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Abstract—Millions of smart contracts have been deployed onto Ethereum for providing various services, whose functions can be
invoked. For this purpose, the caller needs to know the function signature of a callee, which includes its function id and parameter
types. Such signatures are critical to many applications focusing on smart contracts, e.g., reverse engineering, fuzzing, attack
detection, and profiling. Unfortunately, it is challenging to recover the function signatures from contract bytecode, since neither debug
information nor type information is present in the bytecode. To address this issue, prior approaches rely on source code, or a collection
of known signatures from incomplete databases or incomplete heuristic rules, which, however, are far from adequate and cannot cope
with the rapid growth of new contracts. In this paper, we propose a novel solution that leverages how functions are handled by
Ethereum virtual machine (EVM) to automatically recover function signatures. In particular, we exploit how smart contracts determine
the functions to be invoked to locate and extract function ids, and propose a new approach named type-aware symbolic execution
(TASE) that utilizes the semantics of EVM operations on parameters to identify the number and the types of parameters. Moreover, we
develop SigRec, a new tool for recovering function signatures from contract bytecode without the need of source code and function
signature databases. The extensive experimental results show that SigRec outperforms all existing tools, achieving an unprecedented
98.7% accuracy within 0.074 seconds. We further demonstrate that the recovered function signatures are useful in attack detection,
fuzzing and reverse engineering of EVM bytecode.
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1 INTRODUCTION

MOre than 30 million smart contracts have been de-
ployed on Ethereum, the largest contract-hosting

blockchain. An Ethereum smart contract is a program (i.e.,
a collection of code and data) running on Ethereum virtual
machine (EVM), which can be accessed through its address
in Ethereum [1]. A smart contract is typically written in a
high-level language (e.g., Solidity [2]) and then compiled
into EVM bytecode. After the bytecode is deployed, its
public and external functions can be invoked. To invoke
a contract function, the caller needs to know its function
signature which consists of a function id and the list of
parameter types [3]1. A function id refers to the first 4 bytes
in the Keccak-256 hash of a function name and the list of
parameter types [3].

Function signatures play a critical role in many appli-
cations focusing on smart contracts because their functions
(in terms of function signatures) need to be first identified
before their behaviors can be evaluated. For example, some
studies recognize wallet contracts [4], token contracts [5], [6],
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1. A function signature defined by Ethereum includes a function
name and the list of parameter types [3]. Since function id instead of
function name is required to invoke a contract function, in this paper
we just consider function id, parameter number and parameter types.

[7], and the contracts for Ethereum name service [6] based
on function signatures. §6 shows that function signatures
can be used to enhance the results of reverse engineering
results contract bytecode by adding types, meaningful vari-
able names and simplifying the code for accessing parame-
ters. Besides, knowing the parameter list of a target function,
a fuzzer can strategically mutate the test cases [8], [9] for
better vulnerability detection. Our experimental results (§6)
show that function signatures enable ContractFuzzer [8] to
find 23% more bugs than it could without these signatures.
Function signatures are also important to the detection of
attacks against smart contracts. A prominent case is the short
address attack that exploits an EVM vulnerability in handling
a malformed actual argument of the address type, which is
shorter than a valid address [10]. We develop ParChecker,
a new tool based on the recovered function signatures to
detect malformed actual arguments including short address
attacks (§6).
Challenges in signature discovery. It is challenging to
recover function signatures from bytecode since there is
no debug information in contract bytecode and the byte-
code is untyped, i.e., parameters are kept in 256-bit words
without type information [11]. All existing approaches fail
to effectively recover function signatures (§5.6). More pre-
cisely, an intuitive method is to extract the function sig-
natures from the source code of smart contracts, which,
however, is only available for a small proportion of contracts
(< 1% until 2017 [12]). Another method retrieves signatures
from existing databases, like Ethereum Function Signature
Database (EFSD) [13], through function ids. For example,
Gigahorse [14], Eveem [15], and Online Solidity Decompiler
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(OSD) [16] rely on EFSD, while EVM Bytecode Decompiler
(EBD) [17] and JEB [18] maintain their own databases. How-
ever, these databases are incomplete, only covering 31.7% of
the function signatures in the wild (Supplementary material
A) and quickly become out of date without constantly
updating.

Alternatively, one could reverse engineering a function
id by enumerating all possible parameter type combina-
tions to compute a hash, together with a possible function
name. Given the huge space of possible combinations, this
attempt is fragile in general. Abi Decompiler [19] adopts
this approach, which only covers 12.3% of function signa-
tures (Supplementary material A). Finally, one could derive
function signatures using some heuristics: Gigahorse infers
the number of parameters based upon the number of items
that a function pops from stack [14]; Eveem regards a type as
an array if its layout contains an offset field and a num field.
Although this direction is promising, existing approaches
turn out to be ineffective due to the incompleteness of
their heuristics. For example, Eveem can only achieve an
accuracy of 58.1% and 18.3% to infer the function signatures
in closed-source smart contracts and synthesized contracts,
respectively (§5.6), even it leverages an existing database,
EFSD.
Our work. In this paper, we propose a new solution called
SigRec to automatically recover function signatures from
EVM bytecode compiled from two mainstream compilers
(i.e., Solidity and Vyper) for smart contracts without the
need of source code and other databases. Our key obser-
vation is that even in the absence of type information,
the way EVM bytecode handles a function call and its
inputs uniquely characterizes different parameter types. For
example, a uint32 argument will be extracted using a 32-bits
mask applied to the input data (R11, §3.4). Based upon this
observation, we first generalize the semantics of such type-
related operations into rules (§3). Then, we design type-aware
symbolic execution (TASE) to explore the EVM instructions
that manipulate parameters, and use the rules for inferring
the types of parameters (§4). Since the EVM instructions
handling parameters are typically near a function’s entry
point, TASE can handle them very effectively and efficiently
to keep up with the ever-growing Ethereum smart contracts.

Studies on reverse engineering of variable types from
binary executables by leveraging the semantics of instruc-
tions [20], [21], [22], [23], [24], [25], [26], [27], [28], [29] are
related to our work. However, TASE has several differences
with existing approaches. First, to recover complicated types
that cannot be handled by existing techniques, TASE infers
how variables are affected by parameters through symbolic
execution (SE). For example, to identify a multidimensional
array, TASE checks whether the read location is calculated
by adding the value of the offset field to the base (§3.2).
Second, semantic knowledge summarized from binary code
cannot be applied to EVM bytecode, due to architecture
differences (§8) and unique parameter types defined in
smart contracts, e.g., 256-bit integers (no more than 64 bit
in x64 binaries), the 20-byte address type, and reversed
array notation (§2.3). New knowledge, therefore, needs to be
discovered to support type inference through TASE. Third,
by exploiting the fact that the code responsible for handling
parameters is usually around a function’s entry point, TASE

runs extremely fast (0.074s to recover one function signature
on average, §5.4).

We conduct extensive experiments to evaluate SigRec

and compare it with all existing approaches. First, we collect
all 119,404 unique (i.e., duplicates are eliminated) open-
source smart contracts on Ethereum, which include 210,869
public/external functions with unique function signatures,
and use them to evaluate the accuracy of SigRec. The
experimental result shows that SigRec achieves an aver-
age accuracy of 98.7% (§5.2), and the accuracy never goes
below 96% across all compilers (from V 0.1.1 to V 0.8.0)
with or without optimization (§5.3). Second, we compare
SigRec with all existing approaches, i.e., OSD [16], EBD [17],
JEB [18], Gigahorse [14] and Eveem [15]. The experimental
results show that SigRec correctly recovers much more sig-
natures, outperforming them by at least 22.5 %, 40.1% and
80.5% in processing open-source, closed-source and synthe-
sized smart contracts, respectively (§5.6). Manual investi-
gation shows that for many function signatures, existing
approaches report wrong types, produce nonexistent types,
output an unspecific type, add nonexistent parameters, miss
parameters or fail to generate function signatures (§5.6).
Third, we apply SigRec to the bytecode of all 37,009,570
smart contracts deployed on Ethereum with 47,329,149 pub-
lic/external functions, and found that it only takes 0.074
seconds on average to recover a function signature (§5.4).

We further demonstrate how the recovered function
signatures can enable the detection of stealthy short address
attacks, empower the state-of-the-art fuzzer to discover
more vulnerabilities, and enhance the result of reverse engi-
neering contract bytecode (§6).
Contributions. The major contributions of the paper are
summarized as follows:
• We propose a novel solution that exploits the semantics
of EVM instructions to correctly and efficiently recover
function signatures from the bytecode of smart contracts.
• We develop SigRec based on our new solution, and con-
duct extensive experiments to evaluate it. The experimental
results show that SigRec achieves nearly 100% accuracy
in signature recovery, under different compiler versions,
within 0.074 seconds on average, and it significantly out-
performs existing methods. We have deployed SigRec as an
online web service http://bit.ly/SigRecWS and will release
its code after paper publication.
• We use three important applications to demonstrate the
usage of recovering function signatures, including attack de-
tection, fuzzing and reverse engineering of EVM bytecode.

2 ACCESSING PATTERNS OF PARAMETERS

This section first introduces how function invocation is
performed in EVM and then elaborate more on the EVM
instructions and variables involved in a function invocation.
The concepts of account, bytecode of smart contracts, and
public/external function can be found in Supplementary
material B.
Function invocation. To invoke a public/external function,
a message will be sent by an EOA account or a smart
contract account [30]. The message contains the address of
the smart contract whose function will be invoked and the
call data field which indicates the function to be invoked
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Fig. 1. The process of executing a CALLDATALOAD
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and carries actual arguments. The first 4 bytes of the call
data is the function id of the function being called, which
is followed by the arguments [3]. For example, to call a
function whose signature is “transfer(address, uint256)”, the
call data begins with its function id 0xa9059cbb, followed
by two arguments, including an address and a 256-bits
unsigned integer.

2.1 EVM Instructions to Read the Call Data
CALLDATALOAD. CALLDATALOAD reads 32 bytes into the top of
the stack [30]. As shown in Fig. 1, CALLDATALOAD first reads
the top item from the stack, which is the offset used to locate
the data. After that, the top item of the stack is removed. It
then reads 32 bytes data from the call data starting from the
offset. Finally, the data is pushed to the stack.

CALLDATACOPY. CALLDATACOPY reads variable-length data
from the call data into memory [30]. As shown in Fig. 2,
CALLDATACOPY consumes top three stack items. The second
item denotes the offset (offsetc) in the call data from where
the data will be copied. The first item is the offset (offsetm)
in the memory to where data will be copied. The third item
indicates the data length.

2.2 Accessing Function ID
To invoke a public/external function in a smart contract,
the caller should provide the function id. The callee extracts
it from the call data to determine the function to be invoked
by executing a CALLDATALOAD with the offset being 0 to
read 32 bytes from the beginning of the call data, whose
highest 4 bytes is the function id. Then, the callee uses a DIV
instruction (i.e., unsigned integer division [30]) or an SHR
instruction (i.e., bitwise right shift [31]) to move the function
id to the lowest 4 bytes.

2.3 Accessing Different Types of Parameters
Our work support two mainstream compilers, Solidity and
Vyper which have different parameter types.
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2.3.1 Solidity

We classify all parameter types supported by Solidity into
five categories: basic types, array , bytes and string, and struct.
1. Basic Types: There are five basic types.
(1) uint〈M〉, 8 ≤ M ≤ 256,M%8 == 0. uint〈M〉 is an
unsigned integer of M bits [3]. If a public/external function
has a uint〈M〉 type parameter, it will be extended on the
higher-order (left) side with zeros to make the length be 32
bytes [3]. Fig. 3 shows the call data layout of a public/ex-
ternal function with one uint32 argument whose value is
0x11223344. The call data begins with a 4-byte function id,
followed by the extended 32-bytes value. To read a uint〈M〉,
the smart contract executes a CALLDATALOAD with the offset
indicating the start of the extended value. After that, the
extended value will be masked by an AND instruction, and
the result is the uint〈M〉 argument before padding. The
masking is not needed to access a uint256 because it is not
extended.

(2) int〈M〉, 8 ≤ M ≤ 256,M%8 == 0. int〈M〉 is a signed
integer of M bits [3]. The layout and accessing pattern of an
int〈M〉 is similar to that of a uint〈M〉, except that a SIGNEX-
TEND rather than an AND is used to mask an extended value
because SIGNEXTEND is responsible for sign extension [30].
Similarly, the SIGNEXTEND is not needed to access an int256
because the highest bit of an int256 indicates the sign. To
distinguish an int256 from a uint256, both of which are not
extended, we leverage some instructions (e.g., SDIV) that can
only access signed integers.
(3) address. Every account has a unique 20-bytes ad-
dress [30]. We find that the call data layout of an address
and reading an address from the call data are the same
as a uint160. To differentiate them, we exploit the fact that
mathematic operations can involve a uint160 rather than an
address.
(4) bool. It can be true or false. The layout and reading a bool
from the call data are similar to that of a uint〈M〉, except that
two consecutive ISZEROs are used for masking. An ISZERO
pushes a one to the stack if the top stack item is zero and a
zero otherwise [30]. Hence, two consecutive ISZEROs push a
one to the stack if the top stack item is not zero, otherwise
push a zero.
(5) bytes〈M〉, 0 < M ≤ 32. A bytes〈M〉 is a byte sequence of
M bytes [3]. If a public/external function has a bytes〈M〉
type parameter, it will be extended on the lower-order
(right) side with zero to make the length be 32 bytes [3].
Fig. 4 shows the call data layout of a public/external func-
tion with one bytes4 argument whose value is ‘abcd’. A
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CALLDATALOAD is needed to read a bytes〈M〉 from the call
data, and an AND is used for masking. After masking, the
higher-order bytes of a bytes〈M〉 is retained. By contrast, for
a uint〈M〉, the masking retains the lower-order bytes since a
uint is extended on the higher-order side. Since bytes32 and
uint256 are not extended, we differentiate them by exploiting
the fact that a BYTE instruction is used for accessing a single
byte of a bytes32, while an AND masks a uint256 for the same
purpose.
2. Array: An array hosts array items of the same basic type.
An array can be static, dynamic or nested. The size of a static
array is known during compilation whereas the size of a
dynamic array and a nested array is determined by the actual
argument at runtime.
(1) Static array. We denote it as T[X1]...[Xn], where T is
one of the basic types, X1, ..., Xn are constant numbers
known in compilation, and n is the dimension. If n > 1,
T[X1]...[Xn] is a multidimensional array. The size of a static
array is known in compilation since the number of items in
each dimension is fixed. As a basic type, each array item
is extended through the process described above. Different
from other languages (e.g., C), the notation of an array in
EVM is reversed and the access is in the opposite direction
of the declaration [32]. For example, uint256[3][2] x means
an array x of two arrays of three uint256, and x [1][0] accesses
the first item of the second uint256[3]. All items of a static
array are stored consecutively in the call data. Fig. 5 shows
the call data layout of a public/external function with one
uint256[3][2] argument.
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Fig. 5. The call data layout of a static array, uint256[3][2]
The accessing patterns of a static array are different for

public and external functions.
(a) Public function. Its static array will be read into the
memory by one or more CALLDATACOPYs. Then, each array
item is accessed by an MLOAD, which reads 32 bytes from
the memory to the stack [30]. We find that a nested loop is
used to read parameters from the call data, and the level
of the nested loop is equal to the dimension of the static
array minus one. In the most inner layer, a CALLDATACOPY
is executed. A CALLDATACOPY can read a one-dimensional
static array.

Listing 1 shows the pseudocode (we do not show the
EVM instructions for the ease of presentation) to read a
uint256[3][2] from the call data to the memory. The execu-
tion of each CALLDATACOPY copies the array of the lowest
dimension (Line 3). The loop guard (Line 2) determines
how many times the CALLDATACOPY should be executed.
The loop guard is compiled into an LT instruction, which
checks whether the current loop count is smaller than the
item number of the highest dimension.
1 i = 0 ;
2 while ( i < 2){ / / how many uint256 [ 3 ] needs to copy
3 ca l lda tacopy ( uint256 [ 3 ] ) ;
4 i ++;
5 }

Listing 1. Pseudocode for reading a uint256[3][2] parameter to memory

(b) External function. Its static array will not be entirely
copied. Instead, array items will be read from the call data
to the stack using CALLDATALOAD on demand. We find that
if the smart contract is compiled without optimization or
the index of the array is a variable, the CALLDATALOAD is
preceded by bound checks to prevent array overrun. For
instance, before accessing the item x [i][j] of the array x [3][2],
two bound checks i < 2 and j < 3 are executed. Only after
they are passed, x [i][j] can be accessed. Such runtime bound
check is not needed if the array index is a constant and
the smart contract is compiled with optimization due to the
compile-time bound checks.
(2) Dynamic array. We denote it as T[X1]...[Xn−1][], where
T is one of basic types, X1, ..., Xn−1 are constant numbers
known in compilation, n is the dimension. The size of a
dynamic array is unknown in compilation because the item
number of the highest dimension is unknown. Instead, the
item number should be provided in the call data so that
the invoked function can know it at runtime. Fig. 6 shows
the call data layout of a dynamic array uint256[3][], which is
the first parameter, and the actual argument is uint256[3][2].
A 32-bytes value, i.e., the offset field, is located right after
the function id, and this value is an offset relative to the
first byte after the function id. The 32 bytes, i.e., the num
field, pointed by the offset stores the number of items in the
highest dimension. All array items are located after the num
field.
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Fig. 6. The call data layout of a dynamic array uint256[3][], and the actual
argument is uint256[3][2]

The accessing patterns of a dynamic array are different
for public and external functions.
(a) Public function. Its dynamic array will be read into the
memory by one or more CALLDATACOPYs. More precisely, the
smart contract uses a CALLDATALOAD to read the offset (i.e.,
the offset field), and another CALLDATALOAD to read the item
number of the highest dimension (i.e., the num field). Then,
the item number will be read from the stack to the memory
by an MSTORE, which saves 32 bytes from the stack into the
memory [30]. After that, the smart contract uses a nested
loop to copy all array items into the memory right after the
item number. Only one CALLDATACOPY is needed to read a
one-dimensional dynamic array.
(b) External function. Two CALLDATALOADs are used to read
the offset and the item number of the highest dimension.
Different from the process for public functions, an array
item will be read from the call data to the stack by a CALL-
DATALOAD on demand. The operand of the CALLDATALOAD,
i.e., the location from where to copy, is computed from the
value of the offset field at runtime, and the result contains
the multiplication of 32, because each array item is extended
to 32 bytes. For example, the location of the third array item
is computed by offset+4+32+2×32 (the function id is of 4
bytes, an item number is of 32 bytes, the first two array items
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are of 64 bytes). The bound check of the highest dimension
exists since its item number is unknown in compilation.
(3) Nested array. We denote a n-dimensional nested array as
T[X1]...[Xn], where T is one of basic types. At least one of
X1 to Xn−1 should be empty indicating the corresponding
dimension is dynamic. The key difference between a n-
dimensional nested array and a n-dimensional dynamic array
is that at least one dimension of the lower n− 1 dimensions
of the former can be dynamic whereas the lower n − 1
dimensions of the latter must be static [3]. Hence, each
dimension of a n-dimensional nested array associates an
offset field and a num field to enable dynamic dimension size.
Fig. 7 shows the call data layout of a nested array uint[][],
which is the first parameter of a function. Let’s assume
that the actual argument is [[0x1, 0x2], [0x3]] for the ease
of explanation. offset1 is the offset field of this nested array,
and num1 is the num field of its highest dimension. Two
items (i.e., [0x1, 0x2] and [0x3]) in the highest dimension are
placed after num1. Because both the two items are dynamic
arrays, their offset fields will be placed immediately after
num1. In this example, offset2 and num2 are the offset and
num fields of the item [0x1, 0x2], and offset3 and num3 are
the offset and num fields of the item [0x3]. 0x1 and 0x2 which
are two items of the array [0x1, 0x2] are placed immediately
after num2. Similarly 0x3, the only item of the array [0x3] is
placed immediately after num3.

The accessing pattern of a nested array in the public
mode is the same as that in the external mode, and an
array item in nested array will be read from the call data to
the stack by a CALLDATALOAD on demand. More specifically,
two CALLDATALOADs are used to read offset1 and num1, the
item number of the highest dimension. For example, to
read the array item 0x3 as an example, three additional
CALLDATALOADs are required to read offset3, num3 and the
item 0x3. To access an array item, there is a bound check for
each dimension.

4 bytes 32 bytes

offset2 offset3 num2 1 2 num3num1

offset1 ... ...id

3

32 bytes

4 bytes 32 bytes

offset2 1 2num1

offset1 ... ...id

32 bytes

3 num2

Fig. 7. The call data layout of a nested array uint[][], and the actual
argument is [[1, 2], [3]]

3. bytes: It is a dynamic byte sequence whose size is
determined at runtime [3]. If a public/external function has
a bytes type parameter, it will be extended on the lower-
order (right) side with the minimum number of zero to
make the length of the extended result be multiple of 32
bytes [3]. For example, if an un-extended bytes is ‘abcd’, the
extended result is shown in Fig. 4. The layout of a bytes
is similar to that of a one-dimensional dynamic array, as
shown in Fig. 6, except that the num field stores the size (in
byte) of the bytes before padding. Note that the num field
of a one-dimensional dynamic array records the number of
array items. The extended value is located right after the num
field.

The accessing patterns of a bytes value are different for
public and external functions.

(a) Public function. The accessing pattern of a bytes in a
public function is the same as the accessing pattern of a
one-dimensional dynamic array in a public function except
the computation of read size, because every single byte of a
bytes is not extended.
(b) External function. The accessing pattern of a bytes in the
external mode is the same as the accessing pattern of a one-
dimensional dynamic array in the external mode, except
that accessing a single byte of a bytes does not need the
multiplication of 32 because every single byte of a bytes is
not extended.
4. string: It is a dynamic Unicode string, whose size is
determined at runtime [3]. The call data layout of a string
and reading a string from the call data are the same as that of
a bytes. We distinguish them based on the observation that a
bytes supports reading/writing its individual byte whereas
a string does not support such operation.
5. struct: We denote a struct as (T1, ..., Tn), where n is a
constant number, indicating n struct items whose types can
be any types in Solidity. The size of a struct can be dynamic
or static. For a static struct whose size is known before
compilation, the type of each struct item should be one of
basic types, static array, or static struct. A dynamic struct
whose size is unknown in compilation can host all possible
Solidity types. The accessing pattern of a struct in the public
mode is the same as that in the external mode. We find that
the layout of a static struct is the same as that of all its items
as if they were not inside the static struct. For example,
Listing 2 is the definition of a struct (uint256, uint256) in
Solidity, Listing 3 is the definition of a function with two
uint256 parameters in Solidity. Fig. 8 shows the same call
data layout of them. Moreover, the bytecode to read an item
of a static struct is the same as the bytecode to read the item
as if it was not placed inside the struct. Therefore, there is
no sufficient hint from the bytecode to distinguish these two
different situations.
1 s t r u c t StructSample {
2 uint256 a ;
3 uint256 b ;
4 }
5 func t ion Func ( StructSample var1 ) {}

Listing 2. A function taking in a struct with two uint256 items

1 func t ion FuncSample ( uint256 a , uint256 b ) {}
Listing 3. A function taking in two uint256 parameters

4 bytes 32 bytes

offset2 offset3 num2 1 2 num3num1

offset1 ... ...id

3

32 bytes

4 bytes 32 bytes

offset2 1 2

offset1 ... ...id

32 bytes

3 num1

id uint256

4 bytes

uint256

a b

(uint, uint) 32 bytes

id uint256

4 bytes

uint256

a b

Fig. 8. The layout of a struct containing two uint256 items is the same to
that of two individual uint256 parameters

The layout of a dynamic struct has an offset field, and all
struct items are placed after the offset field. Fig. 9 shows the
call data layout of a dynamic struct (uint[], uint), which is
the first parameter of a function, and we assume that the
actual argument is ([0x1, 0x2], 0x3). In this example, offset1
is the offset field of this struct. Two items (i.e., [0x1, 0x2]
and 0x3) of this struct are placed after the position which
offset1 indicated. Because the item [0x1, 0x2] is array, its offset
field will be placed immediately after the position which
offset1 indicated, and the value of item 0x3 will be placed
immediately after it. In this example, offset2 and num1 are
the offset and num fields of item [0x1, 0x2], and items of
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[0x1, 0x2] are placed immediately after num1. For example,
to access the struct item 0x3, one CALLDATALOAD is used for
reading offset1 and one additional CALLDATALOAD is required
to read the item 0x3 directly.

4 bytes 32 bytes

offset2 offset3 num2 1 2 num3num1

offset1 ... ...id

3

32 bytes

4 bytes 32 bytes

offset2 1 2

offset1 ... ...id

32 bytes

3 num1

Fig. 9. The call data layout of a dynamic struct (uint[],uint), and the
actual argument is ([1, 2], 3)

2.3.2 Vyper
Vyper supports ten parameter types, including bool, int128,
uint256, address, bytes32, decimal, fixed-size list, fixed-size
byte array, fixed-size string, and struct [33]. The first five
types are also supported by Solidity, and the layouts of these
five types are the same with the layouts of Solidity types.
Different with Solidity, the instructions to read these five
types use comparison instructions (e.g., LT) rather than mask
instructions (e.g., AND) to ensure that the values of these five
types are in the valid ranges. For example, Listing 4 shows
the accessing pattern for address parameter in Solidity and
Listing 5 shows the accessing pattern for address parameter
in Vyper. We also learn that Vyper generates the same
bytecode for public and external functions. We describe the
remaining five types below.
1 CALLDATALOAD / / read the parameter
2 . . .
3 PUSH20 0 x f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f
4 AND / / mask by 0 x f f . . . f f

Listing 4. Accessing pattern for an address parameter in Solidity

1 PUSH21 0 x010000000000000000000000000000000000000000
2 PUSH1 0x20
3 MSTORE
4 . . .
5 CALLDATALOAD / / read the parameter
6 PUSH1 0x20
7 MLOAD / / load 0x01 . . . 0 0
8 DUP2
9 LT / / compare to 0x01 . . . 0 0

Listing 5. Accessing pattern for an address parameter in Vyper

1. decimal. A decimal is a fixed-point value with a precision
of 10 decimal, whose value ranges from −2127 and 2127 −
1 [33]. We find that the layout and the accessing pattern of a
decimal is similar to that of signed integer in Solidity, except
that two comparisons rather than a SIGNEXTEND mask are
used for ensuring that the value of the decimal is between
−2127 and 2127 − 1. If the decimal value is out of the range,
the execution of smart contract will be aborted.
2. Fixed-size list. Fixed-size list records a constant number of
items. [33]. We denote a fixed-size list as T [X1]...[Xn], where
T is one of bool, int128, uint256, address, bytes32 and decimal.
X1, ..., Xn are constant numbers known in compilation, and
n is the dimension and n ≥ 1. The layout and accessing
pattern of a fixed-size list is the same as that of a static array
in the external mode of Solidity. To access a list item, bound
checks are used to prevent the overrun of the list if the index
is a variable.
3. Fixed-size byte array. A fixed-size byte array is a byte se-
quence with a maximum length, which is given in the source
code. Its real length which is provided at runtime, should

not be longer than the maximum size. We denote a fixed-
size byte array as bytes[maxLen], maxLen is a constant value
denoting the maximum length. The layout and accessing
pattern for a fixed-size byte array are similar to a bytes in
the public mode of Solidity, except that 32 (the size of the
num field) + maxLen are read from the call data. That is, the
extended bytes of a fixed-size byte array are not read.
4. Fixed-size string. We denote a fixed-size string as
string[maxLen], where maxLen is a constant value represent-
ing the maximum length of the string. The layout and the
way to read a fixed-size string from the call data are the same
as that of a fixed-size byte array. The difference between the
two types lies in that a fixed-size byte array allows accessing
its individual byte whereas a fixed-size byte array does not
allow it.
5. struct. struct is a container type that can host several
variables. We denote a struct as (T1, ..., Tn), where n is a
constant value indicating n struct items and Ti can be one
of the following types, bool, int128, uint256, address, bytes32
and decimal [33]. The layout of a struct is the same as that
of all its items as if they were not placed inside the struct.
The bytecode to read a struct item is also the same as the
bytecode to read the item as if it was not inside the struct.
Therefore, there is no sufficient hint from the bytecode to
distinguish these two different types. Listing 6 shows a
function signature which takes in a struct containing two
uint256 items, and Listing 7 presents a function taking in
two uint256 parameters. The layouts of the struct and two
individual uint256 parameters are the same, as shown in Fig.
10.
1 s t r u c t StructSample :
2 a : uint256
3 b : uint256
4 def Func ( var1 : StructSample )

Listing 6. A function taking in a struct with two uint256 items

1 def FuncSample ( a : uint256 , b : uint256 )
Listing 7. A function taking in two uint256 parameters

4 bytes 32 bytes

offset2 offset3 num2 1 2 num3num1

offset1 ... ...id

3

32 bytes

4 bytes 32 bytes

offset2 1 2

offset1 ... ...id

32 bytes

3 num1

id uint256

4 bytes

uint256

a b

(uint, uint) 32 bytes

id uint256

4 bytes

uint256

a b

Fig. 10. The layout of a struct containing two uint256 items is the same
to that of two individual uint256 parameters

3 RULES FOR TYPE INFERENCE

This section first introduces the method to generate rules,
and then describes the first four rules. We briefly introduce
the remaining 27 rules, and elaborate more on them in
Supplementary material C.

3.1 Rules Generation
We propose a systematic approach to generate rules. The ba-
sic idea is to first learn the accessing patterns automatically
from the bytecode of self-generated smart contracts and then
summarize the rules manually, which are used by SigRec
to recover function signatures from the bytecode of other
smart contracts. Our approach has five steps. Since the first
four steps are automated, it can be easily extended to handle
new accessing patterns due to new compilers/programming
language/obfuscation techniques and new parameter types
(discussed in §7).
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Step 1. Preparing smart contracts and their bytecode. We
develop a tool to automatically construct smart contracts
and compile them into bytecode, from which the rules
will be learned. We develop smart contracts in Solidity
and Vyper since they are the most popular languages for
developing Ethereum smart contracts. To ensure the com-
pleteness of the derived rules, we consider all parameter
types supported in Solidity and Vyper, all major versions
of compilers as well as various optimization levels. More
specifically, each smart contract contains one public or ex-
ternal function. Since we find that smart contracts handle
the different parameters of a function independently, each
generated function just has one parameter to ease rule
learning. To expose the accessing patterns of parameters, the
body of each generated function contains statements to ac-
cess the parameter, e.g., assignments, arithmetic operations,
comparisons, reading one byte from bytes and bytes32, and
reading one array item.

We consider all basic types with all possible widths,
e.g., uint8, uint16, ..., uint256. Since the upper bound of the
array dimension and the upper bound of the size of a static
dimension are undocumented, we first identify the patterns
with concrete number of dimensions and then generalize the
pattern for all possible dimensions. Specifically, we set array
dimensions from 1 to 5 and each dimension can be static or
dynamic. For each static dimension, we set its size from 1 to
10. The items of an array are set to one of supported basic
types with all possible widths (e.g., uint8, uint16, ..., uint256).
Step 2. Collecting the accessing pattern of each parameter
type. We conduct data dependence analysis and control
dependence analysis to locate the EVM instruction sequence
used to access the parameter of each generated function,
which are required in subsequent steps. We consider such
instruction sequence as an accessing pattern. Specifically,
the instructions which are data dependent with parameters
are needed in step 4 for collecting the symbolic expressions
of variables. Step 5 needs the control dependency relations
to infer the structure of some complicated parameter types.
For example, TASE infers the loop structure from the EVM
instructions that are control dependent on the instruction
for reading the call data to discover n-dimensional dynamic
array.
Step 3. Extracting common accessing patterns. We observe
that the access patterns for some parameters types (e.g., uint8
and uint16) are similar, and thus this step extracts common
access patterns from the accessing patterns obtained in step
2. We regard an instruction sequence as the common access-
ing pattern of some accessing patterns if it appears in all
these accessing patterns. For example, from step 2 we obtain
the accessing patterns of uint8, uint16, ..., uint256 in Solidity,
and then in this step we try to extract the common accessing
pattern from these patterns to facilitate the derivation of
the rule for uint with all possible widths. On the contrary,
bool, int128, uint256, address, bytes32, decimal of Vyper are
basic types, we skip the step for them because these types
have fixed widths. Besides, we omit the description about
the fixed-size list of Vyper because it is equivalent to the
static array of Solidity.
Basic types of Solidity. We use unsigned integers as an ex-
ample, and the other basic types are handled similarly. We
extract the common accessing pattern from the accessing

patterns of uint8, uint16, ..., uint256, which is used in step 5
to generate a general rule for inferring the unsigned integers
with all possible widths, uint〈M〉, 8 ≤ M ≤ 256,M%8 ==
0.
One-dimensional static array of Solidity. We extract the com-
mon accessing pattern from the accessing patterns of
uint8[1], uint8[2], ..., uint8[10]. By retaining the instructions
in the common accessing pattern but not in the accessing
pattern of uint8, we further obtain the accessing pattern of
T[N ], 1 ≤ N ≤ 10, T is one of the basic types.
Multidimensional static array of Solidity. We first extract the
common accessing pattern from the accessing patterns of
uint8[N1][N2], 1 ≤ N1, N2 ≤ 10. Then we obtain the ac-
cessing pattern of T[N1][N2], 1 ≤ N1, N2 ≤ 10 by retaining
the instructions in the common accessing pattern but not
in the accessing pattern of uint8. Similarly, we obtain the
accessing patterns of T[N1][N2][N3], T[N1][N2][N3][N4],
T[N1][N2][N3][N4][N5], 1 ≤ N1, N2, N3, N4, N5 ≤ 10.
One-dimensional dynamic array of Solidity. We regard the EVM
instructions that are in the accessing pattern of uint8[] but not
in the accessing pattern of uint8 as the common accessing
pattern of T[].
Multidimensional dynamic array of Solidity. We extract the
common accessing pattern from accessing patterns of
uint8[N1][], 1 ≤ N1 ≤ 10. By retaining the EVM instructions
that appear in such common accessing pattern but not in the
accessing pattern of uint8, we obtain the accessing pattern of
T[N1][], 1 ≤ N1 ≤ 10. We also obtain the accessing pat-
terns of T[N1][N2][], T[N1][N2][N3][], T[N1][N2][N3][N4][],
1 ≤ N1, N2, N3, N4 ≤ 10 through the same process.
Nested array of Solidity. We extract the common accessing
pattern from the accessing patterns of uint8[][N1], 1 ≤ N1 ≤
10 or N1 is empty. By retaining the EVM instructions that
appear in such common accessing pattern but not in the
accessing pattern of uint8, we obtain the accessing pat-
tern of T[][N1], 1 ≤ N1 ≤ 10 or N1 is empty. We also
obtain the accessing pattern of T[N1][N2][N3]][N4]][N5],
1≤ N1, N2, N3, N4, N5 ≤ 10 and at least one of N1 to N4

is empty through the same process.
Fixed-size byte array of Vyper. We obtain the accessing pat-
tern of bytes[maxLen] by extracting the common accessing
pattern from the accessing patterns of bytes[1], bytes[2],...,
bytes[50].
Fixed-size string of Vyper. We obtain the accessing pattern of
string[maxLen] by extracting the common accessing pattern
from the accessing patterns of string[1], string[2],..., string[50].
struct of Solidity. we extract the accessing pattern of (uint8[]).
By retaining the EVM instructions that appear in such
accessing pattern but not in the accessing pattern of uint8[],
which is extracted above, we obtain the accessing pattern of
the struct type of Solidity.
struct of Vyper. we extract the common accessing pattern
from accessing patterns of (uint256). By retaining the EVM
instructions that appear in such common accessing pattern
but not in the accessing pattern of uint256, we obtain the
accessing pattern of the struct type of Vyper.
Step 4. Generating symbolic expressions from parameters.
To characterize how parameters are handled by EVM in-
structions, we conduct symbolic execution on the common
accessing patterns obtained in step 3 by treating the call data
as symbols, and collect the symbolic expressions for each
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variable. Step 5 needs symbolic expressions to summarize
rules.
Step 5. Summarizing rules. We summarize the rules ac-
cording to the common accessing patterns obtained in step
3 and the symbolic expressions collected in step 4, and then
organize them into a decision tree (Fig. 13) for fast rule
checking. To determine the rules for arrays, we investigate
how the accessing patterns change when its dimension
increases from 1 to 5 and the number of items per-dimension
increases from 1 to 10. Eventually, we generate 18 rules
and divide them into three categories for CALLDATALOAD
(§3.2), CALLDATACOPY (§3.3), and other instructions (§3.4),
respectively.

3.2 Rules for CALLDATALOAD

A CALLDATALOAD can read 3 kinds of data from the call data
(§2): (1) the value of a parameter; (2) the offset field of a
parameter; (3) the num field of a parameter.
R1: R1 is used to infer a dynamic array/bytes/string. It
holds if two CALLDATALOADs (termed by CALLDATALOAD1 and
CALLDATALOAD2) satisfy that x = CALLDATALOAD1(loc)∧y =
CALLDATALOAD2(x + 0x4), where x = CALLDATALOAD1(loc)
means that a 32-bytes value is read from the loc byte of
the call data into x by a CALLDATALOAD. Actually, x is the
offset field of a dynamic array/bytes/string parameter. CALL-
DATALOAD2 reads the num field of the parameter, because the
location of the num field is the value of the offset field plus
the length of the function id (i.e., 4 bytes).
R2: R2 is used to infer an n-dimensional (n > 1) dynamic
array in an external function. It holds if three requirements,
v1, v2, v3 are satisfied. Let exp(loc) represent the symbolic
expression of the location loc, which describes how loc is
computed from symbols. Let exp(p)�q denote that the sym-
bolic expression of p (e.g., x + y × 5) contains the symbolic
expression q (e.g., y×5). v1 is defined as exp(loc)� (offset+),
meaning that the read location is computed by adding the
value of the offset field, because array items are placed after
the num field, which is pointed by the offset field. Hence, if
a CALLDATALOAD reads an item from a dynamic array in the
external model, v1 is satisfied.

v2 is defined as exp(loc) � (32×), meaning that the
symbolic expression of loc contains the multiplication of 32.
If a CALLDATALOAD reads an item from a dynamic array pa-
rameter in an external function, v2 is satisfied, because each
array item is extended to 32 bytes so that the multiplication
of 32 is needed to access an array item.

Before introducing v3, we let numn =
CALLDATALOAD(num) indicate that a CALLDATALOAD reads
the value of the num field and assigns it to numn.
numn−1, ..., num1 are constant numbers, and LTj(ij , numj)
means that an LT instruction compares a number ij with a
number numj . Let insi � insj indicate that the instruction
insj is control-flow dependent on the instruction insi. v3
is defined as LTn(in, numn) � LTn−1(in−1, numn−1) � ... �
LT1(i1, num1) � CALLDATALOAD(loc). v3 is satisfied if the
CALLDATALOAD for reading the array item is within a nested
loop. Hence, if a CALLDATALOAD(loc) reads an item from
a dynamic array in an external function, v3 is satisfied,
because n bound checks (i.e., n LTs) for preventing array
overrun are located between the two CALLDATALOADs.

Hence, if v1, v2, and v3 are all fulfilled, the dynamic array
is n-dimensional, and numn−1, ..., num1 are the sizes of the
lower n − 1 dimensions, respectively. We give an example
in Supplementary material D to explain this rule.
R3: R3 is used to infer an n-dimensional (n > 1) static array
in an external function. It depends on two requirements v1
and v2. v1 is defined as ¬(exp(loc) � (offset)), where “¬”
means negation. v1 means that the read location is not com-
puted from the offset field. If a CALLDATALOAD reads an item
from a static array in an external function, v1 holds because
the layout of a static array does not have an offset field (Fig.
5). v2 is defined as LTn(in, numn) � LTn−1(in−1, numn−1) �
... � LT1(i1, num1) � CALLDATALOAD(loc). v2 is the same as
v3 of R2. If a CALLDATALOAD(loc) reads an item from an
n-dimensional static array parameter in an external func-
tion, v2 holds because there are n bound checks for each
dimension in a nested loop to prevent array overrun before
reading the array item. Hence, if v1 and v2 are satisfied,
the static array is n-dimensional, and the item numbers
from the highest dimension to the lowest dimension are
numn, ..., num1, which are all constants since the item num-
ber of each dimension in a static array is known in compila-
tion. Supplementary material D uses an example to explain
this rule due to page limit.
R4: x is regarded as a uint256, if R1, R2 and R3 are not
fulfilled. R4 means that without sufficient hints we just
know that the length of x is 32 bytes and thus regard a 32-
bytes parameter as a uint256. We will refine it to a specific
type after using other rules to get more hints.

R19 is used for inferring a struct nested array parameter.
R21 and R22 are used for inferring a struct parameter (R21)
and a nested array parameter (R22). R24 and R25 are used
for inferring a fixed-size list parameter (R24) and a uint256
parameter (R25) after R20 is satisfied.

3.3 Rules for CALLDATACOPY

A CALLDATACOPY reads the value of a parameter(§2). R5
– R10 and R23 are used for inferring a one-dimensional
dynamic array/bytes/string parameter in a public function
(R5), a one-dimensional static array in a public function (R6),
a one-dimensional dynamic array in a public function (R7), a
bytes/string in a public function (R8), an (n+1)-dimensional
(n > 0) static array in a public function (R9), an (n + 1)-
dimensional (n > 0) dynamic array in a public function
(R10) and a fixed-size byte array and string in Vyper (R23).

3.4 Rules for Other Instructions

R11 – R18 will be applied after R4 is satisfied (Fig. 13). By
leveraging them, we can refine a uint256 parameter into a
uint〈256 − 8 × x〉, 0 < x < 32 (R11), a bytes〈32 − x〉, 0 <
x < 32 (R12), an int〈(x + 1) × 8〉, 0 ≤ x < 31 (R13 ), a bool
(R14), an int256 (R15), an address (R16), a bytes (R17), and
a bytes32 (R18). R20 is used to distinguish Vyper bytecode
from Solidity bytecode. R26 is used for inferring a fixed-size
byte array parameter in Vyper after R23 is satisfied. R27 – R31
will be applied after R25 is satisfied (Fig. 13). By leveraging
them, we can refine a uint256 parameter into an address
(R27), an int128 (R28), a decimal (R29), a bool (R30), a bytes32
(R31) in Vyper.
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Short Title 1:9

Rules for CALLDATALOAD
x=CALLDATALOAD1(loc) y=CALLDATALOAD2(x+4)

Solidity unknown� dynamic array/bytes/string (R1)
exp(loc)�(offset+) exp(loc)�(32×) LTn (in ,numn )�LTn−1(in−1,numn−1)�...�LT1(i1,num1)�CALLDATALOAD(loc)

numn=CALLDATALOAD(num) numn−1, ...,num1: Constant
dynamic array/bytes/string� dynamic array in external mode (R2)

¬(exp(loc)�(offset)) LTn (in ,numn )�LTn−1(in−1,numn−1)�...�LT1(i1,num1)�CALLDATALOAD(loc)
numn , ...,num1: Constant

Solidity unknown� static array in external mode (R3)
x=CALLDATALOAD(loc)

Solidity unknown� uint256 (R4)
offset1=CALLDATALOAD1(loc1)�offset2=CALLDATALOAD2(loc2)�...�offsetn=CALLDATALOADn (locn ) n>2

(loc1: Constant)∧ (exp(loc2)�(offset1)) ∧...∧ (exp(locn )�(offsetn−1))
Solidity unknown� struct/nested array (R19)

offset1=CALLDATALOAD(loc)��LT (i,CALLDATALOAD(offset1+0x4))�CALLDATALOAD(offset1+0x4+0x32×i)
loc: Constant

struct/nested array� struct (R21)
LT(in ,numn )�LT(in−1,numn−1)�...�LT(i1,num1)�CALLDATALOADn+1(loc)

exp(loc)�(offsetn ) offsetn is defined in R19
numx :Constant/Variable at least one of num1 ...numn−1 should be variable

struct/nested array� nested array (R22)
¬(exp(loc)�(offset)) LTn (in ,numn )�LTn−1(in−1,numn−1)�...�LT1(i1,num1)�CALLDATALOAD(loc)

numn , ...,num1: Constant
Vyper unknown�fixed-size list (R24)

x=CALLDATALOAD(loc)
Vyper unknown� uint256 (R25)

..............................................................................................................................................................................
Rules for CALLDATACOPY

�LT�CALLDATACOPY(offsetm,x+36,len) x is defined in R1
dynamic array/bytes/string� one-dimensional dynamic array/bytes/string in public mode (R5)

�LT�CALLDATACOPY(offsetm,offsetc,len) offsetc,len: Constant
Solidity unknown� one-dimensional static array in the public mode (R6)

len==32×y len is defined in R5 y is defined in R1
one-dimensional dynamic array/bytes/string� one-dimensional dynamic array in public mode (R7)

len==32×�y/32� len is defined in R5 y is defined in R1
one-dimensional dynamic array/bytes/string� bytes/string in public mode (R8)

LTn (in ,numn )�LTn−1(in−1,numn−1)�...�LT1(i1,num1)�CALLDATACOPY(offsetm,offsetc,len)
numn , ...,num1,len: Constant

Solidity unknown� (n+1)-dimensional static array in public mode (R9)
LTn (in ,y)�LTn−1(in−1,numn−1)�...�LT1(i1,num1)�CALLDATACOPY(offsetm,offsetc,len) y is defined in R1

numn−1, ...,num1: Constant
dynamic array/bytes/string� (n+1)-dimensional dynamic array in public mode (R10)

x=CALLDATALOAD(loc) CALLDATACOPY(of f setm ,of f setc ,len) len:Constant exp(of f setc )�(x )
Vyper unknown�fixed-size byte array/string (R23)

..............................................................................................................................................................................
Rules for Other Instructions

AND(op1,op2) op1:uint256 op2:Constant with x leading zero-bytes
uint256� uint〈M〉 (R11)

AND(op1,op2) op1:uint256 op2:Constant with x trailing zero-bytes
uint256� bytes〈M〉 (R12)

SIGEXTEND(op,x ) op :uint256 x :Constant
uint256� int〈M〉 (R13) x=ISZERO(op) y=ISZERO(x ) op :uint256

uint256� bool (R14)
SDIV/SMOD/SLT/SGT(op1,op2) op1:uint256

uint256� int256 (R15) op1:uint160 op1 is not involved in anyMATH(op)
uint256� address (R16)

BYTE/MSTORE8(op) op :string/bytes
bytes/string� bytes (R17) BYTE(op) op :uint256

uint256� bytes32 (R18)
x=CALLDATALOAD(0) MSTORE(of f setm ,x )

unknown�Vyper unknown (R20) BYTE/MSTORE8(op) op :fixed-size byte array/string
fixed-size byte array/string�fixed-size byte array (R26)

LT(op1,op2) op1:uint256 op2:2160
uint256� address (R27)

SLT(op1,op2) SGT(op1,op3) op1:uint256 op2:2127−1 op3:−2127
uint256� int128 (R28)

SLT(op1,op2) SGT(op1,op3) op1:uint256 op2:2127−1 op3:−2127
uint256� decimal (R29)

LT(op1,op2) op1:uint256 op2:2
uint256� bool (R30) BYTE/MSTORE8(op) op :string/bytes

uint256� bytes32 (R31)
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Fig. 11. Rules

4 DESIGN AND IMPLEMENTATION OF SIGREC

4.1 Overview

Fig. 12 shows the architecture of SigRec which takes in the
runtime bytecode of a smart contract and outputs the func-
tion signatures of all public/external functions in it. SigRec
first disassembles the bytecode using Geth disassembler [34]
and recognizes basic blocks from them, then extracts func-
tion ids from the bytecode. Technical details are presented
in Supplementary material E. After that, it uses TASE to
infer the types of all parameters (§4.2). Finally, it outputs

the function ids as well as the list of parameter types. The
reasons for using TASE rather than conventional SE and
other methods are explained in Supplementary material F.

4.2 TASE: Type-aware Symbolic Execution

Being the core of SigRec, TASE has four steps. First, it
conducts coarse-grained type inference to recognize Solidity
and Vyper bytecode, and then it recognizes struct, arrays,
bytes, strings and basic types of Solidity, and fixed-size lists,
fixed-size byte arrays, fixed-size strings and basic types of
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Vyper. This step only determines whether a parameter is
a basic type instead of deciding the specific basic type,
and this step does not infer the type of array items, the
type of struct items, and this step does not distinguish a
bytes from a string. Second, it infers the number and the or-
der of parameters. Third, by introducing parameter-related
symbols when reading arguments from the call data, TASE
determines whether an instruction operates on an argument
and which argument is operated if that is the case. Finally, it
conducts fine-grained type inference to distinguish different
basic types for Solidity and Vyper, recognizes the item types
of arrays, nested arrays, and each item type of struct for
Solidity and the item types of fixed-size list for Vyper, and
refines the types (e.g., from uint256 to bytes32) for Solidity
and Vyper.

TASE treats the call data as symbols and maintains the
symbolic expressions of all variables depending on the call
data in order to apply the rules. TASE enhances conven-
tional symbolic execution (CSE) with the ability to infer
parameter types. It conducts symbolic execution (SE) to
statically explores the paths of the smart contract and stops
if the jump target is determined by inputs (e.g., function
parameters), because inputs are unknown in static analysis.
This restriction is not a big problem in practice since we only
find 5 smart contracts deployed in Ethereum containing
such kind of jump instructions, and TASE usually does
not need to analyze the code deep inside smart contracts
because parameters are usually handled near the entry
point of each function. TASE treats each value read from
the environment as a free symbol, because SigRec focuses
on how a smart contract processes the parameters rather
than its program logic. Experimental results show that these
two restrictions do not affect SigRec’s accuracy (§5.2). After
describing the details of TASE, we present the differences
between TASE and CSE, as well as the rationale of using
TASE instead of other approaches.
Step 1. Coarse-grained type inference.

At this step, TASE recognizes struct, arrays, bytes, strings
and basic types in Solidity, and fixed-size lists, fixed-size
byte arrays, fixed-size strings and basic types in Vyper ac-
cording to the rules R1 – R10 and R19 – R25. This step only
determines whether a parameter is a basic type instead of
deciding the specific basic type. This step does not infer the
type of array items, the type of struct items, and this step
does not distinguish a bytes from a string. Instead, these
tasks are accomplished by step 4.

Fig. 13 shows the decision tree used by SigRec to de-
termine the type of a parameter. A rectangle represents
one or more types and an edge indicates applying one
or more rules. The root rectangle represents the unknown

type. Two colors are used to differentiate between a public
function and an external function. The ¬ indicates that the
requirements of the corresponding rule are not satisfied.
SigRec infers the type of a parameter if all the rules on a
path from the root rectangle to a leaf node are satisfied.

We use the following example to explain the derivation
process. SigRec regards a parameter as a bytes in a public
function if R1, R5, R8, and R17 are fulfilled in order. More
precisely, if R1 holds, the parameter should be a dynamic
array/bytes/string, because the smart contract uses two con-
secutive CALLDATALOADs to read the offset field and the num
field. Since R5 is also satisfied, the type should be a one-
dimensional dynamic array or a bytes or a string in a public
function, because exactly one CALLDATACOPY is used to copy
the parameter. Then, R8 refines the type to a bytes or a string
in a public function, because a bytes/string is extended to the
length of a multiple of 32 bytes. Finally, R17 further refines
the type to a bytes in the public mode, because the smart
contract accesses a single byte of the parameter.
Step 2. Determining the number and order of parameters.

TASE infers the number of parameters by counting the
number of rules R1, R3, R4, R6, R9, R21, R22, R23, R24, R25
which are used in coarse-grained type inference. Specifically,
by counting the applied number of R1, TASE knows the
number of dynamic arrays/bytes/strings for Solidity (termed
by n1) since two consecutive CALLDATALOADs are used be-
fore reading a dynamic array/bytes/string. By counting the
applied number of R3, R6 and R9, TASE knows the number
of static arrays for Solidity (termed by n2). Since R4 regards
all basic types as uint256, TASE knows the number of basic
types for Solidity (termed by n3) by counting the applied
number of R4. By counting the applied number of R21 and
R22, TASE knows the number of nested array and struct for
Solidity (termed by n4). By counting the applied number of
R23 and R24, TASE knows the number of fixed-size list, byte
array and string for Vyper (termed by n5). By counting the
applied number of R25, TASE knows the number of basic
types for Vyper (termed by n6). Therefore, TASE knows the
number of parameters, which is n1+n2+n3+n4+n5+n6.

Then, TASE determines the order of parameters accord-
ing to the locations of the corresponding arguments in the
call data in ascending order. For example, if an argument
x locates before an argument y in the call data, x is on the
left-hand side of y in the parameter list. The location of a
basic type is given by the operand of the CALLDATALOAD.
The location of a dynamic array/bytes/string is indicated
by the location of its offset field, which is the operand of
the first CALLDATALOAD instruction in the two consecutive
CALLDATALOAD instructions (R1, §3.2). The location of a static
array in a public function is given in the operand of the first
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Fig. 13. Hierarchy of rules applied by SigRec

CALLDATACOPY because it copies the inner-most dimension.
The start location of a static array in an external function
cannot be directly obtained because it is not involved in
reading array items. Instead, a CALLDATALOAD is used to
read an array item whose location is a constant number
determined during compilation. Hence, we get the start
location indirectly, which is after the end of the parameter
immediately before the static array. If the static array is the
first parameter, the start location is 0x4 since the function id
precedes it.
Step 3. Introducing parameter-related symbols. When
a smart contract reads arguments, TASE introduces
parameter-related symbols by marking all bytes of an ar-
gument with the same symbol. After executing a CALLDAT-
ALOAD and a CALLDATACOPY, we mark the corresponding
stack item and the memory region with symbols. Besides,
we will copy the symbol of the memory region to the top
item of the stack after executing an MLOAD if it reads from
the memory region that stores arguments. Fig. 14 shows
an example of marking parameter-related symbols. The
public function, fun(), takes in a uint256 parameter x and a
uint256[3] parameter y, and assigns a local variable z as y[0].
Before the assignment, x and y are read from the call data
to the stack top and the memory, respectively. Since x and y
are arguments, we mark the stack top and the corresponding
memory region as symbols arg1 and arg2, respectively. The
assignment copies the first item of y from the memory to the
stack top, and therefore we mark stack top with the same
symbol of y (i.e., arg2).

fun(uint256 x, uint256[3] y) public {
uint256 z = y[0];

}

stack

top

y

offsetm

memory

arg2

arg1 z = y[0];

stack

top

y

memory

arg2

arg1

arg2

x

…

y[0]

x

…

Fig. 14. Marking parameter-related symbols

Step 4. Fine-grained type inference.
Using R11–R18 and R26–R31 according to Fig. 13, this

step distinguishes basic types for Solidity and Vyper, infers
the type of an array item and nested array item for Solidity,

infers each item type of struct for Solidity, and infers the
type of a fixed-size list item for Vyper, and refines the type
of a parameter to a specific one for Solidity and Vyper.
Since TASE knows the structure of an array in step 1, it
further knows the type of an array item in this step and
then determines the type of the array. For example, given
a public function with a uint8[] parameter, TASE knows
that the parameter is a one-dimensional dynamic array in
a public function by applying R1, R5 and R7 in order in step
1. Then, using R11 in this step, TASE learns that the type
of an array item is uint8, and thus SigRec can recover the
correct parameter type.
An example to illustrate the four steps. Listing 8 shows a
public function with two parameters: values and to, whose
types are uint8[] and address, respectively. Line 2 reads the
first item of values and to. Listing 9 shows the corresponding
EVM bytecode. For the ease of presentation, we just keep
the EVM instructions that are needed by TASE to infer
parameter types.
1 function t e s t ( uint8 [ ] values , address to ) public {
2 to . send ( values [ 0 ] ) ;
3 }

Listing 8. An example to explain the process of TASE

1 CALLDATALOAD / / read o f f s e t
2 . . . . . .
3 CALLDATALOAD / / read num
4 . . . . . .
5 CALLDATACOPY / / read values
6 . . . . . .
7 CALLDATALOAD / / read to
8 PUSH20 0 x f f . . . f f / / 20 byte 0xFF
9 AND / / mask

10 . . . . . .
11 MLOAD / / read values [ 0 ]
12 PUSH1 0 x f f
13 AND / / mask
Listing 9. The bytecode code of this example
Step 1: Coarse-grained type inference. In Listing 9, Line 1 reads
32 bytes, termed by x, from the 4th byte of the call data,
and Line 3 reads 32 bytes, termed by y, from the (x + 4)-
th byte of the call data. Since these two instructions satisfy
R1, this parameter is a dynamic array/bytes/string. Since
Line 5 reads 32 × y bytes from the (36 + x)-th byte of the
call data to memory from the 160th byte without using a
loop, R5 is fulfilled and thus this parameter is refined to
one-dimensional dynamic array/bytes/string. SigRec further
confirms that this parameter is a one-dimensional dynamic
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array because R7 is satisfied. Specially, the read length is
the multiplication of 32 bytes (i.e., the length of each array
item) and the item number (i.e., y). As Line 7 reads 32 bytes,
termed by z, from the 36th byte of the call data to the stack,
R4 is fulfilled and thus z is a basic-type parameter.
Step 2: Determining the number and order of parameters. Line
3 reads a one-dimensional dynamic array, and its offset field
is located at the 4th byte of the call data. Line 7 reads a
basic-type parameter located at the 36th byte of the call
data. Since no other parameters are read in this example,
this function takes in two parameters. Moreover, the one-
dimensional dynamic array is the first parameter and the
basic-type parameter is the second parameter, because the
offset field of the array precedes the basic-type parameter.
Step 3: Introducing parameter-related symbols. Since Line 5
reads the first parameter to the memory, SigRec marks
the corresponding memory region with the symbol arg1.
Similarly, since Line 7 reads the second parameter to the
stack, SigRec marks the stack’s top item with the symbol
arg2.
Step 4: Fine-grained type inference. Since Line 9 masks the
stack top, which is marked with arg2, with 20-bytes 0xFF,
R11 is satisfied and thus the second parameter should be a
uint160. Since the second parameter is not involved in any
mathematics operations, R16 is held, and thus SigRec refines
the type of the second parameter to address. Line 11 reads
32 bytes from the 160th byte of the memory to stack top.
Since such memory region is marked with arg1 in step 3,
SigRec marks stack top with arg1. Since the first parameter
is an array, the stack top stores an array item. As Line 13
masks the stack top with 0xFF, R11 is satisfied and thus we
learn that the type of the array item is uint8. Eventually, TASE
infers that the type list is “uint8[], address”, the same as the
source code.

5 EVALUATION

We implement SigRec in 8,327 lines of Python code and
conduct extensive experiments to evaluate it by answering
five research questions. RQ1: How is the accuracy of SigRec
in recovering function signatures (§5.2)? RQ2: Will SigRec
be affected by different compiler versions and optimizations
(§5.3)? RQ3: How much time is required by SigRec to
recover function signatures (§5.4)? RQ4: How frequently
is each rule used for recovering function signatures (§5.5)?
RQ5: Is SigRec superior to existing tools (§5.6)?

5.1 Data Collection

To evaluate the accuracy of SigRec, we download the
source code of all open-source smart contracts which were
deployed before Jan. 6, 2021 from Etherscan because the
ground-truth (i.e., function signatures) can be obtained from
the source code. We collect 119,404 unique open-source
smart contracts including 119,126 Solidity contracts and 278
Vyper contracts. 210,869 unique public/external function
signatures are found in Solidity open-source smart contracts
and 1,076 unique function signatures are found in Vyper
open-source smart contracts. To evaluate the efficiency of
SigRec and the usefulness of heuristic rules, we collect the
bytecode of all deployed smart contracts by instrumenting

an Ethereum full node as suggested by [35], [36]. Eventually,
we download 11,600,000 blocks (the last block was mined
on Jan. 6, 2021) and obtain the bytecode of 37,009,570
smart contracts. 368,679 out of them are unique. There are
47,329,149 public/external functions in all smart contracts
with 383,522 unique function signatures. Note that these
37,009,570 smart contracts include all open-source smart
contracts.

5.2 RQ1: How is the accuracy of SigRec?
We evaluate the accuracy of SigRec with all 210,869 and
1,076 unique function signatures in Solidity and Vyper open-
source smart contracts with ground-truth, respectively. A re-
covered function signature is correct, if and only if the recov-
ered function id, the number and the order of parameters,
and the types of all parameters are the same as the ground-
truth. The accuracy is the proportion of correctly recovered
function signatures to the total number of function signa-
tures. SigRec correctly recovers 208,218 and 1,052 function
signatures for Solidity and Vyper, and hence its accuracy
is 98.738% ((208, 218 + 1, 052)/(210, 869 + 1, 076)). More
specifically, SigRec correctly recovers 208,218 from all func-
tion signatures in Solidity smart contracts, and thus its accu-
racy for Solidity contracts is 98.743% (208, 218/210, 869). Be-
sides, SigRec correctly recovers 1,052 from all 1,076 function
signatures in Vyper smart contracts, and thus its accuracy
for Vyper contracts is 97.770% (1, 052/1, 076).

By manually investigate 2,651 incorrect function signa-
tures in Solidity and 24 incorrect function signatures in
Vyper, we reveal five cases of inaccuracies as follows. The
value in <> is the number of inaccurately recovered func-
tion signatures in each case. Please note that one incorrect
function signature may be affected by multiple cases. We
discuss how to further increase the accuracy of SigRec in §7.
Case 1 < 498 >: These smart contracts read the parameters
that are not declared in function signatures by inline assem-
bly. Listing 10 shows a practical case. The function start()
has no parameters in declaration (Line 1), but it reads two
parameters foo (Line 7) and bar (Line 8) using inline assem-
bly. SigRec discovers these two parameters read by inline
assembly, because it infers parameters by investigating how
parameters are used.
1 function s t a r t ( ) auth note{
2 stopped= f a l s e ;
3 }
4 modifier note{
5 . . . . . .
6 assembly{
7 foo := c a l l d a t a l o a d ( 4 )
8 bar := c a l l d a t a l o a d ( 3 6 )
9 }

10 . . . . . . }
Listing 10. An inaccurately recovered function signature in case 1

Case 2 < 387 >: These smart contracts forcibly convert
the type of a parameter before using it. The recovered
types may be more useful than those declared in function
signatures, and the smart contract uses the parameter as
the converted type. Listing 11 shows a practical case. The
function setGenOStat() has one parameter whose type is
declared as uint256[6] (Line 1). SigRec recovers the type
of gen0Stat as uint8[6], because the high-order 31 bytes of
uint256 are discarded by type conversion (Lines 4 – 9).
1 function setGen0Stat ( uint256 [ 6 ] gen0Stat ) public onlyCOO
2 {
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Fig. 15. Accuracies of SigRec for various Solidity compiler versions

3 gen0State=Gen0Stat ({
4 ret i redAge : uint8 ( gen0Stat [ 0 ] ) ,
5 maxSpeed : uint8 ( gen0Stat [ 1 ] ) ,
6 maxStamina : uint8 ( gen0Stat [ 2 ] ) ,
7 maxStart : uint8 ( gen0Stat [ 3 ] ) ,
8 maxBurst : uint8 ( gen0Stat [ 4 ] ) ,
9 maxTemperament : uint8 ( gen0Stat [ 5 ] ) }) ;

10 }
Listing 11. An inaccurately recovered function signature in case 2

Case 3 < 314 >: These smart contracts have unused
arrays/strings/bytes parameters in external functions. Since
SigRec recognizes such types of parameters by checking
how they are used, it cannot recognize the unused param-
eters. Missing such parameters may not be an important
issue because they are not used. It is worth noting that
SigRec can recognize all parameters in public functions and
the basic-type parameters in the external functions, because
such parameters will be read into the stack or the memory
no matter whether or not they will be used.
Case 4 < 602 >: Since SigRec recovers the type of each
parameter with the storage modifier as uint256, its output
may be incorrect if the storage variable referred by the
parameter is not a uint256 integer.
Case 5 < 1, 123 >: Our rules cannot handle a few scenarios.
First, SigRec cannot recognize static arrays in external func-
tions, if the smart contract is compiled with optimization
and the index of the array item being accessed is a constant
number, because there are no bound checks which are
necessary for inferring array structure (R2 and R3, §3.2).
Second, SigRec cannot distinguish some types if it cannot
obtain sufficient clues. For example, we cannot distinguish
a bytes from a string if the smart contract does not access
a single byte of the bytes value since R17 exploits the fact
that a bytes allows accessing its individual byte but a string
does not support such functionality. As another example, we
cannot distinguish a struct whose items are all basic types
from the same items which are not placed in a struct, due to
the description about struct in §2.3.1 that the call data layout
and the accessing pattern of a static struct are the same to
that of the same items which are not placed in a struct.
Answer: The accuracy of SigRec is 98.7% for Solidity and 97.8%
for Vyper.

5.3 RQ2: Will SigRec be affected by different compiler
versions and optimizations?
We evaluate SigRec using the open-source smart contracts
that are compiled by different versions of compilers w/o
optimization. Since Etherscan lists the compiler version and
whether or not a smart contract is optimized as well as
the optimization level if any for each open-source smart
contract [37], we eventually collect 119,126 and 278 unique
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open-source smart contracts in Solidity and Vyper, respec-
tively. These smart contracts were compiled by 155 versions
of Solidity compilers and 17 versions of Vyper compilers,
e.g., Solidity from V 0.1.1 to V 0.8.0 and Vyper from V
0.1.0b4 to V 0.2.8. Note that we consider a compiler version
with optimization and that without optimization as two
different versions. Then, we compute the accuracy of SigRec
for each compiler version. Fig. 15 shows the accuracies in
ascending order of Solidity versions, including the number
of smart contracts compiled by each version, ranging from
1 to 11,430. Fig. 16 shows the accuracies in ascending order
of Vyper versions, which also includes the number of smart
contracts compiled by each version, ranging from 1 to 57.
We can see that the accuracy of SigRec is never lower
than 96% for all 155 Solidity compiler versions, and the
accuracy of SigRec is more than 90% in 12 out of 15 Vyper
compiler versions. By investigating the three Vyper compiler
versions that make the accuracy of our tool be lower than
90%, we find that the relatively low accuracy is not caused
by compiler features. Instead, the small number of Vyper
contracts which are compiled by these three versions is the
reason. Therefore, the accuracy does not show a downward
trend with the evolving of compiler versions.
Answer: Compiler versions and optimizations bring minimum
impact on the accuracy of SigRec. Its accuracy is never lower
than 96% for all 155 Solidity compiler versions and higher than
90% in 80% of Vyper compiler versions.
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5.4 RQ3: How much time is required by SigRec to
recover function signatures?
We apply SigRec to all 47,329,149 public/external func-
tions, and measure the time consumption for recovering
each function. This experiment is conducted on a desktop
equipped with an Intel Xeon E5-2609 CPU, 16GB main
memory and 10TB hard disk. The results are shown in
Fig. 17, where each cross (x, y) indicates that SigRec uses
no more than x seconds to recover each of y function
signatures. It shows that the time needed to recover a
function signature ranges from 5 × 10−5 seconds to 23.5
seconds, and the average time is 0.074 seconds. For 99.7%
(47, 177, 695/47, 329, 149) of function signatures, SigRec

needs no more than 1 second to recover each of them.
We find three reasons for the function signatures which

cost long analysis time. First, the analyzed function has
many instructions. Second, the analyzed function signature
contains any parameter types which will be confirmed after
SigRec executes all the instructions of the function. Taking
uint256 as an example, please recall that we initially assume
every basic type as a uint256, and then we change uint256 to
another type if the parameter is involved in a special instruc-
tion. In other words, SigRec recovers the type of parameter
as uint256 after it confirms that the parameter is not involved
in any special instructions by running all instructions of
the analyzed function. On the contrary, SigRec can identify
some other parameter types quickly because it needs not to
run all instructions of the analyzed function. For example,
SigRec identifies an int〈(x + 1) × 8〉 when it encounters a
SIGEXTEND instruction.

Third, we find that recovering a higher dimensional array
costs more time than a lower dimensional array, because the
accessing code for a higher dimensional array contains more
bound checks and a larger nested loop for reading array
items. To quantitatively study the effect of array dimension,
we run SigRec to recover an array parameter whose dimen-
sion ranges from 1 to 20 and each array item is an uint256.
Fig. 18 shows that the time consumption increases linearly
along with the increasing of the array dimension. Hence, the
array dimension is not a major reason for long analysis time
because we find that the array dimension is no larger than 3
in practice.
Answer: SigRec is very efficient. For 99.7% of function signa-
tures, it uses no more than 1 second to recover each of them.

5.5 RQ4: How frequently is each rule used?
After recovering 47,329,149 public/external functions in all
smart contracts, we count how frequently each rule is used.

TABLE 1
Results of data set 1

As shown in Fig. 19, all rules have been used. On aver-
age, each rule is used for 4,355,236 times. R4 is the most
frequently-used rule because the number of basic types in
Solidity is more than that of other types. R9 is the least
frequently-used rule, because we find that multidimensional
static arrays are infrequently used as parameters in public
functions.
Answer: All rules have been used with different frequencies.

5.6 RQ5: Is SigRec superior to existing tools?

We compare SigRec with five state-of-the-art decompilers,
Gigahorse [38], Eveem [15], OSD [16], EBD [17], and JEB [18]
in terms of the accuracy of recovering function signatures.
Datasets. We prepare three datasets for evaluation. Dataset
1 includes all unique closed-source smart contracts. Dataset
2 contains 1,000 synthesized functions. We construct the
name of each function with 5 randomly-selected letters,
and annotate it as a public function or an external function
randomly. Each function takes in x parameters (1 ≤ x ≤ 5).
For each parameter, we create its name with 5 randomly-
selected letters and randomly select a parameter type.
Each array parameter has at most three dimensions. Besides,
each array parameter has at most five items. The body of
each function contains statements to access each parameter,
including array items and individual byte of a bytes and a
byte32. We construct 100 smart contracts in Solidity, each of
which includes 10 synthesized functions, and compile them
into bytecode by Solidity 0.5.5 with the probability of 50%
to turn on optimization with the default optimization level.
Dataset 3 includes all unique open-source contracts obtained
from Etherscan.

Results of dataset 1. Table 1 lists the results of all closed-
source smart contracts. Since there is no ground-truth for
closed-source smart contracts, row 2 lists the ratio of func-
tion signatures that the five existing tools produce the same
results as SigRec. Since tools may abort abnormally when
recovering some function signatures, Row 3 presents the
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TABLE 2

Results of data set 2

TABLE 3
Results of data set 3

ratio of such function signatures. Row 4 presents the ratio
of function signatures that tools just find their function ids
but fail to recover their parameter lists. Row 5 presents the
ratio of function signatures that the five tools find the same
number of parameters as SigRec, but at least one parameter
type recovered by them is different from what is recovered
by SigRec. Row 6 presents the ratio of function signatures
that the five tools find different parameter numbers from
SigRec.

We have two observations from the results. First, the
accuracies of OSD, EBD and JEB are low because if their
databases do not record a function signature, they cannot
recover it. Please note that the databases of OSD, EBD and
JEB just cover 31.7% of all function signatures in Ethereum
public chain (Supplementary material A). Second, Giga-
horse and Eveem outperform OSD, EBD and JEB because
they try to infer parameter types if they cannot find function
signatures from EFSD [14], [15]. Unfortunately, they still fail
to correctly recover a large proportion of function signa-
tures. Since Gigahorse and Eveem are not open-source, we
investigate their errors by randomly selecting 50 recovered
function signatures with different numbers of parameters
and 50 recovered function signatures with different param-
eter types from SigRec for each of them from data set 1.
After checking these 200 function signatures (100 ones are
not recovered correctly by Gigahorse, and the other 100

TABLE 4
Results of struct and nested array in Solidity

TABLE 5
Results of function signatures in Vyper

ones are not recovered correctly by Eveem), we observe
the following errors: (1) Gigahorse and Eveem report the
wrong type. For example, Gigahorse regards the type of
a address/uint8/uint256[]/string/bytes parameter as uint256
for some function signatures. Moreover Gigahorse even re-
ports the type of a uint256 parameter as uint2304, which does
not exist in smart contracts, in one function signature. (2) Gi-
gahorse mistakenly regards several consecutive parameters
as one parameter of a nonexistent type. For example, for one
function with four parameters whose types are address[],
uint256[5], uint256[5] and uint256[2], respectively, Gigahorse
outputs only one parameter of uint3328, a nonexistent type.
(3) Gighorse adds more parameters mistakenly. (4) Giga-
horse and Eveem miss some parameters. Supplementary
material G lists all errors made by Gigahorse and Eveem
from the 200 function signatures.
Results of dataset 2. Table 2 lists the results of recovering
1,000 synthesized function signatures by five tools. Row 2
presents the ratio of the function signatures that are correctly
recovered. Row 3 and row 4 have the same meaning as
the 3rd and 4th rows in Table 1. Row 5 presents the ratio
of function signatures that the tools can find the correct
parameter numbers but fail to recover the types of at least
one parameter. Row 6 presents the ratio of function sig-
natures whose number of parameters cannot be correctly
found by the tools. We do not evaluate Gigahorse with the
synthesized function signatures because the web service of
Gigahorse [38] takes in the addresses of deployed smart
contracts rather than the bytecode of smart contracts while
deploying 1,000 synthesized functions to Ethereum will cost
much money.

The results show that SigRec’s accuracy is 98.8%. Manual
investigation reveals that the 8 incorrectly recovered func-
tion signatures belong to case 5 (§5.2). OSD, EBD and JEB
recover 0 function signatures, because none of the synthe-
sized function signatures are recorded in their databases.
Eveem correctly recovers 183 synthesized function signa-
tures thanks to its heuristic rules. However, Eveem can-
not produce function signatures for 11 functions, outputs
incorrect parameter types for 659 function signatures, and
outputs incorrect parameter numbers for 147 function sig-
natures. We manually investigate the errors made by Eveem
and the results are similar with the investigation of the
errors made by Eveem in dataset 1. We present the detailed
results in Supplementary material G.
Results of dataset 3. Table 3 lists the results. Row 2 to row
6 have the same meaning with the rows in Table 2. We have
several observations. First, SigRec outperforms the other
tools by at least 22.5% even the analyzed smart contracts
are open-source. Second, Gigahorse is not stable because it
aborts abnormally in processing 3.4% of function signatures
and it fails to recover some function signatures even they
are recorded in EFSD. Third, the accuracies of OSD, EBD
and JEB are lower than 51%, even if these functions are
implemented in open-source smart contracts. That is, more
than 49% function signatures in open-source smart contracts
are not recorded in existing function signature databases.
Fourth, Eveem outperforms OSD, although they both query
EFSD, because Eveem uses its simple rules to infer pa-
rameter types if it cannot find function signatures from
EFSD. Finally, SigRec outperforms Eveem, because SigRec
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has a complete set of rules than Eveem and the powerful
TASE engine to infer parameter types. We also investigate
the errors made by Gigahorse and Eveem by randomly
selecting 200 incorrectly recovered function signatures. The
results are similar to their errors in processing dataset 1.
Supplementary material G contains the detailed results.
Recovery of struct and nested array in Solidity. We com-
pare SigRec and existing tools in terms of recovering struct
and nested array, which are new parameter types introduced
from V 0.4.19 and are supported by the experimental version
of Solidity, so-called ABIEncoderV2 before V 0.8.0 [39]. 1,104
function signatures contain struct or nested array in dataset 3,
and results are shown in Table 4. We find that the accuracies
of existing tools are no higher than 11%, indicating than
existing tools do not support these two new parameter types
properly. Gigahorse and Eveem have the same accuracy in
recovering struct and nested array because these 10.1% of
function signatures are recorded in EFSD. In other words,
the rules built in these two tools cannot handle struct and
nested array. The accuracy of SigRec is 61.3%, which is much
higher than existing tools. After investigating the function
signatures recovered by SigRec incorrectly, we find that all
of them belong to case 5 (§5.2). Although the accuracy of
SigRec in recovering struct and nested array is not as high as
the accuracy in recovering other types, we believe it is not
a big limitation of SigRec because the function signatures
taking in struct or nested array just account for 0.5% of
the total function signatures. We will derive more rules for
recovering struct and nested array as our future work.
Recovery of function signatures in Vyper contracts. We
compare SigRec and existing tools in recovering the function
signatures in Vyper contracts, since Vyper is an alterna-
tive to Solidity and aims to provide better security than
Solidity [40]. 1,076 function signatures appear in all 278
open-source unique Vyper contracts in dataset 3. Results
are shown in Table 5. The accuracy of SigRec is 97.8%, and
we find that all the function signatures which are recovered
by SigRec incorrectly belong to case 5 (§5.2). Eveem, OSD,
EBD and JEB cannot handle Vyper contracts. The accuracy
of Gigahorse is 68.3%, and we then investigate the reason for
its high accuracy. We find that Gigahorse recovers all Vyper
types as uint256 and fortunately, 68.3% function signatures
in Vyper contracts taking in uint256 parameters only. Hence,
existing tools are inadequate in recovering the function
signatures in Vyper contracts.
Importance of function signatures uncovered by exist-
ing databases. 289,123, accounting for 75.4% of all unique
function signatures are not included in EFSD, the most
popular database for function signatures. To investigate
whether these uncovered function signatures are important,
we count the number of unique bytecode which contains
at least one uncovered function signatures. The number
of such unique bytecode is 148,268, which accounts for
40.2% of the total unique bytecode, and thus we believe
these uncovered function signatures are important. In other
words, EFSD misses important function signatures which
can be complemented by SigRec.
Answer: SigRec is much more accurate than the state-of-the-
art tools in recovering function signatures without the need of
function signature databases.

6 APPLICATIONS OF THE RECOVERED FUNCTION
SIGNATURES

We use three applications to demonstrate the usefulness of
SigRec, including detecting short address attacks, fuzzing
smart contracts, and reverse engineering the bytecode of
smart contracts. Due to page limit, we detail the first appli-
cation and briefly introduce the results of the last two appli-
cations here. Interested readers can refer to Supplementary
material H, I for more details.

6.1 Detecting Short Address Attacks
We consider the actual arguments sent for function invo-
cation as invalid if they are not encoded according to the
specification [3]. Although Web3 APIs can generate valid
actual arguments, many invalid actual arguments can still
be found in practice for various reasons, such as malicious
purposes [10], confusion of parameters padding [41], [42],
compiler bugs [43], compatibility issues of Web3 [44], [45],
changes in the new versions of compiler [46], etc. Invalid
actual arguments may incur runtime exceptions, unexpected
execution results, and even money stolen [10]. We design
ParChecker, the first tool for automatically detecting invalid
actual arguments sent to Solidity smart contracts by us-
ing the recovered function signatures. We plan to extend
ParChecker to support Vyper smart contracts as our future
work. Please note that without function signatures, it is
difficult to detect them because different parameter types
have different padding schemes (§2). For example, to detect
short address attacks, we must focus on the functions with
address type parameter(s).

ParChecker takes in the call data of a function invoca-
tion, and outputs (1) false if the actual arguments are invalid,
(2) true otherwise. ParChecker first gets the function id from
the call data, and looks for its function signature from the
results of SigRec. Then, for each parameter in the function
signature, ParChecker locates the actual argument in the call
data and checks whether its padding is correct. Specifically,
if the parameter is a basic type, ParChecker applies the rules
in Table 6 to check the correctness of padding. The rules are
derived from the padding scheme of each parameter type
described in §2. If the parameter is a static array, ParChecker
checks each item of the array according to the rules in Table
6. If the parameter is a dynamic struct, nested array, dynamic
array, bytes, or string, ParChecker checks its structure and
content. We use a bytes parameter as an example to illustrate
the process. ParChecker first locates the offset field and the
num field pointed by the offset field in the call data. If either
field cannot be found, the structure of the actual argument
is invalid. Otherwise, ParChecker reads the num field whose
value is the length of the bytes before padding, termed by x.
After that, ParChecker reads dx/32e × 32 bytes, termed by
v, after the num field, and checks whether the lower-order
dx/32e × 32 − x bits of v are zeros, where “de” denotes
rounding up to the next integer. If not, the content of the
actual argument is invalid.

We use ParChecker to analyze all transactions in 556,361
blocks starting from the block number 6,625,132. It finds
91,257,261 transactions with non-empty call data and detects
1,024,974 (1% = 1, 024, 974/91, 257, 261) transactions with
invalid actual arguments. These problematic transactions
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TABLE 6

Rules for checking basic types

Incorrect 

type 

Correct type Recovered type 
# of function 

signatures 

int<M> uint<N> 870 

bytes<M> uint<N> 799 

uint<M> uint<N>, M≠N 621 

uint<M> address 123 

bytes<M> address 107 

bytes array 324 

string array 328 

bytes<M>[X1]…[] array 4 

uint<M>[X1]…[] array 11 

int<M>[X1]…[] array 7 

Incorrect 

number 

Error description 
# of function 

signatures 

misses a parameter of bytes<M> 83 

misses a parameter of address 3 

misses a parameter of int<M> 77 

misses a parameter of uint<M> 91 

misses a parameter of bool 7 

misses a parameter of string 76 

misses a parameter of bytes 97 

misses a parameter of bytes<M>[X1]…[Xn] 4 

misses a parameter of bytes<M>[X1]…[] 4 

misses a parameter of int<M>[X1]…[Xn] 6 

misses a parameter of int<M>[X1]…[] 2 

misses a parameter of uint<M>[X1]…[Xn] 3 

misses a parameter of uint<M>[X1]…[] 1 

Type Rule 

uint<M>, 8≤M≤256, 

M %8==0 
The higher-order 256–M bits are zeros. 

int<M>, 8≤M≤256, 

M %8==0 

Each bit of the higher-order 256–M bits is 

equal to the Mth bit.  

address The higher-order 96 bits are zeros. 

bool The higher-order 255 bits are zeros. 

bytes<M>, 0<M≤32 The lower-order 256–(8×M ) bits are zeros. 

contain 1,292 unique function ids, invoking 13,556 smart
contracts. Among them, we look for the transactions launch-
ing short address attacks because they steal tokens [10]. We
use such a transaction, which is detected by ParChecker and
shown in Fig. 20, to explain how a short address attack can
steal tokens, and then present the detection result.

00 

id: 0xa9059cbb 

_to: 0000000000000000000000008a1f92b8b2b1fa29b2dcf010048d8988b4477f 

_value: 0000000000000000000000000000000000000000000000000000000000002710 

Address # of transactions 

0x42a952ac23d020610355cf425d0dfa58295287be 20 

0x183630c3afa08957e588eaa26b748cc5c2d42dc6 11 

0xfbe7f429dfa08edc28cb0085c49901d6ffdfaa33 6 

0xc9c4d9ec2b44b241361707679d3db0876ac10ca6 6 

0x1b6c5864375b34af3ff5bd2e5f40bc425b4a8d79 5 

0xda3cd7eeed7dc8a0bc76968a9ae67d318d1634b8 3 

0x348c796f9902dfdecf572f1ddb262c2bc24ffa5b 2 

0x04f33d30c9feebe0c5beb0fe20931958c5fd52b6 2 

0x51b5e3291976d4fc7cf7bcb76efce6b85aace9f6 2 

0xf8520c235406c3d599dff5bb29147ef9ed2e46c2 1 

0xd5c8e92d18116abf02e6d07eca55f5c897d49151 1 

0x1268e0636680c90b8aae70f90e7f3d94b546ee80 1 

0x922f8672d9daf7d5fe784d741eab3f585b033658 1 

0xdbb409e7c15f58186775959850df18967f7deade 1 

0xec491c1088eae992b7a214efb0a266ad0927a72a 1 

0xe5f6035bafd4b1ad3c0010a3ca4086c0891b4a68 1 

0x0aef025e7955919a1a2ad98d2e58bc7b3db99436 1 

0xe75e6b147fd831a6b79c05dcf2401bc187303b79 1 

0x52d19f0baf633f4222f55c030085f5cd24bf984d 1 

0x3243f38c7f251526b1948b09f0aaa1d2752ad9ae 1 

0x056fd409e1d7a124bd7017459dfea2f387b6d5cd 1 

0x695dd499ec104dcba3f90d1e77f77aff15c9c666 1 

0x21a6b7ed9560604fbe2e459abfee3b433c7d6bf8 1 

0xdac17f958d2ee523a2206206994597c13d831ec7 1 

0x5bffc45d740c213e19b68b40e9ed89705f495e44 1 

Fig. 20. A short address attack

This transaction invokes the transfer() function of a token
smart contract whose function id is 0xa9059cbb to transfer
tokens. transfer() has two parameters: to of the type address
referring to the receiver, and value of the type uint256
denoting the amount of tokens. The attacker leaves off the
trailing zeros of to and then EVM pads to to 32 bytes by
the higher-order zeros of value. After that, EVM adds zeros
after the lowest byte of value to the length of 32 bytes,
and thus value changes from 0x2710 to 0x271000. Attackers
can launch such an attack to trick a victim exchange wallet
to transfer much more tokens to the address (i.e., to)
controlled by them [10]

We discover such attacks from the results of ParChecker
by first locating the invocation of transfer(). Then, we check
whether the length of actual parameters len is shorter than
64 bytes, which is the length of a valid address plus a valid
uint256. If so, for the last 32 bytes of the arguments, we
check whether its highest 64 − len bytes are zeros. If that
is the case, a short address attack is detected, because the
highest 64 − len bytes will be used for complementing the
short address. Eventually, we find 73 attacking transactions,
which invoke 25 smart contracts. The detailed results are
listed in Supplementary material J due to page limit.
Summary: The function signatures recovered by SigRec can
ease the detection of invalid actual arguments, in particular short
address attacks.

6.2 Boosting the Performance of Existing Smart Con-
tract Fuzzers

It is well-known that knowing parameter types is critical for
fuzzing tools to generate high-quality inputs. Many existing
fuzzing tools [8], [47], [48], [49] for discovering vulnerabil-
ities in smart contracts assume the availability of function
signatures. Unfortunately, such assumption does not always
hold because existing tools recover function signatures with
low accuracy (§5.6). Without function signatures, existing
smart contract fuzzers may have to regard the list of pa-
rameters as a byte sequence and generate random byte
sequences as input instead of applying specific mutation

strategies for different parameter types. SigRec can recover
function signatures for these fuzzing tools.

To quantitatively evaluate how function signatures re-
covered by SigRec can benefit smart contract fuzzers,
we develop a tool, named ContractFuzzer− which is the
same with ContractFuzzer [8], a state-of-the-art open-source
smart contract fuzzer, except that ContractFuzzer− does
not know function signatures and thus it produces random
byte sequences as parameters. We compare ContractFuzzer
which takes in the function signatures provided by SigRec

and produces inputs by its default mutation strategies
with ContractFuzzer− in analyzing 1,000 randomly selected
smart contracts. Results show that with the function sig-
natures recovered by SigRec, ContractFuzzer reveals 23%
more vulnerabilities and 25% more vulnerable smart con-
tracts than ContractFuzzer−.
Summary: The function signatures recovered by SigRec help
fuzzers adopt proper fuzzing strategies and find much more
vulnerabilities.

6.3 Improving the Result of Reverse Engineering the
Bytecode of Smart Contracts
Erays [50], a reverse engineering tool for smart contracts,
takes in the bytecode, and outputs register-based instruc-
tions which are more readable than EVM bytecode [50].
Unfortunately, Erays recovers neither function signatures
nor variable types, and its output contains lots of code
produced by the compiler for accessing parameters, making
it difficult to understand the program. We develop a tool
named Erays+ in 1,456 lines of Python code to improve
the results of Erays by leveraging the function signatures
recovered by SigRec. Specifically, Erays+ adds the function
signature for each public/external function, replacing mean-
ingless variable names with meaningful parameter names
if these variables are copied from parameters (e.g., Erays+

replaces a variable x with arg1 indicating that x the 1st
parameter; Erays+ also replaces a variable y with num(arg1)
if y is copied from the num field of the 1st parameter),
adding the type of the parameter to a variable if the pa-
rameter is assigned to the variable, and replacing the bulk
of compiler-generated code for accessing parameters with
simple assignment statements. Erays+ now can leverage
the function signatures taking in basics types, static arrays,
dynamic arrays, bytes, and strings of Solidity, and we plan
to enhance Erays+ with the ability to handle structs and
nested arrays of Solidity and Vyper types in our future work.
Applying Erays+ to the bytecode compiled from 53,166
unique open-source contracts, we find that Erays+ improves
the readability of the outputs of Erays in all processed
smart contracts. For each of them, the average numbers of
added types, added parameter names, added num names
and removed code lines for accessing parameters are 5.5, 15,
3.4, and 15, respectively.
Summary: The function signatures provided by SigRec can
be used for improving the readability of the results of reverse
engineering tools for smart contracts.

7 DISCUSSION

This section discusses the limitations of SigRec and possi-
ble solutions to be explored in future work. First, SigRec
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cannot recover the type of a parameter with the storage
modifier, because such parameter is a reference to a storage
variable with any possible type and the address of the stor-
age variable rather than its content is passed when passing
such parameter [2]. The specialty makes the type of such
parameter very challenging to be recognized, and we will
extend our work to support such parameter in future work.
Second, SigRec cannot recognize a function parameter if
the clues from a function implementation are insufficient.
For example, SigRec cannot distinguish a bytes from a
string, if the smart contract does not access an individual
byte of the bytes parameter. We will address this issue by
exploiting the huge number of smart contracts, because one
function signature may be found in many smart contracts
with various function bodies that may provide sufficient
clues. That is, one function signature may associate with
many function bodies, and thus we may obtain sufficient
clues from these function bodies. Third, the accuracy of
SigRec to recover some parameter types (e.g., nested array)
is not as high as the accuracy to recover other types. We will
design more rules to infer these types with higher accuracy
in future.

Moreover, if a new parameter type or different accessing
pattern is introduced, we will determine the rules for recog-
nizing them through the steps described in §3.1. Please recall
that there are five steps to derive rules and the first four
have been automated so that it will not cost much time to
derive new rules. Similarly, malicious smart contracts may
use obfuscation to hide their function signatures from being
recognized by SigRec. A typical obfuscation technique is
replacing the instruction sequence for accessing parameters
which can be recognized by SigRec with a different in-
struction sequence with the same semantics which cannot be
recognized by SigRec. We plan to propose general rules to
resist obfuscation, where one rule can represent all possible
instruction sequences with the same semantics.

8 RELATED WORK

The related studies about recovering function signatures in
Smart Contracts have been presented in §1, so this section
briefly introduces the related studies about reverse engi-
neering of smart contracts and binaries.
Reverse Engineering Smart Contracts. Being a static anal-
ysis framework, Vandal decompiles EVM bytecode into
IRs [51]. Porosity decompiles EVM bytecode into readable
Solidity syntax contracts [52]. Erays transforms EVM byte-
code into human readable expressions [50]. EthIR translates
EVM bytecode into a rule-based representation for further
analysis [53]. Mythril decompiles EVM bytecode into IRs
and performs symbolic execution on IRs [54]. GasReducer
disassembles the bytecode into assembly code and detects
24 anti-patterns in the bytecode [55]. [56] captures execution
traces of smart contracts to evaluate the number of CFTs
covered by traces that are not found by the selected tools.
GasChecker disassembles the bytecode into assembly code
and performs symbolic execution on the assembly code
for further analysis [57]. However, none of them recover
function signatures. As a necessary step to discover integer
overflow bugs, Osiris applies heuristic rules that are similar
to R11 and R13 to infer the types of integer variables [58].

However, Osiris can only recognize unsigned integers and
signed integers.
Reverse Engineering Binaries. Reverse engineering tech-
niques highly depend on the runtime architecture of the
target programs. EVM bytecode is syntactically similar to
Java bytecode. However, Java bytecode retains function
signatures [59], and thus does not need to recover func-
tion signatures. Next, we briefly introduce the differences
between EVM and x86/x64, which demand a new technique
to recover function signatures of smart contracts.

First, EVM has 130+ instructions including many
blockchain-specific instructions, which have different se-
mantics with x86/x64 instructions [30]. Second, EVM is a
stack-based virtual machine without registers [30]. Third,
the following concepts are unique to EVM and x86/x64 does
not have such design. (1) The call data stores parameters,
and only two EVM instructions CALLDATALOAD and CALLDAT-
ACOPY can read parameters from the call data [30]. (2) EVM
maintains a special memory space named memory to store
some types of parameters, parameters to internal functions
and execution results of smart contracts [30]. Moreover,
every smart contract has a permanent storage space named
storage to record <key, value> pairs [30]. (3) An intra-
contract function invocation is compiled into a JUMP instruc-
tion, while an inter-contract function invocation is compiled
into a CALL/CALLCODE/DELEGATECALL/STATICCALL [30].

Related studies on x86/x64 binaries include recovering
parameter types [20], [21], recognizing parameters without
recovering parameter types [60], [61], [62], [63], identifying
function boundary [64], [65], [66], [67], and inferring vari-
able types [22], [23], [24], [25], [26], [27], [28], [29]. Detailed
description is in given Supplementary material K.

9 CONCLUSION

We propose and develop SigRec, a novel approach to auto-
matically recover function signatures in both Solidity smart
contracts and Vyper smart contracts without the need of
function signature databases. The extensive experimental re-
sults show that SigRec has very high accuracy across differ-
ent compilers and various compiler versions. Experiments
also show that SigRec is efficient and much more accurate
than the state-of-the-art tools. Moreover, we demonstrate
that the recovered function signatures are very useful in
attack detection, fuzzing and reverse engineering of EVM
bytecode.
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[49] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to Fuzz from Symbolic Execution with Application to
Smart Contracts,” in Proc. CCS, 2019.

[50] Y. Zhou, D. Kumar, S. Bakshi, J. Mason, A. Miller, and M. Bailey,
“Erays: Reverse engineering ethereum’s opaque smart contracts,”
in USENIX Security Symposium, 2018.

[51] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis
framework for smart contracts,” https://arxiv.org/pdf/1809.039
81.pdf, 2018.

[52] M. Suiche, “Porosity: A decompiler for blockchain-based smart
contracts bytecode,” in DEFCON 25, vol. 25, no. 11, 2017.

[53] E. Albert, P. Gordillo, B. Livshits, A. Rubio, and I. Sergey, “Ethir:
A framework for high-level analysis of ethereum bytecode,” in
ATVA, 2018.

[54] ConsenSys, “Mythril,” https://github.com/ConsenSys/mythril,
2019.

[55] T. Chen, Z. Li, H. Zhou, J. Chen, X. Luo, X. Li, and X. Zhang,
“Towards saving money in using smart contracts,” in ICSE-NIER,
2018.

[56] T. Chen, Z. Li, Y. Zhang, X. Luo, T. Wang, T. Hu, X. Xiao, D. Wang,
J. Huang, and X. Zhang, “A large-scale empirical study on control
flow identification of smart contracts,” in ESEM, 2019.

[57] T. Chen, Y. Feng, Z. Li, H. Zhou, X. Luo, X. Li, X. Xiao, J. Chen,
and X. Zhang, “Gaschecker: Scalable analysis for discovering gas-
inefficient smart contracts,” IEEE Transactions on Emerging Topics in
Computing, 2020.
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A. Function Signatures Recovered by Different Methods
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Fig. 21. Function signatures recovered by different methods.

In Fig. 21, the 1st bar gives the number (i.e., 383,522)
of all unique function signatures in Ethereum public chain.
The 2nd – 6th bars present the numbers of function signa-
tures that can be found from EFSD, EBD, JEB, the open-
source smart contracts collected from Etherscan, and Abi
Decompiler which is based on brute-force search for func-
tion signature recovery, respectively. The 7th bar presents
the number of function signatures that can be found in
databases, including EFSD, EBD and JEB. The 8th bar gives
the number of all function signatures that can be found
from EFSD, EBD, JEB, the open-source smart contracts in
Etherscan, and Abi Decompiler. The ratio of the function
signatures that can be found by each tool is presented above
each bar.

EFSD records 24.6% of the function signatures. EBD’s
database contains 22.4% of function signatures. The
database of JEB covers 26.5% of function signatures. Since
function signatures can be easily extracted from open-source
smart contracts, 55.0% of function signatures can be ob-
tained through this approach. Abi-decompiler synthesizes
function signatures from a list of words and a list of types,
and it can recover 12.3% of the function signatures. More-
over, the union of them can recover 60.1% of the function
signatures, and hence the accuracy of SigRec is 38.6% higher
than the accuracy of the combination of all existing tools.

B. Background

Account. There are two kinds of accounts in Ethereum,
namely external owned accounts (EOAs) and smart con-
tracts [?], [68]. The major difference between them is that
only the latter contains smart contract bytecode. A smart
contract can be invoked by an EOA or a smart contract.
Bytecode of smart contracts. The bytecode of a smart
contract has two parts: initialization bytecode and runtime
bytecode [2], [35], [69]. The former is only for contract
deployment and thus cannot be invoked by others. Hence,
we focus on the public/external functions in the latter. The
gas mechanism adopted by Ethereum defines the gas cost of
each instruction [?], [30], [55], [57], [70].
Public/external function. In a smart contract, only the
functions declared as public or external can be invoked by
others [7], [68]. The accessing patterns of some parameter
types depend on whether the function is public or external
(§2 in manuscript [?]). A smart contract can have a fallback
function, which is unnamed and will be called if the trans-
action does not specify the invoked function or the specified
function does not exist in the invoked smart contract [2].

C. Rules 5 – 31

R5: R5 is used to infer a one-dimensional dynamic ar-
ray/bytes/string parameter in a public function. R5 will be
used after R1 is fulfilled (Fig. 13 in manuscript [?]).and there-
fore the CALLDATACOPY reads a dynamic array/bytes/string.
Let CALLDATACOPY(offsetm, x + 36, len) denote that a CALL-
DATACOPY reads the data right after the num field of
a dynamic array/bytes/string, R5 adds one requirement:
@LT � CALLDATACOPY(offsetm, x+36, len), indicating that the
CALLDATACOPY is not in a loop where LTs are loop guards. In
this case, CALLDATACOPY reads a one-dimensional dynamic
array/bytes/string in a public function.
R6: R6 is used to infer a one-dimensional static array
in a public function. The CALLDATACOPY(offsetm, offsetc, len)
reads a static array in a public function, because offsetc
and len are constants, indicating that the location and
the length of the array are known in compilation. If 6
∃LT � CALLDATACOPY(offsetm, offsetc holds, the array is one-
dimensional, because the CALLDATACOPY is not inside a loop.
Besides, the one-dimensional static array has len/32 items
because every array item is 32 bytes.
R7: R7 is used to infer a one-dimensional dynamic array in
a public function. R7 will be used after R5 is fulfilled (Fig.
13 in manuscript [?]), and thus the CALLDATACOPY reads a
dynamic array/bytes/string in a public function. R7 has a
requirement: len == 32 × y, where y is the value of the
num field. This requirement indicates that the CALLDATACOPY
reads an array since each array item is extended to 32 bytes.
R8: R8 is used to infer a bytes/string in a public func-
tion. It will be used after R5 is fulfilled (Fig. 13 in
manuscript [?]), and thus the CALLDATACOPY reads a dy-
namic array/bytes/string in a public function. R8 has a
requirement: len == 32×dy/32e, where y is the value of the
num field and “de” denotes rounding up to the next integer.
If it holds, the CALLDATACOPY reads a bytes/string. Such
requirement is accordant with the layout of a bytes/string,
which is extended so that its length is multiple of 32 bytes.
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R9: R9 is used to infer an (n + 1)-dimensional
(n > 0) static array in a public function. If its
requirement LTn(in, numn) � LTn−1(in−1, numn−1) �

... � LT1(i1, num1) � CALLDATACOPY(offsetm, offsetc, len),
where numn, ..., num1 are constant numbers, holds,
the CALLDATACOPY(offsetm, offsetc, len) reads from a
multidimensional static array. The requirement indicates
an n-layer nested loop to read an (n + 1)-dimensional
array, and hence n LT instructions, which are n loop
guards, execute before the CALLDATACOPY (an example
is shown in Listing 1 of manuscript [?]. numn, ..., num1

are constant numbers because for a static array, the size
of each dimension is known in compilation. Hence, the
item numbers from the highest dimension to the lowest
dimension are numn, ..., num1, len/32, respectively.
R10: R10 is used to infer an (n+ 1)-dimensional (n > 0) dy-
namic array in a public function. R10 will be applied after R1
is fulfilled (Fig. 13 in manuscript [?]), and thus the CALLDAT-
ACOPY reads a dynamic array/bytes/string in a public func-
tion. If its requirement LTn(in, y) � LTn−1(in−1, numn−1) �
...�LT1(i1, num1)�CALLDATACOPY(offsetm, offsetc, len), where
y is the value of the num field, holds, the CALLDATACOPY
reads an (n + 1)-dimensional dynamic array in a public
function, because n loop guards, belonging to a nested loop,
execute before the CALLDATACOPY and the size of the highest
dimension is given by the num field. Hence, only the size of
the highest dimension is dynamic and the numbers of items
in the lower n dimensions are numn−1, ..., num1, len/32,
which are constant values.
R11: For an AND(op1, op2), if one operand is a uint256
parameter and the other one is a constant number whose
higher-order side is x zero-bytes (0 < x < 32), then the
uint256 parameter is refined to a uint〈256 − 8 × x〉. The
rationale is that a uint〈M〉, 8 ≤ M < 256,M%8 == 0 will
be extended on the higher-order side, and an AND is used for
masking the value after extension before accessing its value.
R12: For an AND(op1, op2), if one operand is a uint256
parameter and the other one is a constant number whose
lower-order side is x zero-bytes (0 < x < 32), then the
uint256 parameter is adjusted to a bytes〈32−x〉. The rational
is that a bytes〈M〉, 0 < M < 32 will be extended on
the lower-order side, and an AND is used for masking the
extended value.
R13: For a SIGEXTEND(op, x), if op is a uint256 parameter and
x is a constant number 0 ≤ x < 31, then the type of op is
refined to int〈(x + 1) × 8〉. The rational is that SIGNEXTEND
is used for sign extension of a signed integer and x is the
length (in bytes) of the signed integer minus 1 [30].
R14: If two ISZERO instructions satisfy x = ISZERO(op) and
y = ISZERO(x) and op is a uint256 parameter, the type of op
is refined to bool. The rational is that a bool value is extended
to 32 bytes and two consecutive ISZERO instructions are used
for masking.
R15: If a uint256 parameter is an operand of an
SDIV/SMOD/SLT/SGT, its type should be adjusted to int256,
because such instructions take in signed integers [30].
R16: If a uint160 parameter is not involved in any mathe-
matics instructions, its type is adjusted to address, because
an address has 20 bytes and it should not be involved in
mathematics computations.

R17: For a BYTE(op)/MSTORE8(op) which reads/writes 1
byte from/to a parameter op [30], if the type of op is a string
or a bytes, we refine it into a bytes because a bytes supports
byte reading and writing whereas a string does not support
such operations [32].
R18: For a BYTE(op) which reads a byte from a parameter
op, if the type of op is uint256, we refine it into bytes32. The
reason is that a bytes32 supports byte reading by executing
a BYTE [30], while an AND is used for extracting a byte from
a uint256.
R19: R19 is used to distinguish the two types, struct and
nested array from other Solidity types. R19 depends on
one requirement v1, which is defined as offset1 = CALLDAT-
ALOAD1(loc1) � offset2 = CALLDATALOAD2(loc2) �...� offsetn
= CALLDATALOADn(locn), where n > 2, and (loc1 is a con-
stant number) ∧ (exp(loc2) � (offset1)) ∧ ... ∧ (exp(locn) �
(offsetn−1)). v1 means that the read location of offset1 is a
constant value, and the read location of offset2 is computed
by offset1, and so on. When x > 2, the value of offsetx is com-
puted by nested CALLDATALOADs for offset1. For example, the
value of offset3 is CALLDATALOAD(CALLDATALOAD(offset1+)+).
That means, for an item in the parameter, which value
is CALLDATALOAD(offset1+), it is the offset field for a value
CALLDATALOAD(CALLDATALOAD(offset1+)+). So the explanation
for v1 is that there is a read location which is computed from
the offset field of the item inside the parameter. So if v1 is
satisfied, the parameter contains an item with dynamic size,
and please recall that only the nested array and struct can
satisfy v1.
R20: R20 is used to distinguish Vyper bytecode from Solidity
bytecode. R20 depends on one requirement v1, which is de-
fined as x = CALLDATALOAD(0) ∧ MSTORE(offsetm, x). If v1 is
satisfied, this bytecode is a Vyper bytecode. We observe that
at the beginning of the Vyper bytecode, Vyper will apply
CALLDATALOAD and MSTORE to store the first 4 bytes of call
data indicating the function id to the memory. Differently,
Solidity will store the 4 bytes function id to the stack from
the call data by only a CALLDATALOAD.
R21: R21 is used to infer the struct type in Solidity, which is
applied after R19 is satisfied. R21 depends on one require-
ment v1, which is defined as offset1=CALLDATALOAD(loc)�@
LT(i, CALLDATALOAD(offset1+0x4)) � CALLDATALOAD(offset1+
0x4+0x32× i), where loc is a constant value. v1 means that
the read location of offset1 is a constant value, there is a CALL-
DATALOAD that its read location is computed by i and offset1,
while the offset1 is the offset field of the parameter, and there
is no comparison with i and CALLDATALOAD(offseti + 0x4).
The explanation for v1 is that there is no num field for
this parameter, and num field is used for bound check for
accessing the item in parameter. So if v1 is satisfied, the
parameter is a struct type parameter, please recall that there
is no num field for the struct type.
R22: R22 is used to infer the nested array type in Solidity,
which is applied after R19 is satisfied. R22 depends on only
one requirement v1. v1 is defined as LT(in, numn)� LT(in−1,
numn−1)� ... � LT(i1, num1)� CALLDATALOADn+1(loc), while
(exp(loc)� (offsetn)) and numx can be constant or variable
number, and at least one of num1 ... numn−1 should be
variable. v1 means that there are n bound checks before read
from a position computed from offsetn. So if v1 is satisfied,
this parameter is a n-dimension nested array, please recall
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that for each dimension, there is a bound check. If numx

is a constant number, the corresponding dimension has
numx items. On the contrary, if numx is a variable, the
corresponding dimension is dynamic.
R23: R23 is used to infer the fixed-size bytes and string in
Vyper. R23 will be applied after R20 is satisfied. R23 depends
on one requirement v1, which is defined as x = CALLDAT-
ALOAD(loc) ∧ CALLDATACOPY(offsetm, offsetc, len), while len is
a constant number and offsetc is computed by x. If v1 is
satisfied, this parameter is a fixed-size bytes or string. The
explanation for v1 is that Vyper uses a CALLDATACOPY to
copy the item number field and the whole value from
call data to memory for fixed-size bytes and string type,
and the size of fixed-size bytes and string is known before
compilation as maxLen. So the copy length len is a constant
value and computed by 32 + maxLen and the copy position
in call data is computed by offset of this value as x.
R24: R24 is used to infer the fixed-size list type in Vyper. The
requirements of R24 are the same as those of R3, but R24
should be applied after R20 is satisfied.
R25: R25 is used to infer the uint256 type in Vyper, which
is applied after R20 is satisfied. x is regarded as a uint256
in Vyper, if R23 and R24 are not fulfilled. That means that
without sufficient hints we just know that the length of
x is 32 bytes and thus we currently consider a 32-bytes
parameter as a uint256. We will refine it to a specific type
after applying other rules to get more hints.
R26: R26 is used to distinguish fixed-size bytes from fixed-
size string. If a parameter type is fixed-size bytes or fixed-size
string and the parameter is an operand of a BYTE instruction
or a MSTORE8 instruction, we adjust the parameter type
to fixed-size bytes because a fixed-size bytes supports to
access its individual byte whereas a fixed-size string does not
support such operation. R26 is applied after R23 is satisfied.
R27: R27 is used to infer the address type in Vyper, which
will be applied after R25 is satisfied. For a LT(op1, op2), if op1
is a uint256 parameter and the value of op2 is 2160, then the
uint256 parameter is refined to an address type parameter,
due to the existence of the bound check for the address type.
R28: R28 is used to infer the int128 type in Vyper. R28
should be applied after R25 is satisfied. R28 depends on
two requirements, v1 and v2. The parameter type is int128
when both of the two requirements are satisfied. v1 requires
a SLT(op1, op2) instruction where op1 is a uint256 parameter
and op2 is 2127 − 1. v2 requires a SGT(op1, op3) instruction
where op1 is a uint256 parameter and op3 is −2127. The two
requirements indicate the bound checks before accessing an
int128 parameter.
R29: R29 is used to infer the decimal type in Vyper. R29
should be applied after R25 is satisfied. R29 depends on
two requirements, v1 and v2. The parameter type is decimal
when both of the two requirements are satisfied. v1 requires
a SLT(op1, op2) instruction where op1 is a uint256 parameter
and op2 is the 10 decimal value of 2127 − 1. v2 requires a
SGT(op1, op3) instruction where op1 is a uint256 parameter
and op3 is the 10 decimal value of −2127. The two require-
ments indicate the bound checks before accessing a decimal
parameter. It is worth noting that the precision of 10 decimal
value of 2127−1 and−2127 is different with it in int128 type.
R30: R30 is used to infer the bool type in Vyper, which will
be applied after R25 is satisfied. For a LT(op1, op2), if op1 is a

uint256 parameter and the value of op2 is 2, then the uint256
type is refined to a bool type, due to the existence of the
bound check before accessing the bool parameter.
R31: R31 is used to infer the bytes32 type in Vyper. The
requirements of R31 is the same as those of R18, but R31
should be applied after R25 is satisfied.

D. Examples of Using Rules
1. An Example of Using R2:

1 o f f s e t = CALLDATALOAD(0 x4 )
2 num = CALLDATALOAD( o f f s e t + 0x4 ) / /num = 2
3 LT / / i2 < 2 , or e lse abort
4 LT / / i1 < 3 , or e lse abort
5 l o c = o f f s e t + 4 + 32 + 32 * 3
6 x = CALLDATALOAD( l o c ) / / x [ 1 ] [ 0 ]

Listing 12. The instructions to read an item from a dynamic array

Given an external function with a two-dimensional dy-
namic array parameter x[3][], a transaction for invoking it
contains the actual argument x[3][2].Listing 12 shows the
instructions to read x[1][0]. For the ease of presentation, we
omit irrelevant instructions and merge some instructions
into one statement. Line 1 and Line 2 read the values of
the offset field and the num field, respectively. Since the size
of the highest dimension is two, the value of the num field
is two. Line 3 and Line 4 are two bound checks for two
dimensions. The location of x[1][0] is computed in Line 5,
and we explain how the location is computed in more detail.
Since array items are located right after the num field, the
smart contract first locates the num field, which is pointed
by the offset field (i.e., offset + 4, where 4 is the length of the
function id). x[0][0] is at offset + 4 + 32, because the length
of the num field is 32 bytes. Since x[1][0] is the first item of
the second x[3], x[1][0] is located 32 × 3 bytes after x[0][0].
From the instructions, we can see that the requirements of
R2 are held, and therefore SigRec infers that the parameter is
a dynamic array. More specifically, the symbolic expression
of loc is computed by adding the value of the offset field with
a number which contains the multiplication of 32 (Line 5).
Besides, the two LTs are passed before reading the num field
(Line 6). From the two LTs, we know that the array has two
dimensions. From Line 4, we know that the size of its lowest
dimension is three.

2. An Example of Using R3:

Given an external function with a two-dimensional static
array parameter x[3][2], Listing 13 lists the instructions to
read x[1][0]. Lines 1 and 2 are bound checks. Line 3 com-
putes the location to be read. More precisely, x[0][0] follows
the function id and hence it is located at 0x4. Since x[1][0] is
the first item of the second x[3], x[1][0] is located 32×3 bytes
after x[0][0]. Line 4 reads x[1][0]. From the instructions, we
learn that the requirements of R3 are held, and therefore the
parameter is a static array. More precisely, the read location
is not affected by the offset field (Line 3). Besides, two LTs are
passed before reading the array item (Line 4). Moreover, the
two LTs suggest that the array has two dimensions, and the
sizes of its highest dimension and lowest dimension are two
and three, respectively.
1 LT / / i2 < 2 , or e lse abort
2 LT / / i1 < 3 , or e lse abort
3 l o c = 4 + 32 * 3
4 x = CALLDATALOAD( l o c ) / / x [ 1 ] [ 0 ]

Listing 13. The instructions to read an item from a static array
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E. Block & Function Recognition

To recognize blocks and public/external functions, SigRec
partitions the disassembled code into blocks, and then ex-
tracts function ids and identifies the first block of every
public/external function by parsing the dispatch routine
which directs contract execution to the invoked function.
Block Recognition. A block starts with the first instruction
of the bytecode or the instruction right after the last instruc-
tion of a block. Besides, every JUMPDEST instruction begins a
block since every jump instruction will go to a JUMPDEST in-
struction [30], [56]. The last instruction of a block should be
a JUMP/JUMPI/STOP/RETURN/REVERT/INVALID. JUMP and
JUMPI are unconditional jump and conditional jump, re-
spectively [30]. STOP, RETURN, REVERT and INVALID halt the
execution of the smart contract [30].
Function Recognition. SigRec extracts function ids and
identifies the first block of every public/external function by
exploiting the fact that the invoked smart contract extracts
the function id from the call data and jumps to the first
block of the invoked function. Solidity and Vyper generate
different bytecode for such function dispatch, so SigRec

handles the two compilers differently.
Solidity. SigRec locates a function id and the first block if
the first 4 bytes of the call data are compared with a 4-
bytes constant number and a JUMPI instruction follows the
comparison. Note that the 4-bytes constant number is the
function id and the jump target of JUMPI is the first block.
Listing 14 presents an example. Line 1 reads the first 32-
bytes from the call data. Line 3 extracts the 4-bytes function
id. Line 5 pushes a 4-bytes constant number 0x16d93ade on
the stack. Line 6 compares them. Line 7 pushes a constant
number 0x55 on the stack. Line 8 jumps to 0x55 if the
first 4-bytes of the call data is equal to 0x16d93ade. Hence,
the function id is 0x16d93ade and the first block of the
corresponding function locates at 0x55 from the beginning
of the bytecode.
1 CALLDATALOAD / / read the 1 s t 32 bytes from the c a l l data .
2 . . . . . .
3 DIV / / e x t r a c t 4−byte function id
4 . . . . .
5 PUSH4 0x16d93ade / / push the function id on the stack .
6 EQ / / whether they are equal ?
7 PUSH1 0x55 / / push the l o c a t i o n of 1 s t block on the stack
8 JUMPI / / jump to 1 s t block i f function 0x16d93ade i s

c a l le d
Listing 14. A function with id 0x16d93ade

Vyper. SigRec locates a function id and the first block if
the first 4 bytes of the call data are compared with a 4-
byte constant number and a JUMPI instruction follows the
comparison. Note that the 4-bytes constant number is the
function id and the first block follows the JUMPI instruction,
which is different from Solidity. Listing 15 presents an
example. Line 1 reads the first 32-bytes from the call data to
stack. Line 3 store the first 4 bytes of the call data to memory.
Line 5 pushes a 4-bytes constant number 0xd178231c on the
stack. Line 7 read the first 4 bytes of the call data from
memory to stack. Line 8 compares them. Line 11 jumps
to 0x043c if the first 4-bytes of the call data is unequal to
0xd178231c. Hence, the function id is 0xd178231c and the
first block of the corresponding function locates follows the
JUMPI instruction in Line 11.
1 CALLDATALOAD/ / read the 1 s t 32 bytes from the c a l l data
2 . . . . . .
3 MSTORE / / s t o r e the 1 s t 4 bytes of the c a l l data to memory
4 . . . . . .

5 PUSH4 0 xd178231c / / push the function id on the stack
6 PUSH1 0x00
7 MLOAD / / read the 1 s t 4 bytes of the c a l l data from memory
8 EQ / / whether they are equal ?
9 ISZERO

10 PUSH2 0 x043c
11 JUMPI / / jump to the next comparison i f unequal
Listing 15. A function with id 0xd178231c

.

F. Reasons for using TASE instead of CSE and other
methods
We propose TASE instead of using other methods (e.g.,
abstract interpretation [71], value set analysis [60], [61], [65],
data dependence analysis [62], taint analysis [22]) to recover
function signatures due to three reasons. First, symbolic
execution is more suitable than other methods for our
task, because it can identify how a variable is computed
from the parameters through symbolic expressions and such
information is required to apply our rules.

Second, conventional symbolic execution (CSE) is much
slower than TASE and suffers from path explosion, and
thus is not proper for recovering the ever-growing num-
ber of function signatures. More precisely, there are four
differences between TASE and CSE. (1) TASE takes into
account the rules when symbolically executing type-related
instructions (e.g., CALLDATALOAD) to infer parameter types.
These rules are proposed by this work and specific to EVM
bytecode, and thus no CSE tools can achieve the same pur-
pose. (2) TASE does not need to conduct the time-consuming
checking of the branch feasibility. Instead, it explores both
branches because it aims to recover parameter types and
thus does not need to care about the program logic of
smart contracts. By contrast, CSE usually spends lots of time
in checking branch feasibility. (3) For each public/external
function, TASE executes all its blocks only once starting
from the first block. That is, TASE does not unfold loops,
because executing each block once is enough for inferring
parameter types. Therefore, there is no path explosion in
TASE. In contrast, CSE usually attempts to explore program
paths, thus suffering from severe path explosion. (4) TASE
can cover all blocks except dead code since it explores all
branches and does not get stuck into loops. In contrast, CSE
may leave some reachable blocks unexplored due to the
difficulty of checking branch feasibility and path explosion.

Third, we employ TASE instead of taint analysis because
of two reasons. (1) some rules need to check whether a
parameter is involved in a specific instruction rather than
whether the variables are affected by any parameters. For
instance, R11 requires that an operand is a uint256 parame-
ter, and checks whether the parameter is involved in an AND
instruction. Symbolic execution knows how an operand is
computed from parameters (e.g., directly copy or computed
by arithmetic instructions) whereas taint analysis just knows
whether an operand is affected by parameters (i.e., tainted
or not). (2) some rules need symbolic expressions. For ex-
ample, R2 checks whether the symbolic expression of the
location contains the summation of the offset value and the
multiplication of 32. However, taint analysis does not collect
symbolic expressions.

G. Errors Made by Gigahorse and Eveem
1. Dataset 1:
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Table 7 presents the number of function signatures from
dataset 1 (i.e., closed-source smart contracts) whose parame-
ter types are incorrectly recovered by Gigahorse and Eveem.
For each such function signature, this table also presents
the correct type and the recovered type. If one recovered
function signature has several incorrect parameter types, we
count it repeatedly.

TABLE 7
Errors of incorrect parameter types from dataset 1 recovered by

Gigahorse and Eveem

Tool Correct type Recovered type 
# of function 

signatures 

Gigahorse 

uint256 address 1 

uint8 uint256 8 

byte32 uint256 4 

byte16 uint256 1 

bool uint256 5 

uint256 uint32 1 

uint256[] uint256 10 

address[] uint256 12 

uint32[] uint256 1 

uint8[5] uint256 1 

bool[2] uint256 1 

uint256[3][] uint256 1 

uint256 uint2304 1 

string uint256 6 

bytes uint256 10 

Eveem 

address bool 1 

bool uint256 4 

address uint256 3 

byte32 uint256 6 

uint256[] array 11 

address[] array 11 

uint32[] array 2 

uint256[3][] array 1 

bytes array 9 

string array 10 

Table 8 lists the number of function signatures from
dataset 1 whose number of parameters are incorrectly de-
termined by Gigahorse and Eveem. The correct parameter
numbers and types are determined by manually investi-
gating the EVM instructions for accessing parameters. This
table also describes why the number of parameters is incor-
rect. If a recovered function signature misses or adds several
parameters, we count it repeatedly.

2. Dataset 2:

Table 9 lists the errors made by Eveem in recovering
synthesized function signatures. This table also presents
the number of function signatures incorrectly recovered
by Eveem for each kind of error. We count the number
repeatedly, if one incorrectly recovered function signature
contains several incorrect recovered parameter types, misses
or adds several parameters.

3. Dataset 3:

Table 10 presents the number of function signatures
from dataset 3 (i.e., open-source smart contracts) whose
parameter types are incorrectly recovered by Gigahorse and
Eveem. For each such function signature, this table also lists
the correct type and the recovered type. If one recovered
function signature has several incorrect parameter types, we
count it repeatedly.

Table 11 lists the number of function signatures from
dataset 3 whose number of parameters are incorrectly de-
termined by Gigahorse and Eveem. This table also describes
why the number of parameters is incorrect. If a recovered
function signature misses or adds several parameters, we
count it repeatedly.

H. Boosting the Performance of Existing Smart Con-
tracts Fuzzers
All existing fuzzing tools [8], [47], [48], [49] to discover
vulnerabilities in smart contracts assume the availability of
function signatures. Unfortunately, they are not available
for most of the deployed smart contracts. Without function
signatures, existing smart contract fuzzers may have to
regard the list of parameters as a byte sequence and generate
random byte sequences as input instead of applying specific
mutation strategies for different parameter types.

To evaluate how function signatures recovered by SigRec

can benefit smart contract fuzzers, we develop a tool, named
ContractFuzzer− which is the same as ContractFuzzer [8],
a state-of-the-art open-source smart contract fuzzer, ex-
cept that ContractFuzzer− does not know function signa-
tures. With function signatures, ContractFuzzer knows the
type of each parameter and then adopts specific mutation
strategy. In contrast, without knowing function signatures,
ContractFuzzer− regards the list of parameters as a byte
sequence and generates random byte sequences like a tra-
ditional black-box fuzzer [72]. To make a fair comparison,
we ensure that the length of arguments generated by Con-
tractFuzzer is equal to the length of arguments generated
by ContractFuzzer−. More precisely, ContractFuzzer− first
applies the same mutation strategy as ContractFuzzer to
produce a list of arguments so that the length of arguments
is obtained. Then, it replaces the list with a randomly-
generated byte sequence of the same length.
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Fig. 22. Vulnerabilities found by ContractFuzzer and ContractFuzzer−

We randomly select 1,000 smart contracts for this eval-
uation instead of conducting a larger scale experiment be-
cause ContractFuzzer has to maintain an Ethereum private
chain and therefore it runs quite slow. We feed Contract-
Fuzzer with the function signatures recovered by SigRec

for all the public/external functions of the 1,000 smart
contracts. ContractFuzzer discovers 53 vulnerabilities be-
longing to 5 kinds of vulnerabilities in 40 smart contracts.
By contrast, ContractFuzzer− only finds 43 vulnerabilities
in 32 smart contracts. Manual investigation shows that all
vulnerable smart contracts and vulnerabilities found by
ContractFuzzer− are also discovered by ContractFuzzer.
Therefore, with the help of function signatures, Contract-
Fuzzer discovers 25% ((40 − 32)/32) more vulnerable
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TABLE 8
Errors of incorrect parameter numbers from dataset 1 found by Gigahorse and Eveem

Tool Error Description 
# of function 

signatures 

Gigahorse 

misses a parameter of address 6 

misses a parameter of bool 3 

misses a parameter of uint32 9 

misses a parameter of uint256[3] 6 

misses a parameter of uint256[6] 2 

misses a parameter of uint256[9] 2 

misses a parameter of uint256[10] 1 

misses a parameter of address[4] 1 

misses a parameter of byte32[4] 1 

misses a parameter of bool[9] 2 

misses a parameter of address[] 3 

misses a parameter of uint256[] 4 

misses a parameter of string 5 

misses a parameter of bytes 6 

considers 4 consecutive parameters of address[], uint256[5], 

uint256[5], uint256[2] as 1 parameter of nonexist type uint3328 
1 

considers 3 consecutive parameters of uint256[], uint256[5], 

uint256[5] as a 1 parameter of nonexist uint2816 
1 

considers 3 consecutive parameters of uint256, uint8[3], 

uint256[3] as a 1 parameter of nonexist uint1792 
1 

considers 2 consecutive parameters of  uint256, uint256[3][8] 

as a parameter of nonexist uint6400 
1 

Eveem 

misses a parameter of uint256 8 

misses a parameter of address 10 

misses a parameter of uint8 1 

misses a parameter of uint64 1 

misses a parameter of bool 3 

misses a parameter of uint256[16] 6 

misses a parameter of uint256[7] 4 

misses a parameter of uint8[5] 2 

misses a parameter of bool[2] 2 

misses a parameter of address[4] 2 

misses a parameter of uint256[11] 2 

misses a parameter of uint256[3][8] 1 

misses a parameter of address[] 3 

misses a parameter of uint256[] 6 

misses a parameter of string 7 

misses a parameter of bytes  4 

smart contracts and 23% ((53 − 43)/43) more vulnerabil-
ities, as shown in Fig. 22. By further investigating why
ContractFuzzer− misses the 10 vulnerabilities, we find that
it is due to the lack of function signatures and detail the
observations as follows.
Invalid parameters. Some parameter types have structural
layouts. For example, a bytes has an offset field which must
point to the num field. Unfortunately, since ContractFuzzer−

is not aware of such structure, it just randomly generates a
byte sequence as arguments, thus making it almost impos-
sible to generate a valid structural input. Note that a smart
contract halts immediately when reading an invalid input.
Two missed vulnerabilities are due to this reason.

Listing 16 presents one such missed vulnerability. It is
a reentrancy bug allowing an attacker to steal money from
the smart contract. More precisely, to.call.value() will call
the fallback function of to since no function is specified. If
the fallback function of to calls the function checkForward()
(Line 1) again, the money of this vulnerable smart contract
will be sent to to repeatedly by executing Line 6. checkFor-
ward() is a public function because a function is public by

default before Solidity 0.5.0 [73] though it can be specified as
being public, external, internal, or private. ContractFuzzer−

cannot find the vulnerability since the contract will halt the
execution at Line 1 due to reading the invalid input, data.
1 function checkForward ( bytes data ) constant returns ( bool ,

bool ) {
2 return forward ( allowedForwards [ sha3 ( data [ 0 ] , data

[ 1 ] , data [ 2 ] , data [ 3 ] ) ] , data ) ;
3 }
4 function forward ( address to , bytes data ) i n t e r n a l

returns ( bool , bool ) {
5 . . . . . .
6 i f ( ! to . c a l l . value (msg . value ) ( data ) ) { / / v u l n e r a b i l i t y
7 returnFee (msg . sender , f e e ) ;
8 return ( fa lse , s a f e F a l s e ( ) ) ;
9 }

10 return ( true , applyRefund ( s t a r t G a s + addit ionalGas ) ) ;
11 }
Listing 16. A missed vulnerability due to an invalid parameter

Improper unsigned integer generation. ContractFuzzer
adopts a special mutation strategy for unsigned integers to
generate small unsigned integers. In particular, it divides
the input space of an unsigned integer into regions, and
randomly selects integers from each region. For instance,
for a uint256, ContractFuzzer divides the input spaces into
[0, 28 − 1], [0, 216 − 1], ..., [0, 2256 − 1]. However, it is
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TABLE 9
Errors made by Eveem when processing dataset 2

Incorrect 

type 

Correct type Recovered type 
# of function 

signatures 

int<M> uint<N> 870 

bytes<M> uint<N> 799 

uint<M> uint<N>, M≠N 621 

uint<M> address 123 

bytes<M> address 107 

bytes array 324 

string array 328 

bytes<M>[X1]…[] array 4 

uint<M>[X1]…[] array 11 

int<M>[X1]…[] array 7 

Incorrect 

number 

Error description 
# of function 

signatures 

misses a parameter of bytes<M> 83 

misses a parameter of address 3 

misses a parameter of int<M> 77 

misses a parameter of uint<M> 91 

misses a parameter of bool 7 

misses a parameter of string 76 

misses a parameter of bytes 97 

misses a parameter of bytes<M>[X1]…[Xn] 4 

misses a parameter of bytes<M>[X1]…[] 4 

misses a parameter of int<M>[X1]…[Xn] 6 

misses a parameter of int<M>[X1]…[] 2 

misses a parameter of uint<M>[X1]…[Xn] 3 

misses a parameter of uint<M>[X1]…[] 1 

Type Rule 

uint<M>, 8≤M≤256, M %8==0 The higher-order 256–M bits are zeros. 

int<M>, 8≤M≤256, M %8==0 Each bit of the higher-order 256–M bits is equal to the Mth bit. 

address The higher-order 96 bits are zeros. 

bool The higher-order 255 bits are zeros. 

bytes<M>, 0<M≤32 The lower-order 256–(8×M ) bits are zeros. 

TABLE 10
Errors of incorrect parameter types from dataset 3 recovered by

Gigahorse and Eveem

Tool Correct type Recovered type 
# of function 

signatures 

Gigahorse 

bool uint256 4 

string uint256 16 

bytes32 uint256 9 

bytes20 uint256 1 

address uint256 1 

bytes uint256 5 

uint8 uint256 10 

uint80 uint256 1 

bool uint256 1 

string uint256 1 

uint256[] uint256 5 

address[] uint256 7 

Eveem 

string array 20 

bytes array 4 

bytes32 uint256 17 

address[] array 7 

uint256[] array 5 

bool uint256 1 

int256[] array 1 

bytes32 uint64 1 

uint16 uint256 1 

difficult for ContractFuzzer− to generate small unsigned
integers since it treats an unsigned integer as a 32-bytes
byte sequence and it sets each bit to 0 or 1 randomly. For
example, if ContractFuzzer− needs to produce an unsigned
integer smaller than 28, it must set each bit in the 31 higher-
order bytes to zeros, and the probability is (1/2)31×8. Conse-

quently, ContractFuzzer− cannot find the vulnerability that
can only be triggered by small unsigned integers. Seven
missed vulnerabilities are due to this reason.

Listing 17 presents one such vulnerability. startBlock is
set to the current block number (Line 6), and therefore the
comparison at Line 11 depends on the block number. Con-
tractFuzzer detects a vulnerability because the following
requirements are satisfied [8]. First, the miner can control the
comparison result at Line 11 because it can control the block
number [68]. Second, Line 12, which is control dependent
on Line 11, modifies the global variable, endBlock. Line 12
is control dependent on Line 11 because the execution of
Line 11 determines whether Line 12 can be executed. For
example, if the condition at Line 11 does not hold, the smart
contract will halt immediately, and thus Line 12 will not be
executed. Unfortunately, ContractFuzzer− fails to discover
the vulnerability because it is difficult for it to generate a
small unsigned integer block that can pass the check at Line
10. Note that uint is shorthand of uint256 [32].
1 uint public s t a r t B l o c k ;
2 uint public endBlock ;
3 . . . . . .
4 function s t a r t ( uint block ) e x t e r n a l onlyOwner ( ) {
5 require ( block < 54000) ;
6 s t a r t B l o c k = block . number ;
7 endBlock = safeAdd ( s t a r t B l o c k , block ) ;
8 }
9 function adjustDurat ion ( uint block ) e x t e r n a l onlyOwner ( )

{
10 require ( block <= 72000) ;
11 require ( block > safeSub ( block . number , s t a r t B l o c k ) ) ;
12 endBlock = safeAdd ( s t a r t B l o c k , block ) ; / / v u l n e r a b i l i t y
13 }
Listing 17. A missed vulnerability due to improper uint generation

Improper bool value generation. ContractFuzzer randomly
sets a bool value to true or false. Please recall that a bool ar-
gument is extended to 32 bytes, and hence ContractFuzzer−

considers a bool argument as a 32-bytes byte sequence.
Consequently, the probability for ContractFuzzer− to set a
bool value to false is just (1/2)32×8 (i.e., all bits of the byte
sequence are set to 0). Therefore, ContractFuzzer− cannot
find the vulnerability which can only be triggered by a bool
parameter set to false. One undiscovered vulnerability is
due to this reason as shown in Listing 18.

now means the current timestamp, and therefore the
comparison at Line 7 depends on the current timestamp.
ContractFuzzer detects the vulnerability because the follow-
ing requirements are satisfied. First, the miner can control
the comparison result at Line 7 because it can control the
timestamp [68]. Second, the miner can affect the global
variable, rateSale at Line 8 which is control dependent on the
comparison at Line 7. However, ContractFuzzer− always
sets isGlobalPause to true (Line 4) because it always sets the
bool parameter state (Line 3) to true. Therefore, the last two
expressions now > startSale and now < finishSale will not be
evaluated (Line 7) since isGlobalPause is already true. That is
why ContractFuzzer− misses the bug.

1 bool public i sGlobalPause= f a l s e ;
2 uint public r a t e S a l e = 4 0 0 * 1 0 * * 1 8 ;
3 function globalPause ( bool s t a t e ) public onlyOwner {
4 i sGlobalPause = s t a t e ;
5 }
6 function changeRateSale ( uint tokenAmount ) public

onlyOwner {
7 require ( isGlobalPause | | (now > s t a r t S a l e && now <

f i n i s h S a l e ) ) ;
8 r a t e S a l e = tokenAmount ;
9 }

Listing 18. A missed vulnerability due to improper bool generation



27

TABLE 11
Errors of incorrect parameter numbers from dataset 3 found by Gigahorse and Eveem

Tool Error Description 
# of function 

signatures 

Gigahorse 

misses a parameter of bool 4 

misses a parameter of address 8 

misses a parameter of uint256 11 

misses a parameter of uint8 1 

misses a parameter of bytes4 1 

misses a parameter of bytes32 1 

misses a parameter of bytes 4 

misses a parameter of uint16[10] 1 

misses a parameter of uint256[8] 1 

misses a parameter of uint256[3] 1 

misses a parameter of address[4] 1 

misses a parameter of address[3] 4 

misses a parameter of address[2] 1 

misses a parameter of address[16] 2 

misses a parameter of address[] 1 

misses a parameter of bytes32[2] 1 

recognizes a parameter of bytes32[5] as a nonexist type uint35184372087264 1 

recognizes a parameter of bytes as a nonexist type uint17592186044416 1 

adds a parameter of string 1 

adds a parameter of uint32 7 

adds a parameter of uint256 7 

adds a parameter of bytes 2 

adds a parameter of address 3 

adds a parameter of a nonexist type bytes1 1 

Eveem 

misses a parameter of bool 2 

misses a parameter of bytes6 1 

misses a parameter of string 2 

misses a parameter of bytes 1 

misses a parameter of uint16[10] 1 

misses a parameter of address[4] 1 

misses a parameter of uint256[5] 3 

misses a parameter of uint256[2] 1 

misses a parameter of address[3] 4 

considers a parameter of address[3] as 3 consecutive parameters of address 2 

considers a parameter of uint256[4] as 4 consecutive parameters of uint256 1 

misses a parameter of uint256 10 

misses a parameter of bytes32 5 

misses a parameter of uint8 2 

misses a parameter of uint64 1 

misses a parameter of address 3 

misses a parameter of address[] 9 

misses a parameter of uint256[] 7 

misses a parameter of int256[] 1 

misses a parameter of byte32[] 4 

Summary: SigRec empowers existing smart contract fuzzers
to analyze all deployed smart contracts by providing function
signatures. The function signatures recovered by SigRec help
fuzzers adopt proper fuzzing strategies and find much more
vulnerabilities.

I. Improving the Result of Reverse Engineering the Byte-
code of Smart Contracts
We demonstrate the usefulness of SigRec to reverse engi-
neering the bytecode of smart contracts by enhancing Erays
[50]. We believe that other reverse engineering tools will
also benefit from SigRec. Erays takes in the bytecode, and
outputs a register-based instructions which are more read-
able than EVM bytecode [50]. Unfortunately, Erays recover
neither function signatures nor variable types, and its results

contain lots of code produced by the compiler for accessing
parameters, making it difficult to understand the program.

We develop a tool named Erays+, which first uses Erays
to reverse engineering the bytecode and then converts the
outputs of Erays into a more readable form. Erays+ adds
1,456 lines of Python to Erays. The enhancement consists of
five parts. First, Erays+ adds the function signature for each
public/external function.

Second, Erays+ replaces meaningless variable names
with meaningful parameter names if these variables are
copied from parameters (e.g., Erays+ replaces a variable x
with arg1 indicating that x the 1st parameter; Erays+ also
replaces a variable y with num(arg1) if y is copied from the
num field of the 1st parameter)

Third, for a assignment statement, if a parameter is as-
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signed to a variable, Erays+ adds the type of the parameter
to the variable. Fourth, if a variable refers to the num field
of a dynamic array, or a bytes, or a string, Erays+ replaces
its meaningless variable name with a meaningful name,
num(argN) indicating the num field of the Nst parameter.
Finally, Erays+ replaces the bulk of code generated by the
compiler for accessing parameters with simple assignment
statements. To recognize such code, we first synthesize a
set of contracts containing synthesized functions which take
in various parameter types in the same way described in
§5.6 of manuscript [?] and then compile these synthesized
contracts into EVM bytecode using all major versions of
Solidity. After reverse engineering of these EVM bytecode
by Erays, we learn the code patterns. Hence, Erays+ can
recognize the code for accessing parameters by scanning
the results of Erays according to the code patterns. Please
note that Erays+ is used for demonstrating the usefulness
of SigRec to reverse engineering the bytecode of smart
contracts, rather than a full-fledged decompiler.
1 c o n t r a c t EraysABI{
2 s t r i n g s ;
3 function f1 ( uint [ 2 ] [ 3 ] [ 4 ] [ ] data , s t r i n g name) public {
4 uint item = data [ 3 ] [ 2 ] [ 0 ] [ 1 ] ;
5 s = name ;
6 }
7 }

Listing 19. The source code of an example contract

Listing 19 shows a contract which defines a string s
(Line 2) and a public function f 1 (Line 3). f 1 takes in a
multidimensional dynamic array data, and a string name. f 1
gets access to one array item (Line 4) and the string name
(Line 5). We compile this contract using Solidity v 0.4.22
and use Erays to reverse engineer the bytecode. The result,
as shown in Listing 20, is difficult to interpret because it
consists of 112 lines of instructions and complicated pro-
gram constructs (e.g., nested while, if...else, break) that cannot
be found in the source code. Line 1 guarantees that no Ether
can be sent to f 1. Lines 2 – 58 read the 1st parameter (i.e.,
the multidimensional dynamic array, data) into the memory
by a nested loop with 3 layers (Lines 13 – 58). Lines 59 –
65 read the 2nd parameter (i.e., the string, name) into the
memory by a CALLDATACOPY. Line 70 reads the array item
from the memory to the stack, which corresponds to Line 4
in the source code. Before accessing the array item, several
bound checks (Lines 66 – 69) are performed to prevent
array overrun. In particular, Line 66 reads the size of the
highest dimension which can only be obtained at runtime,
and checks whether the index (i.e., 3) is smaller than the size.
Lines 71 to 111 copies the string (i.e., name) from the memory
to the string s. The last line halts the execution. We can see
that most code is produced by the compiler for accessing
parameters.
1 assert(0 == msg.value)
2 $s5 = 0x4 + c[0x4]
3 $t = c[$s5]
4 $s7 = $t
5 $s8 = $m
6 $m = $m + (0x20 + (0x20 * $t))
7 $t = 0x20 + $s5
8 $s5 = $s8
9 $s6 = $t

10 m[$s8] = $s7
11 $s9 = 0x0
12 $s10 = 0x20 + $s8
13 while (0x1) {
14 if ($s9 >= $s7)
15 break
16 $s13 = $m
17 $m = 0x80 + $m
18 $s12 = (0x300 * $s9) + $s6

19 $s14 = 0x0
20 $s15 = $s13
21 while (0x1) {
22 if ($s14 >= 0x4)
23 break
24 $s18 = $m
25 $m = 0x60 + $m
26 $s17 = (0xc0 * $s14) + $s12
27 $s19 = 0x0
28 $s20 = $s18
29 while (0x1) {
30 if ($s19 >= 0x3)
31 break
32 $s23 = $m
33 $m = 0x40 + $m
34 calldatacopy($s23, (0x40 * $s19) + $s17, 0x40)
35 m[$s20] = $s23
36 $t = $s19
37 $s19 = 0x20 + $s20
38 $s20 = 0x1 + $t
39 $t = $s19
40 $s19 = $s20
41 $s20 = $t
42 }
43 m[$s15] = $s18
44 $t = $s14
45 $s14 = 0x20 + $s15
46 $s15 = 0x1 + $t
47 $t = $s14
48 $s14 = $s15
49 $s15 = $t
50 }
51 m[$s10] = $s13
52 $t = $s9
53 $s9 = 0x20 + $s10
54 $s10 = 0x1 + $t
55 $t = $s9
56 $s9 = $s10
57 $s10 = $t
58 }
59 $s6 = 0x4 + c[0x24]
60 $t = c[$s6]
61 $s9 = $m
62 $m = $m + (0x20 + (0x20 * ((0x1f + $t) / 0x20)))
63 m[$s9] = $t
64 calldatacopy(0x20 + $s9, 0x20 + $s6, $t)
65 $s3 = $s9
66 assert(0x3 < m[$s5])
67 assert(0x1)
68 assert(0x1)
69 assert(0x1)
70 $s4 = m[0x20 + m[m[0x40 + m[0x60 + (0x20 + $s5)]]]]
71 $s8 = m[$s9]
72 $s10 = s[0x0]
73 m[0x0] = 0x0
74 $s9 = sha3(0x0, 0x20)
75 $t = 0x20 + $s3
76 $s7 = $s9 + ((0x1f + ((((0 x100 * (0 == (0x1 & $s10))) − 0x1) & $s10) / 0x2))

/ 0x20)
77 $s10 = $t
78 if (0x1f >= $s8){
79 s[0x0] = ($s8 + $s8) |(0

xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 & m
[$t])

80 } else {
81 s[0x0] = 0x1 + ($s8 + $s8)
82 if ($s8){
83 $t = $s8
84 $s8 = $s10
85 $s10 = $s10 + $t
86 while (0x1) {
87 if ($s10 <= $s8)
88 break
89 s[$s9] = m[$s8]
90 $t = $s8
91 $s8 = $s10
92 $s10 = 0x20 + $t
93 $t = $s8
94 $s8 = $s10
95 $s10 = $t
96 $t = $s9
97 $s9 = $s10
98 $s10 = 0x1 + $t
99 $t = $s9

100 $s9 = $s10
101 $s10 = $t
102 }
103 }
104 }
105 $s10 = $s9
106 while (0x1) {
107 if ($s7 <= $s10)
108 break
109 s[$s10] = 0x0
110 $s10 = 0x1 + $s10
111 }
112 stop()

Listing 20. Reverse engineering result outputted by Erays

1 0 xd780c374 ( uint256 [ 2 ] [ 3 ] [ 4 ] [ ] arg1 , s t r i n g arg2 ) {
2 a s s e r t (0 == msg . value )
3 a s s e r t (0 x3 < num( arg1 ) )
4 a s s e r t (0 x1 )
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5 a s s e r t (0 x1 )
6 a s s e r t (0 x1 )
7 uint256 $s4 = arg1 [ 3 ] [ 2 ] [ 0 ] [ 1 ]
8 s t r i n g s = arg2
9 stop ( )

10 }
Listing 21. Reverse engineering result outputted by Erays+

Listing 21 shows the result of Erays+ from the same
bytecode. Erays+ adds the function signature provided by
SigRec (Line 1). Since the recovered function signature does
not include function name and parameter names, Erays+

uses the function id and uses argN to represent the Nth
parameter. Lines 7 and 8 in Listing 21 correspond to Lines
4 and 5 in the source code. Besides, Erays+ retains the
code for checking Ether transfer (Line 2), array overrun
(Lines 3 – 6) and terminating execution (Line 10) which are
produced by the compiler. Please note that Erays simplifies
the bound checks for the lower dimensions to true (Lines 4 –
6) because the sizes of the lower dimensions are known and
thus the outcomes of these bound checks can be determined
without execution. We then explain how Erays+ simplifies
the result of Erays. First, Erays+ replaces a meaningless
variable name m[$s5] with num(arg1) denoting the size of
the highest dimension of arg1 which is a multidimensional
array. Second, Erays+ replaces 58 lines of code in Listing 20
for reading one item of arg1 with a single line of code in
Listing 21 (Line 7). In the meanwhile, Erays+ adds a type
to $s4 because Erays+ knows that $s4 is an array item of
the first parameter. Then, Erays+ replaces 48 lines of code
in Listing 20 for reading arg2 with a single line of code in
Listing 21 (Line 8). Erays+ also adds a type to s because
it is directly copied from the second parameter. Therefore,
the results of Erays+ are much easier to interpret than the
original outputs of Erays.

We use Erays+ to process 53,166 unique open-source
contracts and obtain the results from 39,935 out of them
(Erays crashes in processing the other 13,231 contracts). We
find that Erays+ improves the readability of the outputs of
all 39,935 contracts. The numbers of smart contracts whose
reverse engineering results can be improved by Erays+ in
terms of adding types, adding parameter names, adding
num names, and removing compiler-generated code are
37,249, 39,740, 17,381 and 17,983, respectively. Fig. 23 depicts
the cumulative distribution function (CDF) plots for each
case. Each green point (x, y) in this figure denotes that there
are y smart contracts whose reverse engineering results are
improved by Erays+ in terms of adding types, for each,
the number of added types is no more than x. The other
colors of points can be interpreted in the same way. We find
that the numbers of added types, added parameter names,
added num names, removed code lines range from 1 to 165,
1 to 272, 1 to 200, and 1 to 303, respectively.

0 50 100 150 200 250 300
#

0

1

2

3

4

#
 o

f c
on

tr
ac

ts

×104

max = 272max = 165

max = 303max = 200

min = 1
min = 1

min = 1

min = 1

Num names
Delete lines

Parameter names
Type

Fig. 23. The numbers of smart contracts whose reverse-engineering
results are improved by Erays+

Summary: The information provided by SigRec including func-
tion signatures can obviously improve the readability of the results
of reverse engineering tools for smart contracts

J. Short Address Attacks Detected by ParCheck
Table 12 presents the addresses of the victim smart contracts
and the number of attacking transactions.

TABLE 12
Short address attacks detected by ParChecker 00 

id: 0xa9059cbb 

to: 0000000000000000000000008a1f92b8b2b1fa29b2dcf010048d8988b4477f 

value: 0000000000000000000000000000000000000000000000000000000000002710    

Address # of transactions 

0x42a952ac23d020610355cf425d0dfa58295287be 20 

0x183630c3afa08957e588eaa26b748cc5c2d42dc6 11 

0xfbe7f429dfa08edc28cb0085c49901d6ffdfaa33 6 

0xc9c4d9ec2b44b241361707679d3db0876ac10ca6 6 

0x1b6c5864375b34af3ff5bd2e5f40bc425b4a8d79 5 

0xda3cd7eeed7dc8a0bc76968a9ae67d318d1634b8 3 

0x348c796f9902dfdecf572f1ddb262c2bc24ffa5b 2 

0x04f33d30c9feebe0c5beb0fe20931958c5fd52b6 2 

0x51b5e3291976d4fc7cf7bcb76efce6b85aace9f6 2 

0xf8520c235406c3d599dff5bb29147ef9ed2e46c2 1 

0xd5c8e92d18116abf02e6d07eca55f5c897d49151 1 

0x1268e0636680c90b8aae70f90e7f3d94b546ee80 1 

0x922f8672d9daf7d5fe784d741eab3f585b033658 1 

0xdbb409e7c15f58186775959850df18967f7deade 1 

0xec491c1088eae992b7a214efb0a266ad0927a72a 1 

0xe5f6035bafd4b1ad3c0010a3ca4086c0891b4a68 1 

0x0aef025e7955919a1a2ad98d2e58bc7b3db99436 1 

0xe75e6b147fd831a6b79c05dcf2401bc187303b79 1 

0x52d19f0baf633f4222f55c030085f5cd24bf984d 1 

0x3243f38c7f251526b1948b09f0aaa1d2752ad9ae 1 

0x056fd409e1d7a124bd7017459dfea2f387b6d5cd 1 

0x695dd499ec104dcba3f90d1e77f77aff15c9c666 1 

0x21a6b7ed9560604fbe2e459abfee3b433c7d6bf8 1 

0xdac17f958d2ee523a2206206994597c13d831ec7 1 

0x5bffc45d740c213e19b68b40e9ed89705f495e44 1 

K. Related Work on Reverse Engineering Binaries
Caballero et al. propose to recover function interfaces
by dynamic analysis [20]. Their approach applies several
architecture-specific rules, e.g., it ignores any access to ESP
to exclude unnecessary input locations [20]. Different from
our work, their recovered function interfaces provide the
information of the parameter location (i.e., on the stack, in
a register or in the memory), parameter length, whether the
parameter is a pointer or not, etc., rather than the type list
declared in the source code. Goër et al. propose a set of
architecture-specific heuristic rules (e.g., floats are passed
through %xmm0 to %xmm7) to infer parameter number and
parameter types [21]. However, the recovered type is either
an integer, a float, or an address [21] rather than the accurate
type.

SecondWrite proposes a modified value set analysis to
recognize parameters [60], [61]. For a call instruction i, if
a location l is defined at somewhere before i and is used
after i, and then Zhang et al.’s work considers the location
l as a parameter of i [62]. Balakrishnan and Reps consider
the stack items with positive offsets to the location pointed
by ESP as parameters [63]. These studies [61], [62], [63] just
recognize parameters, but do not recover parameter types.
Qiao and Sekar apply static analysis to discover function
boundaries [64]. BYTEWEIGHT learns signatures for func-
tion starts using a weighted prefix tree, recognizes function
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starts by matching binary fragments with the signatures,
and applies value set analysis to recognize function bodies
and discover function boundaries [65]. Shin et al. train a
recurrent neural network to take bytes of the binary as input,
and predict, for each location, whether a function boundary
is present at that location [66]. FID applies symbolic execu-
tion to generate semantic information, learns the function
recognition model, and recognizes function boundaries by
machine learning [67]. However, these studies [64], [65],
[66], [67] just discover function boundaries, but do not
recover function signatures.

REWARDS applies architecture-specific rules which take
advantage of system calls, standard library calls and type-
revealing instructions (e.g., MOVS moves a string) to infer
variable types [22]. Guilfanov infers variable types from
standard library function prototypes [23]. Besides standard
library functions, TIE extracts rules from instructions and
applies these rules to infer variable types [24]. Troshina
et al. extract architecture-specific rules (e.g., the address
computed by m + j × 4 is used for accessing the array
item m[j]) from the accessing patterns of structs and arrays,
and apply the rules to discover structs and arrays from
binaries [25]. Retypd is a powerful type system to recover
variable types, and it is more accurate than TIE, REWARDS,
and SecondWrite [26]. Considering the code which accesses
a variable as a feature to identify the variable type, Katz
et al. uses statistical language models to predict variable
types [27] and Xu et al. use machine learning to recover
variable types [28]. Howard recovers data structures (e.g.,
array) by applying rules (e.g. if A is the address of a struc-
ture, *(A+4) presumably accesses a field in this structure) to
execution traces [29]. However, these rules for other archi-
tectures cannot be used to recover the function signatures
of smart contracts due to the significant differences between
those architectures and EVM.


