the
set of constituent clauses by the following formula:

i−1∨
c=0

(ac ⊕ xc) ∨
i−1∨
d=0

(bd ⊕ yd) ∨
j−1∨
e=0

(we ⊕ ze) = 1, (x, y, z) ∈ A.

The remaining vectors are the same set of valid patterns as Ā. Thus, these
clauses extract differential propagations with corresponding weights on i-bit S-
boxes. Here, |A| denotes the number of vectors in the set A, and the solution
space of the clause |A| for (a, b, w) in the above equation is identical to the
solution space of the function h below:

h(a, b, w) =

|A|−1∧
η=0

(
i−1∨
c=0

(ac ⊕ xcη ) ∨
i−i∨
d=0

(bd ⊕ ydη ) ∨
j−1∨
e=0

(we ⊕ zeη )

)
= 1.

The above equation can be reformulated into a product-of-sum expression and
then the minimum number of clauses can be extracted using a specific software,
such as Logic Friday3. Thus, the clauses to represent the differential propagation
considering the weight of the S-box are as follows:

h(a, b, w) =
∧

(x,y,z)∈F2i+j
2

(
g(x, y, z) ∨

i−1∨
c=0

(ac ⊕ xcη ) ∨
i−i∨
d=0

(bd ⊕ ydη ) ∨
j−1∨
e=0

(we ⊕ zeη )

)
.

CsboxDC
← min(h(a, b, w))

When we evaluate the lower bound for # AS, we only need to determine
whether an S-box is active or not. Therefore, we introduce a binary variable
s ∈ {0, 1} instead of w. The rest of procedure is the same as in that for a
probability model.

3 https://web.archive.org/web/20131022021257/http://www.sontrak.com/
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Matrix Multiplication We first give the clauses to represent an XOR oper-
ation since the matrix operation can be decomposed into multiple XOR opera-
tions.

XOR operation Let (a0, a1, ..., ai−1) and b be the input and output of an i
input XOR operation, respectively, i.e., a0 ⊕ a1 ⊕ · · · ⊕ ai−1 = b. Additionally,
let X be a set satisfying {(x0, x1, ...., xi) ∈ Fi+1

2 |(x0 ⊕ x1 ⊕ . . . xi) = 1}. The
clauses to represent the differential propagation of the i-input XOR operation
are as follows:

Cxor ← (a0⊕x0)∨(a1⊕x1)∨. . . (ai−1⊕xi−1)∨(b⊕xi) for all (x0, x1, . . . , xi) ∈ X

For a matrix multiplication, we can decompose it into several XOR operations.
For example, the binary matrix used in Orthros can be decomposed as follows:

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



x0

x1

x2

x3

 =


x1 ⊕ x2 ⊕ x3

x0 ⊕ x2 ⊕ x3

x0 ⊕ x1 ⊕ x3

x0 ⊕ x1 ⊕ x2

 .

Since we can view a matrix multiplication as several XOR operations from the
above example, the clauses to represent a matrix operation are as follows:

Cmatrix ← Cxor for all XORs decomposed from a matrix.

Boolean Cardinality Constraints To evaluate the lower bound for # AS and
the total weight of a differential characteristic, we need to sum all variables to
express the weight or AS over an entire model. Boolean cardinality constraints
are widely used to implement such a function.

Let Xn = (x0, x1, ..., xn−1) where xi ∈ {0, 1} be a sequence of literals, in
which 1 and 0 denote true and false, respectively. The following equation is
called a Boolean cardinality constraint on Xn:

n−1∑
i=0

xi ≤ k,

where k is an integer value.
We employ Totalizer [3] to realize Boolean cardinality constraints. In this

paper, we use Csum(k) as the clauses to represent
∑n−1

i=0 xi ≤ k. Besides, we use

Csum(k) as the clauses to represent
∑n−1

i=0 xi ≥ k.

Joint SAT models We need to remove the obvious differential propagation
such that all input differences are zero. Let (a0, a1, ..., ai−1) be Boolean variables
to express the input differences. We can remove such a differential propagation
by the following clauses:

Cinput ← a0 ∨ a1 ∨ · · · ∨ ai−1.
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With the clauses to represent each operation described so far, we can construct
an entire SAT modelMSAT as follows:

MSAT ← (CsboxDC
, Cmatirx, Csec, Cinput, Csum(k)).

If a solver returns “UNSAT”, there are no assignments satisfying MSAT , i.e.,
the lower bound for # AS or the minimum weight outnumbers k. In this case, we
increment k and repeat this procedure until a solver returns “SAT”. If a solver
returns “SAT”, there are assignments satisfying MSAT , i.e., we find the lower
bound for # AS or the minimum weight k.

2.4 Clustering Effect

As described in Sect. 2.1, we need to gather multiple differential characteristics
sharing the same input and output differences to evaluate the clustering effect.
Sun et al. show the easy way to realize such enumeration by a SAT [19].

Let (aj,0, aj,1, ..., aj,i−1) be Boolean variables to express the differences in
the input of the j-th round, where i is the position of bits. With an r-round
differential characteristics C = (c0, c1, ..., cr), where cm = (cm,0, cm,1, ..., cm,i−1),
we can fix the input and output differences to c0 and cr, respectively, by the
following clauses:

Cclust ←

{
a0,n ⊕ c0,n for 0 ≤ n ≤ i− 1.

ar,n ⊕ cr,n for 0 ≤ n ≤ i− 1.

To avoid solving a SAT model with the same internal differential propagation
(c1, c2, ..., cr−1) multiple times during the evaluation of the clustering effect, we
add the following clauses to a SAT model:

Cclust ←
r−1∨
x=1

i−1∨
y=0

(ax,y ⊕ cx,y)

These clauses will be repeatably added to a SAT model, wherever we find
another internal differential propagation.

3 Efficient Strategy to Evaluate the Clustering Effect for
a Multiple-Branch-Based Design

In differential cryptanalysis, a differential is more important than a single differ-
ential characteristic. Generally, to search for a differential with a high probability,
we evaluate the clustering effect, i.e., finding multiple differential characteristics
sharing the same input and output differences.

A generic strategy to evaluate the clustering effect is to count the number of
differential characteristics that share the same input and output differences while
simultaneously eliminating identical internal differences whenever a differential
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Branch 1 Branch 2 Branch n

(Key,Plaintext)

Ciphertext

Fig. 1: Overview of n-branch-based design.

characteristic is found. As can been seen in the previous works [1, 19, 21, 22],
this strategy works well on a single-branch-based design. In contrast, when con-
sidering a multiple-branch-based design, such as Orthros, the internal state size
increases proportionately to the number of branches, which makes the compu-
tational cost of the evaluation expensive.

To address this issue, we propose an efficient search strategy for evaluating
the clustering effect on the multiple-branch-based designs. The underlying con-
cept is to independently evaluate the clustering effect of each branch and then
construct differential characteristics for the entire construction.

In the reminder of this section, we first define our target construction and
give a new metric for fairly comparing a cost of our method with that of the
general one. Then, we provide an overview of our strategy and a detailed method.

3.1 Target Construction

We define the round function of a multiple-branch-based design. We extend the
construction of Orthros straightforwardly and define the n-branch-based design.
Figure 1 shows the overview of the n-branch-based design.

Let EKi
(·), K, and M be any cryptographic function under key Ki, which

is called “branch i” in this work, a secret key, and plaintext, respectively. The
encryption algorithm of n-branch-based design E(·) is defined as follows:

E(K,M) :=

n⊕
i=1

EKi
(K,M).

We do not give details about a key scheduling since it does not affect to all
evaluations in this work.
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3.2 How to Assess the Efficiency of the Evaluation of the Clustering
Effect

Generally, the efficiency of automatic search methods is measured by their prac-
tical run-time during evaluations. However, a practical run-time highly depends
on the computational environment and the efficiency of solvers. In particular, for
a automatic search tools based on a SAT, we have many choices of excellent SAT
solvers owing to numerous dedicated works on a SAT. Thus, it seems important
to introduce a new metric for automatic search tools based on a SAT.

In the evaluation of the clustering effect, we need to solve a SAT problem
multiple times as explained in Sect. 2.3 This entails repeatedly invoking a SAT
solver, which constitutes the majority of the cost associated with the evaluation
of the clustering effect. The cost of such a single invocation, of cause, depends
on the total number of clauses and Boolean variables in a solved SAT problem.
Generally, the total number of clauses and variables does not vary significantly
among different evaluation methods for the same target design, as the majority
of clauses and variables are those that express the propagation of internal differ-
ences and weight in non-linear operations, both of which are typically common
across different evaluation methods for the same target design.4

Hence, we introduce the number of invocations of a SAT solver to evaluate
the clustering effect as a new metric as follows.

Definition 4 (the number of invocations of a SAT solver “#SAT”) The
number of invocations of a SAT solver #SAT is defined as the total number of
“SAT” and “UNSAT” that a solver returns during the evaluation of the cluster-
ing effect.

Note that #SAT does not contain the invocation for obtaining a differential
characteristic that is used as a starting point for evaluating the clustering effect.

Suppose that we evaluate the clustering effect on a specific differential cor-
responding to the optimal differential characteristic with weight Wmin by the
general method. In this approach, we first enumerate the differential character-
istic with weight Wmin and repeat this procedure with incrementing weight. To
increase the probability of this differential to 2−Wmin+α, #SAT must be at least
2α+1. Specifically, a solver returns “SAT” 2α times, which indicates the existence
of 2α differential characteristics with weight Wmin, and “UNSAT” once, which
indicates the absence of further differential characteristics with weight Wmin.
It must be mentioned that this is the best case of the general strategy because
it assumes that the differential is constructed solely by the optimal differential
characteristics (it usually hardly ever happens).

We emphasis that this metric should be employed only when evaluating the
efficiency of the evaluation of the clustering effect. This is because that our

4 The number of clauses and variables in our method is smaller than those in the
general method, since our method essentially evaluate the clustering effect on each
branch not an entire design while the general method evaluate it on an entire design.
Therefore, a practical run-time can be short in our method even if the number of
solved SAT problems is the same as that of the general method.
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assumption that a practical run-time depends on the number of clauses and
variables in a SAT problem works only when evaluating the clustering effect,
as we fix the input and output differences. In contrast, when evaluating opti-
mal differential characteristics, the practical run-time is also influenced by other
factors in many cases.

In addition to #SAT , we also employ a runtime of the entire evaluation as
a metric of the efficiency, similar to previous works.

3.3 Our Strategy

Let Ncha be the total number of differential characteristics that contribute to the
probability of a differential. For one-branch-based designs, we can at most obtain
a one differential characteristic by solving a one SAT problem, i.e., we can obtain
differential characteristics followed by Ncha = O(Nsat) when #SAT = Nsat.
This is also observed in the case of multiple-branch-based designs. This natural
observation is the basis for most works considering the clustering effect, and it
works well in their works. We call this strategy the “general strategy” in this
work.

A drawback of the general strategy in the case of a multiple-branch-based de-
sign is that the computational cost becomes expensive as the number of branches
increases, as the number of clauses and variables increase linearly in multiple-
branch-based designs. Consequently, evaluating the clustering effect with the
general strategy can get challenging when the number of branches exceeds two
and the number of rounds is large.

To address this issue, we introduce a new strategy for evaluating the clus-
tering effect on multiple-branch-based designs. The essence of our strategy is to
independently evaluate the clustering effect in each branch and then construct
differential characteristics for an entire design using these results. This strategy
leverages the inherent trait of multiple-branch-based designs in which each differ-
ential characteristic in each branch corresponds to all differential characteristics
in other branches under the same input and output differences. This can signifi-
cantly increase the number of characteristics that contribute to the probability of
a differential and ultimately decrease #SAT in the overall evaluation. Suppose
we evaluate the clustering effect of an n-branch-based design with a pre-found
optimal differential characteristic, we can obtain Ncha = O((Nsat)

n) differential
characteristics of the entire design when #SAT = Nsat in each branch5. We il-
lustrate our strategy for enumerating the differential characteristics in Fig. 2. In
Fig. 2, we search for differential characteristics in parallel based on each branch
containing red, blue, and green lines, and then we can construct the differential
characteristic of an entire design using the found differential characteristics in
each branch. Moreover, the computational cost of solving a single SAT problem
becomes small since we independently evaluate the clustering effect for every
single branch.

5 In practical, #SAT in each branch is different since it depends on various factors,
such as their structure. We here assume #SAT in each branch is the same for the
sake of argument.
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Branch 1 Branch 2 Branch n

Input differences : Din

Output differences : Dout

#SAT = O(Nsat)

Single characteristic

#SAT = O(Nsat) #SAT = O(Nsat)

Ncha = O(Nn

sat
)

Fig. 2: Overview of our strategy to efficiently count the differential characteristics
in a multiple-branch-based design.

3.4 Efficient Method to Evaluate the Clustering Effect

With the strategy outlined in Sect. 3.3, we present an efficient method for eval-
uating the clustering effect on a multiple-branch-based design. Our method re-
quire a specific differential (Din,Dout) corresponding to the optimal differential
characteristics which can be identified by a SAT-based automatic search tool pro-
posed by Sun et al. [20] in advance.6 Our method follows a five-step approach,
the procedure of which is detailed step-by-step as follows:

Branch 1 Branch 2 Branch n

d0out,1 d0out,2 d0out,n

Din

Dout

= = · · · =

→ d0out = (d0out,1, d
0

out,2, · · · , d
0

out,n)

(d0out, d
1

out, · · · , d
m−1

out )

Fig. 3: Overview of Step 1.

6 Strictly speaking, A differential characteristic do not need to be optimal, but the
optimal one is the best choice for our method.
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Step 1. Search for all sets of output differences (d0
out,d

1
out, . . . ,d

m−1
out ) in each

branch under a given differential (Din,Dout) with the minimum weight
Wmin, where d

i
out = (di

out,1,d
i
out,2, . . . ,d

i
out,n), i.e., d

i
out,1⊕di

out,2⊕· · ·⊕
di
out,n = Dout. Note that m depends on some factors, such as the construc-

tion of the target and the number of rounds. After completing this step, we
have multiple differentials for each branch, i.e., {(Din,d

i
out,1), (Din,d

i
out,2), (Din,d

i
out,n)}

for 0 ≤ i ≤ m− 1. Figure 3 illustrates the overview of Step 1.
Step 2. Count the number of differential characteristics for a differential (Din,d

i
out,j).

This procedure is virtually equivalent to evaluating the clustering effect on
(Din,d

i
out,j). Suppose that we count the number of differential character-

istics for each (Din,d
i
out,j), we will obtain a list N i = (N i

1,N
i
2, . . . ,N

i
n)

where N i
k = (N i

k,α, N
i
k,α+1, . . . , N

i
k,α+Wα−1) for di

out, in which each N i
k,l

stores the number of the differential characteristics with (Din,d
i
out,k) cor-

responding to weight l. Note that α and Wα can be set arbitrary. Figure 4
illustrates the overview of Step 2.

Branch 1 Branch 2 Branch n

Dout = d
i
out,1 ⊕ d

i
out,2 ⊕ · · ·⊕ d

i
out,n

d
i
out,1 d

i
out,2 d

i
out,n

Din Din Din

N
i

1: Count # DC N
i

2: Count # DC N
i

n: Count # DC

Fig. 4: Overview of Step 2. DC denotes a differential characteristic.

Step 3. Construct the differential characteristics with (Din,Dout) by combin-
ing the differential characteristics found for each branch in Step 2. For di

out,
each differential characteristic in each branch corresponds to all differential
characteristics in all branches, namely, all possible combinations of a differ-
ential characteristic of each branch bring a differential characteristic with
(Din,Dout). Suppose that the sum of all elements in N i

k is cik, we can con-
struct (ci1×ci2×· · ·×cin) differential characteristics with (Din,Dout) for each
di
out, and their probability can be calculated by the product of the proba-

bilities of differential characteristics in each branch that compose them, that
is,
∏n

b=1 DP (Cb) where Cb denotes a differential characteristic of branch b.
This is based on the strategy outlined in Sect. 3.3. As the output differences
in each branch in di

out follow di
out,1 ⊕ di

out,2 ⊕ · · · ⊕ di
out,n = Dout, all

differential characteristics constructed in this step belong to a differential
(Din,Dout). Figure 5 illustrates the overview of Step 3.



16 K. Taka et al.

Branch 1 Branch 2 Branch n

# DC = ci
1

Dout

Din

# DC = ci
2

# DC = cin

Single DC with (Din, Dout)

# DC with (Din, Dout) = ci
1
× ci

2
× . . .× ci

n

Fig. 5: Overview of Step 3. DC denotes a differential characteristic.

Step 4. Calculate the probability of a differential (Din,Dout). The probability
can be calculated by a sum of the probability of all differential characteristics
constructed in Step 3.

Step 5. Repeat steps 1 – 4 with incrementing the weight Wmin given in step 1.

The detailed algorithm of our method is given in Algorithm 1. We describe
Algorithm 1 line by line as follows:

Input: Give a differential (Din,Dout), the number of branches Bn, the num-
ber of rounds r, the weight Wmin of the optimal differential characteristics
corresponding to (Din,Dout), and two thresholds Wα and Wc as input. Wc

specifies the range of weight in Step 5. For example, when Wc = 3, we con-
duct Step 1–4 from Wmin to Wmin + 2. Wα specifies the range of a weight
related to the evaluation of the clustering effect on each branch in Step 2,
i.e., the size of list N i

m becomes α +Wα − 1. Note that α can be set arbi-
trarily, such as the minimum weight of the optimal differential characteristic
of each branch. In our work, α is always set to a weight that a solver first
returns “SAT”.

Output: Return the probability of the differential (Din,Dout).
Lines 2–3 : Initialize P which is the probability of the differential (Din,Dout)

and D that stores di including (d0
out,d

1
out, · · · ,d

m−1
out , ) for weight i.

Lines 4–12: Repeat Step 1–4 with increasing weight.

Line 5: Obtain all (d0
out,d

1
out, · · · ,d

m−1
out , ) for weight i.

Lines 6–7: Check the overlap of dj
out for all former weights. If an identical

dj
out has been already evaluated in another weight, it will be removed

in this weight.
Lines 8–14: Count the number of differential characteristics in each weight.

Line 9: Initialize N which stores the number of differential character-
istics with weight α to α +Wα − 1 for each branch. N denotes N i

in Step 2.
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Algorithm 1: Evaluating the clustering effect in a design based on
multiple branches.

input : (Din,Dout), Bn, r,Wmin,Wα,Wc

output: P

1 begin
2 P ← 0
3 D ← (d0,d1, . . . ,dWc−1)
4 for i = Wmin to Wmin +Wc − 1 do
5 di−Wmin ← SATall.out((Din,Dout), Nb, r, i)
6 if i ̸= Wmin then
7 CHECKoverlap(D)

8 for all elements in di−Wmin do
9 N ← (N1,N2, · · · ,NBn)

10 /* N denotes Ni in Step 2. */

11 for j = 1 to Bn do

12 Nj ← SATclust((Din,d
k
out,j),Wα)

13 /* k corresponds to the index of element in di−Wmin
as can be

seen in Step 2. */

14 CALCUProb(P,N)

15 return (P )

Lines 11–13: Count the number of differential characteristics with weight
α to α+Wα − 1 in Branch 1 to Bn.

Line 14: Calculate the probability of a differential characteristic by
combining the differential characteristics in each branch obtained
in lines 11–13, and then add the sum of their probabilities to P .

Line 15: Return the probability of a differential (Din,Dout).

Here, we give brief explanations of functions SATall.out, SATclust, CHECKoverlap,
and CALCUprob in Algorithm 1.

Function SATall.out(): This function searches all combinations of the output
differences of each branch followed by a given difference (Din,Dout), i.e.,
(d0

out,d
1
out, . . . ,d

m−1
out ) in Step 1. Such a function can be realized by a SAT-

based automatic search tool proposed by Sun et al. [20] with a small modi-
fication.

Function SATclust(): This function evaluates the clustering effect of each branch
with a difference (Din,d

k
out,j). The weight range taken into account in this

evaluation is arbitrary. Note that this range has a great impact on both the
final probability of (Din,Dout) and the computational cost. Such a function
can also be realized by a SAT-based automatic search tool proposed by Sun
et al. [19].
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Function CHECKoverlap(): This function checks the overlap of (d0
out,d

1
out, . . . ,d

m−1
out )

for all weight in Step 5. If a certain dj
out has already appeared, it will be

removed to avoid the overlap in the evaluation.

Function CALCUprob(): This function calculates the probability of a differen-
tial characteristics with (Din,Dout) by combining differential character-
istics in each branch in Step 2. Suppose that a differential characteristic
with (Din,Dout) constructed the differential characteristics in each branch
whose weights are wb where b is the branch number, and its probability
is calculated by

∏m
i=1 2

−wi . The total number of differential characteristics

with (Din,Dout) is equal to
∑m−1

i=0

∏n
j=1

∑
k∈k N

i
j,k, where k is a set of all

weight taken into account in the evaluation of the clustering effect on each
branch. Then, this function sums their probabilities to the probability P .

We emphasize that how to construct these functions affects the efficiency
of Algorithm 1. In particular, for SATclust(), we can decide α arbitrary, and the
choice of α significantly affects the efficiency of Algorithm 1. Intuitively, the most
efficient choice of α is the minimum weight of each branch since there are no
differential characteristics under the minimum weight. For a fair comparison, we
always set α to 0 in our evaluation because the general strategy does not require
any information without a differential (Din,Dout) corresponding the optimal
differential characteristic.

4 Application to Orthros

4.1 Specification of Orthros

Orthros is a 128-bit low-latency PRF with a 128-bit plaintext M , ciphertext C,
and kay K proposed by Banik et al. [5]. Orthros consists of two 128-bit keyed
permutations Branch1 E1 : F128

2 × F128
2 → F128

2 and Branch2 E2 : F128
2 × F128

2 →
F128
2 . The encryption algorithm of Orthros is expressed as C = E1(K,M) ⊕

E2(K,M). The specifications of Branch1 and Branch2 are detailed below.

Specifications of Branch1 and Branch2 Branch1 and Branch2 are 128-bit keyed
permutations based on an SPN structure with 12 rounds. The round function
RfN , which denotes the round function in Branch N , consists of S-box (SB), bit-
permutation (PbrN ), nibble-permutation (PnN ), MixColumn (MC), AddRound-
Key (AK) and AddConstant (AC), where N ∈ {1, 2} as follows:

RfN = AC ◦AK ◦MC ◦ PbrN (PnN ) ◦ SB.

In the round functions of Branch1 and Branch2, bit permutation PbrN is applied
in the first four rounds, and nibble permutation PnN is applied in rounds 5 and
later. The detailed explanation of each branch will be provided in Appendix A.
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4.2 Existing Security Evaluation by Designers

The designers of Orthros evaluated the security against several attacks, including
differential, linear, impossible and integral attacks [5], In their work, they showed
the 7-round integral distinguisher as the most effective attack to Orthros.

For the differential cryptanalysis, they provided only the lower bounds for #
AS and concluded that the 9-round Orthros is secure against this type attack.
However, this security bound is very rough since it is provided by the sum of
the lower bounds for # AS in each branch. Moreover, their lower bounds of each
branch are also rough because they are independently evaluated in the first 4
rounds and the remaining rounds, i.e., they are just a sum of the lower bound
in the first 4 rounds and the remaining rounds due to the high computational
cost. Furthermore, the lower bound in 5–12 rounds is evaluated by a nibble-wise
evaluation, and it brings a rougher bound than that in a bit-wise evaluation.

Note that designers of Orthros considers that Orthros can be secure against
differential attacks when a sum of the lower bounds for # AS in Branch1 and
Branch2 exceeds 64 (2−2×64 ≤ 2−128). Therefore, we follow this metric in our
evaluation, namely, considering the probability of a differential characteristic in
Orthros as a product of the probabilities in Branch1 and Branch2.

4.3 Updating Bounds for Differential Attacks

We apply the SAT-based automatic search method [19]. to Orthros to obtain
tighter security bounds for differential attacks. Specifically, we first give the
strict lower bounds of # AS based on a bit-wise difference and further obtain
the optimal differential characteristics by taking differential transitions with each
probability via an S-box into consideration.

AS-Based Evaluation. We provide the “exact” lower bounds for # AS up
to 7 rounds of Orthros and the full rounds of each branch using a SAT-based
automatic search tool proposed by Sun et al. [19]. As our evaluation is based on
a bit-wise difference and takes into account bit-level differential transitions of S-
box, we can find the exact lower bounds of # AS. In other words, the differential
propagation found in this evaluation is always valid.

Table 3 shows our lower bounds of Orthros and each branch in compari-
son to the designer’s results. Our result shows that 8/11/11 rounds of Or-
thros/Branch1/Branch2 are sufficient to guarantee security against differential
attacks, while the designer’s result requires at least 9/12/12 rounds, respectively.
Thus, our bit-level evaluation enables updating these bounds by one round.

Our evaluation is conducted on Threadripper™3990X @2.9GHz (128 cores)
with 256GB RAMs by a SAT solver P-MCOMSPS [23](40 threads used).

Finding Optimal Differential Characteristics. In the AS-based evaluation,
we only consider whether an S-box is active or not. To obtain tighter bounds
for differential attacks, we take the probability of differential transitions over an
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Table 3: The lower bound for # AS in Orthros, Branch 1, and Branch 2.
Rounds 1 2 3 4 5 6 7 8 9 10 11 12 Ref.

B1 1 4 6 8 9 12 16 24 33 44 58 68 [6]
B1 1 4 6 8 11 18 28 37 48 58 67 80 Our
B2 1 4 5 8 9 12 16 24 33 44 59 68 [6]
B2 1 4 5 8 10 16 26 36 49 58 70 80 Our

Orthros 2 8 12 16 18 24 36 56 84 88 117 136 [6]
Orthros 2 8 12 16 22 36 58 79 98 129 188 196 Our

S-box into account, namely, we aim at finding the optimal differential character-
istics for Orthros and each branch.

Table 4 shows the optimal differential characteristic up to 7 rounds of Orthros
and the full rounds of Branch1 and Branch2, where the evaluation environment is
the same as that of Sect. 4.3. In comparison to the result of the AS-based evalua-
tion in Table 3, we can reduce the number of rounds of Orthros/Branch1/Branch2
by one round to ensure secure against differential attacks, i.e. from 8/11/11 to
7/10/10, respectively.

In summary, our bit-level evaluation can improve the designer’s security
bounds by 2 rounds for Orthros/Branch1/Branch2, respectively. We emphasize
that the optimal differential characteristics in 10 rounds of Branch1 and Branch2
can be the best distinguishing attacks for them, where known best attacks are
7-round integral distinguishers [5].

Table 4: Weight of the optimal differential characteristics in Orthros, Branch 1,
and Branch 2.

Rounds 1 2 3 4 5 6 7 8 9 10 11 12 Ref.

B1 2 8 14 19 29 41 61 91 113 142 160 181 Our
B2 2 8 13 19 26 38 58 82 117 136 163 180 Our

Orthros 4 16 29 42 59 90 136 - - - - - Our

4.4 How to Efficiently Capture the Clustering Effect

We leverage our SAT-based automatic search method for evaluating the cluster-
ing effect on multiple-branch-based designs to increase the differential probabil-
ity. Specifically, we evaluate the clustering effect of the 7-round optimal differ-
ential characteristic of Orthros by the general and our method. For a fair com-
parison, we apply the identical differential characteristic to both methods and
compare their efficiency in terms of how much we can enhance the probability
of a given differential, #SAT , and the practical run-time.

Table 5 shows the result of the general and our method.
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Table 5: Comparison of our method and the general method. The parameters of
our method are Wmin = 136,Wc = 5 and Wα = 15. The general method takes
the clustering effect from weight 136 to 149 into consideration..

Prob.[-log2] #SAT Time

Our method 121.297 145245 36m12.644s

General method 127.395 2288883 114h28m28.438s

Our / general 6.098 0.0634 0.005

In the general method, we can evaluate a weight up to 151 and cannot evalu-
ate a weight over 152 because it is computationally infeasible in our environment.
As can be seen in Table 5, both methods can improve the probability to more
than 2−128, that is, we can improve the distinguishing attack from 7 rounds to 6
rounds due to the clustering effect. However, our method demonstrates superior
efficiency compared to the general method. Specifically, our method increases
the probability from 2−136 to 2−121.297, while the general method increases it to
2−127.395.

Furthermore, our method exhibits a significant improvement in efficiency,
achieving a 93.6% and 99.5% reduction in #SAT and runtime, respectively,
compared to the general method. The gap in an improvement between #SAT
and a run-time comes from the difference in a size of the SAT model solved in
each method. The general method solves a SAT model expressing a differen-
tial propagation in a whole Orthros while our method primarily solves a SAT
model expressing a differential propagation in one branch, i.e, a size of a SAT
model solved in our method is roughly half that of the general method. Since
a computational cost becomes larger with increasing a size of a SAT model in
general, this gap becomes larger with growing the number of branches. From
this observation, our method will be getting more and more advantageous with
the number of branches increasing.

4.5 Better Choice of Wα

The choice of Wα has a large impact on the probability, #SAT , and a practical
run-time. In this section, we present experimental results for several choices of
Wα and discuss which choices of Wα are most favorable.

Table 6 shows the detailed results for Wα = 5, 10, 15, 20, 25, 30 with Wmin =
136 and Wc = 6. According to Table 6, the gap in the probability is not large
across the range of Wα = 4 to 30 even though each #SAT is different. In other
words, the differential characteristics constructed with larger values ofWα have a
limited contribution to the probability, and it is a natural observation as a higher
number of differential characteristics is required to enhance the probability of a
differential when the probability of these differential characteristics is low.

For a practical run-time, it seems to increase significantly with Wα becoming
large. This comes from the fact that the clustering effect occurs easily in weight
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Table 6: The probability, #SAT , and a run-time on Wα = 5 to 30.
Wmin

+Wc-1
Wα

Prob.
#SAT Run-time

Wmin

+Wc-1
Wα

Prob.
#SAT Run-time

Wmin

+Wc-1
Wα

Prob.
#SAT Run-time

[-log2] [-log2] [-log2]

136

5 131.585 201 5m29s

138

5 127.532 697 8m48s

140

5 124.329 2742 10m56s
10 130.098 1463 5m31s 10 126.231 7382 9m56s 10 123.091 29229 15m09s
15 129.915 5607 6m27s 15 126.098 22733 11m09s 15 122.981 75619 20m20s
20 129.911 7319 6m26s 20 126.096 26802 14m38s 20 122.980 83875 38m32s
25 129.911 7356 6m07s 25 126.096 26913 22m04s 25 122.980 84279 1h21m02s
30 129.911 7366 8m33s 30 126.096 26993 39m34s 30 122.980 84649 2h46m56s

137

5 131.585 201 7m01s

139

5 126.074 1174 10m10s

141

5 122.588 6325 17m11s
10 130.098 1463 7m25s 10 124.767 12905 12m10s 10 121.396 61742 25m39s
15 129.915 5607 7m33s 15 124.640 36727 13m39s 15 121.298 145245 36m12s
20 129.911 7319 8m28s 20 124.638 42147 20m07s 20 121.297 157340 1h24m20s
25 129.911 7356 8m35s 25 124.638 42318 34m08s 25 121.297 158320 3h23m00s
30 129.911 7366 9m40s 30 124.638 42458 1h04m48s 30 121.297 159230 11h45m27s

far from Wmin up to a point. Notably, #SAT for Wα = 30 with Wmin = 141
is almost the same as that for Wα = 25 with Wmin = 141 while the run-times
of them are quite different. It is because that the distribution of the differential
characteristic is biased depending on weight. Figure 6 illustrates the distribution
of the differential characteristic in Branch 1 and Branch 2 for Wα = 30 with
Wmin = 141. As can be seen in Fig. 6, # differential characteristics reaches
the peak when the weight is around +15 to +20 from weight that a solver first
returns “SAT”. After reaching the peak, the differential characteristics become
sparse with increasing weight, that is, there are few differential characteristics
in a large Wα. Therefore, the gap in #SAT on Wα = 25 and Wα = 30 becomes
small. However, this small gap affects a practical run-time so much because P-
MCOMSPS takes a much longer run-time to solve “UNSAT” than that of “SAT”
and an SAT problem that will be “UNSAT” dominates this small gap of #SAT .
This is the reason why the case of Wα = 30 takes longer run-time than the case
of Wα = 25 even though their #SAT and weight are almost the same.

Therefore, Wα = 10, 15 appear to be favorable choices for balancing both
probability and practical run-time in the evaluation of Orthros. Of course, the
better choice may be different depending on the designs, but we expect that
Wα = 10, 15 will be a suitable choice for most designs, as a similar distribution
in Fig. 6 may appear in other designs.

4.6 Maximizing the Clustering Effect with Optimal Choice of Wα

In Sect. 4.4 and 4.5, our method consistently investigates the clustering effect
in each branch starting from weight 0 for a fair comparison with the general
method. However, given that we have knowledge of the minimum weight of each
branch, we can further enhance the efficiency of our approach by initiating the
evaluation of the clustering effect at the minimum weight of each branch rather
than at 0. Here, we aim to maximize the probability of a given differential by
utilizing the information of the minimum weight of each branch and the optimal
selection of Wα discussed previously.
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Fig. 6: #SAT on Wα = 30 with Wmin = 141. Colored lines show the distribution
of the differential characteristic of each (Din,d

i
1) and (Din,d

i
2)

Table 7 shows the result of setting the starting weight of the evaluation of
the clustering effect to the minimum weight of each branch with Wα = 15. With
the optimization of our method, we can further improve the probability from
2−121.297 to 2116.806.

Table 7: The highest probability of a differential that we found.
Method Wmin Wc Wα Prob.[-log2] #SAT Time

Our (optimized) Sect. 4.6 136 14 15 116.806 1431466 25h38m39s

Our in Sect. 4.5 136 5 15 121.298 145245 36m12s
General - - 127.395 2288883 114h28m28s

5 Conclusion

In this paper, we proposed a new SAT-Based automatic search method for effi-
ciently evaluating the clustering effect. We applied our method to Orthros and
showed that our method is much more efficient than the general method. As a
results, we presented the distinguishing attack up to 7 rounds of Orthros with
2116.806 time/data complexity, which is the best distinguishing attack to Or-
thros. Besides, we updated the designer’s security bound against the differential
cryptanalysis from 9/12/12 to 7/10/10 rounds for Orthros/Branch 1/Branch 2,
respectively.

We expect that our method would be useful to investigate the behavior of a
differential in the future multiple-branch-based designs.
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A Detailed Explanation of Branch 1 and Branch 2

Orthros is a two-branch-based design in which the underlying components are
SPN-based PRPs as shown in Fig. 7. The underlying two keyed permutations
consist of S-box (SB), bit-permutation (PbrN ), nibble-permutation (PnN ), Mix-
Column (MC), AddRoundKey (AK) and AddConstant (AC). We provide the
detailed explanation of those function. Note that we do not give the explanation
of a key scheduling because our evaluation does not consider the impact of the
round keys.

Branch1 Branch2

Plaintext M

Key KKey K

128 bit128 bit

128 bit

Ciphertext C

Fig. 7: Overview of Orthros

SB A 4-bit S-box will be applied to each nibbles in parallel for Branch1 and
Branch2. The specification of the 4-bit S-box is given in Table 8.

PbrN ,PnN For the first 4 rounds of Branch1 and Branch2, Pbr1 and Pbr2 will be applied,
respectively. From the 5th round to the 11th round, the nibble permutations
Pn1 and Pn2 will be adopted in each branch respectively. The details of the
permutation PbrN and PnN , where N ∈ {1, 2}, are shown in Table. 9 and
Table. 10, respectively.
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Table 8: 4-bit S-box of Branch1 and Branch2

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 1 0 2 4 3 8 6 d 9 a b e f c 7 5

Table 9: BP of Branch1 and Branch2

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pbr1(x) 6 46 62 126 70 52 28 14 36 125 72 83 106 95 4 35
Pbr2(x) 20 122 74 62 119 35 15 66 9 85 32 117 21 83 127 106

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pbr1(x) 25 41 10 76 87 74 120 42 88 21 11 67 64 38 112 50
Pbr2(x) 11 98 115 59 71 90 56 26 2 44 103 121 114 107 68 16

x 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
Pbr1(x) 85 109 24 65 99 0 49 37 8 66 114 47 127 100 56 40
Pbr2(x) 84 1 102 33 80 52 76 36 27 94 37 55 82 12 112 64

x 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
Pbr1(x) 13 117 78 86 92 58 124 101 55 89 97 9 18 116 59 15
Pbr2(x) 105 14 91 17 108 124 6 93 29 86 123 79 72 53 19 99

x 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
Pbr1(x) 20 45 75 2 77 27 1 60 115 107 26 69 119 3 84 51
Pbr2(x) 50 18 81 73 67 88 4 61 111 49 24 45 57 78 100 22

x 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
Pbr1(x) 123 110 31 82 113 53 81 102 63 118 93 12 30 94 108 32
Pbr2(x) 110 47 116 54 60 70 97 39 3 41 48 96 23 42 113 87

x 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
Pbr1(x) 5 111 29 43 91 19 79 33 73 44 98 48 22 61 68 105
Pbr2(x) 126 13 31 40 51 25 65 125 8 101 118 28 38 89 5 104

x 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
Pbr1(x) 34 71 54 104 17 57 80 103 96 121 23 39 122 90 7 16
Pbr2(x) 109 120 69 43 7 77 58 34 10 63 30 95 75 46 0 92

Table 10: NP of Branch1 and Branch2

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Pn1(x) 10 27 5 1 30 23 16 13 21 31 6 14 0 25 11 18
Pn2(x) 26 13 7 11 29 0 17 21 23 5 18 25 12 10 28 2

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Pn1(x) 15 28 19 24 7 8 22 3 4 29 9 2 26 20 12 17
Pn2(x) 14 19 24 22 1 8 4 31 15 6 27 9 16 30 20 3
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MC Let Mb be 4× 4 binary matrix over nibbles defined as

Mb =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 .

Four nibbles (a0, a1, a2, a3) will be updated as follows:

(a0, a1, a2, a3)
T ←Mb · (a0, a1, a2, a3)T .

RfN
Figure 8 and 9 show the first four and remaining rounds of each branch.
Note that MC and NP are not applied in the final round.

Fig. 8: The first four rounds. Fig. 9: The 5th to 11th round.
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