
Formalizing Soundness Proofs of SNARKs

Bolton Bailey, Andrew Miller

May 9, 2023

Abstract
Succinct Non-interactive Arguments of Knowledge (SNARKs) have seen interest and development from the cryptographic

community over recent years, and there are now constructions with very small proof size designed to work well in practice.
A SNARK protocol can only be widely accepted as secure, however, if a rigorous proof of its security properties has been
vetted by the community. Even then, it is sometimes the case that these security proofs are flawed, and it is then necessary
for further research to identify these flaws and correct the record [35, 51].

To increase the rigor of these proofs, we turn to formal methods. Focusing on the soundness aspect of a widespread
class of SNARKs, we formalize proofs for six different constructions, including the well-known Groth ’16. Our codebase is
written in the Lean 3 theorem proving language, and uses a variety of techniques to simplify and automate these proofs as
much as possible.

1 Introduction
Over the past decade, cryptographic research has produced Succinct Non-interactive Arguments of Knowledge (SNARKs),
which allow a prover to demonstrate knowledge of a witness corresponding to a statement in some NP relation. The most
succinct of these constructions [37, 52, 38] allow a proof consisting of a O(1)-sized message. SNARKs promise to have many
applications in verifiable computation, blockchains, and identity management [16, 54, 45].

Since practitioners are applying this new technology for tasks where security is a main concern, it is important for them to
have confidence in the cryptographic properties of the protocols they implement. To this end, the academic review process
ensures that SNARKs published in the literature come with mathematical proofs of security properties. But in practice, errors
arise. Research from Parno [51] and Gabizon [35] has identified flaws in the soundness of SNARKs in the libsnark library
originating from [17], which was a modification of the Pinocchio SNARK [52].

To prevent errors like this from happening in the future, we look to apply formal methods to obtain guarantees on correctness.
We focus on the class of “pairing-based” SNARKs to which the above implementations belong and which achieve the
fully-succinct O(1) proof-message size previously mentioned. In particular, we deal with SNARKs that work in the structured
reference string (SRS) model: All parties are assumed to have access to a collection of elements of a pairing-friendly
cryptographic group, generated by some trusted third party.

Our work comprises completed soundness proof compilations for six SNARKs:

• GGPR [37]: The first SNARK to encode computations using Quadratic Arithmetic Programs (QAPs), which is the
main NP-Complete language to which SNARKs are reduced in this line of work.

• Pinocchio [52]: A modification of GGPR which improved efficiency.

• Groth ’16 [38]: A widely-cited SNARK which reduced the proof size to only three group elements.

• Baghery et al. [6]: A paper which presented a version of Groth ’16 for Type-III pairings.

• Lipmaa [42]: Another version of Groth ’16, redesigned with an eye to a simulation-extractability property.

• Baby SNARK [48]: A simplified version of Groth ’16 constructed for educational purposes, designed to have an
easy-to-follow soundness proof.

Additionally, we identified and formalized a variety of techniques for manipulating constructions such as these, in order to
make our work more extensible.

1.1 The Lean Theorem Prover
Our formalization is carried out in Lean 3 [29]. Lean is a programming language and an interactive theorem prover - it allows
a user to construct a formal proof of a mathematical proposition by writing computer code.

1

The main part of the soundness proofs we complete consists of reasoning about collections of equalities of multivariable
polynomials. We base our work on mathlib [1], the open-source Lean 3 library that implements structures and lemmas from
much of undergraduate-level mathematics, including finite fields and multivariable polynomials.

Lean is built with a metaprogramming facility which allows the user to write “tactic” code which can construct proofs using
automation. We take advantage of this in the course of our work - we implement a recursive tactic to resolve subgoals
consisting of systems of equations over a integral domain. Additionally, we make use of Lean’s simplification attribute feature.
This allows the user to tag lemmas under a label so that these can then be passed to the Lean simp tactic, which iteratively
applies these lemmas to simplify an expression. We construct a variety of Lean simplification attributes for normalizing
statements about polynomials and their coefficients. The end product is a system which is capable of compiling an end-to-end
proof of the knowledge-soundness theorem for a SNARK.

1.2 Related Work
Cryptography in general and proof systems in particular have been of great interest to the formal verification community. In
this section, we will go over some of these contributions and their relevance to the problem at hand.

Lean itself, being relatively new and not focused on cryptography, is a somewhat rare choice for formalization of cryptographic
protocols. Nevertheless considered it appropriate for our work here. The comprehensive and well-integrated mathlib library
and its implementation of numerous lemmas about multivariable polynomials makes Lean ideal in the setting of succinct
proofs. The work [4], also uses Lean and mathlib and is the only other work of which we are aware that formalizes statements
about a general-purpose succinct proof systems. In the case of that paper, there is a full formalization of the Cairo machine,
with a Lean proof of correctness for its execution, (rather than soundness). It is encouraging to see another aspect of a proof
system formalized, and it suggests that a full proof of completeness and soundness of some system could be within grasp. It’s
worth noting that extensions to Lean could make it a better ground for cryptography in the future: In the time our project
has been underway, mathlib has added an implementation of elliptic curves [?], as well as a tactic [18] for solving Gröbner
basis problems. This tactic, polyrith, works by calling a web interface to a Sage Gröbner-basis solver - while the problems
that our code generates are too large to be handled by polyrith, it’s promising that a more general version of the problem is
being worked on, and in the future it could make our system more flexible.

Coq [41] is the theorem proving language perhaps most related to Lean - both languages are based on dependent type theory.
The Certicrypt Coq library [11] provides tools for developing formalizations of cryptographic protocols. Of the protocols
that have been formalized in this framework, more relevant are likely [5], which formalizes the portion of the zero-knowledge
stack which compiles relations into the necessary form to be handled by a SNARK, and [12], which uses Certicrypt to
formalize Σ-protocols, a class of proof systems involving three rounds of communication. Besides this, there have been several
applications of Coq to other (non-proof-system) cryptographic protocols, including the Proof-of-Stake consensus system [58],
mix nets [40] and signature schemes [57]. Efforts in Coq to formalize broader classes of cryptographic techniques include
SSProve [2], which formalizes a modularization of cryptographic proofs, the formalization [50] of some of the number-theoretic
underpinnings of cryptography, and [9], which formalizes the generic model for group-based cryptography and random oracle
model . This last is relevant to our own application - the generic group model [55] is related to the algebraic group model
that our own work uses, in that both seek to codify an adversary’s interaction with a cryptographic group. External to
cryptography, Coq also has well developed math libraries, including the [53] tactic for Gröbner bases - the decision to use Lean
over Coq for this project comes down to a few matters of convenience, such as Lean’s ability to express tactics themselves in
Lean.

EasyCrypt is another proof assistant. Like Coq, it is written in OCaml, but EasyCrypt is designed specifically with cryptography
in mind. EasyCrypt allows one to reason about probabilistic computation, which is convenient for the formalization of game-
based cryptographic proofs. Works in EasyCrypt relevant to proof systems include [3], which formalizes the "MPC-in-the-head"
paradigm for zero knowledge and [33], which formalizes a variety of protocols including protocols for proof of knowledge of
quadratic residues, discrete logarithms and Hamiltonian cycles. The first two of the latter are protocols for specific problems
not known to be NP-complete, so they cannot be turned into general-purpose proof systems. The Hamiltonian cycle and
MPC-in-the-Head approaches are general purpose, but these proof systems are not succinct - they require the verifier to do
work linear or more in the problem. EasyCrypt has also been used for many applications beyond proof systems, including
verifications of Multi-party computation itself [31, 39], post-quantum cryptography [8], Pedersen commitments [47], electronic
voting [28], and key exchange [10]. The framework also has formalized some more general techniques, including Canetti’s
Universal Composability framework [22] in [23] and Brzuska et al.’s State separating proofs [19] in [30].

On the other end of the spectrum from strongly-typed languages like Lean and Coq is the Isabelle [49] proof system. The
CryptHOL [14] framework is the main mode for cryptography in this language. Butler et al. [21] have done work to formalize
Σ-protocols in this framework. CryptHOL additionally has modules for constructive cryptography [43, 13], and oblivious
transfer [20]. ACL2, a Lisp-based theorem prover, has been used to verify the Ethereum Recursive Length Prefix encoding
scheme [27].

2

It’s also worth mentioning that there is some work done in the space of verification for proof systems which does not prove
theorems formally, but nevertheless uses automated processes to check the construction of protocols. These often focus on
the circuit compilation component of the SNARK toolchain: Ecne [59] is a Julia project which analyzes Rank-1 Constraint
Systems to determine if their outputs are uniquely determined. Picus [24] is a symbolic VM for formal verification of Rank-1
Constraint Systems. [26] describes the Leo language, a DSL for writing SNARK programs with a facility for ACL2 verification.

To summarize, formal modelling of cryptography, like cryptography itself, is diverse both in its scope and in its techniques.
For more in-depth surveys, the reader can consult the Systemization of Knowledge papers of [7], [46] or [56]

2 Overview of Pairings and the Algebraic Group Model
As we have mentioned, we focus on soundness proofs for pairing-based SNARKs in the structured reference string model. In
the field of cryptographic proofs, soundness guarantees that a prover who consistently convinces a verifier of a statement can
only do so because they possess knowledge of a witness corresponding to that statement. Typically, this is done by defining an
extractor that examines the prover and extracts this knowledge. This is challenging for SNARKs, since (unlike in interactive
proof systems) the prover could in principle generate the proof deterministically, and so the extractor sees only one valid
proof, and this is very little information to work with when trying to recover a witness which may be asymptotically larger.
To get around this, we assume that the construction of the proof is intimately tied to a larger piece of random data. This is
the structured reference string, which is produced before the proof phase of the protocol begins.

All the SNARKs that our system analyzes assume that the SRS is a collection of elliptic curve group elements. These elements
each come from one of three predefined elliptic curves of prime order p, G1, G2, GT , and in each of these groups the discrete
logarithm problem is assumed to be hard. The three curves form a pairing. That is, they come together with a nontrivial
pairing operation e : G1 × G2 → GT which satisfies the bilinearity property: e(ga, hb) = e(g, h)a·b. The SRS elements are
always equal to generators of these curves raised to the power of particular multivariable polynomials over Fp. The values of
the variables of these polynomials are sometimes called toxic waste to reflect the fact that if they become known to the prover,
the soundness of the proof system can be broken.

The prover can create a linear combination of the SRS polynomials using curve operations to make a proof-message, and the
verifier can then do computations using the pairing to verify the proof-message. In order to formally check the soundness of
such a construction, we must make a cryptographic assumption that limits what the prover is capable of doing in assembling the
proof-message. In particular, the soundness of these SNARKs can be very neatly formalized with the Algebraic Group Model
assumption [34], which essentially says that the prover can only output group elements which are indeed linear combinations
of SRS elements. The extractor then gets accesss to the coefficients of this linear combination and uses it to reconstruct the
witness.

To summarize, formally proving the soundness of a pairing-based SNARK in the AGM model consists of:

• Identifying the toxic waste elements

• Formalizing the SRS elements as polynomials over the toxic waste elements

• Formalizing the proof elements as parameterized linear combinations of SRS elements

• Formalizing the verification equations as equations over the proof elements and SRS elements

• Formalizing the satisfaction condition.

• Formally proving that the verification equations holding implies that the extractor obtains a valid witness.

3 Lean Formalization of the Soundness Proof
In this section, we discuss the specific techniques we used to create a system which is capable of formalizing and verifying, in
Lean, the soundness of pairing-based SNARKs. We will also describe some performance considerations, using our Type-III
Groth ’16 Lean-proof as an example.

3.1 Stage 0: Multivariate Polynomial Formalization
One consideration in our formalization is the data type used to represent the multivariable polynomials in the toxic waste
elements which appear throughout the proof. We discuss a few options for representing them, and the benefits and drawbacks.

3

Stage 0 Proof state consists of
polynomial equations in
the trapdoor elements
and prover coefficients

(Aα+Bβ)(Cα+Dβ) =Eαβ

Stage 1a Polynomial put in normal
form

simp with
polynomial_nf

ACα2+(AD+BC)αβ+BDβ2 =Eαβ

Stage 1b Coefficients are isolated h := congr_arg (coeff
(...)) eqn

coeff αβ
(ACα2+(AD+BC)αβ+BDβ2

= coeff αβ Eαβ
...

Stage 1c Expression broken down
into term-by-term coeffi-
cient comparisons

simp only with
coeff_simp at h

if αβ = α2 then AC else 0
+ if αβ = αβ
then AD+BC else 0
+ if αβ = β2 then BD else 0
= if αβ = αβ then E else 0
...

Stage 1d Coefficient comparisons
decided, leaving proof
state of polynomial equa-
tions in the prover coeffi-
cients

simp only with
finsupp_simp at h

AC = 0
AD + BC = E
BD = 0

Stage 2a Polynomials are simpli-
fied algebraically

integral_domain_tactic A = 0 or C = 0
AD + BC = E
B = 0 or D = 0

Stage 2b Proof state consists
of simple equations of
prover coefficients

integral_domain_tactic BC = E
or
AD = E

Table 1: Describing the stages of a proof. The left row gives an example for a toy (incomplete) SNARK illustrating the type
of the hypotheses at each stage.

4

Structured Reference String Components The Groth ’16 SNARK uses 5 toxic-waste values in the setup phase:

α, β, γ, δ, x

These values are sampled from F∗. From these, a collection of SRS elements are generated: The first four samples elements
appear as the first four SRS elements

α, β, γ, δ,

and the remainder of the SRS elements consist of four indexed collections, the sizes of which depend on the QAP (and
ultimately, the size of the circuit on which the SNARK is instantiated).

{
xi
}n−1
i=0 ,

{
βui(x) + αvi(x) + wi(x)

γ

}l
i=0

,

{
βui(x) + αvi(x) + wi(x)

δ

}m
i=l+1

,

{
xit(x)
δ

}n−2

i=0

As we will later see, while these latter collections consist of multiple elements, it will be the case that whenever one of these
elements appears in the proof, it is always as part of a sum indexed over all members of the collection. It therefore turns out
to be convenient to track this partition of SRS elements into these 8 sets during the course of the proof: We refer to them as
SRS components . Table 4 shows how many components there are for each of the SNARKs we considered.

Laurent Polynomials We could almost say that all the SRS elements are multivariable polynomials in the setup values,
but this is not quite true: γ and δ appear in the denominator of some of these expressions. Like other SNARK schemes
(e.g. Sonic [44]), Groth ’16 creates its SRS using the more general notion of Laurent polynomials. Laurent polynomials are
permitted to have terms with negative exponents, but they have many of the same useful properties as regular polynomials
(in particular, a version of the Schwartz-Zippel lemma holds for them).

When trying to formalize the Groth ’16 soundness proof while staying as close as possible to the theorem statement given
in the paper, we encounter the problem that mathlib does not currently have an implementation of multivariable Laurent
polynomials. To get around this, we note that it is really not necessary for Groth ’16 and these other constructions to actually
formalize their results using Laurent polynomials: One can simply multiply all the SRS elements in the construction by the
minimum order of every sampled field element to get a SNARK which is functionally equivalent, and which can be formalized
in terms of (nonnegative-exponent-term) multivariable polynomials. In the case of Groth ’16, this means multiplying all the
SRS elements through by γδ. Indeed, it can be shown that the soundness property of the Laurent version follows from the
soundness of the non-Laurent version, and we can formalize this fact in Lean.

High-Degree Variables Let us look again at the 8 SRS components, now all multiplied through by γδ.

αγδ, βγδ, γ2δ, γδ2, {γδxi}n−1
i=0 , {δ(βui(x) + αvi(x) + wi(x))}li=0,

{γ(βui(x) + αvi(x) + wi(x))}mi=l+1, {γ(xit(x))}n−2
i=0

Note that in all of these elements, the degrees of α, β, γ, and δ are at most 1, 1, 2 and 2 respectively. Like Pinocchio and
others, Groth ’16 has the property that there is actually only a single sample element, x, for which the maximum degree of
the element depends on the circuit. This leads to an idea that proves crucial in later stages of the automated proof: Instead of
formalizing these values as multivariable polynomials in five variables over F, we formalize them as multivariable polynomials
over polynomials. We use the type mv_polynomial vars (polynomial F) where vars has four elements corresponding to
the bounded degree samples,

@[derive decidable_eq]
inductive vars : Type
| α : vars
| β : vars
| γ : vars
| δ : vars

We also derive the decidability of equality, to allow us to automatically determine if N-valued functions on vars (which
correspond to terms of a polynomial over vars) are equal.

5

3.2 Stage 1: Coefficients of the Equations
To prove a SNARK sound in the AGM is to assume that the proof elements have AGM representations, and prove that if
these representations satisfy the equations that the protocol specifies they should satisfy, the encoding of the QAP is satisfied.
These AGM representations are expressions which include some free variables as coefficients in a linear combination of SRS
elements. The type of these expressions is therefore the multivariable polynomial type mv_polynomial vars (polynomial
F) we defined above. Thus, to formalize this proof in lean, we must take a collection of mv_polynomial vars (polynomial
F) equality expressions and prove that these equations imply another equation.

A pair of multivariable polynomials are equal if and only if their coefficients are equal. Thus, we can convert our assumptions
into a collection of assumptions about the equalities of coefficients of our mv_polynomials. Here is where it becomes important
that we have formalized these multivariable polynomials using the type mv_polynomial vars (polynomial F), and ensured
that all the orders of variables in the outer polynomial have bounded degree. Because of this, we can extract equalities of
coefficients of the finitely many terms for which all the degrees are below this bound.

As we mentioned above in the case of Groth ’16, there are 4 bounded toxic waste elements, α, β, γ, δ with maximum degrees 1,
1, 2 and 2. Since the single equality tested in the protocol only uses pairings of linear combinations of these elements, the
terms in the output can take on:

• One of 3 arities in α, (1, α, α2)

• One of 3 arities in β, (1, β, β2)

• One of 5 arities in γ, (1, γ, γ2, γ3, γ4)

• One of 5 arities in δ, (1, δ, δ2, δ3, δ4)

So there are at most 3× 3× 5× 5 = 75 terms with nonzero coefficient. Inspection of the Lean proof state after extracting all
of these into individual equations shows that only 51 of these are actually nonzero, and only a subset of those are actually
necessary to complete the natural-language proof. In particular, the presentation in Baghery et al. uses only 14 different
coefficients ([6], Theorem 2).

To isolate these equations automatically, we create three Lean simplification attributes:

• polynomial_nf: This puts the polynomial equations into a sum-of-products normal form, with the monomials grouped
together.

• coeff_simp: This takes an expression consisting of the mv_polynomial.coeff function (which takes an argument
specifying a monomial and returns the coefficient of that monomial in the given polynomial) evaluated on some normal-
form polynomial. The attribute reduces this expression to a form involving compositions of if-then-else statements
depending on the equality of various monomials.

• finsupp_eq: Finally, this decides the equality of the monomial equivalences to reduce the if-then-else expressions to
simple expressions of equality between (sums over) polynomial F values.

All told, for each of the 14 terms, there are 10 LOC to construct the proof of the equality of the coefficients. For the Type-III
Groth ’16, and this takes approximately 40 seconds on a 2.9 GHz Quad-Core Intel Core i7. See Table 1 for a visualisation of
the effect of each of these steps.

3.3 Stage 2: Mutual Simplification
At this point we have our collection of equations over polynomial F. Our goal is also an equation of values having type
polynomial F. All that remains is to prove our hypotheses imply this goal (the reader can see a snapshot of the proof state
showing what these equations look like in Appendix A). We must now simplify these equations, hopefully in an automated a
way as possible.

One convenient fact is that many of the indexed sums which occur over u, v, w and multiplications thereof with other
polynomials occur multiple times throughout the hypotheses, and since the validity of the SNARKs depend on u, v, w being
general, the proofs of validity do not require any structure on these sums. We can therefore treat these summations as atoms,
and deal with equations which are simple additions and multiplications of these atoms.

A further convenience is that, because the SNARK equations arise through pairings, our hypotheses are all quadratic in these
atoms. In fact, many of the equations are of the form A * B = 0 for atoms A and B. This is by design, as it is necessary for
the proofs to leverage the fact that the product of two values equating to zero implies at least one of the multiplicands is
zero. This leads us to formulate the following approach to simplifying the goal: We use the fact (inferred by Lean’s typeclass
system) that a polynomial ring over a field is an integral domain, and we simplify all equations of the form A * B = 0 to A =
0 or B = 0. We can then split these hypotheses into two cases and prove the goal for each case, simplifying our hypotheses
by rewriting A or B to 0, and carry on this process until we are left with a collection of goals that cannot be simplified through

6

these rules. To facilitate this, we wrote a tactic integral_domain_tactic, which carries out the above simplifications and
calls itself recursively until it reaches a point where it can make no more progress:

meta def integral_domain_tactic : tactic unit := do
trace "Call to integral_domain_tactic",
-- Factor statements of the form a * b = 0 into a = 0 b = 0
-- and mutually simplify the resulting hypotheses.
`[simp only [*] with integral_domain_simp
at * {fail_if_unchanged := ff}],

-- Eliminate true and false hypotheses, halt if done
try `[cases_type* true false],
:: ← get_goals | skip,
-- Identify disjunctions
try `[clear found_zero],
cases_success <- try_core `[cases ‹_ _› with found_zero found_zero],
-- Do case work on disjunctions
match cases_success with
| some _ := all_goals' `[done <|> id { integral_domain_tactic }]
| none := skip
end

We can then either solve these goals by hand, either one at a time, or by dispatching multiple subgoals at once using built-in
Lean tactics, until none are left.

In the Type-III Groth 16, integral_domain_tactic deals with 37 different branches of cases, after which only an additional
20 LOC of tactics are needed to close remaining goals generated. This takes approximately 90 seconds on our 2.9 GHz
Quad-Core Intel Core i7 processor.

4 Evaluation
Table 4 shows data about the sizes of various parameters of the various SNARKs and the time it takes Lean to verify the
proofs. In each case, the proof time is dominated by the mutual simplification phase, as one might expect, given that this this
phase requires case analyses that potentially blow up exponentially. The most expensive SNARK to verify is the generic
Groth ’16, which takes almost two orders of magnitude longer than the second longest, which is the Type III variant. This is
consistent with the fact that there are more symmetries in the Groth ’16 SNARK, which are dealt with in the paper via a
without-loss-of-generality argument, but which integral_domain_tactic handles by brute force.

Name # Toxic Samples # Proof elements # SRS Components # Checks Compile Time

GGPR [37] 5 7 (6∗) 19 5 (4∗) 140.61 s
Pinocchio [52] 8 8 21 5 342.89s
Groth ’16 [38] 5 3 8 1 13741.86s

Baghery et al. [6] 5 3 7 and 4 1 552.67s
BabySNARK [48] 3 3 4 2 74.98s

Lipmaa [42] 2 3 7 and 4 and 1 1 81.82s

Table 2: Data on different SNARK variants. ∗GGPR includes in the paper a proof element and a check which are not strictly
necessary for the soundness proof.

5 Comments on Proof Exposition
In this section, we discuss some of the proofs of the SNARKs we have covered, not as we formalized them, but as they
appear in the original references on which our formalizations were based. For each of these references we managed to produce
a formalization and proof that was fully checked by the Lean kernel, so it would not be appropriate to call any of these
constructions broken. However, the process of creating these formalizations was not always smooth, in part because there are
a few places in which the arguments presented in the papers are misleading, or even incorrect. In the interest of a better
understanding of these proofs by the community as a whole, we will take the time to explain why we found these proofs
confusing and the impact it had on our proof efforts.

7

5.1 Pinocchio
First, we discuss Pinocchio. Specifically, we refer to the Protocol 2 of that paper (that is, the SNARK designed to work
for regular QAPs rather than strong QAPs), and the subsequent theorem 1, which provides the “Security Intuition”. To
recap the design of this SNARK, three of the proof elements in it are meant to be derived directly from the witness, namely
gVmid , gWmid , and gYmid . Specifically, these are meant to be constructed as a linear combination of, respectively, the three
sets of SRS elements {gvk(s)

v }k∈Imid
, {gwk(s)

w }k∈Imid
, and {gyk(s)

y }k∈Imid
. Three of the other proof elements (gV ′

mid , gW ′
mid , and

gY
′

mid) are likewise derived from {gαvvk(s)
v }k∈Imid

, {gαwwk(s)
w }k∈Imid

, and {gαyyk(s)
y }k∈Imid

. Three of the checks the verifier then
carries out use these proof elements, e(gV

′
mid
v , g) = (gVmid

v , gαv), e(gW
′
mid

w , g) = (gWmid
w , gαw), and e(gY

′
mid
y , g) = (gYmid

y , gαy).

The reason given for these checks, as stated in the paper, is to “Check that the linear combinations of V, W, and Y are in
their appropriate spans”. These spans are identified as “the vk(x)’s, wk(x)’s, and yk(x)’s, respectively”. Somewhat confusing
is whether this is meant to be just the k indices in the witness or in the statement too - A hiccup is that if the witness and
statement polynomials are not linearly independent, then an AGM adversary can add these linear combinations to their proof
coefficients, leading to a verifying set of coefficients for which the coefficients of the witness polynomials in V, W, and Y do
not match the witness itself. This does not actually change the proof elements, but it makes them trickier to reason about
formally in the model.

A more glaring issue is that, in fact, these checks do not even guarantee that the proof elements will be in the span of the
statement and witness polynomials combined. While it is indeed true that the checks are intuitively intended to guarantee
this, it is technically possible for a prover to construct proof elements with nonzero coefficients for verifier key elements, but
for which these checks pass. Specifically, after constructing a key honestly, the prover can multiply gVmid

v and gV
′

mid
v by g1 and

gαv respectively, and similarly with Wmid and Ymid. We noticed this by way of our attempt to construct a proof that the only
nonzero coefficients for V are in this set, finding that even after simplifying using the equalities generated by this check, there
were still terms that we could not eliminate.

It is only through the next check that this attack is caught: If one includes the fifth check, which is intended to guarantee
“that the same coefficients were used in each of the linear combinations over V , W and Y”, it becomes impossible to construct
proof terms which fall outside the span. This caused us to make a slight change to the plan for the proof, to get around the
fact that proving V was exactly equal to gVmid was not possible to do simply. Instead, we left the g1 terms (as well as the
statement polynomial terms) in our simplifications of V , W and Y , then proved that when one plugs these into the fifth check,
these extra terms can be ignored, and the coefficients of the gβvk(s)

v g
βwk(s)
w g

βyk(s)
y terms in Z can be seen to be equal to the

supposed coefficients of V, W and Y, so that these coefficients can still act as the extracted witness.

5.2 Groth ’16
The written proof of soundness of Groth16 makes a similar overassumption about what certain equalities of terms in their
check polynomial guarantees about relationships between coefficients of the SRS elements. The soundness proof given by
Theorem 1 of [38] proceeds by first analyzing the α2, αβ, and β2 coefficients of the polynomial, which allows one to simplify
this polynomial, zeroing out a few of the terms without loss of generality. This logic is fine. We are then shown that the terms
involving 1/δ2 give us, without loss of generality.

m∑
i=l+1

Ai(βui(x) + αvi(x) + wi(x)) + t(x)Ah(x) = 0

(Actually there is a typo in the Groth 16 paper here, as he writes At when he should write Ah). But then comes there is the

more worrying claim that "The terms in α
∑m

i=l+1
Bi(βui(x)+αvi(x)+wi(x))+Bh(t)

δ = 0 now show us that also:

m∑
i=l+1

Bi(βui(x) + αvi(x) + wi(x)) + t(x)Bh(x) = 0 (1)

What are "the terms in" this expression? It seems Groth is saying that the coefficients corresponding to the monomials α2/δ,
αβ/δ and α/δ, the only monomials that appear in this expression, imply the equation. α2/δ gives us

∑m
i=l+1 Bivi(x) = 0,

and αβ/δ gives us
∑m
i=l+1 Biui(x) = 0, and this reduces the term to

m∑
i=l+1

Biwi(x) + t(x)Bh(x)

8

But notice that the coefficient of α/δ actually includes a term of the form A(x)
∑m
i=l+1 Bi

αvi(x)
δ , so summing these three

coefficients does not give us that this term is zero, it gives us that the term is equal to −A(x)
∑m
i=l+1 Bi

αvi(x)
δ . It is

not immediately clear that this is even true! However, one eventually finds that the terms with coefficient 1/δ give(∑m
i=l+1 Biwi(x) + t(x)Bh(x)

)
A(x) = 0, and after doing casework on whether or not A(x) = 0, one sees that either way,

the full Equation 1 can indeed be reduced to 0. Similar reasoning appears immediately after this with "The terms in
α

∑m

i=l+1
Bi(βui(x)+αvi(x)+wi(x))+Bh(t)

γ = 0", but this can be fixed in the same way.

Helpful in resolving this confusion was Baghery et al. [6] Theorem 2, which presents a correct proof of soundness by carefully
listing the equations from each coefficient, and explicitly clarifying that the proof uses cases on A(x) = 0. They do this for
a version of the Groth ’16 SNARK intended for use with type-III pairing friendly curves, but the proof carries over to the
non-type-III case.

5.3 Lipmaa’s Simulation Extractable SNARK
Lipmaa [42] presents a SNARK with a simulation-extractability property. In the process of this construction, the paper
constructs the SNARK Sqap, which is heavily based on a version of Groth ’16 - In particular, it is very similar to the type-III
SNARK presented in Baghery et al. Instead of 4 degree-bounded field samples, Lipmaa uses one sample giving a group element
Y , and uses different exponents of this group element to represent the samples of Baghery et al. (for reference α, β, γ, δ from
Baghery et al. become γ − β, δ− β, η− β, α− β and then an additional β is added to each sum of these exponents in the SRS,
so for example, βui(x)/δ becomes uiyβ−α+δ). Some small additive factors to the proofs are shifted around as well; the a (and
b) proof terms includes an α (β) term in Baghery et al. but in Lipmaa these terms are added in by the verifier. None of these
differences is substantive from the point of view of the AGM, and in fact these “transformations” can be generalized, as we
will elaborate in Section 6. Thus, it is indeed the case that the Baghery et al. proof can be adapted to show the Lipmaa
SNARK is sound.

But unfortunately the proof presented in [42] hews more closely to the Groth proof than the Baghery et al. proof. That proof
uses 14 monomial equations, but Lipmaa makes the suspect claim that actually only 6 are needed to prove the soundness
of the SNARK. The flaw in Lipmaa’s reasoning turns out to be exactly analogous to that made by Groth discussed in the
previous section! The Y β+γ terms are claimed (in Figure 2, for example) to show that (aγ + 1)vb(X)− v(X) = 0, but the
output of the Lean computation shows that there should actually be a term for bα

∑
i∈wit Civi(X) which comes from the

component of the witness SRS elements. Seeing this kind of mistake carrying over from one paper to another justifies the
importance of catching these mistakes quickly.

6 SNARK Transformations
We have noted previously that many of the constructions covered in this paper are conceptually similar to others in their
construction, but differ in details that make their soundness proofs different at a low level, while still being analogous at a
high level. This illuminates the following principle: Many SNARKs can be described by first describing another SNARK, and
then manipulating that SNARK according to transformations that preserve the soundness. Often these transformations can
be applied to any SNARK construction, or to any SNARK construction satisfying certain criteria, and affect the aspects of
the performance or explainability. A few examples of this include:

• Translating the degree of polynomials: That is to say, given a SNARK, it is possible to multiply through each SRS
element by an existing (or new) toxic waste sample without affecting the soundness of the SNARK. This follows from
the fact that all the checks carried out by the verifier take the form of comparisons of degree-2 polynomials in the proof
elements: a toxic waste element τ that is multiplied through the SRS elements will yield a τ2 in the polynomial check,
which can be factored out. This is a fact we have implicitly used in our formalization to avoid dealing with Laurent
polynomials with negative exponents.

• If a toxic waste σ element appears to maximum degree < n in a check polynomial, and τ is another toxic waste element,
then it is possible to replace τ with σn is the maximum degree, thus reducing the number of toxic waste samples needed.
This does not affect the soundness, as any equivalence between coefficients of terms of the form σiτ j in the first SNARK
will be implied by coefficient of the term σi+nj . One can view this transformation as one of the conceptual differences
between the Lipmaa SNARK [42] relative to [?].

• If the coefficient of a particular SRS element in a particular proof element is the same for any satisfying statement-witness
pair, then we can treat that component as a constant and remove the dependence of the proof element linear combination
on that SRS element. This could potentially be useful in optimizing SNARK circuits after the trusted setup. For
example: Suppose we have a system where a particular prover always provides input specific to them (a private key, say)
which causes part of the circuit computing the relation to consistently evaluate the same. Then we can collapse all the

9

witness elements associated with that part of the circuit into one, alleviating the requirement on the prover to store this
data.

To demonstrate the extensibility of our development, we implement the above transformations, along with proofs that
they preserve soundness. To do this, we create a data structure, AGM_proof_system, defined in proof_system_fin.lean,
to represent sound SNARKs This structure includes:

– The relation being proved

– The SRS elements, as multivariable polynomials over a finite type of sample elements,

– the verifier checks, as a list of mulitvariable polynomials over a finite type of indices into proof elements.

– An extractor, which takes AGM coefficients (in the form of field elements in a mtrix, one coefficient for each SRS
element component in each proof element) to field element values for each witness variable.

– A soundness proposition, which indicates that if the verifier checks pass for a particular statement and AGM
coefficient matrix, then the relation applied to that statement and the extractor on that matrix is satisfied.

The transformations are then implemented as functions that take in a term of this type (along with potentially some
other data) and return a new term of the same type. The biggest challenge in writing code for these transformation
is the construction of the preservation of the soundness proposition. While this is slightly different for each of the
transformations above, the process can broadly be described like this:

1. We are given the soundness statement for a input SNARK, and we need to prove the statement for the transformed
SNARK.

2. Since the soundness proposition for the transformed SNARK is universally quantified over a statement and an
AGM coefficient matrix for which the polynomial checks holding implies extractability, we always introduce the
statement, matrix and proof of the transformed polynomial checks holding into the proof state.

3. Since the resulting goal is now simply that the relation holds for a particular statement and witness, and this is
the output conclusion of the soundness proposition for the input SNARK, we apply this conclusion via the apply
tactic.

4. This leaves in the goal the statement that the input SNARK polynomial checks hold. We must then find a way to
prove this from the hypothesis that polynomial checks hold for the transformed SNARK.

This proof pattern highlights the reductive nature of the transformations. A statement of the rough form “If the proof
checks don’t pass for the input SNARK, then they shouldn’t pass for the output SNARK“ is contrapositively transformed
into “If the checks pass for the output SNARK, then they pass for the input SNARK as well“.

7 Future Work
There are a few things that could be future directions:

– One could optimize the Lean code to speed up the compilation. In particular one might think of using mathlib’s
wlog tactic to take advantage of symmetries, in particular in the Groth ’16 SNARK.

– Going in the opposite direction, one could generalize the code to apply in broader settings. One option we considered
was rewriting the integral_domain_tactic to use Gröbner basis methods so that it would require less by-hand
tweaking to complete the proofs. We ultimately decided, given the poor computational complexity of these methods,
that this would be too much effort to lose too much performance. Nevertheless, such a design could prove useful
for other formalization efforts.

– One could add more aspects of the soundness proof which are ancillary to the main goal, such as formalizing the
Schwartz-Zippel lemma application as seen in e.g., Lemma 1 of [48], or formalizing some basic complexity theory to
prove the (trivial) extraction operation is indeed polynomial-time.

Possibly the most generic idea for future work in the direction of this project would be to study broader classes of
SNARKs. In particular, one could imagine expanding the scope of the project to move beyond the class of SRS SNARKs
shown here to other constructions, such as Sonic, PlonK, Marlin, or others [44, 36, 25]. A challenge we forsee in this
direction is formally managing the Fiat-Shamir paradigm [32], which has become common in the design of SNARKs.
This paradigm involves the random oracle model as a way of designing a proof system [15], and so it would likely require
machinery to deal with probability distributions over hash functions.

10

8 Conclusion
We have presented our efforts to formalize the Groth ’16 SNARK and similar constructions in Lean. Our work includes a
variety of programs that help accomplish this task – we have described a variety of pitfalls associated with this challenge
and our strategies for overcoming them. It is our hope going forward to continue formalizing, and eventually provide a
library with coverage of several major SNARKs, and with tools which security researchers can use for assistance in in
analyzing SNARKs in the wild.

Acknowledgements
The authors would like to thank Bryan Parno for discussions on early drafts of this paper.

This material is based upon work supported by the National Science Foundation under the Graduate Research Fellowship
Program with Grant No. DGE – 1746047.

References
[1] The lean mathematical library. CoRR, abs/1910.09336, 2019.

[2] Carmine Abate, Philipp G Haselwarter, Exequiel Rivas, Antoine Van Muylder, Théo Winterhalter, Cătălin Hriţcu,
Kenji Maillard, and Bas Spitters. Ssprove: A foundational framework for modular cryptographic proofs in coq. In
2021 IEEE 34th Computer Security Foundations Symposium (CSF), pages 1–15. IEEE, 2021.

[3] José Bacelar Almeida, Manuel Barbosa, Manuel L Correia, Karim Eldefrawy, Stéphane Graham-Lengrand, Hugo
Pacheco, and Vitor Pereira. Machine-checked zkp for np relations: Formally verified security proofs and implementa-
tions of mpc-in-the-head. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 2587–2600, 2021.

[4] Jeremy Avigad, Lior Goldberg, David Levit, Yoav Seginer, and Alon Titelman. A verified algebraic representation
of cairo program execution, 2021.

[5] José Bacelar Almeida, Manuel Barbosa, Endre Bangerter, Gilles Barthe, Stephan Krenn, and Santiago
Zanella Béguelin. Full proof cryptography: verifiable compilation of efficient zero-knowledge protocols. In
Proceedings of the 2012 ACM conference on Computer and communications security, pages 488–500, 2012.

[6] Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. Another look at extraction and randomization
of groth’s zk-snark. Cryptology ePrint Archive, Report 2020/811, 2020. https://ia.cr/2020/811.

[7] Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas Cremers, Kevin Liao, and Bryan Parno.
Sok: Computer-aided cryptography. In 2021 IEEE symposium on security and privacy (SP), pages 777–795. IEEE,
2021.

[8] Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin Grégoire, Shih-Han Hung, Jonathan Katz, Pierre-Yves Strub,
Xiaodi Wu, and Li Zhou. Easypqc: Verifying post-quantum cryptography. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 2564–2586, 2021.

[9] Gilles Barthe, Jan Cederquist, and Sabrina Tarento. A machine-checked formalization of the generic model and
the random oracle model. In Automated Reasoning: Second International Joint Conference, IJCAR 2004, Cork,
Ireland, July 4-8, 2004. Proceedings 2, pages 385–399. Springer, 2004.

[10] Gilles Barthe, Juan Manuel Crespo, Yassine Lakhnech, and Benedikt Schmidt. Mind the gap: Modular machine-
checked proofs of one-round key exchange protocols. In Advances in Cryptology-EUROCRYPT 2015: 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II, pages 689–718. Springer, 2015.

[11] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal certification of code-based cryptographic
proofs. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 90–101, 2009.

[12] Gilles Barthe, Daniel Hedin, Santiago Zanella Béguelin, Benjamin Grégoire, and Sylvain Heraud. A machine-checked
formalization of sigma-protocols. In 2010 23rd IEEE Computer Security Foundations Symposium, pages 246–260.
IEEE, 2010.

[13] David Basin, Andreas Lochbihler, Ueli Maurer, and S Reza Sefidgar. Abstract modeling of system communication
in constructive cryptography using crypthol. In 2021 IEEE 34th Computer Security Foundations Symposium (CSF),
pages 1–16. IEEE, 2021.

11

https://ia.cr/2020/811

[14] David A Basin, Andreas Lochbihler, and S Reza Sefidgar. Crypthol: Game-based proofs in higher-order logic.
Journal of Cryptology, 33:494–566, 2020.

[15] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
Proceedings of the 1st ACM Conference on Computer and Communications Security, pages 62–73, 1993.

[16] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. Snarks for c: Verifying
program executions succinctly and in zero knowledge. Cryptology ePrint Archive, Report 2013/507, 2013. https:
//ia.cr/2013/507.

[17] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a
von neumann architecture. Cryptology ePrint Archive, Report 2013/879, 2013. https://ia.cr/2013/879.

[18] Dhruv Bhatia. A tactic using sage to solve polynomial equalities with hypotheses, 2022. https://github.com/
leanprover-community/mathlib/pull/14878.

[19] Chris Brzuska, Antoine Delignat-Lavaud, Cédric Fournet, Konrad Kohbrok, and Markulf Kohlweiss. State separation
for code-based game-playing proofs. In Advances in Cryptology–ASIACRYPT 2018: 24th International Conference
on the Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6,
2018, Proceedings, Part III 24, pages 222–249. Springer, 2018.

[20] David Butler, David Aspinall, and Adrià Gascón. Formalising oblivious transfer in the semi-honest and malicious
model in crypthol. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs, pages 229–243, 2020.

[21] David Butler, Andreas Lochbihler, David Aspinall, and Adrià Gascón. Formalising σ-protocols and commitment
schemes using crypthol. Journal of Automated Reasoning, 65(4):521–567, 2021.

[22] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science, pages 136–145. IEEE, 2001.

[23] Ran Canetti, Alley Stoughton, and Mayank Varia. Easyuc: Using easycrypt to mechanize proofs of universally
composable security. In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pages 167–16716.
IEEE, 2019.

[24] Yanju Chen, Clara Rodriguez, Yu Feng, and Bryan Tan. Picus, 2022.

[25] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely, and Nicholas Ward. Marlin: Pre-
processing zksnarks with universal and updatable srs. Cryptology ePrint Archive, Report 2019/1047, 2019.
https://ia.cr/2019/1047.

[26] Collin Chin, Howard Wu, Raymond Chu, Alessandro Coglio, Eric McCarthy, and Eric Smith. Leo: A programming
language for formally verified, zero-knowledge applications. Cryptology ePrint Archive, 2021.

[27] Alessandro Coglio. Ethereum’s recursive length prefix in acl2. arXiv preprint arXiv:2009.13769, 2020.

[28] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir, and Bogdan Warinschi. Machine-checked
proofs for electronic voting: privacy and verifiability for belenios. In 2018 IEEE 31st Computer Security Foundations
Symposium (CSF), pages 298–312. IEEE, 2018.

[29] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob von Raumer. The lean theorem
prover. 2015.

[30] François Dupressoir, Konrad Kohbrok, and Sabine Oechsner. Bringing state-separating proofs to easycrypt a
security proof for cryptobox. In 2022 IEEE 35th Computer Security Foundations Symposium (CSF), pages 227–242.
IEEE, 2022.

[31] Karim Eldefrawy and Vitor Pereira. A high-assurance evaluator for machine-checked secure multiparty computation.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, pages 851–868,
2019.

[32] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature problems. In
Conference on the theory and application of cryptographic techniques, pages 186–194. Springer, 1987.

[33] Denis Firsov and Dominique Unruh. Zero-knowledge in easycrypt. Cryptology ePrint Archive, 2022.

[34] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. Cryptology ePrint
Archive, Report 2017/620, 2017. https://ia.cr/2017/620.

12

https://ia.cr/2013/507
https://ia.cr/2013/507
https://ia.cr/2013/879
https://github.com/leanprover-community/mathlib/pull/14878
https://github.com/leanprover-community/mathlib/pull/14878
https://ia.cr/2019/1047
https://ia.cr/2017/620

[35] Ariel Gabizon. On the security of the bctv pinocchio zk-snark variant. Cryptology ePrint Archive, Report 2019/119,
2019. https://ia.cr/2019/119.

[36] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. Plonk: Permutations over lagrange-bases for
oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019. https:
//ia.cr/2019/953.

[37] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct nizks
without pcps. Cryptology ePrint Archive, Report 2012/215, 2012. https://ia.cr/2012/215.

[38] Jens Groth. On the size of pairing-based non-interactive arguments. Cryptology ePrint Archive, Report 2016/260,
2016. https://ia.cr/2016/260.

[39] Helene Haagh, Aleksandr Karbyshev, Sabine Oechsner, Bas Spitters, and Pierre-Yves Strub. Computer-aided proofs
for multiparty computation with active security. In 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), pages 119–131. IEEE, 2018.

[40] Thomas Haines, Rajeev Goré, and Bhavesh Sharma. Did you mix me? formally verifying verifiable mix nets in
electronic voting. In 2021 IEEE Symposium on Security and Privacy (SP), pages 1748–1765. IEEE, 2021.

[41] Gérard Huet, Gilles Kahn, and Christine Paulin-Mohring. The coq proof assistant a tutorial. Rapport Technique,
178, 1997.

[42] Helger Lipmaa. Simulation-extractable snarks revisited. Cryptology ePrint Archive, Report 2019/612, 2019.
https://ia.cr/2019/612.

[43] Andreas Lochbihler, S Reza Sefidgar, David Basin, and Ueli Maurer. Formalizing constructive cryptography using
crypthol. In 2019 IEEE 32nd Computer Security Foundations Symposium (CSF), pages 152–15214. IEEE, 2019.

[44] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge snarks from linear-
size universal and updateable structured reference strings. Cryptology ePrint Archive, Report 2019/099, 2019.
https://ia.cr/2019/099.

[45] Deepak Maram, Harjasleen Malvai, Fan Zhang, Nerla Jean-Louis, Alexander Frolov, Tyler Kell, Tyrone Lobban,
Christine Moy, Ari Juels, and Andrew Miller. Candid: Can-do decentralized identity with legacy compatibility,
sybil-resistance, and accountability. Cryptology ePrint Archive, Report 2020/934, 2020. https://ia.cr/2020/934.

[46] Catherine A Meadows and Catherine A Meadows. Formal verification of cryptographic protocols: A survey.
In Advances in Cryptology—ASIACRYPT’94: 4th International Conferences on the Theory and Applications of
Cryptology Wollongong, Australia, November 28–December 1, 1994 Proceedings 4, pages 133–150. Springer, 1995.

[47] Roberto Metere and Changyu Dong. Automated cryptographic analysis of the pedersen commitment scheme. In
Computer Network Security: 7th International Conference on Mathematical Methods, Models, and Architectures
for Computer Network Security, MMM-ACNS 2017, Warsaw, Poland, August 28-30, 2017, Proceedings 7, pages
275–287. Springer, 2017.

[48] Andrew Miller, Ye Zhang, and Sanket Kanjalkar. Baby snark (do do dodo dodo. 2020.

[49] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: a proof assistant for higher-order logic.
Springer, 2002.

[50] David Nowak. On formal verification of arithmetic-based cryptographic primitives. In Information Security and
Cryptology–ICISC 2008: 11th International Conference, Seoul, Korea, December 3-5, 2008, Revised Selected Papers
11, pages 368–382. Springer, 2009.

[51] Bryan Parno. A note on the unsoundness of vntinyram’s snark. Cryptology ePrint Archive, Report 2015/437, 2015.
https://ia.cr/2015/437.

[52] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinocchio: Nearly practical verifiable computation.
Cryptology ePrint Archive, Report 2013/279, 2013. https://ia.cr/2013/279.

[53] Loïc Pottier. Nsatz: a solver for equalities in integral domains, 2021.

[54] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran Tromer, and Madars Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474. IEEE, 2014.

[55] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances in Cryptol-
ogy—EUROCRYPT’97: International Conference on the Theory and Application of Cryptographic Techniques
Konstanz, Germany, May 11–15, 1997 Proceedings 16, pages 256–266. Springer, 1997.

13

https://ia.cr/2019/119
https://ia.cr/2019/953
https://ia.cr/2019/953
https://ia.cr/2012/215
https://ia.cr/2016/260
https://ia.cr/2019/612
https://ia.cr/2019/099
https://ia.cr/2020/934
https://ia.cr/2015/437
https://ia.cr/2013/279

[56] Nikolaj Sidorenco, Sabine Oechsner, and Bas Spitters. Formal security analysis of mpc-in-the-head zero-knowledge
protocols. In 2021 IEEE 34th Computer Security Foundations Symposium (CSF), pages 1–14. IEEE, 2021.

[57] Sabrina Tarento. Machine-checked security proofs of cryptographic signature schemes. In ESORICS, volume 5,
pages 140–158. Springer, 2005.

[58] Søren Eller Thomsen and Bas Spitters. Formalizing nakamoto-style proof of stake. In 2021 IEEE 34th Computer
Security Foundations Symposium (CSF), pages 1–15. IEEE, 2021.

[59] Franklyn Wang. Ecne: Automated verification of zk circuits, 2022.

A Proof State after Simplifcation
Below, we show the proof state for the Baghery et al. SNARK just before mutual simplification.

The variables starting A_, B_, and C_ correspond to components of the linear combination making up the A, B and C
proof elements given by the AGM. The goal of the mutual simplification is to prove that as many of these values are 0
as possible.

state:
F : Type u,
_inst_1 : field F,
n_stmt n_wit n_var : ,
u_stmt : fin n_stmt → polynomial F,
u_wit : fin n_wit → polynomial F,
v_stmt : fin n_stmt → polynomial F,
v_wit : fin n_wit → polynomial F,
w_stmt : fin n_stmt → polynomial F,
w_wit : fin n_wit → polynomial F,
r : fin n_wit → F,
A_α A_β A_δ B_β B_γ B_δ C_α C_β C_δ : F,
A_x B_x C_x : fin n_var → F,
A_l C_l : fin n_stmt → F,
A_m C_m : fin n_wit → F,
A_h C_h : fin (n_var - 1) → F,
a_stmt : fin n_stmt → F,
h1122 : C A_α * C B_β = 1,
h1121 : ((x : fin n_wit), v_wit x * C (A_m x)) * C B_β = 0,
h1112 : ((x : fin n_stmt), v_stmt x * C (A_l x)) * C B_β = 0,
h1022 :
C A_α * (i : fin n_var), C (B_x i) * X ^ ↑i +

((x : fin n_stmt), v_stmt x * C (A_l x)) * C B_γ +
((x : fin n_wit), v_wit x * C (A_m x)) * C B_δ =
(x : fin n_stmt), C (a_stmt x) * v_stmt x + (x : fin n_wit), v_wit x * C (C_m x),

h0222 : C A_β * C B_β = 0,
h0221 : ((x : fin n_wit), u_wit x * C (A_m x)) * C B_β = 0,
h0212 : ((x : fin n_stmt), u_stmt x * C (A_l x)) * C B_β = 0,
h0122 :
C A_β * (i : fin n_var), C (B_x i) * X ^ ↑i +

((i : fin n_var), C (A_x i) * X ^ ↑i) * C B_β +
((x : fin n_stmt), u_stmt x * C (A_l x)) * C B_γ +

((x : fin n_wit), u_wit x * C (A_m x)) * C B_δ =
(x : fin n_stmt), C (a_stmt x) * u_stmt x + (x : fin n_wit), u_wit x * C (C_m x),

h0121 :
((x : fin n_wit), u_wit x * C (A_m x)) * (i : fin n_var), C (B_x i) * X ^ ↑i +

((x : fin n_wit), w_wit x * C (A_m x)) * C B_β +
((x : fin (n_var - 1)), X ^ ↑x * t * C (A_h x)) * C B_β =

0,
h0112 :
((x : fin n_stmt), u_stmt x * C (A_l x)) * (i : fin n_var), C (B_x i) * X ^ ↑i +

((x : fin n_stmt), w_stmt x * C (A_l x)) * C B_β =
0,

14

h0022 :
((i : fin n_var), C (A_x i) * X ^ ↑i) * (i : fin n_var), C (B_x i) * X ^ ↑i +

((x : fin n_stmt), w_stmt x * C (A_l x)) * C B_γ +
((x : fin n_wit), w_wit x * C (A_m x)) * C B_δ +

((x : fin (n_var - 1)), X ^ ↑x * t * C (A_h x)) * C B_δ =
(x : fin n_stmt), C (a_stmt x) * w_stmt x +
((x : fin n_wit), w_wit x * C (C_m x) + (x : fin (n_var - 1)), X ^ ↑x * t * C (C_h x)),

h0021 :
((x : fin n_wit), w_wit x * C (A_m x)) * (i : fin n_var), C (B_x i) * X ^ ↑i +

((x : fin (n_var - 1)), X ^ ↑x * t * C (A_h x)) * (i : fin n_var), C (B_x i) * X ^ ↑i =
0,

h0012 : ((x : fin n_stmt), w_stmt x * C (A_l x)) * (i : fin n_var), C (B_x i) * X ^ ↑i = 0
((i : fin n_stmt), u_stmt i * C (a_stmt i) + (i : fin n_wit), u_wit i * C (C_m i)) *

((i : fin n_stmt), v_stmt i * C (a_stmt i) + (i : fin n_wit), v_wit i * C (C_m i)) =
(i : fin n_stmt), w_stmt i * C (a_stmt i) + (i : fin n_wit), w_wit i * C (C_m i) +
(x : fin (n_var - 1)), X ^ ↑x * t * C (C_h x)

15

	Introduction
	The Lean Theorem Prover
	Related Work

	Overview of Pairings and the Algebraic Group Model
	Lean Formalization of the Soundness Proof
	Stage 0: Multivariate Polynomial Formalization
	Stage 1: Coefficients of the Equations
	Stage 2: Mutual Simplification

	Evaluation
	Comments on Proof Exposition
	Pinocchio
	Groth '16
	Lipmaa's Simulation Extractable SNARK

	SNARK Transformations
	Future Work
	Conclusion
	Proof State after Simplifcation

