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Abstract. Pseudorandom correlation functions (PCF), introduced in
the work of (Boyle et al., FOCS 2020), allow two parties to locally gen-
erate, from short correlated keys, a near-unbounded amount of pseu-
dorandom samples from a target correlation. PCF is an extremely ap-
pealing primitive in secure computation, where they allow to confine
all preprocessing phases of all future computations two parties could
want to execute to a single short interaction with low communication
and computation, followed solely by offline computations. Beyond in-
troducing the notion, Boyle et al. gave a candidate construction, using
a new variable-density variant of the learning parity with noise (LPN)
assumption. Then, to provide support for this new assumption, the au-
thors showed that it provably resists a large class of linear attacks, which
captures in particular all known attacks on LPN.
In this work, we revisit the analysis of the VDLPN assumption. We make
two key contributions:

– First, we observe that the analysis of Boyle et al is purely asymp-
totic: they do not lead to any concrete and efficient PCF instanti-
ation within the bounds that offer security guarantees. To improve
this state of affairs, we combine a new variant of a VDLPN assump-
tion with an entirely new, much tighter security analysis, which we
further tighten using extensive computer simulations to optimize pa-
rameters. This way, we manage to obtain for the first time a set of
provable usable parameters (under a simple combinatorial conjec-
ture which is easy to verify experimentally), leading to a concretely
efficient PCF resisting all linear tests.

– Second, we identify a flaw in the security analysis of Boyle et al.,
which invalidates their proof that VDLPN resists linear attacks. Us-
ing several new non-trivial arguments, we repair the proof and fully
demonstrate that VDLPN resists linear attack; our new analysis is
more involved than the original (flawed) analysis.

Our parameters set leads to PCFs with keys around 3MB allowing ∼
500 evaluations per second on one core of a standard laptop for 110
bits of security; these numbers can be improved to 350kB keys and ∼
3950 evaluations/s using a more aggressive all-prefix variant. All numbers
are quite tight: only within a factor 3 of the best bounds one could
heuristically hope for.
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1 Introduction

The generation of secret correlated random string is the cornerstone of secure
computation (MPC). Given access to a trusted source of correlated randomness,
any n-party functionality can be securely computed with information-theoretic
security (against n−1 corrupted parties), and with very high concrete efficiency.
For example, given 2m random oblivious transfers (in a random oblivious trans-
fer, Alice gets two random bits (s0, s1), and Bob gets (b, sb) for a random bit
b), two parties can securely compute any boolean circuit C with up to m AND
gates, with perfect security, while exchanging only four bits per AND gate.

The simplicity and efficiency of this paradigm is well known, and most mod-
ern MPC protocols take advantage of its features by sharing the same high level
two-step structure: in the first step, the preprocessing phase, the parties interact
to distributively and securely generate these correlated randomness. Since this
phase is input-independent, it can be carried out ahead of time. Then, in the
second step, the online phase, the parties “consume” this correlated randomness
in a fast, information-theoretic protocol. The core challenge is this approach lies
in step 1: designing a secure protocol to distributively generate long correlated
random string.

Pseudorandom correlations. Until recently, all state of the art protocols,
such as SPDZ [DPSZ12], required Ω(s) communication to generate s bits of cor-
related randomness (ignoring terms depending on the security parameter and the
number of parties), leading to communication-intensive preprocessing phases.
This state of affair changed in a recent and exciting line of work [BCG+17,
BCGI18, BCG+19b, BCG+19a, SGRR19, BCG+20b, CRR21] which introduced
the notion of pseudorandom correlation generators (PCG), a new cryptographic
primitive which allows parties to locally generate, from short correlated seeds,
long instances of correlated pseudorandom strings. These PCGs enable secure
computation with silent preprocessing where, after a short interaction to gener-
ate the short correlated seeds, the parties never need to interact anymore, and
locally generate the long correlated strings. The latest results in this area fur-
ther demonstrated that this primitive could be achieved with very high concrete
efficiency, under appropriate LPN-like cryptographic assumptions.

Pseudorandom correlated functions. The aforementioned constructions of
PCG, however, share a common limitation: the expansion of the short keys
into long pseudorandom correlated strings is a one-time, monolithic procedure.
That is, these PCGs are limited to a single generation of an a priori bounded
amount of correlated pseudorandomness. If the parties want to possibly use
these correlations across many protocols, then they carry the burden of having
to either re-do the distributed generation of the short keys each time, or storing
a very large amount of correlated randomness for a possibly long duration.

These limitations were overcome in a recent work [BCG+20a], where the au-
thors introduced the notion of pseudorandom correlated functions (PCFs). PCFs
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are to PCGs what pseudorandom functions are to pseudorandom generators:
they allow to generate an arbitrary amount of correlated (pseudo)randomness in
an incremental fashion. That is, given two short correlated keys (K0,K1), two
parties can locally compute an arbitrary number of correlated strings FK0(x),
FK1

(x)), which are all indistinguishable from independent random samples from
the target correlation. PCFs allow to confine all future preprocessing phases of
any future MPC protocols that two parties may wish to run to a one-time short
interaction, followed solely by local computation to generate the preprocessing
material in all subsequent computations.

1.1 Constructions of Pseudorandom Correlated Functions

A PCF is an extremely powerful primitive, but also one which is highly non-
trivial to construct. A generic construction of PCF under the LWE assumption
can be obtained by letting the two parties homomorphically evaluate a well-
chosen circuit using a threshold fully-homomorphic encryption scheme [DHRW16,
BCG+20a]: the circuit takes as input a PRF key K, and computes pseudoran-
dom instances of the correlation, using the output of the PRF to generate the
pseudorandomness used in these correlations. However, this approach falls short
of providing a concretely usable solution. To our knowledge, there are currently
two competing approaches to construct usable PCFs:

PCFs from variable-density LPN. The work of [BCG+20a] gave a generic
construction of PCF, by combining two primitives:

– A function secret sharing scheme (FSS) for a class of circuits C. At a high
level, an FSS for C allows to share any function f ∈ C in two functions f0, f1
such that each fi computationally hides f , yet for any input x, it holds that
f0(x) + f1(x) = f(x).

– One weak pseudorandom function (WPRF) for some class C′ related to C.
A WPRF is a PRF where the adversary in the pseudorandomness game is
restricted to only querying random inputs.

Previous works [GI14,BGI15,BGI16] have shown how to construct extremely
efficient FSS schemes for simple complexity classes, such as multi-point func-
tions (i.e., a function fα,β equal to 0 everywhere, except on n specific points
α = (α1, · · · , αn), where it takes a fixed value β), from minimal assumptions
(namely, the existence of one-way functions). The shares of an n-point function
fα,β over a domain of size N consist of n logN PRG seeds, and evaluating fi
on the entire domain requires only N PRG evaluations. Given this, the authors
of [BCG+20a] put forward a new WPRF in the (particularly low) complexity
class of multi-point functions, which essentially boils down to a WPRF of the
form FK(x) = F (x⊕K), where F is a depth-two circuit with one bottom layer
of high fan-in ANDs, and a single top high fan-in XOR gate. The security of
this new candidate relies on the hardness of a new variant of the learning parity
with noise (LPN) assumption, called variable density LPN assumption; we will
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overview this assumption later on. Given this new WPRF and the efficient FSS
scheme of [BGI16], the authors of [BCG+20a] obtain a PCF candidate which
can handle a wide variety of low-degree correlations, including (but not limited
to) oblivious transfer correlations. The authors provide several variants and pa-
rameter choices; their most aggressive choices of parameters lead to a reasonably
efficient construction, which (based on rough estimations) could generate hun-
dreds to thousands of pseudorandom OT correlations per second on one core of
a standard computer.

PCFs from decisional composite residuosity. An alternative approach to
building PCFs was recently put forward in [OSY21], using a Paillier-based con-
struction of homomorphic secret sharing. In contrast to [BCG+20a], this work
does not need to rely on new assumptions, and instead only requires the well-
established decision composite residuosity assumption. However, this alternative
construction has several downsides:

– Expressivity. The construction of [OSY21] is inherently limited to oblivi-
ous transfer correlations. In contrast, the VDLPN-based construction can
generate arbitrary low-degree polynomial correlations, such as OLE, (au-
thenticated) Beaver triples, and many more; these alternative correlations
are crucial in many secure computation protocols.

– Post-quantumness. The DCR assumption can be broken by Shor’s algorithm.
In contrast, while VDLPN is a new and little studied assumption, there
seems to be no reason to believe that it should be quantumly broken, being
a relatively natural LPN-style assumption.

– Efficiency. Eventually, the construction of [OSY21] requires a few hundred
exponentiations in an RSA group for every OT correlation produced. Us-
ing standard benchmark for exponentiations in 2048-bit RSA groups on a
modern laptop3, this translates to a cost of the order of one second for each
OT produced, which is several orders of magnitude less efficient than what
the VDLPN-based approach can plausibly provide, for suitable choices of
parameters.

Given the above, the VDLPN approach seems to provide the best alternative
to obtain efficient and expressive PCFs; however, its reliance on a new assump-
tion calls for a very careful examination of its security. The work of [BCG+20a]
provided an initial security analysis, proving a number of important results re-
garding the resistance of VDLPN against standard attacks. However, this anal-
ysis is purely asymptotic, and does not say much about what concrete choices
of parameters can be expected to provide a sufficient security level. In addi-
tion, a close inspection of their analysis uncovers an important gap in one of
the claim, invalidating part of the analysis (we will expand on this later on).
Before we detail our contribution, we provide more context on the underlying
new assumption and its analysis.
3 E.g. A laptop equipped with an Intel i5 2540M processor can compute an RSA

decryption in 1.4ms of amortized time
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1.2 The Variable-Density LPN Assumption

At a high level, the standard LPN assumption with dimension k and number of
samples n > k states the following: given a uniformly random matrix A

$← Fn×k
2 ,

sample a vector b as b = A · s+ e, where s is a random vector from Fk
2 , and e

is a random sparse vector (the noise vector) over Fn
2 (the exact distribution of e

depends on the LPN flavor: it follows a Bernoulli distribution for standard LPN,
it is uniform over all vectors of a given weight for exact LPN (XLPN), and it
is a concatenation of unit vectors for regular LPN). Then, LPN states that it is
hard to distinguish b from a uniformly random vector (put otherwise, it is hard
to solve noisy systems of linear equations).

In coding theoretic terms, LPN therefore states that a noisy codeword from a
random linear code looks random. LPN admits an equivalent, dual formulation:
viewing A as the generating matrix of a linear code of dimension k, let H ∈
F

(n−k)×n
2 be a parity-check matrix of A (which satisfies H · A = 0; that is, H⊺

generates the dual of the code generated by A). Then distinguish b = A · s+ e
from random is equivalent to distinguishing H · b = H · e from random – that
is, finding whether an undetermined system of linear equation admits a sparse
solution. This is also known as the syndrome decoding problem.

The (dual) LPN assumption implies a natural construction of pseudoran-
dom generators, which maps (a short description of) e to H · e. This PRG (and
variants thereof) is at the heart of all known construction of pseudorandom cor-
relation generators, due to its linear structure which allows to preserve some
target correlations. To obtain a pseudorandom correlation function, the work
of [BCG+20a] faced the following dilemma: intuitively, we would like to extend
the PRG that maps (a representation of) e to H · e into a PRF, but this means
that we need H · e to be an exponentially long vector whose entry can be gen-
erated incrementally (in this view, an input defines a row h of the matrix H,
the key defines e, and the corresponding output is h⊺ · e). We need a way to
guarantee that e and the rows of H both admit a short (polynomial size) repre-
sentation, and that h⊺ · e can be computed in polynomial time. Unfortunately,
defining H and e to be exponentially sparse does not work in general: H ·e would
then become sparse as well, and therefore trivial to distinguish from random.

The key observation in [BCG+20a], and the central idea of their design, is
that we can circumvent this issue by making H and e exponentially sparse,
but with variable density. Concretely, fix a security parameter λ and consider
sampling the rows of H as follows: a row h is divided into λ blocks (hi)i≤λ
(looking ahead, the maximum number of queries to the PRF will be bounded
by a quantity smaller than 2λ). Each block hi is of length λ · 2i and contains
exactly λ 1’s: this guarantees that the density of hi is 1/2i. More precisely, hi is
a concatenation of λ length-2i unit vectors. This means that h constructed this
way is a variable density vector, where the density drops by a factor two when
going from one block to the next. The noise vector e is simply sampled as a
row vector. Intuitively, the dense portion of the inner products h⊺ · e guarantees
that the result will not be sparse (but the corresponding portions being narrow,
many linear dependencies appear), while the sparse portions of the h⊺ · e break
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linear dependencies (being exponentially wide, though very sparse). The VDLPN
assumption states, informally, that this suffices to guarantee indistinguishability
from random.

Definition 1 (VDLPN assumption, informal). Sample a matrix H as H =

H1|| · · · ||Hλ over FN×λ·(2λ+1−1)
2 where the rows are independently sampled as

described above, and where N ≪ 2λ is some bound on the maximum number of
queries. Sample a noise vector e according to the same distribution as the rows of
H. Then the VDLPN assumption states that, given H, H · e is indistinguishable
from a random length-N vector.

VDLPN directly implies a natural construction of WPRF: a random input
x (a bitstring of length λ2 · (λ + 1)/2) is parsed as λ blocks of length λ · i,
for i = 1 to λ, where each block is further parsed as λ sub-blocks of length i
each. A length-i string defines a random unit vector of length 2i (it encodes the
position of the nonzero entry in the vector). The concatenation of these unit
vectors forms a uniformly random row hx for the matrix H. A similar mapping
is applied to convert the bitstring K (the WPRF key) into a noise vector eK .
Eventually, observe that the mapping FK : x → h⊺

x · eK is efficient, because
each of h,

xeK is exponentially sparse: computing their inner product amounts
to computing O(λ2) equality tests between the sub-blocks of x and of K. To
construct a pseudorandom correlation function, the authors of [BCG+20a] build
upon the fact that this WPRF can further be written as a XOR of point functions
(each point function takes a sub-block of x as input and returns 0 unless it is
equal to the corresponding sub-block of K), which makes it FSS-friendly.

1.3 Security of VDLPN

Since VDLPN is a variant of the LPN assumption, the natural first step to ana-
lyze its security is to look at existing attacks on LPN. There have been, however,
a tremendous number of attacks on LPN designed over the years, including at-
tacks such as Gaussian elimination and the BKW algorithm [BKW00, Lyu05,
LF06, EKM17] and variants based on covering codes [ZJW16, BV16, BTV16,
GJL20], and attacks based on information set decoding techniques [Pra62,Ste88,
FS09, BLP11, MMT11, BJMM12, MO15, EKM17, BM18]. This list is far from
exhaustive; one could also mention statistical decoding attacks [AJ01, FKI06,
Ove06, DAT17], generalized birthday attacks [Wag02, Kir11], linearization at-
tacks [BM97, Saa07], attacks based on finding low weight code vectors [Zic17],
and many more. A core observation of [BCG+20a] is that all these attacks fit in
a common framework, called linear tests. Roughly, a linear test is an attack in
which the adversary attempts to distinguish b from a random vector by finding
a nonzero linear function LH (which can depend on H in an arbitrary way)
such that LH(b) is biased (i.e., far from uniform in statistical distance) when
b = H ·e. Being secure against linear tests is a statistical property, which one can
hope to prove unconditionally. To this end, the work of [BCG+20a] put forward
the notion of low bias WPRF:
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Definition 2 (low-bias WPRF, informal). A family {FK}K of WPRFs has
low bias up to N samples if

Pr
x1,··· ,xN

[bias(D) ≥ negl(λ)] ≤ negl′(λ),

where D is the distribution that samples a random key K for the WPRF, and
outputs the vector (FK(x1), · · · , FK(xN )). Above, the N inputs are sampled from
the input space of the WPRF family, and negl, negl′ denote two negligible func-
tions.

Above, the bias of a distribution D over FN
2 is defined as maxu̸=0 |1/2 −

Prv←D[u
⊺ · v = 1]|; that is, it is the distance from the uniform distribution

over F2 induced by computing L(v) with the “worst possible” nonzero linear
function L : FN

2 7→ F2. One of the core security claims of [BCG+20a] hinges
upon the fact that the VDLPN-based WPRF is a low-bias WPRF; in particular,
this means that the VDLPN assumption cannot be broken using essentially any
of the known attacks on LPN.

Theorem 3 (Resistance to linear tests [BCG+20a], informal). The WPRF
built from the VDLPN assumption has a low bias up to N = 2O(λ) samples (the
functions negl, negl′ are both equal to 2O(−λ) as well).

To show that the VDLPN assumption is secure, we will only consider resis-
tance against linear tests - and all our proof of security will consists of showing
this resistance. A simple variant of the VDLPN assumption achieves smaller in-
put size (O(λ2) instead of O(λ3), but we ignore it in this simplified overview.
Note that [BCG+20a] also considers various other attacks, such as algebraic at-
tacks, linear cryptanalysis, and attacks by low depth (AC0) circuits. These analy-
ses make VDLPN a plausible assumption, from which [BCG+20a] derives several
consequences: a pseudorandom correlation function, as we already discussed, but
also the first candidate WPRF in the very low complexity class XOR-AND (one
layer of ANDs followed by a single XOR gate), which indicates that this class
is perhaps hard to learn in the uniform PAC model. Furthermore, VDLPN also
implies a WPRF secure against XOR related-key attacks, something which was
previously known only assuming very strong cryptographic primitives (namely,
high degree multilinear maps).

1.4 Our Contributions

We revisit the security analysis of VDLPN against linear tests. Our main mo-
tivation is that the analysis in [BCG+20a] is purely asymptotic, and trying to
extract concrete parameters within the range where the analysis applies gives
terrible performances. Concretely, let D be the number of blocks, w be the num-
ber of ones in each block, and N be a bound on the maximum number of queries
(in our simplified exposition above, we used w = D = λ and N ≪ 2λ). The
authors of [BCG+20a] suggested the following concrete parameters to instanti-
ate VDLPN: set w = 1.5λ, D = w/4, and N = 2D. They conjectured that this
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should achieve λ bits of security. However, this choice of parameters is purely
heuristic, and described as a challenge to cryptanalysts: it is not backed up by
any concrete cryptanalysis.

On the other hand, their analysis guarantees 2Ω(w) bits of security against
linear tests whenever w > Γ · D, for up to 2D samples, where Γ is a constant
from the proof. A quick back-of-the-envelope calculation reveals that Γ in their
analysis is of the order of magnitude of 105, and it is far from obvious to improve
the constants without significantly changing the analysis (while the proof is not
tight, a straightforward “tightening” only saves a small factor). This means that,
when instantiating the parameters within the range where the proof offers some
security guarantees, the security parameters must be of the order of several
million bits long – of course, this is entirely impractical.

Furthermore, upon revisiting their analysis, we uncovered one mistake (as
well as a second, relatively minor mistake), that invalidates their proof of secu-
rity against linear attacks. Fixing the mistake turns out to be non-trivial, and
constitutes an important part of our contribution.

First contribution: a tighter VDLPN. The corrected analysis we present
offers even worse concrete bounds than in the original (flawed) proof: the Γ value
is of the order of 106, leading to a security parameter w in the millions. In other
words, there is no realistically usable range of parameters within the bounds han-
dled by the security analysis. Thus, one is left with a plausible assumption with
purely asymptotic parameters on the one hand, and some concrete candidate
choices of parameters that lead to a reasonably efficient PCF construction, but
that are not supported by any security analysis. The goal of this first contribu-
tion is to bridge this (huge) gap between secure in theory and usable in practice.
Since the task is highly non-trivial, we attack the problem simultaneously on
three angles. Each angle in itself forms an orthogonal contribution to the over-
all analysis (in the sense that each of the three techniques leads to significant
improvements by themselves).

– An entirely new proof approach. First, we step back from the original analysis
and seek to understand the main source of slackness in the parameters.
Then, we develop an alternative, much more direct approach which, in a
sense, allows us to exploit the contribution to the bias of every component
of the matrix H (while the previous analysis could only take into account
the contribution of the “top contributors”, for technical reasons). The new
approach achieves much tighter bounds.

– A proof-friendly VDLPN variant. Second, we allow ourselves to (slightly)
change the VDLPN assumption. Concretely, our variant is identical to VDLPN,
except for the first block H1: here, we set H1 to be a uniformly random ma-
trix instead. This choice stems from the fact that in the analysis, we need
to use two different arguments to handle the low weight linear tests and the
high weight linear tests; sampling H1 uniformly at random allows to achieve
much tighter bounds for the analysis against low weight tests. We observe
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that this variant of VDLPN remains FSS-friendly: using this variant does
not harm any of the cryptographic applications.

– Better bounds through simulations. Eventually, we rely on extensive com-
puter simulations to achieve tighter bounds. Concretely, we need a bound
on the expectation of some complex random variable X, which we obtained
using a generalized Chernoff inequality in the previous analysis. While this
bound suffices for the asymptotic analysis, its looseness severely impacts the
bounds. Here, instead, we estimate E[X] through computer simulations. We
empirically observe that the samples from X have very low variance, and
derive a tight bound on E[X] with a very high confidence interval.

Putting everything together, we manage to prove that (our variant of) VDLPN
has bias at most 2−80 with probability at least 1− 2−80, for a value of w as low
as w = 380 (with D = 30, and up to N = 2D samples – this is just a sam-
ple of candidate parameters, we do not have a closed-form formula).4 This is
a tremendous improvement compared to the previous analysis, and gives for
the first time a set of parameters which are simultaneously backed by a thor-
ough security analysis, yet are usable in practice. We stress that, in spite of our
computer-verified component, our bounds are much better than purely heuristic
bounds: they are provable bounds under a simple, concrete combinatorial con-
jecture, which is easy to verify through computer experiments. In contrasts, even
ignoring the flaw in their asymptotic analysis, all “usable parameters” proposed
in [BCG+20a] were purely heuristic, based on the intuition that they might be
hard to attack and described as challenges for cryptanalysis, but not supported
by any analysis whatsoever.

We believe that our work constitutes a strong step in the direction of showing
that one can construct secure and concretely efficient pseudorandom correlation
functions, an important and intriguing goal.

Second contribution: fixing the original analysis. In essence, the analysis
of a central claim in the proof of resistance against linear tests turned out to be
incorrect. The claim, on the other hand, remains essentially correct (up to some
concrete choice of the constants involved): only its analysis is flawed, it did not
lead to attacks. The mistake appears in a bound on the expectation E[Z] of a
random variable Z, of the form E[Z] ∈ [a, b], for some values 0 < a < b. The
authors deduced from this bound a bound of the form E[|Z − b| ≤ b − a, but
this is wrong in general (the error might stem from an application of the Jensen
inequality in the wrong direction): intuitively, if the distribution of Z is “anti-
concentrated” with respect to its expectation, then the inequality E[|Z−b| ≤ b−a
does not follow from E[Z] ∈ [a, b]5.
4 The choice of 80 bits of security is more conservative than it appears: it means that

an adversary will have to compute 280 inner products with a length-230 vector to
detect a 2−80 bias in the output. In terms of bit-security, this corresponds to at least
110 bits of security.

5 E.g. if Z is 0 with probability 1/2, and 10 else, then E[Z] = 5 ∈ [4, 5], but E[|Z−5|] =
5 > 5− 4
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On the other hand, if Z follows a “nice” distribution, typically a Gaussian-
style distribution (or any bell-shape distribution), and if the value b is sufficiently
close to E[Z], then the claim becomes true. A quick simulation reveals that Z
indeed appears to exhibit the right structure. Central to our first contribution is a
formal proof that the claim holds for Z. Compared to the analysis of [BCG+20a],
our new analysis cannot simply bound the expected value of Z: we have to prove
strong tail bounds on Z, which is significantly more complex, because Z is a sum
of dependent variables. Our analysis relies on a power-full bound about the balls
and bins problem.

We then turn to integrating our new proof of the central claim to the full proof
of resistance against linear tests. Along the way, we found (and fixed) another
minor mistake in the analysis, which requires changing the concrete choices of
constants in the proof. Due to this, and due to some slackness in our new proof
of the central claim (which stems from the limitations of the inequality which
we use), the general proof ends up failing on some corner cases. Essentially, the
analysis studies separately the contribution of each block Hi of the matrix H to
the overall bias; the analysis, however, fails whenever i is too small. Nevertheless,
we show that the case of very small values of i can be treated separately with
two simple arguments, which completes the proof.

We stress that while the repaired proof follows the high level structure of
that of [BCG+20a], the core of correction was not straight forward. This secu-
rity analysis against linear tests is central to the claim that VDLPN is a plausible
assumption (since it resists all known attacks against LPN), and therefore pro-
vides a plausible candidate to construct powerful objects such as a PCF (for
all low-degree correlations), a XOR-RKA secure WPRF, and a family of ex-
tremely simple functions (in the XOR-AND class) hard to learn in the uniform
PAC model. We also mention that we notified the authors of [BCG+20a] of our
findings, and they acknowledged the flaws in the analysis.

1.5 New Cost Estimations for PCFs, and Challenges

Using the parameters from above (w = 380, D = 30), we compute the seed
size and estimate the evaluation time of the pseudorandom correlation function
of [BCG+20a] instantiated using our new VDLPN variant. On top of the VDLPN
variant, the construction uses a puncturable pseudorandom function, instanti-
ated with the GGM construction [GGM86]. We set the security parameter of
the PRG used in GGM to λ = 128. With these parameters, we get the following
costs:

– Seed size: 2.94MB
– PCF evaluation time: the evaluation cost is (largely) dominated by ≈ 1.81 ·

105 calls to a length-doubling pseudorandom generator.

To give a rough runtime estimation, the PRG can be instantiated using two
calls to fixed-key AES. According to [MSY21], using the AES-NI instructions of
modern CPUs, one byte of AES-128 can be computed in ∼ 1.3 cycles. Hence,
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computing 3.6 · 105 blocks of 16 bytes requires about 7.5 · 106 cycles. Concretely,
using a 3.8GHz processor, this amounts to roughly 500 PCF evaluations per
second on a single core (note that the estimation should not be too far off,
because the computation requires no random data access, hence cache misses
are unlikely). Since all evaluations are fully parallelizable, using c cores increases
this number to 500c evaluations per second.

The work of [BCG+20a] also suggested an improved all prefix variant, which
has shorter seeds and better runtimes, using existing efficient constructions of
all-prefix function secret sharing. While this construction lacks a security anal-
ysis, this is only because it makes the noise vectors ei correlated (our analysis
fundamentally uses their independence). However, it seems very reasonable to
conjecture that this is just an artefact of the analysis, and that the optimized
construction provides the same security level. Under the heuristic assumption
that the correlated ei behave essentially as well as independent ei for resistance
to linear tests, we can reuse our previous analysis and obtain the following im-
proved bounds for the all-prefix PCF: seed size 0.35MB, and PCF evaluation
time around 3950 evaluations per second on a single 3.8GHz processor.

These numbers demonstrate that, already within the range of our provable
bounds, PCFs can achieve very promising parameters, with short seeds, and
reasonably fast runtimes. Note that we believe that there remains some small
gap between our analysis and the “true” security of VDLPN – namely, smaller
parameters might plausibly lead to a secure instance (perhaps as small as w =
120 and D = 30). We view further tightening our analysis as an interesting
open question. Since the cost is linear in w, reducing w to 120 would lead to
a factor 3 improvement (on seed size and evaluations per second). Nonetheless,
our provable parameters appear already quite tight, being at most a factor-3 off
compared to the best parameters one could heuristically hope for.

2 Preliminaries

We use bold font for vectors, and capitals for matrices. For vectors u,v, HW(u)
denotes the Hamming weight of u, dH(u,v)denotes the Hamming distance be-
tween u,v. Below, we recall the definition of the bias of a distribution, and some
standard technical lemmas.

Definition 4 (Bias of a Distribution). Given a distribution D over Fn and
a vector u ∈ Fn, the bias of D with respect to u, denoted biasu(D), is equal to

biasu(D) = |Ex∼D[u
⊺ · x]− Ex∼Un [u

⊺ · x]| =
∣∣∣∣Ex∼D[u

⊺ · x]− 1

|F|

∣∣∣∣ ,
where Un denotes the uniform distribution over Fn. The bias of D, denoted
bias(D), is the maximum bias of D with respect to any nonzero vector u.

Standard Probability Lemmas. Given t distributions (D1, · · · ,Dt) over Fn
2 ,

we denote by
⊕

i≤tDi the distribution obtained by independently sampling vi
$←
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Di for i = 1 to t and outputting v ← v1 ⊕ · · · ⊕ vt. We will use the following
bias of the exclusive-or (cf. [Shp09]).
Lemma 5. Let t ∈ N be an integer, and let (D1, · · · ,Dt) be t independent distri-
butions over Fn

2 . Then bias(
⊕

i≤tDi) ≤ 2t−1 ·
∏t

i=1 bias(Di) ≤ mini≤t bias(Di).
Let Berr(F2) denote the Bernoulli distribution that outputs 1 with probability

r, and 0 otherwise. More generally, we denote by Berr(F) the distribution that
outputs a uniformly random element of F with probability r, and 0 otherwise
(this does not exactly match our definition of Ber(F2), but the slight discrepancy
will not matter in our applications). We will use a standard simple lemma for
computing the bias of a XOR of Bernoulli samples:

Lemma 6 (Piling-up lemma). For any 0 < r < 1/2 and any integer n, given
n random variables X1, · · · , Xn i.i.d. to Berr(F2), it holds that Pr[

⊕n
i=1 Xi =

0] = 1/2 + (1− 2r)n/2.

We will also need two concentration bounds. The bounded difference inequal-
ity [McD89] is an application of the more general Azuma inequality [Azu67]. Let
(n,m) ∈ N2 be two integers. We say that a function Φ : [n]m 7→ R satisfies the
Lipschitz property with constant d if for every x,x′ ∈ [n]m which differ in a single
coordinate, it holds that |Φ(x)− Φ(x′)| ≤ d.
Lemma 7 (Bounded Difference Inequality). Let Φ : [n]m 7→ R be a func-
tion satisfying the Lipschitz property with constant d, and let (X1, · · · , Xm) be
independent random variables over [n]. Then

Pr[Φ(X1, · · · , Xm) < E[Φ(X1, · · · , Xm)]− t] ≤ exp

(
− 2t2

m · d2

)
.

Eventually we will rely on the Occupancy Bound from [KMPS94], which
provides tight bounds for the balls and bins problem.

Lemma 8 (Occupancy Bound). Let E be the number of empty bins when m
balls are placed randomly into n bins, and define r = m/n. The expectation of
E is given by µ = E[E] = (1− 1

n )
m ≈ ne−r. For any θ > 0 ,

Pr[|E − µ| ≥ θµ] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)
= B

Note that we can derive the following two equations : Pr[E ≥ µ(θ + 1)] < B
and Pr[E ≤ µ(1− θ)] < B

2.1 Coding Theory

Definition 9. Let n be a positive integer, C is a linear code if C is a vector
subspace of Fn

q . The integer n is called the length of C. The dimension of C is its
dimension as an Fq-vector space. It is denoted by k = dimFq

C
Definition 10. (Minimum distance of a code) Let C be a linear code of length
n. The minimum distance of C, is the minimum distance dC between two distinct
codewords of C.

dC = min
x,y∈C,x̸=y

{dH(u,v)(x,y)}
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Learning Parity with Noise. We define the LPN assumption over a ring R
with dimension k, number of samples n, w.r.t. a code generation algorithm C,
and a noise distribution D:

Definition 11 (Dual LPN). Let D(R) = {Dk,n(R)}k,n∈N denote a family of
efficiently sampleable distributions over a ring R, such that for any k, n ∈ N,
Im(Dk,n(R)) ⊆ Rn. Let C be a probabilistic code generation algorithm such
that C(k, n,R) outputs a matrix H ∈ Rk×n. For dimension k = k(λ), num-
ber of samples (or block length) n = n(λ), and ring R = R(λ), the (dual)
(D,C,R)-LPN(k, n) assumption states that

{(H,b) | H $← C(k, n,R), e $← Dk,n(R),b← H · s}
c
≈ {(H,b) | H $← C(k, n,R),b $← Rn}.

The dual LPN assumption is also called the syndrome decoding assumption
in the code-based cryptography literature. The dual LPN assumption as written
above is equivalent to the primal LPN assumption with respect to G (a matrix
G ∈ Rn×n−k such that H ·G = 0), which states that G ·s+e is indistinguishable
from random, where s

$← Rn−k and e
$← Dk,n(R); the equivalence follows from

the fact that H (̇G · s+ e) = H · e.
The standard LPN assumption refers to the case where H is a uniformly

random matrix over F2, and e is sampled from Berr(F2), where r is called the
noise rate. Other common noise distributions include exact noise (the noise vec-
tor e is a uniformly random weight-rn vector from Fn

2 ; this is a common choice
in concrete LPN-based constructions) and regular noise (the noise vector e is
a concatenation of rn random unit vectors from F1/r

2 , widely used in the PCG
literature [BCGI18,BCG+19b,BCG+19a]).

2.2 The Variable Density LPN assumption

We recall the regular VDLPN assumption from [BCG+20a]; other variants exist.
Let λ be a security parameter. We fix three parameters: a sparsity parameter
w = w(λ) (controlling the number of ones per row of a block), a block parameter
D = D(λ) (controlling the number of blocks), and a bound N = N(λ) on the
number of samples. The reader can think of w,D as being Ω(λ), with D < w,
and N = 2D for concreteness. We set par← (w,D,N).

Let S1,2i the distribution of unit vector of size 2i. LetRw,i be the distribution
of random w-regular vectors over Fw·2i

2 , i.e., the concatenation of w vector sam-
pled from S1,2i). Let Hi

par denote the distribution over N × (w ·2i) matrices over
F2, where each row of the matrix is sampled independently from Rw,i, and let

Hpar denote the distribution over FN×2N ·w
2 , obtained by sampling Hi

$← Hi
par for

i = 1 to D and outputting H = H1|| · · · ||HD, where || is the horizontal concate-
nation. Eventually we denote Npar the noise distribution obtained by sampling
ei
⊤ according Rw,i and outputting e ← (e1// · · · //eD) ∈ F2N ·w

2 where // is this
time the vertical concatenation. The matrix Hi sampled from Hi

par is:
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Hi =

u
i
1,1 · · ·

2i columns︷︸︸︷
ui
1,w

...
...

...
ui
N,1 · · · ui

N,w


where (ui

k,j)1≤k≤N,1≤j≤w are sampled from the distribution S1,2i , and are
unit vector over F2i

2 . Thus, there is w non-zero coordinates by rows. Eventually,
the matrix H sampled from Hpar is a horizontal concatenation of the Hi:

H =
[
H1 · · · HD

]︸ ︷︷ ︸
w · 2D+1 columns

The term variable density refers to the fact that the density of 1’s in each
block Hi is 1/2i by construction. For any H sampled from the distribution Hpar

let Opar(H) be the distribution which samples e $← Npar and return H · e.

Definition 12 (rVDLPN(w,D,N)). The regular VDPLN assumption, with pa-
rameters par = (w,D,N), denoted rVDLPN(w,D,N)), states that:

{(H,b)|H $← Hpar, e
$← Npar,b← H · e} ≈ {(H,b)|H $← Hpar,b

$← FN
2 }

Note that this is exactly the dual LPN assumption where both the matrix
and the noise are sampled from a specific distribution variable-density matrices
and vectors.

A WPRF candidate from the rVDLPN assumption. Fix parameters
par(λ) = (w(λ), D(λ), N(λ) = 2D(λ)). Recall that a vector from the distribution
Npar is in fact the vertical concatenation of D vectors from ei, where ei is the
transpose vector of the vector from the distribution Rw,i. Moreover, Rw,i is the
concatenation of w unit vector over F2i

2 , where each of them can be generated
with i random bits (encoding the index of the nonzero entry). Therefore, sam-
pling a vector Npar requires exactly w ·

∑D
i=1 i = w · D(D − 1)/2 random bits;

we write Npar(r) to denote the vector e sampled from Npar using randomness r.
We describe the WPRF candidate below.

– Key size: K ∈ {0, 1}π(λ) with π(λ) = ρ(λ) = w ·D(D − 1)/2

– Input size : x ∈ {0, 1}ρ(λ) with ρ(λ) = w ·D(D − 1)/2

– FK(x) : on input x ∈ {0, 1}ρ, sample h⊤ ← Npar(x) and output ⟨h,Npar(K)⟩

Theorem 13 ( [BCG+20a]). Suppose that rVDLPN(par) holds. Then the above
construction is an N-query WPRF, with input length and key length equal at
w ·D(D − 1)/2.



Pseudorandom Correlation Functions from VDLPN, Revisited 15

2.3 Pseudorandom Correlation Functions

Pseudorandom correlation functions, introduced in [BCG+20a], allow to locally
generate, from a pair of short correlated keys, an arbitrary polynomial amount of
pseudorandom correlations, in an incremental way. A fundamental application
of PCF is to secure computation in the preprocessing model: two parties can
distributively generate PCF keys, and later use them every time they wish to
engage in a secure computation protocol, to generate locally (without any in-
teraction) all preprocessing material required for the protocol. Therefore, PCFs
allow to confine all future preprocessing phases of all secure computation proto-
cols two parties could want to execute, to a single, one time generation of short
correlated keys, followed solely by local computations. Slightly more formally,
a PCF is a pair (PCF.Setup,PCF.Eval) where PCF.Setup generates short corre-
lated keys (k0, k1), and PCF.Eval(σ, kσ, x) outputs a value yσ such that for any
input x, given k1−σ, the value yσ is indistinguishable from a random value sam-
pled conditioned on satisfying the target correlation with PCF.Eval(σ, k1−σ, x)
(for σ = 0, 1). Due to lack of space, we defer the formal definition of PCF to
Appendix A of the Supplementary Material.

2.4 Pseudorandom Correlation Function from VDLPN

A construction of PCF from VDLPN follows from the general template estab-
lished in [BCG+20a], which combines a WPRF in a suitably low complexity class
with a function secret sharing scheme for a related class. Instantiating this gen-
eral template with the VDLPN-based WPRF and the FSS scheme of [BGI16],
one gets a PCF for a general class of constant degree polynomial additive cor-
relations. For the sake of concreteness, though, we focus here on PCFs for the
random oblivious transfer (OT) correlation, one of the most fundamental and
useful correlation in secure computation. A random OT correlation is a pair
(y0, y1) ∈ {0, 1}2 × {0, 1}2, where y0 = (u, v) for two random bits u, v, and
y1 = (b, u · (1− b)⊕ v · b) for a random bit b.

It is known that, to generate n pseudorandom OT correlations, it suffices to
generate the following simpler correlation: Alice gets a (pseudo)random pair of
length-n vectors (u,v), where u

$← Fn
2 and v ∈ Fn

2λ , and Bob gets x $← F2λ and
w ← x · u + v. This correlation (known as the subfied vector-OLE correlation)
can be locally converted by Alice and Bob into n pseudorandom OT correlations
using a correlation-robust hash function; see [BCG+19b] for details. Therefore,
we focus on building a PCF for the subfield VOLE correlation. Unlike the general
case, this does not require the full power of function secret sharing: it suffices to
rely on a simpler primitive, namely, a puncturable pseudorandom function.

Puncturable pseudorandom functions. A puncturable pseudorandom func-
tion (PPRF) is a PRF F such that given an input x, and a PRF key k,
one can generate a punctured key, denoted k{x}, which allows evaluating F
at every point except for x, and does not reveal any information about the
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value F.Eval(k, x). PPRFs have been introduced in [KPTZ13, BW13, BGI14].
Formally, a t-puncturable pseudorandom function (PPRF) with key space K,
domain X , and range Y, is a pseudorandom function F with an additional
punctured key space Kp and three probabilistic polynomial-time algorithms
(F.KeyGen, F.Puncture, F.Eval) such that

– F.KeyGen(1λ) outputs a random key K ∈ K,
– F.Puncture(K,S), on input a ley K ∈ K, and a subset S ⊂ X of size (at

most) t, outputs a punctured key K{S} ∈ Kp,
– F.Eval(K{S}, x), on input a key K{S} punctured at all points in S, and a

point x, outputs F (K,x) if x /∈ S, and ⊥ otherwise.

The (static) security of a t-PPRF states is captured by the following game: the
adversary A sends a size-t subset S of inputs. The challenger generates a key K,
a punctured key K{S}, and a random bit b. He sends K{S} to A, together with
either the values FK(x) = F.Eval(K{∅}, x) for all x ∈ S if b = 0, or t random
bits if b = 1. The PPRF is secure if any adversary has negligible advantage over
the random guess for finding b in this game. A t-PPRF can be constructed from
any one-way function, using the GGM construction [GGM86].

A PCF for SVOLE from VDLPN and a PPRF. We briefly sketch the con-
struction, and refer to [BCG+20a] for a formal analysis. Fix VDLPN parameters
par = (w,D,N) and set t← D · w. Let F be a t-PPRF with range F2λ .

– PCF.Setup(1λ) : sample r
$← {0, 1}t(D−1)/2 and set e ← Npar(r). Let S ⊆

[w · (2D+1 − 1)] be the size-t subset of nonzero entries of e. Sample K ←
F.KeyGen(1λ) and set K{S} ← F.Puncture(K,S). Sample x

$← F2λ and let
(Ky)y∈S ← (FK(i)− x)i∈S . Set k0 ← (K,x) and k1 ← (r,K{S}, (Ki)i∈S).

– PCF.Eval(σ, kσ, z) : parse z as a row hz of the VDLPN matrix H (i.e., set
h⊺
z ← N (z)). Let Sz ⊆ [w · (2D+1 − 1)] denote the index of the 1’s in hz.

If σ = 0, output x and w =
∑

i∈Sz
FK(i). If σ = 1, output u = h⊺

z · e and
v =

∑
i∈Sz\S F.Eval(K{S}, i) +

∑
i∈Sz∩S Ki.

For correctness, observe that for every i ∈ Sz\S, FK(i)−F.Eval(K{S}, i) = 0,
and for every i in Sz ∩ S, FK(i) − Ki = x. Since Sz denotes the 1 entries
in hz and S denotes the 1 entries in e, we have w − v =

∑
i∈Sz

FK(i) −∑
i∈Sz\S F.Eval(K{S}, i) −

∑
i∈Sz∩S Ki = x · (h⊺

z · e) = x · u; the pseudoran-
domness of u follows from the fact that z 7→ h⊺

z · e) is a WPRF under the
VDLPN assumption, and that of w follows from the pseudorandomness of the
PPRF.

2.5 Outline of the Original Proof of Resistance against Linear Test

We provide here an overview of the original security analysis in [BCG+20a],
resistance against linear attacks. The two claims for which the analysis was
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flawed are the Equation 1 and the Lemma 17 . We explain the errors and provide
a correction in the Section 4.

As outlined in the introduction, the goal of this analysis is to show that
the VDLPN assumption cannot be broken by any linear test, which captures in
particular all known attacks against LPN. This is formalized in the following
theorem:

Theorem 14. [Resistance against linear tests] There exist constants (Γ, µ, ν),
such that for any large enough w, any Γ ·D ≤ w,N ← 2D, par ← (w,D,N), it
holds that

Pr
H

$←Hpar

[bias(Opar(H)) > µw] ≤ νw.

This theorem states that with high probability ( at least 1 − νw), over the
choice of at most N = 2D random inputs (x(1), · · · , x(N)) any distinguisher
that computes a linear function of the entire output string y = (FK(x(1), · · · ,
FK(x(N))) has an advantage of at most µw in distinguishing the string from
uniform. Note that the choice of the linear function can depend arbitrarily on
(x(1), · · · , x(N)).

To bound the bias of Opar(H), the authors look at the sub-matrices of H,
and introduce a notion of good and bad matrices:

Definition 15. Given a matrix M ∈ FN×2i
2 , M is judged bad with respect to a

vector v ∈ FN
2 if

HW(v⊤ ·M) /∈
[
2i

5
,
2i+2

5

]
.

Moreover, given w matrices (M1, · · · ,Mw) in FN×2i
2 , we denote by Nv(M1,

· · · ,Mw) the number of matrices which are bad against v among M1 · · ·Mw.

A matrix is bad with respect to a vector v if the bias it induces against
the test vector v is large. The goal of the proof is to guarantee that, with high
probability, at least half of the matrices are good. This is stated in the following
lemma.

Lemma 16. There is a constant C, such that for any 1 ≤ i ≤ D, and for any
vector v ∈ FN

2 such that HW(v) ∈ [2i−1, 2i], it holds that

Pr
M1,··· ,Mw

$←Hi
par

[
Nv(M1, · · · ,Mw) ≥

w

2

]
≤ 2−C·2

i·w.

The above lemma shows that for any fixed vector v of weight close to 2i,
the distribution induced by Hi

par has a low bias against v. The probability that
this holds is so high that it remains overwhelming even after a union bound
over all vectors v of weight in [2i−1, 2i]. Hence, this implies that in the output
H · e =

⊕
i Hi · ei, each component Hi · ei will guarantee low-bias against all

vectors in this window of weight; the XOR of these independent samples will
inherit the low-bias of all its components, and therefore resist all linear tests.
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Bounding the number of bad matrices. In [BCG+20a], the authors re-
formulate the event that a matrix M is bad as a balls and bins problem. Let
M

$← Hi
par. Recall that by definition of Hi

par, the rows of M are generated inde-
pendently from S1,2i . We start with 2i empty bins, each bin corresponding to a
column of M . Sampling a row of M according to the S1,2i distribution amounts
to throwing a ball randomly into one of the 2i bins. For a vector v of weight
l ∈ [2i−1, 2i], the event HW(v⊤ ·M) /∈

[
2i

5 ,
2i+2

5

]
= Ii is equivalent to the follow-

ing event: after randomly throwing l balls into 2i bins, the number T of bins that
contain an odd number of balls satisfies T /∈ Ii. We have therefore the following
experiment: take 2i bins and throw l·w balls into the bins in w consecutive phase.
Each time that l balls have been thrown, we check that the proportion of the
number of bins that contains an odd number of balls is between 1/5 and 4/5, and
clear out the bins. At the end, we return failure if more than w/2 of the w checks
have failed. To bound the probability of returning a failure, define the following
cost function Φ (X1,1, · · · , Xl,w) =

∑w
k=1

(
2i−1 −

∣∣∣HW (⊕l
j=1 Xj,k

)
− 2i−1

∣∣∣) ,
where each Xj,k, 1 ≤ j ≤ l, 1 ≤ k ≤ w, is the random variable corresponding to
the bin in which the j-th balls of the k-th phase was thrown (seen as a length-2i
unit vector with a 1 at the bin position). The Xj,k are independent. Bound-
ing the number of bad matrices, the authors claimed, amounts to bounding Φ.
Indeed:

Pr
M1,··· ,Mw

$←Mi
par

[
Nv(M1, · · · ,Mw) ≥

w

2

]
≤ Pr

[
Φ(X1,1, · · · , Xl,w) <

w · 2i

10

]
.

(1)

Afterwards, it suffices to bound Φ to conclude. The claim is that the following
bound holds:

Pr

[
Φ(X1,1, · · · , Xl,w) <

w · 2i

10

]
≤ 2−C·2

i·w. (2)

The choice of Φ is of course not arbitrary: Φ is a well-behaved function, in the
sense that it is 2-Lipschitz – i.e., changing any single input to Φ can only change
its output by at most 2. Fortunately, strong concentration bounds are known
on the probability that Lipschitz functions deviate too much from their mean.
It therefore only remains to apply such a bound (which is here the McDiarmid
inequality, a variant of the Azuma inequality), to get an estimate of the mean
of Φ. This bound is stated in the following lemma:

Lemma 17.

E [Φ (X1,1, · · · , Xl,w)] ≥
w · 2i

5
.

Given the proof of Lemma 17, the McDiarmid inequality provides a bound
on Φ, which translates to a bound on Nv by Equation 1. A union bound over all
vectors of weight between [2i−1, 2i] allows to conclude:
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Pr
M1,··· ,Mw

$←Hi
par

[
∃v ∈ Si,N , Nv(M1, · · · ,Mw) ≥

w

2

]
≤ 2D·2

i

· 2−C·w·2
i

≤ 2−a·w,

with a = C
2 > D. The proof ends with a last union bound over all matrices

Hi, for 1 ≤ i ≤ D.

Some notations. In the following, we will denote by Xj,k indicates the bin
into which the j-th ball of the k-th phase is thrown (Xj,k is a unit vector).
Given a test vector v ∈ FN

2 of weight HW(v) = l, we define Ri,l,k = HW(v⊤ ·
M) = HW

(⊕l
j=1 Xj,k

)
. That is, Ri,l,k it is the number of bins that contains

an odd number of 1 in the k-th phase; we usually write it Rl,k when i is clear
from the context. We further define Zi,l,k as Zi,l,k = |2i−1 − Rl,k| (also usually
written Zl,k). Eventually, we denote by Si,N the set of vectors v ∈ FN

2 with
HW(v) ∈ [2i−1, 2i].

3 Faster PCF from a VDLPN variant

The original proof shows that for an appropriate choice of a constant Γ , if
w ≥ Γ ·D, then the bias of Opar is 2−Ω(w) with probability 1−2−Ω(w). However,
the concrete constants are utterly impractical (the correction of the flaw doesn’t
help as we will see in section 4). With a quick back-of-the-envelope calculation,
to guarantee D·2−a·w < 2−80 we need w > 85

a (for D = 30). However, the value a
in our analysis satisfies a < 1

40000 , leading to a necessary value of w ≈ 106.These
parameters are of course completely unusable. Therefore, in its current state,
the proof only shows the asymptotic security of the construction in a parameter
range which cannot be instantiated; any concrete instantiation is bound to rely
only on heuristic parameters instead, not backed up by any security analysis.
In this section, we aim at mitigating this unsatisfying situation, and provide
a parameter set which is simultaneously usable in practice, and comes with
provable security guarantees.

3.1 A Proof Friendly VDLPN Variant for Resistance against linear
attack

We put forth a simple tweak of the VDLPN assumption which allows for a much
tighter proof of resistance against linear attack, yet enjoys the same applications
as the original VDLPN assumption. The tweak is straightforward: recall that in
the original construction, the matrixH is sampled as a concatenation of matrices
H1 · · ·HD, where each Hi is a concatenation of w matrices whose rows are unit
vectors of length 2i. In the security analysis, the authors bound the bias of the
Hi · ei terms against length-Θ(2i) attack vectors. However, the bounds from
the new correct analysis of section 4 turned out to be much worse for small
constant values of i (to the point that the bounds do not suffice anymore for
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very small i, and we have to handle them separately). Here, we suggest replacing
H1|| · · · ||Hi∗−1, where i∗ is some fixed small constant (we will pick i∗ = 5 in
our concrete instantiation), by a uniformly random matrix R of appropriate
dimensions. That is, H is now of the form H = [R||Hi∗ || · · · ||HD]. As before,
the noise distribution will be identical to the row distribution of H. This means
that we will have H · e = R · er +

∑D
i=i∗ Hi · ei, where er is a uniformly random

vector.
Let t be the width of R. We show that the R · er term guarantees resistance

against all low-weight tests. Then, saying that the distribution DR = {R · er :

er
$← Ft

2} has zero bias against all vectors of weight below d is equivalent to
saying that DR is a d-wise independent distribution. It is a well-known fact that
this is equivalent to the following: the dual of the code generated by R, which
is a random linear code of dimension 2D − t, has minimum distance at least d.
Fortunately, the minimum distance of random linear codes is well-known. Let S
be a random code of dimension 2D − t, and codeword length 2D. Then,

Pr[S has minimum distance < d] ≤ 2−t−H2(d/2
D)·2D ,

where H2(x) = −x log x − (1 − x) log(1 − x) is the binary entropy function.
Concretely, suppose that we want to perfectly withstand all linear tests of weight
at most d = 15, with probability at least 1− 2−λ, given up to 2D = 230 samples.
This means we need to pick t such that t = H2(15/2

30) ∗ 230 + λ; using λ =
128, this gives t = 541. Hence, picking a uniformly random width-541 matrix
guarantees that, with probability at least 1−2−128, we only have to worry about
any linear test of weight at least 16 = 2i

∗−1. Note that this variant can be used
exactly in the same way as the original VDPLN one, as a building block to
construct PCF, as long as we can prove its security against linear tests.

3.2 A New Tight Proof Strategy

For the rest of the analysis, we assume that we start with i ≥ i∗ = 5. The
adversary chooses an attack vector v of hamming weight l ∈ [2i−1, 2i]. We use
the following random variable:

Zi,l,k =

∣∣∣∣∣∣HW
 l⊕

j=1

X
(i)
j,k

− 2i−1

∣∣∣∣∣∣ .
Unlike the original proof (see Section 2.5), this time we aim at a much more

direct strategy. Since we ultimately want to bound the probability that the bias
of Opar(H) is too high, we rewrite this bias directly in terms of the above random
variable. For a fixed choice of H, let Oi

par = Oi
par(H) be the distribution that

samples ei (a concatenation of w length-2i unit vectors) and outputs Hi · ei. Of
course, we have Opar =

⊕
i≥i∗ Oi

par ⊕ OR
par (where OR

par denotes the distribution
that samples a uniformly random length-t vector er and outputs R · er, where t
is a parameter which will be fixed afterwards). Furthermore, for any test vector
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v, we have biasv(Opar) ≥ biasv(Oi
par). We therefore focus on bounding the bias

against a test vector v of Oi
par. We have

biasv(Oi
par) =

∣∣∣∣12 − Pr[(v⊤ ·Hi) · ei = 1]

∣∣∣∣ .
(v⊤ ·Hi) · ei is the XOR of w independent terms (v⊤ ·Hi,j) · ei,j where each

ei,j is a length-2i unit vector. Therefore, we further decompose Oi
par as the XOR

of w distributions D1, · · · , Dw (we drop the parameters i, par, and H for now as
we consider a fixed choice of them, to lighten the notations). To bound the bias
of Oi

par, we must therefore bound

Pr

[
w⊕

k=1

Dk = 1

]
=

1

2

(
1−

w∏
k=1

(
1− Ri,l,k

2i−1

))
,

where you get the right hand side by applying the piling-up lemma. Hence,
we obtain a direct expression of the bias of Oi

par in terms of the Zi,l,k random
variables:

biasv(Oi
par) =

1

2
·

w∏
k=1

Zi,l,k

2i−1
.

Fix any bound B. Then by the above,

Pr[biasv(Oi
par) > B] = Pr

[
w∏

k=1

Zi,l,k > 2(i−1)w × (2B)

]
.

Now, the key to bounding the right hand side term is the following obser-
vation: independently of the exact behavior of the random variables Zi,l,k, con-
strained on the product

∏
k Zi,l,k being at least 2(i−1)w · (2B), the sum

∑
k Zi,l,k

is minimized when all the terms in the product are equal. This implies that
whenever

∏w
k=1 Zi,l,k > 2(i−1)w × (2B), it necessarily further holds that

w∑
k=1

Zi,l,k > w ·
(
2(i−1)w × (2B)

)1/w
,

which allows to upper bound the probability of the bias being too large by

Pr[biasv(Oi
par) > B] ≤ Pr

[
w∑

k=1

Zi,l,k > w · 2(i−1) · c

]
,

where c = (2B)
1
w . As in the previous proof, we can now re-introduce the function

Φ (X1,1, · · · , Xl,w) = 2i−1 · w −
∑w

k=1 Zi,l,k:

Pr[Φ < E[ϕ]− t] = Pr

[
w∑

k=1

Zi,l,k > w · (E[Zi,l] + 2i · ζ)

]
.



22 Geoffroy Couteau , Clément Ducros

With t = ζ · w · 2i. Let β be a constant such that E[Zi,l] ≤ β · 2i (In the
correction of the original proof, we will show that β = 0.44 works ; we will
actually use a tighter constant here). This gives c = 2(β + ζ). As we did before,
we can now apply McDiarmid’s inequality 7 to get

Pr

[
w∑

k=1

Zi,l,k > w · 2i−1 · c

]
< exp

(
−w22i−1

l
· ζ2
)
,

and obtain the bound

Pr

(
biasv(Oi

par) >
1

2
(2(β + ζ))w

)
≤ exp

(
−w22i−1

l
· ζ2
)
.

While this might be obscured by the many variables involved, this last bound
is tremendously tighter than what was achieved with the previous proof. In
essence, this is because the previous proof relied on Lemma 5 to bound the
bias of the XOR of independent distributions, but the latter introduces some
exponential slackness in the number of distributions involved. To overcome this
slackness, the strategy was to only “count” the distributions that contribute
the most to the bias, by identifying good distributions, showing that, over the
choice of H, a sufficient number of distributions will be good, and applying the
lemma only to these good distributions. This guarantees that the slackness is
compensated by the contribution of each distribution. If, instead, one tries to
apply the lemmas to all distribution, the bound obtain is too loose and does not
provide any usable guarantee.

Here, we manage to directly account for the contribution to the bias of all
distributions, by carefully rewriting the bias formula in terms of the Zi,l,k random
variables, and by using a standard “optimization trick” to bound the product of
the Zi,l,k in terms of their sum. This turns out to be the key to get back to
the function which we can bound with known tools (the function Φ, which is
Lipschitz), without paying any slackness in the number of distributions involved.

In the following, we will numerically evaluate the constant β (this is an or-
thogonal optimization: In the correction of the mistake in section 4, we prove that
β ≤ 0.44. Using this value for β would already lead to significant improvements,
as we will see) and carefully tune the parameters to find out the smallest value of
w for which we can achieve 80-bit security against all test vectors simultaneously,
fixing the number of samples to a reasonable bound of N = 230.

3.3 Concrete Parameters

In our bound on the bias, the l in the denominator of the probability is one
of the key factors for concrete efficiency. Our previous proof used l ∈ [2i−1, 2i].
In fact, we cannot expect l to be any smaller: E[Zi,l] measures how, when one
throws l balls at random in 2i bins, the number of bins which end up containing
an odd number of balls diverges from the middle value 2i−1. When we throw less
than 2i−1 balls in total, this number will of course be bounded away from 2i−1;
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yet, as simulations reveal, it becomes tightly concentrated around 2i−1 as soon
as l gets larger. We therefore fix l ∈ [2i−1, 2i] and empirically estimate E[Zi,l].
Our script is in Appendix D. Table 1 shows the value of β obtained for different
choices of n = 2i and l. For larger values of n and a fixed l = l(n), note that our
estimate value for β barely increase (for l < n) or decrease (for l ≥ n).

Table 1. Estimated value of β for different values of n and l, in a confidence interval
of 99% (rounded value ±0.002 )

n = 32 n = 64 n = 512 n = 1024 n = 2048

l = n
2

0.178 0.181 0.184 0.184 0.184
l = 3·n

4
0.111 0.111 0.111 0.111 0.112

l = n 0.084 0.073 0.067 0.067 0.067

Let us go back to our bound. For a given vector of Hamming weight l,

Pr

(
biasv(Oi

par) >
1

2
(2(β + ζ))w

)
≤ exp

(
−w22i−1

l
· ζ2
)
,

hence, by a union bound over all vectors of Hamming weight l,

Pr

(
∃v,HW(v) = l, biasv(Oi

par) >
1

2
(2(β + ζ))w

)
≤
(
N

l

)
exp

(
−w22i−1

l
· ζ2
)

From the above inequality, we numerically look for a w such that, for all l
such that HW(l) ∈ [2i−1, 2i], (2 · (β + ζ))w/2 ≤ 2−80 and(

N

l

)
· exp

(
−w22i−1

l
· ζ2
)
≤ exp

(
ln(N) · l − w · 2

2i−1

l
· ζ2
)
≤ 2−90.

(The 2−90 bound is to anticipate the cost of the union bound.) In the following
we set the number of samples N = 2D = 230, which is a realistic value for target
applications. To find a suitable w, we calculate the required w for different values
of l. Let us first assume that l = 2i−1. The second inequality can be rewritten as
exp

(
2i−1 ·

(
ln(2) · 30− 2 · w · ζ2

))
≤ 2−90. If w · ζ2 ≥ 12.35, then the condition

is met. Thus, we can now turn to the other inequality to satisfy; we therefore set
w to ζ2/12.35. Using Table 2, we set β = 0.184 and numerically solve (2·(0.184+
ζ))12.35/ζ

2 ≤ 2−80 to guarantee that the bias will be lower than 2−80. This gives
ζ ≤ 0.219 and w = 12.35/0.2192 ≈ 257. At the other end of the interval, setting
l = 2i, the second inequality becomes exp

(
2i ·
(
ln(2) · 30− 1

2w · ζ
2
))
≤ 2−90.

This time, we get w · ζ2 ≥ 45.5 and set β = 0.084 using Table 2. Solving
(2·(0.084+ζ))

45.5
ζ2 ≤ 2−80 gives ζ = 0.347, and eventually w = 45.5/0.3472 ≈ 380.

Generalizing this method, we numerically extrapolate how the value of w evolves
when l varies from 2i−1 to 2i. The calculations show that w is monotonously
increasing, leading to an overall choice of w ≈ 380 as a single parameter that
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suffices for the entire range of values. This is a major improvement compared
to the previous proof. 6 From here, finishing the proof boils down to two union
bounds, giving

Pr(∃v,HW(v) ∈ [2i−1, 2i], biasv > 2−80)

≤
2i∑

l=2i−1

(
N

l

)
exp

(
−w22i−1

l
· ζ2
)
≤ 2i

∗−1 · 2−90 = 2−86,

where the last inequality comes from the fact that 2i
∗
= 25. For i > i∗, the

bound in the probability decreases (exponentially) faster than the increase of 2i,
and the result remains valid. Eventually, by a union bound on all i, with D = 30,
Pr(∃v,HW(v) ≥ 24, biasv > 2−80) ≤ (D − 8) · 2−86 < 2−80.

Note that here, the computation is done for a fixed value D = 30. As D
increases, w must also increase to achieve the same security. Concretely, the
asymptotic analysis shows that D and w are linearly related: there exists a
universal constant c such that setting w = c ·D suffices to reach a target security
level. Unfortunately, the asymptotic analysis gives a very poor value of c. In table
2, we computed the value of w for other values of D, using the same calculation
method. We also provide the ratio c = w/D, to give an intuition of what the
right constant should be (intuitively, since the analysis gets tighter asD increases
due to the “border effects” of low values, the value w/D should converge to the
“right” asymptotic constant).

Table 2. Security parameter w and the ratio w/D, for different value of D, computed
with our method above.

D w c = w/D

20 293 14.7
25 336 13.4
30 380 12.7
35 421 12
40 461 11.5

Concrete cost estimations for the pseudorandom correlation function ob-
tained by using the VDLPN parameters of our improved analysis are given in
the introduction.
6 The improvement comes from a better estimation of the β parameter on one hand,

but also from the better inherent quality of the new proof. In fact, we can consider the
same calculation as before, but with l = 27 and β = 0.44. This is a non-computer-
optimized, provable value of β using i∗ = 7. With this value, we get w ≈ 13000,
which is already a big gain from the previous method: this is already several orders
of magnitudes better than the previous method, though still not practical.
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4 Security of VDLPN against Linear Tests, Revisited

As pointed out, the analysis of [BCG+20a], while the proof strategy seems sound
and appropriate, contains some errors which invalidate the proof. Fixing the
errors turns out to be quite delicate. Below, we elaborate on the two issues; the
first is a minor error, which can be fixed relatively easily, at the cost of changing
the (arbitrary) choice of constants (in particular, the 1/5 and 1/10 constants):
Claim 1 is incorrect as stated; the error in its analysis stems from a reversed
inequality. However, a variant of Claim 1 with different constants can be easily
shown to hold; this does not change the spirit of the proof, nor its conclusion. The
second error is more delicate to fix, and will be the main focus of this Section.

Main error. The main error appears in the proof of Equation 2. The error is
in the analysis of Lemma 17. As sketched in the introduction, after calculating
an upper bound on the expectation E

[
HW(

⊕l
j=1 Xj,k)

]
, the authors deduce

a bound on E
[∣∣∣2i−1 − HW(

⊕l
j=1 Xj,k)

∣∣∣]. However, a bound on E[Z] does not
imply a bound on E[|Z − b|] in general (and typically when Z is “concentrated
away” from b). Up to the choice of the constant 1/5 (the proof actually only
requires any constant below 1/2), the lemma remains true; however, proving the
lemma fundamentally requires characterizing the shape of the random variable
HW(

⊕l
j=1 Xj,k). This turns out to be non-trivial.

4.1 Repairing the Proof

In this section, we put forward a corrected detailed analysis of the resistance
of VDLPN against linear tests. Our proof fixes the two errors in [BCG+20a],
at the cost of achieving worse constants, and being more involved. As before,
we study individually the bias induced by the Hi components against vectors of
weight close to 2i. However, for now, we only consider large enough values of i,
and assume that n = 2i ≥ 27. We will handle the missing cases separately, in
Appendix C of the Supplementary Material.

Definition 18 (δ-Bad Matrices).
Let M ∈ FN×2i

2 . We say that M ∈ Badδ,v with respect to a vector v ∈ F2N if

HW(v⊤ ·M) = Rl,k /∈
[
δ · 2i, (1− δ) · 2i

]
.

Stated in terms of Zl,k, this condition rewrites to Zl,k ∈
[
(1/2− δ) · 2i, 2i−1

]
.

We let Goodδ,v denote the complement of Badδ,v Given vector v, we also denote
Bδ,v = #Badδ,v = Nv(M1, · · · ,Mw) and Gδ,v = #Goodδ,v = w −Bδ,v.

The proof. We now prove Theorem 14. Let Oi
par(H) be the distribution induced

by sampling ei (as a concatenation of w length-2i vectors) and outputting Hi ·ei.
A sample from Oi

par(H) can be further decomposed as
⊕

j≤w Hi,j ·ei,j where the
ei,j are unit vectors. Let Di denote the distribution of Hi,j ·ei,j (these terms are
w samples from the same distribution).Let α be a constant. Then,
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Lemma 19. If Bδ,v ≤ α · w, then

bias

(
w⊕
i=1

Di

)
≤ 1

2
· ((1− 2δ)(1−α))w.

Proof. By the piling-up lemma (Lemma 6),

bias

(
w⊕
i=1

Di

)
≤ 2(1−α)w−1 ·

(
1

2
− δ

)(1−α)·w

≤ 1

2
· ((1− 2δ)(1−α))w ⊓⊔

Lemma 19 provides an upper bound of the bias, which depends on the number
of good matrices and their quality. We now show that the condition Bδ,v ≤ α ·w
holds with very high probability:

Lemma 20. For any v ∈ Si,N , there is a constant C such that

Pr

[
Bδ,v > α · w

]
≤ 2−C·2

i·w.

Proof. As in the original proof, we introduce the function Φ:

Φ (X1,1, · · · , Xl,w) =

w∑
k=1

2i−1 −

∣∣∣∣∣∣HW
 l⊕

j=1

Xj,k

− 2i−1

∣∣∣∣∣∣


= 2i−1 · w −
w∑

k=1

Zl,k.

We want to bound the probability of large bias by a bound on Φ. This is
where the first error appeared in the previous proof.

Lemma 21 (Correction of the first error).

Pr

[
Bδ,v ≥ α · w

]
≤ Pr

[
Φ(X1,1, · · · , Xl,w) < γ · w · 2i

]
,

with γ = 1
2 − α( 12 − δ).

Due to lack of space, the proof of the above lemma will appear in Ap-
pendix B.It remains now to find an upper bound on the right hand side proba-
bility. As in the original proof, we used the bounded difference inequality. Since
Φ is 2-Lipschitz, (this was proved in the original proof),

Pr[Φ(X1,1, · · · , Xl,w) ≤ E[Φ(X1,1, · · · , Xl,w)]− t] ≤ exp

(
− t2

2lw

)
.

We finally want to prove a lower bound on E[ϕ(X1,1, · · · , Xl,w)]. Recall that
Φ (X1,1, · · · , Xl,w) = 2i−1 · w −

∑w
k=1 Zl,k, so this reduces to bounding E[Zl,k].

Our main contribution in this analysis is the proof of the following lemma:
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Lemma 22 (Correction of the second error). For all n ∈ N, there exists
β < 1/2 such that E [Zl,k] < β · n.

Proof (Sketch). We first provide a high level overview, and due to lack of space,
we defer the full proof of Lemma 22 to Appendix B of the Supplementary Mate-
rial.. The proof consists in finding an upper bound on both Pr[Rl,k ≥ p · n]
and Pr[Rl,k ≤ (1 − p) · n] for p ∈ [ 12 , 1] and to use it to find the one on

E[Zl,k] =
∑2i−1−1

j=0 Pr
(∣∣Rl,k − 2i−1

∣∣ > j
)
.

Lemma 23. Let n = 2i > 27, l ∈ [2i−1, 2i] and µ = (1 − 1
n )

l. There exists
0.5 ≤ p ≤ 1 such that with θ = pn−l/2

µ − 1, it holds that

max (Pr [Rl,k ≥ pn] ,Pr [Rl,k ≤ (1− p)n]) ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)
.

To prove this lemma, we use the Occupancy Bound for balls and bins from
Lemma 8. The occupancy bound is about the proportion of empty bins, but can
shrewdly be transformed to bring it back to our specific problem which focuses
on parity in bins. This concludes the sketch. ⊓⊔

The end of the proof is the same as in the original proof, up to handling
separately the case of small i’s. The total number of vectors v ∈ Si,N can be
bounded by

2i∑
l=2i−1

(
N

l

)
≤ (2i − 2i−1) · N2i

(2i−1)!
≤ 2D·2

i

.

Hence, choosing constant such that Cw/2 > D, and setting a = C/2, by a
union bound, we have

Pr

[
∃v ∈ Si,N , Bδ,v ≥ α · w

]
≤ 2D·2

i

· 2−C·2
i·w ≤ 2−a·w.

We eventually use a union bound again on all values of i ≤ D:

Pr

[
∃i ≤ D,v ∈ Si,N , Bδ,v ≥ α · w

]
≤ D · 2−a·w.

which, using Lemma 19, rewrites to

Pr

[
∃i ≤ D,v ∈ Si,N , biasv

 w⊕
j=1

Dj

 ≥ 1

2
· ((1− 2δ)(1−α))w

]
≤ D · 2−a·w.

The argument for small values of i is completely different. In essence, we show
that the first block of H, H1, does already suffice to withstand all even-weight
test vectors. Then, with a “brute-force” union bound, we show that the second
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block H2 allows to withstand all tests of odd weight, provided that w = Ω(2i ·D).
When i is a constant, this is already captured by the requirement that w ≥ Γ ·D
for a suitable constant Γ , which suffices to handle all remaining corner cases.
Refer to Appendix C for full details.
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linear codes in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 107–124. Springer, Hei-
delberg, December 2011.

MO15. Alexander May and Ilya Ozerov. On computing nearest neighbors with
applications to decoding of binary linear codes. In Elisabeth Oswald and
Marc Fischlin, editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS,
pages 203–228. Springer, Heidelberg, April 2015.

MSY21. Jean-Pierre Münch, Thomas Schneider, and Hossein Yalame. Vasa: Vector
aes instructions for security applications. In Annual Computer Security
Applications Conference, pages 131–145, 2021.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. LNCS, pages 678–
708. Springer, Heidelberg, 2021.

Ove06. Raphael Overbeck. Statistical decoding revisited. In Lynn Margaret Bat-
ten and Reihaneh Safavi-Naini, editors, ACISP 06, volume 4058 of LNCS,
pages 283–294. Springer, Heidelberg, July 2006.

https://eprint.iacr.org/2011/377


Pseudorandom Correlation Functions from VDLPN, Revisited 31

Pra62. Eugene Prange. The use of information sets in decoding cyclic codes. 1962.
Saa07. Markku-Juhani Olavi Saarinen. Linearization attacks against syndrome

based hashes. In K. Srinathan, C. Pandu Rangan, and Moti Yung, editors,
INDOCRYPT 2007, volume 4859 of LNCS, pages 1–9. Springer, Heidel-
berg, December 2007.

SGRR19. Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana
Raykova. Distributed vector-OLE: Improved constructions and imple-
mentation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 1055–1072. ACM Press,
November 2019.

Shp09. Amir Shpilka. Constructions of low-degree and error-correcting ε-biased
generators. 2009.

Ste88. Jacques Stern. A method for finding codewords of small weight. 1988.
Wag02. David Wagner. A generalized birthday problem. In Moti Yung, editor,

CRYPTO 2002, volume 2442 of LNCS, pages 288–303. Springer, Heidel-
berg, August 2002.

Zic17. Lior Zichron. Locally computable arithmetic pseudorandom generators,
2017.

ZJW16. Bin Zhang, Lin Jiao, and Mingsheng Wang. Faster algorithms for solv-
ing LPN. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 168–195. Springer,
Heidelberg, May 2016.



Supplementary Material

A Preliminaries on Pseudorandom Correlation Functions

The definitions of this section are taken almost verbatim from [BCG+20a].

Definition 24 (Reverse-sampleable correlation). Let 1 ≤ ℓ0(λ), ℓ1(λ) ≤
poly(λ) be output-length functions. Let Y be a probabilistic algorithm that on
input 1λ returns a pair of outputs (y0, y1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ), defining a
correlation on the outputs. We say that Y defines a reverse-sampleable correla-
tion, if there exists a probabilistic polynomial time algorithm RSample that takes
as input 1λ, σ ∈ {0, 1} and yσ ∈ {0, 1}ℓσ(λ), and outputs y1−σ ∈ {0, 1}ℓ1−σ(λ),
such that for all σ ∈ {0, 1} the following distributions are statistically close:

{(y0, y1) | (y0, y1)
$← Y(1λ)} and

{(y0, y1) | (y′0, y′1)
$← Y(1λ), yσ ← y′σ, y1−σ ← RSample(1λ, σ, yσ)}.

It can also be useful to consider correlations across different inputs, as e.g.
in vector oblivious linear evaluation (VOLE). This is captured by the notion of
reverse sampleable correlation with setup, which allows all algorithms to depend
on a fixed global secret, ensuring consistency across different invocations; we
omit this formal definition for conciseness and refer the reader to [BCG+20a] for
more details.

Definition 25 (Pseudorandom correlation function (PCF)). Let Y be a
reverse-sampleable correlation with output length functions ℓ0(λ), ℓ1(λ) and let
λ ≤ n(λ) ≤ poly(λ) be an input length function. Let (PCF.Setup,PCF.Eval) be a
pair of algorithms with the following syntax:

– PCF.Setup(1λ) is a probabilistic polynomial time algorithm that on input 1λ,
outputs a pair of keys (k0, k1); we assume that λ can be inferred from the
keys.

– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input
σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n(λ), outputs a value yσ ∈
{0, 1}ℓσ(λ).7

We say (PCF.Setup,PCF.Eval) is a (weak) (N,B, ε)-secure pseudorandom
correlation function (PCF) for Y, if the following conditions hold:

– Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1} and non-
uniform adversary A of size B(λ), it holds∣∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣∣ ≤ ε(λ)

7 Note that it would be sufficient for PCF.Eval to take as input kσ and x by appending
σ to the key kσ. This corresponds to the view of a PCF as a single keyed function.
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ExpprA,N,0(λ) :

for i = 1 to N(λ):
x(i) $← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1 )← Y(1λ)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

ExpprA,N,1(λ) :

(k0, k1)← PCF.Setup(1λ)
for i = 1 to N(λ):

x(i) $← {0, 1}n(λ)

for σ ∈ {0, 1}:

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1 )i∈[N(λ)])

return b

Fig. 1. Pseudorandom Y-correlated outputs of a PCF.

ExpsecA,N,σ,0(λ) :

(k0, k1)← PCF.Setup(1λ)
for i = 1 to N(λ):

x(i) $← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

ExpsecA,N,σ,1(λ) :

(k0, k1)← PCF.Setup(1λ)
for i = 1 to N(λ):

x(i) $← {0, 1}n(λ)

y
(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ, σ, y

(i)
σ )

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

Fig. 2. Security of a PCF. Here, RSample is the algorithm for reverse sampling Y as
in Definition 24.

for all sufficiently large λ, where ExpprA,N,b(λ) for b ∈ {0, 1} is as defined in
Figure 1. In particular, the adversary is given access to N(λ) samples.

– Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ),
it holds ∣∣Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]

∣∣ ≤ ε(λ)

for all sufficiently large λ, where ExpsecA,N,σ,b(λ) for b ∈ {0, 1} is as defined in
Figure 2 (again, with N(λ) samples).

We say that (PCF.Setup,PCF.Eval) is a PCF for Y if it is a (p, 1/p, p)-secure
PCF for Y for every polynomial p. If B = N , we will write (B, ε)-secure PCF
for short.

The above definition captures a notion of weak pseudorandom function,
where security is only required to hold given random adversarial queries. As
for PRFs, one can also strengthen the definition to strong PCFs, which allow ar-
bitrary adversarial queries; a formal definition is given in [BCG+20a]. As shown
in [BCG+20a], any weak PCF can be turned into a strong PCF in the random
oracle model, by hashing the input before feeding it to the function.
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B Missing Proofs

In this section we present the proofs of the lemmas stated in section 4.1. We
start with Lemma 21:

Proof. We assume that Bδ,v ≥ α · w. This translates to a lower bound of the
sum of the Zl,k:

w∑
k=1

Zl,k ≥ α · w ·
(
1

2
− δ

)
· 2i,

and finally an upper bound on Φ.

Φ (X1,1, · · · , Xl,w) ≤ 2i−1 ·w− α ·w ·
(
1

2
− δ

)
· 2i = 2i ·w ·

(
1

2
− α

(
1

2
− δ

))
.

Setting γ = 1
2 − α( 12 − δ) we get Φ(X1,1, · · · , Xl,w) < γ ·w · 2i, which proves

that

Pr

[
Bδ ≥ α · w

]
≤ Pr

[
Φ(X1,1, · · · , Xl,w) < γ · w · 2i

]
.

⊓⊔

We continue with the proof of Lemma 22.

Proof. We first rewrite E[Zl,k] using the standard fact that E[Z] =
∑

j Pr[Z > j]:

E [Zl,k] = E
[∣∣Rl,k − 2i−1

∣∣] = 2i−1−1∑
j=0

Pr
(∣∣Rl,k − 2i−1

∣∣ > j
)

=

2i−1−1∑
j=0

Pr(Rl,k ≥ j + 1 + 2i−1) +

2i−1−1∑
j=0

Pr(Rl,k ≤ 2i−1 − j − 1).

While we can bound Pr
[
Rl,k ≥ j + 1 + 2i−1

]
+Pr

[
Rl,k ≤ 2i−1 − j − 1

]
by 1

(for every j the two events are disjoint), this only proves that E [Zl,k] ≤ 0.5 · n.
Therefore, we are looking for better bounds on these two probabilities. Both
bounds come from the Lemma 8; we prove each of them separately below.

Lemma 26. Let 1
2 < p < 1. Let θ such that (1− p) · n = µ · (1− θ). Then,

Pr[Rl,k ≥ pn] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)
.

Proof. Let E be the random variable equal to the number of empty bins. Remark
that when E > x then Rl,k < 2i − x. Then, it appears necessarily that

Pr[Rl,k ≥ pn] ≤ Pr[E ≤ (1− p)n].

We can then use lemma 8, and establish the following
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Pr[Rl,k ≥ pn] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)
,

where we chose θ is chosen such that (1− p)n = µ · (1− θ). This proves the first
bound we need. ⊓⊔

Let’s focus now on the second bound.

Lemma 27. Let p such that 1
2 < p < 1. Let θ such that (1− p) · n = n− µ(θ +

1)− l
2 . Then

Pr[Rl,k ≤ (1− p)n] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)
.

Proof. First, we state a simple but interesting result:

Lemma 28. Let U be the number of bins that contain exactly one ball. Then

U/2 ≥ n− E − l

2
.

Proof. If there are E bins empty, and U bins with one ball only, then the re-
maining l − U balls are contained in at most (l − U)/2 bins, and so

E + U + (l − U)/2 ≥
∑
i

number of bins containing i balls = n.

and thus, U/2 ≥ n− E − l
2 . ⊓⊔

From there using once again lemma 8

Pr[E ≥ µ(θ + 1)] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)

Pr[n− E − l

2
≤ n− µ(θ + 1)− l

2
] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)
.

From there we obtain

Pr[U/2 ≤ n− µ(θ + 1)− l

2
] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)
,

because n − E − l/2 ≤ U/2. Finally from U/2 ≤ Rl,k we get the desired
bound

Pr[Rl,k ≤ n− µ(θ + 1)− l

2
] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)

Pr[Rl,k ≤ (1− p)n] ≤ 2 exp

(
−
θ2µ2(n− 1

2 )

n2 − µ2

)
,

by choosing θ such that (1− p) · n = n− µ(θ + 1)− l
2

This proves the second bound we need. ⊓⊔
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Now we have upper bounds for Pr [Rl,k ≥ pn] and Pr [Rl,k ≤ (1− p)n] for
1/2 < p < 1. It remains to carefully choose when to start applying these
bounds, i.e., when these bounds become better than the naive Pr [Rl,k ≥ pn] +
Pr [Rl,k ≤ (1− p)n] ≤ 1.

Thus we want to find the lowest n for which there exists a proportion 1/2 ≤
p ≤ 1 such that the following equation stands

Pr [Rl,k ≥ pn] + Pr [Rl,k ≤ (1− p)n] < 1. (3)

Remark that we have the same formula for both bounds, but with different
values for θ. Let us call them θ1 and θ2. For the first one (lemma 26) we we
should have θ1 such that (1 − p) · n = µ · (1 − θ1) ; for the second one (lemma
27) should have a θ2 such that (1− p) · n = n− µ(θ2 + 1)− l

2
We remark that θ1 > θ2 , thus the value of n we are looking for is coming

the second inequality.
The smallest n such that there exists 1/2 < p < 1 verifying Pr[Rl,k ≤

(1 − p)n] < 1 is n = 27. Then, using Table 3 we can conclude that n = 27 is
enough to find a proportion p, as we wanted.

Table 3. Rounded value of 2 exp
(
− θ2µ2(n− 1

2
)

n2−µ2

)
; for the two different θ, with n = 128

and l = n.

1− p 0.92 0.94 0.96 0.98

θ = θ1 5× 10−5 2× 10−6 3× 10−7 4× 10−8

θ = θ2 1.31 0.90 0.55 0.3

From these calculations we can also show that β < 0.47, when n > 27.

At this stage, we have shown that E[ϕ(X1,1, · · · , Xl,w)] ≥ 2i · w · (1/2 − β),
for some positive constant β < 0.5. Therefore,

Pr
[
ϕ(X1,1, · · · , Xl,w) ≤ 2i · w · (1/2− β)− t

]
≤ exp

(
− t2

2lw

)
.

Let us define ζ = t/(2i ·w). Then, the condition 2i ·w · ( 12 −β)− t = 2i ·w · γ
rewrites to γ = (1/2− β)− ζ = 1/2− α(1/2− δ). Let us pick a concrete choice
of value for n ≥ 27: set α = 48/49, δ = 1/100. This gives us a value for γ = 0.02.
As soon as n ≥ 27, we know that β ≤ 0.47, and thus ζ ≥ 0.01. Hence, there
exists a constant C such that

Pr

[
Bδ,v ≥ α · w

]
≤ 2−C·2

i·w.

This concludes the proof of Lemma 20. ⊓⊔
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C Handling the Corner Cases

In the proof, we have made two assumptions: l ∈ [2i−1, 2i], and n = 2i ≥ 27

(recall that l is the Hamming weight of the test vector). Therefore, there is some
corner cases that are not covered by the proof, the cases when the adversary
attempts an attack with a vector of hamming weight l ∈ [1, 63].

Case 1: l is odd. We focus on the first submatrix of our matrix H. The matrix
has the following shape:

H1 =

u
1
1,1 · · ·

2 columns︷︸︸︷
u1
1,w

...
...

...
u1
N,1 · · · u1

N,w

 .

where (u1
k,j)1≤k≤N,1≤j≤w are unit vector over F 2

2 . Each row uniquely cor-
responds to a uniform w-bit vector (we say that it encodes this vector), where
each bit indicates the position of the 1 in the 2-bit vector u1

k,j (0 being left,
and 1 being right). We denote the w-bit string encoded by the i-th row by xi.
Recall that e1 is distributed as a row of H1. We let K denote the string ob-
tained by flipping all bits in the w-bit string that encodes e1. Observe that the
inner product between the i-th row of H1 and e1 is equal to

⊕w
j=1(xi,j ⊕Kj).

Given v, the vector v · H1 is the XOR of the l rows of H1 corresponding to
nonzero entries in v. Therefore, whenever l is odd, the value v ·H1 · e1 is of the
form f(H1)⊕ (

⊕w
j=1 Kj), where f is some appropriate function. That is, value

of v · H1 · e1 is masked by a uniformly random bit equal to (
⊕w

j=1 Kj): it is
therefore perfectly unbiased.

Case 2: l is even. Let now focus on the second submatrix H2 of our matrix
H. It has the following shape:

H2 =

u
2
1,1 · · ·

4 columns︷︸︸︷
u2
1,w

...
...

...
u2
N,1 · · · u2

N,w

 .

where (u2
k,j)1≤k≤N,1≤j≤w are unit vector over F 4

2 . This time, each row can
be seen as encoding a pair of w-bits vector: the two bits at position i in both
vectors encode together the position of the 1 in the unit length-four vector u2

k,j ,
in binary. For the i-th line, let us denote these vectors as xi,0 and xi,1. For the
noise vector e1, who has the same structure, we also define two vectors K0 and
K1, as before by flipping all bits of the two vectors encoded by e2. Now, given
a test vector v with even Hamming weight l, the value v · H2 · e2 is equal to
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i∈S(xi,0⊕K0) · (xi,1⊕K1), where S is the subset of nonzero entries in v. Let

g(x0,x1) =
⊕w

j=1 xi,0,j · xi,1,j . With this notation, we can rewrite v ·H2 · e2 as

⊕
i∈S

g(xi,0,xi,1)⊕

〈⊕
i∈S

xi,0,K1

〉
⊕

〈⊕
i∈S

xi,1,K0

〉
.

The leftmost term is independent of the secret noise vector. The above equa-
tion implies that if

⊕
i∈S xi,0 is not the all zero vector, then the above value is

additively masked by one of the entries in K1, which is a uniformly random bit;
hence, it is uniformly distributed (the above is a sufficient condition; the same
condition with respect to xi,1 and K0 would also suffice). Furthermore, we can
bound the probability that

⊕
i∈S xi,0 = 0: let us call E0 this event. For any

fixed choice of the size-l subset S, the probability that
⊕

i∈S xi,0 = 0 holds over
a random choice of the vectors xi,0 is exactly 2−w. By a straightforward union
bound over all subsets S of size l,

Pr[E0] ≤ 2−w ·
(
N

l

)
≤ 2−w ·N l ≤ 2l·D−w.

Where N = 2D is the number of rows in H. Whenever l is a constant (recall
that we assume here l ≤ 63), the above probability is bounded by 2−α0w as soon
as w > α1D for an appropriate choice of the constants α0, α1 (a quick calculation
shows that these constants are much better than the ones involved in the case
of large l, hence the final constants involved in our theorem remain the same as
the constants achieved in the previous proof). This concludes the analysis of the
corner cases.

D Script used for simulations

Hereinafter the script written in python used to obtain simulated value of β.
The number of simulations is chosen in order to reach a 99% confidence interval.

import math
import random
import s t a t i s t i c s

n = 2048 # Number o f b in s
l = 1024# Number o f b a l l s
T = 100000# Number o f s imu la t i on s
List_Z = [ ]

for j in range (T) :
#Repeat f o r each s imu la t i on
Bins = [0 for k in range (n ) ]
count_odd = 0
#We throw the l b a l l s
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for k in range ( l ) :

#Choice o f the b in among the n
r = random . rand int (0 , n−1)
count_odd += (1−2∗Bins [ r ] )
Bins [ r ] = ( Bins [ r ] +1) % 2

List_Z . append (abs(1/2−count_odd/n ) )
#Z = n/2 − E[R] , and R = count_odd/n .

mean_Z = s t a t i s t i c s .mean( List_Z )
# To determine a con f idence i n t e r v a l
stdev_Z = s t a t i s t i c s . s tdev ( List_Z )

print ( "The␣ con f idence ␣ i n t e r v a l ␣ at ␣99%␣ i s
: ␣ [ {} ␣−␣ {} , ␣{}␣+␣ {} ] " . format (
mean_Z,3∗ stdev_Z/math . s q r t (T) ,
mean_Z,3∗ stdev_Z/math . s q r t (T) ) )
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