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Abstract. Polynomial commitment schemes are fundamental building blocks in
numerous cryptographic protocols, e.g., verifiable secret sharing, zero-knowledge
succinct non-interactive arguments, and many more. The most efficient polyno-
mial commitment schemes rely on a trusted setup, which is undesirable in trust-
minimized applications, e.g., cryptocurrencies. However, transparent polynomial
commitment schemes are inefficient (polylogarithmic opening proofs and/or veri-
fication time) compared to their trusted counterparts. It has been an open problem
to devise a transparent, succinct polynomial commitment scheme or prove an
impossibility result in the transparent setting. In this work, for the first time, we
create a transparent, constant-size polynomial commitment scheme called Behe-
moth with constant-size opening proofs and a constant-time verifier. The downside
of Behemoth is that it employs a cubic prover in the degree of the committed poly-
nomial. We prove the security of our scheme in the generic group model and
discuss parameter settings in which it remains practical even for the prover.
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1 Introduction

A polynomial commitment scheme (PCS or PC) allows a prover to commit to a poly-
nomial f of degree maximum d (typically over a finite field, i.e., f ∈ F≤d

p [x], and
p ≈ 2256, d ≈ 210 − 230). Importantly, the prover can later open the committed poly-
nomial at any point. Specifically, the prover can convince a verifier about evaluations
of f at point z ∈ Fp of the polynomial f when the verifier is given only a short com-
mitment to f and the statement f(z) = s. PCSs were first proposed by Kate, Zaverucha,
and Goldberg (KZG) [30]. Since then, PCSs have become the cornerstone of many im-
portant cryptographic protocols, such as verifiable secret sharing, zero-knowledge sets,
zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs) [8],
Verkle trees [33] and many more. Therefore, it is of great interest to improve on ex-
isting PCSs as they directly translate to efficiency and trust assumption improvements
in numerous applications. The most efficient PCSs are derived from the original KZG
scheme [13, 21, 26]. The KZG scheme and its extensions offer short commitments,
evaluation proofs (both one group element), and batching capabilities for the opening
protocol at the expense of a trusted setup and a linear-sized (in the maximum degree of
the committed polynomials) common reference string.

A trusted setup requires private randomness to generate the public parameters neces-
sary for the commitment scheme. The private randomness (“toxic waste”) must be kept



secret or discarded to maintain the soundness of the PCS. If the randomness used in the
setup is known to an adversary, it is possible to break the binding property of the PCS or
create invalid opening proofs. Therefore, a successful trusted setup is paramount for the
security of the KZG PCS and its variants. Trusted setups are straightforward to perform
if there exists a trusted third party who does not disclose private randomness. In the
absence of a trusted party to distribute the trust in trusted setups, numerous multi-party
protocols have been suggested for executing the KZG trusted setup [7, 17, 23, 32, 38].
However, trusted setups are usually undesirable in trust-minimized and decentralized
applications, such as cryptocurrencies. To that end, significant efforts were dedicated to
devising transparent PCSs whose setup algorithm solely uses public coins.

There is a multitude of transparent PCSs. They use various techniques and are
instantiated under diverse cryptographic assumptions. FRI [6] and its variants [1,31] only
assume the existence of one-way functions, hence post-quantum secure. Bootle et al. [15,
46] and Bünz et al. [18] assume the discrete logarithm assumption in cyclic groups.
Lee builds a transparent PC in groups with non-degenerate, efficiently computable,
bilinear pairings [35]. A recent line of research designs PCSs [2, 9, 19, 22] in groups
of unknown order under the somewhat non-standard adaptive root assumption [47].
All of these schemes have either polylogarithmic evaluation proofs and/or verifiers.
Ideally, one wants to match the efficiency properties of the KZG PC scheme also in
the transparent setting, i.e., both constant opening proofs and verifiers with possibly
batching capabilities. Hence, a natural question arises:

Is there a transparent, succinct PCS that achieves constant-size opening proofs
and constant-time verifiers with possibly batching capabilities?

In this work, we answer affirmatively. To our knowledge, we devise the first trans-
parent PCS with constant-size opening proofs and constant-time verifier, i.e., the first
transparent succinct polynomial commitment scheme.

Core ideas. Our goal is to instantiate the KZG PCS in a group of unknown order and
not to resort to techniques (e.g., inner product arguments or Merkle trees) that seem to
inherently lead to (poly)logarithmic proofs and/or verifiers.

First, we recall the KZG polynomial commitment scheme. In the KZG scheme,
the public parameters consist of the structured reference string produced by the trusted
setup: srs = {gτ i}di=0 for τ ∈R F∗

p. The commitment to a polynomial f ∈ F≤d
p [x] is

the evaluation of the polynomial at a random point τ not known even to the committer,
i.e., gf(τ) ∈ G, for some prime-order elliptic curve group G (|G| = p) with generator
g. Furthermore, in the KZG scheme, we assume that G is equipped with an efficiently
computable, non-degenerate bilinear pairing, i.e., e : G×G→ GT . More interestingly,
in the opening proof of KZG for the statement f(z) = s, given the commitment gf(τ),
the prover can convince the verifier by sending a commitment gq(τ) to the quotient
polynomial q(x) := f(x)−s

x−z . This is correct because the verifier can check the equality
of polynomials q(x)(x− z) = f(x)− s in the exponent at the random point τ using the
structured reference string and the bilinear pairing. The verification of the evaluation
proof is achieved by checking e(gq(τ), gτ−z)

?
= e(gf(τ)−s, g).
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How can we possibly mimic the evaluation proof strategy of the KZG scheme in a
group of unknown order G? First, we observe that a KZG-style commitment gf(α) ∈ G
binds the prover to the value of f(α), thanks to the unknown group order. We will show
that for a public and properly chosenα this also implies polynomial binding1. Therefore,
essentially, we have the same commitments to polynomials as the KZG scheme, i.e.,
gf(α) for a carefully chosen public α ∈ Z. Since we do not know the order of the group,
we can only evaluate polynomials over the integers in the exponent. We denote the
evaluation of a polynomial over the integers as f̂(α) to disambiguate from the “regular”
evaluation f(α) over the finite field Fp. We use integer representatives from [0, p) to
lift the polynomial. The first challenge is to ensure polynomial binding by selecting α

carefully. The intuition is thatαmust be large compared toFp and d, so that f̂(α) uniquely
determines f(α): the coefficients can be recovered from the base α representation of
f̂(α). If α is small, say α = 5, then given a commitment g127 = g f̂(α), the prover can
open this commitment to numerous polynomials, for instance, f1 = 127, f2 = 6x+97 in
fact for any f2 = ax+ b for any (a, b) ∈ Z×Z : 5a+ b = 127. We detail in Section 3.2,
how to chose α properly to ensure polynomial binding in F≤d

p [x].
A major challenge that a (very) large value of α poses is constructing correct

opening proofs. In the evaluation proofs, since we do not rely on private evaluation
points, the verifier can check the equality q̂(x)(x − z) = f̂(x) − ŝ in the exponent
at the point α even without bilinear pairings. Specifically, given a commitment gq̂(α)

to q(x), the verifier can compute (gq̂(α))α−z without a bilinear pairing, since α is
public. A downside of this approach is that now, the right-hand side of the verification
equation, f̂(α)− ŝ ∈ Z is a large integer with≈ d log(p) bits. We describe in Section 3.3
the applied techniques that keep both our opening proofs and verifier constant, and the
committer efficient. Moreover, along the way, we need to solve many technical challenges
to preserve evaluation binding and the knowledge soundness properties of our proposed
PCS. A major technical difficulty in proving soundness is to show that the protocols
prevent adversarial provers from using integer polynomials that are not obtained by
correctly lifting a modular polynomial. As mentioned above, one can only work over
the integers in the exponent of a group of unknown order. This necessitates “projecting”
statements over the integers back to finite fields. We achieve this by applying several non-
interactive zero-knowledge proofs, cf. Section 2.5, to ensure the polynomial/evaluation
binding and knowledge soundness of our PCS.

Our contributions. In this work, we make the following contributions.

We propose Behemoth 2, the first succinct (constant opening proof size and verifier
time), transparent polynomial commitment scheme. We prove its security in the
random oracle and generic group models. Thus, we positively answer an open ques-
tion by Nikolaenko et al. [38] on the existence of succinct, transparent polynomial
commitment schemes.

1 We will make this precise later in Section 4.
2 Behemoth is an enormous biblical monster described in the Book of Job. The name of the

scheme alludes to the huge integers used in our scheme.
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As an application of our transparent PC scheme, we prove the existence of a trans-
parent zkSNARK with constant proof size and verifier time, cf. Section 5. To our
knowledge, this is the first such construction in the polynomial-IOP paradigm.

The rest of this paper is organized as follows. In Section 2, we introduce the pertinent
background on polynomial commitment schemes, computational hardness assumptions
in groups of unknown order, the generic group model, and the applied non-interactive
zero-knowledge proofs. Section 3 describes the first succinct and transparent polyno-
mial commitment scheme whose security is proven in Section 4. Using our polynomial
commitment scheme, we prove the existence of constant, transparent SNARKs in Sec-
tion 5. We evaluate the theoretical and practical performance of our proposed scheme in
Section 6. Finally, we conclude our work in Section 7 by pointing out several remaining
open problems and research directions.

2 Background

2.1 Notations

In the following, we will use multiplicative notation to denote the group operation in the
applied groups G (of unknown order). To sample x from a set S uniformly at random,
we write x ∈R S. Some protocols need to sample random integers from the set of the
first 2λ primes that are denoted as Primes(λ), where λ is the security parameter. Let p
denote a large odd prime. For an univariate polynomial f(x) ∈ F≤d

p [x] where f(z) = s,
let f̂(z) := ŝ denote the evaluation of f at z over the integers. We use a Python-like
notation to index lists and arrays, i.e., we refer to the ith element of a list l as l[i]. Let

B := max
x∈Fp,f(x)∈F≤d

p [x]

f̂(x) =
d+1∑
i=1

(p− 1)i = (p− 1)
1− (p− 1)d+1

1− (p− 1)
. (1)

Let vp(x) be the p-adic valuation of x, i.e., the (possibly negative) exponent of p in the
factorization of x. The commitment of a polynomial f is denoted as f . The prover and
the verifier are denoted as P and V , respectively.

2.2 Polynomial Commitment Schemes

A polynomial commitment schemePC = (GenSRS,Com,ComVerify,Open,OpenVerify)
consists of five algorithms and allows to commit to a polynomial f and later open the
commitment at point z by proving that for some value s = f(z). More formally:

GenSRS(1λ, d): The key generation algorithm takes in a security parameter λ and a
parameter d which determines the maximal degree of the committed polynomial.
It outputs a structured reference string srs (the commitment key). Note that srs
implicitly determines λ and d.

Com(srs, f, d): The commitment algorithm Com(srs, f, d) takes in srs and a polynomial
f with maximum degree d, and outputs a commitment c(= f ) and a string hint ∈
{0, 1}∗ that aids the opening of the commitment c.
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ComVerify(srs, f, hint, c): checks the validity of the opening hint for the commitment
c of f ∈ F≤d

p [x]. If it is valid, it outputs 1; otherwise, it outputs 0.
Open(srs, z, s, f, d): The opening algorithm takes as input srs, an evaluation point z, a

value s and the polynomial f of degree d. It outputs an opening proof π.
OpenVerify(srs, c, d, z, s, π): The verification algorithm takes in srs, a commitment c,

the degree d of the claimed polynomial, an evaluation point z, a value s and an
opening proof π. It outputs 1 if π is a valid opening for (c, z, s) and 0 otherwise.

If the possibly probabilistic GenSRS(·) algorithm is a public coin algorithm, then
we call the PC scheme a transparent PC scheme. Some formalizations of PCs [14, 19]
define the Open and OpenVerify algorithms as interactive protocols.

A secure polynomial commitmentPC should satisfy correctness, (polynomial) bind-
ing, evaluation binding, hiding, zero knowledge, and knowledge soundness as defined
below. Additionally, a PC scheme might be succinct.

Definition 1 (Correct PC scheme). A PC scheme is correct if ∀f ∈ F≤d
p [x] and

∀z ∈ Fp the following holds:

Pr

b1 = b2 = 1

∣∣∣∣∣∣∣∣∣∣∣∣

srs← GenSRS(1λ, d),
(c, hint)← Com(srs, f, d),

b1 ← ComVerify(srs, f, hint, c),
s← f(z),

π ← Open(srs, z, s, f, d),
b2 ← OpenVerify(srs, c, d, z, s, π)

 ≥ 1− negl(λ) .

Definition 2 ((Polynomial) binding PC scheme). A PC scheme is (polynomial) bind-
ing if for all PPT adversaries A:

Pr

b0 = b1 = 1 ∧ f0 ̸= f1

∣∣∣∣∣∣∣∣
srs← GenSRS(1λ, d),

(f0, hint0, f1, hint1, c)← A(srs),
b0 ← ComVerify(srs, f0, hint0, c),
b1 ← ComVerify(srs, f1, hint1, c)

 ≤ negl(λ) .

Definition 3 (Evaluation binding PC scheme). A PPT adversary A which outputs
a commitment c and evaluation points z has at most negligible chances to open the
commitment to two different evaluations s, s′. That is, let c ∈ G be the commitment,
z ∈ Fp be the argument the polynomials are evaluated at, s, s′ ∈ Fp the evaluations,
and o,o′ be the commitment openings. Then ∀PPTA

Pr

 OpenVerify(srs, c, z, s,o) = 1,
OpenVerify(srs, c, z, s′,o′) = 1,

s ̸= s′

∣∣∣∣∣∣ (c, z, s, s′,o,o′)← A(srs, d)

 ≤ negl(λ) .

Definition 4 (Knowledge sound PC scheme). A PC scheme has knowledge soundness
if ∀srs output by GenSRS(1λ, d), the (non-)interactive public-coin protocol Open is a
proof of knowledge for the NP relationROpen(srs, d) defined as follows:

ROpen(srs, d) := {((c, z, s), (f, hint)) : f ∈ F≤d
p [x]∧f(z) = s∧ComVerify(srs, f, hint, c) = 1}.

(2)
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Definition 5 (Hiding PC scheme). A PC scheme is hiding if given srs, f and correct
opening proofs {(zj , f(zj), πOpen,zj ) : j ∈ [1, deg(f)]} for f(x) ∈ Fd

p[x] such that
OpenVerify(srs, f , d, zj , f(zj), πOpen,zj ) = 1 for each j

– no adversary A can determine f(z′) with non-negligible probability for any un-
queried index z′ (computational hiding) or

– no computationally unbounded adversary A has any information about f(z′) for
any unqueried index z′ (unconditional hiding).

Definition 6 (Zero knowledge PC scheme). A PC scheme is zero knowledge if the
Open protocol (that might be non-interactive) is a public-coin honest verifier zero
knowledge proof for the relationROpen(srs, d).

Definition 7 (Succinct PC scheme). We call a PC scheme succinct if both the opening
proof π is constant-size and verifying the π takes constant time as well, i.e., independent
from the degree of the committed polynomial.

We remark that there was no known PC scheme in the transparent setting that would
be succinct before this work.

2.3 Generic group model adversaries

We prove the security of our scheme in the generic group model introduced by Shoup [43].
The generic group model is an abstraction of an adversary that does not use the repre-
sentation of a cryptographic group. Formally, we sample uniformly at random the order
of the generic group (of unknown order) from the interval [A,B], where A,B ∈ N.
Each group element is represented via an injective function σ : Z|G| → {0, 1}l for
2l ≫ |G|. A generic group adversary A is a PPT machine with access to G =
{σ(0), σ(1), . . . , σ(|G| − 1)} via the following two oracles. A list L is initially empty
and contains the representations of group elements that A had queried from its oracles.

– O1 samples r ∈ Z|G| and sends σ(r) to A. Moreover, L := L ∪ {σ(r)}.
– O2 allows the adversary to compute the group operation, i.e., whenever |L| = q,
A sends i, j ≤ q and a sign bit to O2. The oracle O2 returns σ(xi ± xj) to A. Let
L := L ∪ {σ(xi ± xj)}.

Theorem 1 (Element representation [43]). LetG be a generic group, andA a generic
algorithm making q1 queries to O1 and q2 queries to O2. Let g1, . . . , gm be the outputs
of O1. There is an efficient algorithm Ext that, given as input the transcript of A’s
interaction with the generic group oracles, produces for every element u ∈ G that A
outputs, a tuple (f1, . . . , fm) ∈ Zm such that u =

∏m
i=1 g

fi
i and fi ≤ 2q+2.

2.4 Assumptions in groups of unknown order

We build upon the following cryptographic assumptions in groups of unknown order.
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Definition 8 (Strong RSA Assumption [3]). Informally, the Strong RSA assumption
states that no efficient adversary can compute roots of a random group element. Specif-
ically, it holds for GGen if for any probabilistic polynomial time adversary A, there
exists negl(·) such that:

Pr

 G $←− GGen(λ)

ul = w, l > 1 : w
$←− G

(u, l)←− A(G, w)

 ≤ negl(λ). (3)

Definition 9 (Order assumption). This assumption says that, given a random g ∈R G,
it is hard to find any multiple of its order: i.e., an integer l such that gl = |G|. This is
known as the order problem [37].

Pr

 G $←− GGen(λ)

gl = 1 : g
$←− G

l←− A(G, g)

 ≤ negl(λ). (4)

Definition 10 (Adaptive Root Assumption [47]). For GGen if there is no efficient
adversary (A0,A1) that succeeds in the following task. First, A0 outputs an element
w ∈ G/{−1, 1} and some state st. Then, a random prime in Primes(λ) is chosen and
A1(w, l, st) outputs w1/l ∈ G/{−1, 1}. For all efficient (A0,A1):

Pr


G $←− GGen(λ)
(w, st)←− A0(G)

ul = w ̸= 1 : l
$←− Πλ = Primes(λ)
u←− A1(w, l, st)

 ≤ negl(λ) (5)

It was shown in [12] that both the order and adaptive root assumptions hold in the
generic group model.

2.5 Non-interactive zero-knowledge proofs

We recall the relevant syntax of non-interactive zero-knowledge (NIZK) proofs follow-
ing [10], and for the details and exact security requirements, we refer to [10]. NIZK
arguments consist of four PPT algorithms that are defined with respect to a relation
generator algorithm R-Gen(1λ) that, upon receiving some security parameter λ, out-
puts a polynomial time decidable relation R : {0, 1}∗ × {0, 1}∗ for which in our case
(ϕ,w) ∈ R, where ϕ is typically an algebraic statement in a ring FN or in a finite field
Fp and w is a valid witness for the instance.

– NIZK.Setup(R) → (crs, τ). For the relation R, the setup produces a common
reference string crs and a simulation trapdoor τ . This possibly randomized algorithm
may use public coins (transparent setup) or private coins (trusted setup).

– NIZK.Prove(R, crs, ϕ,w) → π. Upon the (ϕ,w) ∈ R and the common reference
string crs, the prover returns an argument π.
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– NIZK.Verify(R, crs, ϕ, π) → {0, 1}. Upon the common reference string crs, the
statement ϕ, and an argument π, the verification algorithm returns 0 or 1.

– NIZK.Sim(R, τ, ϕ) → π. Using the simulation trapdoor, τ , and statement ϕ, the
simulator returns an argument π.

This paper relies on non-interactive zero-knowledge proofs built for the following NP
languages in groups of unknown order. All of the corresponding proofs have a constant
size and constant-time verifiers. They are also shown to be proofs of knowledge.

Chaum-Pedersen (also known as discrete logarithm equality (DLEq)) proof [20].

RChaumP = {((s, t, u, v ∈ G);x ∈ Z) : s = tx ∧ u = vx}. (6)

Thakur showed how to instantiate the original Chaum-Pedersen discrete logarithm equal-
ity proof system in a group of unknown order setting soundly [45].

Proof of Exponentiation (PoE) [40, 47].

RPoE = {((u,w ∈ G, x ∈ Z);⊥) : w = ux ∈ G}. (7)

Note there is no witness in theRPoE relation, i.e., the verifier knows the exponent x.
The primary goal of the PoE proof system for the verifier is to outsource a possibly large
exponentiation, i.e., for an exponent x ∈ [22

30

, 22
50

] in a group G of unknown order.
Proof of Knowledge of Exponent (PoKE) [12].

RPoKE = {((u,w ∈ G);x ∈ Z) : w = ux ∈ G}. (8)

Note, unlike in the RPoE relation, the verifier does not know the exponent x in the
RPoKE relation. We remark that a zero-knowledge variant of the PoKE proof system,
ZKPoKE, exists due to Boneh, Bünz, and Fisch [12].

Proof of Knowledge of Exponent Modulo an odd integer (PoKEMon) [12].

RPoKEMon = {((w, g ∈ G, x̂ ∈ [n]);x ∈ Z) : w = gx ∈ G, x mod n = x̂}. (9)

Proof of Knowledge of Squared Exponent (PoKSE) [2].

RPoKSE = {((w, g ∈ G);x ∈ Z) : w = gx
2

∈ G)}. (10)

Proof of knowledge of positive exponent (PoKPE) [2].

RPoKPE = {((w, g ∈ G);x ∈ Z) : (w = gx) ∧ (0 < x))}. (11)

We will denote the corresponding proofs as πPoE, πPoKE, πPoKEMon, πPoKPE, πPoKSE. We
enclose the protocols for the aforementioned languages in Appendix A for completeness.
For their proofs of security, the reader is referred to [2,12,40,47]. Some of these protocols
were introduced as interactive proof systems. However, all of them were shown to be
secure as non-interactive proof systems in the random oracle model (ROM) using the
Fiat-Shamir transformation [27]. This work uses the non-interactive version of all the
aforementioned (zero-knowledge) proof systems. Thus, we assume the ROM throughout.
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3 Behemoth: A Transparent, Succinct PC Scheme

This section defines the univariate Behemoth, our polynomial commitment scheme.
We formally describe our PC scheme in Figure 1. Our Open protocol relies on two
subprotocols. First, we ensure that the opening protocol is evaluation binding in the
ProveEvaluation protocol; see Figure 2. Afterwards, we build a protocol that guarantees
that the Behemoth-committed polynomial is of bounded degree d, see Figure 3.

3.1 Lifting polynomials over a finite field to over the rationals

We want to commit to polynomials f ∈ F≤d
p [x]. However, we also want to work in a GUO.

Hence, we need to work over the integers in the exponent. A committer can represent
every f in multiple ways. We call the canonical form of a f ∈ F≤d

p [x] polynomial, when
all of its coefficients∀i ∈ [0, d] : fi ∈ [0, p). Jumping ahead, an honest prover will always
use the canonical representation of a committed polynomial. Still, we cannot force this
behavior, i.e., a committer can represent internally their committed polynomial in any
equivalent form. All of our protocols will work with the canonical representation of a
polynomial. Let us consider the following example.

Example. Suppose we want to commit to univariate polynomials in F≤2
7 [x] in a group

of unknown order G. As we already alluded to, the Behemoth commitment to f will
be g f̂(α) ∈ G for g ∈R G and for a carefully chosen α. For the sake of concreteness,
let α := 25 + 1 = 33. Let us consider f(x) := 4(x2 + x) ≡ x2+x

2 ≡ x2+15x
142 mod 7.

All of these polynomials are equivalent mod 7. Yet, there are crucial differences
we must point out. The first polynomial 4(x2 + x) is the canonical representation of
the polynomial. The second representation of the polynomial x2+x

2 ∈ Q[x] is integer-
valued everywhere and can be used to commit to the polynomial since it is an integer-
valued polynomial. Note that the Behemoth commitments of 4(x2 + x) and x2+x

2 are
different since 4(α2 + α) ̸= α2+α

2 even though the polynomials are equivalent mod7.
Nonetheless, we remark that the representation x2+x

2 cannot be opened everywhere, as it
will be apparent in Section 3.3 once we introduce our opening proofs. On the other hand,
the third representation of the polynomial x2+15x

142 is not integer-valued everywhere. In
particular, α2+15α

142 /∈ Z. Specifically, suppose the committer “thinks of” the polynomial
4(x2 + x) as x2+15x

142 . In that case, it cannot even commit to it unless it could compute
arbitrary roots (142th roots in this example) in a group of unknown order G, which is
deemed to be computationally infeasible as long as the strong RSA assumption holds
in G, cf. Section 2.4. Motivated by this discussion, we define a homomorphism from
rational polynomials to polynomials over finite fields, which maps polynomials to their
canonical representations.

Project(·) : Q≤d[x] ∩ {f|∀i : vp(fi) ≥ 0} → F≤d
p [x];

Project(f∗(x)) :=
d∑

i=0

fix
i, such that fi ≡ f∗i mod p ∧ fi ∈ [0, p).
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We remark that the requirement {f|∀i : vp(fi) ≥ 0} is necessary for the polynomials
in the domain of Project(·). If vp(fi) < 0 was for some i, then fi could not be mapped to
Fp. Note that Project(·) is a many-to-one projection, cf. the example above. Therefore,
when one wants to define the “inverse” of this homomorphism, we select a canonical
pre-image. This “inverse” mapping Lift(·) is defined as follows.

Lift(·) : F≤d
p [x]→ Z≤d[x]; Lift(f) :=

d∑
i=0

fix
i, such that ∀i : fi ∈ [0, p). (12)

Provers may proceed with different representations of a polynomial in different
protocols of the Behemoth PC scheme. We only guarantee correctness for the canonical
representation of committed polynomials. If provers represent internally polynomials
in a non-canonical form, then our protocols (both the commitment Com and the Open
protocols) may or may not work. However, (knowledge) soundness of the protocol is
guaranteed to hold for every representative of a committed f ∈ F≤d

p [x] polynomial for
which the prover has a non-negligible probability of successfully opening it.

3.2 Behemoth: a high-level description

The Behemoth univariate polynomial commitment scheme consists of the following five
PPT algorithms, cf. Figure 1. This high-level description contains two proof systems,
i.e., ProveEvaluation and PoKDegUp, introduced formally in Section 3.3. These proof
systems allow one to prove membership succinctly in the following NP relations.

RProveEvaluation[f, z, s] = { f ∈ G, f(x) ∈ Q[x], z, s ∈ Fp : g f̂(α) = f ∧ f(z) = s}.

RPoKDegUp[f, d] = { f ∈ G, f(x) ∈ Q[x], d ∈ Z : g f̂(α) = f ∧ deg(f) ≤ d}.

Remarks. First, note that in the GenSRS algorithm α is public. Hence, if the setup
GGen(λ) of the underlying group of unknown order G does not require a trusted
setup, then our PC scheme can be instantiated with a transparent setup. For instance,
this can be achieved with class groups of imaginary quadratic fields or hyperelliptic
Jacobians [24]. Furthermore, it is important that α is large (i.e., α > pd) and has a low
Hamming weight for efficiency reasons. Note that α cannot be a power of two since an
efficient algorithm exists in class groups to compute square roots due to Gauss. If α was
a power of two, our Open protocol would not be sound. The public exponent α is large,
specifically, α has O(d log(p)) bits, making the GenSRS algorithm a computationally
heavy computation, i.e., O(d2 log p). In other words, for certain parameter settings,
GenSRS essentially behaves as a verifiable delay function [11]. Practically speaking,
this means that when d ≥ 220 for larger finite fields (p ≈ 2256), the GenSRS(1λ, d)
algorithm of the Behemoth polynomial commitment scheme becomes computationally
heavy, i.e., finishing the transparent setup takes several months on specialized hardware.

The size of the srs is linear in the degree d of the committed polynomial. Note that
the srs needs to contain negative degrees of α in the exponent of gα−i for i ∈ [1, d]. This
seems unattainable since we cannot compute α-roots in a group of unknown order G
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The Behemoth polynomial commitment scheme

GenSRS(1λ, d): G $← GGen(λ), g0 ∈R G. Let α := 2(d+1)(⌈log p⌉+1) + 1, and g :=

gα
d+1

0 . Then srs[i] := gα
i−(d+1)

= gα
i

0 , where i ∈ [0, 2(d+ 1)].

Com(srs, f, d): f := g f̂(α) =

d∏
i=0

(gα
i

)fi =

d∏
i=0

srs[(d+ 1) + i]fi , where

f =
d∑

i=0

fix
i ∈ F≤d

p [x]. Then hint := {fi}di=0.

Output: ( f , hint).

ComVerify(srs, f, hint, f ): f
?
= Com(srs, f, d) ∧ f

?
∈ F≤d

p [x].
Open(srs, f, d, z, s): The prover P convinces the verifier V that for f it holds that f(z) =

s ∧ deg(f) ≤ d. P and V execute the following protocols.
1. P runs the ProveEvaluation(f, z, s) protocol and sends the πf,z,s

ProveEvaluation to V ,
see Figure 2. //This ensures that f(z) = s.

2. V sends z′ ∈R Fp to P .
3. P runs the ProveEvaluation(f, z′, s′) protocol and sends the πf,z′,s′

ProveEvaluation to
V , see Figure 2. //This step is needed for knowledge soundness and ensures that
f(z′) = s′.

4. P runs the PoKDegUp(f(x), d) protocol with V , see Figure 3. //This ensures that
deg(f) ≤ d.

5. P runs the PoKDegUp(xdf(1/x), d) protocol with V , see Figure 3. //This ensures
that f(x) does not contain monomials of x−i for any i ∈ Z.

Output πOpen := (πf,z,s
ProveEvaluation, π

f,z′,s′

ProveEvaluation, π
f,d
PoKDegUp, π

xdf(1/x),d
PoKDegUp ).

OpenVerify(srs, f , d, z, s, πOpen): Parse πOpen as πOpen =

(πf,z,s
ProveEvaluation, π

f,z′,s′

ProveEvaluation, π
f,d
PoKDegUp, π

xdf(1/x),d
PoKDegUp ).

Output: NIZK.Verify(RProveEvaluation, crsProveEvaluation, ϕProveEvaluation, π
f,z,s
ProveEvaluation)∧

∧ NIZK.Verify(RProveEvaluation, crsProveEvaluation, ϕProveEvaluation, π
f,z′,s′

ProveEvaluation) ∧
∧ NIZK.Verify(RPoKDegUp, crsPoKDegUp, ϕPoKDegUp, π

f,d
PoKDegUp) ∧

∧ NIZK.Verify(RPoKDegUp, crsPoKDegUp, ϕPoKDegUp, π
xdf(1/x),d
PoKDegUp ).

Fig. 1: The formal description of the five efficient algorithms
(GenSRS,Com,ComVerify,Open,OpenVerify) of the Behemoth polynomial commit-
ment scheme for univariate polynomials.

(we can only compute roots of powers of two in class groups) as it would contradict the
strong RSA assumption, see Appendix 2.4. In practice, one would compute the powers
of α in the forward direction, i.e., g, gα, . . . , gα2d and designate gα

d as the “new” g.
Lastly, one can attach PoE proofs [40,47] to convince resource-constrained devices that
the transparent setup was computed correctly.

Once the srs is computed, committing to f ∈ F≤d
p [x] can be in O(d) time as it

requires d “small” exponentiations, i.e., each exponent (coefficient of f) with bit-length
≈ log(p). Additionally, this computation can be parallelized.
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We remark that the evaluation proof has constant size; it is independent of the
degree d of the committed polynomial. This holds, as we shall see because all the
applied underlying zero-knowledge proofs have constant size. Moreover, the verifier
also runs in constant time. To the best of our knowledge, this is the first transparent
polynomial commitment scheme with constant evaluation proofs and constant verifier.
The verifier’s efficiency comes at the cost of a computationally heavy prover, i.e., a
cubic prover. The bulk of the prover’s work comes from the difficulty of finding the
three (or four) squares decomposition of ŝ = f̂(z) ≈ B over the integers. This results
in a cubic computation using the state-of-the-art square decomposition algorithm of
Pollack and Treviño [41]. To concretely reduce the prover’s running time (unfortunately,
the asymptotic complexity still remains cubic), in our construction, we decompose
ŝ = ϵ + q to the sum of a small positive integer ϵ and a prime q that can be further
decomposed to two squares much faster than decomposing ŝ to the sum of three squares.
Still, the cubic computational complexity constrains the prover to a specific range of
parameters to preserve the practicality of our scheme. We further expand on our scheme’s
theoretical and practical performance in Section 6.

Strong correctness. The original KZG commitment scheme satisfies the property of
strong correctness, i.e., it is computationally infeasible to commit to polynomials of
degrees larger than the maximum allowed degree d, i.e., the length of the srs, as long as
the d-polyDH assumption holds. This property is beneficial and even wanted in certain
applications, e.g., verifiable secret sharing. We note, however, that strong correctness is
not satisfied by our polynomial commitment scheme as the srs is extensible by anyone.
The possibility to extend the srs is valuable in certain applications, e.g., zkSNARKs.
The extensible nature of the srs does not limit the complexity of the circuit one wants
to prove statements about. It is conceivable that in the imminent future, when the
community wants to support computational integrity proofs for statements with ever-
increasing complexity (e.g., training or inference in zero-knowledge machine learning),
then currently available srs strings with length ≈ 228 will likely fall short in supporting
such complex computations. Recall that the srs cannot be extended indefinitely without
increasing α since that would forfeit evaluation binding, i.e., it must hold for d and

p that B =
d+1∑
i=1

(p − 1)i ≤ α, see Section 4.2. However, computing a larger, updated

value of α′ ≥ α and updating the srs = {gαi−(d+1)}2(d+1)
i=0 to srs′ := {gα′i−(d+1)}2(d+1)

i=0

accordingly can be computed with much less effort than initializing a new PC instance.
On the other hand, a malicious prover can use the extended srs to its favor, but we prove
that this does not yield an attack on the security of our polynomial commitment scheme.

3.3 Subprotocols of the Behemoth Open protocol

Next, we detail the subprotocols of our Open protocol. First, we introduce a protocol
called ProveEvaluation that allows the prover to convince the verifier that a Behemoth-
committed polynomial f is evaluated to s at z. Second, we describe a protocol that allows
the prover to show that a Behemoth-committed polynomial has degree maximum d.

12



The ProveEvaluation protocol In this protocol, we want to prove membership in
the relation Reval = {( f , z, s; f)|f(z) = s ∧ Com(srs, f, d) = f }. The goal of the
ProveEvaluation protocol is to mimic the KZG opening strategy soundly in the group
of unknown order setting. Specifically, in the KZG opening proof to show that f(z) = s,
the prover demonstrates that x − z divides f(x) − s by sending a commitment to q(x)
such that the following verification equation is satisfied in the exponent

q(x)(x− z) = f(x)− s. (13)

The challenge in our setting is that we need to work over the integers since the order of
the group is hidden. This renders our statement to be f̂(z) = ŝ. Therefore we check the
KZG opening verification Equation 13 in the exponent over the integers, i.e., we check
polynomial equality in α:

q̂(α)(α− z) = f̂(α)− ŝ. (14)
This strategy entails several technical challenges that we solve with techniques

mainly introduced in [2, 12, 47]. In particular, the following technical challenges arise
when one translates the KZG opening strategy to the group of unknown order setting:

1. The prover can only compute q̂(α) and not q(α) mod p in the exponent. The prover
sends Q := gq̂(α) as part of the opening proof. The prover uses the algorithm
outlined in Figure 4 to compute gq̂(α).

2. Due to efficiency reasons (α − z has ≈ d log p bits), the verifier cannot compute
Qα−z from the left-hand side of the verification Equation 14 on its own, unlike in
the bilinear pairing setting. This would entail a O(log d + log log p) computation
that would prevent us from achieving a constant-time verifier. Therefore, the verifier
outsources this large exponentiation to the prover; that is, the prover needs to
convince the verifier about the correctness of the exponentiation Qα−z with a
constant-size proof and in constant time [47].

3. On the right hand side of the verification Equation 14, the prover computes ŝ in the
exponent, i.e., gŝ. The prover must convince the verifier with a constant proof in
constant time that ŝ in gŝ has the same remainder modp as s, i.e., ŝ ≡ s mod p.
This is achieved by the PoKEMon proof introduced in [12], see Figure 7.

4. Finally, the prover shows that the exponent ŝ in gŝ lies in the appropriate range,
i.e., 0 ≤ ŝ ≤ B, recall that B is defined as a uniform upper bound on the integer
evaluations at any polynomial, i.e., B := max

x∈Fp,f(x)∈F≤d
p [x]

f̂(x), cf. Section 2.1.

Lemma 1. The ProveEvaluation protocol (cf. Figure 2) satisfies evaluation binding,
i.e., it is not possible to show simultaneously that f(z) = s ∧ f(z) = s′ such that s ̸= s′

for a Behemoth-committed polynomial f.
Proof. The proof is enclosed in Section 4.2.

Note that at this point, we did not ensure that the committed polynomial f is in
the desired polynomial ring F≤d

p [x]. In particular, the committer might use polynomials
of 1) higher degree than d, and 2) due to availability of negative powers of α in the
exponent, i.e., gα−i , in the srs, the committer might include monomials of x−i in the
committed polynomial. Next, we develop tools to prevent an adversarial prover from
successfully opening such polynomials, i.e., with non-negligible probability.
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The ProveEvaluation(f, z, s) protocol

Statement: f(z) = s ∧ Com(srs, f, d) = f (= g f̂(α)).
Input: ⟨P(srs, f, z, s),V(gα, f , z, s)⟩.

1. P sends gq̂(α), where q̂(α) := f̂(α)−ŝ
α−z

, and ŝ := f̂(z) over the integers. //gq̂(α) is
calculated using an algorithm in Figure 4.

2. P computes gq̂(α)(α−z) and obtains πα−z
PoE =

NIZK.Prove(RPoE, crsPoE, (g
q̂(α), gq̂(α)(α−z), α− z),⊥).

– In the verification of πα−z
PoE , the verifier would need to compute α− z mod p′ =

α mod p′ − z mod p′, where p′ ∈R Primes(λ), see Wesolowski’s proof
of exponentiation protocol in Appendix A.2. Computing α mod p′ would
entail computing O(log d) multiplications in Z∗

p′ . Hence, the verifier out-
sources this computation to the prover to avoid this logarithmic computation.
The correctness of this outsourced computation is proved by πα,α mod p′

PoKEMon :=

NIZK.Prove(RPoKEMon, crsPoKEMon, (g
α, gα mod p′), α).

3. P sends gŝ to the verifier V and calculates πs,ŝ
PoKEMon :=

NIZK.Prove(RPoKEMon, crsPoKEMon, (g
s, gŝ), ŝ). //This ensures that s ≡ ŝ mod p.

4. Let J := gB/gŝ. The prover creates the proof πB−ŝ
PoKPE :=

NIZK.Prove(RPoKPE, crsPoKPE, J,B − ŝ) and also computes πŝ
PoKPE :=

NIZK.Prove(RPoKPE, crsPoKPE, g
ŝ, ŝ). //These proofs ensure that 0 ≤ ŝ ≤ B.

The proof: πz
ProveEvaluation := (πα−z

PoE , πα,α mod p′

PoKEMon , πs,ŝ
PoKEMon, π

B−ŝ
PoKPE, π

ŝ
PoKPE).

Verification: Parse the πz
ProveEvaluation proof as the tuple πz

ProveEvaluation =

(πα−z
PoE , πα,α mod p′

PoKEMon , πs,ŝ
PoKEMon, π

B−ŝ
PoKPE, π

ŝ
PoKPE).

Output: NIZK.Verify(RPoE, crsPoE, ϕPoE, π
α−z
PoE ) ∧

∧ NIZK.Verify(RPoKEMon, crsPoKEMon, ϕPoKEMon, π
α,α mod p′

PoKEMon ) ∧
∧ NIZK.Verify(RPoKEMon, crsPoKEMon, ϕPoKEMon, π

s,ŝ
PoKEMon) ∧

∧ NIZK.Verify(RPoKPE, crsPoKPE, ϕPoKPE, π
B−ŝ
PoKPE) ∧

∧ NIZK.Verify(RPoKPE, crsPoKPE, ϕPoKPE, π
ŝ
PoKPE).

Fig. 2: Behemoth ProveEvaluation protocol formal description. In the ProveEvaluation
protocol, the prover convinces the verifier that f(z) = s. It is a subprotocol of the
Behemoth Open protocol, cf. Figure 1.

Proving a degree bound of the Behemoth-committed polynomial A crucial part of
the Open protocol is to ensure that the committed polynomial f ∈ F≤d

p [x] has a degree
less than or equal to d. This is not immediate in our setting, unlike in the KZG setting.
Specifically, in the KZG PCS, if the srs has length d, then an efficient prover cannot
commit to polynomials of degree larger than d as long as the d-polyDH assumption
holds. This is because the exponents in the KZG srs are hidden, thanks to the trusted
setup. However, in our setting, anyone can freely extend the srs to be able to support
larger degree polynomials. Therefore, we must deal with malicious provers that can
commit to arbitrarily large degree polynomials; deg(f) ∈ O(poly(λ)). We follow the
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footsteps of Thakur and adapt his zero-knowledge proof systems about KZG-committed
polynomials introduced in [44] to the group of unknown order setting.

Proof of knowledge of a polynomial with a degree upper bound (PoKDegUp). The
main goal of this subsection is to build a proof system that can show that a Behemoth-
committed polynomial has degree most d using the previously introduced building
blocks, i.e., PoKE,PoKPE,ProveEvaluation. We adapt Thakur’s corresponding proof
system for KZG-committed polynomials [44] to Behemoth-committed polynomials.

Thakur observes that ∀d ∈ N,∀f ∈ Z[x] : deg(f) ≤ d ⇐⇒ x|xd+1 · f(x−1). Note
the verifier already knows a commitment to xd+1 from the srs, i.e., let a := xd+1 be the
corresponding srs commitment to the monomial of degree d+1. The prover then sends a
Behemoth-commitment to b := xd+1f(x−1) along with a PoKE(gα, b) that shows that
b is a commitment to a polynomial divisible by x. This is where it is important that α is
not a power of two. Otherwise, this PoKE(gα, b) proof is vacuous since, in class groups,
it is possible to compute the roots of powers of two due to Gauss. We remark that we need
the “negative” powers of α in the srs to commit to f(1/x). Now, the prover shows the
well-formedness of commitment b, i.e., that it is indeed a commitment to xd+1f(x−1).
For a randomly generated challenge γ ∈R F∗

p, the prover verifiably sends the element
g f̂(γ), along with an evaluation proof that this is a commitment to the evaluation of f(x)
at γ, see the ProveEvaluation protocol at Figure 2. The prover also sends the element
c := xd+1 f̂(γ) = gα

d+1 f̂(γ) along with a Chaum-Pedersen proof [20] (also known as the
discrete logarithm equality (DLEq) proof) to show that the discrete logarithms between
the pair (g, g f̂(γ)) and the pair (gαd+1

, c) are the same, namely the common discrete
logarithm is f̂(γ). Next, the prover shows that the polynomial h(x) := xd+1f(x−1)
committed in b satisfies the following relation:

γh(x) ≡ γxd+1f(γ) mod (γx− 1). (15)

The prover does so by producing a (γα−1)-th root of bγ ·c−γ = gγα
d+1 ̂f(1/α)−γαd+1 f̂(γ).

Since γ is randomly and uniformly generated, this implies that with overwhelming
probability, h(x) = xd+1 · f(x−1), due to the order assumption, see Appendix 2.4.
Hence, the following proof system is an honest verifier zero-knowledge proof for the
following relation:

RPoKDegUp[f, d] = { f ∈ G, f(x) ∈ Q[x], d ∈ Z : g f̂(α) = f , deg(f) ≤ d}.

Example. What would constitute a soundness break of the PoKDegUp protocol? Con-
sider the polynomial f(x) = x2 + 3α3. This polynomial has the same Behemoth-
commitment as g(x) = 3x3+x2. From the verifier’s perspective, it is indistinguishable
which of these polynomials f or g are “in the prover’s head”. However, it is easy to
see that the prover can only run successfully the ProveEvaluation(f, z, s) protocol for
any z ∈ Fp with the evaluations of s := g(z) due to the applied range checks in
the ProveEvaluation protocol. We call such two polynomials evaluation equivalent, cf.
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The PoKDegUp(f, d) protocol

Statement: The proverP knows a polynomial f(x) ∈ Q[x] such that f = g f̂(α)∧deg(f) ≤ d.
Input: ⟨P(srs, f, d, f ),V(gα

d+1

, d, f )⟩.

1. P sends the element b := gα
d+1·f(1/α) with a proof for PoKE[gα, b].

2. V sends a challenge γ ∈R F∗
p.

3. P sends the elements g f̂(γ) and c := gα
d+1 f̂(γ) with a Chaum-Pedersen DLEq proof

for the pairs (g, g f̂(γ)) and (gα
d+1

, c).
4. P runs the protocol ProveEvaluation(f, γ, f(γ)), i.e., the prover convinces the verifier

that f(γ) evaluates to a certain value.
5. P sends proofs for PoKE[gα−γ , g f̂(α)−f̂(γ)] and PoKE[gγα−1, bγc−γ ].

The proof: πf,d
PoKDegUp := (PoKE[gα, b],ChaumP[g, g f̂(γ), gα

d+1

, c]),

ProveEvaluation[f, γ, f(γ)],PoKE[gα−γ , g f̂(α)−f̂(γ)],PoKE[gγα−1, bγc−γ ].
Verification:V verifies theProveEvaluation,PoKE, and the Chaum-PedersenDLEq proofs.

Fig. 3: Proof of knowledge of a polynomial with degree upper bounded (PoKDegUp).
The prover convinces the verifier that the degree of the Behemoth-committed polynomial
f is upper bounded by an integer d. PoKDegUp is a subprotocol of the Behemoth Open
protocol, cf. Figure 1.

Definition 11. Motivated by this discussion, we want the prover not to be able to prove
that its committed polynomial f has deg(f) ≤ 2. It is easy to see that this holds in this
simple case. If the prover wants to show that deg(f) ≤ 2 in the commitment f , then
f(1/x) = 1

x2 + 3α3. In the last step of the PoKDegUp protocol, the prover must show
that γα−1|γfdαd+1 f̂(1/α)−γfdα

d+1 f̂(γ). In this particular example, this check entails
to γα−1|γα3( 1

α2 +3α3)−γα3(γ2+3γ3) = γα(1+3α5)−γα(γ2α2+3γ3α2). Since
gcd(γα− 1, γα) = 1, therefore γα− 1|3α5− 3α2γ3− (γα+1)(γα− 1) ⇐⇒ γα−
1|3α5−3α2γ3 = 3α2(α3−γ3) ⇐⇒ (γα−1)|(α3−γ3). Since gcd(γα−1, α3) = 1,
we have that (γα− 1)|(α3 − γ3) ⇐⇒ (γα− 1)|α3(α3 − γ3) = α6 − γ3α3. Because
of (γα − 1)|γ3α3 − 1, it suffices to show that (γα − 1)|α6 − 1, where the right-hand
side does not contain γ anymore, that is chosen by the verifier uniformly at random. We
conclude that the prover cannot convince the verifier that f(x) = x2+3α3 is a quadratic
polynomial. Next, we prove that the PoKDegUp protocol is secure in full generality.

Lemma 2. The PoKDegUp protocol, see Figure 3, is knowledge sound for the relation
RPoKDegUp = {( f , d; f)|f ∈ Q[x] ∧ deg(f) ≤ d} in the generic group and random
oracle models.

Proof. Suppose a PPT algorithm A outputs an accepting transcript. The extractability
of the subprotocols PoKE[gα−γ , g f̂(α)−f̂(γ)] and PoKE[gγα−1, bγc−γ ] imply that with
overwhelming probability, A can output polynomials f(x), g(x) = xd+1f(γ), h(x) =
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xd+1f(1/x) such that

g f̂(α) = f , gĝ(α) = gα
d f̂(γ) = b, g f̂(γ), gĥ(α) = c, γh(x) ≡ γg(x) mod (γx− 1).

(16)
Since we do not assume the Knowledge of Exponent Assumption (KEA), we cannot

immediately claim that such polynomials can be extracted from the prover. Instead, we
argue as follows. Due to the extractability of the applied NIZK proof systems, the prover
must know an integer in the exponent for every Behemoth commitment. Therefore,
whenever we say that the prover knows a polynomial for a commitment, we refer to the
unique polynomial that is derived from the α-adic representation of the integer known
by the prover in the exponent. The Chaum-Pedersen DLEq proof implies that

gα
d+1 f̂(γ) = af̂(γ) = c = gĥ(α) (17)

Thus, the verifier checks in the exponent that

xd+1f(x−1) ≡ g(x) mod (γx− 1), (18)

and since γ was randomly and uniformly generated, this implies that with overwhelming
probability g(x) = xd+1f(x−1) holds. This is because if it was the case that g(x) ̸=
xd+1f(x−1) and there was a non-negligible probability of finding a suitable γ for
which g(γ) ≡ γd+1f(γ−1) mod ord(G), then g(γ)− γd+1f(γ−1) ≡ 0 mod ord(G)
contradicting the order assumption, see Section 2.4. Finally, the subprotocolPoKE[gα, b]
implies that with overwhelming probability, g(x) is divisible by x, hence it follows that
deg(f) ≤ d.

The only thing remaining to show is the case when the prover does not use the
canonic α-adic polynomial representation of a polynomial. Let degα(f) be the degree
of the canonical α-adic representation of the Behemoth-committed polynomial f . On
the other hand, let deg∗(f) be the degree of the malicious prover’s interpretation of f ,
where deg∗(f) ̸= degα(f). Due to the correctness of this protocol, the following check
for the honest prover needs to be satisfied,

(γα− 1)|γh(α)− αdegα(f)+1γ f̂(γ). (19)

Now, suppose that the prover applies a different polynomial h′ in the check, that is,

(γα− 1)|γh′(α)− αdeg∗(f)+1γ f̂(γ). (20)

If we subtract Equation 20 from Equation 19, then we find that the malicious prover
must satisfy the following division,

(γα− 1)|γ(h(α)− h′(α))− γ(αdegα(f) − αdeg∗(f))f̂(γ), (21)

where gcd(γα − 1, γ) = 1, thus we can eliminate γ. Note that f̂(γ) can be opened
to a single evaluation due to the evaluation binding property of the ProveEvaluation
protocol. Towards contradiction, assume thatαdegα(f) ̸= αdeg∗(f). We have the following
congruence for f̂(γ),

f̂(γ) ≡ h(α)− h′(α)

αdegα(f) − αdeg∗(f)
mod (γα− 1). (22)
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Both the nominator (h(α)− h′(α)) and the denominator αdegα(f) − αdeg∗(f) are estab-
lished before γ ∈R Fp is sent to the prover from the verifier or equivalently in the random
oracle model, sampled via the Fiat-Shamir transformation [27]. Since f̂(γ) is proved by
the committer to be the evaluation of f at γ, and the evaluation binding property of
the ProveEvaluation protocol has been shown, we conclude that Equation 22 can be
satisfied only with negligible probability.

Flexible Behemoth Open proofs over multiple fields. Since the Behemoth-commitment
of a polynomial f commits to it over the integers, one can reuse a commitment to later
open the same commitment over different fields Fp and Fp′ . This flexibility might have
several applications, as discussed next. Observe that all steps except one in the whole
Open protocol are oblivious to the choice of the field Fp over which the committed
polynomial is opened. The sole exception is the third step in the ProveEvaluation
protocol, namely where the prover shows for the opening statement f(z) = s that ŝ ≡ s
mod p holds with a PoKEMon proof, cf. Figure 2 and Figure 7. If the p-dependent
bound B for evaluations of polynomials (cf. Equation 1) remains smaller than α, one
can safely open a Behemoth-committed polynomial over that field Fp as well.

4 Proofs of Security

In this section, we prove the security of our polynomial commitment scheme.

Theorem 2. (Behemoth is a secure PC scheme) The Behemoth PC scheme is a secure,
succinct PC scheme, i.e., it satisfies correctness (cf. Section 4.1), evaluation binding
(cf. Section 4.2), knowledge soundness (cf. Section 4.3), polynomial binding (cf. Sec-
tion 4.4), and hiding (cf. Section 4.5) in the generic group and random oracle models.

4.1 Correctness

Lemma 3. The Behemoth PC scheme satisfies correctness.

Proof. The OpenVerify(·) algorithm checks whether Qα−z = f /gŝ, for Q = gq̂(α)

and f = g f̂(α). In particular, the verifier checks the polynomial equality q̂(α)(α −
z) = f̂(α) − f̂(z) in the exponent. The additional NIZKs ensure the soundness of
the Open protocol, i.e., range checks, equality checks mod p, and degree bound on
the committed polynomial. These applied NIZKs are as follows: for the languages
RChaumP,RPoE,RPoKE,RPoKEMon,RPoKPE,RZKPoKPE,RPoKDegUp. All these NIZKs
were proved to satisfy correctness in prior work [2, 12, 40, 47], and in Section 3.3.
We apply the probabilistic Pollack-Treviño algorithm [41] in the Lagrange four-square
decomposition in the proof of knowledge of positive exponent protocol (PoKPE,
cf. Appendix A.5). Therefore, we can only claim correctness with probability at least
1− negl(λ) for some negligible function negl(·).
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4.2 Evaluation Binding

Lemma 4. The ProveEvaluation protocol (cf. Figure 2) satisfies evaluation binding if
the order assumption holds in G, i.e., it is not possible for a PPT adversary to show that
f(z) = s ∧ f(z) = s′ such that s ̸= s′ for a Behemoth-committed polynomial f.

Proof. Towards contradiction, assume there is an evaluation point z for which a ma-
licious prover knows s0, s1, (s0 ̸= s1) and πOpen,0, πOpen,1 asserting that f(z) = s0
and f(z) = s1 respectively, and both statements and proofs are accepted by the verifier.
Formally, this entails that the following two equalities are verified successfully in the
exponent:

q̂0(α)(α− z) = f̂(α)− ŝ0 ∧ q̂1(α)(α− z) = f̂(α)− ŝ1, (23)

where s0 = ŝ0 mod p, s1 = ŝ1 mod p, i.e., the evaluations of f of z over the integers.
Subtracting these two equalities in Equation 23 from one another we get:

(q̂0(α)− q̂1(α))(α− z) = ŝ1 − ŝ0. (24)

The right side of Equation 24 is non-zero by assumption and ŝ1− ŝ0 ∈ [−B,B]. On the
other hand, by assumption q̂0(α) ̸= q̂1(α) and by construction (α− z)≫ B. Therefore,
the left-hand side of Equation 24 never falls into the interval ŝ1− ŝ0 ∈ [−B,B], i.e., they
cannot be equal over the integers. If Equation 24 is satisfied, then (q̂0(α)− q̂1(α))(α−
z)− (ŝ1 − ŝ0) ≡ 0 mod ord(G), hence breaking the order assumption.

4.3 Knowledge soundness

Due to the transparent nature of our PCS, it is inherent that a prover is only bound
to f̂(α) rather than a unique polynomial f ∈ F≤d

p [x]. At first, this seems to violate
knowledge soundness. However, since evaluation binding holds, see Section 4.2, the
map g : z 7→ f(z) mod p is set to stone after committing to f. Below we show that the
existence of this map g implies the knowledge of a mod p polynomial f∗ in the desired
polynomial ring F≤d

p [x].
Consider f := gα, it may seem ambiguous whether it is a commitment to f(x) = x

or f(x) = α. We remark that in the ProveEvaluation protocol, the prover can only
open the f(x) = x polynomial. This is because the applied range proofs in the
ProveEvaluation protocol, i.e., the prover needs to show that at the evaluated point
z, we have that 0 ≤ f̂(z) ≤ B(< α). Therefore, it is clear that the prover can only
evaluate the f(x) = x polynomial for every z ∈ Fp. Note that without range proofs on
f̂(z) in the ProveEvaluation protocol, the prover could convince the verifier about the
validity of any f̂(z) + h(z)(α − z) value evaluated of the committed polynomial at z.
Thanks to the applied range proof, the committer can only evaluate the commitment
f as f(z) = z, this being the smallest positive representative of f̂(z) mod α− z. This
observation motivates the following definition.

Definition 11 (Evaluation Proxy). The polynomial f1 ∈ Q≤d[x] is an evaluation
proxy for f0 ∈ Q≤d[x], i.e., f0 →Eval f1 if ∀z : OpenVerify(srs, f0 , z, f0(z), π

f0,z
Open) =
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1; f̂0(z) ≡ f̂1(z) mod α− z. Put differently, f̂0(z) = f̂1(z) + h(z)(α − z), for some
h(z) ∈ Z. In other words, whenever f0 is opened successfully at z, it has the same
evaluation as f1 at z. If f0 →Eval f1 ∧ f1 →Eval f0 holds, then we say that f0 and f1 are
evaluation equivalent, i.e., f0 ≡Eval f1.

Example. α2 + 3α →Eval x
2 + 3x. They are different polynomials modp, but they

behave the same from an evaluation point of view. Even though the former polynomial
can be considered a constant polynomial, anywhere the committer can open α2 + 3α,
it will “behave” as a polynomial x2 + 3x. For every z ∈ Fp, the committer can create
convincing ProveEvaluation proofs such that f(z) = z2 + 3z. The previously proved
evaluation binding property implies that this is the only way the prover can open a
Behemoth commitment of a polynomial in Q[x]. Similarly, it is easy to see that x2 +
3x→Eval α

2 + 3α holds.

Example 2. α2+α·x
2 →Eval x

2. One can only open successfully α2+α·x
2 at points where

α ≡ z mod 2. And at any successfully openable point z, α2+α·x
2 has exactly the same

evaluation as x2. Observe that, on the other hand, x2 ↛Eval
α2+α·x

2 , since there exist
points z where x2 can be opened, while for α2+α·x

2 could not be opened.
Polynomials that can be opened at least at a single point z with non-negligible prob-

ability will play a crucial role in our knowledge soundness proof. Recall from Figure 1,
steps (2) and (3) in the Open protocol, this means that the prover can successfully run
the ProveEvaluation protocol with non-negligible probability for a randomly chosen
z′ ∈ Fp. We define openable polynomials formally as follows.

Definition 12 (Openable polynomials). Given a valid srs, a polynomial f ∈ (Q ∩
Zp)

≤d[x] is said to be openable if

∃z∃s∃π∗,f,z
Open∀negl(λ) : Pr[OpenVerify(srs, f , d, z, s, π

∗,f,z
Open) = 1] ≥ negl(λ), (25)

where π∗,f,z
Open a maliciously generated opening proof for f, z, s.

As we saw in the proof of correctness in Section 4.1, honest provers can always
convince the verifier about correct openings. However, as noted above, we cannot force
provers to use the canonical lifts of polynomials in F≤d

p [x]. For instance, consider the
polynomial of 2x3−x+7. Due to its linear termLift(Project(2x3−x+7)) ̸= 2x3−x+7,
but the prover can open everywhere the Behemoth commitment of 2x3−x+7. It is easy
to argue that the opened values are always the same mod p as for Lift(Project(2x3 −
x+7)) = 2x3+(p−1)x+7, as expected. Thus, mod p knowledge soundness holds.

Definition 13 (p-faithful polynomial). A polynomial f ∈ Q≤d[x] is said to be p-faithful
if ∀z ∈ Fp where f can be opened with non-negligible probability, the evaluation
f(z) = s ≡ Project(f)(z) mod p.

By the design of the ProveEvaluation protocol, all polynomials in F≤d
p [x] are p-

faithful. As the example above shows, there are polynomials in Q≤d[x] \ F≤d
p [x] that

are p-faithful. What poses a challenge to proving knowledge soundness is that not all
openable polynomials are p-faithful polynomials.
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Example. f(x) = α. Observe that f is not p-faithful. Although it is openable everywhere
and its evaluations are congruent mod p to the f(x) = x polynomial. Yet, the commit-
ment to the f polynomial could be viewed as a commitment to a constant polynomial.
Even if the prover considers the committed polynomial a constant, it can only open it
as the identity function of Fp. This does not contradict knowledge soundness since the
prover’s behavior is identical to a prover who considers the committed polynomial as
f(x) = x.

As we shall show, the opening behavior of any openable polynomial can be repro-
duced by a p-faithful polynomial.

Lemma 5. If f0 ∈ Q≤d[x] is an openable polynomial, then there exists f∗ such that
f0 →Eval f

∗ and f∗ is p-faithful.

Proof. If f0 is an openable polynomial, we rewind d + 1 times the execution of the
Open protocol to immediately before step (2), cf. Figure 1, with fresh randomness
zi ∈R Fp in each round i ∈ [0, d]. Every round ∀i : i ∈ [0, d], the prover must also run
the ProveEvaluation(f0, zi, si) protocol. Thus, the extractor obtains with non-negligible
probability, two vectors T := {zi}di=0 and {si}di=0 such that ∀i ∈ [0, d] : f0(zi) = si
holds. The soundness of the PoKDegUp protocol, cf. Section 3.3, ensures that f0 is
a maximum d degree polynomial. Therefore, next, the extractor Lagrange-interpolates
a degree d polynomial f∗ ∈ Q≤d[x] given the obtained valid evaluations from the
rewinding process. These evaluations are unique due to evaluation binding proved in
Section 4.2. Hence, the Lagrange-interpolation f∗ of f has the form:

f∗(x) :=
d∑

i=0

siLi(x) =

d∑
i=0

si

d∏
j=0,j ̸=i

x− zj
zi − zj

≤ (p− 1)

d∑
i=0

∣∣∣∣∣
d∏

j=0,j ̸=i

x− zj
zi − zj

∣∣∣∣∣ =
= (p− 1)

d∑
i=0

|Li(x)|,

(26)

where we call the polynomials {Li(x)}di=0 as Lagrange polynomials or Lagrange basis.
We want to obtain an upper-bound for the Lagrange-interpolation polynomial f∗ on
[0, p) using Equation 26. Let us divide the [0, p) interval into 2d equal length intervals
Si :=

[
p·i
2d ,

p·(i+1)
2d

)2d−1

i=0
. For a better estimate on max

x∈[0,p)
f∗(x), we slightly increase

the running time of the extractor until we obtain sample points zi that are sufficiently
close to being equidistant. This helps us obtain a better upper bound on the Lagrange
basis polynomials by avoiding “too small” denominators. Thus, the extractor selects
uniformly at random interpolation points zi from the interval [0, p). According to the
coupon collector’s problem [25], the extractor must sample≈ 2d log 2d points on average
to sample at least one interpolation point from every segment in S∗ := {Si : i ≡ 0
mod 2}. Let the set of interpolation points, T = {zi}di=0, consisting of the d+1 points
chosen so that we choose one point from every segment in S∗. Note that points in T
are close to be equidistant, i.e., ∀i : p

2d ≤ |zi − zi+1| ≤ 3p
2d . We upper bound for these

interpolation points maxx∈[0,p) f
∗(x) as follows.
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max
x∈[0,p)

f∗(x) ≤ (p− 1)

d∑
i=0

∣∣∣∣∣
d∏

j=0,j ̸=i

x− zj
zi − zj

∣∣∣∣∣ ≤ p

d∑
i=0

∣∣∣∣∣∣∣∣∣
d∏

j=0,j ̸=i

(j+1)p
d

d/2∏
j=0,j ̸=i

( (2j+1)p
2d )2

∣∣∣∣∣∣∣∣∣ ≤

≤ 2d+1p

d∑
i=0

∣∣∣∣∣∣∣∣∣
d∏

j=0,j ̸=i

(j + 1)

d/2∏
j=0,j ̸=i

(2j + 1)2

∣∣∣∣∣∣∣∣∣ ≤ 2d+1p(d+ 1)≪ α.

Next, we show that f∗ is p-faithful, i.e., p-faithfulness is implied by the following:

max
x∈[0,p)

f∗(x) ≤ α. (27)

A successful evaluation of f∗ at a point z means that f∗(z) − k(z − α) ∈ [0,B] for
some k ∈ Z. Equation 27 implies that this can only happen for k = 0. Therefore, since
k = 0 for every opened evaluation point, the extracted polynomial gives the correct
mod p evaluation, i.e., f∗(z). This concludes the proof of knowledge soundness as we
showed that the extracted polynomial f∗ behaves as f0 from an evaluation point of view,
more formally serves as an evaluation proxy for f0, cf. Definition 11. Additionally, the
extracted polynomial f∗ has the property of p-faithfulness (which f0 may lack), i.e.,
opening the integer substitution value at a point z and reducing it mod p yields the same
result as taking all coefficients of f∗ mod p.

4.4 Polynomial Binding

Lemma 6. The Behemoth PC satisfies polynomial binding.

Proof. Assume towards contradiction a PPT adversary A that successfully outputs two
polynomials f0, f1 ∈ F≤d

p [x] such that f0 ̸= f1 and their commitment is the same.
We create an efficient adversary B who breaks the order assumption, see Section 2.4
and [37]. Let us assume thatA can open the commitment c to polynomials f0, f1, f0 ̸= f1.
Since c = g f̂0(α) = g f̂1(α), therefore g f̂0(α)−f̂1(α) = 1, i.e., f̂0(α)− f̂1(α) = 0 mod |G|.
Now, B outputs with non-negligible probability f̂0(α)− f̂1(α) which is a multiple of the
group order |G| whenever f̂0(α) ̸= f̂1(α) contradicting the order assumption.

Now, we deal with the case when f0(α) = f1(α)∧ f0 ̸= f1. Let g := f0− f1 and the
first non-zero monomial of g be xk. Observe that

∑k−1
i=0 (f0,i− f1,i)α

i ≤ 2p
∑k−1

i=0 αi =
2p(αk−1)

α−1 ≤ αk. The first inequality follows from ∀i : |fi| ≤ p, and the second inequality
follows from 2p ≪ α. Put differently, the first non-zero monomial dominates the rest
of the sums of the remaining monomials. Hence, it cannot be the case for polynomials
f0, f1 ∈ F≤d

p [x] that f̂0(α) = f̂1(α) ∧ f0 ̸= f1.
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4.5 Hiding

Lemma 7. The Behemoth PC satisfies hiding if the discrete logarithm problem is hard
in the group of unknown order G.

Proof. We can repeat the proof of hiding for the KZG polynomial commitment scheme.
Suppose there exists an adversaryA that breaks the hiding property of commitment c and
correctly computes polynomial f(x) (without loss of generality deg(f) = d) given d valid
witness tuples (zi, f(zi), πOpen,i). We show how to use A to construct an adversary B
that can break the discrete logarithm assumption in G. Let (g, ga) ∈ G×G be a discrete
logarithm instance that B needs to solve. B generates srs forA by appropriately picking
α ∈ Z and computing srs = (α, {gαi}di=0). B sets (j, f(j)) ∈R Z2

p as polynomial f(x)’s
evaluations at indices j. It then assumes f(0) = a, which is the answer for the discrete
logarithm instance, and computes gf(α) using d + 1 exponentiated evaluations: (0, ga)
and the d other chosen pairs (j, gf(j)). Finally, B computes as part of the witnesses qj
for the d chosen evaluations (j, f(j)) as qj = (gf(α)/gf(j)1/(α−j), and sends srs and d
witness tuples (j, f(j), πOpen,j) to A. Once A returns polynomial f(x), B returns the
constant term f(0) as the solution for the discrete logarithm instance. It is easy to see
that the success probability of solving the discrete logarithm instance is the same as the
success probability of A, and the time required is a small constant larger than the time
required by A.

5 Transparent, Constant zkSNARKs

A well-known and popular recipe for devising efficient zkSNARKs for NP is to combine
a securePC scheme with a polynomial interactive oracle proofs (IOP) protocol [19, The-
orem 4.] to obtain a zkSNARK. In the polynomial IOP paradigm, the prover sends oracles
to polynomials that the verifier can query at random points [8]. After several rounds of
communication, the verifier, having seen some evaluations of the received polynomial
oracles, decides whether the claimed statement is true or not. For a formalization of
the polynomial IOP paradigm, the reader is referred to [8, 19]. The polynomial oracles
sent by the prover to the verifier can be instantiated with polynomial commitments.
Polynomial IOPs and polynomial commitment schemes offer a vast design and trade-off
space, allowing practitioners to choose the characteristics (e.g., trust assumptions, prover
and verifier efficiency, proof size, etc.) that best suit their applications. At the time of
writing, the state-of-the-art polynomial IOP is the PLONK polynomial IOP by Gabi-
zon, Williamson, and Ciobotaru [28]. Plonk is a 3-round honest verifier zero-knowledge
polynomial IOP with preprocessing for any NP statementR with arithmetic complexity
n that makes 12 queries to 12 univariate degree n polynomial oracles. The total number
of distinct query points is 2. The preprocessing verifier does O(n) work to check 7 of
the univariate degree n polynomials.

When the Plonk polynomial IOP is compiled with the BehemothPC scheme, it yields
the first transparent zkSNARK with constant communication and verifier complexity in
the polynomial-IOP paradigm.

Theorem 3. (Transparent, Constant SNARK.) There exists an O(1)-round public coin
interactive argument of knowledge for any NP relation of arithmetic complexityn that has
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O(1) communication, O(1) online verification, cubic prover time, and a preprocessing
step that is verifiable in quasilinear time. The argument of knowledge has knowledge
soundness, assuming it is instantiated with a group G of unknown order in which the
strong RSA assumption and the adaptive root assumption hold.

We note that transparent, succinct arguments with the same asymptotics exist outside
the polynomial-IOP paradigm due to Lai and Malavolta [34]. They apply subvector
commitments and probabilistically checkable proofs (PCP) to achieve constant-size,
transparent arguments with constant-time verifiers.

6 Performance Analysis

This section studies the theoretical and practical performance of our PC scheme.

6.1 Transparent Setup Efficiency

The GenSRS(1λ, d) algorithm is transparent and somewhat time-sensitive as it incurs
large exponentiations; computing gα

d entails d logα repeated squaring. Since α ≈
pd, the setup algorithm has a quadratic complexity O(d2 log p) in the degree d of
the committed polynomial. This transparent setup only needs to be performed once.
It is extensible in the sense that there is no limitation on the maximum degree of
the committed polynomial. The extensibility of the srs might be valuable in certain
applications, e.g., zkSNARKs. Whoever computes the Behemoth srs can also prove
the correctness of the setup by proving that for every pair of neighboring elements
in the srs, the exponentiation was done correctly. They can prove this by enclosing
proofs of exponentiations for ∀i : (gα

i

, gα
i+1

)d−1
i=0 [40, 47]. In a typical parameters

setting (d = 220, p ≈ 2256), the setup algorithm entails computing gα
d , i.e., one must

compute ≈ d2 log p = 248 repeated squarings to complete the transparent setup. This
computation has a similar computational complexity to the LCS time-lock puzzle created
by Rivest [42]. To compute the LCS time-lock puzzle, one needed to compute ≈ 247

repeated squarings. Originally, the LCS time-lock puzzle was intended to last for 35
years. However, on specialized hardware using novel techniques [36], it is possible to
accomplish this computation in less than two months. Certainly, the complexity of the
setup algorithm becomes more feasible for smaller polynomial commitment schemes,
e.g., d ∈ {212, 213, 214, 215} that is currently under consideration for deployment on the
Ethereum blockchain [48]. We evaluate the practical performance cost of completing
the Behemoth transparent setup in RSA and class groups for various parameter settings
when using the currently available best specialized hardware implementations of the
corresponding group operations [36, 49], cf. Table 1. Our transparent setup for larger
committed polynomials, i.e., d ≈ 225 − 230 becomes practically infeasible to complete
when the polynomial ring is defined over a prime with 256 bits.

6.2 Prover Efficiency

Committing to a polynomial f can be done by computing g f̂(α). Though the size of f̂(α)
is huge over the integers (≈ pd+1), the prover can compute this exponentiation in O(d)
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Group G
Degree d

210 212 213 214 215 220 225 230

RSA 2048-bits 0.54 secs 8.59 secs 34.36 secs 2.291 mins 9.163 mins 6.516 days 18.27 years 18706 years
Class 2048-bits 31.8 mins 8.47 hrs 1.41 days 5.65 days 22.6 days 63.3 years 64800 years 6.64 · 107 years

Table 1: We provide time estimates for completing the transparent setup for a given GUO
G and maximum supported degree d of the committed polynomial. For every cell, we
consider the size of the base field of the polynomial ring F≤d

p [x] to be a 256-bit prime,
as it is the case in most applications. The state of the art is that on specialized hardware,
i.e., ASICs, one iteration of the function f(t) : t → g2

t takes 2ns for a 2048-bit RSA
group. In the case of class groups with 2048-bit discriminant, we have that one iteration
of the VDF function takes 7.1µs [49].

Open proof sizes Open time complexity
|Com| |πOpen| Prove Verify |srs| Setup

KZG [30] 1GP 1GP O(d) O(1) O(d)GP Trusted
Bootle et al. [15] 1G O(

√
d)G O(d) O(

√
d) O(

√
d)G Transparent

Bulletproofs [18] 1G 2 log dG O(d) O(d) O(d)G Transparent
FRI [6] 1G λ log2 dG O(λd) O(λ log2 d) O(1)G Transparent
DARK [19] 1GU 2 log dGU + 2 log dFp O(d log d) O(log d) O(1)GU Transparent
Dory [35] 1GP 6 log dGP O(dlog 8/ log 25) O(log d) O(d)GP Transparent
Dew [2] 1GU 66GU O(d3/ log d) O(log d) O(1)GU Transparent
Behemoth (this work) 1GU 47GU + 19Fp O(d3/ log d) O(1) O(d)GU Transparent

Table 2: Comparing the theoretical performances of polynomial commitment schemes.
We only enclose the most efficient representative from each cryptographic approach
to keep the table compact to obtain PC schemes. Properties in red are undesirable
or impractical, and properties in orange become an issue for polynomials with larger
degrees d. Properties achieved in green indicate practical, efficient constructions or
desirable characteristics. To account for the differences in the concrete efficiency of the
applied groups, we denote the applied cryptographic groups differently. Specifically,
schemes that are instantiated in groups equipped with bilinear pairings are denoted as
GP , while groups of unknown orders are denoted as GU . Groups where one only needs
to assume the discrete logarithm assumption or the existence of one-way functions are
simply denoted as G. Here, we report an optimized Behemoth proof size achieved by
proof batching described in Section 6. Recall that Dew’s verifier complexity isO(log d)
field operations, i.e., for practical parameter choices, logarithmic verifier complexity
might be better than O(1) verifier complexity.

time, since all the monomials gαi of α are provided in the srs. Hence, the prover only
needs to compute d small exponentiations with exponents of length log p.

Computing the opening proof for the statement f(z) = s is more computationally
heavy. First, the prover needs to compute gq̂(α), where the quotient polynomial q(x) is
defined as q(x) := f(x)−ŝ

x−z . The prover computes directly this polynomial division using
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Polynomial division algorithm for the ProveEvaluation protocol.

Input: (srs, f(x) ∈ Fp[x], z, s = f(z)).P wants to compute q̂(α) = f̂(α)−ŝ
α−z

in the exponent.

1. Let Q := g0.
2. ∀i ∈ [0, d] do the following:

– Compute qd−i, i.e., the (d− i)th coefficient of f(x)−ŝ
x−z

. Let Q := Q · (gα
d−i

)qd−i .

Output: Q = gq̂(α).

Fig. 4: Polynomial division algorithm to compute q̂(x) = f(x)−ŝ
x−z , and gq̂(α) in the

exponent as part of the ProveEvaluation protocol. We note here that log2(qd−i) ≈
i log2(p), hence, this is a quadratic algorithm in the degree of the committed polynomial.

Horner’s method. It computes gq̂(α) on a rolling basis, i.e., monomial by monomial,
using the algorithm detailed in Figure 4. This strategy leads to an O(d2) computation.
Completing the opening proof (both to compute theProveEvaluation and thePoKDegUp
proofs) requires the computation of the following NIZKs.

πPoE: using the techniques of Wesolowski [47], a PoE proof consists of a single group
element, see Appendix A.2. The biggest chunk of the prover’s work in this NIZK is
incurred by computing a large modular division: x = ql + r, where x ≈ pd+1 and
l, r ≈ λ. Computing q ∈ Z takes quasi linear time in the number of digits of x, i.e.,
O(d log d log p).

πPoKEMon: a PoKEMon proof consists of a single group element and a small integer r
with size≈ p, see Appendix A.3. Also, in this case, the prover’s work is quasi-linear,
i.e., O(d log d log p).

πPoKPE: Arguing about the positivity of ŝ and B − ŝ for ŝ = f̂(z) requires the prover
to find three (four) squares that sum up to ŝ and B − ŝ, respectively. The size of
both of these integers ŝ,B − ŝ is roughly (d + 1) log p bits. The state-of-the-art
algorithm by Pollack and Treviño finds the (three) four squares decomposition of
an integer n in time O(log2 n/ log log n). Hence, creating the PoKPE proof takes
approximately O(d2 log2 p/(log d + log log p)) time, i.e., quasi quadratic in the
degree of the committed polynomial. Since the algorithm operates on integers of
length d log p bits, in practice, the computational complexity of creating the PoKPE
proof via the three square decompositions is cubic. The proof consists of 6 group
elements and 3 small (≈ p) integers.

πPoKE: this proof system has the same complexity as thePoE proof that isO(d log d log p),
though the proof consists of a group element from G and an integer in Fp.

πChaumP: the Chaum-Pedersen DLEq proof has the same complexity as generating two
PoKE proofs. It has a proof size of two group elements from G and two small
integers from Fp.

The ProveEvaluation protocol consists of 1 PoE, 2 PoKEMon, and 2 PoKPE
proofs. The PoKDegUp proof consists of 3 PoKE, 1 Chaum-Pedersen DLEq, and 1
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ProveEvaluation proof. Altogether the Open protocol requires the computation of 4
PoE, 8 PoKEMon, 8 PoKPE, 6 PoKE, and 2 Chaum-Pedersen DLEq proofs. Therefore,
the unoptimized Behemoth Open proof size consits of 70G and 42Fp elements. Next,
we mention techniques to shrink the proof size even further.

Batching the applied NIZK proofs. The Open protocol applies 24 instances of the
PoKE,PoKPE,ChaumP,PoKEMon proofs where the verification equation checks that
the prover knows a random prime xi-root wi of a public element ai, i.e., wxi

i = ai
for i ∈ [0, 24]. We have that with overwhelming probability for the λ-bit challenge
primes: ∀i, j(i ̸= j) : gcd(xi, xj) = 1. That allows us to make the opening proof
even more succinct by batching the underlying NIZK proofs due to the protocol PoKCR
(aggregating knowledge of co-prime roots) introduced in [12], see also Appendix A.6.

6.3 Verifier Efficiency

The verifier runs in constant time. Verifying an opening proof entails verifying several
NIZKs as subprotocols, i.e., PoE, PoKEMon, PoKPE, PoKE, ChaumP, all requiring
constant time. The verifier needs to compute a constant number of group operations to
verify a Behemoth Open proof. In particular, an unoptimized (without proof batching)
version of the Open protocol requires the computation of 210 group operations.

P’s concrete complexity V’s concrete complexity
|π| G Fp G Fp

PoE(Q,α− z)a [47] 1G O(d log p) O(d log d log p) 3 0
PoKEMon [12] 1G+ 1Fp O(d log p) O(d log d log p) 3 0
PoKE [12] 1G+ 1Fp O(d log p) O(d log d log p) 3 0
ChaumP (DLEq) [12, 20] 2G+ 2Fp O(d log p) O(d log d log p) 6 0
PoKPE [2] 6G+ 3Fp O(d log p) O(d3 log3 p/(log d+ log log p)) 24 0
ProveEvaluation (cf. Section 3.3) 15G+ 8Fp O(d log p) Õ(d3/ log d) 33 0
PoKDegUp (cf. Section 3.3) 20G+ 13Fp O(d log p) Õ(d3/ log d) 72 0
Open (cf. Section 3.2) 70G+ 42Fp O(d log p) Õ(d3/ log d) 210 0

Table 3: Behemoth Open protocol’s proof sizes and concrete computational costs for
the prover and verifier, respectively. The Open protocol consists of several subprotocols.
For each subprotocol, we enlist the proof size and the number of group operations the
prover and the verifier needs to compute in the applied group of unknown order G and
the base field Fp of the polynomial ring F≤d

p [x]. The Open protocol consists of two
executions of the ProveEvaluation and the PoKDegUp protocols. This table considers
an unoptimized version of the Behemoth Open protocol, i.e., without proof batching.

a Note that in our variant of Wesolowski’s PoE protocol, the verifier outsources its computation
in Fp to the prover. Hence, the verifier does not need to compute group operations in Fp.
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7 Conclusion and Open Problems

In this work, to the best of our knowledge, we constructed the first transparent polynomial
commitment scheme that achieves both constant-size opening proofs and verification
time. The main idea of our construction is to instantiate the KZG opening strategy in a
group of unknown order. Hence, our construction affirmatively answers the question of
succinct, transparent polynomial commitment schemes. However, several challenging
open problems and research directions remain.

7.1 Prover efficiency

The downside of our construction is the increased prover cost. Ideally, one wants to
achieve a (quasi)-linear prover time that is also concretely efficient. Unfortunately,
cubic prover time is concretely impractical in most applications. Hence, making our
prover asymptotically and concretely more efficient would be fascinating. One of the
bottlenecks of our construction is finding the four-square decomposition of an integer.
Is there a concretely efficient algorithm that finds the four-square decomposition of an
integer in quasi-linear time (in the integer’s bit length)?

7.2 Batching opening proofs and other extensions

The KZG PCS offers batching capabilities for opening proofs. Batching opening proofs
for the same polynomial was already introduced in the KZG paper. Boneh et al. introduce
an extension of the KZG scheme [13], where one can batch-opening proofs for multiple
points opened at multiple polynomials. Feist and Khovratovich design a protocol that
allows the fast computation of KZG opening proofs where primitive roots are the opened
points [26]. It seems accessible to adapt all these techniques to the group of unknown
order setting. We leave as future work the security and efficiency analysis of these
protocols in the Behemoth setting. Another fruitful direction of future work might be to
extend Behemoth commitments to multivariate commitments akin to Papamanthou et
al. [39], who extended the KZG PC scheme to multivariate polynomials at the expense
of increased srs, i.e., quadratic,

(
d
2

)
, in the case of bivariate polynomials, and

(
d
k

)
for

k-variate polynomials.

7.3 Succinct, post-quantum polynomial commitment schemes

PC schemes with constant-size evaluation proofs and verifiers are not post-quantum
secure. The ultimate PC scheme would possess these beneficial performance charac-
teristics and post-quantum security. Therefore, it is an interesting research direction to
design post-quantum secure, transparent polynomial commitment schemes [5, 29] with
both constant evaluation proofs and constant verifier. Currently known post-quantum
secure PC schemes [4, 16] apply lattice-based cryptographic assumptions.
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A The applied NIZK proof systems

In this paper, we rely on non-interactive zero-knowledge proofs built for the following
efficiently decidable languages. The following proof systems were proven secure in the
generic group model [43] by Boneh, Bünz, and Fisch [12], and Thakur [45].

A.1 Chaum-Pedersen proof for discrete logarithm equality (ChaumP)

Chaum and Pedersen [20] introduced an efficient proof system for the following relation.

RChaumP = {((s, t, u, v ∈ G);x ∈ Z) : s = tx ∧ u = vx}. (28)

Their protocol is not directly applicable in our case, as we work in a group of unknown
order, while the original ChaumP protocol was introduced for cyclic groups with known
prime order. However, Thakur showed in [45] how to adapt the original Chaum-Pedersen
discrete logarithm equality (DLEq) protocol to the group of unknown order setting.
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Params: G $←− GGen(λ), g ∈ G. Inputs: s, t, u, v ∈ G, x ∈ Z. Claim: tx = s ∧ vx = u.

1. P sends ĝ := gx to V .
2. V sends l ∈R Primes(λ) to P .
3. P computes q = ⌊x

l
⌋ ∈ Z ∧ r ∈ [l], where x = ql + r. P also computes Q1 = tq ∈

G, Q2 = vq ∈ G, g∗ := gq and sends (Q1, Q2, g
∗, r) ∈ G3 × [l] to V .

4. V checks r ∈ [l] and verifies the equations s ?
= Ql

1t
r ∧ u

?
= Ql

2v
r ∧ (g∗)lgr

?
= ĝ.

Fig. 5: The ChaumP discrete logarithm equality protocol for groups of unknown order.

A.2 Proof of Exponentiation (PoE)

Wesolowski introduced a constant-size proof system for the following language [47]:

RPoE = {((u,w ∈ G), x ∈ Z);⊥) : w = ux ∈ G)}. (29)

Note that there is no secret witness in the languageRPoE. The following protocol yields
a proof forRPoE that consists of a single group element.

Params: G $←− GGen(λ). Inputs: u,w ∈ G, x ∈ Z. Claim: ux = w.

1. V sends l ∈R Primes(λ) to P .
2. P computes q = ⌊x

l
⌋ ∈ Z ∧ r ∈ [l], where x = ql + r. P sends Q = uq ∈ G to V .

3. V computes r = x mod l and checks w ?
= Qlur .

Fig. 6: The PoE protocol.

We remark that the verifier’s work consists of two group operations in G and the
computation of q = ⌊xl ⌋ ∈ Z. In our application x ≈ α ≈ pd. Since computing q takes
O(log d) steps and we want a constant verifier, therefore, we outsource this computation
to the prover with the help of the following proof system.

A.3 Proof of Knowledge of Exponent Modulo an odd integer (PoKEMon)

Boneh et al. gave an efficient proof system for the following useful language in groups
of unknown order [12].

RPoKEMon = {((w ∈ G, x̂ ∈ [n]);x ∈ Z) : w = gx ∈ G, x mod n = x̂}. (30)
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Params: G $←− GGen(λ), g ∈ G. Inputs: Odd prime n,w ∈ G, x̂ ∈ [n]. Witness: x ∈ Z;
Claim: gx = w ∧ x ≡ x̂ mod n.

1. V sends l ∈R Primes(λ) to P .
2. P computes q ∈ Z ∧ r ∈ [l · n], where x = q(l · n) + r. P sends Q = gq ∈ G and r

to V , i.e., π = (Q, r).
3. V accepts if r ∈ [l · n] ∧ r ≡ x̂ mod n ∧ w

?
= Ql·ngr .

Fig. 7: The PoKEMon protocol.

A.4 Proof of Knowledge of Squared Exponent (PoKSE)

A useful proof system was devised by Boneh et al. and Arun et al. for the following
important language [2, 12].

RPoKSE = {((w ∈ G);x ∈ Z) : w = gx
2

∈ G)}. (31)

Params: G $←− GGen(λ), g ∈R G. Inputs: w ∈ G. Witness: x ∈ Z; Claim: gx
2

= w.

1. P sends z = gx to V .
2. V sends l ∈R Primes(λ) to P .
3. P computes q ∈ Z∧ r ∈ [l], where x = ql+ r. P sends Q = zq, Q′ = gq ∈ G and r

to V , i.e., π = (Q,Q′, r).
4. V accepts if r ∈ [l] ∧ w

?
= Qlzr ∧ z

?
= Q′lgr .

Fig. 8: The PoKSE protocol.

A.5 Proof of Knowledge of Positive Exponent (PoKPE)

The following proof system allows one to prove with a constant-size proof that a commit-
ted integer is non-negative in a group of unknown order [2]. We note that this essentially
yields an efficient range proof.

RPoKPE = {((w ∈ G);x ∈ Z) : (w = gx) ∧ (0 < x))}. (32)

A.6 Aggregating Knowledge of Co-prime Roots (PoKCR)

In most of the applied NIZKs above, the verification equation checks a witness wi as a
random prime xith-root of an element ai. These verification equations can be batched
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Params:G $←− GGen(λ), g ∈R G. Inputs:w ∈ G. Witness:x ∈ Z; Claim: gx = w∧0 < x.

1. P computes x =
∑4

i=1 a
2
i ∈ Z using the probabilistic Pollack-Treviño algorithm [41].

Let Pi = ga
2
i .

2. P and V execute the PoKSE protocol for each Pi.
3. V accepts if all PoKSE’s output is accept and at least onePi ̸= 1 and ifw = P1P2P3P4.

Fig. 9: The PoKPE protocol.

into a single check whenever ∀i, j, i ̸= j : gcd(i, j) = 1, i.e., there exists a constant-size
proof for the following language,

RPoKCR = {a ∈ Gn;x ∈ Zn : w = ϕ(x) ∈ G}, (33)

where ϕ(·) : Zn → G is a group homomorphism. The following protocol allows us
to prove membership efficiently in the RPoKCR language; the proof consists of a single
group element. On the other hand, the verifier has a slightly increased computation cost,
as the verification of the aggregated proof now requires O(n log n) group operations
with exponents of size maxi |xi|. Since, in the case of the Behemoth PC verifier, n is
constant, this added computation overhead does not change the asymptotic overhead of
our verifier.

Params: G $←− GGen(λ), g ∈ G. Inputs: a ∈ Gn,x ∈ Zn such that gcd(x1, . . . , xn) = 1.
Witness: w ∈ Gn such that wxi

i = ai.

1. P computes w =
∏n

i=1 wi, and P sends w to V .
2. V computes x∗ =

∏n
i=1 xi, and y =

∏n
i=1 a

x∗/xi
i using a recursive algorithm of

Boneh et al. [12]. V accepts if wx∗
= y.

Fig. 10: The PoKCR protocol.
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