
Privacy-Preserving Regular Expression Matching using Nondeterministic
Finite Automata

Ning Luo
Northwestern University

ning.luo@northwestern.edu

Chenkai Weng
Northwestern University

ckweng@u.northwestern.edu

Jaspal Singh
Oregon State University

singjasp@oregonstate.edu

Gefei Tan
Northwestern University

gefeitan@u.northwestern.edu

Ruzica Piskac
Yale University

ruzica.piskac@yale.edu

Mariana Raykova∗

Google Inc.
marianar@google.com

May 5, 2023

Abstract

Motivated by the privacy requirements in network intrusion detection and DNS policy checking,
we have developed a suite of protocols and algorithms for regular expression matching with enhanced
privacy:
- A new regular expression matching algorithm that is oblivious to the input strings, of which the com-

plexity is only O(mn) where m and n are the length of strings and the regular expression respectively.
It is achieved by exploiting the structure of the Thompson nondeterministic automata.

- A zero-knowledge proof of regular expression pattern matching in which a prover generates a proof
to demonstrate that a public regular expression matches her input string without revealing the string
itself.

- Two secure-regex protocols that ensure the privacy of both the string and regular expression. The
first protocol is based on the oblivious stack and reduces the complexity of the state-of-the-art from
O(mn2) to O(mn log n). The second protocol relies on the oblivious transfer and performs better
empirically when the size of regular expressions is smaller than 212.

We also evaluated our protocols in the context of encrypted DNS policy checking and intrusion detection
and achieved 4.5X improvements over the state-of-the-art. These results also indicate the practicality of
our approach in real-world applications.

1 Introduction

A pattern matching algorithm takes as input a string and a pattern and checks whether the given pattern
appears in the string. It has been widely used in many areas, including bioinformatics [Ben99], database
search engines [BKS02], intrusion detection systems [VL06], text processing [Kuk92], and digital foren-
sics [Bee09]. Matching patterns are commonly represented as regular expressions because they are able
to match text using a structured pattern and are commonly used in search engines, word processors, and
programming languages. In this paper we focus on two different aspects of the regular expression matching

*The author took part in and made contributions to this work during her time at Yale.

1

ning.luo@northwestern.edu
ckweng@u.northwestern.edu
singjasp@oregonstate.edu
gefeitan@u.northwestern.edu
ruzica.piskac@yale.edu
marianar@google.com

problem. Our research is motivated by two applications that demand distinct solving techniques: monitor-
ing and enforcing DNS query policies, and detecting network intrusions. DNS queries can be monitored for
banned URLs and rejected by network administrators, leveraging the expressiveness of regular expressions
with low false positive rates and high expressiveness [Moc87; APD+10; XYA+08]. Intrusion detection sys-
tems (IDS) can also use regular expressions to identify potential malicious network packets, reducing the
task of detecting network attacks to a pattern-matching problem for incoming packets [SP03].

Many of these applications have strict privacy requirements. In the DNS setting, exposing the DNS
queries to the network administrator would violate the privacy of users. Enforcing the policy check by ex-
amining all outbound packets also prevents the deployment of recent privacy-preserving DNS techniques
such as DNS-over-HTTPS [HM18]. However, in this case, the policy (e.g. blocklist) may not need to
be kept secret. For example, under the Children’s Internet Protection Act, schools are suggested to cen-
sor Internet browsing from the school network but should make public the criteria used to block web-
sites [McC04; GAZ+21]. On the contrary, the network intrusion detection example would prefer keeping
the secrecy for both the input string and pattern. The users tend to keep packets secret from IDS. Meanwhile,
the IDS may view its regular expression database as its intellectual property, so there is a strong motivation
for them to limit the database’s access [SLPR15]. In summary, solving a pattern-matching problem in
privacy-preserving settings is becoming an increasingly important problem, while the privacy requirements
vary across different use cases.

The goal of our research is privacy-preserving regular expression matching. We first consider the settings
where the pattern is publicly known. In these settings, a prover holds a private string and generates a proof,
which is used to validate if that string is accepted or rejected by the given public pattern. It is required
that the proof reveals no information about the input string. We refer to this as ZK-regex and realize it
by using zero-knowledge proofs (ZKP) [GM84]. A typical application is the blocklisting of DNS queries
demonstrated by zero-knowledge middlebox (ZKMB) [GAZ+21]. We next consider the settings where a
pattern holder and a string holder want to verify whether the pattern matches the string. Both parties should
not learn anything beyond the result (true or false) and the length of inputs. We refer to this as secure-
regex and realize it by secure two-party computation (2PC) protocols [Yao82]. A typical application is the
privacy-preserving network intrusion detection described before.

Challenges. Both ZKP and 2PC securely process an algorithm in the circuit model by first translating any
algorithm into an oblivious version. This means the access pattern of the underlying algorithm should be
independent of inputs except for their length. However, regular expression pattern matching in plaintext
relies on finite automata simulation, and the known algorithms and data structures are highly dependent
on the input of regular expressions and strings. If the access pattern of evaluation in the plaintext leaks
inputs, as demonstrated in the following examples, additional oblivious data structures or algorithms can be
used to enhance privacy. Existing works [SHd+14; LW13] utilize matrices to represent finite automata and
performs linear scans over the matrices for simulation to achieve this. However, this approach introduces
overhead that is quadratic to the size of the finite automata and regular expressions, which can make the
protocol relatively impractical.

1.1 Our Main Observation

We have developed a novel algorithm for pattern matching that employs linear scans over finite automata
for simulation. Specifically, our approach utilizes Thompson nondeterministic finite automata (TNFA), a
type of finite automata commonly employed in regular expression pattern matching. Our key insight is that
TNFA can be regarded as a special sparse graph wherein all accessible nodes can be reached via a path with
at most one backward edge. This observation enables our algorithm to simulate TNFA while maintaining
an access pattern independent of the input string. As a result, our approach is particularly suitable for ZK-

2

regex scenarios. Nonetheless, the access pattern still relies on the TNFA graph, which reveals information
about the regular expression from the pattern holder. To address this issue, we later propose protocols
for achieving secure-regex scenarios in which the TNFA graph’s information is protected using oblivious
transfer or oblivious stack, which leads to the most practical performance yet known.

An illustrative example. Before introducing our protocols, we first describe through an example how to
do efficiently regular expression matching in plaintext. Thompson proposed a method [Tho68], in which the
regular expression is converted into a TNFA with a size linear in the size of the expression (cf. Section 2.1).
TNFAs are directed graphs with states as nodes and transitions as labeled edges. This representation reduces
pattern matching to finding a valid path from the initial state to an accepting state in the graph for the input
string. Thompson’s algorithm constructs a set Qi of all reachable nodes through valid paths for the first i
characters of the input string. If the pattern in the regular expression matches the input string, an accepting
state should be in Qm where m is the length of the input string. We use m and n to denote the string and
pattern length throughout this paper. We demonstrate the TNFA simulation for pattern matching in regular

((A) B | C)
CBA

Figure 1: Example TNFA for regular expression re = ((A)∗B|C). The solid arrows are directed edges in G
and define epsilon transitions of the TNFA. The dashed arrows are the character transition.

expressions using the example in Figure 1. The figure shows a TNFA for the regular expression ((A)∗B|C)
where S0 is the initial state and S8 is the accepting state. For the input string AB, which matches ((A)∗B|C),

there is a valid path S0
ε−→ S1

ε−→ S2
A−→ S3

ε−→ S4
ε−→ S5

B−→ S6
ε−→ S8. The path is considered valid as

the labels along the path from the sequence ε∗Aε∗Bε∗, where the superscript ‘∗’ indicates any number of
repetitions. The following steps explain the process of determining if the given TNFA accepts AB:

1. SetQ0 is initialized to {S0}, and then all states reachable fromQ0 through ε-labeled edges are added.
This results in Q0 = {S0, S1, S2, S4, S5, S7}.

2. As S2 ∈ Q0 and there is an edge (S2, S3) labeled with A, set Q1 is initialized to S3 for the first
character A in the string AB. This is then extended to Q1 = {S1, S2, S3, S4, S5} by including states
reachable through ε-labeled edges.

3. The same is repeated for the second character B in the string AB, resulting in Q2 = {S8}.
4. Since the accepting state S8 is inQ8, there is a valid path in the TNFA from S0 to S8 for AB, meaning

((A)∗B|C) matches AB.

The example demonstrates the two-step process of constructing each set Qi: initializing Qi using Qi−1

and character-labeled edges, and then extendingQi by adding states reachable through ε-labeled edges. The
first step is called the character transition and the second step is the epsilon transition. Note, however, that
from the sequence of setsQ0,Q1, . . . one can reconstruct both, the input string and the TNFA. In this paper,
we develop efficient protocols for regular expression matching, based on the above TNFA simulation, while
maintaining privacy of input.

3

Protocol Comm. Complexity Round Complexity
[Ker06] O(m2n|Σ| O(m)

[Fri09] O(m(2n + |Σ|)) O(1)

[MNSS12] O(m2nκ) O(1)

[LW13] O(κmn(n|Σ|)) O(m)

[SHd+14] O(κn2(m+ |Σ|)) O(mn)

Ours (from OS) O(κmn(log n+ log |Σ|) O(1)

Ours (from OT) O(mn(n+ κ log |Σ|)) O(mn)

Table 1: Comparisons with existing secure-regex protocols. m, n and Σ are the length of the string, the
size of the regular expression, and the alphabet, respectively. Protocols [Ker06; MNSS12; Fri09] exhibit
complexity exponential to the size of the regular expressions because they are DFA-based.

1.2 Our Contribution

The pattern matching in plaintext consists of character transition and epsilon transition (details in Section 3).
In privacy-preserving settings, the character transition can be executed directly through linear scans and
equality checks, which are easily handled by ZKP or 2PC protocols. Thus, the main challenge of this work is
a design of a data-oblivious epsilon transition. Epsilon transitions involve searching for all reachable states
in the TNFA. In the plaintext execution, this search can be performed using a depth-first search (DFS).
However, the best-known oblivious DFS for general graphs requires a circuit size of O(n2), leading to a
total complexity of O(mn2) to process a length-n regular expression and a length-m string [BSA13]. This
complexity is not feasible for practical, real-world applications.

TNFA simulation via two linear scans. Our proposed pattern-matching algorithm uses two linear scans
for epsilon transition and takes advantage of the fact that the TNFA can be modeled as a sparse graph.
Specifically, we observed that all reachable nodes in the TNFA can be accessed via a path with at most
one backward edge in the epsilon transition. This insight enables us to derive the elements of the set Qi by
performing two passes of linear scans. Importantly, the access pattern of the epsilon transition is independent
of the input string.

ZK-regex. We present a ZK-regex protocol that enables a prover to prove whether a public regular expres-
sion matches a string without revealing any information about the string. Define log |Σ| to be the bit length
of the alphabet. The circuit for our ZK-regex protocol is derived from our two-linear scan algorithm and
is of size O(mn log |Σ|). We leverage the fact that our TNFA simulation algorithm is already oblivious to
input strings so that no additional data-oblivious algorithm is needed to protect the access patterns. Our ZK-
regex circuit fits into any general-purpose ZKP framework. In addition, we apply ZK-regex to examining
encrypted Transport Layer Security (TLS) packets. It allows a packet sender to prove whether a specific
pattern matches her packet without exposing the packet’s content, enabling effective filtering of malicious
traffic while preserving user privacy.

Secure-regex. To minimize the need for additional data-oblivious operations to protect the graph structure,
we further investigate the properties of TNFAs and prove a bound on the maximum degree of each node. By
limiting the number of predecessors and successors of each node, we develop two efficient two-party proto-
cols for secure-regex. Define κ to be the computational security parameter and σ to be the alphabet. The first
protocol, based on the oblivious stack (OS), is a constant-round protocol with a communication complexity
of O(κmn(log n+log |Σ|)), outperforming the previous best-known result of O(κn2(m+ |Σ|)) [SHd+14].
The second protocol, based on 1-out-of-n+1 oblivious transfer (OT), achieves a communication overhead of
O(mn(n+ κ log |Σ|)) with a linear number of round-trips while incurring a higher asymptotic complexity.

4

However, it outperforms the first protocol in scenarios with low network latency and short input regular
expressions. Comparisons with related work on both asymptotic complexity (Table 1) and empirical per-
formance (Figure 10) demonstrate that our approach achieves both asymptotic and empirical optimality for
secure-regex.

Implementation and evaluation. To empirically evaluate our proposed protocols, we implemented ZK-
regex over TLS and measured the proof size and prover time. We demonstrate the practicality of our
ZK-regex protocol by running our implementation on a set of regular expressions used for DNS filter Pi-
hole [pi-22]. For a 128-byte string, a proof for the longest pattern in Pi-hole (97 bytes) can be generated
in 0.57s with a size of 397KB. Our secure-regex protocols attain the best-known results for two-party reg-
ular expression matching, and their practicality is demonstrated in real-world intrusion detection based on
SNORT PCRE [CIS]. The OT-based protocol performs matching on a 512-byte string and a 63-byte pattern
in 4s in a LAN with 100Mbps bandwidth. In a WAN with 60ms latency, our OS-based protocol performs
matching on a 512-byte string and a 15-byte pattern in 4s. We conducted a comparison of our secure-regex
implementations that utilize OS-based and OT-based protocols, testing them under varying network and in-
put conditions. Additionally, we compared our OT-based protocol secure-regex against that of [SHd+14].
Our findings indicate that our OS-based protocol reduces communication costs by 4.5X.

1.3 Related Work

ZK-regex. To the best of our knowledge, the only instantiation of zero-knowledge regular expression pat-
tern match is demonstrated in a work by Franzese et al. [FKL+21]. Their protocol is based on a constant-
overhead oblivious array access in the ZK setting. It requires m access to a size-O(2n) array. We provide
more detailed comparison in Section 6.2. For other work, both [SW+21] and [KM14] mention regular ex-
pression pattern matching in their ZK algorithms without instantiating this functionality. Toots et al. design
a ZK algorithm that proves whether a string is accepted by a nondeterministic finite automata (NFA) [Too].
However, it does not support private epsilon transition thus its application is limited.

In the application level, there exists prior work that also study the ZKP with input the TLS messages.
Zero-knowledge middleboxes (ZKMB) [GAZ+21] studies encrypted DNS-over-TLS policy checking via
zk-SNARK. It utilizes a non-membership proof to prove that an encrypted URL is not on a blocklist. The
work of DECO [ZMM+20] builds a decentralized oracle which allows a user to prove to third parties the
provenance of data encrypted in a TLS session. Our work on regex pattern matching enriches the policy
check methods in these work. For example, ZKMB uses Merkle tree non-membership proofs to prove that
a domain is not in a public blocklist [GAZ+21]. Though the blocklist-based system is straightforward and
efficient, studies show that this coarse-grained approach does not offer accurate classification [YMMP16].
It is common for the harmless web applications and malicious ones to have the same domain suffix, thus
creating false alarms. To solve this issue, the blocklist based systems are evolving into the control system
based on regular expressions which offers finer-grained filtering. This is the main reason that our regular
expression based pattern matching algorithms are more suitable for zero-knowledge policy checks, as it pro-
vides lower false positive rates and higher expressiveness.
Secure-regex. Secure protocols for general NFA evaluation have been proposed in [LW13; SHd+14]. They
either employ computationally-intensive homomorphic encryption or have a communication complexity of
Ω(mn2κ) (where κ is the security parameter), which makes them less practical than our protocols. Although
the code and empirical evaluation results of [LW13] are not accessible, we have compared the communica-
tion cost of [SHd+14] with our protocols and the results are demonstrated in Figure 1.

Protocols in [Ker06; TPKC07; Fri09; MNSS12; LW13] involve the private evaluation of deterministic
finite automata (DFA). However, their complexity is proportional to the size of the DFA, which can be
exponential in the size of the regular expression. he size of Nondeterministic Finite Automata (NFA) and

5

Deterministic. We recommend consulting the empirical evaluation and comparison presented in [SHd+14]
on the size of DFA and NFA for the same regular expression.

A comparison of the complexity of regular expression pattern-matching protocols can be found in
Table 1. Numerous secure two-party pattern matching protocols have been proposed, as described in
[BEDM+13; YSK+13; Ver11; HL08; KRT18; DA18; SBB19]. These protocols facilitate string operations
such as exact matching, substring matching, approximate matching, and wildcard matching. In contrast,
our methods enable the use of more expressive languages, i.e., regular expressions, to specify patterns.
Moreover, the utilization of data-oblivious graph algorithms as presented in [BSA13; WNL+14] can be ex-
tended to simulate TNFAs in a secure two-party computation setting, but this approach results in quadratic
complexity relative to the length of the regular expressions.

2 Preliminaries

2.1 Regular Expressions and Thompson NFAs

In this section, we introduce formal definitions for regular expressions and for NFAs. We present Thom-
spon’s construction [Tho68], which shows how any regular expression can be converted into an equivalent
NFA that accepts the same set of strings as the regular expression does.

Regular expression. A regular expression (regex) on the alphabet Σ consists of characters in Σ and meta
characters { |, (,), ∗ }. Let ε and ϕ denote the empty string and the empty set, respectively. A regular
expression re describes a set of strings (or language) L(re) over Σ recursively:

1. basic case: L(ϕ) = ϕ, L(ε) = {ε} and L(a) = {a} for a ∈ Σ;
2. concatenation: L(re re′) = {xx′|x ∈ L(re), x′ ∈ L(re′)};
3. union : L((re|re′)) = L(re) ∪ L(re′);
4. loop: L((re)∗) =

⋃
k∈N
{x0x1 · · ·xk|xi ∈ L(re)} ∪ {ε}.

Nondeterministic finite automata. A nondeterministic finite automata (NFA) N is defined as a 5-tuple
(Q,Σ, δ, S0,QA). Q is a set of states and Σ is the alphabet set. δ : Q × (Σ ∪ {ε}) → 2S is a transition
function that maps a state along with character to a set of states. For states S, S′ we write S

ε−→ S′ if either
S = S′ or there exists a sequence of states S1, . . . , Sn with S = S1 and Sn = S′ such that for all 1 ≤ i < n,
Si+1 ∈ δ(Si, ε). For x ∈ Σ and states S, S′, we write S

x−→ S′ when there are states S1 and S2 such that
S

ε−→ S1 and S2 ∈ δ(S1, x) and S2
ε−→ S′. An NFA N accepts a string x0 · · ·xm−1 on Σ if there exists a

sequence of states S0, S1, S2, . . . , Sm, such that 1) S0 is the starting state; 2) for 0 ≤ i ≤ m−1, Si
xi−→ Si+1;

and 3) Sn ∈ QA is an accepting state.

Thompson NFA construction. An NFA, N, is equivalent to a regular expression, re, if L(N) = L(re).
It is well known that any regular expression can be converted to an equivalent NFA using Thompson’s
construction, which is called a Thompson NFA (TNFA). We adopt a specific variant [SW11] of the TNFA
construction, which we explain in Algorithm 8 in the appendix. A characteristic of a TNFA denoted by such
G is that all edges within the alphabet Σ, denoted by EΣ, are of the form (j − 1, j), where j is a specific
integer.

Given a regular expression, re, the algorithm processes each character in re in order and outputs a
directed graph, G = (V,E = EΣ∪Eε) where V = {0, · · · , n}. G can be interpreted as a TNFA as follows:
- Q = V , S0 = 0 and QA = {n};
- j ∈ δ(i, ε) if (i, j) ∈ Eε;
- j ∈ δ(i, c) if (i, j) ∈ EΣ is labeled by c ∈ Σ;
- δ(i, c) = ϕ for the rest of the undefined (i, c) ∈ V × (Σ ∪ ε).
By this way, the graph G = (V,E = EΣ ∪ Eε) defines a TNFA, N = (V,Σ ∪ ε, δ, 0, {n}).

6

Functionality FOT

Define the security parameter κ.
- Upon receiving (ot, N, ℓ, {mi}i∈[0,n)) from P0 and (ot, N, ℓ, b) from P1 such that mi ∈ {0, 1}ℓ and b ∈ [0, N),

send mb to P1.
- Upon receiving (rot, N, ℓ) from P0 and P1, uniformly sample (m0, . . . ,mN−1) ← {0, 1}n×ℓ and b ∈ [0, N).

Send {mi}i∈[0,N) to P0 and (b,mb) to the P1.

Figure 2: The functionality of oblivious transfer.

Functionality F2PC

For i ∈ [0, 1], upon receiving (C, xi) from Pi, compute (y0, y1)← C(x0, x1). Send yi to Pi.

Figure 3: The functionality of two-party computation.

As the set of nodes in the directed graph is the set of states, we do not differentiate states and nodes
without raising confusion in the rest of this paper. The output TNFA is equivalent to the language defined
by re [SW11].

TNFA simulation. Taking as input TNFA G for re and a string x = x0 · · ·xm−1, the TNFA simulation
decides if x is an element of L(re) by checking whether or not G accepts x. The TNFA simulation algorithm
is listed in Algorithm 1. It simulates the operation of an NFA by computingQi, which includes all reachable
states after processing the first i characters of x. The algorithm finally outputs if Sn is in Qm.

Computing Qi from Qi−1 involves finding all states that can be accessed through a path e0, · · · , eℓ,
where e0 ∈ EΣ is labeled xi−1 and ei ∈ Eε for i > 0. The process is divided into two steps. First, the
algorithm sets Qi to all states that can be reached from Qi−1 through e0 ∈ EΣ (lines 5-7 in Algorithm 1).
As all edges in EΣ have the form (j − 1, j), Qi can be set up through a linear scan. This step is referred to
as the character transition. Second, the algorithm extends Qi to all states reachable from Qi through any
number of epsilon transitions (line 8 in Algorithm 1). This is done by finding all reachable nodes through a
depth-first search (DFS). This step is referred to as the epsilon transition.

For simplicity of presentation of our protocols, from here onward we will represent a regular expression
of size n by a graph of epsilon transitions G = (V,Eε) and an array re of size n+ 1, such that re[j] equals
the character transition for the edge (j, j + 1) if it exists, else it is set to ⊥.

2.2 Cryptographic Preliminaries

We define the following cryptographic building blocks and defer details of the protocol instantiation to
Section 6.1.

Oblivious transfer. Oblivious transfer (OT) is a fundamental primitive for secure computation [Rab05].
It takes N messages (m0, . . . ,mN−1) from a sender and a choice index b from a receiver. The receiver
receives mb without knowing {mi}i ̸=b while the sender has no information on b. The random oblivious
transfer (ROT) differs from OT by letting the functionality sample uniform messages for the sender and an
index for the receiver. The functionalities are formally stated in Figure 2.

Two-party computation. Two-party computation (2PC) allows two mutually untrusted parties to jointly
compute a public function over their private inputs without leaking anything beyond the output. We rely on
the Universal Composability (UC) framework [Can20] to prove our two-party protocols are secure against
semi-honest adversaries. The functionality is shown in Figure 3.

Garbled circuit. We employ Yao’s garbled circuits [Yao82] (GC) to securely realize the functionality F2PC.

7

Algorithm 1: TNFA simulation in plain text
Input: An TNFA defined by G(V,E) and string x = x0 · · ·xm−1

Output: True/False
1 Initiate a set Q0 = {S0}
2 Add all nodes that is reachable by S0 in G to Q0

3 for i = 0 to m− 1 do
4 Initiate a empty set Qi+1 = ϕ
5 for j = 1 to n do
6 if Sj−1 ∈ Qi and (j − 1, j) ∈ EΣ is labeled by xi−1 then
7 Put Sj to Qi+1

8 ▷ Character transition
9 Qi+1 ←DFS (Gε = (V,Eε),Qi+1) ▷ Epsilon transition

10 return True if Sn ∈ Qm, and False otherwise.

The function to evaluate is represented as a Boolean circuit consisting of XOR and AND gates. A garbler
P0 constructs garbled tables that represent the wire values by random labels. An evaluator P1 receives the
input labels of the circuit and decrypts the output labels of each gate following the topological order. They
derive the output by having the garbler interpret the output labels of the circuit.

Secret shares and their conversion. A binary value x ∈ {0, 1} can be additively shared by two parties such
that the sum of shares are equal to x. We consider mixed secret sharing schemes: Yao’s garbled circuits and
the additive secret shares [GMW19], as well as a practical approach to convert between these two types of
sharings [DSZ].
- Yao’s share ([b]Y): P0 holds a map [b]Y0 := {k0 : 0; k1 : 1} and P1 holds the key [b]Y1 := kb.
- Additive share ([b]B): P0 holds [b]B0 and P1 holds [b]B1 such that [b]B0 ⊕ [b]B1 = b.
- Y2B ([b]Y → [b]B): the conversion from Yao’s shares to additive shares (local operation [DSZ]).
- B2Y ([b]B → [b]Y): the conversion from additive shares to Yao’s shares.

Oblivious stack. An oblivious stack data structure can be realized by the garbled circuits protocol. It al-
lows conditional push and pop that take a secret Boolean value dictating whether the operation should be
performed or disguised by a dummy execution [WNL+14]. We rely on the following operations.
- ObStack← stack() : initialize a stack and a tag ⊥;
- (·)← ObStack.CondPush([b], [x]) : push the element x to the oblivious stack if b = 1, else skip.
- [x]← ObStack.CondPop([b]) : pop and return the top element x if b = 1, otherwise return ⊥.

Zero-knowledge proofs. For a relation R, public statement x, and private witness w, zero-knowledge
proof of knowledge (ZKPoK) allows a prover P who proves (w, x) ∈ R to a verifier V without revealing
any information of w. It enables P to validate a statement without compromising her privacy.

In terms of its security requirements: Completeness states that a valid witness always makes V accept.
Proof of knowledge requires that, if V accepts, there is overwhelming probability that P holds a valid wit-
ness. Zero-knowledge means that no information related to the witness is leaked to V during the proving
phase.

3 TNFA Simulation via Two Linear Scans

In this section, we describe our new TNFA simulation algorithm that is oblivious to the input string. The
classical TNFA simulation algorithm 1 has an input-dependent memory access pattern and therefore is not
suitable for private evaluation in circuit-based 2PC or ZKP. The input of the TNFA simulation algorithm

8

((A) B | C)((A) B | C)

Initial statuses of all states After the first linear scan After the second linear scan

((A) B | C)((A) B | C) ((A) B | C)((A) B | C)

Figure 4: This figure demonstrates the activation of reachable states from a currently active state S3. During
the first linear scan, states S1 and S2 are not activated as they are reachable from state S3 through a backward
edge between S4 and S1. At the end of the first linear scan, state S4 is activated and causes states S1 and S2

to become activated in the second linear scan.

includes the regular expression and the string. The privacy of either the input string or both the string and
the regular expression is required. We first make the algorithm’s access pattern independent of the input
string by implementing the epsilon transition via linear scans. In Section 4, we explain how to utilize this
linear scan-based simulation algorithm to perform regular expression matching in the ZKP setting. Later
we show how to protect the privacy of both inputs via the oblivious stack or oblivious transfer in the 2PC
scenario in Section 5.

The source of input dependence of the access pattern of the classical NFA simulation algorithm is the
epsilon transition. In the epsilon transition, a depth-first search (DFS) over G(V,Eε) is invoked to add all
reachable nodes from a set of nodes. The DFS algorithm results in memory access patterns dependent on
the set of active states and the input graph.

We found that the DFS operation in the epsilon transition can be replaced by two linear scans. In algo-
rithm 2, we represent the states of nodes using a bit vector s of length n + 1. The vector is initialized to
s = (1, 0, . . . , 0). A node Si is said active if si = 1. The epsilon transition updates the ith bit from 0 to 1
if node Si is reachable from a node Sj in the graph G(V,Eε) of the TNFA, where sj = 1. To check reach-
ability, it’s sufficient to look at the states of a node’s predecessors in the linear scan (line 12, Algorithm 2),
as paths from u to v contain at most one backward edge if v is reachable from u. Nodes reachable by paths
with only forward edges, such as S5, are activated in the first linear scan, as their predecessors are activated
first. Nodes reachable by paths with backward edges are activated in the second scan, as at least one of their
predecessors is activated in the first scan. For example, in Figure 4, S4 is activated in the first scan, making
S2 active in the second scan. Theorem 3.1 shows the correctness and the proof is deferred to Appendix A.2.

Definition 1 An edge (u0, u1) ∈ Eε is deemed a backward edge if u1 < u0, otherwise it is a forward edge.

Definition 2 A pair of edges (u0, u1), (v0, v1) ∈ Eε are called nested edges, if u0 < v0 < v1 < u1 or
v0 < u0 < u1 < v1, otherwise they are called a pair of cross edges.

Lemma 3.1 For u, v ∈ V , if v is reachable from u in G(V,Eε), then there exists a path from u to v that
contains a maximum of one backward edge.

Theorem 3.1 Algorithm 2 is correct, i.e., for any x ∈ Σ∗ and TNFA N , the Algorithm 2 outputs N(x).

We show the proof of the above lemmas and theorems in Appendix A.

Optimization for wildcard. The wildcard metacharacter ”?” can be used to represent any single character
in a string, making it a powerful tool for pattern matching. For example, the wildcard pattern ”a?b” would
match any string that starts with ”a” and ends with ”b” with one letter in between, such as ”acb” and ”a1b”.
Classical TNFA simulation can perform pattern matching with wildcards using union operations for a finite
alphabet, but this can be inefficient when the alphabet is large. Algorithm 2 avoids this issue by treating
the wildcard metacharacter as a character that matches any character in character transition (See Line 10 in
Algorithm 2) so that the cost of wildcard matching is independent of the size of the alphabet.

Complexity. Each invocation of the epsilon transition requires scanning nodes sequentially and updating
their active bit twice. This depends on whether any of its predecessors are active and each node has at

9

Algorithm 2: TNFA simulation via two linear scans

1 Function 2ScanTNFAEval(x,N):
2 s← (1, 0, . . . , 0) ∈ {0, 1}n+1

3 EpsilonTransitions(G(V,Eε), s)
4 for i = 0 to (m− 1) do
5 CharacterTransitions(xi, re, s)
6 EpsilonTransitions(G(V,Eε), s)
7 return sn
8 Function CharacterTransitions(xi, re, s):
9 for j = n to 1 do

10 sj ← (sj−1 ∧ (rej
?
= xi)) ∨ (rej

?
= ′?′)

11 s0 ← 0

12 Function EpsilonTransitions(G(V,Eε), s):
13 for t = 0 to 1 do
14 for j = 0 to n do
15 sj ← sj ∨ (∨(α,j)∈Eε

sα)

maximum 2 predecessors (Lemma 5.1). Thus, the epsilon transition requires O(n) time, which makes the
TNFA evaluation run in O(nm) time in total since it invokes the epsilon transition procedure m times.

4 ZK Regular Expression Matching

In this section, we introduce the Zero-knowledge Regular Expression (ZK-Regex) matching protocol. This
protocol is designed for scenarios where the pattern for the regular expression is publicly known. The goal
for the string holder (prover) is to prove to another party (verifier) that its private string matches or does not
match the public regular expression while keeping the string confidential.

The ZK-Regex protocol leverages the TNFA simulation algorithm presented in Section 3 in a zero-
knowledge proof setting. We also present a practical application of the ZK-Regex protocol, where a packet
sender can prove to a network middlebox that an encrypted TLS message complies with a public regular ex-
pression without revealing its content. The network middleboxes such as firewalls or deep packet inspection
devices could use this technique to enforce regulations while preserving the privacy of packet owners. This
setting is relevant to systems like ZKMB [GAZ+21] and DECO [ZMM+20].

4.1 Standalone ZK-Regex

Our ZK-Regex scheme can be instantiated by any generic ZKP that supports proving the correctness of
a statement that is translated from Algorithm 2. Assume a circuit Ctnfa that is equivalent to Algorithm 2.
It takes a private input the string x and a public input (G(V,Eϵ), re), and outputs the last state of TNFA
sn ∈ {0, 1} which indicates whether the statement is false or true. The circuit Ctnfa includes m invocations
of character transitions and m + 1 invocations of epsilon transitions. Each character transition requires 2n
equality checks, with each check requiring log |Σ| − 1 logical AND gates. Additionally, 2n extra logical
AND gates are needed to combine the results. The epsilon transition involves 2 × (n + 1) iterations, each
using at most 3 logical OR gates, based on the fact that each state has a maximum of two predecessors,
as stated in Section 3. The total circuit for the zero-knowledge TNFA simulation requires 2mn log |Σ| +
6(m + 1)(n + 1) logical AND gates for an input string of length m and a regular expression of length n.

10

We detail a ZK version of Algorithm 2 in Appendix B. In Section 6.2, we instantiate the ZK-regex from
Limbo [DdSGOT21] and evaluate its performance.

4.2 ZK-Regex over TLS

To show it is practical in real-world scenarios, we apply our ZK-regex protocol to policy checking of TLS
messages. Checking if an encrypted TLS message (e.g., encrypted DNS queries like DNS-over-TLS) com-
plies with policies poses challenges because we want to protect user privacy even in places like K12 educa-
tion where policy checking is mandatory to protect minors[McC04]. The use of ZK-Regex offers the best
of both worlds: it ensures policy compliance while also preserving privacy.

For ZK-regex over TLS, we adopt the setting of [GAZ+21]: a verifier serves as a middlebox and pub-
lishes a set of regular expressions as policies, which defines legal contents. The prover, as a TLS packet
sender, proves to the verifier whether the packet content is matched by regular expressions without decrypt-
ing it. To do so, the prover needs to show in the ZKP that 1) a private string is the decryption of a TLS
ciphertext, and 2) whether the public regular expression matches the private string. A ZK proof with these
two parts allows a network middlebox to inspect TLS-encrypted payloads without decrypting the packet.
The ZK-regex described in Section 4.1 is able to prove the second task, however, the first task requires
another ingredient that is referred to as the Channel Opening [GAZ+21].

Intuitively, channel opening can be done by letting the prover decrypt a TLS ciphertext in ZKP, which
takes its encryption key as the witness. Unfortunately, this naive solution is not secure as observed by [GAZ+21; ZMM+20].
The reason is that the authenticated encryption schemes in TLS can be non-committing. Thus, the prover
could use two different encryption keys EK1,EK2 to decrypt a single ciphertext c into two different mes-
sages M1, M2 where M1 matches the regex while M2 does not. Therefore, a malicious prover can generate
a proof using M1 and send M2 through TLS (or vice versa). To solve this problem, the prover needs to prove
that the key it uses to perform decryption in ZKP is the same key used for TLS sessions. The solution for
the channel opening is forcing the prover to reiterate some parts of the TLS handshake in ZKP to re-derive
the key, which binds the key with the handshake messages that can be collected by the verifier. We abstract
three components of the circuit proven in ZKP. The first two are generalized from ZKMB [GAZ+21].
- TLS.Handshake(HSSec) → EK. It takes input partial handshake secrets HSSec in TLS handshake and

outputs an encryption key EK for the TLS record layer.
- TLS.RecordDec(c,EK)→ x. It takes input a TLS ciphertext c and the encryption key EK, and outputs a

string x.
- PatternMatch(re,x) → {0, 1}. It takes input a regex re and the string x, and outputs whether x is

matched by re.
Assume the verifier inspects the network communication and records all TLS messages transited be-

tween the packet sender and receiver. At the first step, the prover (packet sender) takes input the secrets
HSSec derived from Diffie-Hellman key exchange during the TLS handshake, and proves that EK is indeed
the TLS encryption and authentication key. Next, the prover extracts the encrypted messages x in ZKP,
which is the private input to ZK-regex for the proof of pattern match. We define the ZK-Regex-over-TLS as
follows.
Definition 3 The functionality of ZK-Regex-over-TLS takes private input x, handshake secrets HSSec, and
public TLS ciphertext c. Let both re and Σ be public. It outputs accept to V if x ∈ L(re) and x =
TLS.RecordDec(c,TLS.Handshake(HSSec)). Otherwise, it outputs reject.

Our innovation is mainly on PatternMatch thus we refer to [GAZ+21] (Appendix B, C) for the detailed
protocols that efficiently realize TLS.Handshake and TLS.RecordDec, along with their security proofs. We
provide more discussion on the instantiation of Channel Opening in Section 6.1. In Section 6.2, we evaluate
an end-to-end implementation of the above application and show its performance on DNS filters from the
Pi-hole project [pi-22].

11

5 Secure Two-Party Regular Expression Matching

In many practical situations, both the regular expression and input string must be kept private. In this section,
we introduce our protocols for secure two-party regular expression matching (secure-regex). Based on the
TNFA simulation detailed in Algorithm 2, secure-regex consists of two components: character transition
and epsilon transition. The character transition involves comparing each character of a length-n regular
expression to a single character of the input string and updating the states based on the comparison results.
This process is represented by n comparison circuits of size log |Σ| − 1 and 2n logical AND gates for state
updates. These character transitions can be easily expressed as a Boolean circuit and securely evaluated
through 2PC. The communication complexity for privately performing all character transitions in a pattern
matching task is O(κmn log |Σ|) when 2PC is implemented through the Garbled Circuit (GC) method.

Implementing epsilon transitions in Algorithm 2 directly through GC is difficult due to the need to keep
the interconnection of the graph G(V,Eε) secret from the string holder. The state of a node in the graph is
propagated from its predecessors, and the 2PC protocol must perform an oblivious retrieval of a state from
a list of secretly shared states. This type of oblivious table lookup operation is often challenging. While
using oblivious RAM could solve the problem generically, it would bring significant overhead and make the
protocol inefficient [GO96].

The two methods for efficient handling of the epsilon transition are presented in the subsequent sections:
one based on the oblivious stack (OS) and another based on the oblivious transfer (OT). The OT-based
approach incurs lower communication overhead for short input regular expressions, but its cost increases
faster than OS-based protocol, and thus is less efficient for long regular expressions. Also, the OS-based
approach incurs only a constant number of round-trip communication and has a significant advantage in the
high-latency network. We defer our detailed performance evaluation and comparison to Section 6.

5.1 Epsilon Transition via Oblivious Stack

This section presents a constant-round two-party computation protocol that employs an oblivious stack for
epsilon transitions. The protocol requires O(n) stack operations with an average communication complexity
of O(log n) per operation. First, we introduce the following definitions and lemmas that specify these
patterns.

Definition 4 An edge (u0, u1) ∈ Eε is termed a long edge if |u1 − u0| > 1. In addition, (u0, u1) is called
u0’s outgoing edge or u1’s incoming edge.

Lemma 5.1 Every node in the TNFA graph G has at most one incoming long-forward edge and at most one
outgoing long-forward edge in Eε.

Lemma 5.2 Every pair of backward edges is nested.

Lemma 5.3 A pair of long-forward edges (u0, u1) and (v0, v1) with v0 < u0 are cross edges if and only if
v1 = u0 + 1 and re[u0] =

′ |′.

Lemma 5.2 and Lemma 5.3 illustrate that all backward edges are pairwise nested, and forward edges are
almost nested with the exception of the scenario described in Lemma 5.3. We show the proof of the above
lemmas in Appendix A.2.

Oblivious graph representation. By Lemma 5.1, the number of incoming and outgoing edges for each
node in G = (V,Eε) is limited to 2. In addition, each node has at most one incoming and outgoing long edge.
Therefore, G can be represented by six (n + 1)-bit binary vectors hasSFIE, hasLFIE, hasBIE, hasLFOE,
hasBOE, isOR, in which the i-th bit representing whether the i-th node has short forward incoming/ long

12

forward incoming/backward incoming/long forward outgoing/backward outgoing edges and whether the
i-th character in regex is ′|′.

With the oblivious graph representation of the TNFA, we present the formal outline of our oblivious
stack-based circuit in Algorithm 5. The algorithm consists of two subprotocols: the forward scan (Algo-
rithm 3) and the backward scan (Algorithm 4).

Algorithm 3: ForwardScan

1 Input: G = (V,Eε) presented by hasSFIE, hasLFIE, hasLFOE, isOR and states {s0 . . . , sn}
2 ostack← stack()
3 cross← false, tmp← false
4 for j = 1 to n do
5 popElmt← ostack.pop((hasLFIE[j] ∧ ¬cross) ∨ isOR[j])
6 sα ← Ite(cross, tmp, popElmt) // If-then-else
7 sα ← Ite(hasLFIE[j], sα, false)
8 s′α ← Ite(hasSFIE[j], sj−1, false)
9 sj ← sj ∨ sα ∨ sα′

10 ostack.push(hasLFOE[j], sj)
11 cross← isOR[j]
12 tmp← Ite(cross, popElmt, false)

Algorithm 4: BackwardScan

1 Input: G = (V,Eε) presented by hasBIE, hasBOE and states {s0 . . . , sn}
2 ostack← stack()
3 for j = n to 0 do
4 α← 0
5 α← ostack.pop(hasBIE[j])
6 [sj]← sj ∨ α
7 ostack.push(hasBOE[j], sj)

In the backward scan subprotocol, nodes are processed from n to 0 and activated (by setting their s entry
to true) if they have an incoming backward edge from an active node. When reaching an outgoing backward
edge from state j, sj is pushed into the stack. When the current state sj has an incoming backward edge,
a state bit is popped from the stack and its status is propagated to sj . Due to the nested property and stack
data structure, the backward scan ensures correctness, meaning any node reachable from an active node via
a backward edge is activated.

The objective of the forward scan is to activate a node if there is a path to it from an active node that
consists only of forward edges. Table 2 provides an illustration of the forward scan subprotocol. Unlike
backward edges, forward edges can cross, as shown by the crossing of S6 and S7 in Figure 1. However,
according to Lemma 5.3, these crossings can only occur between adjacent nodes and can be identified by
examining if the character is ′|′ in re.

To handle these special crossings, the stack-based approach used for backward edges can be adjusted.
When the stack contains two nodes with crossed forward edges, such as s0, s6 in the processing of S6, the
top two elements can be swapped to s6, s0. This allows s0 to be popped from the stack and used for updating
the next state with a long forward incoming edge (LFIE), S7 in this case. However, swapping the elements
causes three operations on the stack. To reduce the number of operations, the variable tmp is introduced to
store the top bit of the stack instead of swapping. After processing S6, the stack will have s6 and tmp = s0,

13

State stack sα s′α cross tmp Long Edge
S0 s0 F F F F Has LFOE
S1 s0, s1 F s0 F F Has LFOE
S2 s0, s1 F s1 F F None
S3 s0, s1 F F F F None
S4 s0 s1 s3 F F Has LIFE
S5 s0 F s4 F F Has LIFE
S6 s6 F F T s0 Has LFOE
S7 s7 s0 F F F Has LFIE
S8 s6 F F F Has LFIE

Table 2: Example of one forward scan for the TNFA in Algorithm 3. The ith row in the table shows the
status of the stack and variable values after processing the ith state. If a state has a long forward outgoing
edge (LFOE), its status is always pushed onto the stack. If it has a long forward incoming edge (LFIE), its
status is updated using either a bit popped from the stack or stored in tmp. For example, S4 in Figure 1 has
a LFIE caused by ′∗′, so Sα is assigned the bit popped from the stack. Meanwhile, S7 has a LFIE caused by
′|′, so tmp stores S0 after processing S6 and is used to update S7.

Algorithm 5: Epsilon Transition via Oblivious Stack

1 Input: N = (G = (V,Eε), re) and states {s0, . . . , sn} that are shared by two parties.
2 ForwardScan(G = (V,Eε), {s0, . . . , sn})
3 BackwardScan(G = (V,Eε), {s0, . . . , sn})
4 ForwardScan(G = (V,Eε), {s0, . . . , sn})

Output: Updated shared states’ statuses {s0, . . . , sn}

which will be used immediately for the next state with an LFIE. This approach is valid due to the structure
of the TNFA presented in Lemma 5.3.

Security. All components in the Algorithms 3, Algorithm4, and Algorithm 5, are realized in F2PC. Thus
the security follows the instantiation of the underlying generic two-party computation. We discuss more
about the realization of the protocol components in Section 6.1. We provide the following theorem and
defer the proof to Appendix C.4.

Theorem 5.1 The protocol shown in Algorithm 5 securely realizes the function EpsilonTransition described
in Algorithm 2 (Lines 12-15) against semi-honest adversaries in the F2PC-hybrid mode.

Complexity. An epsilon transition requires a total of 6n + 2 stack accesses. The efficient construction of
oblivious stacks [ZE13] for a stack of size O(n) incurs O(log n) amortized cost for each oblivious access.
Thus the net circuit size for oblivious stack is O(n log n). Additionally, both forward and backward scans
take O(n) AND gates for non-stack operations. Hence, the epsilon transition has O(n log n) circuit com-
plexity (in the number of AND gates). If the epsilon transition is realized by this stack-based protocol and
the functionality F2PC is instantiated by the garbled circuits protocol, the communication complexity of the
regular expression matching task (shown in Algorithm 2) is O(κmn(log n+ log |Σ|)).

5.2 Epsilon Transition via 1-out-n+1 OT

An important observation that helps optimize the OS-based protocol is that the predecessors of each state
in a TNFA are solely determined by the input regular expression. As a result, the pattern holder knows the

14

Algorithm 6: Epsilon Transition via 1-out-of-n+1 OTs

Input: String holder inputs Boolean shares of states’ statuses {[s0]B0 , . . . , [sn]B0 , }
Input: Pattern holder inputs G(V,Eε), and her Boolean shares of states’ statuses {[s0]B1 , . . . [sn]B1 }

1 for t = 0 to 1; j = 0 to n do
2 String holder samples a random bit rb, and sends (ot, n+ 1, 1, {[sj]B0 ⊕ rb}j∈[0,n]) to FOT

3 Denote α as the index of j-th state’s predecessor. Pattern holder sends (ot, n+ 1, 1, α) to FOT

4 FOT returns m = [sα]
B
0 ⊕ rb to the pattern holder

5 Pattern holder sets her new share [sα]
B
1 ← m⊕ [sα]

B
1

6 String holder sets her new share [sα]
B
0 ← rb

7 For another predecessor of j-th state α′, two parties repeat the above to get [sα′]B0 and [sα′]B1
respectively

8 Invoke F2pc with B2Y to compute
[sj]

Y
0 , [sj]

Y
1 ← ([sj]

B
0 ⊕ [sj]

B
1) ∨ ([sα]

B
0 ⊕ [sα]

B
1) ∨ ([s′α]

B
0 ⊕ [s′α]

B
1)

9 Translate Yao’s share to additive share as [sj]B0 , [sj]
B
1 ← Y2B([sj]Y0 , [sj]

Y
1)

Output: String holder holds shares of updated states {[s0]B0 , . . . , [sn]B0 }
Output: Pattern holder holds shares of updated states {[s0]B1 , . . . , [sn]B1 }

exact states (i.e., the value of α at line 15 in Algorithm 2) that need to be retrieved when updating a state
during epsilon transitions. Based on this, we propose an alternative OT-based approach for secure epsilon
transition that has a total communication overhead of O(mn(n+κ log |Σ|)). While its asymptotic overhead
is not as good as the OS-based approach, it is still practical for matching with short regular expressions or
in low-latency networks. A comprehensive comparison with the OS-based approach will be provided in
Section 6.

The protocol utilizes the functionalities F2PC, FOT, and the conversion functions Y2B and B2Y dis-
cussed in Section 2.2. It is based on the bound on the number of predecessors for each state established in
Lemma 5.1, which states that a state can have at most 2 predecessors. The protocol starts by having the two
parties secretly share the states (s0, . . . , sn) ∈ {0, 1}n+1. The goal is to update a state sj based on its two
predecessors sα and sα′ if they exist. To do this, the parties use 1-out-of-n+1 OT twice to retrieve the secret
shares of α-th and α′-th state (lines 2-7). Then they employ F2PC to update the secret shared state sj (line
8). Y2B and B2Y are utilized to convert between the forms of the secret shares when transforming between
FOT and F2PC (lines 8-9).

The security of the protocol in Algorithm 6 is stated below and its formal proof is provided in Ap-
pendix C.3.

Theorem 5.2 The protocol shown in Algorithm 6 securely realizes the function EpsilonTransition described
in Algorithm 2 (Lines 12-15) against semi-honest adversaries in the (F2PC,FOT)-hybrid mode.

Complexity. Algorithm 6 makes 4(n + 1) invocations of 1-out-of-n+1 OT. The corresponding garbled
circuit(GC) contains 4(n + 1) inputs from both the garbler and evaluator and 4(n + 1) AND gates. The
4(n+ 1) invocations of 1-out-of-n+1 OT only require the string holder to send 4(n+ 1)2 bits to the pattern
holder during the online phase. We will detail how we achieve (n+1)-bit per 1-out-of-n+1 OT in the online
phase with a sublinear preprocessing in Section 6.1. Assume that the string holder is the garbler and the
pattern holder is the evaluator of GC. Among 2(n + 1) rounds, the garbler sends 4κ bits and the evaluator
sends 2 bits per round. This epsilon transition protocol incurs a total of 4(n+ 1)2 + 8(n+ 1)κ+ 4(n+ 1)
bits communication overhead and 2(n + 1) round trips. When applying this OT-based epsilon transition to
the TNFA simulation described in Algorithm 2, it costs O(mn(n+ κ log |Σ|)) communication and O(mn)
round-trips.

15

Algorithm 7: 1-out-of-N OT

1 Initialization (α):
2 P0 and P1 send (rot, N, 1) to FOT, which returns (r0, · · · , rN−1) ∈ {0, 1}N to P0 and

(γ, rγ) ∈ N× {0, 1} to P1

3 Receiver sends δ = α− γ mod N to P0.
4 Online (x0, . . . , xN−1) ∈ {0, 1}N :
5 P0 computes and sends y = (x0 ⊕ ri0 , · · · , xN−1 ⊕ riN−1) to P1, in which ik = k − δ

mod N for k ∈ [0, N).
6 Receiver computes the output xα = yα ⊕ rγ .

6 Performance Evaluation

We first describe the detailed instantiation of cryptographic protocols we described in our protocol. Then
we provide concrete performance evaluations of our privacy-preserving pattern matching protocols. We
evaluate both our secure-regex and zk-regex protocols with varying message and pattern lengths, and we
test their performance with real-world tasks to show the practicality of our protocols.

6.1 Instantiate Cryptographic Building Blocks

1-out-of-N OT. Similar to the previous 1-out-of-N OT schemes, we instantiate it by converting from a 1-
out-of-N ROT [NP99; KKRT16; KK13]. When plugging into Algorithm 6, we make use of the fact that the
choice indices are determined by the pattern. Thus at the beginning of the protocol execution, the pattern
holder is able to send all differences of the real choice indices and random choice indices obtained from
ROT. It allows to efficiently generate 1-out-of-N ROT messages during a preprocessing phase and only
incurs one-round communications during the online phase. The conversion is described in Algorithm 7. We
define its security proof to Appendix C.1.

1-out-of-N ROT. We describe an efficient 1-out-of-N ROT protocol that realizes the corresponding func-
tionality in FOT (Algorithm 2). The protocol takes input ⌈log2N⌉ 1-out-of-2 ROT messages and transforms
them into 1-out-of-N ROT with O(N) invocations of correlation robust hash (CRH) [GKWY20]. While
instantiating the 1-out-of-2 ROT with the subfield vector oblivious linear evaluation (VOLE) based on pseu-
dorandom correlation generator (PCG) [BCG+19a; YWL+20; BCG+19b], the communication cost is less
than ⌈log2N⌉ bit in total. We defer the detailed protocol description, optimization, and security proofs to
Appendix C.2.

Garbled circuits. The garbled circuits that realizesF2PC is instantiated by the half-gates protocol [ZRE15],
with optimizations including free-XOR [KS08], point-and-permute [BMR90] and garbled row reduction [NPS99].
Assuming the sublinear ROT during the preprocessing, the online communication includes 1 bit per evalua-
tor’s input and 2κ bit per AND gate.

Oblivious stack. We use the oblivious stack protocol proposed in [ZE13]. Each conditional push or condi-
tional pop operation incurs O(κ log n) amortized communication complexity when instantiated in garbled
circuits. At a high level, it builds a layered data structure with increased capacity from the lower layers to
the upper layers. The pushed elements are first stored at lower layers. All elements at one layer will be
propagated to the upper layer when the current layer is possibly full. The pop operations reverse this pro-
cess. We refer to [ZE13] for more details about the protocol. In our prototype, we use the implementation

16

open-sourced by [LJA+22].

MPC-in-the-Head. We instantiate the MPCitH protocol by the Limbo framework [DdSGOT21]. Limbo
adopts an MPC verification protocol that is based on additive secret sharing and a sublinear distributed
multiplication triple checking scheme [BBCG+19; GSZ20]. After being compiled to a ZKP, it results in
high efficiency, non-interactiveness, and proof size linear to the circuit size. It is currently the state-of-the-
art MPCitH protocol. The only work in this regime that achieves sublinear proof size is Ligero [AHIV17].
However, its computation is more expensive than Limbo.

Shortcut Channel opening for TLS 1.3. Recall from Section 4.2 that channel opening refers to the circuit
that proves a private string is the decryption of a public TLS ciphertext, and it must re-derive the session key
to prevent key equivocation. A naive approach is to repeat all client key derivations from the TLS Hand-
shake, but this is inefficient due to costly group operations and hashing of a potentially long transcript, and
thus makes the circuit size dependent on the longest possible transcript. ZKMB [GAZ+21] offers a short-
cut by only re-executing essential intermediate operations from the handshake process, eliminating those
expensive operations. Our implementation takes this approach, resulting in a circuit that does not contain
any group operations, and its size is independent of the transcript length. Specifically, we implemented the
shortcut channel opening circuit in Figure 9 of [GAZ+21]. We refer to Appendix B and C of [GAZ+21] for
a detailed description of the TLS channel opening protocol and related security proofs.

6.2 Performance Evaluation of ZK-Regex

We now evaluate the performance of our ZK-regex protocol. First, we measure the concrete prover time
and proof size of our standalone ZK-regex protocol with varying m and n as well as a real-world example
using the Pi-hole filters [pi-22]. Then, we deploy our protocol over TLS and show our ZK-regex over TLS
is practical in a realistic DNS policy checking setting.

We implemented ZK-regex protocol and channel opening for TLS using emp-toolkit [WMK16] and
evaluated our circuits in Limbo framework [DdSGOT21] with parameters that achieve 2−40 statistical se-
curity. Specifically, we fix the compression factor to 32 and the number of parties to 16 for all runs. All
experiments in this section use a single Amazon EC2 m5.4xlarge instance with 64 gigabytes of RAM.
We assume |Σ| = 256 so that both pattern length and string length are in bytes. We note that there is an
inherent trade-off between proof size and prover time within MPCitH: increasing the number of parties in
MPCitH will decrease the proof size but it will also increase prover time. This trade-off makes ZK-regex
versatile and well-suited for a range of settings with different priorities. We choose these parameters in our
experiments to reflect the practicality of our protocol in terms of both prover time and proof size.

r1 97 379KB 0.57s r2 39 169KB 0.23s
r3 66 267KB 0.38s r4 69 277KB 0.39s
r5 83 328KB 0.47s r6 37 161KB 0.22s
r7 23 111KB 0.14s r8 21 103KB 0.13s
r9 59 241KB 0.35s r10 65 263KB 0.37s

r11 6 49KB 0.05s r12 16 85KB 0.1s
r13 68 274KB 0.39s Avg. 49 208KB 0.29s

Table 3: The Length of the regular expression, proof size and prover time of ZK-regex applied to Pi-hole
regular expression set. The patterns (r1,...,r13) are provided in [pi-20]. We omitted one pattern because it
cannot be efficiently translated.

Benchmark the protocol. First, we measure the proof size and prover time with varying input strings and

17

26 27 28 29 210

Pattern length n

2−1

20

21

22

23

Pr
ov

er
tim

e
(s

)

m = 28

m = 29

26 27 28 29 210

Pattern length n

28

29

210

211

212

213

Pr
oo

fs
iz

e
(K

B
)

m = 28

m = 29

27 28 29 210 211

String length m

2−1

20

21

22

23

Pr
ov

er
tim

e
(s

)

n = 27−1
n = 28−1

27 28 29 210 211

String length m

28

29

210

211

212

213

Pr
oo

fs
iz

e
(K

B
)

n = 27−1
n = 28−1

Figure 5: The prover time and proof size of our ZK-regex protocol (average over 10 executions)

27 28 29 210 211 212

Pattern length n

22

23

24

25

Pr
ov

er
tim

e
(s

)

m = 26

m = 27

m = 28

m = 29

27 28 29 210 211 212

Pattern length n

211

212

213

214

215
Pr

oo
fs

iz
e

(K
B

)

m = 26

m = 27

m = 28

m = 29

Figure 6: The prover time and proof size of our ZK-regex protocol deployed over TLS 1.3 (average over 10
executions)

regular expression length. The result appears in Figure 5. The proof size and prover time grow linearly with
both the input string and regular expression length. For a 128-byte string and 128-byte regex (typical for
real-world scenarios), our protocol generates a proof of 243.8 KB in 0.37 s.

Next, in our DNS policy checking example, we use the regular expressions for blocking filters provided
by Pi-hole [pi-20]. The evaluation result appears in Table 3. For the longest pattern r1, ZK-regex generates
a proof of size 379 KB in just 0.57 s.

Comparison with [FKL+21]. The protocol proposed by Franzese et al. [FKL+21] is based on a constant-
overhead oblivious array access in the ZK setting and its pattern match relies on the DFA. The representation
of DFA usually leads to an exponential explosion in terms of the length of the regular expression. It requires
O(n2n|Σ|) to build the array to store the DFA and O(mn2) to traverse it. Although its read operation only
takes 15µs per access, the efficiency and scalability of [FKL+21] is not comparable to our ZK-regex.

Benchmark the ZK-regex over TLS. We implement our ZK-regex protocol over TLS by integrating the
shortcut channel opening in our ZK-regex circuit. The cost of our proof now consists of two parts: shortcut
channel opening and zk-regex. Although the addition of the channel opening subcircuit imposes some over-
head, we show it is still practical by evaluating our ZK-regex over TLS in a realistic DNS policy checking
setting. We evaluated the prover time and proof size of our ZK-regex deployed over TLS 1.3 with varying
m and n. The result appears in Figure 6. When ZK-regex over TLS is applied to DNS policy checking using

18

26 28 210 212

String length m

20

23

26

29

R
un

ni
ng

tim
e

(s
)

OT, n = 26−1
OT, n = 28−1
OS, n = 26−1
OS, n = 28−1

26 28 210 212

String length m

2−6

2−2

22

26

210

C
om

m
un

ic
at

io
n

(G
B

) OT, n = 26−1
OT, n = 28−1
OS, n = 26−1
OS, n = 28−1

Figure 7: The running time (in seconds) and communication overhead (in gigabytes) of our OT-based and
OS-based protocol with subject to the change of string length (m). The network bandwidth is fixed to 1
Gbps.

Bandwidth(Mbps) 50 100 500 1K 5K
OT 18.2 9.1 8.9 8.8 8.4

OS 568.4 284.2 56.8 28.4 11.8

Table 4: The running time (seconds) of the protocol with subject to the bandwidth. The pattern length
n = 255 and the string length m = 256.

the Pi-hole pattern set, the longest pattern with n = 97 and m = 128 yielded a proof that took only 2.88
seconds to generate and had a size of just 1372 KB. We remark that the overhead imposed by the channel
opening circuit is independent of n and only linear to m.

6.3 Performance Evaluation of Secure-Regex

We implement our privacy-preserving pattern match protocols and demonstrate their performance through a
series of experiments. Our use of garbled circuits protocol is built on top of the emp-toolkit [WMK16]. We
implement the 1-out-of-n + 1 oblivious transfer (OT) protocol described in Section 6.1, and use the obliv-
ious stack proposed in [ZE13] and open sourced from [LJA+22]. We use two Amazon EC2 m5.xlarge
instances located in the same region to act as the string holder and the pattern holder. The instances are
equipped with 4 vCPUs with clock speed up to 3.1 GHz, 16 GiB RAM and up to 10 Gbps network band-
width. We use only a single thread. Meanwhile, we use the Linux traffic control tool tc to control the
network bandwidth and create latency to simulate the wide area network (WAN).

Benchmark the protocols. We first fix the network bandwidth to 1 Gbps and show the performance with
regard to variables n (pattern length) and m (string length). We report the running time and communication
overhead for each execution for both approaches (OT-based or OS-based). Recall that asymptotically, the
communication complexity of the OT-based approach is O(mn(n+ κ log |Σ|)) and the OS-based approach
is O(κmn(log n+ log |Σ|)). Figure 7 demonstrates how the protocols scale with the increasing of the input
string length m. We choose the parameters (n = 2i − 1,m = 2j) where i ∈ {6, 8} and j ∈ [5, 12]. Both
the running time and the communication overhead for two protocols are linear to m, which aligns with our
analysis. Figure 8 shows the performance with the increased pattern length n. We choose the parameters
(n = 2i − 1,m = 2j) where i ∈ [5, 13] and j ∈ {6, 8}. For short patterns, the communication overhead
of the OT-based approach is dominated by the character transition, thus is still linear to n. As n increases,
the cost of epsilon transition dominates thus the overhead becomes quadratic to n. The performance of the
OS-based approach complies with our analysis. Overall the OT-based approach is more efficient for short
patterns, but is outperformed by OS-based when log n > 12.

Next, we fix the pattern length n = 255 and string length m = 256. To demonstrate how our protocols
react to the change in the network bandwidth, we report the running time under different network settings.

19

26 28 210 212

Pattern length n

20

23

26

29

R
un

ni
ng

tim
e

(s
)

OT, m = 26

OT, m = 28

OS, m = 26

OS, m = 28

26 28 210 212

Pattern length n

2−8

2−5

2−2

21

24

27

C
om

m
un

ic
at

io
n

(G
B

)

OT, m = 26

OT, m = 28

OS, m = 26

OS, m = 28

Figure 8: The running time (in seconds) and communication overhead (in gigabytes) of our OT-based and
OS-based protocol subject to changes in pattern length (n). The network bandwidth is fixed to 1 Gbps.

0 200 400 600 800 1000
String length m

0

25

50

75

100

125
R

un
ni

ng
tim

e
(s

)
n = 24−1
n = 26−1
n = 28−1
n = 210−1
n = 212−1

Figure 9: The running time (in seconds) of our OT-based protocol applied to regular expressions (RE) from
the SNORT system. The network bandwidth is set to be 1 Gbps.

In Table 4, we report the running time of two protocols while increasing the network bandwidth. The
performance of the OT-based protocol does not change when the bandwidth is higher than 100 Mbps due to
its low communication overhead. The running time of the OS-based protocol decrease as the bandwidth is
raised from 50 Mbps to 5000 Mbps, which shows that communication is its bottleneck.

The influence of the network latency on our protocol is demonstrated in Table 5. We fix the pattern
length n = 63 and string length m = 64. We choose the maximum latency to be 60 milliseconds, which is
the round-trip delay between the US west and east coast. This is a proper simulation of real-world WAN.
The OT-based protocol has a number of round-trips linear to the pattern length n and string length m, thus
it deteriorates quickly when the latency increases. The OS-based protocol is less affected by the latency
due to its constant round of communication and performs better than the OT-based approach in all delayed
network settings. Overall, the OT-based approach shows better performance in low-bandwidth, low-latency,

Scheme 0 ms 2 ms 20 ms 40 ms 60 ms
OT 0.5 17.2 167.3 333.75 500.2

OS 1.5 1.6 1.7 2.8 14.2

Table 5: The running time (seconds) of the protocol with subject to the network latency. The pattern length
n = 63 and the string length is m = 64.

and short-pattern settings, while the OS-based protocol is more efficient in high-bandwidth, high-latency,
and long-pattern settings.

Benchmarks against SNORT. We demonstrate the use of secure-regex in resolving privacy concerns in
real-world intrusion detection. A pattern holder holds rule-based regular expressions and can identify poten-
tial threats from incoming network packets, while a string holder holds confidential network packets from
clients. To protect both the rules and packet contents, the two parties can use secure-regex protocols to
perform secure pattern matching.

20

20 40 60
Regualr Expression Size

103

104

105

C
om

m
un

ic
at

io
n

(K
B

)
m = 64, ONE
m = 64, Ours

m = 128, ONE
m = 128, Ours

m = 256, ONE
m = 256, Ours

Figure 10: Comparisons with ONE. n is the size of the pattern The results show that our OT-based secure-
regex improved communication cost by 4.5X.

We use the open-source SNORT PCRE (Perl Compatible Regular Expressions) to showcase the use of
regular expressions in intrusion detection [CIS]. SNORT PCRE is a sophisticated form of regular expres-
sions with advanced features like backreferences and recursive patterns. Our focus is on classical regular
expressions, which typically support only disjunction, concatenation, and loop operations. We rewrite the
SNORT PCRE into our format described in Section 2.1. This results in 416 SNORT PCRE that are suitable
for use in our secure-regex protocol, with 356 (85.5%) of them having a length of ≤ 212 bytes.

We benchmark our secure-regex protocol against regular expressions of SNORT, ignoring the regex
that has length > 212. We show in Figure 9 the running time of secure-regex (OT-based approach) with
partial SNORT PCRE against input string of varied length. Note that our secure-regex implementation
requires the length of regular expressions padded to almost a power of 2. For clarity we only benchmark for
n = 2j − 1, j ∈ {4, 6, 8, 10, 12}.
Comparison with ONE Sasakawa et al. introduced ONE as a state-of-the-art. solution for regular expres-
sion pattern matching utilizing NFA in their paper [SHd+14]. Although the implementation of ONE is not
presently accessible, we evaluated the communication cost of our OT-based protocols against Sasakawa et
al.’s method, relying on the performance metrics they reported in their study. According to the findings, the
utilization of our OT-based secure-regex brings communication cost reduction of more than 4.5X.

7 Acknowledgement

Work by Ning Luo, Gefei Tan, and Chenkai Weng was supported by NSF award 2236819 and Research
awards from Google. Work by Ruzica Piskac was supported in part by NSF award CNS-1562888 and
CCF-2131476.

References

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
Ligero: Lightweight sublinear arguments without a trusted setup. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, pages 2087–2104,
2017.

[APD+10] Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick Feamster. Build-
ing a dynamic reputation system for dns. In USENIX Security Symposium, pages 273–290,
2010.

21

[BBCG+19] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai. Zero-
knowledge proofs on secret-shared data via fully linear pcps. In Advances in Cryptology–
CRYPTO 2019: 39th Annual International Cryptology Conference, pages 67–97. Springer,
2019.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Pe-
ter Scholl. Efficient two-round ot extension and silent non-interactive secure computation.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, pages 291–308, 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. Ef-
ficient pseudorandom correlation generators: Silent ot extension and more. In Advances in
Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference, pages 489–
518. Springer, 2019.

[BEDM+13] Joshua Baron, Karim El Defrawy, Kirill Minkovich, Rafail Ostrovsky, and Eric Tressler.
5pm: Secure pattern matching. Journal of computer security, 21(5):601–625, 2013.

[Bee09] Nicole Beebe. Digital forensic research: The good, the bad and the unaddressed. In IFIP
International conference on digital forensics, pages 17–36. Springer, 2009.

[Ben99] Gary Benson. Tandem repeats finder: a program to analyze dna sequences. Nucleic acids
research, 27(2):573–580, 1999.

[BKS02] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal xml pattern
matching. In Proceedings of the 2002 ACM SIGMOD international conference on Manage-
ment of data, pages 310–321, 2002.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure proto-
cols. In Proceedings of the twenty-second annual ACM symposium on Theory of computing,
pages 503–513, 1990.

[BSA13] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. Data-oblivious graph algorithms for
secure computation and outsourcing. In Proceedings of the 8th ACM SIGSAC symposium on
Information, computer and communications security, pages 207–218, 2013.

[Can20] Ran Canetti. Universally composable security. J. ACM, 67(5), sep 2020.

[CIS] CISCO. Snort intrution prevention system. https://www.snort.org.

[DA18] Javad Darivandpour and Mikhail J Atallah. Efficient and secure pattern matching with wild-
cards using lightweight cryptography. Computers & Security, 77:666–674, 2018.

[DdSGOT21] Cyprien Delpech de Saint Guilhem, Emmanuela Orsini, and Titouan Tanguy. Limbo: Effi-
cient zero-knowledge mpcith-based arguments. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 3022–3036, 2021.

[DSZ] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient
mixed-protocol secure two-party computation. In 22nd Annual Network and Distributed
System Security Symposium.

22

https://www.snort.org

[FKL+21] Nicholas Franzese, Jonathan Katz, Steve Lu, Rafail Ostrovsky, Xiao Wang, and Chenkai
Weng. Constant-overhead zero-knowledge for ram programs. In Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security, CCS ’21, page
178–191, New York, NY, USA, 2021. Association for Computing Machinery.

[Fri09] Keith B Frikken. Practical private dna string searching and matching through efficient oblivi-
ous automata evaluation. In IFIP Annual Conference on Data and Applications Security and
Privacy, pages 81–94. Springer, 2009.

[GAZ+21] Paul Grubbs, Arasu Arun, Ye Zhang, Joseph Bonneau, and Michael Walfish. Zero-knowledge
middleboxes. Cryptology ePrint Archive, Paper 2021/1022, 2021. https://eprint.
iacr.org/2021/1022.

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty computa-
tion from fixed-key block ciphers. In 2020 IEEE Symposium on Security and Privacy, pages
825–841. IEEE, 2020.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and system
sciences, 28(2):270–299, 1984.

[GMW19] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game, or a
completeness theorem for protocols with honest majority. In Providing Sound Foundations
for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pages 307–328. 2019.

[GO96] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on oblivious rams.
Journal of the ACM (JACM), 43(3):431–473, 1996.

[GSZ20] Vipul Goyal, Yifan Song, and Chenzhi Zhu. Guaranteed output delivery comes free in hon-
est majority mpc. In Advances in Cryptology–CRYPTO 2020: 40th Annual International
Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17–21, 2020, Pro-
ceedings, Part II, pages 618–646. Springer, 2020.

[HL08] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern match-
ing with security against malicious and covert adversaries. In Theory of Cryptography Con-
ference, pages 155–175. Springer, 2008.

[HM18] Paul Hoffman and Patrick McManus. Dns queries over https (doh). Technical report, 2018.
https://www.rfc-editor.org/rfc/rfc8484.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In Crypto, volume 2729, pages 145–161. Springer, 2003.

[Ker06] Florian Kerschbaum. Practical private regular expression matching. In Security and Privacy
in Dynamic Environments: Proceedings of the IFIP TC-11 21st International Information
Security Conference, pages 461–470, 2006.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved ot extension for transferring short
secrets. In Advances in Cryptology–CRYPTO 2013: 33rd Annual Cryptology Conference,
pages 54–70, 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched
oblivious prf with applications to private set intersection. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 818–829, 2016.

23

https://eprint.iacr.org/2021/1022
https://eprint.iacr.org/2021/1022
https://www.rfc-editor.org/rfc/rfc8484

[KM14] Franziskus Kiefer and Mark Manulis. Zero-knowledge password policy checks and verifier-
based pake. In Computer Security-ESORICS 2014: 19th European Symposium on Research
in Computer Security, pages 295–312. Springer, 2014.

[KRT18] Vladimir Kolesnikov, Mike Rosulek, and Ni Trieu. Swim: Secure wildcard pattern match-
ing from ot extension. In International Conference on Financial Cryptography and Data
Security, pages 222–240. Springer, 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free xor gates and
applications. In Automata, Languages and Programming: 35th International Colloquium,
ICALP 2008, pages 486–498. Springer, 2008.

[Kuk92] Karen Kukich. Techniques for automatically correcting words in text. Acm Computing Sur-
veys (CSUR), 24(4):377–439, 1992.

[LJA+22] Ning Luo, Samuel Judson, Timos Antonopoulos, Ruzica Piskac, and Xiao Wang. ppsat:
Towards two-party private sat solving. In 31st USENIX Security Symposium, pages 2983–
3000, 2022.

[LW13] Peeter Laud and Jan Willemson. Universally composable privacy preserving finite automata
execution with low online and offline complexity. 2013. https://eprint.iacr.org/
2013/678.

[McC04] Martha M McCarthy. Filtering the internet: The children’s internet protection act. Educa-
tional Horizons, 82(2):108–113, 2004.

[MNSS12] Payman Mohassel, Salman Niksefat, Saeed Sadeghian, and Babak Sadeghiyan. An efficient
protocol for oblivious dfa evaluation and applications. In Cryptographers’ Track at the RSA
Conference, pages 398–415. Springer, 2012.

[Moc87] Paul V Mockapetris. Domain names-concepts and facilities. Technical report, 1987. https:
//www.rfc-editor.org/rfc/rfc1034.

[NP99] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proceedings
of the thirty-first annual ACM symposium on Theory of computing, pages 245–254, 1999.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and mechanism
design. In Proceedings of the 1st ACM Conference on Electronic Commerce, pages 129–139,
1999.

[pi-20] Regex Filters for Pi-hole. https://github.com/mmotti/pihole-regex/blob/
master/regex.list, 2020.

[pi-22] Pi-hole:Network-wide protection. https://pi-hole.net/, 2022.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. 2005. https://
eprint.iacr.org/2005/187.

[SBB19] Mohammad Hasan Samadani, Mehdi Berenjkoob, and Marina Blanton. Secure pattern
matching based on bit parallelism. International Journal of Information Security, 18(3):371–
391, 2019.

24

https://eprint.iacr.org/2013/678
https://eprint.iacr.org/2013/678
https://www.rfc-editor.org/rfc/rfc1034
https://www.rfc-editor.org/rfc/rfc1034
https://github.com/mmotti/pihole-regex/blob/master/regex.list
https://github.com/mmotti/pihole-regex/blob/master/regex.list
https://pi-hole.net/
https://eprint.iacr.org/2005/187
https://eprint.iacr.org/2005/187

[SHd+14] Hirohito Sasakawa, Hiroki Harada, David duVerle, Hiroki Arimura, Koji Tsuda, and Jun
Sakuma. Oblivious evaluation of non-deterministic finite automata with application to
privacy-preserving virus genome detection. In Proceedings of the 13th Workshop on Pri-
vacy in the Electronic Society, pages 21–30, 2014.

[SLPR15] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. Blindbox: Deep packet
inspection over encrypted traffic. In Proceedings of the 2015 ACM conference on special
interest group on data communication, pages 213–226, 2015.

[SP03] Robin Sommer and Vern Paxson. Enhancing byte-level network intrusion detection signa-
tures with context. In Proceedings of the 10th ACM Conference on Computer and Commu-
nications Security, pages 262–271, 2003.

[SW11] Robert Sedgewick and Kevin Wayne. Algorithms, 4th Edition. Addison-Wesley, 2011.

[SW+21] Sheng Sun, Dr Wen, et al. zk-fabric, a polylithic syntax zero knowledge joint proof system.
arXiv preprint arXiv:2110.07449, 2021.

[Tho68] Ken Thompson. Programming techniques: Regular expression search algorithm. Communi-
cations of the ACM, 11(6):419–422, 1968.

[Too] Aivo Toots. Zero-knowledge proofs for business processes. https://cyber.ee/
uploads/aivo_toots_msc_438a500a90.pdf.

[TPKC07] Juan Ramón Troncoso-Pastoriza, Stefan Katzenbeisser, and Mehmet Celik. Privacy preserv-
ing error resilient dna searching through oblivious automata. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, pages 519–528, 2007.

[Ver11] Damien Vergnaud. Efficient and secure generalized pattern matching via fast fourier trans-
form. In International Conference on Cryptology in Africa, pages 41–58. Springer, 2011.

[VL06] Jan Van Lunteren. High-performance pattern-matching for intrusion detection. In Proceed-
ings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communi-
cations, pages 1–13. Citeseer, 2006.

[WMK16] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient MultiParty
computation toolkit. https://github.com/emp-toolkit, 2016.

[WNL+14] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Hubert Chan, Elaine Shi, Emil Stefanov,
and Yan Huang. Oblivious data structures. In Proceedings of the 2014 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 215–226, 2014.

[XYA+08] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten, and Ivan Osipkov.
Spamming botnets: signatures and characteristics. ACM SIGCOMM Computer Communica-
tion Review, 38(4):171–182, 2008.

[Yao82] Andrew C Yao. Protocols for secure computations. In 23rd annual symposium on foundations
of computer science (sfcs 1982), pages 160–164. IEEE, 1982.

[YMMP16] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M Pujol. Tracking the trackers. In
Proceedings of the 25th International Conference on World Wide Web, pages 121–132, 2016.

25

https://cyber.ee/uploads/aivo_toots_msc_438a500a90.pdf
https://cyber.ee/uploads/aivo_toots_msc_438a500a90.pdf
https://github.com/emp-toolkit

[YSK+13] Masaya Yasuda, Takeshi Shimoyama, Jun Kogure, Kazuhiro Yokoyama, and Takeshi
Koshiba. Secure pattern matching using somewhat homomorphic encryption. In Proceedings
of the 2013 ACM workshop on Cloud computing security workshop, pages 65–76, 2013.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast exten-
sion for correlated ot with small communication. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pages 1607–1626, 2020.

[ZE13] Samee Zahur and David Evans. Circuit structures for improving efficiency of security and
privacy tools. In 2013 IEEE Symposium on Security and Privacy, pages 493–507, 2013.

[ZMM+20] Fan Zhang, Deepak Maram, Harjasleen Malvai, Steven Goldfeder, and Ari Juels. Deco:
Liberating web data using decentralized oracles for tls. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, pages 1919–1938, 2020.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole: Reducing data
transfer in garbled circuits using half gates. In Advances in Cryptology-EUROCRYPT 2015:
34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 220–250. Springer, 2015.

A TNFA Construction and Proofs

In this section, we provide a detailed description of the Thompson NFA algorithm and prove its related
lemmas.

A.1 Thompson NFA

We describe the details of Thompson NFA construction in Algorithm 8.

A.2 Proofs of Lemmas

Lemma A.1 For any two cross edges in Eε, they are both forward edges. In other words, no edge “crosses”
any backward edge in the TNFA graph.

Proof: No backward edge crosses any other edge in the TNFA graph by construction (Algorithm 8). We
can show this property hold for all regular expressions by giving an induction proof using the recursive regex
definition. Given two regular expressions re, re satisfying this property, we have:

1. concatenation: the regular expression (re re′) just introduces a ”new” forward edge in the TNFA
graph, from the end node of re TNFA to the start node of re′ TNFA. Hence the TNFA for (re re′)
satisfies this property too.

2. union: The TNFA for (re|re′) introduces new forward edges, but they all have end points being either
the first node or the last node of re or re′ TNFA. Hence no backward edge in re′ or re′ crosses any of
the newly introduced forward edges.

3. loop: (re)∗, introduces a new forward edges and a single backward edges - all of them have end points
being either the first node or the last node of re or re′ TNFA.

Proof of Lemma 3.1
Proof: It is sufficient to show that if there exists a path from u to v containing t > 1 backward edges, we
can always find an alternative path from u to v that contains only t − 1 backward edges. Let the path be

26

Algorithm 8: Thompson NFA construction
Input: re ∈ Σn

Output: G(V,E), V = 0, · · · , n, E, re ∈ Σn

1 Initialize an empty stack ′ops of integers
2 Initialize a graph G(V,E = EΣ ∪ Eε) with nodes {0, · · · , n}, Both EΣ and Eε are initialized to be

empty
3 for i = 0 to n do
4 lp← i

5 if rei
?
= ′(′ ∨ rei

?
= ′|′ then

6 ops.push(i)
7 else
8 if rei

?
= ′)′ then

9 or← ops.pop()

10 if reor
?
= ′|′ then

11 lp← ops.pop()
12 add (lp, or + 1) and (or, i) to Eε

13 else
14 if reor

?
= ′(′ then

15 lp← or

16 if i < n− 1 ∧ rei+1
?
= ′∗′ then

17 add (lp, i+ 1) and (i+ 1, lp) to Eε

18 if rei
?
= ′(′ ∨ rei

?
= ′∗′ ∨ rei

?
= ′)′ then

19 add (i, i+ 1) to Eε

20 for i = 0 to n− 1 do
21 if rei ∈ Σ then
22 label the edge (i, i+ 1) by rei and add it to EΣ

P = (P ′||u0, · · ·uh, w0, · · · , wk, v0, · · · , vℓ) where {ui}, vi, {wi} are all ascending lists, (uh, w0), (wk, v0)
are backward edges, and vℓ = v. We now discuss all three possible cases:

• w0 < uh ≤ v0 < wk: (uh, w0) and (wk, v0) are neither crossed nor nested. Then (w0 ≤ v0 < wk).
Therefore, there exists 0 ≤ c ≤ k an edge (wc ≤ v0 < wc+1). Furthermore, wc should be equal
to v0, otherwise the edge (wc, wc+1) crosses the backward edge (wk, v0). Therefore, the path P =
(P ′||u0, · · ·uh, w0, · · · , wc = v0, · · · , vℓ) is also a path from u to v with t− 1 backward edges.

• v0 ≤ w0 < uh ≤ wk: (uh, w0) is nested within (wk, v0) are neither crossed nor nested. we thus have
w0 < uh ≤ wk. Then there exists 0 ≤ c ≤ k an edge (wc < uh ≤ wc+1). Furthermore, wc+1 should
be equal to uh, otherwise the edge (wc, wc+1) crosses the backward edge (uh, w0). Therefore, the
path P = (P ′||u0, · · ·uh = wc+1, wc+2, · · · , wk = v0, · · · , vℓ) is also a path from u to v with t − 1
backward edges.

• w0 ≤ v0 < wk ≤ uh: (wk, v0) is nested within (uh, w0). Using an argument similar to that before,
we have v0 = wc for some c. Thus, the path P = (P ′||u0, · · ·uh, w0, · · · , wc = v0, · · · , vℓ) is also a
path from u to v with t− 1 backward edges.

Proof of Theorem 3.1

27

Proof: The only difference between the transition TNFA simulation and 2 linear scan algorithm is in the
epsilon transition step. To show correctness, we essentially need to prove, if a node v is reachable from an
active node u at the start of the epsilon transition step, then sv is set to 1 by the end of the epsilon transition
step. From Lemma 3.1 there exists a path P with at max one backward edge from u to v in G(V,Eε).

1. Case 1: If P contains no backward edge:
The path from u to v consists of only forward edges. Let the path be u = u1, u2, . . . , uk = v, where
we have i < ui if i < j. Hence in the iteration t = 0 on Step 13 of the algorithm, we know su2 is set
to 1, since its predecessor su1 is set to 1. Inductively, sut for any t is set to 1 since sut−1 is set to 1.

2. Case 2: If P contains 1 backward edge:
Let the one backward edge on the path P be (w, z).
Case 2.1: u ̸= w: There exists a path from u to w consisting only of forward edges, and hence sw is
set to 1 by the end of the first iteration of the For loop on Step 13. Variable sz is set to 1 during the
2nd iteration of the For loop, which will further help set sv to 1 in the same iteration, since there is a
path of forward edges from node z to v.
Case 2.2: u = w: Since z < u, sz is set to 1 during the first iteration of the For loop in Step 13, which
would further set sv to 1 in the same iteration since there exists a path consisting of forward edges
from z to v.

Proof of Lemma 5.1
Proof: This follows from the construction of Thompson’s NFA. Introduction of each | operator, let’s say
for regular expressions (re|re′), adds two long forward edges in the graph - one from the new opening
parenthesis to the node labeled | and the other one from last node in re to the closing parenthesis of this
regular expression. Hence if the last node of re has no other long forward outgoing edge (which can be
proved by induction), then the Lemma holds for each new introduction of the union operator. Similarly, the
introduction of each closure operator ∗, let’s say for regular expressions (re∗), adds a long forward edge
from the opening parenthesis to the node labeled ∗, and it adds a long backward edge from the closing
parenthesis to the opening parenthesis. Hence the lemma holds in this case too.

Proof of Lemma 5.2
Proof: The lemma can be obtained directly as a corollary of Lemma A.1.

Proof of Lemma 5.3
Proof: We can prove this by induction, similar to the proof of Lemma A.1. We can show this property
hold for all regular expressions by giving an induction proof using the recursive regex definition. Given two
regular expressions re, re satisfying this property, we have:

1. concatenation: the regular expression (re re′) just introduces a ”new” forward edge in the TNFA
graph, from the end node of re TNFA to the start node of re′ TNFA. Hence the TNFA for (re re′)
satisfies this property too.

2. union : The TNFA for (re|re′) introduces a new pair of forward cross edges. Where one edge is from
the first node of re to the first node of re′, and the other edge is from the node labeled | to the last node
of re′. Hence the induction property holds.

3. loop: (re)∗, introduces a new forward edges and a single backward edges - all of them have end points
being either the first node or the last node of re or re′ TNFA. Hence no new cross edges are introduced.

28

Algorithm 9: Zero-knowledge version of the Algorithm 2 (ZK-Regex)
Private Input: [x] = ([x0] . . . [xm−1]), x ∈ Σm

Public Input: TNFA N = (G(V,Eε), re)
Output: String holder and pattern holder shares N(x)

1 Function 2ScanTNFAEval([x], N):
2 [s]← ([1], [0], . . . , [0]) where s ∈ {0, 1}n+1

3 EpsilonTransitions(G(V,Eε), [s])
4 for i = 0 to (m− 1) do
5 CharacterTransitions([xi], re, [s])
6 EpsilonTransitions(G(V,Eε), [s])
7 return [sn]

8 Function CharacterTransitions([xi], re, [s]):
9 for j = n to 1 do

10 [sj]← ([sj−1] ∧ (rej
?
= [xi])) ∨ (rej

?
= ′?′)

11 [s0]← 0

12 Function EpsilonTransitions(G(V,Eε), [s]):
13 for t = 0 to 1 do
14 for j = 0 to n do
15 [sj]← [sj] ∨ (∨(α,j)∈Eε

[sα])

B ZK-Regex Protocol Description

In Section 4.1, we provide a brief introduction of the circuit

Ctnfa(x, G(V,Eϵ), re)→ sn

that is translated from the TNFA Algorithm 2. It represents a statement that a private string x can be matched
by a public regex (G(V,Eϵ), re). The detailed ZK-Regex algorithm is shown in Algorithm 9. We use the
notation [·] to represent a private witness in ZKP.

The circuit takes a private input [x] and a public input (G(V,Eϵ), re). It sets the initial states [s] and
starts to activate the states using the character transitions and epsilon transitions. Finally it outputs the final
state [sn] for sn ∈ {0, 1} indicating unmatch or match.

C Two-Party Epsilon Transition: Instantiation and Security Proofs

In this section, we first provide the security proof of 1-out-of-N OT. Then we explain the detailed instanti-
ation, security proof and optimizations of 1-out-of-N ROT. They are the building blocks for our OT-based
epsilon transition protocols. At last, we provide the security proof of the OT-based and stack-based epsilon
transition shown in Section 5.

C.1 Security Proof of 1-out-of-N OT

The Algorithm 7 realizes the 1-out-of-N oblivious transfer and it only depends on 1-out-of-N random oblivi-
ous transfer. It shares the same construction as the previous 1-out-of-N OT schemes [NP99; KKRT16; KK13].
We have the following theorem.

Theorem C.1 The protocol shown in Algorithm 7 securely realizes the 1-out-of-N oblivious transfer inFOT

with semi-honest security in the FOT-hybrid mode.

29

Algorithm 10: 1-out-of-N ROT protocol
Input: Define parameter d := ⌈logN⌉, security parameter κ and message length ℓ. Assume a

correlation robust hash function H and a function G : {0, 1}κ → {0, 1}ℓ.
Output: P0 outputs (m0, . . . ,mN−1) ∈ {0, 1}N×ℓ. P1 outputs (b,mb) where b ∈ [0, N)

1 For i ∈ [d], P0 and P1 send (rot, 2, κ) to FOT, which returns (y0i , y
1
i) to P0 and (xi, y

xi
i) to P1.

2 P0 and P1 sets a00 = 0κ.
3 for i = 1 to d do
4 for j = 0 to 2i−1 − 1 do
5 P0 computes (a2ji , a2j+1

i) := (H(aji−1, y
0
i), H(aji−1, y

1
i)).

6 P1 computes ki =
∑i

t=1 xt · 2i−t and akii := H(a
⌊ki/2⌋
i−1 , yxi

i).
7 P0 outputs {G(aid)}i∈[0,N) and P1 outputs (kd, G(akdd)).

Proof: Let A be a PPT adversary who corrupts either P0 or P1. We construct a simulator S who simulates
the view of the adversary. In the following, we consider two separate cases in which A corrupts P0 then P1.

Assume a A that corrupted P0. S emulates the functionality FOT. Upon receiving the rot command, it
samples uniform r0, . . . , rN−1 ∈ {0, 1}ℓ and sends them toA. It also sends a random index δ ∈ [0, N) toA.
During the online phase, S receives y from A. Assume a A that corrupted P1. S emulates the functionality
FOT. Upon receiving the rot command, it samples uniform r ∈ {0, 1}ℓ and γ ∈ [0, N), and sends them to
A. Upon receiving δ, it computes α = δ + γ. During the online phase, S samples random y ∈ {0, 1}N×ℓ

and sends it to A.
In both cases, the views of A are perfectly simulated, assuming that the underlying 1-out-of-ROT is

secure against semi-honest adversary.

C.2 Instantiating 1-out-of-N ROT

The details of the 1-out-of-N ROT protocol is shown in Algorithm 10. It depends on 1-out-of-2 ROT and a
correlation robust hash (CRH) function [IKNP03]. The 1-out-of-2 ROT is instantiated by the vector obliv-
ious linear evaluation (VOLE) based on pseudorandom correlation generator (PCG), which incurs commu-
nication < 1 bit per ROT in average [BCG+19a; YWL+20; BCG+19b]. At a high level, it first executes
1-out-of-2 ROT, which returns d = ⌈log2N⌉ 1-out-of-2 ROT messages. Based on these messages, P0 builds
a depth-d binary tree in which each path is associated with a combination of ROT messages. P1 can only
recover the nodes in one path depending on its choice index. Define the leaf nodes to be the 1-out-of-N ROT
messages, P0 outputs all leaf nodes and P1 outputs only the b-th node. We define the following theorem and
provide its proof.

Theorem C.2 The 1-out-of-N random oblivious transfer protocol (in Figure 10) securely realizes the ROT
function from the functionality FOT with semi-honest security in the FROT-hybrid model.

Proof: The protocol starts with an invocation of FOT followed by only one-round communication from
P0 to P1. We briefly sketch the proof by simulating the views for corrupted P0 and P1. First define a
simulator S and an adversary A who controls P0. S emulates the functionality FOT. It samples uniform
{(y0i , y1i)}i∈[0,d) and sends them toA. The simulated view ofA is indistinguishable from its view in the real
world. Also, define a simulator S and an adversary A who controls P1. S emulates the functionality FOT.
It samples uniform {(xi, yxi

i)}i∈[0,d) and sends them to A. A adversary A would succeed it if makes query
to CRH with the same input that P0 makes to compute nodes other than akdd . Define the number of queries
that a real-world adversary A makes to CRH to be Q, the view of A is indistinguishable from the view of

30

honest P1 in the real-world except with probability Q/2κ.

Batch 1-out-of-n+1 ROTs in epsilon transition. It appears multiple times in Algorithm 6 that the pattern
holder and string holder invoke multiple 1-out-of-n+1 OTs with the same OT receiver’s choice. We take
advantage of this to further optimize the batch generation of ROT, which reduces the number of invocation
of 1-out-of-n ROT by a factor of m (length of the string). In detail, to batch t 1-out-of-n+1 ROT with the
same receiver’s choice, two parties instantiate the function G defined in Algorithm 10 with a pseudorandom
generator PRG : {0, 1}κ → {0, 1}t×ℓ. Each output of PRG is equally split into t segments and for i ∈ [t],
the i-th segment of size ℓ bits belongs to the i-th 1-out-of-n+1 ROT.

C.3 Security Proof of Algorithm 6

Proof of Theorem 5.2. The protocol shown in Algorithm 6 securely realizes the function EpsilonTransition
described in Algorithm 2 (Lines 12-15) against semi-honest adversaries in the (F2PC,FOT)-hybrid mode.
Proof: We follow the simulation-based paradigm to prove the Theorem 5.2. We first consider a corrupted
string holder A, who acts as the sender in FOT and a garbler in F2PC. A simulator S emulates the func-
tionality FOT and F2PC. When emulating OT, it receives and stores the OT input messages from A. When
simulating the 2PC functionality, it receives the inputs from A, samples a random bit b ∈ {0, 1} and returns
it toA. We consider a corrupted pattern holderA. A simulator S emulates the functionality FOT and F2PC.
When emulating OT, it receives and stores the choice indices fromA and returns a random bit c as the output
for OT receiver. When simulating the 2PC functionality, it receives the inputs fromA, samples a random bit
d ∈ {0, 1} and returns it to A. Both views of the corrupted string holder and corrupted pattern holder are
perfectly simulated.

C.4 Security Proof of Algorithm 5

Proof of Theorem 5.1. The protocol shown in Algorithm 5 securely realizes the function EpsilonTransition
described in Algorithm 2 (Lines 12-15) against semi-honest adversaries in the F2PC-hybrid mode.
Proof: In Algorithm 5, all components are executed in a garbled circuits protocol so the security fully relies
on the underlying half-gates construction instantiating F2PC. Define the computation of the algorithm 5 to
be a binary circuit C. Define a PPT adversary A and construct a simulator S that simulates views for A
when A corrupts one of the parties. In both cases, S emulates F2PC to receive C along with the input of A,
then sample a random output of the same length as A’s output for A.

23 27 211 215 219 223

Length

0

10

20

30

40

50

Fr
eq

ue
nc

y

Figure 11: The distribution of lengths of regular expressions in SNORT. 85.5% expressions have length less
or equal than 212 bytes.

31

D Regular Expressions from SNORT

SNORT PCRE is a sophisticated form of regular expressions with advanced features like backreferences and
recursive patterns. Our focus is on classical regular expressions, which typically support only disjunction,
concatenation, and loop operations. We rewrite the SNORT PCRE into our format described in Section 2.1.
This results in 416 SNORT PCRE that are suitable for use in our secure-regex protocol, with 356 (85.5%)
of them having a length of ≤ 212 bytes. The details of their distribution are shown in Figure 11.

32

	Introduction
	Our Main Observation
	Our Contribution
	Related Work

	Preliminaries
	Regular Expressions and Thompson NFAs
	Cryptographic Preliminaries

	TNFA Simulation via Two Linear Scans
	ZK Regular Expression Matching
	Standalone ZK-Regex
	ZK-Regex over TLS

	Secure Two-Party Regular Expression Matching
	Epsilon Transition via Oblivious Stack
	Epsilon Transition via 1-out-n+1 OT

	Performance Evaluation
	Instantiate Cryptographic Building Blocks
	Performance Evaluation of ZK-Regex
	Performance Evaluation of Secure-Regex

	Acknowledgement
	TNFA Construction and Proofs
	Thompson NFA
	Proofs of Lemmas

	ZK-Regex Protocol Description
	Two-Party Epsilon Transition: Instantiation and Security Proofs
	Security Proof of 1-out-of-N OT
	Instantiating 1-out-of-N ROT
	Security Proof of Algorithm 6
	Security Proof of Algorithm 5

	Regular Expressions from SNORT

