A Note on "Secure Multifactor Authenticated Key Agreement Scheme for Industrial IoT"

Zhengjun Cao¹, Lihua Liu²

Abstract. We remark that the key agreement scheme [IEEE Internet Things J., 8(5), 2021, 3801–3811] is flawed. (1) It is insecure against internal attack, because any unauthorized sensing device (not revoked) can retrieve the final session key. (2) It could be insecure against external attack.

Keywords: Key agreement, secret sharing, internal attack, external attack.

1 Introduction

Recently, Vinoth *et al.* [1] have presented a key agreement scheme for industrial Internet of Things. The scheme makes use of password, biometrics, and smart card to identify the user, and utilizes the secret-sharing technology to construct a session key among the user and authorized sensing devices. In the proposed scenario, there are many entities: a user, the Gateway Node (GWN), n sensing devices. Its security goals include entity authentication, data confidentiality, and user anonymity. In this note, we remark that the scheme is flawed.

2 It is insecure against internal attack

To make it easier to follow the below discussion, we now depict the scheme as follows (see Table 1, or Fig.2, [1]). By the description of devices registration (see §V.B, [1]), we know, GWN will register the devices using secret-sharing technology and Chinese remainder theorem. GWN picks a unique identity ID_{SD_j} for each device SD_j , and pairwise coprime positive integers k_1, \dots, k_n , where $j = 1, 2, \dots, n$. GWN computes $Mul = \prod_{j=1}^n k_j$, $Mul_j = Mul/k_j$ and $Nonce_j$, s.t., $Mul_j \times Nonce_j \equiv 1 \mod k_j$. Set

$$\gamma = \sum_{j=1}^{n} \operatorname{Mul}_{j} \times \operatorname{Nonce}_{j} \tag{1}$$

Note that γ is set for the whole group of n devices, not for any authorized set of l (< n) devices. We find the secret γ and shares $k_j, j = 1, \dots, n$, are not harmonically invoked. Concretely, GWN invokes γ to hide the nonce r_{GWN} as

$$M_4 = r_{GWN} \times \gamma, \tag{2}$$

¹Department of Mathematics, Shanghai University, Shanghai, 200444, China

²Department of Mathematics, Shanghai Maritime University, Shanghai, 201306, China.

Email: liulh@shmtu.edu.cn

Table 1:	The Vinoth	<i>et al.</i> 's kev	agreement scheme

User U_i	Gateway Node (GWN)	Sensing $\text{Device}(\text{SD}_j)$
$Gen(\cdot), Rep(\cdot)$ are generation and reproduction algorithms of fuzzy extractor, respectively, and $h(\cdot)$ is a hash function.	For the dealer P_0 and n devices P_1, \dots, P_n , compute $x_i = \varphi(P_i), i = 0, \dots, n$. Pick n -dimensional $Vector_1, Vector_2$, and a secret value S , s.t., $S = Vector_1 \cdot x_0, S^2 = Vector_2 \cdot x_0$. Pick ID_{SD_j} , compute $s_j = Vector_1 \cdot x_j$, $f_j = Vector_2 \cdot x_j$. Pick pairwise coprime positive integers k_1, \dots, k_n . Compute $\text{Mul}_j = \prod_{t=1}^n k_t/k_j$, Nonce j , s.t., $\text{Mul}_j \times \text{Nonce}_j \equiv 1 \mod k_j$. Set $\gamma = \sum_{j=1}^n \text{Mul}_j \times \text{Nonce}_j$.	
Choose ID_i, PW_i , imprint biometrics B_i . Compute $(BK_i, \tau_i) = Gen(B_i)$. Pick a nonce a , compute $TPW_i = h(ID_i PW_i BK_i) \oplus a$. \longrightarrow Compute $RPW_i = h(ID_i PW_i BK_i)$, $A'_i = A_i \oplus TPW_i \oplus RPW_i$, $C'_i = C_i \oplus TPW_i \oplus h(ID_i BK_i)$, $D_i = a \oplus h(ID_i BK_i)$, $D_i = a \oplus h(ID_i BK_i)$, $V_i = h(RPW_i A_i a h(ID_i BK_i)) \mod \omega$, where ω is a medium integer to thwart online guessing attack. Store $\{TID_i, A'_i, C'_i, D_i, V_i, \tau_i, \omega\}$.	$\overbrace{(\text{secure channel})}^{(\text{secure channel})}$ Generate the key KEY _{GWN} . Set $KEY_{GWN-U_i} = h(\mathbb{D}_i \text{KEY}_{GWN}),$ $A_i = KEY_{GWN-U_i} \oplus TPW_i$ $C_i = \mathbb{D}_{GWN} \oplus TPW_i.$ Pick a 128-bit temporary identity $TID_i.$ $\overleftarrow{(TID_i, A_i, C_i)}$	
Pick a nonce r_i and timestamp TS_1 , compute $BK_i = Rep(B_i, \tau_i)$, $RPW_i = h(ID_i PW_i BK_i)$, $ID_{GWN} = C'_i \oplus h(ID_i BK_i)$, $M_1 = A_i \oplus RPW_i \oplus r_i$, $M_2 = h(TID_i M_1 ID_{GWN} r_i TS_1)$. <u>TID_i(M_1,M_2,TS_1)</u> open channel	Check $ TS_1 - TS'_1 \leq \triangle TS$. Use TID_i to look up ID_i , KEY_{GWN-U_i} , and compute $r_i = M_1 \oplus KEY_{GWN-U_i}$. Check $M_2 = h(TID_i M_1 ID_{GWN} r_i TS_1)$. If so, pick r_{GWN} and TS_2 to compute $M_4 = r_{GWN} \times \gamma, M_5 = Enc_{r_{GWN}} (ID_i, ID_{GWN}, r_i, r_{GWN} \oplus KEY_{GWN-U_i})$, $M_6 = h (ID_i ID_{GWN} r_i M_4 $ $KEY_{GWN-U_i} TS_2)$. M_4, M_5, M_6, TS_2 Check $ TS_3 - TS'_3 \leq \triangle TS$. Compute $Dec_{r_{GWN}} (M_8) = (s_j, f_j, ID_{SD_j})$, $\theta_1 = \sum_{l=1}^{l} \lambda_l ts_l, \theta_2 = \sum_{l=1}^{l} \lambda_l f_l$.	$\begin{aligned} & \text{Check } TS_2 - TS_2' \leq \triangle TS.\\ & \text{Compute } r_{GWN} = M_4 \mod k_j,\\ & Dec_{r_{GWN}} (M_5) = (ID_i, ID_{GWN}, r_i,\\ & r_{GWN} \oplus KEY_{GWN-U_i}), \text{ check}\\ & M_6 = h \left(ID_i \ ID_{GWN} \ r_i \ M_4 \ \\ & r_{GWN} \oplus KEY_{GWN-U_i} \oplus r_{GWN} \ TS_2 \right)\\ & \text{If so, generate } TS_3, \text{ compute}\\ & M_8 = Enc_{r_{GWN}} (s_j, f_j, ID_{SD_j})\\ & \longleftarrow\\ & \swarrow\\ & \longleftarrow\\ & (M_8^{(SD_i)}, TS_3^{(SD_i)})_{SD_i \text{is in the authorized set}} \end{aligned}$
Check $ TS_4 - TS'_4 \leq \triangle TS$. $Dec_{KEY_{GWN-U_i}}(M_{12}) = (r_{GWN}, r_i, M_9)$. Check $M_{14} = h(M_{12} M_9 r_i)$. Compute $SK = h(ID_i ID_{GWN} $ $r_{GWN} r_i M_9 KEY_{KEY-U_i})$ Check $M_{16} = h(SK ID_{GWN} ID_i)$. Set $TID_i^{new} = h(ID_i KEY_{GWN-U_i} TS_4) \oplus M_{13}$ Update TID_i with TID_i^{new} .	$\begin{array}{c} \overset{t=1}{\underset{M_{9} = h(S \ r_{_{GWN}}), M_{10} = M_{9} \times \gamma, \\ M_{9} = h(S \ r_{_{GWN}}), M_{10} = M_{9} \times \gamma, \\ M_{11} = h(M_{9} \ M_{10}). \text{ Generate } TID_{i}^{new}, TS_{4}. \\ & & \underbrace{M_{10}, M_{11}} \end{array} \\ \text{Compute } M_{12} = Enc_{KEY_{GWN}-U_{i}} (r_{_{GWN}}, r_{i}, M_{9}), \\ M_{13} = h(ID_{i} \ KEY_{GWN-U_{i}} \ TS_{4}) \oplus TID_{i}^{new}, \\ M_{14} = h(M_{12} \ M_{9} \ r_{i}). \\ & \underbrace{M_{12}, M_{13}, M_{14}, TS_{4}}_{M_{16}} \\ \end{array}$	$\begin{aligned} & \text{Compute } M_9 = M_{10} \mod k_j. \\ & \text{Check } M_{11} = h(M_9 \ M_{10}). \\ & \text{Compute } SK = h\left(ID_i \ ID_{GWN} \ \right. \\ & r_{GWN} \ r_i \ M_9 \ KEY_{GWN-U_i} \right), \\ & M_{16} = h(SK \ ID_{GWN} \ ID_i) \end{aligned}$

and the device SD_j invokes k_j to recover the nonce

$$r_{GWN} \equiv M_4 \bmod k_j \tag{3}$$

Clearly, a corrupted device SD_s (not revoked), even unauthorized for the current session, can also recover the same nonce by computing

$$r_{GWN} \equiv M_4 \bmod k_s,\tag{3'}$$

because M_4 is transported via an open channel (see the blue-colored parts, Table 1).

Using r_{GWN} , the corrupted device can compute

$$Dec_{r_{GWN}}(M_5) = (ID_i, ID_{GWN}, r_i, r_{GWN} \oplus KEY_{GWN-U_i})$$

where M_5 is also publicly accessible, and $Dec(\cdot)$ is a symmetric key decrypting algorithm. By the recovered nonce r_{GWN} and the component $r_{GWN} \oplus KEY_{GWN-U_i}$, it is easy to recover KEY_{GWN-U_i} . Now, all components

$$ID_i, ID_{GWN}, r_{GWN}, r_i, KEY_{GWN-U_i}, M_9 = M_{10} \mod k_s$$

can be obtained by the adversary for computing the final session key

$$SK = h \left(ID_i \| ID_{GWN} \| r_{GWN} \| r_i \| M_9 \| KEY_{GWN-U_i} \right)$$
(4)

We want to stress that in a secret sharing scheme [2], an owner of a share is not assumed to directly use it for transporting data. The below simple relation

$$M_4 = r_{_{GWN}} \times \gamma \implies r_{_{GWN}} \equiv M_4 \mod k_j$$

is insufficient to securely transfer the nonce r_{GWN} .

3 It could be insecure against external attack

The calculations of $M_4 = r_{GWN} \times \gamma$ and $M_{10} = M_9 \times \gamma$ are actually computed over the ring \mathbb{Z}_k , where $k = [k_1, k_2, \dots, k_n]$ is the lowest common multiple. Since they are pairwise coprime, $k = k_1 \times \dots \times k_n$. In view of that the residue r_{GWN} modulo k_j is used as the key for $Dec(\cdot)$, the bit-length of k_j is greater than 256. In general,

$$BitLength(r_{GWN}) = BitLength(h(\cdot)) = 256$$

and BitLength $(k) \ge 256n$, such as the popular SHA-256, and AES-256. By the equations

$$\gamma = \sum_{j=1}^{n} \operatorname{Mul}_{j} \times \operatorname{Nonce}_{j} \operatorname{mod} k, \ M_{9} = h(S \| r_{GWN}),$$

it is very likely that $r_{_{GWN}} \times \gamma < k, M_9 \times \gamma < k$. So,

$$M_4 = r_{GWN} \times \gamma, \ M_{10} = M_9 \times \gamma \tag{5}$$

are two common equalities. An external adversary can recover the common divisor γ from M_4 and M_{10} , both are transported via open channels. Thus, r_{GWN}, M_9 can also be exposed. Now, the adversary can compute $Dec_{r_{GWN}}(M_5)$ to obtain $ID_i, ID_{GWN}, r_i, r_{GWN} \oplus KEY_{GWN-U_i}$, which means that all components for the final hashing (see Eq.(4)) can be successfully retrieved.

4 Conclusion

We show that the Vinoth *et al.*'s key agreement scheme is insecure. It is worth noting that a key agreement scheme being integrated with secret-sharing technology could be vulnerable to internal attack. One should carefully design such a scheme and balance its security goals.

References

- R. Vinoth, et al., "Secure multifactor authenticated key agreement scheme for industrial iot," IEEE Internet Things J., vol. 8, no. 5, pp. 3801-3811, 2021.
- [2] A. Shamir, "How to share a secret," Commun. ACM, vol. 22, no. 11, pp. 612-613, 1979.