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Abstract. The notion of witness encryption introduced by Garg et
al. (STOC’13) allows to encrypt a message under a statement x from
some NP-language L with associated relation (x,w) ∈ R, where de-
cryption can be carried out with the corresponding witness w. Unfortu-
nately, known constructions for general-purpose witness encryption rely
on strong assumptions, and are mostly of theoretical interest. To ad-
dress these shortcomings, Goyal et al. (PKC’22) recently introduced a
blockchain-based alternative, where a committee decrypts ciphertexts
when provided with a valid witness w. Blockchain-based committee so-
lutions have recently gained broad interest to offer security against more
powerful adversaries and construct new cryptographic primitives.
We follow this line of work, and propose a new notion of statement-
oblivious threshold witness encryption. Our new notion offers the func-
tionality of committee-based witness encryption while additionally hid-
ing the statement used for encryption. We present two ways to build
statement-oblivious threshold witness encryption, one generic transfor-
mation based on anonymous threshold identity-based encryption (A-
TIBE) and one direct construction based on bilinear maps. Due to the
lack of efficient A-TIBE schemes, the former mainly constitutes a feasi-
bility result, while the latter yields a concretely efficient scheme.

Keywords: Threshold Witness Encryption, Statement Obliviousness, Committee-
Based Decryption, Threshold Tag-Based Encryption

1 Introduction

The notion of witness encryption as introduced by Garg et al. [1] allows a party
to encrypt a message m under some problem instance x such that the ciphertext
can only be decrypted by someone holding a witness w. There are countless
applications of witness encryption ranging from public key encryption with fast
key generation, attribute-based encryption for general circuits [1], to using it for
encrypting a prize for solving an NP-hard puzzle like the millennium problems, or



achieving fairness in MPC [2]. More formally, witness encryption is defined for an
NP language L with associated relation (x,w) ∈ R, where x is the statement and
w is the corresponding witness. Security as defined by Garg et al. [1] states that
for any ciphertext that was created for x not in the language L, ciphertexts do
not reveal information about the encrypted message. While this notion only deals
with statements that are not in the language, Goldwasser et al. [3] introduced
the notion of extractable witness encryption stating that even for a statement in
the language, ciphertexts hide the message.

Although great progress has been made over the last years [1, 3, 4, 5, 6, 7],
witness encryption still has limitations. First, known constructions rely on strong
assumptions like multilinear maps [1, 3, 5, 6], indistinguishability obfuscation [4]
or cryptographic invariant maps [7], and its constructions are not practically
efficient yet. Second, even the stronger notion of extractable witness encryption
does not hide the statement for which the ciphertext was created. This rules out
interesting applications that require the statement to be private until decryption
takes place, as it may disclose sensitive information.

The first shortcoming of state-of-the-art witness encryption can be circum-
vented via so-called extractable Witness Encryption on Blockchains (eWEB) put
forward by Goyal et al. [8]. It is based on a blockchain following a recent trend
in cryptography, where constructions leverage the power of blockchains, e.g.,
[2, 9, 10, 11, 12]. In the context of witness encryption, this results in a shift from
relying on strong number theoretic assumptions to relying on an honest quorum
of users within a committee. This trend is further fueled by a line of work that
presents constructions of how such committees can be obtained in a blockchain
setting [13, 14, 10].

In a nutshell, the scheme of [8] works as follows. Parties encrypt a message
by secret sharing it to a committee and labeling the shares with a statement x.
To decrypt, parties need to send a witness to the committee proving that x is
in the language L and getting the secret shares back. While the construction
of Goyal et al. is certainly more efficient than standard general-purpose witness
encryption, the downside of their solution is the storage complexity of the com-
mittee, which grows linearly with the number of ciphertexts. Improving on the
approach of [8], [9] propose as an application for their large-scale non-interactive
threshold cryptosystem a solution, in which the decryption committee stores
only secret key shares of a labeled threshold encryption scheme. The committee
receives ciphertext-witness-pairs and decrypts only if the witness corresponds to
the statement encoded as the label of the ciphertext. This reduces the storage
complexity to be only constant. Following [8, 9], Campanelli et al. [10] presents
a similar construction called Blockchain Witness Encryption (BWE). However,
their construction is not practical (e.g., for each encryption a smart contract
deployment is required).

In this work, we start with the approach of [9], which we abstractly call
threshold witness encryption, and address the second shortcoming by a new fea-
ture called statement obliviousness, which guarantees that the statement is hid-
den given the ciphertext. This new feature allows us to extend applications of
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standard (threshold) witness encryption with an additional privacy property. For
instance, we can construct time-lock encryption from witness encryption, as pro-
posed by [6], without leaking the concrete time at which a decryption can happen
to third parties, or we can construct a dead-man’s switch, as proposed by [8],
without revealing for which person it was created. Moreover, this feature enables
a new class of applications that inherently require the privacy property and are
not covered by standard witness encryption. As a concrete example, imagine a
user wants to buy some shares of a company or some tokens on a Decentralized
Finance (DeFi) trading platform, once the price of the asset reaches a certain
value; however, without the necessity of having to stay online. Privacy is an
important aspect in this scenario, since revealing information, e.g., the intended
purchase price, could lead to financial disadvantages, e.g., due to insider trad-
ing. To support the described scenario, the user can exploit statement-oblivious
threshold witness encryption in the following way. The user encrypts its trans-
action with the desired share price as statement and a signature of a trusted
price oracle service as the required witnesses. Trusted price oracles are already
available in the DeFi ecosystem and heavily used for building various financial
products. The ciphertext is sent to the user’s broker who repeatedly requests
the signed current share price from the oracle service, attempts decryption, and,
if this gives a valid transaction, executes the trade. For decrypting, the broker
sends the ciphertext together with the current share price to the decryption com-
mittee. As the statement is hidden, no one, not even the oracle service, learns
the desired share price until the transaction is successfully decrypted. Due to the
required signature of the oracle service, the broker cannot send incorrect share
prices to the decryption committee. We provide more details about use-cases of
our new security feature in Section 9.

While [8] and [9] tackled the first limitation and present more efficient con-
structions that are effectively the same as witness encryption, both schemes still
suffer from the fact that the statement is public. In this work, we address the
privacy feature mentioned above. To this end, we introduce a novel notion that
we call statement-oblivious threshold witness encryption (SO-TWE) and show
how to instantiate it.

1.1 Contribution

We start by giving a summary of our contribution and defer an high-level
overview of our constructions as well as a discussion of the technical challenges
to the technical overview.

Primitive definition We introduce the notion of statement-oblivious thresh-
old witness encryption (SO-TWE). This primitive provides effectively the same
functionality as witness encryption while requiring a committee with a fixed
number of corrupted parties as typically done in threshold cryptography. As we
envision the committee to perform decryption on request, we define a security
notion against chosen-ciphertext attacks (CCA) which is at least as strong as
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the notion of extractability for threshold witness encryption. In addition, the
statement-obliviousness property guarantees that the statement used to gener-
ate a ciphertext is hidden. We provide a formal security game combining the
CCA security with our new statement-obliviousness property.

We do not follow up on the existing notions of extractable Witness Encryp-
tion on Blockchains, proposed by [8], or Blockchain Witness Encryption, pro-
posed by [10], as both notions are tied to the blockchain setting. We take a more
general approach by using the committee to achieve witness encryption without
defining the origin of the committee. In contrast to earlier works, however, our
notion considers only static corruptions.

Instantiating SO-TWE We show how to instantiate SO-TWE via a series of
transformations, as depicted in Figure 1. For all constructions and transforma-
tions, we provide formal security proofs. As a first step, we introduce the notion
of oblivious threshold tag-based encryption (O-TTBE) as an extension of stan-
dard threshold tag-based encryption as presented in [15]. Similar to statement-
obliviousness, obliviousness in this context ensures that the tag used for en-
cryption is hidden. Then, we present a general transformation from CCA secure
O-TTBE to CCA secure SO-TWE.

CCA Secure Statement-Oblivious Threshold Witness Encryption
(SO-TWE)

Definition in Section 3

CCA Secure Oblivous Tag-based Threshold Encryption (O-TTBE)
Definition in Section 4

A
S

Collision-Resistant
Hash Function

One-time Signatures (OTS)

CPA Secure Anonymous Threshold
Identity-Based Encryption (A-TIBE)

CPAST
ATIBE)

Homomorphic Secret Sharing (HSS)

CPA-Secure Anonymous Verifiable
Identity-Based Encryption (A-VIBE)

Section 8

Section 7

A
S

Programmable
Random Oracle (pROM)

Bilinear Decisional
Diffie Hellman (BDDH)

Section 6

Section 5

Fig. 1. The Landscape of Our Contributions.
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As a second step, we show two ways to construct CCA secure O-TTBE
schemes. First, we generically build a O-TTBE scheme from collision-resistant
hash functions, one-time signatures and CPA secure anonymous threshold identity-
based encryption (A-TIBE). To the best of our knowledge, there are construc-
tions for anonymous identity-based encryption [16, 17] and threshold identity-
based encryption [18], but there is no construction of an A-TIBE scheme. The
techniques used for anonymous IBE do not allow for a straightfoward thresh-
oldization via secret sharing while maintaining a high threshold and non-interactive
decryption at the same time. As a feasibility result, we show how to instantiate
A-TIBE from non-threshold anonymous identity-based encryption, a signature
scheme and homomorphic secret sharing (HSS). This transformation follows [10]
which constructs non-anonymous threshold identity-based encryption from HSS.
While proving the security of our construction, we discovered a gap in the analy-
sis of [10]. In particular, the construction in [10] allows corrupted parties to trick
honest parties into accepting invalid identity keys, and hence, does not provide
key generation consistency. We propose a solution to fix this gap. While the
A-TIBE-based construction constitutes a feasibility result, we emphasize that
any progress in constructing these building blocks, e.g., in terms of efficiency,
immediately yields more efficient constructions of SO-TWE.

As a second way, we present a concretely efficient instantiation of O-TTBE
in the random oracle model. Our construction extends Hash-ElGamal with a
bilinear mapping and efficient non-interactive zero knowledge arguments. The
resulting scheme is concretely efficient in terms of ciphertext size and bilinear
mapping evaluations. The construction also yields the first efficient threshold
witness encryption scheme that additionally achieves statement obliviousness.
This is because our generic transformation from O-TTBE to SO-TWE only
adds simple hash function evaluations and a check of the witness relation. We
formally prove the security of this construction via a reduction to the Decision
Bilinear Diffie-Hellman assumption.

1.2 Technical Overview

In this section, we outline the main techniques used to construct SO-TWE and
discuss the major challenges.
Emulation of the witness encryption functionality. We consider the setup of a
SO-TWE scheme to be executed by a trusted dealer or via a distributed key
generation protocol. During the setup, the public key and the verification key
are published while the secret key shares are distributed to the committee mem-
bers. It is assumed that an adversary can statically corrupt a subset of the
committee members. We allow the adversary to corrupt all but one committee
member. Upon corruption the adversary takes full control over the committee
members, and hence, learns their secret key shares. Users can encrypt messages
non-interactively based on the public key and a self-chosen statement. Decryp-
tion is performed in an interactive way via a request-response protocol. To this
end, a user sends the ciphertext, a statement candidate and a witness to the com-
mittee. All committee members compute and send their decryption shares to the
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user, who attempts to combine the shares to the actual message. This will only
be successful if it receives sufficiently many valid decryption shares and the wit-
ness relation has been verified successfully. Further, the statement-obliviousness
property provides that the combined shares will only yield the original plaintext
if the statement candidate used for the decryption is the same as the one used
for encryption. While emulating the functionality of witness encryption using
a committee-based approach seems to be easy at first glance, achieving state-
ment obliviousness in combination with CCA security is highly non-trivial, as
discussed next.

Achieving obliviousness in the CCA-setting. Due to the committee setting in
which decryption is executed on request, we require security against chosen-
ciphertext attacks (CCA). The major challenge is to simultaneously guarantee
CCA security and achieve our new notion of statement obliviousness. A com-
mon technique to achieve CCA security in the threshold setting is to incorporate
ciphertext validation before decryption [19, 18, 20, 21, 22]. The validation en-
sures that each decryption request issued by the adversary in the security game
is either declined or yields exactly the original plaintext created by some user.
This feature is required by the security proofs of known CCA secure threshold
constructions, e.g., to prevent the adversary from exploiting homomorphisms in
the group structure to decrypt valid ciphertexts that contain related messages.
The difficulty in our setting is that the decryption committee may not know the
statement used for encryption. In fact, the information if the correct statement
has been used for decryption must not be leaked before decryption is completed.
Any such leakage would allow corrupted servers to break the obliviousness prop-
erty. It follows that we have to allow for multiple decryptions, with different
statements, of the same ciphertext, and hence, cannot follow the standard ap-
proach of previous work. The described scenario makes it highly challenging to
achieve obliviousness in combination with CCA security in the threshold set-
ting. In particular, the challenge is to render decryptions useless for statements
different than the one used for encryption despite applying the correct secret
key shares when generating the decryption shares. Prior CCA-secure encryption
schemes apply the secret key (shares) during decryption only after ensuring that
the resulting (combined) decryption yields exactly the original message. Hence,
we cannot use existing approaches to solve the described challenge.

SO-TWE from oblivious threshold tag-based encryption (cf. Section 5). As a first
step towards SO-TWE, we present a transformation from a primitive called obliv-
ious threshold tag-based encryption (O-TTBE). To this end, we first extend the
standard notion of threshold tag-based encryption presented by Arita and Tsu-
rudome [15] with an obliviousness property. Similar to statement-obliviousness,
obliviousness for a tag-based encryption scheme requires that two ciphertexts
created with different tags cannot be distinguished.

Our first transformation takes a CCA secure O-TTBE scheme in order to
construct SO-TWE. The high-level idea is to use the hash of the statement as
a tag for the O-TTBE scheme. For decryption, a user needs to provide a state-
ment candidate together with a corresponding witness. The decryption servers
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first check if the witness is valid and then use the hash of the provided statement
candidate as the tag in the decryption of the O-TTBE scheme. The statement-
obliviousness property is directly obtained from the obliviousness property of
the O-TTBE scheme but constructing CCA secure O-TTBE still faces the chal-
lenges explained above. As depicted in Figure 1, we follow two different paths to
overcome these challenges and to construct CCA secure O-TTBE as described
below.

O-TTBE from programmable random oracles and bilinear maps (cf. Section 6).
In general, independently of the obliviousness setting, the major difficulty when
proving CCA security is to answer decryption queries without knowledge of the
secret key. When instantiating O-TTBE from black-box primitives, this task is
realized by using oracles of the underlying primitive in the reduction. For exam-
ple, in our transformation from O-TTBE to SO-TWE the reduction to O-TTBE
uses the decryption oracle of the O-TTBE security game to answer decryption
queries of the SO-TWE adversary. When combining CCA security with an oblivi-
ousness property, we additionally face the discussed challenge to answer different
decryption queries for the same ciphertext. Here, a random looking value needs
to be returned except for the decryption query that contains the tag used for en-
cryption. For a concrete O-TTBE scheme, we need to address both challenges in
parallel. Due to the strict ciphertext validation used in existing CCA secure en-
cryptions schemes (e.g., [19, 18, 20, 21, 22]) extending these schemes to support
tag obliviousness cannot be done in a straightforward way.

We propose a new construction starting from CPA secure Hash-ElGamal,
which is a variant of classical ElGamal [23]. In Hash-ElGamal, the encryption
algorithm given a message m samples a random exponent a and outputs two
elements A = ga and M = m ⊕ H(Xa) for a group generator g, a random
oracle H, and a public key X = gx. In the threshold setting, the secret key
x is secret shared among the decryption servers. The decryption shares of the
servers are calculated as di := Axi , where xi is the share of the i-th server. We
apply an extension to this scheme that allows us to solve both aforementioned
challenges at once. We do so by applying a random offset T to A in both,
encryption and decryption. This offset is unique for each ciphertext-tag pair
to obtain random values from decryption for tags different to the one used for
encryption. When applying the offset via multiplication or exponentiation, e.g.,
M = m ⊕ H(Xa·T ), an adversary can easily perform an homomorphic attack,

i.e., Axi·T = (Axi·T ′)
T
T ′ . In order to prevent this, we apply the offset using a

bilinear mapping e, i.e., M = m⊕H(e(T,Xa)).

Further, we ensure that a ciphertext component A cannot be reused in dif-
ferent ciphertexts expect by the party that generated A, and hence, knows the
plaintext anyway. We do so, by adding a non-interactive zero-knowledge argu-
ment of knowledge of a to the ciphertext. The second ciphertext component, M ,
is used for computing the challenge value of the non-interactive zero-knowledge
argument, in order to link this component to the zero-knowledge argument. In
classical ElGamal-based schemes, adding a zero-knowledge argument of knowl-
edge of a to the ciphertext is not sufficient to achieve CCA security, as demon-
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strated in detail by [19]. Instead, it is necessary to provide an additional trapdoor
to solve the general challenge of CCA security, to answer decryption queries. In-
terestingly, in our construction, the tag-dependent offset does not only give us
tag obliviousness but also provides us with such a trapdoor for free. In particular,
in the reduction, we can simulate the random oracle used to compute the offset
such that we learn the discrete logarithm of all offsets sampled by the random
oracle. This allows us to compute e(T,Xa) via e(A,X)logg(T ). We elaborate fur-
ther on the concrete challenges and the intuition of our construction in Section 6
before presenting the formal specification.

Despite being the first instantiation of O-TTBE, our construction yields a
concretely efficient scheme. The ciphertexts consist of a bitstring with length
equal to the message length, a group element of the bilinear mapping’s base
group and two exponents (in Zq, where q is the bilinear group’s order). Decryp-
tion shares consist of one group element in the mapping’s target group and two
exponents. Encryption requires a single evaluation and decryption three evalua-
tions of the bilinear map.

O-TTBE from anonymous threshold identity-based encryption (cf. Section 7).
While the construction described in the previous paragraph yields an efficient
scheme, we also present a generic solution. Boneh et al. [18] show how to achieve
CCA security from one-time signatures and CPA secure identity-based encryp-
tion. Following this approach, we achieve CCA security in the threshold set-
ting by combining one-time signatures with CPA secure anonymous threshold
identity-based encryption (A-TIBE). The anonymity property of the TIBE is
utilized to achieve obliviousness of the TTBE scheme. The high-level idea is
to encode the tag into the identity of the IBE ciphertext. Since the anonymity
property guarantees that no information about the identity can be obtained from
the ciphertext, the tag stays hidden as well. Only the decryption with the cor-
rect tag, i.e., with the identity key corresponding to the tag, reveals information
about the plaintext.

Constructing A-TIBE (cf. Section 8). As a final step, we explore two directions
to obtain anonymous threshold identity-based encryption (A-TIBE). First, we
present a black-box construction based on homomorphic secret sharing (HSS).
The same approach was used by Campanelli et al. [10] in order to construct
threshold IBE without anonymity. When exploring this direction, we discovered
a gap in the security analysis of [10]. The construction in [10] does not provide key
generation consistency, a security property that enables parties to validate cor-
rectness of received identity keys. Without that property, maliciously corrupted
committee members can provide arbitrary identity key shares. This may result
in an incorrect identity key such that the decryption of some ciphertext yields a
different plaintext than the originally encrypted message. As such an attack is
not possible in the non-threshold setting, standard IBE does not provide means
to validate identity keys. It follows that the straightforward thresholdization of
IBE using HSS is not sufficient to provide a secure threshold IBE scheme.

To overcome this problem, we propose a new IBE primitive with an addi-
tional verifiability property. Verifiable IBE contains a check if an identity key
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is computed correctly which may be of independent interest in other settings
where malicious security is required. Such a scheme can be built from a stan-
dard IBE scheme together with an existentially unforgeable signature scheme.
Eventually, we construct anonymous threshold IBE by executing the key gener-
ation algorithm of the verifiable IBE scheme within HSS. We provide a formal
proof showing security of the construction, including the discussed identity key
generation consistency property. We note that in this black-box construction, we
need to consider general-purpose HSS like [10].

Finally, we explore the transformation of the concrete anonymous non-threshold
IBE scheme of Boyen and Waters [16]. The challenge in this transformation
is that the identity key generation requires multiplication of secret values and
freshly chosen randomness that needs to remain private. A direct secret sharing
of these values pose some challenges which we discuss in Appendix H. While
general-purpose secure multi-party computation can solve this task, we aim for
a threshold IBE scheme that requires no interaction during identity key genera-
tion. We point out and discuss two ways how the aforementioned issues can be
tackled and leave formal specifications and security analyses of these approaches
to future work.

2 Preliminaries

Here, we present the most important primitives. Throughout this work, we de-
note the security parameter by κ ∈ N. We denote the set {1, . . . , k} as [k]. For
a negligible function negl : N → R, it holds that for every c ∈ N there exists a
n0 ∈ N such that for all n > n0: |negl(n)| < 1

nc . For the sake of expressiveness,
we often denote a negligible function by negl. We use the abbreviation PPT to
denote a probabilistic polynomial-time algorithm. An NP language L is a lan-
guage that can be decided by a deterministic Turing machine M in polynomial
time. More precisely, a language L is in NP iff there exist a deterministic Turing
machine running in polynomial time in the length of the first input such that for
all x ∈  L there exists a string y such that M(x, y) = 1 and for all x /∈  L there
exists no string y such that M(x, y) = 1.

2.1 Bilinear Maps

We briefly recall the basics of bilinear maps following [24, 18]. Let BGen be a
randomized algorithm that on input a security parameter κ outputs a prime
q, such that log2(q) = O(κ), two cyclic groups of prime order q and a pairing
e : G×G→ GT .

We call e a bilinear map if the following properties hold:

– Bilinearity: For all u, v ∈ G and a, b ∈ Zq, we have e(ua, vb) = e(u, v)ab.
– Non-degeneracy: For generator g of G it holds that e(g, g) 6= 1. Since GT is

of prime order q, this implies that e(g, g) is a generator of GT .
– Efficiency: e can be computed efficiently in polynomial time in κ.
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A bilinear map satisfying the above properties is sometimes called admissible
bilinear map. We are only interested in admissible bilinear maps and implicitly
mean this type of bilinear maps when writing bilinear maps in short. We call
BGen a Bilinear Group Generator if the algorithm can be computed efficiently
in polynomial time in κ and each pairing e generated by BGen is a bilinear map.

While in the above setting the decisional Diffie-Hellman assumption (DDH)
does not hold in group G, there is an extension to the setting with bilinear maps.

Definition 1 (DBDH). The Decision Bilinear Diffie-Hellman assumption (DBDH)
states that for every Bilinear Group Generator BGen and algorithm D running
in time polynomial in security parameter κ it holds that∣∣Pr[D(Ḡ, g, h, ga, gb, e(h, g)ab)]− Pr[D(Ḡ, g, h, ga, gb, R)]

∣∣
≤ negl(κ)

where Ḡ = (q,G,GT , e) ←R BGen(κ), g, h ∈R G, R ∈R GT , and a, b, c ∈R Zq.
The randomness is taken over the random choices of BGen, the group elements
g, h, R, the values a, b, c, and the random bits of D.

2.2 Hash Functions and Digital Signatures

A hash function H is a function that takes as input a string x ∈ {0, 1}∗ and
returns a fixed-length output string H(x) ∈ {0, 1}`(κ) for some polynomial `(κ).
A signature scheme SIG = (KeyGen,Sign,Verify) over message space M consists
of three probabilistic polynomial-time algorithms. The key generation algorithm
KeyGen produces a key pair (SigK,VerK) on security parameter 1κ. The signing
algorithm Sign takes a signing key SigK and a message m ∈ M and produces a
signature σ. A signature σ on message m can be verified with respect to the veri-
fication key VerK using the verification algorithm Verify. As standard, we require
the hash function to satisfy collision resistance and the digital signature scheme
to provide consistency and existential unforgeability against chosen-message at-
tacks. Formal definitions of these properties are provided in Appendix D.1 and
D.2.

2.3 Anonymous Threshold Identity-Based Encryption

We derive the notion of Anonymous Threshold Identity-Based Encryption from [17]
as follows:

Definition 2 (TIBE). An anonymous threshold identity-based encryption scheme
(TIBE) TIBE is associated with the following probabilistic polynomial-time algo-
rithms:

1. Setup(1κ, s, n) takes as input a security parameter 1κ, the number of decryp-
tion servers n and the security threshold s, with 1 ≤ s ≤ n. It generates
system parameters pk, a verification key vk, and n master secret key shares
{ski}i∈[n]. The i-th decryption server gets master secret key share ski.
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2. ShareKeyGen(pk, i, ski, id) takes as input the public parameter pk, the de-
cryption server index i, the corresponding secret key ski and an identity
id ∈ {0, 1}∗. It generates an identity key share (i, iki).

3. ShareVf(pk, vk, id, i, iki) takes as input the public parameter pk, the verifica-
tion key vk, an identity id, a decryption server index i and an identity key
share iki. It outputs true or false.

4. Combine(pk, vk, id, {(i, iki)}i∈S) takes as input the public parameter pk, the
verification key vk, an identity id and indexed identity key shares iki and
returns an identity key ik or ⊥.

5. Encrypt(pk, id,m) takes as input the public parameter pk, an identity id and
a message m and outputs a ciphertext c.

6. Decrypt(pk, id, ik, c) takes as input the public parameter pk, an identity id, an
identity key ik and a ciphertext c and outputs a message m.

We require for all κ, n, s ∈ N, where 1 ≤ s ≤ n, and any (pk, vk, {ski}i∈[n]) ←
Setup(1κ, s, n) the following properties:

– Share consistency: For any identity id ∈ {0, 1}∗ and any i ∈ [n], if
(i, iki)← ShareKeyGen(pk, i, ski, id), then ShareVf(pk, vk, id, i, iki) = true.

– Decryption correctness: For any identity id ∈ {0, 1}∗, if S is a subset of
[n] of size s, IK := {(i, iki)|i ∈ S ∧ (i, iki)← ShareKeyGen(pk, i, ski, id)}i∈S ,
and ik ← Combine(pk, vk, id, IK), then we require that for any m in the
message space, m = Decrypt(pk, ik,Encrypt(pk, id,m)).

Security. We define security via three properties: key generation consistency,
security against chosen-identity attacks and anonymity. Informally, the first one
states that an adversary cannot generate a ciphertext and two sets of valid
identity key shares for the same identity such that the shares combine to dif-
ferent keys and the ciphertext is decrypted to two different plaintexts. The last
ones state that an adversary cannot distinguish between two encryptions and
two identities used for encryption. We formally define the security game and
ANON-IND-ID-CPA security in Appendix D.6.

3 Statement-Oblivious Threshold Witness Encryption

In the setting of threshold witness encryption (TWE), we distinguish between
users and decryption servers. Users either aim to encrypt some plaintext under
a statement x in some NP language L or aim to decrypt some ciphertext know-
ing a witness corresponding to the statement x ∈ L. Decryption servers possess
private information and assist users while decrypting a ciphertext. The decryp-
tion servers constitute a committee with a fixed number of corrupted parties.
The committee may be static or adaptive depending on the concrete instanti-
ation. For instance, a line of work [13, 14, 10] proposed mechanisms to select
committees without revealing the identity of the members until they speak to
protect against adaptive adversaries. The constructions are based on techniques
incorporated in many popular blockchain. We emphasize that our definition and
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construction abstracts from the concrete instantiation of the committee. We only
assume that a committee consists of n decryption servers and only s−1 of them
are corrupted. Moreover, we assume the setup procedure of a TWE construc-
tion to be executed by a trusted dealer. This approach is standard in threshold
cryptography and a trusted dealer could be realized by a tailored multi-party
computation protocol. The dealer distributes secret information to the decryp-
tion servers and publishes public information to all parties.

In contrast to the definition of extractable witness encryption on blockchain
(eWEB) by [8], we abstract away the realization of the committee while their
definition explicitly considers a dynamic committee and a hand-off procedure
to move from one committee to another. Since the change of the committee
members is inherent to their definition, they also consider adaptive corruption
in their security game. Moreover, their definition specifically considers a model
where plaintexts are shared to the committee members which reveal these in-
formation only if a witness is presented. In contrast, our definition follows the
approach presented by [9] where only a single secret key is shared between the
committee members. In contrast to the definition of blockchain witness encryp-
tion (BWE) by Campanelli et al. [10] we do not explicitly define our TWE based
notion for blockchains. Here again, we abstract away the concrete realization of
the committee.

Formally, we define our new primitive as follows.

Definition 3 (TWE). A threshold witness encryption scheme (TWE) TWE
for an NP language L with associated relation R consists of the following five
PPT algorithms:

1. Setup(1κ, s, n) takes as input the security parameter 1κ, a threshold s, and
the number of decryption servers n, where 1 ≤ s ≤ n. It outputs a triple
(pk, vk, {ski}i∈[n]), where pk is a public key, vk is a verification key, and ski
is the secret key share for the decryption server with index i.

2. Encrypt(pk, x,m) takes as input the public key pk, a statement x, and a
message m. It outputs a ciphertext c.

3. ShareDec(pk, c, x, w, (i, ski)) takes as input a public key pk, a ciphertext c, a
statement x, a witness w, and the index i together with the secret key share
ski of the i-th decryption server. It outputs a decryption share di or a failure
symbol ⊥ together with the index i.

4. ShareVf(pk, vk, c, x, (i, di)) takes as input a public key pk, a verification key
vk, a ciphertext c, a statement x, and an indexed decryption share (i, di).
It outputs false if the decryption share is invalid and true if it is valid with
respect to pk, vk, c, and x.

5. Combine(pk, vk, c, x, {(i, di)}i∈S) takes as input a public key pk, a verifica-
tion key vk, a ciphertext c, a statement x, and a set of decryption shares
{(i, di)}i∈S . It outputs message m or ⊥.

We require for every security parameter κ ∈ N, every NP-language L with as-
sociated relation R, every n, s ∈ N where 1 ≤ s ≤ n, every output (pk, vk, {ski}i∈[n])
of Setup(1κ, s, n), every x ∈ L and w such that (x,w) ∈ R, for every message
m, and every ciphertext c← Encrypt(pk, x,m):
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– Decryption share validity: If (i, di)← ShareDec(pk, c, x, w, (i, ski)), then
ShareVf(pk, vk, c, x, (i, di)) = 1.

– Correctness: For any S ⊆ [n] of size s, if {(i, di)}i∈S is a set of distinct
decryption shares with (i, di) ← ShareDec(pk, c, x, w, (i, ski)) for each i ∈ S,
then Combine(pk, vk, c, x, {(i, di)}i∈S) = m.

Security. We define security via three properties: indistinguishability under
chosen-ciphertext attacks (IND-CCA), statement obliviousness (SO) and decryp-
tion consistency under chosen-ciphertext attacks (DC-CCA). Intuitively, IND-
CCA and SO state that ciphertexts created using two different messages and
two different statements cannot be distinguished. We combine these property
formally in the security game ExpSO-CCA. The DC-CCA property states that
an adversary cannot produce two sets of valid decryption shares that are com-
bined to two different messages unequal ⊥. Formally, we define the security game
ExpSO-DC.

Experiment ExpSO-CCA
TWE,A (1κ)

M←A0(1κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

α, β ∈R {0, 1}

(x0, x1,m0,m1)← AO(·,·,·,·)
1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, xα,mβ)

(α′, β′)← AO(·,·,·,·)
2 (c∗)

return (α, β) = (α′, β′)

In the given security game, the adversary A = (A0,A1,A2) corrupts the
decryption servers in M. A1 and A2 can use the oracle O(·, ·, ·, ·) to make
decryption queries. To do so, the adversary sends (i, c, x, w) to O which re-
turns (i, di) ← ShareDec(pk, c, x, w, (i, ski)). Only for A2, the oracle first checks
if c = c∗, x ∈ {x0, x1} and (x,w) ∈ R. If this holds, the oracle returns (i,⊥) and
otherwise it returns a correct decryption share.
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Experiment ExpSO-DC
TWE,A(1κ)

M←A0(1κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(x, c, {(i, di)}i∈S , {(i, d′i)}i∈S′)← A
O(·,·,·,·)
1 (pk, vk, {ski}i∈M)

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
m← Combine(pk, vk, c, x, {(i, di)}i∈S)

m′ ← Combine(pk, vk, c, x, {(i, d′i)}i∈S′)
if ∀i ∈ S : ShareVf(pk, vk, c, x, (i, di)) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, c, x, (i, d′i)) = true

∧ ⊥ 6= m 6= m′ 6= ⊥
return 1

else

return 0

Here, the adversary A = (A0,A1) corrupts the decryption servers in M and
A1 can use the decryption oracle O(i, c, x, w) that returns (i, di) ←
ShareDec(pk, c, x, w, (i, ski)).

Definition 4 (SO-IND-CCA Security of TWE). A threshold witness en-
cryption scheme TWE is statement-oblivious and message-indistinuishable un-
der chosen-ciphertext attacks (SO-IND-CCA) secure if for all PPT adversaries
A = (A0,A1,A2), there exist negligible functions negl0 and negl1 such that∣∣∣∣Pr[ExpSO-CCA

TWE,A (1κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpSO-DC
TWE,A(1κ) = 1] ≤ negl1(κ).

Remark 1 The standard notion of witness encryption (cf. [1]) defines security
without access to a decryption oracle. This is due to the fact that decryption in
the standard notion can be attempted by any party locally using knowledge of
the witness. In the threshold setting, decryption is performed via an interaction
with a decryption committee that performs decryption in a distributed way
using a secret shared trapdoor. Hence, we have to give the adversary access to
a decryption oracle.

Remark 2 We note that in the context of TWE SO-IND-CCA security implies
extractability, an additional security requirement often required from witness
encryption. We provide further details to the notion of extractability for TWE
and a reduction from extractability to SO-IND-CCA security in Appendix A.

4 Oblivious Threshold Tag-Based Encryption

In this section, we present the notion of oblivious threshold tag-based encryp-
tion (O-TTBE) which constitutes an extension of standard threshold tag-based
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encryption as presented in [15]. Intuitively, a threshold tag-based encryption
scheme is oblivious if a ciphertext hides the tag it was created with. We first
state the definition of threshold tag-based encryption and present the oblivious-
ness property as part of the security guarantees afterwards.

Definition 5 (TTBE). A threshold tag-based encryption scheme (TTBE) TTBE
consists of the following five PPT algorithms:

1. Setup(1κ, s, n) takes as input the security parameter 1κ, a threshold s, and
the number of decryption servers n where 1 ≤ s ≤ n. It outputs a triple
(pk, vk, {ski}i∈[n]), where pk is a public key, vk is a verification key, and ski
is the secret key share for the i-th decryption server.

2. Encrypt(pk, t,m) takes as input a public key pk, a tag t, and a message m,
and it outputs a ciphertext c.

3. ShareDec(pk, c, t, (i, ski)) takes as input a public key pk, a ciphertext c, a tag
t, and the index i together with the secret key share ski of the decryption
server with index i. It outputs a decryption share di or a failure symbol ⊥
together with the index i.

4. ShareVf(pk, vk, c, t, (i, di)) takes as input a public key pk, a verification key
vk, a tag t, and an indexed decryption share (i, di). It outputs false if the
decryption share is invalid and true if it is valid with respect to pk, vk, c and
t.

5. Combine(pk, vk, c, t, {(i, di)}i∈S) takes as input a public key pk, a verification
key vk, a ciphertext c, a tag t, and a set of decryption shares {(i, di)}i∈S . It
outputs message m or ⊥.

We require for every security parameter κ ∈ N, every committee parameters
n, s ∈ N where 1 ≤ s ≤ n, every (pk, vk, {ski}i∈[n]) generated by Setup(1κ, s, n),
every message m, every tag t and every c← Encrypt(pk, t,m):

– Decryption share validity: If (di, i) ← ShareDec(pk, c, t, (i, ski)), then
ShareVf(pk, vk, c, t, (i, di)) = 1.

– Correctness: If {(i, di)}i∈S is a set of s distinct decryption shares with
(i, di) ← ShareDec(pk, c, t, (i, ski)) for each i ∈ S, then
Combine(pk, vk, c, t, {(i, di)}i∈S) = m.

Security. Security of a TTBE scheme is defined via two properties: oblivious
indistinguishable messages under chosen-ciphertext attacks (IND-CCA) and de-
cryption consistency under chosen-ciphertext attacks (DC-CCA). The intuition
for these properties is analog to the ones of threshold witness encryption. The
IND-CCA property states that ciphertexts created using two different messages
and two different tags cannot be distinguished. The DC-CCA property states
that an adversary cannot produce two sets of valid decryption shares that are
combined to two different messages unequal ⊥. To formalize these properties,
we design the following security games:
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Experiment ExpO-CCA
TTBE,A(κ)

M←A0(1κ) with |M| < s

α, β ∈R {0, 1}
(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(t0, t1,m0,m1)← AO(·,·,·)
1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, tα,mβ)

(α′, β′)← AO(·,·,·)
2 (c∗)

return (α, β) = (α′, β′)

The decryption oracle O(·, ·, ·) takes as parameter an index i, a cipher-
text c and a tag t, and computes (i, di) ← ShareDec(pk, c, t, (i, ski)). If (c, t) ∈
{(c∗, t0), (c∗, t1)} it returns (i,⊥), otherwise it returns (i, di).

Experiment ExpO-DC
TTBE,A(κ)

M←A0(1κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(t, c, {(i, di)}i∈S , {(i, d′i)}i∈S′)← A
O(·,·,·)
1 (pk, vk, {ski}i∈M)

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
m← Combine(pk, vk, c, t, {(i, di)}i∈S)

m′ ← Combine(pk, vk, c, t, {(i, d′i)}i∈S′)
if ∀i ∈ S : ShareVf(pk, vk, c, t, (i, di)) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, c, t, (i, d′i)) = true

∧ ⊥ 6= m 6= m′ 6= ⊥
return 1

else

return 0

The decryption oracle O(·, ·, ·) takes as parameter an index i, a ciphertext c
and a tag t , and returns ShareDec(pk, c, t, (i, ski)).

Definition 6. A TTBE scheme TTBE is OB-IND-CCA secure if for every PPT
adversary A = (A0,A1,A2), there exists negligible functions negl0 and negl1 such
that ∣∣∣∣Pr[ExpO-CCA

TTBE,A(κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpO-DC
OTTBE,A(κ) = 1] ≤ negl1(κ).

We use the notation of oblivious TTBE in short for referring to an OB-IND-CCA
secure TTBE.
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5 Constructing Statement-Oblivious TWE

In this section, we present a construction for statement-oblivious threshold wit-
ness encryption (SO-TWE) from oblivious threshold tag-based encryption (O-
TTBE).

Construction 1: SO-TWEOTTBE

Public parameters:
The scheme is defined for a language L with relation R. The number of committee
members is denoted by n and the threshold parameter is s. We make use of a obliv-
ious tag-based encryption scheme OTTBE and a collision-resistant hash function
H : X→ T, where X is the statement space of language L and T is the tag space of
OTTBE.

Setup(1κ, s, n):
Output (pk, vk, {ski}i∈[n]) := OTTBE.Setup(1κ, s, n).

Encrypt(pk, x,m):
Output c := OTTBE.Encrypt(pk, H(x),m).

ShareDec(pk, c, x, w, (i, ski)):
If (x,w) ∈ R, output OTTBE.ShareDec(pk, c,H(x), (i, ski)). Otherwise, output
(i,⊥).

ShareVf(pk, vk, c, x, (i, di)):
If di = ⊥, output false. Otherwise output OTTBE.ShareVf(pk, vk, c,H(x), (i, di)).

Combine(pk, vk, c, x, {(i, di)}i∈S):
Output OTTBE.Combine(pk, vk, c,H(x), {(i, di)}i∈S).

Theorem 1. Let OTTBE be a threshold tag-based encryption scheme that is
OB-IND-CCA secure and H be a collision-resistant hash function. Then, the
scheme SO-TWEOTTBE is a SO-IND-CCA secure threshold witness encryption
scheme.

The security proof is presented in Appendix B.

Confidential witnesses and decryptions. We can add the support of con-
fidential witnesses and decryptions to our construction by applying techniques
from [8]. To ensure confidentiality of witnesses, clients send non-interactive zero-
knowledge proofs of knowledge of the witness to the decryption severs. Then,
as part of the decryption algorithm the servers check the validity of the proof
against the submitted statement, instead of checking the witness relation di-
rectly. To achieve confidentiality of decryptions, the decryption servers encrypt
decryption shares under the public key of the client as part of the decryption
algorithm. We ensure that decryption requests cannot be replayed with different
public keys by applying the witness confidentiality approach and labeling the
zero-knowledge proof with the submitted public key.
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6 O-TTBE from Bilinear Mappings and Random Oracles

In this section, we present the construction of a concretely efficient oblivious
threshold tag-based encryption scheme. Our construction is based on bilinear
maps and random oracles and its security relies on the Decision Bilinear Diffie-
Hellman assumption (cf. Section 2.1). Before we present the formal specification
of the construction, we give an intuition about the challenges of designing an
O-TTBE scheme and how they are addressed by our construction.

Common approaches towards CCA security in the threshold setting incorpo-
rate ciphertext validation before decryption [19, 18, 20, 21, 22]. The validation
ensures that each decryption request is either declined or yields exactly the orig-
inal plaintext created by some client. This feature is the common way to prevent
the adversary from executing ciphertext-reuse. Under this term, we understand
reusing and potentially adapting ciphertext components in maliciously created
ciphertext with the goal to extract decryptions for valid ciphertexts from the
decryptions of maliciously created ones.

In an oblivious threshold scheme, declining decryptions is not possible since
a single decryption server must not detect if the provided tag is valid. This is
due to the fact that some servers can get corrupted in the threshold setting. If a
single server was able to check the validity of a tag, the adversary would be able
to exploit corrupted servers to break obliviousness. It follows that we have to
apply a less strict ciphertext validation allowing for multiple decryptions, with
different tags, of the same ciphertext. However, decryptions with invalid tags
must not leak any information about the encrypted plaintext or the tag used for
encryption. Consequently, we cannot follow the approaches of previous work.

Instead, we have to take one step back and address the challenge of achiev-
ing CCA security independent of previous work. It turns out that the discussed
ciphertext validation is necessary but not sufficient to prove CCA security. In
particular, when constructing a CCA secure encryption scheme it is not suffi-
cient to take a CPA secure scheme and add a zero-knowledge proof of correct
encryption to the ciphertexts. Proving security via a reduction to a number
theoretic assumption is typically done by building a simulator that uses a con-
crete adversary on the scheme to break the underlying assumption. Even if a
ciphertext is proven to be created correctly, the simulator needs to be capable
of answering decryption queries of the adversary without actually knowing the
secret key. This challenge is typically addressed by incorporating an additional
trapdoor into the construction. It follows that for achieving CCA security we
need both, (i) a way to prevent ciphertext reuse and (ii) a trapdoor to enable
the simulator to answer decryption queries. In addition, for tag obliviousness,
we have to achieve the former while (iii) still allowing multiple decryptions, with
different tags, for the same ciphertext.

We propose a new construction deploying a single extension together with a
simple zero-knowledge proof of correct encryption to a standard threshold variant
of CPA secure Hash-ElGamal. The extension provides both, (iii) tag oblivious-
ness and (ii) a trapdoor for decryption, such that a simple zero-knwoledge proof
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of correct encryption is sufficient to decline invalid ciphertexts, and hence, (i)
prevent ciphertext reuse.

We start by briefly recalling Hash-ElGamal. In Hash-ElGamal, the encryption
of a message m samples a random exponent a and outputs two elements A = ga

and M = m⊕H(Xa) for a group generator g, a random oracle H, and a public
key X = gx. In the threshold setting, the secret key x is secret shared among
the decryption servers. The decryption shares of the servers are calculated as
di := Axi , where xi is the share of the i-th server.

Our extension is to apply a random offset T to A for both, encryption and
decryption, using a bilinear map e. This offset is unique for each ciphertext-
tag pair. Precisely, we compute M := H(e(T,Xa)) ⊕ m for encryption and
di := e(T,Axi) for decryption. As our notion requires each encrypting party
and decryption server to be capable of generating the offset independently, we
generate the offset using a random oracle. In particular, we compute the offset
T by applying the random oracle to the tag t and the ciphertext component A,
i.e., we compute T = H2(t, A). Finally, we add a non-interactive Schnorr zero-
knowledge argument of knowledge of a [25] to the ciphertext, which we bind to
the ciphertext component M . The binding is done by incorporating M into the
generation of the challenge in the Fiat-Shamir transformation [26]. In addition,
we add a Chaum-Pedersen zero-knowledge argument [27] of correct decryption
to decryption shares.

The random offset T adds a random exponent logg(T ) to decryptions with
invalid tags, and hence, ensures that invalid decryptions do not give any infor-
mation about the encrypted message (cf. (iii)). Further it provides a backdoor
that can be exploited by the simulator to answer decryption queries without
knowledge of xi (cf. (ii)). In particular, the simulator can simulate the ran-
dom oracle such that the simulator learns k = logg(T ) for each T generated
by H2. This way, the simulator can calculate the combined decryption shares
D = e(Xk, A) = e(T,Ax) which can again be used to interpolate decryption
shares of individual parties. Finally, the zero-knowledge argument of knowledge
of a ensures that a component A cannot be re-used for different ciphertexts, and
hence, prevents ciphertext reuse (cf. (i)). Further, the zero-knowledge argument
of correct decryption ensures that malicious servers cannot trick honest clients
into excepting incorrect decryptions.

Our construction yields a concretely efficient scheme. The ciphertexts consist
of a bitstring with length equal to the message length, a group element of the
bilinear mapping’s base group and two exponents (in Zq, where q is the bilinear
group’s order). Decryption shares consist of one group element in the mapping’s
target group and two exponents. Encryption requires a single evaluation and
decryption three evaluations of the bilinear map.

We continue by presenting the concrete construction:
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Construction 2: TTBEpROM

Public parameters:
The scheme is defined over a bilinear map e : G × G → GT with groups G and
GT where each group is of order q. The number of committee members is denoted
by n and the threshold parameter is s. The message and tag length is defined as
l. We make use of random oracles H1 : GT → {0, 1}l, H2 : {0, 1}l × G → G,
H3 : {0, 1}l ×G2 → Zq, H4 : G3 → Zq.

Setup(1κ, s, n):
Sample a generator, g, of G, a secret key x ∈R Zq and a sharing polynomial F of
degree s − 1 over Zq such that F (0) = x. Set pk = (g,X := gx), vk := {gF (i)}i∈[n]

and ski := F (i) = xi for each i ∈ [n]. Output (pk, vk, {ski}i∈[n]).

Encrypt(pk, t,m):
Sample a, r ∈R Zq and calculate:

A := ga, T = H2(t, A), M̃ := e(T,Xa), M := H1(M̃)⊕m
U := gr, w = H3(M,A,U), f = r + aw, π := (w, f)

Return c = (M,A, π).
Note that π constitutes a zero knowledge argument of knowledge of logg(A).

ValidateCT(c):
Parse c = (M,A, π = (w, f)) and return true iff

w = H3(M,A,U) for U =
gf

Aw
.

ShareDec(pk, c, t′, (i, ski)):
If ValidateCT(c) = false return (i,⊥). Otherwise choose ri ∈R Zq and compute,

T ′ := H2(t′, A), Di := e(T ′, Axi)

Ui := e(T ′, Ari), Vi := e(T ′, gri)

wi := H4(Di, Ui, Vi), fi := ri + xi · wi
πi := (wi, fi)

and return di := (i,Di, πi).
Note that πi constitutes a zero knowledge argument that (e(T ′, A), e(T ′, vki), Di) is
a Diffie-Hellmann triple.

ShareVf(pk, vki, c, t
′, di):

Parse di = (i,Di, πi = (wi, fi)), c = (·, A, ·), calculate T ′ := H2(t′, A) and return
true iff

wi = H4(Di, Ui, Vi) for Ui =
e(T ′, A)fi

Dwi
i

, Vi =
e(T ′, g)fi

e(T ′, vki)wi
.

Combine(pk, vk, c, t′, {(di)}i∈S):

Return m = M ⊕H1(
∏
i∈S(Di)

λS0,i).
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Correctness of the scheme can be shown as follows:

m = M ⊕H1(
∏
i∈S

(Di)
λS0,i) = M ⊕H1(

∏
i∈S

(e(T ′, Axi))λ
S
0,i)

= M ⊕H1(
∏
i∈S

e(T ′, A)xi·λS0,i) = M ⊕H1(e(T ′, A)x)

= m⊕H1(e(T, gax))⊕H1(e(T ′, gax)) = m,

where t = t′ yields H2(t, A) = T = T ′ = H2(t′, A)).

For security, we state the following theorem:

Theorem 2. Let BGen be a Bilinear Group Generator, (e,G,GT , q)←R BGen(κ)
be a bilinear group in which the Decisional Bilinear Diffie-Hellman (DBDH) as-
sumption holds, and H1, H2, H3, H4 be programmable random oracles. Then, the
scheme TTBEpROM is an OB-IND-CCA secure oblivious threshold tag-based en-
cryption scheme.

We will provide an intuition of our proof for indistinguishable messages
under chosen-ciphertext attacks, here, and defer the formal security proof for
both indistinguishable messages under chosen-ciphertext attacks (defined via
ExpO-CCA

TTBEpROM,A) and decryption consistency under chosen-ciphertext attacks (de-

fined via ExpO-DC
TTBEpROM,A) to Appendix C.

Proof intuition. We prove indistinguishable messages via a reduction to the
DBDH assumption. Hence, we build a distinguisher D that receives a tuple
(ḡ, h̄, α = ḡx, β = ḡy, γ) and decides if the received tuple is a DBDH tuple, i.e., if
γ = e(h̄, ḡ)xy. D has access to an adversary A on the experiment ExpO-CCA

TTBEpROM,A.

The reduction is based on the observation that, in order to win in ExpO-CCA
TTBEpROM,A,

adversary A when receiving a challenge ciphertext (M∗, A∗, ·) has to query H1

at either P0 = e(H2(t0, A
∗), A∗)x or P1 = e(H2(t1, A

∗), A∗)x. If D defines pub-
lic parameters g = ḡ and pk = X = α and challenge ciphertext components
H2(t1−b, A

∗) ← h̄ (via programming of the random oracle) and A∗ = β for
some b ∈R {0, 1}, it follows that P1−b = γ iff the received tuple is a DBDH
tuple. Hence, we can distinguish DBDH tuples from random tuples based on the
event that γ has been queried by A. However, setting M∗ = mbm ⊕ H1(γ) for
bm ∈R {0, 1} does not yield a valid ciphertext if the tuple is no DBDH tuple,
a fact that makes the reduction distinguishable from a real experiment. While
there are techniques to deal with this problem (cf. [19]), this distinguishability
makes the argumentation more long-winded. Instead, we make use of the fact
that we are in the tag-based setting, i.e., there are two possible keys at which H1

can be queried to decide which tag or message has been used for encryption. In
particular, we create M∗ such that it is a correct encryption of mbm under tag
tb, i.e., M∗ = m⊕H1(Pb). At the same time, we program H2 such that P1−b = γ
iff the received tuple is a DBDH tuple, i.e., by programming H2(t1−b, A

∗)← h̄.
Hence, we can distinguish based on the event that γ has been queried while still
creating a valid ciphertext.
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The next question is how to actually compute Pb without knowing x nor
y = logg(A

∗). Here we make use of the fact that D simulates the random oracle
H2 that is used to compute the tag-dependent offset. In particular, whenever
the random oracle H2 is supposed to sample a random value in G, it samples a
random exponent k ∈R Zq instead and returns ḡk. The output is still uniformly
random distributed in G but D learns the discrete logarithm of every value
sampled by H2. This way, D can restore k = logg(H2(tb, A

∗)) and compute

Pb = e(α, βk) = e(H2(tb, A
∗), A∗)x.

As explained above, the major challenge is to answer decryption queries with-
out having access to the private key x. However, this problem can be solved the
same way as computing Pb. In particular, D answers decryption queries for ci-
phertext c = (·, A, ·) and tag t by restoring k = logg(H2(t, A)) and computing

e(β,Ak) = e(H2(t, A), Ax). The only keys for which the restoring of the exponent
k does not work are (t1−b, A

∗) = (t1−b, β) for which D programmed the random
oracle to h̄ without knowing logg(h̄). However, in consistency with the original se-
curity game, D declines decryptions for (c, t) if (c, t) ∈ {(c∗, t0), (c∗, t1)}. Hence,
D only fails to answer decryption queries if A sends a valid ciphertext c 6= c∗

such that c = (·, A∗, π). However, to do so, the adversary needs to be capable
of generating a valid zero-knowledge argument π of knowledge of y = logg(A

∗)
without actually knowing y. In fact, not even D has knowledge of y. The proba-
bility is negligible for a computationally bounded adversary to find such a proof.
It follows that D is capable of answering all decryption queries, expect with
negligible probability.

7 Oblivious TTBE from Anonymous TIBE

This section presents a general transformation from an anonymous threshold
identity-based encryption scheme, a one-time signature scheme and a collision-
resistant hash functions to an oblivious threshold tag-based encryption scheme.
The scheme depicts an extension of [18].

Construction 3: TTBEIBE

Public parameters:
The number of committee members is denoted by n and the threshold parameter is s.
We make use of a one-time signature scheme OTS, an anonymous threshold identity-
based encryption scheme TIBE, and a collision-resistant hash function H : T×K→ I,
where T, K, I is the tag space, the verification key space of OTS, and the identity
space of TIBE.

Setup(1κ, s, n):
Run (pk, vk, {ski}i∈[n]) ← TIBE.Setup(1κ, s, n) and output the keys
(pk, vk, {ski}i∈[n]).

Encrypt(pk, t,m):
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Generate a signature key pair (SigK,VerK) ← OTS.KeyGen(1κ), calculate id :=
H(t,VerK), c0 := TIBE.Encrypt(pk, id,m), and σ := OTS.Sign(SigK, c0). Output c :=
(c0,VerK, σ).

ShareDec(pk, c, t, (i, ski)):
Parse c to (c0,VerK, σ) and check that OTS.Verify(VerK, σ, c0) = true. If the check
fails, output (i,⊥). Otherwise, calculate id := H(t,VerK) and output an identity key
share (i, iki)← TIBE.ShareKeyGen(pk, i, ski, id) as di.

ShareVf(pk, vk, c, t, (i, di)):
Parse c to (c0,VerK, σ) and output true iff OTS.Verify(VerK, σ, c0) = true and
TIBE.ShareVf(pk, vk, H(t,VerK), i, di) = true.

Combine(pk, vk, c, t, {(i, di)}i∈S):
Parse c to (c0,VerK, σ), calculate id = H(t,VerK) and ik :=
TIBE.Combine(pk, vk, id, {(di)}i∈S). If ik = ⊥, output ⊥. Otherwise, output
m := TIBE.Decrypt(pk, id, ik, c0).

Correctness of the scheme is easy to see. If the same tag is used for decryption
and encryption, the encryption contains a ciphertext under the same identity for
which the decryption algorithm creates the identity key. Next, we show security.

Theorem 3. Let TIBE be an anonymous threshold identity-based encryption
scheme that is ANON-IND-ID-CPA secure, H be collision-resistant hash func-
tion, and OTS an existentially unforgeable one-time signature scheme. Then,
the scheme TTBEIBE is a OB-IND-CCA secure threshold tag-based encryption
scheme.

The security proof is presented in Appendix F.

8 Constructing Anonymous TIBE

In this section, we construct an anonymous threshold identity-based encryption
scheme (TIBE) from an anonymous non-threshold verifiable identity-based en-
cryption scheme (VIBE) and an homomorphic secret sharing scheme (HSS) with
linear decoding. A VIBE extends the definition of an identity-based encryption
scheme with a verification algorithm that allows to check if an identity key was
generated correctly. An HSS scheme allows to secret share some value and to
perform operations on the shares such that the result of the combination yields
the output of a function applied directly to the value. We state the definitions for
VIBE and HSS in Appendix D.4 and D.5 respectively. The HSS scheme is used
to execute the Extract algorithm of the VIBE scheme in a distributed way. The
operations that need to be supported by the HSS scheme depend on the concrete
VIBE scheme, i.e., how the output shares of its Extract algorithm can be com-
puted. While we use the HSS scheme in a black-box way, it is an interesting open
question to provide concrete instantiations of the following black-box transfor-
mation. In Appendix H we discuss potential pathways to obtain an anonymous
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threshold IBE scheme from the concrete anonymous IBE scheme by Boyen and
Waters [16].

Construction 4: Anonymous TIBE

Public parameters:
The number of committee members is denoted by n and the thresh-
old parameter is s. This construction uses an ANON-IND-ID-CPA secure
VIBE scheme VIBE = (VIBE.Setup,VIBE.Extract,VIBE.Verify,VIBE.Encrypt,
VIBE.Decrypt) and a linear decoding HSS scheme HSS =
(HSS.Share,HSS.Eval,HSS.Dec) for the function y := (ikz, ρz) ←
VIBE.Extract(pk, x, z) with public input z = id and shared private input x = msk,
as building blocks.

Setup(1κ, s, n):
– (pkVIBE, vkVIBE,msk)← VIBE.Setup(1κ)
– (msk1, . . . ,mskn)← HSS.Share(1κ,msk)
– return (pk, vk, (sk1, . . . , skn)) := (pkVIBE, vkVIBE, (msk1, . . . ,mskn))

ShareKeyGen(pk, i, ski, id):
– return (i, iki), where iki := yi ← HSS.Eval(i, id, ski)

ShareVf(pk, vk, id, i, iki):
– return true

Combine(pk, vk, id, {(i, iki)}i∈S):
– y ← HSS.Dec({iki}i∈S)
– Parse y := (ik, ρ)
– if VIBE.Verify(pk, vk, id, ik, ρ) = 1 return ik
– else return ⊥

Encrypt(pk, id,m):
– return VIBE.Encrypt(pk, id,m)

Decrypt(pk, id, ik, c):
– return VIBE.Decrypt(pk, ik, c)

We first show that our construction satisfies the correctness properties, in
particular share consistency and decryption correctness. Then, we prove the
security property, ANON-IND-ID-CPA security.

The share consistency property states that for all correctly generated identity
key shares, the ShareVf algorithm outputs true. Since the ShareVf algorithm of
our construction always outputs true, the property is apparently satisfied. De-
cryption correctness is easy to see as well. Let, for any κ, n ∈ N and 1 ≤ s ≤ n,
(pk, vk, {ski}i∈[n]) ← Setup(1κ, s, n). Note that ski := mski where mski is the
i-th share obtained using HSS.Share(1κ,msk) for a master secret key of the non-
threshold VIBE scheme VIBE. Then, for any id, ShareKeyGen(pk, i, ski, id) returns
an output share of HSS.Eval(i, id,mski) which equals a share of
VIBE.Extract(pk,msk, id). Given any set of s identity key shares, the Combine al-
gorithm first decodes the shares to (ik, ρ) and outputs ik if
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VIBE.Verify(pk, vk, id, ik, ρ) = 1. Due to the correctness property of the (s, n)-HSS
scheme, (ik, ρ) is exactly the output of VIBE.Extract(pk,msk, id). Now, due to the
correctness property of VIBE, it follows that Decrypt(pk, ik,Encrypt(pk, id,m)) =
m holds for any message m.

Finally, we show that the scheme TIBE is ANON-IND-ID-CPA secure. For-
mally, we state the following theorem.

Theorem 4. Let VIBE be an ANON-IND-ID-CPA secure VIBE scheme satisfy-
ing soundness and let HSS be a linear decoding (s, n)-HSS scheme satisfying cor-
rectness and computational security. Then, TIBE defined in Construction 4 is an
ANON-IND-ID-CPA secure (n, s)-TIBE scheme.

The security proof is presented in Appendix G.

9 Applications

Statement-oblivious threshold witness encryption (SO-TWE) is interesting when-
ever use-cases of classical witness encryption, e.g., the ones presented in [1, 8],
should be extended by an additional privacy property, i.e., if the statement used
for encryption is required to stay hidden until the decryption is successful. A
straightforward example is witness encryption based time-lock encryption, as
proposed by [6], with a hidden release time. In simplified settings, in which the
decryption servers have access to public data (e.g., timestamps), our intermediate
notion of oblivious threshold tag-based encryption (O-TTBE) is often sufficient.
However, in more sophisticated scenarios, e.g., if the decryption servers need to
rely on external authorities to provide authenticated public data, it is necessary
to use SO-TWE. We present use-cases and briefly explain how they can be re-
alized using our primitives; one of the use-case is provided in this section and
others are deferred to Appendix J. The use-cases are partial extensions to the
ones presented by [8] for their notion of eWEB.
Price-dependent transaction execution with hidden price. Imaging a user that
wants to buy some asset at a Decentralized Finance (DeFi) trading platform
once the share price reaches a certain value. Since the user does not know when
this event happens, it does not want to stay online all the time. The user’s goal
is to keep the transaction and the desired share price private until the price
hits the intended value. Privacy is an important aspect in this scenario, since
revealing information, e.g., the intended purchase price, could lead to financial
disadvantage, e.g., due to insider trading. In the DeFi space, oracle services are
widely deployed and commonly used. These services provide signed information
about real-world data such as share prices. However, achieving the user’s goal
requires additional techniques. To support the described scenario, the user can
exploit SO-TWE.

In more detail, suppose there is a committee holding the secret key shares
of a SO-TWE scheme with public key pk for language L with associated rela-
tion R. L is defined such that a statement x specifies the intended share price
as well as the public key of the oracle service and (x,w) ∈ R if the witness
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w contains a proof that the current share price equals the specified one signed
by the oracle. Initially, the user creates a transaction tx containing the trade
description and encrypts it using the public key of the SO-TWE scheme, i.e.,
c = Encrypt(pk, x, tx), where the statement is from the specified language. The
user sends the ciphertext c to its broker. Next, the broker regularly requests
the current share price together with a proof from the oracle and provides this
information as the witness w together with the ciphertext c to the decryption
committee. Each committee member performs ShareDec(pk, c, x, w, (i, ski)) to
obtain a decryption share (i, di). After obtaining s valid shares from the com-
mittee, the broker executes Combine(pk, vk, c, x{(i, di)}i∈S). If decryption was
executed with the intended share price, the result is tx. In this case, the broker
executes the transaction which effectively performs the trade. Otherwise, the
output of the Combine-algorithm does not constitute a valid transaction.

The statement-obliviousness property guarantees that no party, not even
the broker or the oracles, gets to know anything about the trade, neither the
asset, the amount or the specified price, until the transaction is successfully
decrypted and the trade can be executed. This way, we prevent insider trading.
To incentivize the broker to execute the trade reliably and timely, users can rely
on multiple brokers rewarding the one executing the trade first.
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Appendix

A Reduction: Extractability to SO-IND-CCA Security

This section provides further details to the notion of extractable threshold wit-
ness encryption and presents the reduction from extractability to SO-IND-CCA
security in the threshold setting.

Intuitively, the original notion of extractable witness encryption states that
any adversary that is able to obtain non-trivial information about a plaintext
is also able to provide the witness for the corresponding ciphertext. Formally,
this is defined by allowing the adversary to win the security game with non-
negligible advantage but requiring that such an adversary can be used to extract
the witness for the challenged plaintext. It is natural to translate this notion
from witness encryption to our context, the one of threshold witness encryption,
by defining extrability via the same security game as the one of SO-IND-CCA
security, ExpSO-CCA, with the only difference that the adversary is allowed to
query the decryption oracle O(·, ·, ·, ·, ·) with any ciphertext-witness pair while
the oracle in the original experiment returns ⊥ if c = c∗, x ∈ {x0, x1} and
(x, (ws, wp)) ∈ R. We call this game ExpSO-Ext

TWE,A, when played with an adversary
A for a scheme TWE.

Extractability now requires that if the adversary has a non-negligible advan-
tage in the security game, then it is possible to construct a witness extractor
that extracts a valid witness with non-negligible probability.

Definition 7 (Extractability of SO-TWE). Let A be a PPT adversary A =
(A0,A1,A2) such that the following holds: for every pk generated by Setup, for
every x0, x1,m0,m1 and every auxiliary information z ∈ {0, 1}poly(κ):

Pr[ExpSO-Ext
TWE,A(1κ) = 1] ≥ 1

4
+

1

poly(κ)
.

Then there exists a PPT extractor E such that:

Pr[(b, w) = E(1κ, x0, x1, z) : (xb, w) ∈ R] ≥ 1

poly(κ)
.

We state the following theorem:

Theorem 5. Any statement-oblivious threshold witness encryption scheme TWE,
that is SO-IND-CCA secure, is also extractable.

Proof. Assume an adversary A = (A0,A1,A2) that breaks extractability of
TWE. This means that A is able to win game ExpSO-Ext

TWE,A(1κ) with a non-negligible
advantage and there is no extractor E .

From the fact that there is no extractor, we can derive that A does not query
the oracle with input (·, ·, xb, ws, wp) such that xb ∈ {x0, x1} andR(xb, (ws, wp)) =
true; otherwise, there would exist the trivial extractor Etriv that equals A up to
this query and then outputs (xb, (ws, wp).
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As the adversary A does not make such queries, it can be used in the
SO-IND-CCA game without any modifications and will still win with non-
neglgible probability.

B Security Proof: Statement-Oblivious Threshold
Witness Encryption

This section presents the security proof for Construction 1 in Section 5; the
generic transformation from a threshold tag-based encryption scheme TTBE that
is OB-IND-CCA secure and a collision-resistant hash function H to a threshold
witness encryption scheme SO-TWEOTTBE that is SO-IND-CCA secure. Formally,
we prove Theorem 1.

Proof. We will show security via reductions to the underlying primitives, TTBE
and H. For simplicity, we do not deal with the bad events of collisions in the
hash functions via dedicated game-hops, but incorporate those bad events into
the reduction to the TTBE scheme.

In particular, we construct a O-TTBE adversary D playing the experiment
ExpO-CCA

TTBE,D with a challenger C that makes black-box use of a SO-TWE adversary
A. In this experiment, D has access to a decryption oracle O as defined in
Section 4. We will show that A can only have a non-negligible advantage in
game ExpSO-CCA

SO-TWEOTTBE,A, if D is able to find a hash collision or win the O-TTBE

game ExpO-CCA
TTBE,D with non-negligible advantage.

For every adversary A = (A0,A1,A2) on the security game ExpSO-CCA
SO-TWEOTTBE,A,

we define the SO-TWE adversary D as follows:

– When invoked with 1κ, D returns M←A0(1κ) to C.
– When receiving (pk, vk, {ski}i∈M), D calls (x0, x1,m0,m1) ←
A1(pk, vk, {ski}i∈M).

– During the execution of A1, D answers decryption queries of the form (i, c, x, w)
from A as follows:
• If (x,w) ∈ R = false, D returns (i,⊥).
• Otherwise, D returns (i, di) := O(c,H(x), i).

– D calculates t∗0 = H(x0) and t∗1 = H(x1) and sends (t∗0, t
∗
1,m0,m1) to C. When

receiving c∗ from C, D calls (α∗, β∗) ← A2(c∗) and returns guess bits (α∗, β∗)
to C.
Note that if C selects challenge bits (α, β), this corresponds to D selecting
challenge bits (αTWE, βTWE) = (α, β) in the SO-TWE security game.

– During the execution of A2, D answers decryption queries of the form (i, c, x, w)
from A as follows:
• If (x,w) ∈ R or (c, x) ∈ {(c∗, x∗j )}j∈{0,1}, D returns (i,⊥).
• If ∃j ∈ {0, 1}, such that x 6= x∗j but H(x) = t∗j , D ends the experiment

with (hash-collision, x, x∗j ) and guesses bits (0, 0).
• Otherwise,D queriesO with (c,H(x), i) and returns the received decryption

share (i, di) to A. Note that the query to O is always valid, as D does not
query with (c∗, t∗0) or (c∗, t∗1).
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Let us start by assuming that there is no bad event. Observe that in this case
it holds that (a) D’s simulation of the challenger in game ExpSO-CCA

SO-TWEOTTBE,A is

perfect and (b) D wins ExpO-CCA
TTBE,D iff A wins ExpSO-CCA

SO-TWEOTTBE,A. Hence, it follows
that the difference in D’s advantage, AdvD, and A’s advantage, AdvA, in the
respective games is smaller than the probability of a bad event Pr[bad], i.e.,

|AdvD − AdvA| < Pr[bad] (1)

which implies that
AdvD + Pr[bad] > AdvA. (2)

The only possible bad event is (hash-collision, x, x∗j ) which directly yields a
hash collision. It follows that

AdvD + Pr[hash-collision] > AdvA (3)

Therefore, if AdvA is a non-neglgible function, then at least one of AdvD and
Pr[hash-collision] must also be non-negligible which contradicts our assumptions.

Next, we show decryption consistency under chosen ciphertext attacks. We do
so via a reduction to the decryption consistency TTBE scheme. In particular, we
construct an TTBE-adversary D̄ playing the experiment ExpO-DC

TTBE,D̄ with a chal-

lenger C̄ that makes black-box use of a SO-TWE adversary Ā. In this experiment,
D̄ has again access to the decryption share oracle O as defined in Section 4. For
every adversary Ā = (Ā0, Ā1) on the security game ExpSO-DC

SO-TWEOTTBE,Ā, we define

the O-TTBE adversary D̄ as follows:

– When invoked with 1κ, D̄ returns (M)← Ā0(1κ) to C̄.
– When receiving (pk, vk, {ski}i∈M), D̄ calls (x, c, {(i, di)}i∈S , {(i, d′i)}i∈S′) ←
Ā1(pk, vk, {ski}i∈M) and returns (H(x), c, {(i, di)}i∈S , {(i, d′i)}i∈S′).

– During the execution of Ā1, D̄ answers decryption queries of the form (i, c, x, w)
from Ā as follows:
• If (x,w) ∈ R, return (i,⊥).
• Otherwise, D̄ returns (ı, di)← O(c,H(x), i).

Obviously, D perfectly simulates the game ExpSO-DC
SO-TWEOTTBE,Ā. We complete

the proof by showing that D̄ wins security game ExpO-CCA
TTBE,D̄ if Ā wins security

game ExpSO-DC
SO-TWEOTTBE,Ā.

In order to win, Ā has to sent a tuple

(x, c, {(i, di)}i∈S , {(i, d′i)}i∈S′)

for which the following holds:

S,S ′ ⊆ [n] and |S| = |S ′| = s (4)

∀i ∈ S :ShareVf(pk, vk, c, x, (i, di)) = true

and ∀i ∈ S ′ :ShareVf(pk, vk, c, x, (i, d′i)) = true
(5)

⊥ 6= m 6= m′ 6= ⊥ for m := Combine(pk, vk, c, x, {(i, di)}i∈S)

and m′ := Combine(pk, vk, c, x, {(i, d′i)}i∈S′)
(6)
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In scheme SO-TWEOTTBE this implies that:
From (5):

∀i ∈ S : TTBE.ShareVf(pk, vk, H(x), (i, di)) = true

and ∀i ∈ S ′ : TTBE.ShareVf(pk, vk, H(x), (i, d′i)) = true
(7)

From (6):

⊥ 6= m 6= m′ 6= ⊥
for m := TTBE.Combine(pk, vk, c,H(x), {(i, di)}i∈S)

and m′ := TTBE.Combine(pk, vk, c,H(x), {(i, d′i)}i∈S′)
(8)

In the reduction, D̄ sends the tuple (H(x), c, {(i, di)}i∈S , {(i, d′i)}i∈S′). Note,
that properties (4), (7), (8), are exactly what is required in order to win the
security game ExpO-CCA

TTBE,D̄. It follows that D̄ wins security game ExpO-CCA
TTBE,D̄ if Ā

wins security game ExpSO-DC
SO-TWEOTTBE,Ā which implies that D̄’s advantage, AdvD̄, is

larger or equal to Ā’s advantage, AdvĀ, in the respective games:

AdvD̄ ≤ AdvĀ (9)

Therefore, if AdvĀ is a non-neglgible function, then AdvD̄ must also be non-
negligible which contradicts our assumptions. This concludes the security proof.

C Security Proof: O-TTBE from Bilinear Mappings and
Random Oracles

In this section, we present the formal security proof of Construction 2 in Sec-
tion 6, i.e., we show security of our O-TTBE construction from bilinear mappings
in the random oracle model. Formally, we show Theorem 2.

Proof. We start showing oblivious indistinguishable message under chosen-ciphertext
attacks and continue with proving decryption consistency under chosen-ciphertext
attacks.
Oblivious indistinguishable messages. We prove oblivious indistinguishable
messages under chosen-ciphertext attacks via a reduction to the DBDH assump-
tion. In particular, we build a DBDH distinguisher D that makes use of an
adversary A on the CCA experiment ExpO-CCA

TTBE,A. The distinguisher is defined as
follows:

– D receives a tuple (h̄, ḡ, α, β, γ) for public parameters (e,G,GT , q). It holds that
α = ḡx and β = ḡy for random unknown (x, y) and γ = e(h̄, ḡ)z with z either
being xy or random. D starts by calling M←A0.

– D answers random oracle queries as follows:
• For H1, H2, and H3, D behaves like a standard random oracle with the

difference that D can program keys that have not been queried yet.
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• For H2, D samples random k ∈R Zq and returns T = ḡk. This allows D
to extract logḡ(T ) for any T sampled with H2. We write H2[t, A] for this
extraction. In addition, D can program keys that have not been queried,
yet. For programmed keys, H2[t, A] returns ⊥.

– D simulates the setup by sampling xi ∈R Zq for i ∈M and defining

g := ḡ, X := α, M′ =M∪ {0},
For i ∈M : vki := gxi , ski := xi

For j ∈ [n] \M : vkj := αλ
M′
j,0 ·

∏
i∈M

vk
λM
′

j,i

i

pk := (g,X), vk := {vki}i∈[n].

– D calls (t0, t1,m0,m1) ← A1(pk, vk, {ski}i∈M). During this call, D answers
decryption queries of the form (i, c, t) to the decryption oracle O as follows:
• If i ∈M, return ShareDec(pk, c, t, (i, ski)).
• If i /∈M and ValidateCT(c) = false, return (i,⊥).
• If i /∈ M and ValidateCT(c) = true, parse c = (·, A, ·), sample wi, fi ∈R Zq

and calculate

T := H2(t, A), k := H2[t, A]= logg(T )

Di := e(vki, A
k)= e(T,Axi)

Ui :=
e(T ′, A)fi

Dwi
i

, Vi =
e(T ′, g)fi

e(T ′, vki)wi
.

Then, program H4(Di, Ui, Vi)← wi and return (i,Di, πi := (wi, fi)). If H4

cannot be programmed emit event (failed-programming) and output 0. If
k = ⊥ emit event (oracle-collision) and output 0.

– To create the challenge ciphertext, D samples a uniform tag choice bit b and
creates a valid ciphertext for tag tb. Then, D programs the random oracle H2

such that a hypothetical encryption (and hence decryption) for tag t1−b would
query H1 with key γ iff the received tuple is a DBDH tuple. In particular, D
creates the challenge ciphertext c∗ = (M∗, A∗, π∗) by sampling random bits
b, bm ∈R {0, 1} and exponents w, f ∈R Zq, defining

A∗ := β= gy

T̃ := H2(tb, A
∗), k̃ := H2[tb, A

∗]= logg(T̃ )

γ̃ := e(X k̃, A∗)= e(T̃ , A∗)x

M∗ := mbm ⊕H1(γ̃)

U∗ :=
gf

(A∗)w
, π∗ = (w, f)

and programming H2(t1−b, A
∗) ← h̄ and H3(M∗, A∗, U∗) ← w. If H2 or H3

have already been queried at said keys, emit event (failed-programming) and
output 0.

– D calls (·, ·)← A2(c∗). During this call, D answers decryption queries as above
with the only difference that queries in {(·, A∗, t0), (·, A∗, t1)} are answered with
(i,⊥).

– If the adversary queried H1 at γ, D outputs 1; otherwise, if the adversary
terminates without querying H1 at γ, D outputs 0.The reduction is based on the fact that the only value the adversary re-

ceives that is dependent on the tag or the message is M∗. As M∗ is calcu-
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lated based on the random oracle H1, it is obvious that an adversary break-
ing the security of the scheme when receiving a challenge ciphertext c∗ =
(A∗,M∗, π∗), needs to query the random oracle H1 at least at one of {P0, P1} :=
{e(H2(t0, A

∗), A∗)x, e(H2(t1, A
∗), A∗)x}. By assuming thatA has a non-negligible

advantage in the CCA game ExpO-CCA
TTBE,A, we can conclude that A queries H1 at P0

or P1 (or both) with non-negligible probability AdvantageA. The distinguisher D
simulates the experiment such that, for a randomly chose bit b, it creates a valid
ciphertext based on Pb but ensures that P1−b equals γ iff the received tuples is
a DBDH tuple. This way, D can identify a BDDH tuple based on the event that
H1 has been queried at γ.

We start by showing that the view of an adversary interacting with D is
computationally indistinguishable from the view of the adversary when play-
ing the CCA game ExpO-CCA

TTBE,A. As D programs H1, H3, H4 only with randomly
sampled elements and simulates them, besides the programming, as standard
random oracles, it follows that H1’s, H3’s and H4’s replies are identically dis-
tributed in the reduction and in the original game. For the simulation of H2, D
samples k ∈R G and returns ḡk. Since k is random and ḡ is a generator of G,
returning ḡk yields the same distribution as sampling and returning K ∈R G
directly. Further, D only programs H2, once, with a random element h̄. It fol-
lows that H2’s replies are identically distributed in the reduction and the orig-
inal game. Regarding the setup, D defines a public key pk := (g, α = ḡx) for
randomly sampled ḡ and x (but without actually knowing x). By sampling s
random secret key shares xi, D implicitly defines a random sharing polyno-
mial F of degree s − 1 for F (0) = x. As ḡ, x and F are sampled uniformly
random (under the condition that F (0) = x) and it holds that pk := (g, ḡx),
ski = F (i) and vki = gF (i), we can conclude that the distribution of the setup
is identically distributed in the reduction and the original game. Regarding the
challenge ciphertext c∗, the adversary receives (M∗, A∗, (w∗, f∗)) with random
A∗, M∗ = H1(e(H2(tb, A

∗), A∗)x) ⊕ mbm (for random bits b, bm) and random

exponents w∗, f∗ subject to the condition that w∗ = H3(M∗, A∗, g
f∗

Aw∗ ). This is
exactly what an adversary would see in the real experiment. It follows that the
challenge ciphertext c∗ is identically distributed in the reduction and the original
game (expect the bad event which we analyze below). Regarding the decryption
queries (of the form (i, c, t)), each reply constitutes a valid decryption, as the ad-
versary receives (i,⊥) if (c, t) ∈ {(c∗, t0), (c∗, t1)} or ValidateCT(c) = false, and
(i, e(H2(t, A∗), (A∗)F (i)), πi = (wi, fi)) for randomly sampled wi, fi subject to

the condition that wi = H4(Di,
e(H2(t,A∗),A)fi

D
wi
i

, e(H2(t,A∗),g)fi

e(H2(t,A∗),vki)wi
). It follows that

the decryption queries are identically distributed in the reduction and the origi-
nal game (expect the bad event which we analyze below). Having shown that all
messages sent from D to A are distributed identically in the reduction and the
real experiment, it remains to show that the bad events happen with at most
negligible probability. First, when answering decryption queries, there are two
different kinds of bad events, failed-programming and oracle-collision. The former
happens if H4 has been queried at (Di, Ui, Vi) before the decryption query. As
Ui and Vi are calculated based on freshly and randomly sampled wi and fi, this
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event happens with at most negligible probability. The latter bad event hap-
pens if k = H2[t, A] = ⊥. This happens only for keys (t1−b, A

∗) as H2 is only
programmed for those keys. However, the probability that the keys (t1−b, A

∗)
are queried within a decryption query are negligible, as we argue next. If the
adversary queries these values before the challenge ciphertext c∗ is created, there
would not be an event oracle-collision as the random oracle has not been pro-
grammed, yet. However, the creation of the challenge ciphertext c∗ would fail
with event failed-programming as D cannot execute H2(t1−b, A

∗) ← h̄. If the
adversary submits a decryption query (t, c) containing (t1−b, A

∗) after the chal-
lenge ciphertext c∗ is created, D declines decryption if (t, c) ∈ {(t0, c∗), (t1, c∗)}
(as in the original experiment). Hence, D queries (t1−b, A

∗) only if c 6= c∗ but
A = A∗. In order to create such a ciphertext c 6= c∗ containing A∗, the adversary
needs to forge the zero knowledge argument. In detail, the adversary needs to
come up with π′ = (w′, f ′) such that gf

′
= gr

′ · A∗w′ . Since w′ is the output
of a random oracle where at least one input must be different than the inputs
used to compute the value w in the challenge ciphertext and the adversary has
to fix r′ before obtaining w′, there is only one value for which the adversary
can hope to create a valid proof. The probability for this is 1/q, where q is the
group order. Although the adversary can try polynomial many values for w′ the
probability of forging the zero knowledge argument is still negligible. Hence, A∗

can only be used as part of c∗ except with negligible probability. It follows that
the probability of the event oracle-collision when answering decryption queries
is negligible. Second, when creating the challenge ciphertext, there is another
bad event failed-programming that happens either if H2 has already been queried
at keys (t1−b, A

∗) or H3 has been queried at keys (M∗, A∗, U∗). In both cases,
A∗ = β is a uniform random element in G which implies that the probability of
an adversary querying H2 or H3 at the given keys, before the challenge cipher-
text is created, is negligible. Having shown that all messages sent from D to A
are distributed identically in the reduction and the real experiment and that the
probability of a bad event is at most negligible, we can conclude that the view of
the adversary in the reduction is computationally indistinguishable from a view
of the adversary in the real experiment.

To analyze the success probability of D, we start with the case that the re-
ceived tuple is a DBDH tuple. In this case, it holds that P1−b = e(H2(t1−b, A

∗), A∗)x =
e(h̄, A∗)x = e(h̄, gxy) = γ; remember that D programs H2(t1−b, A

∗) ← h̄. As b
is sampled uniformly random, we conclude that A queries H1 at γ at least with
probability 1

2 · AdvantageA − negl. As D guesses 1 (the tuple is a DBDH tuple)
only if the adversary queries γ, the success probability of D in the case that the
received tuple is a DBDH tuple, is

Pr[success | DBDH tuple] ≥ 1

2
· AdvantageA − negl.

We have to include the (−negl) as the experiment can fail with negligible prob-
ability, as discussed above, which leads to a 0 guess. Further, the probability is
larger or equal (“≥”) and a not equal (“=”) to the given term, as the adversary
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could also query both P0 and P1 instead of the worst case in which it queries just
one of them.

Next, we continue with the case that the received tuple is no DBDH tuple.
Recall that D guesses 1 only iff A queries H1 at key γ. As γ is a uniform random
element in G3 it holds thatA queries H2 at key γ with only negligible probability.
It follows that the success probability of D in case that the received tuple is no
DBDH tuple, is

Pr[success | no DBDH-tuple] = 1− negl.

For randomly chosen challenge tuples it holds that D can distinguish between
DBDH tuples and random tuples with probability:

Pr[success] ≥1

2
· (Pr[success | no DBDH-tuple]

+ Pr[success | DBDH-tuple])

≥1

2
· (1− negl +

1

2
AdvantageA − negl)

>
1

2
+ negl

This concludes the reduction and shows CCA security of the construction.

Decryption consistency. Next, we show decryption consistency. In particular,
we show that an attacker A wins the security game ExpO-DC

TTBEpROM,A with at most
negligible probability. We show this by contradiction, i.e., we start by assuming
A wins the game with non-negligible probability and show a contradiction to
this assumption.

In the security game, the adversary obtains a public key pk, verification
keys vk = {vki}i∈[n] = {gxi}i∈[n] and the secret keys for the corrupted par-
ties {ski}i∈M = {xi}i∈M. Next, A has to provide a tag t, a ciphertext c =
(M,A, π) and two sets of decryption shares {(i, di)}i∈S and {(i, d′i)}i∈S′ , where
di = (i,Di, πi = (wi, fi)) for i ∈ S and d′i = (i,D′i, π

′
i = (w′i, f

′
i)) for i ∈ S ′. For a

successful execution, all the checks in ExpO-DC
TTBEpROM,A need to hold, i.e., all shares

are valid and the combined messages are different.

Due to the correctness property of TTBEpROM, there must be at least one j
such that Dj 6= e(T,Axj ) or D′j 6= e(T,Axj ) for T := H2(t, A) in order to get

two different message m 6= m′. Wlog., we assume Dj = e(T,Ax
∗
j ) 6= e(T,Axj ).

Since A wins the game, ShareVf(pk, vkj , c, t, dj) = true. In particular, wj =
H4(Dj , Uj , Vj) for

e(T,A)fj = Uj ·D
wj

j and e(T, g)fj = Vj · e(T, vkj)wj , (10)
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where T := H2(t, A). Equation (10) implies

loge(T,A)(Uj ·D
wj

j ) = loge(T,g)(Vj · e(T, vkj)wj )

⇔ loge(T,A)(e(T,A)rj · e(T,A)x
∗
jwj ) =

loge(T,g)(e(T, g)r
′
j · e(T, g)xjwj )

⇔ rj + x∗jwj = r′j + xjwj

⇔ (rj − r′j) + (x∗j − xj)wj = 0.

Since x∗j−xj 6= 0, there is at most one challenge value wj for which the adversary
may hope that the equation holds and the proof is valid. Since wj is the output of
a random oracle, and hence, at random, the probability for wj being the required
value is at most 1/q where q is the order of GT . Although the adversary may
try polynomial often to compute the challenge value with different rj and r′j ,
the probability is still negligible. This follows from the standard argument about
the Fiat-Shamir heuristic [28]. Since this contradicts our initial assumption, it
concludes the consistency proof.

D Further Definitions

D.1 Collision Resistance of Hash Functions

The collision resistance property of hash functions states that any PPT adver-
sary can find two values x, x′ such that x 6= x′ and H(x) = H(x′) only with
negligible probability.

D.2 Security Properties of Digital Signatures

We assume digital signatures to satisfy consistency and existential unforgeabil-
ity against chosen-message attacks. The consistency property states that for
all κ ∈ N, for all (SigK,VerK) ← KeyGen(1κ) and for every m ∈ M it holds
Pr[Verify(VerK,m,Sign(SigK,m))] = 1.

We define existential unforgeability against chosen-message attacks via the
following game

Experiment ExpEX-UNF
SIG,A (κ)

(SigK,VerK)← KeyGen(1κ)

(m∗, σ∗)← AO(·)(VerK)

if Verify(VerK,m∗, σ∗) = 1 then return 1

else return 0

where the adversary may ask its oracle O on a message m ∈M and gets back the
signature σ ← Sign(SigK,m). The pair (m∗, σ∗) output by A must be different
to any (m,σ) obtained by the oracle.
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Definition 8. A signature scheme SIG is existentially unforgeable against chosen-
message attacks if for every κ ∈ N and every PPT adversary A there exists a
negligible function negl such that

Pr[ExpEX-UNFSIG,A (κ) = 1] ≤ negl(κ).

Definition 9 (OTS). A signature scheme OTS = (KeyGen,Sign,Verify) is called
one-time signature scheme with existential unforgeability against chosen-message
attacks, if for every κ ∈ N and every PPT adversary A′ that makes as most one
oracle query there exists a negligible function negl such that

Pr[ExpEX-UNFOTS,A′ (κ) = 1] ≤ negl(κ).

D.3 Identity-Based Encryption

Identity-based encryption was first introduced by Shamir in 1984 [29]. We state
the definition following Boneh and Franklin [24].

Definition 10 (IBE). An identity-based encryption scheme IBE consists of
four probabilistic polynomial-time algorithms:

IBE = (Setup,Extract,Encrypt,Decrypt).

such that

1. Setup(1κ) takes as input a security parameter 1κ and outputs a public key pk
including public parameters and a master key msk. pk include a description
of the finite message space M and the finite ciphertext space C.

2. Extract(pk,msk, id) takes as input the public key pk, the master key msk and
an identity id ∈ {0, 1}∗. It outputs an identity secret key ikid.

3. Encrypt(pk, id,m) takes as input the public key pk, an identity id and a mes-
sage m. It outputs a ciphertext c encrypted under identity id.

4. Decrypt(pk, c, ikid) takes as input the public key pk, a ciphertext c and an
identity secret key ikid. It outputs a message m.

We require these algorithms to fulfill the consistency property, namely for
every κ ∈ N, every output (pk,msk) of Setup(1κ), every id ∈ {0, 1}∗, every
ikid ← Extract(pk,msk, id) and every m ∈M:

Decrypt(pk,Encrypt(pk, id,m), ikid) = m.

Security of an IBE scheme can be defined as the anonymity and message
indistiguishability against chosen-plaintext attacks properties for verifiable IBE
in Definition 13.
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D.4 Verifiable IBE

We state a definition for verifiable identity-based encryption as an extension of
identity-based encryption presented by Boneh and Franklin [24]. In particular,
the primitive contains a verification algorithm that allows to check if an identity
key is generated correctly. For completeness, we provide the definition of plain
identity-based encryption in Appendix D.3.

Definition 11 (VIBE). A verifiable identity-based encryption scheme VIBE
consists of five probabilistic polynomial-time algorithms:

1. Setup(1κ) takes as input a security parameter 1κ and outputs a public key pk
including public parameters, a verification key vk and a master key msk. pk
include a description of the finite message space M and the finite ciphertext
space C.

2. Extract(pk,msk, id) takes as input the public key pk, the master key msk and
an identity id ∈ {0, 1}∗. It outputs an identity secret key ikid together with a
proof ρid stating that ikid was computed correctly.

3. Verify(pk, vk, id, ikid, ρid) takes as input the public key pk, the verification key
vk, an identity id, an identity key ikid, and a proof ρid. It outputs 1 if ikid is
a valid identity key for identity id and 0 otherwise.

4. Encrypt(pk, id,m) takes as input the public key pk, an identity id and a mes-
sage m. It outputs a ciphertext c encrypted under identity id.

5. Decrypt(pk, ikid, c) takes as input the public key pk, an identity secret key ikid
and a ciphertext c. It outputs a message m.

We require these algorithms to fulfill the following correctness and verifiabil-
ity properties for all κ ∈ N:

– Correctness: For every (pk, vk,msk)← Setup(1κ), every id ∈ {0, 1}∗, every
(ikid, ·)← Extract(pk,msk, id) and every m ∈M:

Decrypt(pk, ikid,Encrypt(pk, id,m)) = m.

– Verifiability: For every (pk, vk,msk) ← Setup(1κ), every id ∈ {0, 1}∗ and
every (ikid, ρid)← Extract(pk,msk, id)

Verify(pk, vk, id, ikid, ρid) = 1.

We define security by three properties: soundness, anonymity and security
against chosen-plaintext attacks. We start defining the soundness property. Infor-
mally, soundness means that an adversary cannot come up with two different but
valid identity keys that decrypt a chosen ciphertext to two different plaintexts.
Formally, we define the soundness property via the following game.
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Experiment ExpSOUND
VIBE,A(κ)

(pk, vk,msk)← Setup(1κ)

(ID, c, (ikID, ρID), (ik′ID, ρ
′
ID))← AO(·)(pk, vk)

if Verify(pk, vk, ID, ikID, ρID) = 1

∧ Verify(pk, vk, ID, ik′ID, ρ
′
ID) = 1

∧ Decrypt(pk, ikID, c) 6= Decrypt(pk, ik′ID, c)

return 1

else

return 0

The adversary can use its oracle O(·) to make identity key queries. More pre-
cisely, upon receiving id fromA the oracle returns (ikid, ρid)← Extract(pk,msk, id)
for any id ∈ {0, 1}∗.

Definition 12 (Soundness). A verifiable identity-based encryption scheme VIBE
satisfies soundness if for all κ ∈ N and all PPT adversary

Pr[ExpSOUND
VIBE,A(κ) = 1] ≤ negl(κ).

We next move on to the anonymity and security against chosen-plaintext
attacks. The anonymity property of a VIBE scheme informally states that an
adversary cannot learn the associated identity from a ciphertext, while the secu-
rity against chosen-plaintext attacks states that an adversary cannot distinguish
two ciphertexts over different messages. We combine both properties following
Gentry [17] and define security via the following game.

Experiment ExpA-V-CPA
VIBE,A (κ)

(pk, vk,msk)← Setup(1κ)

(ID0, ID1,m0,m1)← AO0 (pk, vk)

α, β ∈R {0, 1}
c∗ ← Encrypt(pk, IDα,mβ)

(α′, β′)← AO1 (c∗)

return (α, β) = (α′, β′)

In the game ExpA-V-CPA
VIBE,A , the adversary can use its oracle O to make key gener-

ation queries. Upon receiving id, O returns Extract(pk,msk, id) if id /∈ {ID0, ID1}
and ⊥ otherwise.

Definition 13 (ANON-IND-ID-CPA). A VIBE scheme VIBE is ANON-
IND-ID-CPA secure if for all PPT adversary A in game ExpA-V-CPAVIBE,A , there exists
a negligible function negl such that∣∣∣∣Pr[ExpA-V-CPAVIBE,A (κ) = 1]− 1

4

∣∣∣∣ ≤ negl(κ).
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In Appendix E, we show how to construct a VIBE scheme from a standard
identity-based encryption scheme IBE combined with an existentially unforgeable
signature scheme SIG. Assuming IBE satisfies ANON-IND-ID-CPA security, the
VIBE construction satisfies soundness and ANON-IND-ID-CPA security.

D.5 Homomorphic Secret Sharing

We follow the definition of Boyle et al. [30] for homomorphic secret sharing (HSS)
schemes but state a simplified version that fits our application. In particular, we
consider only a single input HSS and incorporate robust decoding in our defini-
tion where only s output shares are required for correct decoding. Additionally,
we use the notation of s-out-of-n HSS to denote an n-server (s− 1)-secure HSS
according to the definition of Boyle et al.

In Section 8, we utilize an HSS to transform a VIBE scheme into a thresh-
old IBE scheme. In particular, the identity key generation will be executed in
a distributed fashion, i.e., the Extract algorithm of the non-threshold scheme.
The homomorphic operations that need to be supported by the HSS depend on
the concrete VIBE construction. Since we present a black-box construction in
Section 8, we consider a generalized homomorphic secret sharing scheme.

Definition 14 (HSS). An s-out-of-n homomorphic secret sharing scheme HSS
for a function F : ({0, 1}∗)2 → {0, 1}∗, or (s, n)-HSS in short, consists of three
PPT algorithms:

1. Share(1κ, x) takes as input a security parameter 1κ and a user input x. It
outputs n shares (x1, . . . , xn), where server i gets share xi.

2. Eval(i, z, xi) takes as input a server index i, a public input z and the i-th
share xi. It outputs yi ∈ {0, 1}∗, corresponding to server i’s share of F (z;x).

3. Dec({yi}i∈S) takes as input a set of output shares and outputs the final output
y ∈ {0, 1}∗.

We require the following correctness and security properties for every κ ∈ N:

– Correctness: For any input z, x ∈ {0, 1}∗ and any set of shares (x1, . . . , xn)←
Share(1κ, x). Let ∀i ∈ [n] yi ← Eval(i, z, xi), then for any set S ⊆ [n] of size
s it holds that

Dec({yi}i∈S) = F (z;x).

– Computational security: Security of an HSS HSS is defined via the exper-
iment ExpHSSHSS,A,I where the adversary A = (A0,A1) corrupts a set M⊂ [n]
of s− 1 servers. Then, we require∣∣∣∣Pr[ExpHSSHSS,A,M(κ) = 1]− 1

2

∣∣∣∣ ≤ negl(κ),

where the experiment is defined as follows.
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Experiment ExpHSSHSS,A,I(κ)

(x0, x1)← A0(1κ), where |x0| = |x1|.
b ∈R {0, 1}
(x̂1, . . . , x̂n)← Share(1κ, xb)

b′ ← A1({x̂i}i∈I)
return b = b′

A trivial construction of the Eval algorithm is the identity function. Then,
the Dec algorithm first reconstructs x and computes F (z;x) next. As described
above, we utilize an HSS to perform the Extract algorithm of a VIBE scheme
in a distributed way. In this scenario, the Eval algorithm being the identity
function means that the party that should learn the identity key also learns
the master secret key. Since this is an undesired effect, we impose an additional
requirement on the decoding algorithm. We define a linear decoding HSS as a
slightly weakening of an additive HSS as defined by Boyle et al. [30]. Intuitively,
a linear decoding HSS requires the decoding to be a linear combination of the
output shares. In contrast to an additive HSS, a linear decoding HSS enables
a decoding algorithm whose output depends on the set of servers from which
shares are obtained. In particular, the coefficients depend on the servers’ indices
that computed the shares. This notion allows to capture any s-out-of-n Shamir’s
secret sharing.

Definition 15 (Linear Decoding HSS). An (s, n)-HSS scheme HSS = (Share,
Eval,Dec) is called linear decoding if Dec works as follows:

Let {y1, . . . , yn} be a set of output shares. Then, for any set S ⊆ [n] of size
s, there exists a set of s coefficient {aS,i}i∈S such that

Dec({yi}i∈S) =
∑
i∈S

aS,i · yi.

D.6 Threshold IBE

In this section, we state the formal security games for threshold identity-based
encryption schemes (TIBE). The notation for TIBE is given in Section 2.3. We
first define the security game for anonymity and security against chosen-identity
attacks.

Experiment ExpA-T-CPA
TIBE,A (1κ)

M←A0(1κ), where |M| < s

α, β ← {0, 1}
(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(ID0, ID1,m0,m1)← AO(·,·)
1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, IDα,mβ)

(α′, β′)← AO(·,·)
2 (c∗)

return (α, β) = (α′, β′)
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The adversary can use its oracle O(·, ·) to make key generation queries. To do so,
the adversary sends (i, id) to O and receives (i, iki)← ShareKeyGen(pk, i, ski, id).
In the game, we require that ID0 and ID1 was not used in any oracle query of
A1 before or after providing the identities and messages.

Next, we define the game for key generation consistency.

Experiment ExpKC-CPA
TIBE,A (1κ)

M←A0(1κ), where |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(ID, c, {(i, iki)}i∈S , {(i, ik′i)}i∈S′)← A
O(·,·)
1 (pk, vk, {ski}i∈M),

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
if ∀i ∈ S : ShareVf(pk, vk, ID, i, iki) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, ID, i, ik′i) = true

∧ ik = Combine(pk, vk, ID, {iki}i∈S)

∧ ik′ = Combine(pk, vk, ID, {ik′i}i∈S′)
∧ ik, ik′ 6= ⊥
∧ Decrypt(pk, ID, ik, c) 6= Decrypt(pk, ID, ik′, c)

return 1

else

return 0

The adversary can use its oracle O(·, ·) in the same way as described above
without any restrictions on the queried identities.

Definition 16 (ANON-IND-ID-CPA). A TIBE scheme TIBE is
ANON-IND-ID-CPA secure if for every κ, n ∈ N, every 1 ≤ s ≤ n and for
every PPT adversary A := (A0,A1,A2) there exist two negligible function negl0
and negl1 such that∣∣∣∣Pr[ExpA-T-CPATIBE,A (κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpKC-CPATIBE,A (κ) = 1] ≤ negl1(κ).

E Construction of Verifiable IBE

In this section, we show how to construct a verifiable identity-based encryp-
tion scheme (VIBE) from a standard identity-based encryption scheme and a
signature scheme.

Construction 5: VIBE

This construction uses an IBE scheme IBE =
(IBE.Setup, IBE.Extract, IBE.Encrypt, IBE.Decrypt) and a signanture scheme
SIG = (SIG.KeyGen, SIG.Sign,SIG.Verify) as building blocks.
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Setup(1κ):

– (pk,msk)← IBE.Setup(1κ)
– (SigK,VerK)← SIG.KeyGen(1κ)
– return (pk,VerK, (msk, SigK))

Extract(pk, (msk,SigK), id):

– ikid ← IBE.Extract(pk,msk, id)
– σid ← SIG.Sign(SigK, ikid)
– return (ikid, σid)

Verify(pk,VerK, id, ikid, σid):

– return SIG.Verify(VerK, ikid, σid)

Encrypt(pk, id,m):

– IBE.Encrypt(pk, id,m)

Decrypt(pk, id, ikid, c):

– IBE.Decrypt(pk, c, ikid)

Let VIBE be the construction presented above. The correctness property of
VIBE follows directly from the consistency property of IBE and the verifiability
property follows from the consistency property of SIG. Moreover, given SIG is ex-
istentially unforgeable against chosen-message attacks, one can show via a reduc-
tion that VIBE satisfies soundness. Finally, if IBE is ANON-IND-ID-CPA secure,
it can be shown again via reduction that the VIBE construction is ANON-IND-ID-CPA
secure as well.

F Security Proof: Oblivious TTBE from Anonymous
TIBE

This section presents the security proof for Construction 3 in Section 7; the con-
struction of an oblivious tag-based threshold encryption scheme from an anony-
mous threshold identity-based encryption scheme, a collision-resistant hash func-
tion and one-time signatures. Formally, we prove Theorem 3.

Proof. We show security via reductions to the underlying primitives, TIBE, OTS,
and H. We start by showing oblivious indistinguishable messages under chosen-
ciphertext attacks. For simplicity, we do not deal with the bad events of forged
signatures and collisions in the hash functions via dedicated game-hops, but
incorporate those bad events into the reduction to the TIBE scheme.

In particular, we construct a TIBE-adversaryD playing the experiment ExpA-T-CPA
TIBE,D

with a challenger C that makes black-box use of a O-TTBE adversary A. In this
experiment, D has access to an identity key oracle O as defined in Section 2.3.
We show that A can only have a non-negligible advantage in game ExpO-CCA

TTBEIBE,A,
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if D is able to find a hash collision, forge a signature or win the TIBE-game
ExpA-T-CPA

TIBE,D with non-negligible advantage.

For every adversary A = (A0,A1,A2) on the security game ExpO-CCA
TTBEIBE,A, we

define the TIBE-adversary D as follows:

– When invoked with 1κ, D initializes sets I := ∅ and V := ∅, and returns
({i1, . . . , is−1})← A0(1κ) to C.

– When receiving (pk, vk, {ski1 , . . . skis−1}), D calls (t0, t1,m0,m1) ←
A1(pk, vk, {ski1 , . . . skis−1}).

– During the execution of A1, D answers decryption queries of the form c =
(i, (c0,VerK, σ), t) from A as follows:
• If OTS.Verify(VerK, σ, c0) = false, D returns (i,⊥).
• Otherwise, D sets id := H(t,VerK) and queries C’s identity key oracle O

with (id, i) to receive key share (i, iki).
• D adds (id,VerK, t) to I, VerK to V, and returns (i, iki).

– D samples (SigK∗,VerK∗) := OTS.KeyGen(1κ), calculates ID0 := H(t0,VerK
∗)

and ID1 := H(t1,VerK
∗) and performs the following checks:

• If VerK∗ ∈ V, D ends the experiment with the bad event (bad-sample) and
guesses bits (0, 0)

• If VerK∗ /∈ V and ∃(id,VerK, t) ∈ I and j ∈ {0, 1} such that id = IDj , D ends
the experiment with the bad event (hash-collision : (t,VerK), (tj ,VerK

∗))
and guesses bits (0, 0).

– D sends (ID0, ID1,m0,m1) to C. When receiving c∗, D calculates σ∗ :=
OTS.Sign(SigK, c∗), calls (α∗, β∗) ← A2((c∗,VerK∗, σ∗)) and returns guess bits
(α∗, β∗) to C.
Note that if C selects challenge bits (α, β), this corresponds to D selecting
challenge bits (αTTBE, βTTBE) = (α, β) in the simulated OTTBE security game.

– During the execution of A2, D answers decryption queries as follows:
• If OTS.Verify(VerK, σ, c0) = false, D returns (i,⊥).
• If (c0,VerK, σ, t) ∈ {(c∗,VerK∗, σ∗, tj)}j∈{0,1}, D returns (i,⊥).
• If (VerK, t) ∈ {(VerK∗, tj)}j∈{0,1} but σ 6= σ∗, D ends the experiment with

(forged-sig) and guesses bits (0, 0).
• If ∃j ∈ {0, 1}, s.t. H(t,VerK) = H(tj ,VerK

∗), D ends the experiment with
(hash-collision : (t,VerK), (tj ,VerK

∗)) and guesses bits (0, 0).
• Otherwise, D calculates id := H(t,VerK), queries O with (id, i) to receive

key share (i, iki), and returns (i, iki) to A. Note that the query to O′ is
always valid, as D does not query with id ∈ {IDj}j∈{0,1}.

Let us start by assuming that there is no bad event. Observe that in this case
it holds that (a) D’s simulation of the challenger in game ExpO-CCA

TTBEIBE,A is perfect

and (b) D wins ExpA-T-CPA
TIBE,D iff A wins ExpO-CCA

TTBEIBE,A. Hence, it follows that the
difference in D’s advantage, AdvD, and A’s advantage, AdvA, in the respective
games is smaller than the probability of a bad event Pr[bad], i.e.,

|AdvD − AdvA| < Pr[bad]

which implies that

AdvD + Pr[bad] > AdvA.
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As each bad event terminates the execution of the experiment it follows that
the events are exclusive and the probability of the experiment ending with any
bad event (Pr[bad]) is the sum of the probabilities for the experiment ending
with a particular bad event.

Pr[bad] = Pr[bad-sample] + Pr[hash-collision] + Pr[forged-sig]

As D randomly samples the key pair (SigK∗,VerK∗) from the key space, the
probability is negligible in the security parameter κ for the adversary submitting
a decryption query including a verification key VerK = VerK∗. It follows that

AdvD + negl(κ) + Pr[hash-collision] + Pr[forged-sig] > AdvA

Therefore, if AdvA is a non-neglgible function, then at least one of AdvD,
Pr[hash-collision], and Pr[forged-sig] must also be non-negligible which contra-
dicts our assumptions.

Next, we show decryption consistency under chosen-ciphertext attacks. We
do so via a reduction to the identity key share consistency property of the TIBE
scheme. In particular, we construct a TIBE-adversary D̄ playing the experiment
ExpKC-CPA

TIBE,D̄ with a challenger C̄ that makes black-box use of a O-TTBE adversary

Ā. In this experiment, D̄ has again access to an identity key oracleO as defined in
Section 2.3. For every adversary Ā = (Ā0, Ā1) on the security game ExpO-DC

TTBEIBE,Ā,

we define the TIBE-adversary D̄ as follows:

– When invoked with 1κ, D̄ returns ({i1, . . . , is−1})← Ā0(1κ) to C̄.
– When receiving (pk, vk, {ski1 , . . . skis−1}), D̄ calls

(t, (c∗0,VerK
∗, ·), {(i, di)}i∈S , {(i, d′i)}i∈S′)← Ā1(pk, vk, {ski1 , . . . skis−1}).

– During the execution of Ā1, D̄ answers decryption queries of the form (i, c =
(c0,VerK, σ), t) from Ā as follows:
• If OTS.Verify(VerK, σ, c0) = false, D̄ returns (i,⊥).
• Otherwise, D̄ returns (i, iki)← O(H(t,VerK), i).

– D̄ calculates ID∗ := H(t,VerK∗) and sends (ID∗, c∗0, {(i, di)}i∈S , {(i, d′i)}i∈S′) to
C̄.

Obviously, D̄ perfectly simulates the game ExpO-DC
TTBEIBE,Ā. We complete the

proof by showing that D̄ wins security game ExpKC-CPA
TIBE,D̄ if Ā wins security game

ExpO-DC
TTBEIBE,Ā. In order to win, Ā has to sent a tuple

(t, c∗ = (c∗0,VerK
∗, σ∗), {(i, di)}i∈S , {(i, d′i)}i∈S′)

for which the following holds:

S,S ′ ⊆ [n] and |S| = |S ′| = s (11)

∀i ∈ S :ShareVf(pk, vk, c, t, (i, di)) = true

and ∀i ∈ S ′ :ShareVf(pk, vk, c, t, (i, d′i)) = true
(12)

⊥ 6= m 6= m′ 6= ⊥ for m := Combine(pk, vk, c, t, {(i, di)}i∈S)

and m′ := Combine(pk, vk, c, t, {(i, d′i)}i∈S′)
(13)
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In the concrete scheme TTBEIBE this implies that:
From (12):

∀i ∈ S : TIBE.ShareVf(pk, vk, H(t,VerK∗), i, di) = true

and ∀i ∈ S ′ : TIBE.ShareVf(pk, vk, H(t,VerK∗), i, d′i) = true
(14)

From (13):

TTBE.Decrypt(pk, id, ik, c∗0) 6= TTBE.Decrypt(pk, id, ik′, c∗0)

and ik, ik′ 6= ⊥ for id = H(t,VerK∗)

and ik = TTBE.Combine(pk, vk, id, {(i, di)}i∈S) 6= ⊥
and ik′ = TTBE.Combine(pk, vk, id, {(i, d′i)}i∈S′) 6= ⊥

(15)

In the reduction, D̄ sends the tuple (H(t,VerK∗), c∗0, {(i, di)}i∈S , {(i, d′i)}i∈S′).
Note, that properties (11), (14), (15), are exactly what is required in order to
win the security game ExpKC-CPA

TIBE,D̄ . It follows that D̄ wins security game ExpKC-CPA
TIBE,D̄

if Ā wins security game ExpO-DC
TTBEIBE,Ā, which implies that D̄’s advantage, AdvD̄,

is larger or equal to Ā’s advantage, AdvĀ, in the respective games:

AdvD̄ ≤ AdvĀ

Therefore, if AdvĀ is a non-neglgible function, then AdvD̄ must also be non-
negligible which contradicts our assumptions. This concludes the security proof.

G Security Proof: Anonymous Threshold IBE

This section presents the security proof for Construction 4 in Section 8; the
construction of an anonymous threshold identity-based encryption scheme from
an anonymous non-threshold verifiable identity-based encryption scheme (VIBE)
and an homomorphic secret sharing scheme with (HSS) with linear decoding.
Formally, we prove Theorem 4.

Proof. For proving security, we need to show anonymity and security against
chosen-identity attacks as well as key generation consistency. We split the anal-
ysis and show that an adversary playing the security games has only negligible
advantage over randomly guessing in both games. We start showing anonymity
and security against chosen-identity attacks and prove key generation consis-
tency afterwards.

Anonymity and security against chosen-identity attacks. We prove anonymity
and security against chosen-identity attacks using a sequence of hybrid games
and show that the difference between every two hybrids is negligible via a reduc-
tion to the security properties of VIBE and HSS. We eventually end in a hybrid
where we can make a statement about the success probability of the adversary.

Hybrid 0: We start with the original ANON-IND-ID-CPA security game for
threshold IBE schemes between a challenger C and an adversaryA = (A0,A1,A2).
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Upon receiving a setM of s−1 indices of the corrupted parties fromA0, the chal-
lenger performs the setup algorithm, i.e., it first computes (pkVIBE, vk,msk) ←
VIBE.Setup(1κ) and then (msk1, . . . ,mskn) ← HSS.Share(1κ,msk). Next, the
challenger provides pk := pkVIBE, vk and {mski}i∈M to A1. Upon receiving a
pair (id, i) as a key generation query from A1, C answers with (i, yi), where
yi ← HSS.Eval(i, id,mski). Recall, that the Eval-algorithm computes a share
of y := (ik, ρ) ← VIBE.Extract(pkVIBE,msk, id). A1 outputs (ID0, ID2,m0,m1).
The challenger samples two random bits α, β ∈R {0, 1} and computes c∗ ←
VIBE.Encrypt(pkVIBE, IDα,mβ). In the final stage, A2 gets as input the challenge
ciphertext c∗ and outputs two bits (α′, β′). A2 can make the same key generation
queries as before except for queries (id, i), where id ∈ {ID0, ID1}, for which the
challenger returns (i,⊥). The adversary wins if (α, β) = (α′, β′).

Hybrid 1: In Hybrid 1, we slightly modify how the challenger answers
the key generation queries (id, i), where i /∈ I. Instead of computing yi ←
HSS.Eval(i, id,mski) directly, C first computes y := (ik, ρ)← VIBE.Extract(pkVIBE,
msk, id) and second obtains for all j ∈ M yi ← HSS.Eval(j, id,mskj). Then,
given the set S = M∪ {i} of s values, the challenger can interpolate the iden-
tity key share yi for any i /∈ M. In particular, since HSS is linear decoding

yi :=
y−

∑
j∈S\{i} aS,j ·yj
aS,i

, where the coefficients depend only on S and the specific

indices i ∈ S.
Since we have a linear decoding HSS that satisfies correctness, we can write

the decoding HSS.Dec({yi}i∈S) for any set S of s identity key shares as y :=∑
i∈S aS,i ·yi. In particular, for the identity key shares {yj}j∈M obtained as yi ←

HSS.Eval(j, id,mskj) and any i /∈ M obtained as yi ← HSS.Eval(j, id,mski), it

must hold that y :=
∑
j∈M aS,j ·yj+aS,i·yi. It follows that yi :=

y−
∑

j∈S\{i} aS,j ·yj
aS,i

.

The view of the adversary in Hybrid 0 and Hybrid 1 is identical and hence
the success probability is the same.

Hybrid 2: In Hybrid 2, we modify the challenger such that it computes a
second master secret key (·, ·,msk′)← VIBE.Setup(1κ) and a second set of shares
(msk′1, . . . ,msk′n)← HSS.Share(1κ,msk′) during the setup. While C still provides
pk := pkVIBE and vk to A1, the secret key shares given to A1 are {msk′i}i∈M, i.e.,
from the second set of master secret key shares. In order to make the responses
to key generation queries consistent with the shares msk′i, the challenger acts as
in Hybrid 1 but uses the set {msk′i}i∈M instead of {mski}i∈M. In full detail, C
acts as follows upon receiving a query (id, i). If i ∈ M, it answers with (i, yi),
where yi ← HSS.Eval(i, id,msk′i). Otherwise, if i /∈M, C computes y := (ik, ρ)←
VIBE.Extract(pkIBE,msk, id) and for all j ∈ M yj ← HSS.Eval(j, id,msk′j), and
returns the interpolated identity key share yi as described above. To summarize,
the difference between Hybrid 1 and Hybrid 2 is the usage of the second master
secret key msk′ for generating the shares of the corrupted parties as well as
during the key generation queries.

We show computational indistinguishability between Hybrid 1 and Hybrid
2 via a reduction to the computational security of the HSS scheme HSS. To
this end, we assume a distinguisher D1 that distinguishes with non-negligible
probability between Hybrid 1 and Hybrid 2 and construct an adversary AHSS
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playing in game ExpHSSHSS,AHSS,M. AHSS acts like the challenger in Hybrid 2, i.e. it

generates two master secret keys msk and msk′. It then provides these two values
to the HSS security game which randomly shares one of these and returns the
shares {m̂skj}j∈M. AHSS forwards {m̂skj}j∈M to the adversary playing Hybrid

1 or Hybrid 2. Note that if msk was shared, the set {m̂skj}j∈M = {mskj}j∈M
and if msk′ was shared {m̂skj}j∈M = {msk′j}j∈M. The first case is as in Hybrid
1 and the second is as in Hybrid 2. Upon receiving key generation queries, AHSS

acts like the challenger in Hybrid 1 resp. Hybrid 2 but it uses {m̂skj}j∈M for
computing {ikj}j∈M. Again, if msk was shared, the computation is the same as
in Hybrid 1, if msk′ was shared, the computation equals Hybrid 2. We showed
that AHSS is able to fully simulate the view of the adversary in Hybrid 1 or
Hybrid 2. Hence, assuming there is a distinguisher D1 that outputs 0 if the view
was generated by Hybrid 1 and 1 if it was generated by Hybrid 2, then AHSS

outputs this bit. If D1 distinguishs with non-negligible probability, the adversary
AHSS wins the security game of the HSS scheme with non-negligible probability
too. Since this is a contradiction to our assumption of HSS satisfying correctness,
we showed that Hybrid 1 and Hybrid 2 are computational indistinguishable.

We finally are in a hybrid, where we can make a statement about the suc-
cess probability of the adversary. In particular, we make a reduction to the
ANON-IND-ID-CPA security of the non-threshold VIBE scheme VIBE. That
means, we show how to construct a successful adversary against the VIBE scheme
AVIBE = (AVIBE

0 ,AVIBE
1 ) based on an successful adversary A = (A0,A1,A2) in

Hybrid 2.

Upon initialization with input pkVIBE and vkVIBE, AVIBE
0 acts like the chal-

lenger in Hybrid 2, i.e., it computes msk′ and calls A1 on (pk := pkIBE, vk :=
vkVIBE, {msk′j}j∈M), where M is obtained from A0 before. All key generation
queries are answered like the challenger in Hybrid 2 except that y := (ik, ρ) is
obtained from AVIBE

0 ’s oracle instead of computing it directly. In this reduction,
it is not possible to compute it inside AVIBE

0 because AVIBE
0 does not know the

master secret key msk. The output (ID0, ID1,m0,m1) of A0 is directly forwarded
to the challenger in the VIBE security game. Next, AVIBE

1 is called with the
challenge ciphertext c∗ which is passed to A1. The oracle queries in this stage
are handled like before. Note that it is no problem that AVIBE

1 is not allowed to
query identity keys for ID0 and ID1 since A2 is also not allowed to query any
key shares for these two identities. Finally, AVIBE

1 outputs exactly the two bits
returned by A2.

It is easy to see that success probability of AVIBE is the same as the success
probability of A. Via proof by contradiction, it follows that A wins in Hybrid
2 only with probability 1

4 + negl and hence, our construction is ANON-IND-ID-
CPA secure.

Key generation consistency. Similar to above, we show that the success proba-
bility of an adversary A := (A0,A1) in the security game ExpKC-CPA

TIBE,A is negligible
via a sequence of hybrids.
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Hybrid 0: We start in the original security game ExpKC-CPA
TIBE,A . Upon intializa-

tion, A0 gives a set of s − 1 indices denoting the corrupted parties. Next, the
challenger C performs the setup and gives the public key, the verification key and
the set of master secret key shares of the corrupted parties to A1. The oracle
queries are answered as in Hybrid 0 of the previous proof, i.e., upon receiving
a pair (id, i) from A1, C answers with (i, yi), where yi ← HSS.Eval(i, id,mski).
Finally, A1 outputs an identity ID, a ciphertext c and two set of each s iden-
tity key shares {(i, yi)}i∈S and {(i, y′i)}i∈S′ , where S,S ′ ⊆ [n]. The adver-
sary wins the game if the a set of requirements hold. We leave out the checks
ShareVf(pk, vk, ID, i, yi)) = true and ShareVf(pk, vk, ID, i, y′i)) = true, since the
ShareVf algorithm of the construction always returns true and hence the checks
trivially hold. The following checks remain:

(1) for ik = Combine(pk, vk, ID, {yi}i∈S) and ik′ = Combine(pk, vk, ID, {y′i}i∈S′)
it holds that ik 6= ⊥ and ik′ 6= ⊥ and

(2) Decrypt(pk, ID, ik, c) 6= Decrypt(pk, ID, ik′, c).

If any of these checks fail, the adversary loose the game.

Hybrid 1 and Hybrid 2: We apply the same transformations as in Hybrid
1 and Hybrid 2 of the previous proof. That means, we first answer oracle queries
for honest parties via the interpolated value and in the second transformation,
we use a fresh master secret key whose shares are given to the adversary. The
oracle queries are answered in the same way as described in the previous proof.
Indistinguishability between Hybrid 0 and Hybrid 1 as well as between Hybrid
1 and Hybrid 2 can be shown via reduction to the correctness and security of
HSS, respectively. We elaborate the details in the previous proof. We end up in a
hybrid where the challenger C uses the real master secret key only for computing
the output of Extract(pk,msk, id) upon oracle queries.

We conclude our proof by making a reduction to the soundness property of
the VIBE scheme. We take the adversary A2 := (A2

0,A2
1) in Hybrid 2 and con-

struct an adversary A for the soundness game ExpSOUND
VIBE,A. Upon being initialized

with pkVIBE and vkVIBE, A acts like the challenger in Hybrid 2. This means, A
computes a fresh master secret key and computes shares {m̂ski}i∈[n]} of it. Next,
A calls A2

1(pkVIBE, vkVIBE, {mski}i∈M), where M was obtained from A2
0. Every

key share oracle query by A2
1 is answered as described above, i.e., A asks its

oracle O on the same identity and then the required share is interpolated while
using {mski}i∈M. This is identical to the behavior of the challenger in Hybrid
2. Upon receiving the output (ID, c, {(i, iki)}i∈S , {(i, ik′i)}i∈S′) from A2

1, A uses
the HSS.Dec algorithm to obtain both pairs (ikID, ρID) and (ik′ID, ρ

′
ID). These two

pairs together with ID and c is returned to the challenger of the soundness game.

We note that adversary A simulates the view of A2 as in Hybrid 2. It remains
to show that A wins with the same probability as A2.

Note that, if A2 wins, checks (1) and (2) hold. (1) implies that
VIBE.Verify(pk, vk, ID, ikID, ρID) = 1 and VIBE.Verify(pk, vk, ID, ik′ID, ρ

′
ID) = 1

because otherwise the Combine algorithm would return ⊥. Check (2) directly
implies VIBE.Decrypt(pk, ikID, c) 6= VIBE.Decrypt(pk, ik′ID, c). It follows that A
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wins in the soundness game if A2 wins in Hybrid 2. This leads to a contradic-
tion to the assumption that VIBE satisfies the soundness property. Hence, A2 in
Hybrid 2 has only negligible success probability.

H Concrete Anonymous TIBE Construction

In this section, we discuss how concrete anonymous TIBE scheme can be con-
structed. To this end, we analyze the anonymous non-threshold IBE scheme from
Boyen and Waters [16]. For the sake of completeness, we state the Boyen-Waters
construction in Appendix I. The naive approach to transform the scheme into a
threshold variant is to use Shamir’s secret sharing to share all components of the
master secret key over multiple parties and executing the algorithm generating
the identity keys, the Extract algorithm, in a distributed way. The problem using
this approach is that the Extract algorithm of the original scheme performs sev-
eral multiplications of master secret key components. Suppose these values are
shared using Shamir’s secret sharing, then each server gets a share of a polyno-
mial of degree s− 1. Performing a single multiplications of the shares results in
a shared polynomial of degree 2(s − 1); the degree increases with every further
multiplication by a factor of 2. While there are at most two multiplications of
secret key components in the Extract algorithm, there is another multiplication
with randomly sampled values. Security of the scheme relies on the fact that
these random values, which are sampled per identity key, remain hidden. Hence,
it is necessary that each decryption server uses a secret share of the random val-
ues. Thus, multiplication with a shared random value increases the degree again
by factor 2. Since the total number of decryption servers needs to be bigger
as the degree of the shared polynomial, every multiplication over shared values
effectively lowers the number of corrupted parties that can be tolerated. In case
we require robustness, a property that states that the honest parties alone are
sufficient to execute decryption, the degree of the shared polynomial needs to be
even smaller than the number of honest committee members. Hence, we propose
a number of steps to transform the scheme into a threshold variant while keeping
the security threshold as high as possible.

As in the naive approach, we start by secret sharing the master secret key
components, i.e., ω, t1, t2, t3 and t4, using Shamir’s secret sharing. In addition,
we compute additive shares of the multiplications of secret key components, i.e.,
of t1t2, t3t4, ωt1 and ωt2, in the Setup algorithm using Shamir’s secret sharing.
Now, the computations performed in the Extract algorithm contain at most a
single multiplication between a component of the shared master secret key and a
random value sampled in a decentralized way. That means, we already reduced
the blow up in the polynomial degree to a factor of 2. At this point, the identity
key shares constitute shares of a polynomial of degree 2(s−1). In order to guar-
antee that enough shares are available, we need that n > 2s− 2 (for robustness
n− s > 2s− s ). This holds for a threshold of s ≤ n

2 (for robustness ≤ n
3 ).

Alternatively, the Setup algorithm can pre-compute the multiplications by
sampling a set of random pairs {(ri,1, ri,2)}i∈[K] for some large K ∈ N and
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generating shares of the multiplications ri,1t1t2, ri,2t3t4, ri,1t2, ri,1t1, ri,2t4 and
ri,2t3. The master secret key shares are extended by the new multiplication
shares. The committee, then uses one of these pre-computations in the Extract
algorithm which allows the generation of identity keys without any multiplica-
tions of shared values. Hence, we can set the security threshold to the optimum
of s < n (for robustness n

2 ). However, it is necessary that each pre-computation
is used at most once. This means that the size of the master secret keys increases
with the number of identity keys K that should be extracted later on and K
needs to be fixed during setup. The later can be circumvented by a refreshing
phase that precomputes new multiplication shares if required.

I Boyen Waters Anonymous IBE Scheme

In this section, we present the Boyen and Waters anonymous identity-based en-
cryption (IBE) scheme [16]. The scheme is semantically secure and anonymous
under the DBDH and the decisional linear assumption (DLIN). A detailed de-
scription and security analysis can be found in [16]. For the sake of completeness,
we first present the decisional linear assumption and then, outline the construc-
tion.

Definition 17 (DLIN). The Decision Linear assumption (DLIN) states that
for every algorithm D running in time polynomial in security parameter κ it
holds that∣∣Pr[D(u, v, h, ua, vb, ha+b)]− Pr[D(u, v, h, ua, vb, hc)]

∣∣ ≤ negl(κ) (16)

where G is a cyclic group of prime order q, u, v, h are random generators of G,
and a, b, c ∈R Zq. The randomness is taken over the random choices of the group
elements u, v, h,, the values a, b, c, and the random bits of D.

Construction 6: BW-IBE

Let G and GT be two groups of prime order q and e : G × G → GT a bilinear
mapping.
Setup(1κ):

– choose random generator g ∈R G and random group elements g0, g1 ∈R G
– sample random exponents ω, t1, t2, t3, t4 ∈ Zq
– msk = (ω, t1, t2, t3, t4)
– pk = (Ω = e(g, g)t1t2ω, g, g0, g1, v1 = gt1 , v2 = gt2 , v3 = gt3 , v4 = gt4)
– return (pk,msk))

Extract(pk,msk, id):

– r1, r2 ∈R Zq
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– return ikid = (d0, d1, d2, d3, d4) where

d0 = gr1t1t2+r2t3t4

d1 = g−ωt2(g0g
id
1 )−r1t2

d2 = g−ωt1(g0g
id
1 )−r1t1

d3 = (g0g
id
1 )−r2t4

d4 = (g0g
id
1 )−r2t3

Encrypt(pk, id,m):

– s, s1, s2 ∈ Zq
– return c = (c′, c0, c1, c2, c3, c4) = (ωsm, (g0g

id
1 )s, vs−s11 , vs12 , vs−s23 , vs24 )

Decrypt(pk, c, ikid):

– return m = c · e(c0, d0) · e(c1, d1) · e(c2, d2) · e(c3, d3) · e(c4, d4)

J Further Applications

In this section, we present further use-cases for our SO-TWE and T-TTBE
primitives.

J.1 Time-lock encryption with a hidden release time.

Time-lock encryption, as introduced by Rivest et al. [31], allows a party to
encrypt a message in a way that it can only be decrypted after a certain deadline.
Liu et al. [6] propose an extension based on witness encryption in which the
parties interested in decryption do not have to invest a large amount of sequential
computation. However, being based on standard witness encryption, the deadline
respectively the lock period is public. This limitation can be overcome by our
primitives. In particular, we can construct a time-lock encryption scheme for
which the release time remains hidden until successful decryption. Suppose there
is a committee holding the secret key shares of an O-TTBE scheme with public
key pk. An encrypting party that wants to encrypt a message m such that it is
released at a specific date d, creates a ciphertext OTTBE.Encrypt(pk, d,m) and
sends it to the decryption committee with the instruction to decrypt every day
with the current date as tag. It follows from the indistinguishable message and
tag property of the OTTBE scheme that both the message and the realease time
are hidden until successful decryption. In case the decryption committee does
not have access to a source of time, we can still realize this notion of time-lock
encryption with hidden release time by making use of SO-TWE in combination
with either a trusted time provider or a blockchain. The encrypting party will
encrypt the message such that the witness is a signature of the trusted time
provider on a date larger than d or a valid blockchain that is (a) a successor of
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the blockchain state known during encryption and (b) has a confirmed block with
timestamp larger than d. Parties that want to decrypt, retrieve the corresponding
witness from the time provider respectively the blockchain network and submit
the witness together with the current date to the decryption committee, every
day.

J.2 Dead-Man Switch for an Unknown Party

A dead-man switch is designed to trigger a particular action once a linked hu-
man becomes incapacitated. In the digital world, a dead-man switch typically
releases private data that is valuable by itself or can be used to trigger further
actions. The release condition can be diverse, e.g., not logging in to a particu-
lar service for a certain duration. A dead-man switch is for example interesting
for whisteblowers to publish evidence of ongoing investigations in case they get
harmed during said investigation. On one hand, a dead-man switch can be used
to deter from actively induced harm to the individual. On the other hand, in
cases where outsiders assume that the whisteblower will certainly publish the
results of the ongoing investigation once finished, it is better not to draw atten-
tion by publicly announcing the dead-man switch. This privacy property can be
achieved using our notion of SO-TWE. The journalist encrypts the sensible data
with her name as statement and an official death certificate as required witness
and uploads it to a public database (using an anonymous channel). The jour-
nalists’ association submits the names and death certificates of journalists that
decease from non-natural causes to the decryption committee together with all
unopened dead-man switches. Again, the message and statement indstinguisha-
bility ensures that the identity of the journalist as well as the encrypted data
remain hidden until decryption which can only happen after the individual de-
ceased.

J.3 Charity Lottery

Consider a scenario where a benefactor aims to sell a digital prize (coins or
tokens) via a lottery in such a way that all the money raised is donated to
selected charity organizations. By making use of O-TTBE, the benefactor can
realize such a lottery without the requirement of actively participating in the
lottery process as well as she can also allow customers to choose the subset
of charities they want to support. To do so, the benefactor generates fresh O-
TTBE decryption keys and distributes them to the charity organization. Then,
she encrypts the authorization to withdraw the prize using a random tag and
publishes the ciphertext. By publishing a set of possible tags, the benefactor can
adjust the win rate of the lottery. Once the lottery has been set up, customers
can buy decryption shares for self-selected tags from the charity organizations,
hence, directly donating the money to the organizations of their choice. The
party that guesses the tag correctly wins the lottery and gets the prize.

54



J.4 Puzzle Prizes

Consider a puzzle whose solutions are not publicly verifiable but require a game
master to verify, e.g., a quiz. In scenarios, in which the puzzle is not expected
to be solved within a short time period, it is desirable not to require the game
master to be online for the whole duration of the game. This requirement can
be circumvented by using O-TTBE in combination with a public decryption
committee. The game master encrypts the prize for the correct answer with the
correct solution as the tag using O-TTBE. Parties can request decryptions with
their solution attempts as tag, and, if successful, obtain the prize. This use-case
can further be extended with smart contracts, e.g., to handle fees for solution
attempts that are (partially) included into the prize pool.
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