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Abstract. We introduce FESTA, an efficient isogeny-based public-key
encryption (PKE) protocol based on a constructive application of the
SIDH attacks.
At its core, FESTA is based on a novel trapdoor function, which uses
an improved version of the techniques proposed in the SIDH attacks to
develop a trapdoor mechanism. Using standard transformations, we con-
struct an efficient PKE that is IND-CCA secure in the QROM. Addition-
ally, using a different transformation, we obtain the first isogeny-based
PKE that is IND-CCA secure in the standard model.
Lastly, we propose a method to efficiently find parameters for FESTA,
and we develop a proof-of-concept implementation of the protocol. We
expect FESTA to offer practical performance that is competitive with
existing isogeny-based constructions.

Keywords: Isogeny-based Cryptography · Public-key Encryption · Trap-
door Function

1 Introduction

Over the last decade, isogeny-based cryptography has become one of the major
candidates to develop cryptographic protocols that are resistant against attacks
from quantum computers. Isogeny-based solutions often offer practical execution
times, and, despite being significantly slower than their lattice-based counter-
parts, they usually benefit from small bandwidth requirements.

The Supersingular Isogeny Diffie-Hellman (SIDH) protocol by De Feo, Jao,
and Plût [22] has been the most well-known and efficient encryption protocol
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based on isogenies. However, recent attacks [9,36,48] broke the security guar-
antees of the protocol. Fouotsa, Moriya, and Petit [26] proposed two counter-
measures to these attacks, but the result requires significantly larger parame-
ters which make the protocols impractically slow for most applications. Further
countermeasures have been suggested by Basso and Fouotsa [3]; these counter-
measures achieve better performance and smaller keys compared to [26].

The attacks on SIDH significantly altered the landscape of isogeny-based pro-
tocols: they similarly affected the security of other protocols that revealed torsion
point information, such as SÉTA [21]. Other isogeny-based encryption schemes,
such as CSIDH [10] and pSIDH [35], are unaffected; however, they are vulner-
able to a quantum subexponential attack [42] and a quantum polynomial-time
attack [12], respectively. This makes it hard to estimate the quantum security
of a given parameter set; nonetheless, according to the conservative estimates
in [42], CSIDH requires very large primes, which would increase the running
time of a single key exchange to several seconds [14].

In this work, we aim to fill the gap by proposing a novel PKE protocol that is
practical and efficient; we call it FESTA, for Fast Encryption from Supersingular
Torsion Attacks. We first develop a trapdoor function, where the SIDH attacks
are used to invert the one-way function. Then, we use the proposed trapdoor
function to build a IND-CCA secure PKE.

In the trapdoor formulation, the trapdoor key is an isogeny φA : E0 → EA

and a random special matrix A; the public parameters are the codomain EA,
together with the image of a large torsion basis (Pb, Qb) under φA. The image
points, before being revealed, are scaled by the matrix A, which protects the
isogeny φA from the SIDH attacks. The one-way function receives as input two
isogenies φ1 : E0 → E1, φ2 : EA → E2, and a random special matrix B.
Evaluating the function then consists in computing the images of the torsion
basis on E0 and EA under φ1 and φ2, respectively, and scaling them both with
the matrix B; see Fig. 1. The matrices A and B are special in the sense that they
commute; this is the case, for instance, for diagonal matrices. Commutativity
of the matrices is what enables the trapdoor inversion: applying the inverse
matrix A−1 to scale the points on E2 yields the correct images of the torsion
points on E1 under the isogeny ψ := φ2 ◦φA ◦ φ̂1. Hence, the SIDH attacks allow
the trapdoor holder to recover the function input φ1, φ2, and the matrixB, while
the attacks are infeasible to anyone who does not know the secret matrix A.

Related work. FESTA can be considered a successor of SÉTA [21]: both pro-
tocols constructively use torsion-point attacks to develop a trapdoor function,
which is then the foundation of a IND-CCA PKE. Despite the similarities, the
two protocols rely on different techniques, and the efficiency of the SIDH at-
tacks [41], compared to the torsion-point attacks used by SÉTA [44], allows us
to obtain a practical encryption protocol.

In terms of techniques used, key generation and encryption in FESTA rely
on similar computations as those in SIDH, with the key difference that the re-
vealed torsion images are scaled to prevent the SIDH attacks. Unlike the scaling
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Fig. 1. The FESTA trapdoor function. The parameter generation computes the
isogeny φA, while the trapdoor function evaluation consists of evaluating the isoge-
nies φ1 and φ2. The inversion algorithm recovers the isogeny ψ = φ2 ◦ φA ◦ φ̂1.

proposed in [26], the two points are scaled by different values, which provides
higher security and allows us to use significantly smaller parameters. The de-
cryption algorithm in FESTA recovers two secret isogenies at once by adapting
techniques used for SIDH attacks: this is one of the first protocols to use this
cryptanalytic tool constructively. A different application of similar techniques
has been proposed in [19,24].

Contributions. In this work, we make the following contributions:

1. We propose the FESTA trapdoor function, which constructively uses the
SIDH attacks to invert a one-way function.

2. We assess the security of the proposed trapdoor functions. The security
proofs rely on novel security assumptions, for which we provide a compre-
hensive discussion on potential classical and quantum attacks.

3. Relying on the new trapdoors, we apply the OAEP transform [25] to obtain
an efficient PKE that is IND-CCA secure in the QROM. We call this the
FESTA PKE, or just FESTA. We also derive the first isogeny-based PKE to
be IND-CCA secure in the standard model, using a generic transform by
Hohenberger, Koppula, and Waters [30].

4. We describe a novel technique to find parameters that lead to a fast compu-
tation of the SIDH attacks. In particular, we leverage scalar endomorphisms
to obtain an efficient SIDH attack in dimension two that recovers isogenies
between supersingular elliptic curves whose endomorphism ring is unknown.

5. Lastly, we implement the proposed FESTA PKE in SageMath: while this
is a proof of concept, it demonstrates the feasibility of our protocol. Given
these preliminary results, we expect that an optimised implementation of
FESTA can offer practical running times that are competitive with existing
isogeny-based constructions.

Organisation. In Section 2, we cover the necessary background of crypto-
graphic one-way functions and isogenies between abelian varieties. In Section 3,
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we introduce the FESTA family of trapdoor functions, and its security is analysed
in Section 4. Then, we build upon the proposed trapdoor functions to obtain a
PKE that is IND-CCA secure in the QROM model in Section 5. Section 6 gives
a precise and concrete description of the FESTA PKE, which is supported by the
proof-of-concept implementation detailed in Section 7.

Notation. Throughout this paper, we denote the security parameter as λ, and
we say a function f(x) is negligible if, for all positive integers c, there exists
an integer N such that |f(x)| < x−c, for all x > N . We write negl(·) to say
a negligible function and Z>0 to represent the set of positive integers. Given

a t ∈ Z>0, we denote its square-free part by tsf . We also write x
$←− X to denote

that x is sampled uniformly at random among the elements of X .
We also define TorGen to be a deterministic algorithm that, given a supersin-

gular elliptic curve E and an integer n, outputs two generators of the n-torsion on
E, denoted by E[n]. Given four isogenies φi,j : Ei → Ej and two points Pi ∈ Ei,
for i = 1, 2 and j = 3, 4, evaluating the isogeny(

φ1,3 φ2,3

φ1,4 φ2,4

)
: E1 × E2 → E3 × E4

at
(
P1 P2

)T
amounts to(

φ1,3 φ2,3

φ1,4 φ2,4

)(
P1

P2

)
=

(
φ1,3(P1) + φ2,3(P2)
φ1,4(P1) + φ2,4(P2)

)
.

In particular, we can view the action of scaling points P1, Q1 by a matrix A just
as above, by interpreting the matrix coefficients α, β, γ, δ to be scalar endomor-
phisms: (

α β
γ δ

)(
P1

P2

)
=

(
[α]P1 + [β]P2

[γ]P1 + [δ]P2

)
.

Acknowledgments. The authors are indebted to Tako Boris Fouotsa for fruit-
ful feedback on a preliminary version of this paper that led to a more complete
security analysis. The authors would also like to thank Ross Bowden, James
Clements, Péter Kutas, and Chloe Martindale for useful discussions regarding
the parameter generation, and Yan Bo Ti for an interesting discussion on poten-
tial adaptive attacks.

2 Preliminaries

In this section, we summarise some background knowledge about public-key
encryption schemes and isogenies.
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2.1 Cryptographic Preliminaries

For the sake of being self-contained, we briefly recall some cryptographic notions
we will use in the rest of the paper; we refer to [7] for background material.
The main ingredient in FESTA is the notion of a trapdoor function. Roughly
speaking, trapdoor functions can be seen as one-way functions with the property
of being easily invertible if one has access to additional secret information. While
definitions in the literature vary, throughout this paper we restrict ourselves
to injective trapdoor functions. Formally, trapdoor functions form a family of
functions indexed by the public parameters, but when the context allows it, we
may refer to a trapdoor function to denote the entire family for ease of notation.

Definition 1 (Family of trapdoor functions). Let X and Y be two finite
sets. A family of trapdoor functions is a triple of algorithms (KeyGen, f, f−1)
such that:

– KeyGen(λ)
$−→ (sk, pk) : KeyGen is a probabilistic key generation algorithm

that outputs a secret key sk and a public key pk for a given security param-
eter λ;

– f(pk, x) → y: f is a deterministic algorithm that, on input a public key pk
and x ∈ X , outputs y ∈ Y;

– f−1(sk, y) → x: f−1 is a deterministic algorithm that, on input the secret
key sk and y ∈ Y, outputs x ∈ X .

Trapdoor functions need to be correct, i.e. for all possible outputs (pk, sk) of
KeyGen and for all x ∈ X , f−1(sk, f(pk, x)) = x. Moreover, they should also be
one-way, which means that given a valid output y ∈ Y, computed using (sk, pk),
and the public key pk, any probabilistic polynomial-time adversary cannot com-
pute x ∈ X such that f(pk, x) = y with probability greater than negl(λ).

In this work, we rely on a stronger version of trapdoor functions: partial-
domain trapdoor function [25]. Informally, this means that not only recovering
the entire input is hard, but also the same holds if one tries to recover a part of
it.

Definition 2 (Quantum partial-domain one-way function). Let X0,X1

and Y be three finite sets. A function f : X0 × X1 → Y is a quantum partial-
domain one-way function if, for any polynomial-time quantum adversary A, the
following holds:

P
(
s′ = s

∣∣∣ s $←− X0, t
$←− X1, s

′ ← A(f(s, t))
)
< negl(λ).

In Section 5.1, we show how to derive a Public-key Encryption (PKE) scheme
from a quantum partial-domain one-way function.

Definition 3 (Public-key Encryption). A public-key encryption scheme is
a triple of efficient algorithms (KeyGen,Enc,Dec) such that:

– KeyGen(λ)
$−→ (sk, pk): KeyGen is a probabilistic key generation algorithm that

outputs a secret key sk and a public key pk for a given security parameter λ;
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– Enc(pk,m)→ ct: Enc is a probabilistic algorithm that, given a public key pk
and a message m, returns a ciphertext ct;

– Dec(sk, ct)→ m: Dec is a deterministic algorithm that returns a message m
having a ciphertext ct and a secret key sk as input.

A public-key encryption scheme is correct if, for all possible outputs (sk, pk)
of KeyGen and for all messages m, Dec(sk,Enc(pk,m)) = m.

Mainly, there are two notions of indistinguishability security for PKEs: se-
curity against a chosen plaintext attack (CPA), and security against a chosen
ciphertext attack (CCA). The FESTA PKE we will introduce in Section 5 verifies
the strongest notion of IND-CCA: roughly speaking, given two messages, any
probabilistic polynomial-time adversary cannot distinguish which message has
been encrypted even if they can ask to decrypt some ciphertexts different from
the challenge ciphertext at any point during the attack.

2.2 Isogenies

Most of the existing isogeny-based cryptosystems rely on the computation of
isogenies between elliptic curves. For details on these, we refer the reader to
[49,20]. We recall here some results about isogenies between abelian varieties,
while keeping in mind our main application: recovering isogenies between elliptic
curves from isogenies between abelian varieties.

Implicitly, elliptic curves come equipped with an additional structure: the
principal polarisation. Principal polarisations can be seen as special isomor-
phisms between the curve itself and its Jacobian. Thus, the correct generalisation
of elliptic curves to higher dimension is principally polarised abelian varieties;
that is, abelian varieties endowed with a principal polarisation. An abelian va-
riety of dimension two is called abelian surface. Up to isomorphisms over the
algebraic closure of their field of definition, principally polarised abelian surfaces
come into two flavors: either Jacobians of genus-2 hyperelliptic curves or prod-
ucts of two elliptic curves. This property allows us to compute certain polarised
isogenies between abelian surfaces efficiently; polarised isogenies are isogenies
that are compatible with the principal polarisations on the two abelian sur-
faces. We refer to [39] for more thorough background and to [36, Section 2] for
an introduction to principally polarised abelian surfaces from a cryptographic
perspective.

Products of supersingular elliptic curves are the main ingredient underlying
the recent attacks on SIDH. Given the description of some torsion under a secret
isogeny, it is possible to recover such an isogeny using the following result, which
is proved in [36, Theorem 1] and is a corollary of Kani’s criterion [32].

Theorem 4. Let E0, E1 and E2 be three elliptic curves defined over Fp such
that there exist two isogenies φN1 : E0 → E1 and φN2 : E0 → E2 of coprime
degrees deg(φN1

) = N1 and deg(φN2
) = N2. Then, the subgroup

⟨([N2]φN1(P ), [N1]φN2(P )), ([N2]φN1(Q), [N1]φN2(Q))⟩ ⊂ E1 × E2,
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where ⟨P,Q⟩ = E0[N1 + N2], is the kernel of a (N1 + N2, N1 + N2)-polarised
isogeny Φ having product codomain. Furthermore, the matrix form of Φ is given
by (

φ̂N1
−φ̂N2

gN2
ĝN1

)
,

where gNi are Ni-isogenies such that φN2 ◦ φ̂N1 = gN1 ◦ gN2 .

In the context of the SIDH attacks, Kani’s criterion is used to learn infor-
mation about either Alice or Bob’s secret isogeny. In [9], whether the (N1 +
N2, N1 + N2)-isogeny splits into the product of supersingular elliptic curves is
used as an oracle to determine if a guess of a step along the secret isogeny path
was correct. In [36], the entire secret isogeny is recovered from Kani’s criterion by
noticing that up to isomorphism, the dual of the secret isogeny −φ̂N2

can be re-
covered from one element of the matrix representation of the (N1+N2, N1+N2)-
isogeny. In [48], this strategy is generalised to higher dimension to allow provable
polynomial-time attacks in the general case.

In the high-level description of FESTA, we write TorAtk to denote a generic
attack that can be implemented with different techniques. In other words, given
the points P ′ = ψ(P ) and Q′ = ψ(Q), for some unknown d-isogeny ψ : E → E′,
points P,Q such that E[2b] = ⟨P,Q⟩ and b ∈ Z>0, TorAtk(E,P,Q,E

′, P ′, Q′, d)
outputs a description of the isogeny ψ : E → E′. The concrete description of the
attack used for our tailored parameter set is introduced in Section 6.

As in the case of elliptic curves, isogenies between principally polarised
abelian surfaces can be computed as a chain of (ℓ, ℓ)-isogenies, where ℓ is prime.
There exist some algorithms to compute (ℓ, ℓ)-isogenies, where ℓ is an odd
prime (see, for instance, [16]). Some recent work has improved existing algo-
rithms for the case ℓ = 3 [23]. However, for ℓ = 2, a classical result of Richelot
provides an efficient algorithm to compute (2, 2)-polarised isogenies between Ja-
cobians of genus-2 hyperelliptic curves [47,50]. For this reason, we will restrict
ourselves to Ni-isogenies between elliptic curves such that N1+N2 = 2b, for some
b ∈ Z>0, when searching for parameter sets. This choice allows to implement our
protocol only with (2, 2)-isogenies in dimension two.

3 The FESTA trapdoor function

In this section, we introduce FESTA: a family of quantum-resistant trapdoor
functions. The function evaluation consists of computing two isogenies starting
from two curves, linked by a secret isogeny: the outputs of the function are then
the image curves, together with some scaled torsion images. Roughly speaking,
the one-wayness depends on scaling the torsion points, which makes the SIDH
attacks unapplicable. The secret trapdoor information is a matrix that undoes
the scaling action on the torsion points, which enables the inverter to apply the
SIDH attacks and extract the input.

More formally, let E0 be a supersingular elliptic curve defined over Fp2 , and
fix a basis ⟨Pb, Qb⟩ = E0[2

b]. These values, together with the isogeny degrees,
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form the parameters common to each function in the trapdoor family. The public
key of each trapdoor function is generated by computing a secret dA-isogeny from
E0 to EA and consist of the curve EA, together with the torsion images of Pb, Qb,
scaled by a matrix A of special form. We writeMb to denote the set of possible
matrices A, and we postpone a precise definition of it until after we introduce
the trapdoor inversion procedure.

The public keys are defined by the following set:

Apk :=

(EA, RA, SA)

∣∣∣∣∣∣∣
φA : E0 → EA, deg(φA) = dA,

A ∈Mb,

(
RA

SA

)
= A

(
φA(Pb)
φA(Qb)

) .

For each (EA, RA, SA) ∈ Apk, we highlight the dependence of the trapdoor
function f on the public key (EA, RA, SA) by using the notation f(EA,RA,SA).
Evaluating the trapdoor function f(EA,RA,SA) consists of computing the d1-
isogeny φ1 : E0 → E1 and the d2-isogeny φ2 : EA → E2. The output of the
function is the curves E1, E2, together with the torsion images of Pb, Qb un-
der φ1 and the images of RA, SA under φ2, both scaled by the matrix B ∈Mb.
These computations are summarised in Algorithm 1, and we denote its output
by (E1, R1, S1, E2, R2, S2).

Algorithm 1 f(EA,RA,SA)(⟨K1⟩, ⟨K2⟩,B)

Input: Two cyclic subgroups ⟨K1⟩ ⊂ E0[d1] and ⟨K2⟩ ⊂ EA[d2] of order d1 and d2,
respectively, and B ∈Mb.

Output: (E1, R1, S1, E2, R2, S2).
1: Compute the d1-isogeny φ1 : E0 → E1 having kernel ⟨K1⟩.
2: Compute the d2-isogeny φ2 : EA → E2 having kernel ⟨K2⟩.
3: Acting with scalar multiplication compute(

R1

S1

)
= B

(
φ1(Pb)
φ1(Qb)

) (
R2

S2

)
= B

(
φ2(RA)
φ2(SA)

)
.

4: return (E1, R1, S1, E2, R2, S2).

To invert the function, we would like to scale the torsion points R2, S2 on
E2 to undo the scaling-by-A transform that was applied during the public-key
generation. However, the public points on E2 have already been scaled by B; we
thus need that A and B commute. In practice, we require that the matrices are
diagonal:3 applying the matrices then becomes scaling the two torsion points by
two independent scalars.

3 This is not the only option: for instance, circulant matrices, i.e. those of the form
[ a b
b a ], form a commutative algebra. However, using such matrices does not seem to
have any major advantage over diagonal matrices.
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Given diagonal matrices A,B, we can recover the images of the points R1, S1

on E1 under the composition isogeny ψ := φ2 ◦ φA ◦ φ̂1. Note that

d1

(
R2

S2

)
= B ·A ·B−1

(
ψ(R1)
ψ(S1)

)
= A

(
ψ(R1)
ψ(S1)

)
.

Hence, after scaling d1
(
R2 S2

)T
by A−1, we can apply the torsion-point attacks

on E1 and E2 to recover the isogeny ψ, from which we can reconstruct the kernels
of φ1 and φ2, denoted ⟨K1⟩, ⟨K2⟩ respectively, along with the scaling matrix B.
In other words, we have that TorAtk(E1, R1, S1, E2, R

′
2, S

′
2, d1dAd2) = ψ, where

the points R′
2, S

′
2 are computed by scaling the points [d1]R2, [d1]S2 by the ma-

trix A−1. The procedure to invert f(EA,RA,SA) is summarised in Algorithm 2.
Note that our trapdoor can be inverted using any torsion-point attack that works
with a starting curve of unknown endomorphism ring. We detail the specifics of
the attack algorithm we use in Section 6.

The torsion-point attacks can only recovery isogenies up to automorphisms,
and, in our setting, the automorphism groups of the curves E1 and E2 coin-
cides with ⟨−id⟩.4 Hence, we define Mb, the set from which the matrices A
and B are sampled, to be the commutative subset of invertible diagonal matri-
ces over (Z/2bZ)× modulo ⟨−I2⟩, where I2 represents the 2× 2 identity matrix.
The modulo ⟨−I2⟩ condition translates to picking a canonical choice in each
equivalence class. For instance, the canonical representative A of an equivalence
class can be the matrix A that verifies A1,1 < −A1,1, where the comparison
is over the integers. Throughout this paper, we always implicitly fix a canoni-
cal representative in any equivalence class; as such, we identify the equivalent
classes inMb with their canonical representatives. We can extend the definition
to the more general case byMn to denote the commutative subset of invertible
diagonal matrices over (Z/nZ)× modulo ⟨−I2⟩, for any smooth integer n.

Remark 5. As in SIDH, upon choosing a canonical basis ⟨P,Q⟩ of E[d], we can
restrict ourselves to isogenies whose kernels are cyclic subgroups of the form
⟨P + [x]Q⟩, without affecting the security of the protocol. This makes it possi-
ble to represent every isogeny with an element in Z/dZ. This representation is
injective if the automorphisms on the curve E are only ±id: to avoid such issues,
we choose the starting curve E0 to have j-invariant ̸= 0, 1728.

Hence, the domain of f(EA,RA,SA) is Z/d1Z×Z/d2Z×Mb. Additionally, we
denote its codomain by S.

The trapdoor function we are proposing is correct, i.e. the inversion algorithm
produces the original function input. The isogeny ψ is uniquely determined by
its action on the 2b torsion [37, Section 4]; in other words, there is only one
isogeny of degree d1dAd2 that maps R1 and S1 to R

′
2 and S

′
2. Hence, the function

TorAtk recovers the unique isogeny up to automorphisms. If all the automorphism
groups of the curves E involved in the protocol are trivial (i.e. Aut(E) = ⟨−id⟩),
which is the case for all curves with j-invariant ̸∈ {0, 1728}, the kernels are

4 Unless either j(E1) or j(E2) ∈ {0, 1728}, which happens with negligible probability.
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Algorithm 2 f−1
(EA,RA,SA)(E1, R1, S1, E2, R2, S2)

Input: A tuple (E1, R1, S1, E2, R2, S2), the trapdoor (A ∈Mb, φA : E0 → EA).
Output: (⟨K1⟩, ⟨K2⟩,B) such that f(EA,RA,SA)(⟨K1⟩, ⟨K2⟩,B) = (E1, R1, S1, E2, R2, S2).
1: Recover R′

2, S
′
2 by inverting A and acting with scalar multiplication:(

R′
2

S′
2

)
= d1A

−1

(
R2

S2

)
.

2: Compute ψ = φ2 ◦ φA ◦ φ̂1 : E1 → E2 via TorAtk(E1, R1, S1, E2, R
′
2, S

′
2, d1dAd2).

3: Recover the kernel ⟨K1⟩ of the d1-isogeny φ1 : E0 → E1 from ψ using φA.
4: Recover the kernel ⟨K2⟩ of the d2-isogeny φ2 : EA → E2 from ψ using φA.
5: Compute B ∈Mb such that (

R1

S1

)
= B

(
φ1(Pb)
φ1(Qb)

)
.

6: return (⟨K1⟩, ⟨K2⟩,B).

uniquely defined and the images of torsion points are defined up to inversions.
This is because the matrixB is a canonical representative of the equivalence class
modulo ⟨−I2⟩. Additionally, the matrixB is invertible, and thus the torsion-point
scaling is also an injection. Hence, the inversion algorithm produces the correct
output with overwhelming probability, which also implies that the function is
injective.

4 Security of the FESTA trapdoor

In this section, we analyse the security of the FESTA trapdoor. We first introduce
a computational and a decisional variant of the problem that asks to either
compute an isogeny or distinguish whether an isogeny exists between two curves,
given the image of torsion points scaled by a matrix A ∈Mb.

5 These problems
can be seen as a generalisation of the classic isogeny problems [22] to the scaled-
torsion setting.

Problem 6 (Decisional isogeny with scaled-torsion (DIST) problem). Let E0

be a supersingular elliptic curve, and P0, Q0 be two points spanning E0[n], for
some smooth order n. Fix a smooth degree d, coprime with n, and given an
elliptic curve E1 and two points P1, Q1, sampled with probability 1/2 from
either distribution:

– D0 = {E1, P1, Q1}, where E1 is the codomain of a d-isogeny φ : E0 → E1,
and the points P1, Q1 are given by (P1 Q1)

T = A(φ(P0) φ(Q0))
T , where the

matrix A
$←−Mn,

– D1 = {E1, P1, Q1}, where E1 is a random supersingular elliptic curve with
the same order as E0, and (P1, Q1) is a random basis of E1[n],

5 The problem definitions can easily be extended to the case of circulant matrices.
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distinguish from which distribution the values were sampled.

Problem 7 (Computational isogeny with scaled-torsion (CIST) problem). Let
φ : E0 → E1 be an isogeny of smooth degree d between supersingular elliptic
curves defined over Fp2 , and let n be a smooth integer coprime with d.

Given the curves E0 with a basis P0, Q0 of E0[n] and the curve E1 with a

basis A(φ(P0) φ(Q0))
T , where A

$←−Mn, compute the isogeny φ.

Problem 6 is the decisional variant of Problem 7, and as such it is at least
as hard as Problem 7. The converse is also partially true: given an oracle that
solves Problem 6 for any degree, it is possible to solve Problem 7 using the
search-to-decision reduction for classic isogeny problems [29].

The CIST assumption guarantess the hardness of extracting the trapdoor
information from the public parameters of a FESTA trapdoor function. However,
the output of the FESTA one-way function produces two pairs of curves and
torsion points, scaled by the same matrix. The correlated scaling can potentially
make inverting the one-way function easier than solving Problem 7. Thus, to
guarantee the one-wayness of the FESTA function, we need to introduce the
following problem.

Problem 8 (Computational isogeny with double scaled-torsion (CIST 2) problem).
Let E0 be a supersingular elliptic curve defined over Fp2 , and let E′

0 be a random
supersingular elliptic curves defined over the same field. Consider two isogenies
φ : E0 → E1 and φ′ : E′

0 → E′
1 of smooth degrees d and d′, respectively. Let n

be a smooth integer coprime with d and d′, and let A be a matrix sampled as

A
$←−Mn.
Given the curves E0, E1, E

′
0, E

′
1, two bases P,Q of E0[n] and P

′, Q′ of E′
0[n],

and the points A(φ(P ) φ(Q))T and A(φ′(P ′) φ′(Q′))T , compute the isogenies φ
and φ′.

Since this problem provides additional information (two sets of torsion im-
ages, scaled by the same matrix), the hardness of Problem 7 is implied by the
CIST 2 assumption, whereas the converse may not be true.

Having introduced the relevant computational assumptions, we can now
prove the one-wayness of the FESTA trapdoor function.

Theorem 9. The function f(EA,RA,SA) : Z/d1Z × Z/d2Z ×Mb → S, defined
in Algorithm 1, is a one-way function, assuming the hardness of Problem 6 for
d = dA and n = 2b and of Problem 8 for d = d1, d

′ = d2 and n = 2b.

Proof. In the definition of one-wayness (see Definition 1), the attacker A receives
the FESTA public parameters, including the dA-isogenous curves E0 and EA, and
the FESTA output comprising of the curves E0, E1 and the points P0, Q0, P1, Q1,
computed as in Algorithm 1, and produces the isogenies φ1, φ2 and the matrixB.

Through a hybrid argument, we can replace curve EA, which is the dA-
isogenous to E0, with a random starting curve. Any attacker that can distinguish
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between the two cases can be used as a distinguisher for Problem 6. Now, any
attacker that can invert the FESTA trapdoor function when the curves E0 and
E1 are randomly generated can be used to solve Problem 8, since the input and
outputs are the same. ⊓⊔

Under the strong assumption that an attacker that can solve Problem 6 can
do so for any degree d, Problem 6 and 7 are equivalent, and the hardness of
Problem 7 is implied by that of Problem 8. In that case, Theorem 9 can thus be
simplified to rely only on the CIST2 assumption.

Hardness analysis. We now discuss potential strategies that an attacker may
employ to solve the presented problems and introduce several arguments to
justify the presumed hardness of the corresponding computational assumptions.

First, let us consider the torsion point attacks [9,36,48]: as argued in [48,
Section 6.4], given a d-isogeny φ, it is possible to recover φ if the image of
the n-torsion is available, provided n2 > 4d. While FESTA does reveal torsion
point images of sufficiently large order, these are scaled by a random invertible
diagonal matrix. An attacker may recover the determinant of such a matrix
through pairing computations since e([α]φ(P ), [β]φ(Q)) = e(P,Q)αβ degφ and
P,Q and degφ are known. This information can be used to remove one variable:
given P ′ = [α]φ(P ), Q′ = [β]φ(Q) and αβ, scaling Q′ by (αβ)−1 (mod n) yields
the point Q′′ = [1/α]φ(Q). Thus, P ′ and Q′′ are the images of P,Q scaled by a
random diagonal matrix of determinant one, where the scaling depends uniquely
on the value α. While this change reduces the number of variables, it does not
affect security because α is randomly sampled from an exponentially large set.
Due to this reduction, in the rest of the paper we can restrict the matrices to
those with unitary determinant without affecting the security of the protocol.

If the attacks on SIDH do not apply to FESTA, it is natural to wonder whether
the attacks could be extended to cover the case of scaled torsion points. This
seems unlikely, because the torsion information revealed by FESTA is significantly
less than that in SIDH, or even the variants of SIDH called M-SIDH and MD-
SIDH [26] that are believed to be secure — we compare FESTA to M-SIDH and
MD-SIDH at the end of this section.

Another attack strategy consists of guessing (or brute forcing) the scaling
value α. While the scaling values are sampled from an exponentially large set,
the attacker can also focus on recovering only part of α. Given the scaled points
P ′ = [α]φ(P ) and Q′ = [α−1]φ(Q), the attacker can scale them by a power of
two and obtain

2b−jP ′ = [α mod 2j ]φ([2b−j ]P ), 2b−jQ′ = [α−1 mod 2j ]φ([2b−j ]Q).

This means that it is possible to guess only α mod 2j if the images of points of
order 2j is enough to apply the SIDH attacks on the secret isogeny. However,
FESTA uses isogenies of degree 22λ, which implies this guessing attack requires
j = λ and has thus a computational cost of 2λ. Thus, as long as the isogenies have
degree at least 22λ, the best known attack against Problem 6 and 7 is a simple
meet-in-the-middle attack that ignores the additional torsion information.
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Remark 10. Some isogeny protocols have been known to be vulnerable when the
starting curve has known endomorphism ring [6,4], when the known endomor-
phism ring contains small endomorphisms [26], or when the starting curve (and
potentially the underlying prime) is maliciously chosen [45]. In many of these
cases, a trusted setup is a necessary countermeasure [2]. This does not appear
to be the case in FESTA, where Problem 7 remains hard even when the starting
curve E0 is a special curve with known endomorphism ring, such as the case
j(E0) = 1728 or a close neighbour. Nonetheless, any potential future attack that
exploits unknown endomorphism ring can be avoided by generating E0 during
key generation and including its description in the public key.

Very recent analysis [11] has shown that it is possible to recover an isogeny
given its scaled action, i.e. efficiently solve Problem 7 when the attacker knows
an endomorphism on E0 (or an endomorphism composed with the Frobenius
map from E0 to its Frobenius conjugate) that acts as scalar multiplication on
the starting basis P,Q. However, a random basis, such as that deterministically
generated from its curve, is subject to such an attack only with probability neg-
ligible in the security parameter. The parameters chosen in the implementation
described in Section 7 are thus not affected by this attack.

Up until now, we focused on the hardness of the CIST assumption. However,
the security of FESTA relies on the CIST2 assumption, which might be easier
to break. This is because the attacker has access to two CIST samples, where
the scaling matrix A is the same. This may be useful, for instance, because an
attacker that successfully recovers the isogeny in one of the CIST samples can
obtain the correct torsion images in the other sample by scaling by A−1, re-
covered in the first sample. Applying the SIDH attacks then yields the second
isogeny in polynomial time. However, this approach relies on one CIST instance
being already broken. More generally, it seems that the correlated scaling matrix
does not reveal significantly more information: the correlation between the in-
stances is very tenuous, as the two samples have different starting curves and use
isogenies of different large degrees (usually, the two degrees are coprime). Thus,
it is unclear how an attacker may exploit the correlation to devise a strategy to
break either CIST instance.

If we consider quantum-enabled adversaries, the security profile of FESTA
remains mostly unchanged. Similarly to the classical case, it appears to be hard
for a quantum attacker to exploit the scaled torsion images. Thus, such an at-
tacker would be limited to attempting to solve the torsionless version of the
isogeny problem, i.e. recover the secret isogeny given only the end curves and
the isogeny degree. In this setting, we can rely on the quantum security analysis
of SIDH [31], which shows that sufficiently long isogenies are hard to recover
even with a quantum computer.

Comparison with existing protocols. In SIDH, and M-SIDH and MD-
SIDH [26], the parties reveal the scaled action [α]φ(P ), [α]φ(Q) of a secret
isogeny φ on a torsion basis P,Q (in SIDH, α = 1), but crucially the scaling value
is the same for both points. This information is sufficient to compute the images
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of exponentially-many full-order subgroups: for any subgroup ⟨[x]P + [y]Q⟩, its
image under the secret isogeny is ⟨[x]([α]φ(P )) + [y]([α]φ(Q))⟩. This is not the
case in FESTA: since the torsion images are scaled by different values, only the
pushforward of two subgroups of full order is revealed: the pushforward of ⟨P ⟩
is ⟨[α]φ(P )⟩ and that of ⟨Q⟩ is ⟨[1/α]φ(Q)⟩. Hence, FESTA reveals significantly
less information about its secret isogenies than SIDH, M-SIDH, and MD-SIDH,
which makes an extension of the SIDH attacks to FESTA unlikely.

We can also compare FESTA to other isogeny-based protocols. In binSIDH
and terSIDH [3], the parties also reveal the images of two torsion points scaled
by different values, similarly to what happens in FESTA. Indeed, Problem 7 is
very similar to [3, Problem 5 (SSIP-A)]; however, the torsion points in binSIDH
and terSIDH have highly composite order. This means that the pushforward of
exponentially many subgroups of full order is still available, although the number
is much smaller than if the points were scaled by the same value. Thus, FESTA
uses torsion points of prime power order, and thus also reveals less information
than binSIDH and terSIDH.

Lastly, if we consider CSIDH (in its many variants), we see that CSIDH
also implicitly reveals the images of some subgroups: the image of the subgroup
ker(π − 1) ∩ E0[ℓ] under a secret isogeny from E0 to E1 is ker(π − 1) ∩ E1[ℓ],
and the image of ker(π + 1) ∩ E0[ℓ] is ker(π + 1) ∩ E1[ℓ]. While this suggests
a relationship between the CSIDH assumption and the hardness of Problem 7,
the isogenies used in CSIDH are Fp-rational. This may be a small difference, but
it makes the two assumptions different enough that they cannot be compared.
For instance, consider the attack by Castryck and Vercauteren [11]: while it
applies to specially crafted instances of FESTA, the attack cannot be extended
to CSIDH.

5 The FESTA public-key encryption protocol

In this section, we show how the FESTA trapdoor function can be used to build
public-key encryption protocols with different security guarantees.

5.1 IND-CCA encryption in the QROM

Given an injective partial-domain trapdoor function, Ebrahimi [25] showed it is
possible to obtain a IND-CCA PKE, secure in the Quantum Random Oracle
Model (QROM) by using the OAEP transform.

To use the OAEP transform in our construction, we first need to prove that
the FESTA function is indeed a partial-domain trapdoor function.

Theorem 11. The function f(EA,RA,SA) : Z/d1Z× (Z/d2Z×Mb)→ S defined
in Algorithm 1 is a quantum partial one-way function, under the hardness of
Problem 7 and 8.

Proof. We show a stronger statement, i.e. that recovering any of three inputs
is as hard as full-domain inversion: given the isogeny φ1, the matrix B can be



FESTA: Fast Encryption from Supersingular Torsion Attacks 15

obtained by computing the change-of-basis matrix between φ1(Pb), φ1(Qb) and
R1, S1. The remaining input, the isogeny φ2, can be computed as the output
of TorAtk(EA, RA, SA, E2, R

⋆
2, S

⋆
2 , d2), where the points R⋆

2, S
⋆
2 are obtained by

scaling the points R2, S2 by B−1. ⊓⊔

After applying the OAEP transform, we obtain the following PKE proto-
col: the prime p, the curve E0, the values d1, d2, dA, b, and a description of
the set Mb form the PKE parameters. We also rely on two random oracles,
G : Z/d2Z × Mb → Z/d1Z, and H : Z/d1Z→ Z/d2Z×Mb. The KeyGen algo-
rithm is similar to that in the trapdoor function, and it produces the trapdoor
public parameters EA, RA, SA.

To encrypt, we first evaluate G at a randomly sampled input (r,R), and
we use its output, combined with the message m, to determine the kernel of
the isogeny φ1. The isogeny φ2 and the matrix B, which are the remaining
part of the input for the trapdoor function, are deterministically derived from
the randomness (r,R) and the kernel of φ1 via H. The output of the trapdoor
function determines the ciphertext of the encryption algorithm.

During decryption, the trapdoor information is used to recover the isoge-
nies φ1, φ2 and the matrix B, from which the message can be extracted. These
procedures are formalised in Algorithms 3 and 4.

Note that, unlike the trapdoor definition used in [25], the input and output
spaces of our trapdoor function are not binary strings; thus, the xor operation
used in the transform presented in [25] would not produce correct results. We
replaced it with ring addition for the values representing kernel generators and
matrix multiplications for the scaling matrix, without affecting the security of
the transform.

Algorithm 3 FESTA.Enc(pk,m)

Input: The public key pk = (EA, RA, SA) and the message m to be encrypted.
Output: The ciphertext (E1, R1, S1, E2, R2, S2).

1: Sample r
$←− Z/d2Z and R

$←−Mb.
2: Write m′ = m || 0k mod d1 and compute s = m′ +G(r,R).
3: Write (x,X) = H(s) and compute t = x+ r, T = XR.
4: Compute ct = f(EA,RA,SA)(s, t, T ). ▷ Using Algorithm 1
5: return ct = (E1, R1, S1, E2, R2, S2).

Remark 12. Most post-quantum encryption protocols attain IND-CCA security
using the Fujisaki-Okamoto transform [27], which requires re-evaluating the en-
cryption procedure during decryption. Besides the computational overhead, the
re-evaluation check has enabled a wide range of side-channel attacks [52]. These
issues are entirely avoided by FESTA: decryption does not require to run the
encryption algorithm, which reduces the latency of the decryption algorithm
and brings a significant advantage in the development of side-channel-resistant
implementations.
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Algorithm 4 FESTA.Dec(sk, ct)

Input: The secret key sk = (A, φA) and the ciphertext ct = (E1, R1, S1, E2, R2, S2).
Output: The decrypted message m or ⊥ on failure.
1: Compute (s, t, T ) = f−1

(EA,RA,SA)(sk, ct) . ▷ Using Algorithm 2

2: Write (x,X) = H(s) and compute r = t− x, R = X−1T .
3: Compute m′ = s−G(r,R) and write m ||mk = m′, where |mk| = k .
4: if mk = 0k then
5: return m.
6: else
7: return ⊥.

Partial-input extraction. The OAEP transform requires that the entire input
is computed in Line 1 of Algorithm 4. This is necessary to avoid trivial CCA
attacks: in the case of FESTA, if the matrix B is not recovered, an attacker may
scale all torsion points by the same diagonal matrix to obtain a different but
valid ciphertext. However, recovering all inputs limits our choice of parameters
(as we will show in Section 6, extracting both isogenies φ1 and φ2 requires d1,
d2, and dA to be pairwise coprime) and reduces the efficiency of the inversion
algorithm.

In the Random Oracle Model, we can modify the trapdoor function with a
technique similar to the Fujisaki-Okamoto transform [28]. The new function f
receives as input only the kernel corresponding to φ1: the isogeny φ2 and the
matrix B are obtained deterministically from φ1 through a random oracle. The
inversion function also needs to be modified to extract the isogeny φ1 and B.
Then, from the knowledge of ker(φ1), we check that the kernel of φ2 is correct to
ensure that the output matches what an honest evaluator would have computed.
If we only need to recover φ1 during inversion, we would not require d2 to be
coprime with dA; this would translate in a prime p that is about λ bits shorter
than the prime currently proposed.

The parameters proposed in Section 7.3 and the implementation discussed
in Section 7 consider a full inversion and do not integrate this optimisation.
This is to keep FESTA simple and maintain a cleaner security proof. We leave a
thorough analysis of the benefits of this optimisation for future work.

5.2 IND-CCA encryption in the standard model

While trapdoor functions from group actions are known in the literature [1],
FESTA is currently the only secure trapdoor function based on non-group-action
isogenies. Besides enabling efficient encryption, as described in the previous sec-
tion, this allows us to apply the techniques presented in [30] to obtain a PKE
protocol that is IND-CCA secure in the standard model. To the best of our
knowledge, this is the first PKE based on non-group-action isogenies to be IND-
CCA secure in the standard model.

The construction relies upon two building blocks: a randomness-recoverable
IND-CPA PKE and a tagged set commitment protocol. The first can be built
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from an almost-all-keys injective trapdoor function. This requires that for nearly
all private/public key pairs, the trapdoor inversion function outputs precisely the
same input that the function was evaluated at for all inputs. This is generally not
the case in FESTA since for a large class of public keys, it may be possible that
a specific input produces an output curve with j-invariant in {0, 1728}. In that
case, the function may not be injective because the target curve has additional
automorphisms. However, in FESTA, whether the inversion is correct depends
entirely on public information: hence, we can check whether an input may lead
to issues by evaluating the trapdoor function and checking the j-invariant of the
output. We can thus satisfy the almost-all-keys injective property by redefining
the function input to exclude the particular inputs that may be problematic.

The construction of tagged set commitment protocol requires, besides a trap-
door function, a strongly secure one-time signature. Such a signature can be
constructed from any one-way function [33]: we can thus use the FESTA func-
tion to construct all the elements needed to obtain an isogeny-based PKE that
is IND-CCA secure in the standard model.

6 Concrete instantiation

In this section, we propose concrete parameter sets for FESTA. Such parameters
are specifically tailored to make the recovery of the di-isogenies as fast as possible
via Theorem 4.

6.1 Recovering an isogeny from torsion point images

We now describe how to invert the trapdoor functions proposed in Section 3.
Let φ1 : E0 → E1, φA : E0 → EA and φ2 : EA → E2 be three isogenies between
supersingular elliptic curves having odd degrees d1, dA and d2, respectively, such
that gcd(d1, dA) = gcd(d1, d2) = gcd(d2, dA) = 1. The isogeny φA is computed
as the composition of two isogenies φA,1 : E0 → ẼA and φA,2 : ẼA → EA of
coprime degrees dA,1 and dA,2, respectively. Graphically, we have

E0 ẼA EA

E1 E2

φA

φA,1 φA,2

φ1 φ2

Suppose now we have found m1,m2, b ∈ Z>0 such that

m2
1dA,1d1 +m2

2dA,2d2 = 2b, (1)
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for some odd mi coprime to d1, d2 and dA. Specialising Theorem 4 to the case
where φN1

= [m1] ◦ φ1 ◦ φ̂A,1 and φN2
= [m2] ◦ φ2 ◦ φA,2, the isogeny Φ with

kernel

⟨([m2dA,2d2]φ1(Pb), [d1m1]φ2◦φA(Pb)), ([m2dA,2d2]φ1(Qb), [d1m1]φ2◦φA(Qb))⟩,

where the points Pb, Qb form a basis of E0[2
b], has matrix form

Φ =

(
[m1] ◦ φA,1 ◦ φ̂1 −[m2] ◦ φ̂A,2 ◦ φ̂2

[m2] ◦ gd2dA,2
[m1] ◦ ĝdA,1d1

)
.

Additionally, we have that φ2 ◦φA ◦ φ̂1 = gdA,1d1
◦ gd2dA,2

, deg(gdA,1d1
) = dA,1d1

and deg(gd2dA,2
) = d2dA,2.

Given a security parameter λ, we define

paramsλ = (m1,m2, b, p, d1, dA,1, dA,2, d2, E0)

to be a parameter set, where E0 is a supersingular curve whose j-invariant ̸=
0, 1728 and E0(Fp2) ≃ Z/(p + 1)Z × Z/(p + 1)Z, the prime p is of the form
f2bd1 (dA,1dA,2)sf d2 − 1 for some small f > 0, and m2

1dA,1d1 +m2
2dA,2d2 = 2b.

On input paramsλ, we give a precise description of the trapdoor evalua-
tion algorithm (Algorithm 1) in Algorithm 5. The kernels, which are cyclic
subgroups ⟨K1⟩ ⊂ E0[d1] and ⟨K2⟩ ⊂ EA[d2], are chosen such that they are
generated by an element of the form P + [x]Q, for some basis (P,Q): thus, they
can respectively be represented by s1 ∈ [0, d1− 1] and s2 ∈ [0, d2− 1], given two
bases (Pd1

, Qd1
) of E0[d1] and (PA

d2
, QA

d2
) of EA[d2].

Since d1 and d2 both divide p + 1, the d1-torsion of E0 and the d2-torsion
of EA are defined over Fp2 . This choice allows us to compute di-isogenies using
points that are Fp2-rational, making the entire computation faster. As for the dA-
isogeny, only (dA)sf is included as a factor in p+ 1 as we need not represent the
kernel of φA explicitly.

Algorithm 5 f(EA,RA,SA)(s1, s2,B)

Input: Two integers s1 ∈ [0, d1 − 1] and s2 ∈ [0, d2 − 1], and B ∈Mb.
Output: (E1, R1, S1, E2, R2, S2).
1: Compute the bases (Pd1 , Qd1)← TorGen(E0, d1) and (PA

d2
, QA

d2
)← TorGen(EA, d2).

2: Compute the d1-isogeny φ1 : E0 → E1 having kernel ⟨Pd1 + [s1]Qd1⟩.
3: Compute the d2-isogeny φ2 : EA → E2 having kernel ⟨PA

d2
+ [s2]Q

A
d2
⟩.

4: Acting with scalar multiplication compute(
R1

S1

)
= B

(
φ1(Pb)
φ1(Qb)

) (
R2

S2

)
= B

(
φ2(RA)
φ2(SA)

)
.

5: return (E1, R1, S1, E2, R2, S2).
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To invert f(EA,RA,SA), given the tuple (E1, R1, S1, E2, R2, S2), we compute
the points (

R′
2

S′
2

)
= A−1

(
R2

S2

)
.

Thus, as we explained above, the isogeny Φ with kernel

⟨([m2dA,2d2]R1, [d1m1]R
′
2), ([m2dA,2d2]S1, [d1m1]S

′
2)⟩,

has matrix form

Φ =

(
[m1] ◦ φA,1 ◦ φ̂1 −[m2] ◦ φ̂A,2 ◦ φ̂2

[m2] ◦ gd2dA,2
[m1] ◦ ĝdA,1d1

)
.

If F is the image curve of gd2dA,2
: E1 → F , then Φ maps E1 ×E2 onto ẼA ×F ,

up to polarised isomorphisms.
Let (P 1

d1
, Q1

d1
)← TorGen(E1, d1) and (P 2

d2
, Q2

d2
)← TorGen(E2, d2). Then, we

have(
L
)

:= Φ

(
P 1
d1

+R1

P 2
d2

)
=

(
[m1]φA,1 ◦ φ̂1(P

1
d1

+R1)− [m2]φ̂A,2 ◦ φ̂2(P
2
d2
)
)
,

from which we can compute

[2bd2m1]φA,1 ◦ φ̂1(P
1
d1
) = [2bd2]L,

[2bd1m2]φ̂A,2 ◦ φ̂2(P
2
d2
) = −[2bd1]L,

[d1d2m1]φA,1 ◦ φ̂1(R1) = [d1d2]L.

Similarly, we evaluate Φ
(
Q1

d1
+S1 Q2

d2

)T
to obtain [2bd2m1]φA,1 ◦ φ̂1(Q

1
d1
),

[2bd1m2]φ̂A,2 ◦ φ̂2(Q
2
d2
) and [d1d2m1]φA,1 ◦ φ̂1(S1).

Using the knowledge of φA,i, we can extract the images φ̂1(P
1
d1
), φ̂1(Q

1
d1
),

φ̂2(P
2
d2
) and φ̂2(Q

2
d2
). With these, we compute s1 and s2 such that ker(φ1) =

⟨Pd1
+[s1]Qd1

⟩ and ker(φ2) = ⟨PA
d2

+[s2]Q
A
d2
⟩. This is slightly more complicated

than the more common case when d1 is a prime power and can be done following
Algorithm 6.

Finally, we highlight that(
φ̂1(R1)
φ̂1(S1)

)
= d1B

(
Pb

Qb

)
,

which implies we can recover the matrix B by solving a discrete logarithm prob-
lem, which is efficient as the order of our points is a power of two. To ensure
that the inversion input was computed as the correct output of the FESTA trap-
door function, we check that B ∈ Mb: if not, the inversion algorithm fails and
returns ⊥. We summarise the inversion procedure in Algorithm 7.

Remark 13. To compute the images

φ̂1(P
1
d1
) = [dA,1]

−1φ̂A,1

(
φA,1 ◦ φ̂1(P

1
d1
)
)
, and

φ̂1(Q
1
d1
) = [dA,1]

−1φ̂A,1

(
φA,1 ◦ φ̂1(Q

1
d1
)
)
,
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Algorithm 6 ComputeCanonicalKernel(φ̂(P ′), φ̂(Q′), d)

Input: φ̂(P ′) and φ̂(Q′), where φ : E → E′ is a d-isogeny and ⟨P ′, Q′⟩ = E′[d].
Output: s ∈ [0, d− 1] such that ker(φ) = ⟨P + [s]Q⟩, where (P,Q)← TorGen(E, d).6

1: Compute the canonical basis (P,Q)← TorGen(E, d), and let d =
∏n

i=1 ℓ
ei
i .

2: Compute a1, b1 ∈ [0, d− 1] such that φ̂(P ′) = [a1]P + [b1]Q.
3: Compute a2, b2 ∈ [0, d− 1] such that φ̂(Q′) = [a2]P + [b2]Q.
4: for i = 1, . . . , n do
5: if a1 = 0 (mod ℓi) then
6: Impose t1 = 0 (mod ℓeii ) and t2 = a−1

2 (mod ℓeii ).
7: else
8: Impose t1 = a−1

1 (mod ℓeii ) and t2 = 0 (mod ℓeii ).

9: Lift t1 and t2 in Z/dZ, and define s← t1b1 + t2b2.
10: return s.

we need to evaluate the isogeny φ̂A,1 on points of order d1. We can avoid such

a computation by precomputing the image of the isogeny on a basis of ẼA[d1]
during KeyGen and expressing the points in terms of such a basis.

The same approach can be used to compute the points φ̂2(P
2
d2
) and φ̂2(Q

2
d2
),

where we precompute the action of of φA2 on a basis of ẼA[d2], and the points
φ̂1(R1) and φ̂1(S1) used to recover the matrix B.

6.2 Computing parameters

We propose a method to generate solutions of Eq. (1), i.e. finding parame-
ters that allow us to efficiently run the trapdoor inversion algorithm. Given
the security analysis of Section 4, we also have several additional requirements
on the solutions we can use. In particular, we want all the solution values,
i.e. m1, d1,m2, d2, dA,1, dA,2, to be odd, so that the isogenies have degree co-
prime with the torsion points order. Moreover, we require that isogeny de-
grees d1, dA = dA,1dA,2 and d2 are pairwise coprime and sufficiently long,
i.e. log(d1), log(dA), log(d2) ≥ 2λ, to prevent meet-in-the-middle and torsion-
guessing attacks.

The number of solutions and the corresponding protocol efficiency crucially
depends on the smoothness of the degrees of the isogenies we are using. Let us
denote our smoothness bound as B. Let c be a positive integer such that the
number T := 2c − 1 is B-smooth. We start by finding primitive solutions, i.e.
solutions (x, y) ∈ Z× Z with gcd(x, y) = 1, for the equation

x2 + y2T = 2b. (2)

We do so by ranging the value b within a reasonable interval, and finding solutions
of Eq. (2) via Cornacchia’s algorithm [15]. Given a primitive solution (x, y) for

6 We highlight that we already know that ker(φ) can be expressed as ⟨P + [s]Q⟩, for
some s ∈ Z/dZ.
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Algorithm 7 f−1
(EA,RA,SA)(E1, R1, S1, E2, R2, S2)

Input: TDF output y := (E1, R1, S1, E2, R2, S2), and sk = (A, φA,1, φA,2).
Output: The TDF input x := (s1, s2,B) such that f(EA,RA,SA)(x) = y.

1: Compute

(
R′

2

S′
2

)
= A−1

(
R2

S2

)
.

2: Define Φ to be the isogeny with kernel

⟨([m2dA,2d2]R1, [m1d1]R
′
2), ([m2dA,2d2]S1, [m1d1]S

′
2)⟩.

3: if The codomain of Φ does not split then return ⊥.
4: Set (P 1

d1
, Q1

d1
)← TorGen(E1, d1) and (P 2

d2
, Q2

d2
)← TorGen(E2, d2).

5: Evaluate (
L1

)
= Φ

(
P 1
d1

+R1

P 2
d2

)
and

(
L2

)
= Φ

(
Q1

d1
+ S1

Q2
d2

)
.

6: Unpack L1 to obtain φA,1 ◦ φ̂1(P
1
d1
), φA,1 ◦ φ̂1(R1) and φ̂A,2 ◦ φ̂2(P

2
d2
).

7: Unpack L2 to obtain φA,1 ◦ φ̂1(Q
1
d1
), φA,1 ◦ φ̂1(S1) and φ̂A,2 ◦ φ̂2(Q

2
d2
).

8: Set s1 ← ComputeCanonicalKernel(φ̂1(P
1
d1
), φ̂1(Q

1
d1
), d1). ▷ Via Algorithm 6

9: Set s2 ← ComputeCanonicalKernel(φ̂2(P
2
d2
), φ̂2(Q

2
d2
), d2). ▷ Via Algorithm 6

10: Compute B ∈Mb such that(
φ̂1(R1)
φ̂1(S1)

)
= d1B

(
Pb

Qb

)
.

11: if B /∈Mb then
12: return ⊥.
13: else
14: return (s1, s2,B).

some even b > 0, we have

y2T = (2b/2 − x)(2b/2 + x).

Define T1 to be the B-smooth part of 2b/2 − x and T2 to be the B-smooth part
of 2b/2 + x. Then, there exist m1,m2 ∈ Z>0 such that m2

1T1 = 2b/2 − x and
m2

2T2 = 2b/2 + x. In particular, we have

m2
1T1 +m2

2T2 = 2b/2+1.

If T1T2 and Ti are sufficiently large to guarantee security (we need T1T2 > 26λ

and Ti > 22λ), we define di to be the smoothest factor of Ti such that di ∼ 22λ for
i = 1, 2. Additionally, we define dA,i to be the smoothest part of Ti/di such that

dA,1dA,2 > 22λ and multiply mi by
√
Ti/(didA,i), ensuring that the values d1,

dA,1, dA,2, d2, m1, m2 are pairwise coprime. We thus have found solutions of
Eq. (1) that guarantee our size requirements, i.e. a valid set of parameters.

To find parameter sets, we perform an exhaustive search ranging over differ-
ent values of b and c within a reasonable interval. Experimentally, this approach
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is highly efficient, and it is easy to generate parameter sets for any security level.
Ideally, to have a small prime p, we look for small b’s satisfying the conditions
above. Allowing for a larger smoothness bound B, it is possible to find smaller b’s
and in turn smaller primes p. This comes with a potential slowdown in perfor-
mances. Different trade-offs between efficiency and bandwidth can be achieved:
if bandwidth is a more valuable asset, then one could allow larger smoothness
bound. Note that as well as reducing the size of the base field characteristic,
reducing the size of b shortens the length of the (2b, 2b)-isogeny, which in turn
speeds up the decryption algorithm.

6.3 Further optimisations

We designed FESTA and chose its parameters to obtain an optimal trade-off
between the performance of the three PKE algorithms (KeyGen,Enc,Dec), the
size of public keys and ciphertexts, the hardness of the security assumptions,
and the simplicity of the protocol. Many other options are possible: for instance,
increasing the smoothness bound for the solutions of Eq. (2) leads to smaller
primes (and thus smaller ciphertexts), at the cost of slower isogeny computations.

In this section, we discuss further optimisations that may lead to different
trade-offs or that require further work to investigate.

Using larger (ℓ, ℓ)-isogenies. In the search for parameters, we restrict our-
selves to torsion points of order a power of two. There is no fundamental reason
why torsion points of odd order cannot be used; however, the inversion func-
tion needs to compute (ℓ, ℓ)-isogenies for any ℓ dividing the order of the torsion
points. Currently, the formulae to compute (ℓ, ℓ)-isogenies are most practical for
ℓ = 2. However, future developments in the computation of isogenies between
principally polarised abelian surfaces may render new parameter sets feasible.

The method we propose to find parameters in Section 6.2 generalises to any
prime power. In other words, it appears that analysing the equation x2+ y2T = ℓb,
when T is of the form T = ℓc − 1 for increasing b ∈ Z>0, leads to smooth so-
lutions of m2

1d1dA,1 +m2
2d2dA,2 = ℓb/2+1. However, the same method does not

appear to generalise for products of prime powers; for those parameters, it may
be necessary to develop new tools to efficiently find parameter sets.

Higher-dimensional trapdoor inversion. In [48, Section 6.4], Robert pro-
posed a method that relies on isogenies in dimension four (heuristically, eight
otherwise) to recover a d-isogeny from the map of the m-torsion under such an
isogeny for m2 > 4d. This method could be employed to obtain smaller pa-
rameters. For instance, given a security parameter λ, we define e1, e2 and e3
such that ℓeii > 22λ for some distinct odd small prime ℓi; then, we can use iso-
genies φ1, φA and φ2 with degrees ℓe11 , ℓe22 and ℓe33 , respectively. We can also
choose b such that 2b > 2

√
ℓe11 ℓ

e2
2 ℓ

e3
3 . With such parameters, we obtain a sig-

nificantly smaller prime (roughly, p ≈ 27λ) since the isogeny φA does not need
to be rational. We expect a major improvement in the protocol bandwidth, as
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well as the running times of key generation and encryption. This would come at
the cost of decryption efficiency, which would require the computation of higher
dimensional isogenies.

It is also possible to introduce even more extreme trade-offs: by using ir-
rational isogenies φ1 and φ2,

7 one can achieve very small primes that further
improve the compactness of the protocol and the efficiency of the key generation
and encryption procedures; however, this requires computing higher dimensional
isogenies several times, which slows down the decryption algorithm even more.

7 Implementation

We provide a proof-of-concept implementation of FESTA in SageMath [51] and
make it available at:

https://github.com/FESTA-PKE/FESTA-SageMath

We designed our implementation to be modular to facilitate translation into a
high-performance language. In particular, we aimed to explicitly implement the
algorithms for both the isogenies between elliptic curves and abelian varieties,
without relying on the generic Sagemath implementations. In what follows, we
explain some of the techniques we employed, and we propose concrete parame-
ters.

7.1 Montgomery curve x-only isogenies

To compute isogenies between elliptic curves, we leverage the efficient x-only
formulae between Montgomery curves [17,46]. Additionally, we include

√
élu [5]

to evaluate isogenies of large prime degree and the formula using twisted Ed-
wards curves in [38] for the computation of the codomain curves. Working with
the x-only isogenies allows a significant improvement in performance, however,
the y-coordinates of image points must eventually be recovered in order to com-
pute the chain of (2, 2)-isogenies between elliptic products. We use the following
method to reconstruct the valid y-coordinates from the x-only point evaluation.

Let E : y2 = x3 +Ax2 + x and E′ : y2 = x3 +A′x2 + x be two elliptic curves
in Montgomery form connected by a d-isogeny φ : E → E′ and suppose we want
to evaluate the action of φ on P,Q generating the n-torsion, where n ̸= d. Using
the x-only isogeny formulae, we compute x(φ(P )) and x(φ(Q)). Then, we lift the
x-coordinates onto the curve by computing yP and yQ, which we allow to be any
square root of x(φ(P ))3 +A′x(φ(P ))2 + x(φ(P )) and x(φ(Q))3 +A′x(φ(Q))2 +
x(φ(Q)). From this lifting, we effectively recover φ(P ) = ±(x(φ(P )), yP ) up to
an overall sign.

7 The isogenies φi are irrational in the sense that each prime-degree isogeny factor-
ing φi has kernel defined over Fp2 , but the kernel of φi is not necessarily defined
over Fp2 .

https://github.com/FESTA-PKE/FESTA-SageMath
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Although we cannot recover the correct sign for one point, we can recover a
relative sign such that we recover the tuple ±(φ(P ), φ(Q)). To do this, we use
the Weil pairing and compare

eEn (P,Q)d
?
= eE

′

n

(
(x(φ(P )), yP ) , (x(φ(Q)), yQ)

)
.

If the equality holds, then the lifted points can be used as the image, otherwise
we flip a sign such that φ(Q) = (x(φ(Q)),−yQ). In this way, we evaluate the
action of either φ or −φ on the torsion basis. Given that we use canonical
representations of the scaling matrices inMb, evaluating either of these isogenies
does not represent a problem for the trapdoor. Overall, this allows us to perform
two isogeny evaluations using x-only formula with the additional cost of two
square-roots and two Weil pairings.

7.2 Optimisations of the (2, 2)-isogeny chain

The most expensive step of decryption is the evaluation of the (2, 2)−isogeny
chain between elliptic products. Of this computation, the majority of the cost
is spent computing the isogenies via the Richelot correspondence between Ja-
cobians of genus-2 hyperelliptic curves. The computational cost, just as in the
elliptic case, is split between doubling to recover divisors of order two, and the
evaluation of the isogenies themselves.

One optimisation, which we can borrow from our experience with elliptic
curve isogenies, is to employ the optimal strategies introduced in [22] to minimise
the cost of long isogeny chains. The generalisation of this problem to higher
dimensional isogeny chains was recently studied in [13]. By measuring the relative
cost of divisor doubling and isogeny evaluations, we can compute an optimal
strategy using identical methods to the elliptic case.

Another performance improvement we made comes from deriving explicit ad-
dition and doubling algorithms for divisors of Jacobians of genus-2 hyperelliptic
curves using only base field operations. Previously in the literature, effort was
made to derive low cost genus-2 addition and doubling for the context of hyper-
elliptic Diffie-Hellman [34,18,8]. In this case, the hyperelliptic curve is fixed, and
isomorphisms can be used to minimise the number of non-zero coefficients of the
hyperelliptic curve model, effectively reducing the cost of divisor arithmetic.

For our implementation, the curve model of the codomain when computed via
the Richelot correspondence is some generic (non-monic) sextic polynomial and
the previously derived efficient formula are unsuitable for our doubling chains. To
recover efficient formula, we generalise the work of [18] by using similar methods
without restricting the hyperelliptic curve model to a friendly form. Ultimately,
what is required is to solve linear equations to express the arithmetic in the
polynomial ring Fq[X] as operations of the base field and pass as arguments to
the addition and doubling formula the coefficients of the curve equation as well
as the reduced Mumford coordinates.

Representing the cost of Fp2 inversion, multiplication and squaring as I,M
and S, we have derived affine addition at a cost of 25M + 4S + 1I and affine
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doubling at a cost of 32M+ 6S+ 1I. Practically, we find that our formulae are
about four-times faster than the in-built SageMath divisor arithmetic and two-
times faster than the optimised formula used in the SageMath implementation
of the Castryck-Decru attack on SIDH [41]. We consider further improving these
formulae to be future work.

7.3 Parameters

Following the approach in Section 6.2, we generated parameter sets for FESTA.
We highlight that the proposed techniques allow for different trade-offs between
the smoothness of the isogeny degrees and the length b of the chain of (2, 2)-
isogenies.

For FESTA-128, we define the following parameter set:

b := 632,

d1 := (33 · 19 · 29 · 37 · 83 · 139 · 167 · 251 · 419 · 421 · 701 · 839 · 1009 ·
1259 · 3061 · 3779)2,

d2 := 7 · (52 · 7 · 11 · 13 · 17 · 41 · 43 · 71 · 89 · 127 · 211 · 281 · 503 · 631·
2309 · 2521 · 2647 · 2729)2,

dA,1 := (59 · 6299 · 6719 · 9181)2,
dA,2 := (3023 · 3359 · 4409 · 5039 · 19531 · 22679 · 41161)2,
m1 := 1492184945093476592520242083925044182103921,

m2 := 25617331336429939300166693069,

f := 107.

The values d1 and d2 are 212-smooth, while dA = dA,1dA,2 is 216-smooth. The
corresponding prime, defined as p = 2bd1(dA,1dA,2)sfd2f − 1, is 1292-bit long.
The public key and ciphertext sizes are, respectively, 561 and 1,122 bytes. The
same approach can be used to produce parameter sets for higher security levels.

To reduce the bandwidth of FESTA, we compress the torsion points by ex-
pressing them in terms of linear coefficients of canonical bases, as proposed in
[40,43]. Unlike in SIDH, however, our protocol needs the exact torsion images.
This means the points cannot be scaled, and their compressed representation
requires four coefficients of size equal to their order. However, since an attacker
can always reconstruct the determinant of the scaling matrices, we can restrict
ourselves to unitary matrices in Mb. Then, given three of the four coefficients
representing the scaled points, it is possible to retrieve the fourth one via the
compatibility of the Weil pairing with isogenies. We remark the bandwidth of
FESTA is affected by the choice of parameters: future developments may lead to
smaller parameters, which would translate to significantly smaller public keys
and ciphertexts.

We benchmarked our proof-of-concept implementation on an Apple M1 PRO
CPU clocked at 3.2 GHz using a single performance core. Averaging 100 execu-
tions, we obtained that KeyGen, Enc and Dec run in 4.47, 3.09 and 9.14 seconds,
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respectively. The slowness of Dec compared to the other components is mainly
caused by the computation of (2, 2)-isogenies. Due to the lack of research on
optimizing such computations in the past, we expect future work to significantly
improve on this aspect, leading to a much faster decryption algorithm.

8 Conclusion

In this paper, we have introduced FESTA, an efficient isogeny-based public-key
encryption (PKE) protocol that constructively relies on an application of the
SIDH attacks. Preliminary experimental results show that our proof-of-concept
implementation is competitive with optimised implementations of other isogeny-
based PKEs. We are also currently working on an optimised implementation of
FESTA, and we are looking forward to obtaining concrete running times.

The efficiency of the protocol is highly dependent on the smoothness bounds
and size of the parameter sets: in future work, we will investigate different ap-
proaches to find more efficient parameters. In particular, our current choice of
parameters is limited by the requirement of ensuring a fast decryption: a more
optimised implementation of (2, 2)-isogenies will allow us to use smoother values.
An interesting project for future work is to compare the performance of isogenies
via the Richelot correspondence against those computed using theta functions.

Additionally, we chose a conservative approach when imposing the security
requirements: we believe a more detailed analysis of the cost of certain attacks
may lead to better parameter sets. Moreover, we highlight that FESTA can in-
herently benefit from advancements in computations of higher dimensional iso-
genies: new developments in those areas could lead to both smaller field charac-
teristics and faster encryption.

Lastly, we believe that the flexible design of FESTA and the new techniques
proposed in this work may lead to new mechanics that can be exploited to
develop new advanced protocols, such as digital signatures and oblivious pseu-
dorandom functions.
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