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Abstract

We show the following results:
• The post-quantum equivalence of indistinguishability obfuscation and differing inputs

obfuscation in the restricted setting where the outputs differ on at most a polynomial
number of points. Our result handles the case where the auxiliary input may contain a
quantum state; previous results could only handle classical auxiliary input.

• Bounded collusion traitor tracing from general public key encryption, where the decoder is
allowed to contain a quantum state. The parameters of the scheme grow polynomially in
the collusion bound.

• Collusion-resistant traitor tracing with constant-size ciphertexts from general public key
encryption, again for quantum state decoders. The public key and secret keys grow
polynomially in the number of users.

• Traitor tracing with embedded identities in the keys, again for quantum state decoders,
under a variety of different assumptions with different parameter size trade-offs.

Traitor tracing and differing inputs obfuscation with quantum decoders / auxiliary input arises
naturally when considering the post-quantum security of these primitives. We obtain our results
by abstracting out a core algorithmic model, which we call the Back One Step (BOS) model. We
prove a general theorem, reducing many quantum results including ours to designing classical
algorithms in the BOS model. We then provide simple algorithms for the particular instances
studied in this work.

1 Introduction
The threat of quantum computers requires re-evaluation of some of the core aspects of modern
cryptography. Due to Shor’s algorithm [Sho94], cryptosystems based on factoring or discrete logs will
be insecure. Even for cryptosystems based on so-called “post-quantum” building blocks, quantum
computing may also yield new threat models, such as superposition attacks [KM10, Zha12, DFNS14].

A perhaps more subtle issue is the following: even if the building blocks are quantum-immune and
the threat model remains the same, the classical proof may not hold quantumly. Indeed, a classical
proof converts a classical adversary into a classical algorithm for some underlying hard problem,
while a post-quantum proof must convert a quantum adversary into a quantum algorithm. What
works for classical adversaries may not work for quantum adversaries. The canonical example of a
proof technique that does not translate is rewinding, which is known to be problematic quantumly
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due to the no-cloning theorem [VDG98, ARU14]1. Rewinding is most often discussed in the context
of interactive proofs, where it is used to extract information from the adversary that would remain
hidden against straight-line procedures. In this context, a number of positive results have been
achieved quantumly [Wat06, Unr12, CMSZ21, LMS21].

In this work, we consider certain cases where rewinding arises, perhaps implicitly, in settings
other than interactive proofs:

• It is known, classically, that indistinguishability obfuscation (iO) implies differing inputs
obfuscation (diO) in the setting where the pairs of circuits being considered only differ on
polynomially many points [BCP14]. The proof extracts a differing input from a distinguisher
by testing the distinguisher on a variety of distributions over programs, using a type of binary
search.

• In traitor tracing [CFN94], a coalition of malicious users group their secret keys into a pirate
decoder program, and a tracing algorithm must identify at least one malicious user. Once
identified, the malicious user(s) can be prosecuted. Essentially all traitor tracing schemes test
the decoder on various distributions over ciphertexts, and use the corresponding decryption
probabilities to accuse a user.

The unifying feature of both classes of results is that the extracted information is computed based
on the success probabilities of a single adversary on various distributions of inputs. This is very
different from the way information is typically extracted for interactive proofs, where the information
is usually extracted from the adversary’s outputs themselves.

When moving to the quantum setting for traitor tracing, Zhandry [Zha20] shows that if the pirate
decoder contains a quantum state, then the classical tracing algorithms are no longer guaranteed to
work. The malicious users of course want to design their decoder in such a way as to avoid tracing,
and would therefore be incentivized to design a quantum state decoder to evade tracing. Being able
to trace such quantum state decoders is therefore the natural model to consider in the post-quantum
setting. Zhandry provides an initial positive result, showing how to trace even quantum decoders for
schemes in the Private Linear Broadcast Encryption (PLBE) framework [BSW06], when the identity
space is polynomial size2. However, the techniques are incapable of handling other important traitor
tracing approaches, in particular:

• Traitor tracing with embedded identities, where the identity of a user is an arbitrary string,
as opposed to an index in a polynomial-sized set. The first such tracing scheme is due
to [NWZ16], who use the PLBE framework but with exponentially many identities. [NWZ16]
and later [GKW19] also explore other structures for achieving embedded identities.

• Combinatorial traitor tracing, such as [CFN94, BN08, BP08], which achieve traitor tracing
with short ciphertexts from general public key encryption, as opposed to algebraic tools.

When considering the restricted iO-diO equivalence in the quantum setting, it is most natural to
consider a quantum auxiliary input, since the auxiliary input will be the adversary’s state at some
step in the protocol. However, the equivalence has a flavor similar to PLBE with super-polynomial

1A different example is the quantum random oracle model [BDF+11], though this model is conceptually closer to
the superposition attacks mentioned above.

2Another limitation of Zhandry’s work is that the PLBE must support public encryption for all distributions used
during tracing, which is not true of the known succinct LWE-based scheme [GKW18].
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identity spaces (as observed by [NWZ16]), and therefore is also not handled by the previous quantum
techniques.

Thus, these important cases of traitor tracing and the iO-diO equivalence were previously open
questions in the quantum decoder/auxiliary input setting.

This Work. In our work, we resolve these open questions. We start by defining an algorithmic
model we call the Back One Step (BOS) model, which we show can be realized by any quantum
program containing a quantum state. This is the core conceptual contribution of this work, and
builds on ideas from Zhandry [Zha20] and Chiesa et al. [CMSZ21], which in turn build on Marriott
and Watrous [MW04].

We then design new algorithms for the BOS model, for the instances arising from the aforemen-
tioned open problems. This step is entirely classical, and while the algorithms may not be trivial,
they are fairly simple. Combining our results together, we achieve the following results:

• (Section 6) We prove the restricted iO-diO equivalence holds post-quantumly, even if the
auxiliary input is a quantum state. Along the way, we give a definition of diO that address
several subtleties in defining quantum security that we overcome.

• We construct tracing algorithms for several existing traitor tracing schemes, achieving a couple
of “firsts” for tracing schemes for quantum decoders:

– (Section 8) Bounded collision traitor tracing from general public key encryption, where
the parameters grow polynomially with the collusion bound but are independent of the
number of users.

– (Section 8) Collusion-resistant traitor tracing from general public key encryption, where
ciphertext size is independent of the number of users.

– (Sections 7 and 9) Collusion-resistant embedded identity traitor tracing, under various
assumptions with different parameter size trade-offs. In particular, assuming public key
encryption, we get a scheme where the parameters grow polynomially in the number
of users. Assuming Learning With Errors (LWE), we get such a scheme with succinct
ciphertexts whose length is independent of the length of the embedded identities. Finally,
assuming iO, we get a scheme with both succinct ciphertexts and where parameter sizes
are independent of the number of users.

These schemes are identical to their classical counterparts, except for the tracing algorithm.
They also match most of the best-known results for classical traitor tracing under post-
quantum assumptions, with the main exception being the LWE-based traitor tracing scheme
with constant-sized parameters [GKW18], which still remains open in the quantum setting.

• (Section 10) We show limitations of the BOS model, showing an artificial setting that can be
solved classically, but for which there is no BOS model algorithm.
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2 Technical Overview

2.1 A general view of classical tracing algorithms

Essentially all modern classical traitor tracing algorithms can be framed as follows. There is a
collection D = {Dq}q∈Q of distributions of ciphertexts for some index set Q, and the adversary
produces a decoder subject to the following guarantees:

• Large success probability on source. The distribution of “honest” ciphertexts is an
element of D, which we will denote as Dα for some distinguished α ∈ Q that we call the
source. Any useful decoder, by definition, has a “large” success probability on Dα.

• Small success probability on sinks. There is a collection of distributions {Dq}q∈Ω for
q ∈ Ω ⊂ Q, which we may call sinks, for which any coalition of users has “small” success
probability.

• Constant on adversary partition. Any coalition of malicious users corresponds to a
partition Π on Q, such that the coalition, and therefore their decoder, cannot efficiently
distinguish between distributions belonging to the same part of the partition. In other words,
the decoder’s decryption probability is roughly constant on each part of the partition.

The tracing algorithm therefore tests the decoder on various Dq, learning (estimates of) the
decoder’s success probabilities on Dq. The rough idea is that α and q ∈ Ω must have different
success probabilities, so the tracer is guaranteed to see some jumps as it makes its queries. These
jumps must be across different parts of the partition, revealing some information about the structure
of the partition. The hope is that this information can identify at least one malicious user.

Abstracting out the details of generating the various distributions and estimating their success
probability, we arrive at a model we might call the Globally Consistent Hidden Partition model,
where the tracer simply queries (potentially adaptively) on various qi ∈ Q and receives in response
real numbers oi ∈ [0, 1]. We are guaranteed that any oi, oj which correspond to queries qi, qj lying
in the same part of the partition Π will be close, that qi = α will give “large” oi, and that qi ∈ Ω
will give “small” oi. The tracer then takes these oi and uses them to learn information about the
partition.

Example : PLBE. To make things concrete, we now illustrate how this view captures private
linear broadcast encryption (PLBE). Here, there are N users, with identities 1, . . . , N . For any
q ∈ [0, N ], one can encrypt to the set [q] = {1, . . . , q}. Users in [q] will be able to decrypt, while
users outside of [q] will not. An “honest” ciphertext is an encryption to all users, q = N . Moreover,
any coalition of users will be unable to distinguish encryptions to [a] and [b], unless the coalition
contains a user in the half-open interval (a, b]. In the view above, we would therefore have Q = [0, N ],
α = N , and Ω = {0}. For a coalition of users a1 < a2 < · · · < at ∈ [N ], the partition Π therefore
consists of the intervals [0, a1), [a1, a2), [a2, a3), · · · , [at, N ].

To trace, we split into two cases. In the case where N is polynomial, one simply estimates the
success probabilities o0, o1, . . . , oN on queries 0, 1, . · · · , N . The usefulness of the decoder implies
that oN ≫ 0, while PLBE security implies that o0 ≈ 0. Therefore, there must exist a q such that
|oq−1 − oq| ≫ 0. But since oi must be constant on the intervals in Π, we know that q = ai for some
i. Thus we have identified a member of the coalition.
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If N is exponential, then we cannot simply do a linear scan. However, a variant of a binary
search will work, as shown in [BCP14, NWZ16]. In the binary search, we recurse left if there is a
large gap between the pivot and the left value, while we recurse right if there is a large gap between
the pivot and the right value. Importantly, we must make sure to pivot both left and right if there is
a large gap in both directions. Otherwise, there is a possibility that every time we recurse, the gap
gets divided by 2, and after a polynomial number of steps the gap is negligible but we have yet to
accuse a user. Fortunately, it is proved by those works that there will never be more branches in the
binary search than there are users in the coalition, so the overall search still takes polynomial time.

2.2 Moving to Quantum: Prior Results

When we move to allowing a quantum decoder, we must be much more careful. There are several
issues, first pointed out by Zhandry [Zha20]. First is definitional: the success probability of the
decoder is not necessarily known (nor even knowable) until it is measured, and any measurement
necessarily alters the quantum state. Care must be taken to appropriately define traitor tracing to
handle cases where the decoder may be in superposition of both high success probability and low
success probability. Zhandry shows how to handle these definitional issues.

The second issue has to do with rewinding, which happens at two levels. First, estimating
success probability on a distribution classically involves running the decoder on various samples
from the distribution. But this implicitly requires being able to return the decoder to its original
state every time, to ensure independent trials from the same distribution. As mentioned above,
quantumly rewinding is problematic. In particular, each trial may alter the state of the decoder.
Zhandry demonstrates that the classical approach of repeated sampling cannot, in general, yield
an estimate of the decoder’s success probability. Fortunately, Zhandry shows how to develop a
quantum-compatible success probability estimation routine based on a technique of Marriott and
Watrous [MW04].

Remark 2.1. Note that Zhandry’s procedure requires security to hold when the adversary gets an
arbitrary polynomial number of tracing ciphertexts; for traitor tracing from LWE [GKW18], this is
not guaranteed. We inherit this limitation, and this is why we still cannot handle succinct traitor
tracing from LWE.

A second level is that multiple success probabilities will have to be estimated, for various
distributions of inputs. In the classical setting, it is assumed that each estimate of success probability
is applied to the same initial decoder; in other words, the decoder is rewound to its initial state3.
Otherwise, how can we make sense of gaps between estimated success probabilities, if the success
probabilities has since changed and the previous estimates are no longer valid?

Zhandry gives a first step toward overcoming this problem, by showing that a local consistency
property holds: if two consecutive estimates of success probabilities are on computationally indistin-
guishable distributions, then the estimated success probabilities will be close. However, estimated
probabilities that are not consecutive may not obey this property. This gives rise to a variant of
the tracing model above, which we will call the Locally Consistent Hidden Partition Model, that
is identical to the Globally Consistent model above, except that (1) oi, oj corresponding to qi, qj
in the same part are guaranteed close only if |i − j| ≤ 1, and (2) qi = α is guaranteed to yield a
large ri only on the first query i = 1. The good news is that the linear scan algorithm for PLBE

3The usual terminology is that the decoder is “stateless.”
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with polynomial identity space fits within this model (provided the scan starts at N and goes to
0), allowing Zhandry to trace this particular case. On the other hand, the model seems inherently
limited to PLBE: during any sequence of probability estimates, the estimate outcomes may be the
sequence 1, 1, 1, · · · , 1, 0, 0, 0, · · · . Such a sequence would satisfy the local consistency requirements,
as long as the jump from 1 to 0 happens the first time a distribution Dq for q ∈ Ω is tested. But for
a polynomial-length sequence, only a logarithmic number of bits of information can be extracted,
namely the location of the jump between 1 and 0. Thus this model is incapable of handling a variety
of traitor tracing scenarios, such as

• Embedded identities, where the whole point is to embed more than a logarithmic amount of
information.

• Combinatorial traitor tracing, which usually follows a non-linear path. For example, traitor
tracing based on fingerprinting codes [BN08, BP08] first extracts a very long “codeword” from
the decoder, which is then further processed; in the locally consistent model it would be
impossible to construct this codeword.

The work of [KN22]. [KN22] shows how to watermark PRFs in a quantum decoder model. Most
relevant to us, their algorithm surprisingly extracts more than a logarithmic amount of information.
This is because, in their setting, they essentially show that each measurement does not alter the
decoder, so they can effectively work in the Globally Consistent model, despite the decoder being
quantum.

At first glance, this may seem impossible: if a measurement has any chance of revealing useful
information, it would seem it must also risk disturbing the quantum state; this is the famous
measurement principle. However, the clever observation of [KN22] is that, in their setting, the
success probably in any query will be a fixed deterministic function of the query and also the
message embedded in the watermark. As such, by the gentle measurement principle, measuring the
success probability will not alter the quantum state.

The problem with this approach is that it seems inherently limited to the case where there is
a single marked program, and it does not seem it can handle even the case where the adversary
gets two marked programs. Likewise, we expect their results could naturally be adapted to give
embedded identity traitor tracing secure against a single user, but will not allow for any collusions
amongst users. The reason is that each user will have a different function mapping queries to success
probabilities (this is necessary to allow for tracing). But an adversary with multiple programs/users
can create a decoder which sometimes uses one program, sometimes another, and which program
used could be controlled by some quantum state. For such a decoder, it is no longer the case that
the success probability deterministically depends on the embedded messages, and measuring success
probabilities will necessarily alter the decoder. Therefore, a different approach is necessary.

2.3 Our Solution: The Back One Step (BOS) Model

A starting point for our results is the recent work of Chiesa et al. [CMSZ21]. They provide a
powerful new rewinding technique, where they show that in some sense it is possible to “repair” a
quantum state after a measurement. They apply their technique to the setting of interactive proofs,
where they repair the quantum state of the adversary in order to rewind it many times. In this
work, we show how to adapt the rewinding technique to our setting.
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Before getting into the details of our approach, we highlight some conceptual differences between
our settings:

• Chiesa et al. extract information from an adversary using the adversary’s actual messages;
the rewinds are used to obtain many such messages. The inputs for the different rewinds are
typically all uniformly random and independent. In contrast, for traitor tracing, information is
generally extracted by looking at success probabilities. The distributions tested will generally
be far from uniform, in order to get differences in success probabilities.

• The decision tree in traitor tracing is rather deep. Consider for example the binary search
algorithm for PLBE with large identities. In order to find a gap, we must explore a deep
branch. We may not find anything, in which case we must return to the root and explore
a different branch. In contrast, the rewinding in Chiesa et al. always returns the adversary
to a state approximating the initial state of the adversary. In this sense, the decision tree is
shallow, having only one level.

• The repair procedure can only repair a single feature of the adversary. This is inherent, since
different quantities may correspond to “incompatible” observables, and in general quantum
systems one cannot simultaneously “know” the values of incompatible observables. Chiesa
et al. always repair just the original success probability of the adversary. This is enough for
them, due to their shallow decision tree. Looking at our setting, however, always repairing to
the initial setting will not work. For example, in the binary search case, if we just repair to
the initial success probability, this allows us to return to the root of the binary search tree.
But now the values at all points may have shifted around. So if we explore a branch and fail
to find a gap, when we return to the root, the gap we are looking for may have moved into
the branch we just abandoned. Even if we explore all branches, we may never end up actually
finding the ever-moving gap.

In order to simplify the task of designing new tracing protocols to overcome these challenges, we
propose an intermediate model which we call the Back One Step (BOS) model. The BOS model
allows us to abstract away the complicated techniques of state repair in order to give a clean model
of what the technique should be capable of. This model will then allow us to design novel tracing
algorithms. Importantly, the task of designing algorithms in the model will be entirely classical,
with all the quantum aspects hidden beneath the abstraction.

The Model. We now describe the BOS model: there is a collection Q of queries available. There
is moreover a potentially stateful oracle which contains a secret partition Π of Q. The oracle accepts
a sequence of queries q1, . . . , qt ∈ Q, and answers queries with a bit oi ∈ {0, 1}. Note that we
discretized the oi, to make the model simpler. We impose the following constraints:

• Large value on source if first query. A distinguished query α ∈ Q. If q1 = α, then o1 = 1.
There are no guarantees on subsequent queries to α, or if α is not the very first query.

• Small values on sinks. There is a collection Ω ⊂ Q, such that if qi ∈ Ω, then oi = 0. This
holds for all i ∈ [t].

• Local consistency. For any two consecutive queries qi, qi+1, if qi, qi+1 lie in the same part of
the partition Π (and in particular, if qi = qi+1), then oi = oi+1. There is no such requirement
for qi, qj with |i− j| > 1.
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• Single step rewinding. Finally, if qi+2 = qi, then oi+2 = oi. Any other identical queries
that may exist in the query sequence have no such restriction.

If we ignore the last requirement, note that we recover the model of Zhandry. The last requirement
essentially says that we can make a query qi, make an arbitrary different query qi+1, and then
rewind to the previous query qi for query i+ 2 and be guaranteed to recover the same output oi a
second time.

Realizing the BOS Model. By adapting the rewinding technique of Chiesa et al., we show
how to instantiate a BOS oracle from any pirate decoder or diO adversary. The rough idea is to
run the BOS algorithm, using Zhandry’s [Zha20] success probability estimation routine to answer
every query. This already ensures large values on the source (if the first query), small values on
the sinks, and local consistency, following the same analysis as Zhandry. In order to ensure single
step rewinding, we then add one more feature: if any query qi+2 is equal to qi, instead of naively
computing the success probability oq+2 using Zhandry, we instead use the quantum rewinding
technique of Chiesa et al. to rewind to a state where query qi+2 = qi yields success probability
essentially equal to oq. Thus, we can answer the query with oq+2 = oq, thereby guaranteeing single
step rewinding.

Designing Algorithms for the BOS Model. The BOS oracle guarantees are much weaker than
the Globally Consistent Hidden Partition Model, and as discussed above, many classical tracing
algorithm crucially rely on these stronger consistency guarantees. Perhaps surprisingly, while local
consistency alone does not appear enough for many tracing settings, the ability to rewind even a
single step opens many doors. We design new algorithms for the BOS model for the various settings,
crucially leveraging the ability to rewind a single step. Importantly, this design process is entirely
classical, greatly simplifying the design task. We note that the algorithm for each result is different
(aside from the iO/diO equivalence and basic embedded identity tracing scheme being the same).

We next briefly describe how the process works for tracing PLBE; for the other results see the
main body of the paper.

The case of PLBE. As explained above, in the case of PLBE, we haveQ = [0, N ], α = N,Ω = {0},
and Π = {[0, a1), [a1, a2), [a2, a3), · · · , [at, N ]}. Our goal is to recover one of the ai.

We know if the first query is on α = N , then the response is oN = 1. Likewise, we know if we
ever query on 0, the response is o0 = 0. In the classical case, we would identify an ai via a binary
search. We first assign a pivot to be N/2, and query on N/2. If the query response is oN/2 = 1, we
know that at least one ai lies in the interval [1, N/2], so we can recurse on the interval [0, N/2]. If
the query response is oN/2 = 0, then we know at least one ai lies in the interval [N/2 + 1, N ], and
so we can recurse on the interval [N/2, N ].

In the BOS model, we can try the same: after querying on N and receiving response 1, we query
on N/2 and receive response oN/2. If oN/2 = 1, we know by the rules of the BOS model that there is
an ai in the interval [1, N/2], and if oN/2 = 0, we know by the rules of the BOS model that there is
an ai in the interval [N/2 + 1, N ]. Moreover, in the case oN/2 = 1, we actually have the correct setup
to recurse on Q′ = [0, N/2] by setting α′ = N/2, Ω′ = {0}, and Π′ to be the partition of Q′ induced
by Q. Indeed, by local consistency, since the last query was on N/2 = α′ and the response was 1,
if the next query is on α′ the response will be 1, guaranteeing a large response for the recursion.
Small value on the sink, local consistency, and single step rewinding carry over as well.
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On the other hand, let us see what happens if we try to recurse on [N/2, N ] in the case oN/2 = 0.
We would naturally set Q′ = [N/2, N ], α′ = N,Ω = {N/2}. We note that local consistency and
single step rewinding still carry over to this case. Moreover, since the penultimate query was on
N = α′, single step rewinding guarantees that we get a large value on α′ if it is the next query.

This leaves small values on sink. Initially, it is true that querying on the sink N/2 gives 0, as
desired. But importantly this only holds initially, where the BOS model requires the sink to give 0
always. We can see where this leads to trouble by taking the recursion a couple steps forward. The
next step is to query on 3N/4, receiving o3N/4. Suppose o3N/4 = 1. Then we recurse left on the
interval Q′′ = [N/2, 3N/4] and query on 5N/8. Suppose again that o5N/8 = 1, so we recurse on the
interval [N/2, 5N/8]. At this point, we would want that Ω′′′ = {N/2}. However, our last query on
N/2 was three queries ago (with 3N/4 and 5N/2 between). Therefore, oN/2 may have changed, and
there is no longer any guarantee of having small values on the sinks. Without a small value on the
sinks, the recursion will fail.

One attempt to fix this problem is, after querying on 3N/4 and receiving o3N/4 = 1, we insert a
query on N/2. By single step rewinding, we have, as desired, that the result is oN/2 = 0. However,
this strategy fails when we move to the query on 5N/8. Suppose now that o5N/8 = 0, meaning we
recurse right on the interval Q′′′ = [5N/8, 3N/4]. Unfortunately, by inserting the new query on
N/2, the most recent query on 3N/4 was now three queries ago (being followed by N/2 and 5N/8).
Therefore, we no longer have the guarantee that querying on the new source α′′′ = 3N/4 gives a 1,
and in fact it could be that all future queries give a 0, which clearly does not allow for extracting
any information.

We now explain our solution. If oN/2 = 1, we recurse on [0, N/2] as we would classically. In
the case oN/2 = 0, we still query on 3N/4 to get o3N/4. Here, if o3N/4 = 1, we cannot recurse
on the interval [N/2, 3N/4]. However, we can recurse on the interval Q′ = [0, 3N/4], since now
Ω′ = {0} = Ω and so we guarantee small values on sinks throughout, not just on the next query.

What if o3N/4 = 0? In this case, we update the pivot to 7N/8 as if we were recursing to the
right. Importantly, however, we always keep the bottom of the domain as 0 to ensure small values
on the sink. So if o7N/8 gives 1, we recurse on the interval [0, 7N/8]. If o7N/8 = 0, we update the
pivot to 15N/16, and so on.

With this new algorithm, we can prove that we do indeed preserve all the properties of the BOS
model in each step of the recursion, and will eventually reach the case where the interval is [0, a]
and the pivot is a− 1, and the last two queries were on a, a− 1 giving oa = 1, oa−1 = 0. We output
a, as local consistency implies that a is one of the endpoints of the intervals in Π. Moreover, we can
prove termination in a polynomial number of steps, namely O(t log2N) where t is the number of ai.

3 Quantum Background

3.1 Basic Quantum Preliminaries

Much of this section is taken almost verbatim from [CMSZ21]. A (pure) quantum state is a vector
|ψ⟩ in a complex Hilbert space H with ∥|ψ⟩∥ = 1; in this work, H is finite-dimensional. We denote by
S(H) the space of Hermitian operators on H. A density matrix is a positive semi-definite operator
ρ ∈ S(H) with Tr(ρ) = 1. A density matrix represents a probabilistic mixture of pure states (a
mixed state); the density matrix corresponding to the pure state |ψ⟩ is |ψ⟩⟨ψ|. Typically we divide
a Hilbert space into registers, e.g. H = H1 ⊗H2. We sometimes write, e.g., ρH1 to specify that
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ρ ∈ S(H1).
A unitary operation is a complex square matrix U such that UU † = I. The operation U

transforms the pure state |ψ⟩ to the pure state U |ψ⟩, and the density matrix ρ to the density matrix
UρU †.

A projector P is a Hermitian operator (P † = P ) such that P 2 = P . A projective measurement
is a collection of projectors P = (Pi)i∈S such that

∑
i∈S Pi = I. This implies that PiPj = 0 for

distinct i and j in S. The application of P to a pure state |ψ⟩ yields outcome i ∈ S with probability
pi = ∥Pi|ψ⟩∥2; in this case the post-measurement state is |ψi⟩ = Pi|ψ⟩/

√
pi. We refer to the

post-measurement state |ψi⟩ as the result of applying P to |ψ⟩ and post-selecting (conditioning) on
outcome i. A state |ψ⟩ is an eigenstate of P if it is an eigenstate of every Pi.

A two-outcome projective measurement is called a binary projective measurement, and is written
as P = (P, I− P ), where P is associated with the outcome 1, and I− P with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via a completely-positive
trace-preserving (CPTP) map T : S(H)→ S(H′). We omit the precise definition of these maps in
this work; we only use the facts that they are trace-preserving (for every ρ ∈ S(H) it holds that
Tr(T (ρ)) = Tr(ρ)) and linear.

For Hilbert spaces A,B the partial trace over B is the unique CPTP map TrB : S(A⊗B)→ H(A)
such that TrB(ρA ⊗ ρB) = Tr(ρB)ρA for every ρA ∈ S(A) and ρB ∈ S(B).

For every CPTP map T : S(H) → S(H)there exists a unitary dilation U that operates on an
expanded Hilbert space H ⊗ K, so that T (ρ) = TrK(U(ρ ⊗ |0⟩⟨0|K)U †). This is not necessarily
unique; however, if T is described as a circuit then there is a dilation UT represented by a circuit of
size O(|T |).

A general measurement is a CPTP map M : S(H) → S(H ⊗ O), where O is an ancilla reg-
ister holding a classical outcome. Specifically, given measurement operators {Mi}Ni=1 such that∑N
i=1MiM

†
i = I and a basis {|i⟩}Ni=1 for O, M(ρ) =

∑N
i=1(MiρM

†
i ⊗ |i⟩⟨i|O). We sometimes

implicitly discard the outcome register. A projective measurement is a general measurement where
the Mi are projectors. A measurement induces a probability distribution over its outcomes given by
Pr[i] = Tr(|i⟩⟨i|OM(ρ)); we denote sampling from this distribution by i←M(ρ).

The trace distance between states ρ,ρ′, denoted d(ρ,ρ′), and is defined as 1
2Tr(

√
(ρ− ρ′)2). The

trace distance is contractive under CPTP maps (for any CPTP map T , d(T (ρ), T (ρ′)) ≤ d(ρ,ρ′)).
It follows that for any measurement M, the statistical distance between the distributions M(ρ) and
M(ρ′) is bounded by d(ρ,ρ′).

Quantum algorithms. In this work, a quantum algorithm is a quantum circuit built from some
universal quantum gate set. We will usually consider the Hilbert space for a quantum algorithm as
the product of of three registers Hin ×Hout ×Hwork. Here, input x is mapped to |x⟩ ∈ Hin where
{|x⟩} is some basis for Hin, the output of the algorithm is obtained by measuring Hout in some basis,
and Hwork is an incilla register used as work space. A quantum polynomial time (QPT) algorithm is
one where the size of the quantum circuit is polynomial.

We will also consider quantum state algorithms. This is a circuit A acting on registers Hin ×
Hout×Hwork×Haux together together with a state |ψ⟩ ∈ S(Haux). A quantum state algorithm works
just as a quantum algorithm, except that Haux is initialized to |ψ⟩ before applying A. We will often
denote quantum state algorithms by |A⟩, which will be interpreted as including both A and |ψ⟩.
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Black-box access A circuit C with black-box access to a unitary U , denoted CU , is a standard
quantum circuit with special gates that act as U and U †. We also use CT to denote black-box
access to a map T , which we interpret as CUT for a unitary dilation UT of T ; all of our results
are independent of the choice of dilation. This allows, for example, the “partial application” of
a projective measurement, and the implementation of a general measurement via a projective
measurement on a larger space.

3.2 Useful definitions and Lemmas

We distinguish between classical probabilistic polynomial time (PPT) algorithms and quantum
polynomial time (QPT) algorithms. Sometimes we will consider programs that consist of a quantum
state. Formally, these will consist of a quantum circuit C, and and a quantum auxiliary input aux.
To evaluate the program on input x, one evaluates C on |x⟩ ⊗ aux. We will denote such programs
by |P ⟩ and the evaluation of such programs as |P ⟩(x).

Almost Projective Measurements. We state a property of general measurements due to [Zha20]
that captures when a measurement is “close” to being projective, in the sense that sequential
applications of the measurement yield similar outcomes.

Definition 3.1. A real-valued measurement M = (Mp)p is (ϵ, δ)-almost projective if applying M
twice in a row to a register H (initially containing any state ρ) produces measurement outcomes
p, p′ where Pr[|p− p′| ≤ ϵ] ≥ 1− δ.

Quantum State Repair. We now recall quantum state repair from [CMSZ21].

Lemma 3.2 ([CMSZ21], Lemma 4.10). Given a projective measurement P on register H that has
outcomes in set S of size N , an (ϵ, δ)-almost projective measurement M on H, and T ∈ N, s ∈
S, p ∈ [0, 1], there exists a procedure RepairM,P

T,p,s on H such that:

• (State is repaired with respect to M) Consider applying the following operations to register H
initially containing state ρ:

1. First apply M to obtain p ∈ [0, 1],
2. Then apply P to obtain outcome s ∈ S,
3. Then apply RepairM,P

T,p,s,
4. And finally, apply M once more to obtain p′ ∈ [0, 1].

Then Pr[|p− p′| > 2ϵ] ≤ Nδ +N/T + 4
√
δ.

• (Efficiency) The expected total number of calls that Repair makes to M and P is at most
N + 4T

√
δ.

In other words, since M is almost projective, applying M twice in a row will give outcomes p, p′
that are close. However, if P is applied in between these two measurements, there are no more
guarantees on the closeness of p, p′. However, by applying Repair before the second application of
M, we can once again ensure closeness of p, p′.
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Mixtures of Projective Measurements. The following is taken from [Zha20]. We consider
the following abstract setup. We have a collection P = {Pi}i∈I of binary outcome projective
measurements Pi = (Pi, Qi) over the same Hilbert space H. Here, Pi corresponds to output 0, and
Qi corresponds to output 1. We will assume we can efficiently measure the Pi for superpositions of
i, meaning we can efficiently perform the following projective measurement over I ⊗H:(∑

i

|i⟩⟨i| ⊗ Pi ,
∑
i

|i⟩⟨i| ⊗Qi

)
(1)

Here, we call P a collection of projective measurements, and call I the control. For a distribution
D over I, let PD be the POVM which samples a random i← D, applies the measurement Pi, and
outputs the resulting bit. We call PD a mixture of projective measurements. The POVM is given by
the matrices (PD, QD) where

P =
∑
i∈I

Pr[i← D]Pi and Q =
∑
i∈I

Pr[i← D]Qi

Next, for a ∈ R and interval [b, c] ⊆ R, denote the distance between a and [b, c] as |a− [b, c]| :=
minx∈[b,c] |a− x|. For a ∈ [b, c], the distance is 0 and for a /∈ [b, c], the distance is max(a− c, b− a).
Let D0, D1 be two distributions over R, with cumulative density functions f0, f1, respectively. Let
ϵ ∈ R. The Shift distance with parameter ϵ is defined as:

∆ϵ(D0, D1) := sup
x∈R

∣∣f0(x)− [f1(x− ϵ), f1(x+ ϵ)]
∣∣

Let M = (Mi)i∈I and N = (Nj)j∈J be real-valued quantum measurements over the same
quantum system H. The shift distance between M,N, denoted ∆ϵ(M,N) is defined as

∆ϵ(M,N) := sup
|ψ⟩

∆ϵ( M(|ψ⟩) , N(|ψ⟩) )

Now, if PD = (PD, QD) is a mixture of projective measurements, we note that QD = I−PD, and
therefore PD, QD commute. In this case, PD has a projective implementation, denoted ProjImp(PD),
which is defined as follows. Let S be the set of eigenvalues of PD, and Ri for i the projectors onto
the associated eigenspaces. Then ProjImp(PD) is the projective measurement (Pi)i∈S . Note that
S ⊆ [0, 1]. Also note that applying PD is equivalent to the following: first apply ProjImp(PD) to
obtain outcome p, then interpret p as a probability and output 1 with probability p.

Lemma 3.3 ([Zha20], Theorem 6.2). For any ϵ, δ,P, D, there exists an algorithm APIP,Dϵ,δ operating
on H and making quantum queries to P, D which additionally outputs a number in some set S ⊆ [0, 1]
such that:

• There is a function R = poly(1/ϵ, log(1/δ)) such that the expected number of calls APIP,Dϵ,δ

makes to P and D, the running time of APIP,Dϵ,δ , and |S| are all bounded by R.

• APIP,Dϵ,δ is (ϵ, δ)-almost projective.

• ∆ϵ(APIP,Dϵ,δ ,ProjImp(PD)) ≤ δ.

Lemma 3.4 ([Zha20], Theorem 6.5). Let ρ be an efficiently constructible mixed state over H,
and D0, D1 efficiently sampleable, computationally indistinguishable distributions. For any inverse
polynomial ϵ, there exists a negligible δ such that ∆ϵ(ProjImp(PD0)(ρ),ProjImp(PD0)(ρ)) ≤ δ.
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4 Cryptographic Notions
Note that we use superscripts like IPP and TT to disambiguate between algorithms belonging to
different cryptosystems.

4.1 Functional Encryption

A functional encryption scheme is a tuple ΠFE = (GenFE,DeriveFE,EncFE,DecFE) defined as follows:

• GenFE(1λ) is a classical probabilistic polynomial time (PPT) algorithm that takes as input the
security parameter λ in unary, and samples a public key pk and master secret key msk.

• DeriveFE(msk, f) is a classical PPT algorithm that takes as input the master secret key msk
and a classical circuit f . It outputs a secret key skf .

• EncFE(pk,m) is a classical PPT algorithm that takes as input the public key pk and a message
m, and produces a ciphertext c.

• DecFE(skf , c) is a classical deterministic algorithm that takes as input a secret key skf for a
function f and a ciphertext, and outputs a value x.

Definition 4.1. A functional encryption scheme ΠFE is correct if, for all messages m and functions
f ,

Pr
[
DecFE(skf ,EncFE(pk,m)) = f(m) : (pk,msk)←GenFE(1λ)

skf←DeriveFE(msk,f)

]
≥ 1− negl(λ)

We now discuss security. For an adversary AFE, consider the following experiment on AFE:

• Run (pk,msk)← GenFE(1λ), and send pk to AFE.

• AFE can now make an arbitrary number of classical secret key queries on functions f ; in
response it receives skf .

• At some point, AFE makes a single challenge query on a pair of messages m∗0,m∗1. The
challenger chooses a random bit b, and sends c∗ ← Enc(pk,m∗b).

• AFE can continue making secret key queries. Let F be the set of all f queried by AFE.

• Finally, AFE makes a guess b′ for b.

Definition 4.2. A functional encryption scheme ΠFE is secure if, for all QPT AFE, there exists a
negligible negl such that:

Pr
[
b′ = b ∧ f(m∗0) = f(m∗1)∀f ∈ F

]
≤ 1

2 + negl(λ)

Variations. We can consider a number of variations. We could insist on a secret key scheme,
where there is no pk and msk is needed to encrypt. We could consider the case of bounded collusions,
where an additional input n is given to GenFE, and the security game only allows up to n secret
key queries. We could also limit the class of functions, rather than considering general efficiently
computable functions. The case of ordinary public key encryption is that where the class of functions
is empty (and so the procedure DeriveFE is vacuous). In this case, we denote the protocol by
ΠPK = (GenPK,EncPK,DecPK).
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4.2 Indistinguishability Obfuscation

Indistinguishability obfuscation (iO) is defined by [BGI+01]. We utilize a uniform notion, which
was defined in [GGH+13], and which we adapt here to the quantum setting.

Definition 4.3 (Indistinguishability Obfuscation). A post-quantum indistinguishability obfuscator
(iO) is a PPT algorithm iO such that:

• iO(1λ, C) is equivalent to C with overwhelming probability over the randomness of iO.

• Let S(1λ) be a quantum algorithm sampling two classical circuits C0, C1 of the same size, as
well as a quantum auxiliary input aux. We say S is valid if, with overwhelming probability
in λ, C0, C1 are equivalent. Security requires, for any efficient valid S, the distributions
(iO(1λ, C0), C0, C1, aux) and (iO(1λ, C1), C0, C1, aux) are computationally indistinguishable.

4.3 IPP Codes

A fingerprinting code [BS95] is used to fingerprint data. Fingerprinting codes have long been used
to build traitor tracing schemes (e.g. [BN08, Sir06, BP08]). Note, however, that the fingerprinting
codes explicitly cited in the literature are usually binary codes. Yet, the schemes provided can be
generalized to non-binary codes, but require a different kind of code called an identifiable parent
property (IPP) code [HvLT98]. We will use this generalization in order to abstract more schemes
from the literature, so we here define IPP codes rather than fingerprinting codes. Note that the two
notions coincide for binary codes.

An IPP code is a pair (GenIPP,TraceIPP) of PPT algorithms such that:

• GenIPP(1λ, 1N , 1c) takes as input a security parameter, a number of users N , and a collusion
bound c, all in unary. It outputs a tracing key tk, as well as N strings w1, . . . , wN ∈ Σℓ. The
wi are called codewords

• TraceIPP(tk, w∗) takes as input the tracing key and a codeword w∗ ∈ Σℓ. It outputs a set
A ⊆ [N ].

For a set of codewords C ⊆ Σℓ, let F (C) be the “feasible set” of C, which is defined as follows.
A word w∗ ∈ Σ∪ {?} is in F (C) if, for each position j ∈ [ℓ], either w∗j =? or there exists a codeword
w ∈ C such that w∗j = wj . In other words, F (C) consists of all codewords in C, plus all codewords
that can be obtained from C by potentially using a different codeword character in each position.
Additionally, any entry can be set to ?. The condition of being in the feasible set of C is also called
the “marking condition”.

Remark 4.4. Where IPP codes differ from fingerprinting codes is in this marking condition. For a
fingerprinting code, in any position j where {wj}w∈C is not a single character, w∗j is allowed to be
anything. This condition better reflects the use in fingerprinting. However, the marking condition
for IPP codes better reflects the use in traitor tracing.

Definition 4.5. An IPP code (GenIPP,TraceIPP) is δ-robust if, for all (potentially unbounded)
algorithms AIPP, for all polynomially bounded N, c, and for all S ⊆ [N ], AIPP wins the following
experiment with probability at most 2−λ:

• Run (tk, {wi}i∈[N ])← GenIPP(1λ, 1N , 1c).
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• Run w∗ ← AIPP({wi}i∈S)

• If the number of ? in w∗ is more than δℓ, output “lose” and stop.

• Otherwise, run A← TraceIPP(tk, w∗)

• Output “win” if (1) w∗ ∈ F ({wi}i∈S) (w∗ is feasible for the set of codewords given to AIPP),
and (2) either A = ∅ or A ⊈ S.

Instantiations. In the case of binary alphabets, δ-robust IPP codes are also fingerprinting codes.
Optimal fingerprinting codes with constant δ have ℓ = Θ(c2λ2) [Tar03]. In the case of non-binary
alphabets, less is known about IPP codes. However, the main traitor tracing scheme of [CFN94]
can be seen as employing IPP codes with δ = 0 and various parameters choices for ℓ,Σ, including
ℓ = Θ(cλ), |Σ| = Θ(c2λ).

4.4 Traitor Tracing with Quantum Decoders

We follow the definitions of traitor tracing given by Zhandry [Zha20]. The text is mostly taken from
Zhandry, except we adjust the syntax to accommodate both ordinary and embedded-identity traitor
tracing. A traitor tracing system for identity space I is a tuple ΠTT = (GenTT,DeriveTT,EncTT,DecTT,TraceTT)
defined as follows:

• GenTT(1λ) is a classical probabilistic polynomial time (PPT) algorithm that takes as input
the security parameter (in unary), and samples a public key pk and master secret key msk.

• DeriveTT(msk, id) is a classical PPT algorithm that takes as input the master secret key msk
and an identity id ∈ I, and outputs a user secret key skid.

• EncTT(pk,m) is a classical PPT algorithm that takes as input the public key pk and a message
m, and outputs a ciphertext c.

• DecTT(skid, c) is a classical deterministic algorithm that takes as input a secret key skid for
user id and a ciphertext, and outputs a message m′.

• TraceTT(pk,m0,m1, 11/ϵ, |D⟩) is a QPT algorithm that takes as input the public key pk, two
messages m0,m1, and a parameter ϵ (whose reciprocal is an integer represented in unary),
and a quantum state |D⟩ representing a pirate decoder. It ultimately outputs a subset of I,
which are the accused users. Here, m0,m1 are two messages whose ciphertexts |D⟩ supposedly
distinguishes, and ϵ is a supposed lower bound on the distinguishing advantage.

We next define correctness and security.

Definition 4.6. A traitor tracing system ΠTT is correct if, for all messages m and identities id ∈ I,

Pr
[
DecTT(skid,EncTT(pk,m)) = m : (pk,msk)←GenTT(1λ)

sk id←DeriveTT(msk,id)

]
≥ 1− negl(λ)

We now discuss security, adapting the software decoder model version of the definition of
Zhandry [Zha20]. For a decoder |D⟩, two messages m0,m1, and public key pk, consider the operation
on |D⟩:
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• Choose a random bit b← {0, 1}.

• Run c← EncTT(pk,mb) to get a random encryption of mb.

• Run b′ ← |D⟩(c).

• Output 1 if and only if b = b′; otherwise output 0.

LetMTT = (M0,M1) be the POVM given by this operation, which we call the associated POVM
to the decoder. MTT has a projective implementation ProjImp(MTT) = {M ′p}p, where each M ′p
corresponds to the probability distribution on {0, 1} that is 1 with probability p.

Tracing Experiment. For an adversary ATT, function ϵ(·), and security parameter λ, we consider
the following experiment on ATT:

• Run (pk,msk)← GenTT(1λ), and send pk to ATT.

• ATT then makes an arbitrary number of classical queries on identities id ∈ I; in response it
receives skid. Let S be the set of id queried by ATT.

• Next, ATT outputs (|D⟩,m0,m1) for decoder |D⟩ and messages m0,m1.

• Apply the measurement ProjImp(MTT) to |D⟩, obtaining a probability p. Let LiveTT
ϵ be the

event that p ≥ 1/2 + ϵ.

• Finally run A← TraceTT(pk,m0,m1, 11/ϵ, |D⟩) to get a set of accused users. Let FailTT
ϵ as the

event that A ⊈ S (an accused user was not one of the queried users). We define the event
SuccessTT

ϵ as the event that A ̸= ∅ (some user is accused).

Definition 4.7. A tracing system is quantum traceable if for all quantum polynomial time adversaries
ATT and for every inverse polynomial ϵ, there is a negligible negl such that Pr[FailTT

ϵ ] < negl(λ) and
Pr[LiveTT

ϵ ∧ ¬SuccessTT
ϵ ] < negl(λ).

Variations. The usual setting of traitor tracing has I = [N ] for a polynomial N . In this case, we
often set N to be an explicit input to GenTT, and the parameters of the scheme may depend on N .
A bounded collusion traitor tracing scheme additionally has another parameter c given to GenTT,
and security only is required to hold if |S| ≤ c. Traitor tracing with embedded identities has for
I = {0, 1}n for integer n. Therefore, identities are now polynomial-length strings. Here, n may be
an input to GenTT and the parameters of the scheme may depend on n. Note that some versions of
embedded identity traitor tracing will have I = {0, 1}∗, meaning there is no a priori bound on the
length of identity strings. Finally, we consider schemes with private tracing, where GenTT outputs a
special tracing key tk, which is inputted into TraceTT, and security only holds if tk is kept secret.

4.5 Defining Differing Inputs Obfuscation.

We now define differing-inputs obfuscation (diO) in the quantum setting. To the best of our
knowledge, diO has not been defined in the quantum setting, and it turns out that the task is
somewhat subtle.
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There are several definitions of diO in the classical literature, all with slight differences. For our
discussion, we will focus on the distributional variants of [BCP14] and [ABG+13]. Interestingly, the
existing literature largely treats these two as the same. But we observe that the two definitions
are actually not equivalent. We now briefly recall the two flavors of definitions and discuss their
differences.

Both definitions consider samplers S(1λ) that sample circuits C0, C1 along with auxiliary input
aux. The intuition for security is that if it is hard to find x such that C0(x) ̸= C1(x) (given
C0, C1, aux), then it is hard to disitnguish obfuscations of C0, C1 (also given C0, C1, aux). Where
the two definitions differ is in how this is formalized.

The Ananth et al. [ABG+13] style definition. Here, we call S a differing inputs sampler if it
is computationally infeasible to, given (C0, C1, aux)← S(1λ), find x such that C0(x) ̸= C1(x). The
definition then says that for any efficient differing inputs sampler S, it is computationally intractable
to distinguish with non-negligible advantage the following distributions:

(diO(1λ, C0), C0, C1, aux) and (diO(1λ, C1), C0, C1, aux)

Here the two distributions are over (C0, C1, aux)← S(1λ) and the randomness of diO(1λ, C0), diO(1λ, C1).

The Boyle et al. [BCP14] style definition. This definition is a more fine-grained notion. It
says that for any efficient distinguisher A and any efficient sampler S (which may or may not be
differing inputs), there exists an efficient extractor E such that the following holds with overwhelming
probability over (C0, C1, aux): if A can distinguish with non-negligible advantage the distributions

(diO(1λ, C0), C0, C1, aux) and (diO(1λ, C1), C0, C1, aux) ,

then E(C0, C1, aux) will produce an x such that C0(x) = C1(x). Here, importantly, the two
distributions above have fixed C0, C1, aux, and are only over the random coins in diO(1λ, C0).

A subtle point is that the Boyle et al. definition only requires that E succeed with inverse
polynomial probability whenever A distinguishes. One could imagine a stronger definition that
requires E to instead succeed with probability negligibly close to 1. Fortunately, the inverse
polynomial success probability of E is only over the random coins of E , since the definition has
already conditioned on all inputs to E . Therefore, by simply running E many times, the success
probability can be boosted arbitrarily high.

Either version of the Boyle et al. definition, however, turns out to be more fine grained than the
Ananth et al. definition. Indeed, if S is a differing inputs sampler, then E cannot exist, and so with
overwhelming probability over the choice of C0, C1, aux, A fails to distinguish the two distributions
above. Averaging over all C0, C1, aux shows that A also fails to distinguish on average. In other
words, the Boyle et al. definition is at least as strong as the Ananth et al. definition. The converse
direction is unclear. Consider for example an A that has advantage on some C0, C1, aux, but not
others. The Ananth et al. definition would imply that S is not differing inputs, meaning it is
possible to find differing inputs for some C0, C1, aux. But the definition does not say which. It could
be that the differing inputs are found for C0, C1, aux where A actually has zero advatnage, and no
differing inputs are found when A has advantage. In contrast, the Boyle et al. definition implies
that differing inputs are found exactly when A has advantage.
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Challenges in defining diO in the quantum setting. We now turn to considering the quantum
setting. We are still interested in obfuscating classical circuits using a classical obfuscation algorithm.
However, we now allow adversaries to be quantum. Importantly, the auxiliary input will often be
the internal state of the adversary, and so we model the sampler S as a quantum algorithm that
produces aux that is a quantum state. In the interest of obtaining the strongest possible positive
result, we would like the strongest definition of diO.

While diO has not been previously formalized in the quantum setting, a closely related concept
of extractable witness encryption was considered by [GZ20] and [CLLZ21], which was defined in
the flavor of [BCP14] and [ABG+13], respectively. However, the definition of [GZ20] is given as
a worst-case definition of the choice of aux, rather than average case. Looking head, the iO-diO
equivalence will only give an average-case diO4. On the other hand, the definition of [GZ20] is of
the weaker variety where E only must succeed with inverse polynomial success probability. It turns
out that arbitrarily boosting the success probability of E is not possible in the quantum setting:
any run of E may “consume” the quantum auxiliary input, preventing E from naively being run
multiple times.

In fact, the naive attempt to define security with E succeeding with probability almost 1 is
simply impossible. This is because aux may be a superposition of two different auxiliary inputs,
aux0 and aux1. Here, aux0 allows A to distinguish (perhaps by providing a differing input), but aux1
provides no information that would allow A to distinguish, and in particular provides no auxiliary
input. If aux were a uniform superposition of aux0, aux1, A can distinguish with inverse polynomial
advantage, but the best success probability we could hope for from E is 1/2, since it can only succeed
for the portion of the superposition that is aux0.

Thus, defining a Boyle et al.-style definition in the quantum setting is tricky. The challenges
above are analogous to the challenges faced in defining traitor tracing quantumly, as observed by
Zhandry [Zha20]. By adapting Zhandry’s definition as given in Definition 4.7, we will obtain a
strong and meaningful definition of diO for the quantum setting.

Our Definition. We are now ready to give our definition. Let m(λ), n(λ), s(λ) be polynomials,
and consider a quantum polynomial time algorithm Samp(1λ) which samples (1) a pair of classical
circuits C0, C1 of size s(λ), input length n(λ) and output length m(λ), and (2) a quantum side
information aux. Consider a distinguishing adversary A. Consider the following operation on aux:

• Choose a random bit b← {0, 1}.

• Run Ĉ ← diO(1λ, Cb) to get an obfuscation of a random choice of C0, C1.

• Run b′ ← A(Ĉ, C0, C1, aux).

• Output 1 if and only if b′ = b; otherwise output 0.

LetMdiO = (M0,M1) be the POVM given by this operation, which we call the associated POVM
to the sampler. MdiO has a projective implementation ProjImp(MdiO) = {M ′p}p, where each M ′p
corresponds to the probability distribution on {0, 1} that is 1 with probability p.

4 [BCP14] also give a worst-case definition, and indeed show iO implies the worst-case notion. However, for this to
hold, they need iO secure against non-uniform attackers. If we want to consider uniform security, we must consider
average-case diO.
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Now consider an extractor E which takes as input C0, C1, aux as well as a parameter ϵ whose
reciprocal is given in unary (so 11/ϵ), so that if E runs in polynomial time, then it runs in time
polynomial in λ whenever ϵ is an inverse polynomial in λ. We define the following experiment,
parameterized by S,A, E as well as a function ϵ:

• Run (C0, C1, aux)← S(1λ). Let H be the register containing aux.

• Apply ProjImp(MdiO) to H, resulting in probability p.

• If p > 1
2 + ϵ(λ), we say that event LivediO

ϵ happens.

• Next, run E on H, obtaining an input x or symbol ⊥

• If x ̸= ⊥ but C0(x) = C1(x), we say event FaildiO
ϵ happens.

• If x ̸= ⊥ and C0(x) ̸= C1(x), we say event SuccessdiO
ϵ happens.

Definition 4.8 (Post-Quantum Differing-inputs Obfuscation). A post-quantum differing-inputs
obfuscator (diO) is a PPT algorithm diO such that:

• diO(1λ, C) is equivalent to C with overwhelming probability over the randomness of diO.

• For every QPT adversary A and sampler S, there exists a QPT E such that for every
inverse polynomial function ϵ = ϵ(λ), there exists a negligible negl = negl(λ) such that
Pr[FaildiO

ϵ ] < negl and Pr[LivediO ∧ ¬SuccessdiO
ϵ ] < negl.

5 Hidden Partitions and the BOS Model
A partition Π of a set T is a collection of subsets Π = {S1, . . . , Sn} such that T = ∪iSi and
the Si are disjoint. The sets Si are called parts of Π. Given partition Π = {S1, . . . , Sn} of T
and Π′ = {S′1, . . . , S′n′} of T ′, we can define the product partition Π × Π′ of T × T ′ as Π × Π′ =
{Si × S′j}(i,j)∈[n]×[n′]. We can similarly define the product of several partitions.

The basic setup. Fix a set Q, α ∈ Q a distinguished element, and Ω ⊆ Q a distinguished subset.
Also fix a relation R(Π, w) that takes as input partitions Π of Q and strings w ∈ {0, 1}∗ and outputs
a bit.

5.1 The Quantum Hidden Partition Problem

Given Q, α,Ω, R as above, consider a QPT S(1λ), called a quantum hidden partition sampler
(QHPS) that samples (|P ⟩,Π,D, aux)← S(1λ) such that:

• |P ⟩ is a quantum state program taking inputs in some domain X and outputting a bit.

• Π is a partition of Q, and

• D : Q → X × {0, 1} is a PPT algorithm mapping Q to X × {0, 1}.

Now consider two experiments involving a QHPS S and a quantum adversary A. The first,
called the sink indistinguishability experiment, works as follows:
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• First run (|P ⟩,Π,D)← S(1λ), and give |P ⟩ to A.

• Throughout, A may make classical queries to D, sending q ∈ Q, and receiving independent
samples (x, b)← D(q). Repeated queries on the same q will give independent samples.

• Eventually A outputs a sink q∗ ∈ Ω. In response, run (x∗, b∗)← D(q∗) and send x∗ to A.

• A outputs a guess b′ for b∗. The experiment outputs o = b′ ⊕ b∗;

We say A wins the sink indistinguishability experiment if o = 0 (equivalently, b′ = b∗).
The second experiment, called the partition indisitnguishability experiment, works as follows:

• First run (|P ⟩,Π,D)← S(1λ), and give |P ⟩ to A.

• Throughout, A may make classical queries to D, sending q ∈ Q, and receiving independent
samples (x, b)← D(q).

• Eventually A outputs two queries q∗0, q∗1. If q∗0, q∗1 are in the same part of Π, output a random
bit o and abort. Otherwise, choose a random bit c and run (x, b)← D(q∗c ) and send (x∗, b∗)
to A.

• A outputs a guess c′ for c. The experiment outputs o = c′ ⊕ c; A wins if o = 0.

We say A wins the partition indistinguishability experiment if o = 0.

Definition 5.1. S is a valid QHPS if for any QPT adversaries A0,A1, there exists negligible
functions negl0, negl1 such that the probability A0 wins the sink indistinguishability experiment is
at most negl0(λ), and the probability A1 wins the partition indistinguishability experiment is at
most negl1(λ).

Consider the POVM which runs (x, b)← D(α), and run |P ⟩(x) to obtain a bit b′. The POVM
outputs 1 if b′ = b. This POVM has a projective implementation, which we denote ProjImp(D(α)).
Now, consider the following experiment with algorithm T :

• First run (|P ⟩,Π,D)← S(1λ).

• Next apply ProjImp(D(α)) to the register H containing |P ⟩, obtaining probability p.

• Run T on 11/ϵ and H. T can make queries to D. Importantly, on query q, T can obtain a
superposition of samples from D(q). The output is a string w or an abort symbol ⊥.

Let LiveBOS
ϵ be the event that p ≥ 1

2 + ϵ. The event LiveBOS
ϵ corresponds to |P ⟩ being able to

predict the bit b with advantage at least ϵ. Let SuccessBOS
ϵ be the event that T outputs a w ̸= ⊥

such that R(Π, w) = 1, and let FailBOS
ϵ be the event that T outputs a w ̸= ⊥ such that R(Π, w) = 0.

Definition 5.2. Q, α,Ω, R is solvable if there exists a T D(|P ⟩, ϵ) that runs in time polynomial in λ
and 1/ϵ and makes quantum queries to D, such that for any valid QHPS S and inverse-polynomial
ϵ there is a negligible negl such that Pr[LiveBOS

ϵ ∧ ¬SuccessBOS
ϵ ] ≤ negl(λ) and Pr[FailBOS

ϵ ] ≤ negl(λ).

In other words, T should almost always succeed if |P ⟩ starts out live, and T should almost never
output a w that is not accepted by R (outputting ⊥ instead if it cannot succeed).
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5.2 The BOS Model

Now consider a stateful interactive potentially randomized algorithm O which takes as a secret input
a partition Π, and then receives a sequence of queries q1, q2, · · · ∈ Q and produces a corresponding
sequence of outputs o1, o2, · · · ∈ {0, 1}. We will denote an interactive algorithm A interacting with
O and outputting w as w ← A⇔ O(Π).

Definition 5.3. O is a BOS oracle if, for any partition Π and any poly-length sequence of queries
q1, q2, . . . , O(Π) satisfies each of the following guarantees:

• Accepts first distinguished query. If q1 = α, then o1 = 1.

• Rejects sinks. For any i, if qi ∈ Ω, then oi = 0.

• Local consistency. For any two consecutive queries qi, qi+1, if qi, qi+1 ∈ P ∈ Π (that is, if
qi, qi+1 are in the same part of the partition Π), then oi = oi+1.

• Single step rewinding. For any i, if qi+2 = qi, then oi+2 = oi.

Definition 5.4. A PPT algorithm A solves R (with the associated Q, α,Ω) in the BOS model if,
for any BOS oracle O and any partition Π of Q, then Pr[R(Π, w) = 1 : w ← A⇔ O(Π)] = 1.

5.3 From BOS to Solving Quantum Hidden Partitions

Here, we present the main technical tool of this paper:

Theorem 5.5. For any R,Q, α,Ω, if there exists an algorithm A which solves R in the BOS model
in polynomial time, then R,Q, α,Ω is solvable.

We now prove Theorem 5.5. We first assume without loss of generality that A has the following
properties:

• q1 = α. To see why this is without loss of generality, let A solve R in the BOS model, and
let A′ be A, except that if the first query is not α, A′ inserts a dummy query to α as the
first query, and then ignores the response. It is easy to see that the oracle seen by A as a
subroutine of A′ is still a BOS algorithm, and so A′ still solves R.

• If oi = 0, then qi+1 = qi−1. A simple inductive argument then shows that any oi = 0 is always
preceded by an oi−1 = 1. To see why this is without loss of generality, let A solve R in the
BOS model, and let A′ be A except that if oi = 0 and qi+1 ̸= qi−1, then A′ makes a final query
on qi−1, immediately stops making queries (including not querying on qi+1), and answers every
subsequent query by A with 0. The oracle seen by A as a subroutine of A′ is still a BOS
algorithm, so A′ still solves R. But the new A′ will always query on qi+1 = qi−1 if oi = 0.

We call an A with the above properties normal form. We describe the algorithm T given a normal
form A:

Algorithm 5.6. Let A be any normal form algorithm in the BOS model. Consider a quantum
program |P ⟩ stored in register H. First, define the following:

• Let r be an upper bound on the number of queries made by A.
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• Let ϵ′ = ϵ/2r, δ = 2−λ, T = 1/
√
δ.

• Let Pred = {Predx}x be the collection of projective measurements applied to H corresponding
to running |P ⟩ on input x.

• Let EST(q) be the algorithm APIPred,D(q)
ϵ′/4,δ , where API is the algorithm in Lemma 3.3. We will

dilate EST(q) so that it is a projective measurement. This means that EST(q) acts on register
H×Iq, where Iq are the anilla registers used to purify, with a different register used for every
query.

We now give the algorithm T D(|P ⟩, 11/ϵ). Run A, which makes queries q1, . . . , qr. To answer each
query qi, do the following:

1. Define pq0 = 1/2 + ϵ.

2. If qi ̸= qi−2:

(a) Create the register Iqi , replacing any existing register with that name.
(b) Then run EST(qi), obtaining measurement outcome pqi , replacing any existing value for

pqi .
(c) If pqi ≤ pqi−1 − ϵ′, answer the query with oqi = 0.
(d) If pqi > pqi−1 − ϵ′, answer the query with oqi = 1.
(e) If i = 1 and oq1 = 0 (that is, this is the first query and the query response is 0) then

immediately abort and output ⊥.

3. Otherwise, if qi = qi−2:

(a) Run the algorithm RepairEST(qi−1),EST(qi−2)
T,pqi−1 ,pqi−2

.

(b) Update pqi to pqi−2 − ϵ′, and answer the query with oqi = oqi−2 .

When A terminates and outputs w, T outputs w.

We now prove that T solves Q, α,Ω, R. We first need the following lemma:

Lemma 5.7. Suppose T does not abort in Step 2e. Then except with negligible probability, every
query qi that T responds with 1 will have pqi ≥ 1/2 + ϵ− i× ϵ′.

Proof. We prove by induction on i. Since pq0 = 1/2 + ϵ, T does not abort in Step 2e only if
pq1 > pq0 − ϵ′ = 1/2 + ϵ− 1× ϵ′. Now we inductively assume the lemma holds for all queries before
query i, and prove it holds for query i. We break into three cases:

• qi = qi−2. In this case, oqi = oqi−2 , so if T responds with 1, then T must have responded two
queries ago with 1 as well. By the inductive hypothesis, this means pqi−2 ≥ 1/2+ ϵ− (i−2)× ϵ′.
But now we update pqi to pqi−2 − ϵ′ ≥ 1/2 + ϵ− (i− 1)× ϵ′ ≥ 1/2 + ϵ− i× ϵ′.

• qi ≠ qi−1, and oqi−1 = 1. In this case, by induction, we have pqi−1 ≥ 1/2 + ϵ− (i− 1)× ϵ′. If
oqi = 1, then it must be that qi ≥ qi−1 − ϵ′ ≥ 1/2 + ϵ− i× ϵ′.

• qi ̸= qi−2 and oqi−1 = 0. By the assumption that A is valid, this is impossible.
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This completes the proof of Lemma 5.7.

We now prove the following lemma:

Lemma 5.8. If T does not abort in Step 2e, then except with negligible probability the oracle T
presents to A is a BOS oracle.

Proof. We prove the properties of a BOS oracle.

• First distinguished query: Recall we assumed q1 = α. If T does not abort in Step 2e, then
T responds to the query with 1.

• Sinks: Consider a query qi ∈ Ω. We claim that EST(qi) gives measurement outcome pqi

that is at most 1
2 + ϵ′, except with negligible probability. First consider replacing EST(qi) =

APIPred,D(qi)
ϵ′/4,δ (which produces pqi) with ProjImp(D(qi)), giving outcome p′. By Lemma 3.3,

since
∆ϵ′/4(EST(qi),ProjImp(D(qi)) ≤ δ, we have |p′ − pqi | < ϵ′/4 except with negligible probability.
Then we note that p′ must be at most 1/2+negl ≤ 1/2+ϵ′/4, except with negligible probability.
Indeed, if this were not the case, then the bit b produced by D(q) could be predicted with
non-negligible probability. Thus we have that |pqi − 1

2 | ≤ ϵ
′/2 ≤ ϵ′. Now that pqi ≤ 1

2 + ϵ′, we
use Lemma 5.7. If oqi = 1, then pqi ≥ 1/2 + ϵ− iϵ′ ≥ 1/2 + ϵ− rϵ′ > 1/2 + ϵ′ since (r+ 1)ϵ′ < ϵ,
we therefore have that oqi must be 0.

• Local consistency: Suppose qi, qi+1 lie in the same part of Π. We claim that the measurement
outcomes pqi and pqi+1 satisfy pqi+1 ≥ pqi − ϵ′. Indeed, consider replacing EST(qi+1) =
APIPred,D(qi+1)

ϵ′/4,δ (which produces pqi+1) with each of the following:

– EST(qi) = APIPred,D(qi)
ϵ′/4,δ , giving outcome p′. Since the last measurement on H was also

EST(qi), by being almost projective via Lemma 3.3, we have |p′ − pqi | < ϵ′/4 except with
negligible probability.

– ProjImp(D(qi)), giving outcome p′′. Again by Lemma 3.3, since
∆ϵ′/4(EST(qi),ProjImp(D(qi)) ≤ δ, we have |p′′ − p′| < ϵ′/4 except with negligible proba-
bility.

– ProjImp(D(qi+1)), giving p′′′. Since qi, qi+1 are in the same part of Π, the distributions
D(qi) and D(qi+1) are computationally indistinguishable. Therefore, by Lemma 3.4,
|p′′′ − p′| ≤ ϵ′/4 except with negligible probability.

– EST(qi+1), giving pqi+1 . As above, by Lemma 3.3, we have |pqi+1−p′′′| ≤ ϵ′/4 except with
negligible probability. Putting the above inequalities together shows that |pqi+1−pqi | ≤ ϵ′
except with negligible probability.

• Single-step Rewinding: If qi = qi−2, then Lemma 3.2 and the fact that EST(qi) is almost
projective immediately gives us that |pqi − pqi−2 | ≤ ϵ′/2 ≤ ϵ′ except with probability Nδ +
N/T + 4

√
δ = Nδ + (N + 4)

√
δ, which is negligible.

One issue with the above proof is that in order to actually turn a bit predictor in the sink
proof or a distinguisher in the local consistency proof into algorithms for the sink and partition
indistinguishability games, the adversary needs to be able to run API, which in turn needs to get
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superpositions of samples from D(q). While T is allowed such queries, we do not allow adversaries
for the sink and partition indistinguishability games such quantum access. However, following
Zhandry [Zha12], we can simulate such superpositions of samples with a polynomial number of
samples, thus getting an algorithm for these games which only makes classical queries. This
completes the proof of Lemma 5.8.

Now suppose LiveBOS
ϵ happens. In this case, by Lemma 3.3,

∆ϵ′/4(EST(α),ProjImp(D(α))) ≤ δ. This means, except with negligible probability δ, pα = pq1 will
be at least ϵ−ϵ′/4 ≥ pq0−ϵ′. Thus, T will not abort in Step 2e. Therefore, by Lemma 5.8, T presents
a BOS oracle to A, meaning A outputs a w such that R(Π, w) = 1. Thus LiveBOS

ϵ ∧ ¬SuccessBOS
ϵ

happens except with negligible probability.
We now turn to proving that FailBOS

ϵ happens with negligible probability. For FailBOS
ϵ to happen,

we must have (1) that T does not abort in Step 2e, and (2) that T fails to output a w such that
R(Π, w) = 1. But by Lemma 5.8, if T does not abort, then it presents a BOS oracle to A except
with negligible probability, meaning R(Π, w) = 1. Thus FailBOS

ϵ happens with negligible probability.
This completes the proof of Theorem 5.5.

6 The Quantum iO to diO Transformation
In this section, we prove that iO implies diO for circuits with a polynomial number of differing
inputs. This was shown classically by [BCP14], and we show that the same result holds quantumly
as well using our BOS model.

6.1 The Hidden Partition

Here we give the boundary hidden partition, denoted with the superscript Bnd. Let N = 2n and
we interpret the domain {0, 1}n as the interval [N ]. We set QBnd = [0, N ], αBnd = N,ΩBnd = {0}.
We say a partition Π of QBnd is contiguous if each part of Π is an interval [a, b], so that Π =
{[0, a1− 1], [a1, a2− 1], . . . , [ak−1, ak− 1], [ak, N ]}. For a contiguous partition, we say that a1, . . . , ak
are the boundaries. Let RBnd(Π, w) be the following relation:

• Output 1 if Π is not contiguous.

• Output 1 if Π is contiguous and w is a boundary of Π.

• Output 0 if Π is contiguous but w is not a boundary of Π.

The first condition means that we trivially win for all non-contiguous Π, and can focus on the
case of contiguous Π, where the goal is to find a boundary of Π.

We now explain how diO leads to an instance of the quantum hidden partition problem relative
to QBnd, αBnd,ΩBnd, RBnd. We interpret a circuit sampler S and adversary A as a quantum hidden
partition sampler SdiO, where |P ⟩(Ĉ) is the algorithm that runs A on aux and Ĉ. The algorithm D,
on input q ∈ QBnd, chooses a random bit b, and then outputs (Ĉb, b), where Ĉ0 is an obfuscation of
C0, and Ĉ1 is an obfuscation of the program
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C(0) = C0

C(q)(x) =
{
C1(x) if x ≤ q
C0(x) if x > q

for 0 < q < N

C(N) = C1

Finally, the partition Π is the contiguous partition whose boundaries are exactly the differing inputs
of C0, C1.

Lemma 6.1. Assuming diO is a secure iO, the QHPS SdiO is valid with respect to QBnd, αBnd,ΩBnd, RBnd.

Proof. The unique sink is 0, and note that C(0) = C0, and so the response Ĉ to a query on q = 0 is
independent of the bit b. Thus the probability any adversary can predict b (and therefore win the
sink indistinguishability experiment) is exactly 1/2.

Next, observe that C(q) is equivalent to C(q′) for q′ > q as long as C0, C1 have no differing inputs
in the interval [q, q′ − 1]. Thus, if there are no differing inputs in [q, q′ − 1], by iO we have that
no efficient adversary can distinguish query responses from the same part of Π. Therefore, the
probability of winning the partition indistinguishability experiment is 1/2 + negl.

6.2 The BOS Algorithm

Algorithm 6.2 (BOS Algorithm ABnd). Initialize integers a, b ∈ [0, N ]. Set a = N, b = 0, and
query on a, which by definition gives response o = 1. Then do the following for at most O(k log2N)
steps, where k is an upper bound on the number of parts in Π:

1. Query on b, obtaining response o.

2. If o = 1: set (a, b) = (b, 0) and go to Step 1.

3. Else (o = 0):

(a) If b ̸= a− 1: Query on a, set b = ⌊(a+ b)/2⌋ (a remains unchanged), and go to Step 1.
(b) Else (b = a− 1): output a.

If the algorithm has not terminated in O(k log2N) steps, output ⊥.

Theorem 6.3. ABnd solves (QBnd, αBnd,ΩBnd, RBnd) in the BOS model.

Proof. We first observe the following invariants:

• Any time the algorithm goes to Step 1, the most recent previous query was on a. This is
because either we return to Step 1 following Step 3a which queries a, or because we return to
Step 1 in Step 2, which sets a to b, after having just queried b.

• At any point, one of the most recent two queries was on a.

• The only time a is updated is in Step 2, immediately after which the most recent query on a
yielded 1.
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• By local consistency and single step rewinding, at all times the most recent query on a yielded
1.

• Whenever the algorithm terminates in Step 3b, the most recent queries were on a and b = a−1,
and the responses were 1 and 0 respectively. By local consistency, this means a is a boundary.

To prove correctness, it therefore suffices to guarantee that ABoundary eventually terminates in
Step 3b, which is equivalent to showing that it reaches Step 3b in at most O(k log2N) steps given a
contiguous partition.

Toward that end, we observe that every time Step 3 is invoked, either we terminate in Step 3b
or the difference a− b is approximately halved. Thus Step 3 can only be called in at most O(logN)
consecutive iterations without terminating in Step 3b. Moreover, by local consistency, if we invoke
Step 3, it must be that there is a boundary in the interval [b, a], and so after completing Step 3a
(which updates b), there must be a boundary in [b− (a− b), a].

On the other hand, after every call to Step 2 must follow a call to Step 3, since b was set to 0,
which is guaranteed to have query response 0. Moreover, every time we call Step 2, we there must
have been a boundary in the interval [b− (a− b), a] (before updating a, b), because the previous
iteration would have called Step 3. Thus, if we let c be the closest boundary less than a, every call
to Step 2 must either (1) at least halve the distance between a and c (2) set a to be less than c. (1)
can only happen O(logN) times consecutively, and (2) can only happen k times in total since there
are only k boundaries. Thus the total number of times Step 2 is called is at most O(k logN).

Putting everything together gives an upper bound of O(k log2N) total steps before terminating
in Step 3b, thus proving the correctness of Algorithm ABnd.

Corollary 6.4. Any iO is also diO for S where the number of differing inputs is bounded by a
polynomial.

Proof. We note that LivediO,SuccessdiO,FaildiO are identical to the events LiveBOS, SuccessBOS and
FailBOS. Then combining Algorithm ABnd with Theorem 5.5 gives extractor E = T , proving diO.

7 Post-Quantum Tracing with Embedded Identities
Here, we show how to build embedded identity traitor tracing from functional encryption, specifically
a special case called private linear broadcast encryption (PLBE). PLBE with polynomial index
space was first formalized by [BSW06] to build ordinary traitor tracing in the classical setting,
and the result was upgraded to the quantum setting by [Zha20], though only in the setting of
polynomial identity spaces. Using PLBE with exponential index space to build embedded identity
traitor tracing was proposed by [NWZ16] for the classical setting. Here, we upgrade their result to
the quantum setting.

Construction 7.1. Let ΠFE be a functional encryption scheme. We construct the traitor tracing
scheme ΠTT = (GenTT,DeriveTT,EncTT,DecTT,TraceTT), where we define GenTT,DeriveTT,EncTT,DecTT

below:

• GenTT(1λ, N) = GenFE(1λ)

• DeriveTT(msk, id) = DeriveFE(msk, fid) where fid(x,m) =
{
m if x ≥ id
⊥ otherwise
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• EncTT(pk,m) = EncFE(pk, (N,m))

• DecTT(skid, c) = DecFE(skid, c)

7.1 The Hidden Partition

We use the same hidden partition QBnd, αBnd,ΩBnd, RBnd as in Section 6. We now explain how
Construction 7.1 leads to an instance of the quantum hidden partition problem relative to this
partition. We interpret an adversary ATT interacting in the tracing experiment as a quantum hidden
partition sampler STT, where |P ⟩ is the decoder |D⟩ outputted by ATT, Π is the contiguous partition
whose boundaries are the identities queried by ATT. Finally D, on input q, encrypts (q,mb) for a
random choice of b to get ciphertext c, and outputs (c, b).

Lemma 7.2. Assuming ΠFE is an adaptively secure FE scheme, the QHPS STT is valid for
QBnd, αBnd,ΩBnd, RBnd.

Proof. The unique sink is 0, and note that encryptions of (0,m) computationally hide m, since the
only secret keys are fid for id > 0. Thus the probability the adversary can predict b (and therefore
win the sink indistinguishability experiment) is at most 1/2 + negl.

Next, observe that encryptions of (q,m) and (q′,m) for q′ > q decrypt identically under any
secret key except those for id in the interval [q, q′ − 1]. Thus, by FE security, the encryptions are
indistinguishable unless the adversary has an id ∈ [q, q′ − 1], meaning no efficient adversary can
distinguish query responses from the same part of Π. Therefore, the probability of winning the
partition indistinguishability experiment is 1/2 + negl.

Corollary 7.3. Assuming ΠFE is an adaptively secure FE scheme, Construction 7.1 is quantum
traceable.

Proof. Let T (|P ⟩, 11/ϵ) be the algorithm guaranteed by Theorem 5.5 and the existence of ABnd.
Then set TraceTT(pk,m0,m1, 11/ϵ, |D⟩) to be T D(|D⟩, 11/ϵ) where D is the sampler above obtained
from pk,m0,m1. Now consider the events LiveBOS

ϵ , SuccessBOS
ϵ ,FailBOS

ϵ for the QHPS described above,
and the events LiveTT

ϵ , SuccessTT
ϵ ,FailTT

ϵ for the tracing experiment with ΠTT from Construction 7.1.
We see that the events exactly coincide; in particular D(α) is identical to running EncTT(pk,mb)
for a random choice of b. Thus, by the guarantees of Theorem 5.5, ΠTT in Construction 7.1 is
secure.

8 Traitor Tracing from Collusion-Resistant IPP Codes
In [BN08, Sir06, BP08], it was shown how to construct collusion-secure traitor tracing with constant-
sized ciphertexts from binary fingerprinting codes [BS95]. The scheme, described momentarily,
naturally generalizes to larger alphabets (at the cost of larger ciphertexts). However, the code
needed for the generalization is not a fingerprinting code, but a collusion resistant identifiable parent
property (IPP) code [HvLT98], which has a different marking condition. It turns out that IPP
codes and fingerprinting codes coincide for binary codes. But by generalizing to larger alphabets
(and using IPP codes) we can abstract other existing combinatorial schemes in the literature such
as [CFN94].

We now recall the scheme, which is parameterized by a parameter t.
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Construction 8.1. Let (GenPK,EncPK,DecPK) be a public key encryption scheme and (GenIPP,TraceIPP)
a δ-robust fingerprinting code. Define the following algorithms, which depend on a parameter σ
that may be a function of δ, λ, ℓ:

• GenTT(1λ, 1N , 1c) 5: Run (tk′, w1, . . . , wN ) ← GenIPP(1λ, 1N , 1c). For j ∈ [ℓ] and σ ∈ Σ, run
(ekj,σ, dkj,σ)← GenPK(λ). Output

pk = {ekj,σ}j∈[ℓ],σ∈Σ (the public key)
tk = ({dkj,σ}j∈[ℓ],σ∈Σ, tk′) (the tracing key)

ski = ({dkj,wi,j}j∈[ℓ], wi) for i ∈ [N ] (the secret key for user i)

• EncTT(pk,m): Choose a random subset T ⊆ [ℓ] of size t. Let mj , j ∈ T be a t-out-of-t secret
sharing of m: mj are uniform conditioned on ⊕j∈Tmj = m. For each j ∈ T, σ ∈ Σ, compute
cj,σ = EncPK(ekj,σ,mj). Output c = (T, {cj,σ}j∈T,σ∈Σ).

• DecTT(ski, c): For each j ∈ T , run m′j ← DecPK(dkj,wi,j , cj,wi,j ). Then output m′ = ⊕j∈Tm′j .

Quantum Tracing Challenges. In the classical setting, tracing works by first extracting a
codeword w∗ from the decoder D, and then traces w∗ using the fingerprinting code. The first step
is accomplished roughly by replacing ci,σ with junk and seeing if D still decrypts. Based on this
information, the tracer can determine if w∗i should be one of the symbols in Σ or ?. By doing this
for each i ∈ [ℓ], the tracer extracts an entire codeword w∗.

We can easily mimic the above strategy in the quantum setting to derive a measurement for
each i which computes w∗i . The problem is that the measurements for each i might be incompatible,
which means that the tracing algorithm cannot apply these measurements simultaneously. If applied
sequentially, it could be that after computing the first several positions, the decoder becomes dead.
There is no guarantee that an entire codeword w∗ can be computed.

More abstractly, any tracing algorithm that works within the globally consistent hidden partition
model is likely only able to extract logarithmically many bits, which is insufficient for obtaining a
full codeword for the fingerprinting code.

8.1 The Hidden Partition

We will assume the alphabet Σ is equal to [1, s]. Let QProd = [0, s]ℓ and αProd = sℓ. Let ΩProd
δ be

the set of vectors w where the number of 0’s is more than δℓ. We call a partition Π of Q valid if it
is equal to a product partition Π1 × · · · × Πℓ where each Πi is a contiguous partition of [0, s] (recall
contiguous partitions defined in Section 6).

Given a valid partition, let (ai,j)j for i ∈ [ℓ] be the boundaries of Πi. Let RProd
δ (Π, w) be the

following relation:

• Output 1 if Π is not valid.

• Output 1 if (1) Π is valid with boundaries (ai,j)i,j , (2) for all i ∈ [ℓ], wi =? or wi ∈ (ai,j)j ,
and (3) the number of ? in w is at most δℓ.

• Output 0 in all other cases.
5Recall that N is the total identity space, and c is the collusion bound.
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The first condition means that we trivially win for all non-valid Π, and can focus on the case
of valid Π, where the goal is to find a string w that does not have too many ? and matches the
boundaries of the product partition.

We now explain how the tracing experiment for Construction 8.1 leads to a QHPS relative to
(QProd, αProd,ΩProd

δ , RProd
δ ). Given an adversary ATT, we define the QHPS SProd as follows: first

run the tracing experiment with ATT, until ATT outputs (|D⟩,m∗0,m∗1⟩). Then set |P ⟩ = |D⟩. Let S
be the set of id queried by ATT, and let S′ be the corresponding set of codewords in the IPP code
given to the users in S. Let Π be the valid partition generated by S′.

Finally, let D(q) be the algorithm which does the following: choose a random subset T ⊆ [ℓ] of
size t. Choose a random bit b, and let m = m∗b . Then let mj , j ∈ T be a t-out-of-t secret sharing of
m: mj are uniform conditioned on ⊕j∈Tmj = m. For each j ∈ T, σ ∈ Σ, compute

cj,σ =
{

EncPK(ekj,σ,mj) if σ ≤ qj
EncPK(ekj,σ, 0) otherwise

Output c = (T, {cj,σ}j∈T,σ∈Σ) and b. In other words, D(q) outputs an encryption of a random choice
of m∗b , except that it replaces the ciphertext components cj,σ with junk (importantly, independent
of b) if qj < σ.

The QHPS then outputs (|P ⟩,Π,D).
Lemma 8.2. Assuming ΠPK is semantically secure and either (1) t ≥ (1− δ)ℓ or (2)

((1−δ)ℓ
t

)
/
(ℓ
t

)
is

negligible, then SProd is valid for QProd, αProd,ΩProd, RProd.
Proof. Let q ∈ ΩProd. Then q has strictly more than δℓ zeros; call this set Z. If T ∩Z ≠ ∅, then the
share mj inside T ∩ Z is information-theoretically hidden given c. Since the mj form a t-out-of-t
secret sharing, this means if T ∩ Z ≠ ∅, then b is statistically hidden. Thus, to prove the sink
indistinguishability problem is hard, we just need to show that T ∩ Z ≠ ∅ with overwhelming
probability. A simple combinatorial argument shows that

Pr[T ∩ Z ̸= ∅] = 1− Pr[T ∩ Z = ∅] = 1−
(ℓ−|Z|

t

)(ℓ
t

) ≥ 1−
((1−δ)ℓ−1

t

)(ℓ
t

)
= 1−

((1− δ)ℓ− t
(1− δ)ℓ

)(((1−δ)ℓ
t

)(ℓ
t

) )

If t > (1 − δ)ℓ, then
((1−δ)ℓ

t

)
= 0. If t = (1 − δ)ℓ, then (1 − δ)ℓ − t = 0. In either case,

Pr[T ∩ Z ≠ ∅] = 1. Alternatively, if
((1−δ)ℓ

t

)
/
(ℓ
t

)
is negligible, then Pr[T ∩ Z ≠ ∅] ≥ 1− negl. Thus,

under the conditions of Lemma 8.2, the sink indisitnguishability problem is hard.
We now turn to the partition indisitnguishability experiment. Suppose q1, q2 are in the same

part of Π, and consider the distributions D(q1) and D(q2). We will argue they are indistinguishable.
Toward that end, consider some j ∈ [ℓ]. Since q1, q2 are in the same part of Π, then q1,j and q2,j are
in the same part of Πj . If we assume wlog that q1,j ≤ q2,j , then Πi has no boundary in (q1,j , q2,j ].
Now consider a ciphertext component cj,σ. If σ ≤ q1,j , then the distributions of cj,σ under D(q1)
and D(q2) are identical. Likewise if σ > q2,j . On the other hand, for σ ∈ (q1,j , q2,j ], ATT does not
have the secret key dkj,σ. By the semantic security of ΠPK, the adversary cannot distinguish cj,σ
under D(q1) and D(q2).

By a hybrid over all j, no efficient adversary can distinguish D(q1) from D(q2), proving the
hardness of the partition indistinguishability experiment.
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8.2 The BOS Algorithm

Algorithm 8.3 (BOS Algorithm AProd). Initialize x ∈ [0, s]ℓ, and set x = sℓ. Now query on x,
which by definition gives 1. Then do the following for i = 1, . . . , ℓ+ 1:

1. For a = s, . . . , 1:

(a) Set x′ = x, except that x′i is set to a− 1.
(b) Query on x′, receiving response o′.
(c) If o′ = 0, query on x, break the loop in Step 1, and proceed to the next iteration of the

main loop over i.
(d) Otherwise, set x = x′, and proceed to the next iteration of the loop over a in Step 1.

2. If the loop in Step 1 terminated with all responses o′ being 1, then set xi = 0. Then proceed
to the next iteration of the main loop over i.

In the end, output w, which is x but with every 0 replaced by ?.

Theorem 8.4. AProd solves (QProd, αProd,ΩProd
δ , RProd

δ ) in the BOS model.

Proof. We maintain the invariant that each time we exit an iteration of the main loop over i, the
last query was on x and the response was 1. There are two cases:

• We exited the iteration from Step 1c. But in this step we query on x, so x is the most recent
query at exit. Moreover, x was queried in the last iteration of the loop over a in Step 1, and
the result must have been 1 in order to proceed to this iteration. Therefore, x was queried
two queries ago and resulted in response 1. By single step rewinding, the latest query on x
must also give 1.

• We existed the iteration from Step 2. But here the most recent query was on x′, it resulted in
query response 1, and in Step 1d we set x = x′.

We also see that if we exit the loop of Step 1 via Step 1c, then the adjacent queries x and x′

resulted in different outcomes, meaning a is a boundary of Πi.
The result is that the final x is a string where all the non-zero terms are boundaries of the

respective component partition, and x /∈ ΩProd (since the query output was no 0), meaning the
number of 0’s in x is at most δℓ. Thus when we replace 0’s with ?’s to get w, we have that
RProd(Π, w) = 1. We finally note that the number of queries AProd makes is at most O(sℓ), which is
polynomial.

Corollary 8.5. Assuming ΠPK is a secure PKE scheme, Construction 8.1 is quantum traceable.

9 Tracing Embedded Identities with Short Ciphertexts
In Construction 7.1 from Section 7, the string x is n bits long, where n is the bit length of identities.
It is also part of the message inputted to EncFE of the underlying functional encryption scheme.
Therefore, the ciphertext size must grow with the bit length of identities. As observed by [NWZ16],
this is not inherent to traitor tracing. They instead propose a different structure where ciphertexts
may be independent of the identity length. We now recall their construction:
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Construction 9.1. Let ΠFE be a functional encryption scheme. We construct the traitor tracing
scheme ΠTT = (GenTT,DeriveTT,EncTT,DecTT,TraceTT), where we define GenTT,DeriveTT,EncTT,DecTT

below:

• GenTT(1λ) = GenFE(1λ)

• DeriveTT(msk, id): choose a random τ ∈ [N ] whereN = 2λ. Then return skτ,id ← DeriveFE(msk, fτ,id)

where fτ,id(i, x,m) =
{
m if x ≥ 2 ∗ τ − idi
⊥ otherwise

. Note here that x ∈ [0, 2N ] = [0, 2λ+1] and i ∈ [n],

so the inputs to EncTT are bounded by O(λ) bits long, independent of n. Thus if ΠFE has
succinct ciphertexts, so will ΠTT.

• EncTT(pk,m) = EncFE(pk, (1, N,m))

• DecTT(skτ,id, c) = DecFE(skτ,id, c)

Tracing. The classical ideal behind the structure above is the following: first apply the tracing
algorithm for Construction 7.1 setting i = 1. The result is that the tracing algorithm outputs
2τ − id1 from some secret key. Since id1 is a single bit, this reveals uniquely both τ and the first bit
of the associated identity. Then, by varying i and testing on ciphertexts encrypting (i, 2τ − 1,m),
one can learn the rest of the bits of id. Essentially, we know if the first phase accused 2τ − id1, there
must be a gap in the success probabilities of the decoder on encryptions of (1, 2τ − id1,m) and
(1, 2τ − id1 − 1,m). Call these two probabilities p0 and p1, respectively, which are far apart. Since
the τ of various secret keys are unique whp, by the security of functional encryption, we know that
the decryption probability for (i, 2τ − idi,m) must be close to p0, and the decryption probability for
(i, 2τ − idi− 1,m) must be close to p1. Put another way, the decryption probability for (i, 2τ − 1,m)
will be close to p1−idi

, thus revealing idi.
Quantumly, we can employ the same strategy to recover τ, id1. However, recovering the rest

of the bits of id will not work as in the classical case. This is because the probabilities p0, p1 may
change as we further interrogate the decoder, so we cannot simply compare with the previous value.
We therefore need to develop a new quantum algorithm for the problem.

9.1 The Hidden Partition

Let QShort = [n] × [0, 2N ] where N = 2λ. Let αShort = (1, 2N). Let ΩShort = {(i, 0)}. Consider a
sequence (τ (1), id(1)), . . . , (τ (t), id(t)) where id(j) ∈ {0, 1}∗ and τ (j) ∈ [N ] with τ (1) < τ (2) < · · · < τ (t).
This gives rise to a partition Π = {S0, . . . , St} of QShort consisting of sets Sj = {(i, x) : 2τ (j)− id(j)

i ≤
x < 2τ (j+1) − id(j+1)

i } for j = 1, . . . , t − 1, S0 = {(i, x) : x < 2τ (1) − id(1)
i }, and St = {(i, x) :

2τ (t) − id(t)
i ≤ x}. We call Π of this form contiguous, and we call (τ (j), id(j)) the boundaries of Π.

Let RShort(Π, w) be the following relation:

• Output 1 if Π is not valid

• Output 1 if Π is valid, and w is a boundary of Π.

• Output 0 if Π is valid but w is not a boundary of Π.
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We now explain how Construction 9.1 leads to the quantum hidden partition problem relative to
this partition. We interpret an adversary ATT interacting in the tracing experiment as a quantum
hidden partition sampler STT, where |P ⟩ is the decoder |D⟩ outputted by ATT, Π is the contiguous
partition whose boundaries are the identities queried by ATT. Finally D, on input (i, q), encrypts
((i, q),mb) for a random choice of b to get ciphertext c, and outputs (c, b).

Lemma 9.2. Assuming ΠFE is a secure FE scheme, the QHPS is valid for QShort, αShort,ΩShort, RShort

Proof. The sinks have the form (i, 0), and note that encryptions of ((i, 0),m) computationally hide
m, since the only secret keys are fid for id > 0. Thus the probability the adversary can predict b
(and therefore win the sink indistinguishability experiment) is at most 1/2 + negl.

Next, observe that encryptions of ((i, q),m) and ((i′, q′),m) decrypt identically if (i, q) and (i′, q′)
are in the same part of Π. Thus, by FE security, the encryptions are indistinguishable if they lie in
the same part. Therefore, the probability of winning the partition indistinguishability experiment is
1/2 + negl.

9.2 The BOS Algorithm

Algorithm 9.3 (BOS Algorithm AShort). Initialize integers a, b ∈ [0, 2N ] and i ∈ [n]. Set a =
2N, b = 0, and query on (1, a), which by definition gives response o = 1. Then do the following for
at most O(kn log2N) steps, where k in an upper bound on the number of parts in Π:

1. Query on (1, b), obtaining response o.

2. If o = 1, set (a, b) = (b, 0) and go to Step 1.

3. Else (o = 0):

(a) If b ̸= (a − 1): Query on (1, a), set b = ⌊(a + b)/2⌋ (a remains unchanged), and go to
Step 1.

(b) Else (b = a−1): Query on (1, a), parse a as 2τ − id1, and do the following for i = 2, . . . , n:
i. Query on (i, 2τ − 1), receiving response o.
ii. If o = 0, query on (1, a), set idi = 0, and proceed to the next i.
iii. Else (o = 1):

A. Query on (i, 2τ − 2), receiving response o′.
B. If o′ = 0, set idi = 1, query on (i, 2τ − 1) and then (1, a) and proceed to the next

i.
C. Else (o′ = 1), set (a, b) = (a − 1, 0), clear τ, id, exit the loop over i in Step 3b,

and go to Step 1.
If the loop over i in Step 3b completes (that is, if we never have o′ = 1), output (τ, id).

Theorem 9.4. AShort solves (QShort, αShort,ΩShort, RShort) in the BOS model.

Proof. The proof is an adaptation of the proof of Theorem 6.3 for ABnd. As in Theorem 6.3, we will
eventually find a, b = a− 1 where the previous query was on (1, a− 1) and gave 0, and the query
before was on (1, a) and gave 1. This is Step 3b. By local consistency, a = 2τ − id1 for some (τ, id)
that defined the partition. We then query on (1, a) again, which by single step rewinding gives 1.
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It remains to show that id is obtained in its entirety. This is done by trying to ascertain if
(i, 2τ − 1) lies in the same part as (1, a) or (1, a− 1). This is done by querying on (i, 2τ − 1). If the
result is 0 (Step 3(b)ii), we know by local consistency (and the fact that the last query was on (1, a)
and gave 1) that (i, 2τ − 1) cannot be in the same part as (1, a). So we set idi = 0 and move on
to the next bit of id. In order to guarantee that the last query response was 1, we query again on
(1, a), which, by single-step rewinding will give 1.

If o = 1, we do not immediately learn which part (i, 2τ − 1) is in. So we also query on (i, 2τ − 2)
to get response o′ (Step 3(b)iiiA). If the response is now 0, we know that (i, 2τ − 1) and (i, 2τ − 2)
are in different parts, meaning (i, 2τ − 1) is in the same part as (1, a). Thus we set idi = 1 and move
on to the next bit of id (Step 3(b)iiiB). But first we query again on (i, 2τ − 1), which by single-step
rewinding gives 1. Then we query on (1, a), which gives 1 by local consistency.

If on the other hand the response o′ is once again 1, then we learn nothing about idi. However,
in this case, we have exactly the setup of a new hidden partition with N = τ − 1. In particular, we
know there must be a (τ ′, id′) with τ ′ < τ . We therefore proceed back to Step 1 but with the new
N = τ − 1. A simple inductive argument shows that we will eventually find such a (τ ′, id′). This
completes the proof.

Corollary 9.5. Assuming FE, Construction 9.1 is quantum traceable.

Proof. Let T (|P ⟩, 11/ϵ) be the algorithm guaranteed by Theorem 5.5 and the existence of AShort.
Then set TraceTT(pk,m0,m1, 11/ϵ, |D⟩) to be T D(|D⟩, 11/ϵ) where D is the sampler obtained from
pk,m0,m1 described in Section 9.1. Now consider the events LiveBOS

ϵ ,SuccessBOS
ϵ ,FailBOS

ϵ for the
QHPS described in Section 9.1, and the events LiveTT

ϵ , SuccessTT
ϵ ,FailTT

ϵ for the tracing experiment
with ΠTT from Construction 9.1; in particular D(α) is identical to running EncTT(pk,mb) for a
random choice of b. We see that the events exactly coincide. Thus, by the guarantees of Theorem 5.5,
ΠTT in Construction 9.1 is secure.

10 Barriers to Generalizing our Results
A natural question is: what are the limits of the BOS model and our realization using quantum
rewinding? After all, Zhandry’s prior work [Zha20] and our results in Sections 6, 7, 8, and 9 show
that the all the hidden partition problems arising from existing literature (that we are aware of)
can be handled quantumly. So perhaps it may be possible to solve all quantum hidden partition
problems?

There are at least two potential routes toward a generalization. The first is to extend our results
of this section to show that quantum rewinding can be used to realize a generalization of the BOS
model (Definition 5.3) with single-step rewinding replaced by k-step rewinding: for any i, j ≤ k,
if qi+1+j = qi, then oi+1+j = oi. Current techniques, unfortunately, are incapable of extending
beyond the k = 1 we consider in this work. This is because current techniques all rely on Jordan’s
lemma, which characterizes how two projectors interact. To move to even k = 2, one would need to
characterize how three projectors interact (more generally, k + 1 projectors), and there does not
appear any analog of Jordan’s lemma beyond two projectors.

The second route toward generalization is to show that the BOS model is equivalent to the
Global Hidden Partition model, in that any hidden partition instance that can be solved in the
global model can be solved in the BOS model as well.

33



Here, we rule out this second route. Specifically, we give an example of a hidden partition
problem that is solvable if we generalize the BOS model to have even 2-step rewinding, but unsolvable
with 1-step rewinding:

Theorem 10.1. There exists an R,Q, α,Ω that is solvable with 2-step rewinding (with probability
1), but that the probability it can be solved in the BOS model is negligible.

Proof. Our hidden partition problem will consist of two copies of the PLBE hidden partition from
Section 6, glued together at N . Specifically, QBnd2 will be set to be {0, 0′, 1, 1′, . . . , N−1, (N−1)′, N}.
A partition Π will then look like {[0, a1−1], [0′, a′1−1], [a1, a2−1], [a′1, a′2−1]..., [ak−1, ak−1], [a′k−1, a

′
k−

1], [at, N ] ∪ [a′t, N ]}. The sinks are 0, 0′, the source is N (which equals N ′). Our goal is to output
one of the ai and one of the a′i. We will have N be super-polynomial.

We can easily accomplish this with 2-step rewinding. We first trace the un-primed version copy
to recover an ai, using our algorithm for ABnd (Algorithm 6.2) except that we modify the query
sequence in order to make sure that there is always a relatively recent query to N that gave 1. To
do so, we present the ABnd with the oracle O′, which answers each query qi as follows:

• Make a query to O on N .

• If the query made two to O′ two queries ago, namely qi−2, was not equal to qi, then make a
query to O on qi−1.

• Finally, regardless of if qi−2 = qi or not, make a query to O on qi. Return as the output of O′
whatever O outputs.

In other words, we map the query sequence N, q1, q2, q3, q4, q5, . . . to O′ to the sequence of queries
N, q1, q2, N, q2, q3, N, q3, q4, N, q4, q5, . . . , except that we delete the second query to qi−1 if qi = qi−2.

Observe that all queries to N have at most two intermediate queries. Thus 2-step rewinding on
O guarantees that all queries made to O on N result in 1. Moreover, if qi = qi−2, then qi−2 was
queried to O exactly two queries ago, and so 2-step rewinding guarantees that O (and hence O′)
gives the same output on qi as it did on qi−2, hence guaranteeing that O′ satisfies 1-step rewinding.
Finally, local consistency for O and the fact that the first query to qi is immediately preceded by
the second query to qi−1 guaranteed that if qi and qi−1 are in the same part, then the response to
the first query on qi is the same as the response on the second query to qi−1 (except in cases where
1-step rewinding kicks in). Moreover, 2-step rewinding on O means that the first and second queries
to qi−1 give the same output (since they are spaced 1 query apart). This implies that O′ has 1-step
rewinding.

Thus O′ is a BOS oracle, and by Theorem 6.3, ABnd thus outputs an ai. But now we can trace
the primed copy using ABnd. We start with a query to N , which is guaranteed to give o = 1 since
there was a recent query to N giving 1. So tracing via Theorem 6.3 on the primed side will succeed
and give us an a′i.

On the other hand, with 1-step rewinding we can guarantee failure.
Consider sampling a1, a

′
1 uniformly in [N/4, N/2−1], and then a2, a

′
2 uniformly in [N/2+1, 3N/4].

We then consider the following BOS oracle O:

• O starts out in Mode 1. It stays in Mode 1 until it sees two consecutive queries that are both
not in [a2, N ] ∪ [a′2, N ]. In Mode 1, it answers all queries in [N/2 + 1, N ] ∪ [(N/2 + 1)′, N ]
with 1, and all queries in [0, N/2] ∪ [0′, (N/2)′] with 0.
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• On any query qi, if both the current query qi and previous query qi−1 were not in [a2, N ]∪[a′2, N ],
then O switches permanently to one of the following three modes:

– If qi−1 ∈ [N/2 + 1, a2− 1] then switch to Mode 2.1. In Mode 2.1, all queries in [a1, a2− 1]
are answered with 1, and all other queries are answered with 0. Answer the query qi as
in Mode 2.1.

– If qi−1 ∈ [(N/2 + 1)′, a′2 − 1] then switch to Mode 2.1’. In Mode 2.1’, all queries in
[a′1, a′2 − 1] are answered with 1, and all other queries are answered with 0. Answer the
query qi as in Mode 2.1’.

– If qi−1 ∈ [0, N/2] ∪ [0′, (N/2)′] then switch to Mode 2.0. In Mode 2.0, all queries are
answered with 0. Answer the query qi as in Mode 2.0.

Lemma 10.2. O is a BOS algorithm.

Proof. Indeed Mode 1, any queries outside [a2, N ] ∪ [a′2, N ] have at least a query between them,
meaning local consistency is vacuous for these queries. Local consistency is also enforced on
[a2, N ] ∪ [a′2, N ] by the fact that Mode 1 always responds with 1. 1-step rewinding in turn is
guaranteed by the fact that the oracle in Mode 1 is stateless. Modes 2.0,2.1,2.1’ are globally
consistent, so they satisfy local consistency and 1-step rewinding as well.

It then remains to check the transition out of Mode 1. We first observe that if making the
transition, the three most recent queries were (in reverse order):

• qi /∈ [a2, N ] ∪ [a′2, N ] (by definition)

• qi−1 /∈ [a2, N ] ∪ [a′2, N ] (by definition).

• qi−2 ∈ [a2, N ] ∪ [a′2, N ] (since we did not transition at query qi−1).

In particular, 1-step rewinding is not relevant for query qi. Then the Modes 2.0,2.1,2.1’ are chosen
to ensure local consistency for qi, and global consistency for qi+1. For qi+2 ad beyond, the transition
is complete and the global consistency of Modes 2.0,2.1,2.1’ kick in.

Now we observe that O contains no information about the ai or a′i in Mode 1. Moreover, All
the Modes 2.x contain information about either the a1, a2, or a′1, a′2 (or neither), but not both.
Therefore, the probability of outputting both a primed and non-primed ai is at most O(1/N), which
is negligible.

Remark 10.3. Note that if N is polynomial, the proof above only gives an inverse-polynomial
bound on the success probability. We can extend the proof of Theorem 10.1 to handle polynomial N
but exponential success probability by glueing together a polynomial number of copied of the PLBE
hidden partition, each copy being polynomial size. The required output will then be a boundary
from every one of the copies.
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