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Abstract. Fully Homomorphic Encryption (FHE) is a cryptographic method that
guarantees the privacy and security of user data during computation. FHE algorithms
can perform unlimited arithmetic computations directly on encrypted data without
decrypting it. Thus, even when processed by untrusted systems, confidential data is
never exposed. In this work, we develop new techniques for accelerated encrypted
execution and demonstrate the significant performance advantages of our approach.
Our current focus is the Fully Homomorphic Encryption over the Torus (CGGI)
scheme, which is a current state-of-the-art method for evaluating arbitrary functions
in the encrypted domain. CGGI represents a computation as a graph of homomorphic
logic gates and each individual bit of the plaintext is transformed into a polynomial in
the encrypted domain. Arithmetic on such data becomes very expensive: operations
on bits become operations on entire polynomials. Therefore, evaluating even relatively
simple nonlinear functions, such as a sigmoid, can take thousands of seconds on a
single CPU thread. Using our novel framework for end-to-end accelerated encrypted
execution called ArctyrEX, developers with no knowledge of complex FHE libraries
can simply describe their computation as a C program that is evaluated over 40×
faster on an NVIDIA DGX A100 and 6× faster with a single A100 relative to a
256-threaded CPU baseline.
Keywords: Fully homomorphic encryption, high performance computing, GPU accel-
eration, data privacy.

1 Introduction
Cloud computing allows users to forego the practice of maintaining costly data centers in
house, and can provide both computation and storage capabilities on-demand. However,
all user data will necessarily reside on servers owned by the cloud service provider who
could view the uploaded data. Additionally, attackers are increasingly targeting cloud
servers because each can contain a wealth of sensitive data from multiple users [47] [4] [50].
FHE allows users to encrypt their data locally, outsource the resulting ciphertexts to the
cloud, have the cloud evaluate meaningful algorithms on the encrypted data, receive the
encrypted data after processing, and decrypt the result to get the final output. This can
be used for a wide variety of applications, such as privacy-preserving machine learning as
a service (MLaaS) [28] [21] [14] and facial recognition [52] [7].

FHE was realized in 2009 with the advent of the bootstrapping procedure which allows
unlimited computation on ciphertexts [29]. However, early FHE was plagued by both
high memory requirements and enormous computational overheads, which rendered it
infeasible for adoption. Since its inception, great strides have been made to reduce these
runtime costs: First, new homomorphic encryption schemes have been developed with
more efficient bootstrapping constructions, such as DM [25] and CGGI [18]. Additionally,



1 int dot_product(int x[500], int y[500]) {

2 int product = 0;

3 for (int i = 0; i < 500; i++)

4 product = product + x[i] * y[i];

5 return product;

6 }

(a) Dot Product Code

1 void fc_layer(short x[256],

2 short w[256],

3 short res[30]) {

4 for (int i = 0; i < 30; i++) {

5 for (int j = 0; j < 256; j++) {

6 res[i] = res[i] + x[j] * w[j];

7 }

8 }

9 }

(b) Fully-Connected Layer Code

(c) Dot Product Performance (d) MNIST Classification Performance
Figure 1: Practical Large-Scale Applications: Using our approach, a dot product
subroutine runs ≈ 6× faster on a single A100 GPU and over 40× faster with an NVIDIA
DGX A100 relative to a multi-threaded CPU execution with 256 threads, resulting in an
end-to-end application level speed up of 30× for MNIST classification.

various algorithmic and software optimizations, such as HE-friendly number theoretic
transforms (NTT) [23], have yielded significant speedups in encrypted computation for
certain core operations. Additionally, utilization of the residue number system (RNS)
has been employed to enhance parallelism and avoid large integer arithmetic [34] [15] [5].
Lastly, CPU-based acceleration techniques were also adopted, including AVX and FMA
extensions [8]. However, the algorithmic level performance gains have recently stagnated
and further speedups are coming only from hardware acceleration.

The most prominent hardware platforms for encrypted computation with FHE are
GPUs, which have been thoroughly demonstrated to be particularly suited for the types
of arithmetic required by modern FHE constructions. Most encrypted operations expose
ample parallelism and are computationally intensive [41]; therefore, FHE applications
can leverage the high degrees of parallelism afforded by these devices. For instance, a
10 × 10 matrix multiplication in the encrypted domain using the CGGI cryptosystem in
gate bootstrapping mode [18], requires hundreds of millions of large polynomial arithmetic
operations and NTTs. Open-source nuFHE [44] and cuFHE [24] libraries expose an API
akin to an assembly language, requiring programmers to compose their algorithms as
Boolean circuits and their goal was to maximize the performance of individual homomorphic
operations, as opposed to end-to-end encrypted applications themselves.

In this work, we demonstrate that GPU-accelerated FHE can be used to greatly
improve the efficiency of realistic and representative FHE applications, such as neural
network inference and large linear algebra arithmetic. We also introduce automated
scheduling techniques that allow for strong scalability while evaluating encrypted algorithms
with multiple GPUs. Notably, most cryptographic details and all hardware acceleration
functionalities are handled automatically by ArctyrEX to minimize the burden on
programmers. Our key contributions can be summarized as follows:

• A custom algorithm to translate high-level code to GPU-friendly FHE programs that
reduces latency by up to 36%, while also reducing circuit size by up to 40% relative
to a standard synthesis flow;
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• A novel scheduling methodology that facilitates efficient computation across multiple
GPUs, which enables encrypted programs to run up to 40× faster on 8 GPUs;

• A new optimized backend for the CGGI cryptosystem that prioritizes fast evaluation
of arbitrary algorithms and outperforms state-of-the-art implementations by more
than an order of magnitude. This enables 32-element vector addition of 32-bit
integers up to 4.1× faster, and 16 × 16 matrix multiplication of 32-bit elements up
to 10.6× faster on 8 GPUs.

Our proposed framework makes large-scale applications practical in FHE. Figure 1(a)
showcases the high-level input code used to run both a large dot product of two vectors as
well as a fully-connected layer in machine learning applications. The user of our system
simply needs to describe their computation as a C program; no knowledge of complex FHE
libraries is required, except for the desired level of security. For C code outlining a dot
product of two encrypted vectors of length 500, our framework automatically generates a
highly efficient circuit consisting of 922308 gates with 128 levels resulting in approximately
one billion combined NTT and inverse NTT invocations.

2 Preliminaries
This section discusses different variants of homomorphic encryption and provides the
motivation for adopting fully homomorphic encryption for general-purpose computation.
Additionally, it provides theoretical details regarding the CGGI cryptosystem employed in
this work.

Homomorphic Encryption
All encryption schemes that exhibit homomorphic properties enable meaningful compu-
tation directly on ciphertext data without revealing the underlying plaintext. The two
variants of homomorphic encryption that support functionally complete sets of operations
include leveled homomorphic encryption (LHE) and FHE. In both cases, ciphertexts are
encoded as tuples of high-degree polynomials and adding or multiplying ciphertexts takes
the form of polynomial addition or multiplication. These polynomials typically range from
degree 210 to 217 and the coefficients are integers modulo q, which is a product of primes
and typically hundreds of bits in length. In the encrypted domain, addition increases the
ciphertext noise slightly, while multiplication is significantly more noisy. An unfortunate
consequence of this ciphertext noise (which is necessary for security) is that the noise
magnitude increases during each homomorphic arithmetic operation, and eventually the
noise will corrupt the underlying plaintext message and prevent successful decryption
with high probability. LHE can mitigate noise for a finite number of operations using a
technique called modulus switching, with larger encryption parameters allowing higher
noise tolerance. However, larger parameters entail slower computation and higher memory
consumption, which limits scalability for very deep circuits.

FHE solves the scalability issues inherent to LHE and allows for unbounded, arbitrary
computation on encrypted data. First realized by Gentry in 2009 [29], bootstrapping
is a noise mitigation technique that can be applied an infinite number of times, unlike
modulus switching. In fact, any LHE scheme can be converted to an FHE scheme with
the inclusion of bootstrapping. Nevertheless, the bootstrapping procedure itself is costly
in terms of latency and remains a key bottleneck of all FHE constructions. Depending on
the cryptosystem and chosen parameters, bootstrapping can take anywhere from several
milliseconds [18] to minutes [30]. Therefore, the only way to achieve feasible FHE for
general-purpose computation is to accelerate and optimize the bootstrapping mechanism.
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Figure 2: Encrypted Logic Gate Evaluation: All standard two-input logic gates
begin with a series of linear operations between the input LWE ciphertexts, followed by a
bootstrapping procedure (executed by the looped instructions), and lastly a keyswitching
operation. The steps in yellow represent operations associated with bootstrapping.

The CGGI Cryptosystem
Both the DM [25] and CGGI cryptosystems [18] possess bootstrapping mechanisms that
can be evaluated on the order of tens of milliseconds on a CPU using modern open-source
implementations such as Concrete [19] and OpenFHE [1], which is much faster than other
FHE cryptosystems. Also, while other schemes encrypt vectors of integers and floating
point numbers, CGGI and DM are typically used to encrypt individual bits into a single
ciphertext. Due to this encoding, the core encrypted operations take the form of Boolean
gates, which are more flexible in terms of general computation than arithmetic operations
over integers (e.g., encrypted comparisons are easily implemented using encrypted bits).

As discussed, to support unlimited computation depths, the FHE scheme must peri-
odically invoke a bootstrapping operation to decrease/reset the amount of noise in the
ciphertext. In the case of CGGI, which evaluates Boolean gates, bootstrapping must be
performed after every gate. As a result, evaluating a single homomorphic gate requires
on the order of 2,000 polynomial multiplications [18], which are typically accomplished
using the Discrete Fourier Transform (DFT). While this is an efficient algorithm for a
single polynomial multiplication, even a small application could require billions of DFTs.
For example, the computation graph for a single inner product of two vectors comprising
16 encrypted 16-bit numbers each contains nearly 25,000 encrypted logic gates. Eval-
uating this circuit results in over 75 million invocations of the DFT. DM [25] was the
first cryptosystem to introduce a functional bootstrap that can refresh ciphertext noise
while simultaneously evaluating a non-linear operation on the encrypted bits. In fact, this
bootstrap is a necessary component of the computation for logic gates such as NAND.

CGGI improves upon this construction and generalizes it for all logic gates, including
an encrypted multiplexer that is capable of obliviously choosing between two encrypted
bits dependent on the underlying value of an encrypted selector bit. For all gates except
for the trivial inverter gate, which is noiseless and composed of strictly linear operations,
the bootstrapping operation comprises the majority of the gate’s latency [36]. In turn,
the core bottleneck of bootstrapping is the numerous polynomial multiplications between
the encrypted secret key components and input ciphertexts. All state-of-the-art FHE
libraries opt to perform these high-degree polynomial multiplications as element-wise
multiplications in the DFT domain, which is asymptotically faster than textbook polynomial
multiplication [13] [22]. Both the number theoretic transform (NTT) and fast fourier
transform (FFT) can facilitate the forward and inverse domain conversions for these
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purposes. However, the NTT is typically preferred over the FFT as it operates directly
over integers. Moreover, the FFT requires additional type conversions between integers
and floating point numbers as FHE ciphertexts contain strictly integer coefficients. As a
result, the FFT introduces small computation errors due to its reliance on floating point
arithmetic.

The CGGI cryptosystem employs different types of ciphertexts, each with different
characteristics. The first type, known as LWE ciphertexts, serve as the inputs and outputs
of each homomorphic gate evaluation from a user perspective. LWE ciphertexts are the
smallest type that CGGI uses; at 128 bits of security, they consist of a single 630-degree
polynomial with 32-bit coefficients and an extra 32-bit scalar term. However, these
ciphertexts can not be used for nonlinear encrypted operations and are incapable of being
used to evaluate a standard encrypted logic gate function (with the trivial NOT gate being
the sole exception). Instead, these ciphertexts need to be transformed to TLWE ciphertexts
(i.e., Ring-LWE) that are larger in size. Typically, TLWE ciphertexts are composed of
a tuple of 1024-degree polynomials with 32-bit coefficients. The third type is TGSW
ciphertexts, which are the largest and can conceptually be viewed as an array of TLWE
ciphertexts. The bootstrapping key, which is an encryption of the secret key, is composed
of this type of ciphertexts. Importantly, TGSW ciphertexts can be multiplied directly with
TLWE ciphertexts, which is a necessary step of all bootstrapped gate evaluations. Figure
2 gives a high-level overview of the operations involved in a homomorphic NAND gate. All
bootstrapped gates are evaluated in a similar way and only differ in the preliminary linear
operations (i.e., the top green box in the figure).

Overall, the CGGI cryptosystem is a good candidate for achieving accelerated general
purpose computation on GPUs for a variety of reasons. First, the parameters used by CGGI
are often significantly smaller than other FHE schemes, which yields smaller ciphertexts.
Thus, multiple ciphertexts can be held in the GPU shared memory simultaneously, which is
not always the case for schemes such as CKKS [16], BFV [26], and BGV [11] that can utilize
ciphertexts on the order of several megabytes [48]. Notably, certain classes of encrypted
operations used for general purpose computation are well-suited for CGGI with binary
ciphertexts, but are non-trivial using other cryptosystems that adopt multi-bit encodings.
For instance, comparison operations, bitwise manipulations like shifting, and nonlinear
functions such as the ReLU activation function in machine learning applications, can be
computed directly without the need of costly polynomial approximations [9] [35]. Lastly,
the requirement of executing hundreds of DFT transforms per bootstrap is particularly
well-suited to GPUs due to the parallel nature of FFT and NTT. CGGI can also support
multi-bit encodings and employ a special programmable bootstrapping mechanism that
evaluates univariate functions. However, only low precision is achievable with realistic
parameters and therefore this approach is better suited for specific applications rather than
for arbitrary computation. We strictly consider CGGI in gate bootstrapping mode with
binary ciphertexts in this work specifically for this reason but note that the methodology
proposed is readily extensible to support this scenario.

3 System Design for Accelerated Encrypted Execution
ArctyrEX is an end-to-end framework that allows users to seamlessly convert high-level
programs written in C to a sequence of GPU-friendly FHE Boolean operations leveraging
the CGGI cryptosystem. An overview of the system is depicted in Figure 3, illustrating
the capabilities of the frontend, runtime schedule coordination, and backend operations.
Our proposed frontend tackles challenges associated with leveraging CGGI from a user
perspective, such as adapting to the Boolean circuit model. In this section, we identify
desirable circuit characteristics for efficient execution on GPUs and describe key aspects of
the synthesis flow used to convert input programs to FHE code for outsourced computation.
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Figure 3: System Overview: Our proposed system is composed of three distinct layers
that work together to realize an end-to-end framework for scalable encrypted computation.
The frontend converts high-level programs to a logic circuit tuned for FHE. In turn, this
logic circuit is parsed by the middle layer, which executes a coordination algorithm that
partitions each level of the circuit into shares and assigns them to multiple GPUs. The
back-end enables outsourcing computationally expensive FHE operations in each share to
the GPUs.

Optimal FHE Circuit Characteristics

One of the challenges for achieving efficient encrypted computation with the CGGI
cryptosystem involves exploiting circuit-level parallelism at the logic gate level. Essentially,
any number of gates with resolved dependencies (e.g., all input wires have been loaded
with encrypted ciphertexts) can be executed in parallel as they are entirely independent.
For CPU-based systems with a limited number of cores, this parallelism is sufficient
to effectively saturate the available CPUs without any significant optimizations at the
logic synthesis or application level. However, high-performance computing systems that
leverage hundreds of CPU cores or incorporate GPUs require much higher degrees of circuit-
level parallelism to achieve high efficiency. For these systems, the characteristics of the
underlying Boolean circuit become much more important, therefore avoiding sub-optimal
configurations is a critical concern. For example, using the kernels of Figure 4, we present
the width of each circuit level for a 10 × 10 matrix multiplication as well as a logistic
regression (LR) inference in Figure 5. The matrix multiplication benchmark represents
ideal circuit characteristics for parallel execution as the majority of levels are very wide (the
largest being nearly 200,000 gates in width), and the critical path is relatively short. On
the other hand, LR inference has over 500 levels (resulting in a much longer critical path)
and the width of each level is considerably shorter than those in the matrix multiplication
circuit. Another type of circuit configuration ill-suited for systems that can exploit high
degrees of parallelism is circuits that adopt cascading. Cascaded circuits typically have a
long critical path and each level of the circuit is narrow, limiting the number of gates that
can be evaluated in parallel at any given time.

Likewise, not all encrypted gates have the same execution time. For instance, NOT gates
are significantly faster than other gates because they don’t require any bootstrapping,
while MUX gates are approximately twice as expensive as standard gates (like AND and OR

gates). Efficient FHE circuit generation should take into account these differences in gate
efficiency.
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1 void full_gemm(short x[100], short y[100], short res[100]) {

2 for (int i = 0; i < 10; i++) {

3 for (int j = 0; j < 10; j++) {

4 res[10*i + j] = 0;

5 for (int k = 0; k < 10; k++) {

6 res[10*i + j] = res[10*i + j] + x[i*10 + k] * y[k*10 + j];

7 }

8 }

9 }

10 }

1 int lr_inference(int data[4], int weights[4], int bias) {

2 int product = 0;

3 for (int i = 0; i < 4; i++)

4 product = product + data[i] * weights[i];

5 product = product + bias;

6
7 // Sigmoid approximation: 40320 + 20160*x - 1680*x^3 + 168*x^5 - 17*x^7

8 int temp = 40320;

9 int temp_2 = 20160 * product;

10 int squared = product * product;

11 temp = temp + temp_2;

12 temp_2 = squared * product * 1680;

13 temp = temp - temp_2;

14 squared = squared * squared;

15 temp_2 = squared * product * 168;

16 temp = temp + temp_2;

17 squared = squared * product;

18 squared = squared * product;

19 temp_2 = squared * 17;

20 product = temp - temp_2;

21
22 // Client post-processes classification score by dividing by 80640

23 return product;

24 }

Figure 4: High Level Synthesis Kernels for General Matrix to Matrix Multiplication
(GEMM) and Logistic Regression (LR) Inference.

Figure 5: Circuit-level parallelism: Visualizing the circuit topology of GEMM versus
LR inference illustrates important differences; the GEMM circuit is ideal for parallel
evaluation, while LR is less suitable.

Synthesizing FHE-friendly Circuits
The conversion process from a C program to an equivalent FHE algorithm can be completed
in two distinct steps borrowed from modern hardware design paradigms: high-level synthesis
(HLS) followed by logic or register transfer level (RTL) synthesis. While any HLS tool
can be used for this purpose, we employ the Google XLS framework [51], which is a fast
and efficient open-source HLS engine that can be used to rapidly generate synthesizable
Verilog code. This Verilog code serves as an intermediate representation and describes the
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circuit functionality, which is then transformed by a logic synthesis tool to generate the
actual Boolean netlist.

We utilize the open-source Yosys Open Synthesis Suite to facilitate this process and
perform crucial circuit-level optimizations [49]. However, all existing logic synthesis tools,
including Yosys, are tailored specifically for physical hardware development and optimize
for several constraints that are not relevant to virtual FHE circuits (such as minimizing
area or reducing clock cycle latency). The most relevant factors for optimal FHE circuit
generation are minimizing the critical path delay, which is luckily a goal shared with actual
hardware development, and prioritizing gates that run efficiently in the encrypted domain.
Similarly to techniques introduced by the Google Transpiler [32], we can configure the
logic synthesis tool to choose FHE-friendly gates by encoding the relative costs of each
gate type as a function of area. For instance, we assign the multiplexer gate to be twice as
big as the standard two-input gates to reflect the fact that the latency of the MUX is twice
as slow as a standard gate.

Where prior work has adopted generic synthesis scripts for generating netlists for FHE
evaluation [32,33], our synthesis flow: (1) reduces the time required to generate the netlist
relative to the Yosys generic synthesis script, and (2) results in more efficient circuits for
FHE. The core optimizations that we utilize with Yosys include functional and word-size
reduction, removing redundant logic, and omitting unreachable branches in decision trees.
Compared to the baseline Google XLS provided logic optimizations, we observe a reduction
of about 40% in the overall size of the circuit for a dot product of two vectors with length
500. However, we note that the Google XLS logic optimizer is more lightweight and can
process the encrypted circuit about twice as fast. We emphasize that this process is a
one-time cost; after the circuit is processed, it can be executed using an arbitrary number
of inputs.

4 Novel Scheduling Algorithm for Scalable Evaluation
The ArctyrEX runtime library implements our proposed scheduler that allows homo-
morphic applications to utilize multiple computing resources with high scalability.

Strategies for Evaluating FHE Circuits
After the Boolean netlist has been generated by the frontend compiler, and before encrypted
computation can be carried out, we need to translate each gate to the encrypted domain.
This process involves traversing the circuit, which is represented as a directed-acyclic graph
(DAG), and mapping each node to the equivalent CGGI gate function. All wires become
ciphertext data, the inputs are loaded with encryptions provided by the client, while the
outputs are communicated back to the client for decryption after circuit evaluation.

The intuitive approach for providing the computing party with an executable FHE
circuit is to simply generate code that invokes the encrypted gate functions using the
underlying backend directly one after the other. This approach works well for small
programs where performance is not critical, but is ill-suited for non-trivial programs. For
complex programs, the generated FHE code can grow to millions of lines in length, as
each logic gate in the circuit would require 2-3 lines of code on average. In fact, a 10 × 10
matrix multiplication application generates several hundred thousand lines of code and the
GCC compiler is unable to generate an executable for this large program. Moreover, when
code is generated in this fashion and the gate invocations are dumped one after another
into the output program, it is impossible to parallelize the gates as there is no intuition
which gates can be evaluated concurrently.

Our key observation is that it is more efficient to avoid code generation entirely and
incorporate a scheduler that traverses the DAG and distributes each gate to additional
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workers that exclusively run the corresponding FHE logic gate function. In this approach,
gates that are ready to be evaluated can be distributed across a set of workers to exploit the
circuit-level parallelism inherent in all applications. We remark that a similar methodology
is employed by the Google FHE transpiler [32] and is referred to as interpreter mode.
However, their strategy of distributing gates one at a time is not feasible when the
workers constitute GPUs. Previous GPU-centric CGGI implementations as well as our
proposed implementation (described in Section 5) can execute one homomorphic logic
gate per streaming multiprocessor (SM) concurrently. In the case of an NVIDIA A100
GPU, 108 homomorphic logic gates are the least number required to achieve 100% device
utilization at any given time. Thus, only one SM could be engaged if gates are assigned
one at a time, resulting in extremely inefficient evaluation. Further, interpreter mode
creates new ciphertext objects and allocates more memory as needed throughout circuit
evaluation. While this technique is suitable for CPU workers, it therefore creates a
prohibitive bottleneck on GPUs as memory allocation and ciphertext transfers between
the host and the device are costly.

ArctyrEX Runtime Library
We propose a novel methodology for efficient evaluation of encrypted circuits on both CPU
and GPU devices. The host thread parses the intermediate representation (IR) generated
by the frontend, and generates a set of nodes stored using XLS data structures [51]. Each
node contains an opcode, which defines the operation performed by the corresponding
circuit gate, and its input operands, which are pointers to other XLS nodes.

The IR thus defines a sequence of gates which can be processed sequentially to generate
a valid execution of the circuit. In order to introduce parallelism, we transform this ordered
set of XLS nodes into a vector of circuit gates. In addition to logic gates, we also create
gates which compute encrypted constant boolean values, and we augment the IR generated
by the frontend with gates which copy an input ciphertext into another one. These copies
are, for example, used to integrate the retrieval of encrypted results as part of the circuit
itself instead of having to extract individual ciphertexts after waiting for the termination
of the circuit.

To derive a parallel execution of the circuit, we first dispatch all gates into multiple
waves. Each wave must be processed in-order, but all entries of a wave can be processed
concurrently. We now detail the topological sort algorithm that we use to build the list of
waves.

For each entry of the vector of gates, we compute its successors (gates depending on
it), and count its predecessors (gates on which it depends). To assign gates to the different
waves, we create a FIFO of ready gates, which are gates with no remaining dependencies.
We start by adding all gates with no input dependencies into this FIFO. It contains at
least an entry because there must exist a gate which does not depend on other gates. Until
the FIFO is empty, we remove the first entry n from the FIFO, and do the following :

• We assign n to the first wave if there are no input dependencies, or we compute the
maximum index of the wave of all predecessors, and add n to the next wave. All
predecessors have been assigned an index, otherwise n would not be in the ready
FIFO.

• We decrement the predecessor count of all successors of n. Any of these successors
reaching a null predecessor count are put in the ready FIFO.

This algorithm terminates even if the circuit is not connected. As the IR can be
processed sequentially one node after the other, there cannot be cycles in the circuit and
all gates will be given an index. Since nodes are assigned to waves with indexes that are
strictly greater than the indexes of their predecessors, all entries in a wave are independent
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and can be processed concurrently, as long as the different waves are processed in order.
We thus automatically derived a parallel execution from the IR, based on the fact that
the IR was a valid sequential execution and used node operands to compute dependencies.
This algorithm has a linear complexity because each node is taken exactly once from
the FIFO, and we decrement counters as many times as there are wires in the circuit.
Partitioning the circuit into such waves provides concurrency which can be exploited to
efficiently use a single GPU device. In order to use multiple processing units, we dispatch
waves over the different devices. A simple solution to dispatch a wave with N gates over
K devices which consists of splitting it into roughly N/K gates per device, as illustrated
in Figure 6.

A3
B3

A2
B2

A1
B1

A0
B0

A = B

A > B

A < B

A < B

A = B

A > B

Figure 6: Mapping gates to devices: Circuit gates are dispatched into independent
waves, which are then split across the different processing units. In this example, we
extract 5 waves which are spread over 3 devices that receive a similar workload.

Let us consider a wave with 43875 gates, composed of 2125 AND gates, 25000 OR gates
and 16750 NOT gates. On 2 devices we could have 1356, 10465 and 769 gates of type AND,
OR and NOT for device 0; and have 769, 14535 and 6633 gates of these types on device 1.
This represents a total of 21938 gates on device 0, and 21937 on device 1, but we measured
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that device 0 and 1 respectively need 2.21 ms and 2.87 ms to process their portion of the
wave. This 30% load imbalance is explained by the fact that AND and OR gates take the
same time to process (about 0.19 us per gate), while it also takes 0.19 us to process 1024
NOT gates, which are non-bootstrapped. Equally dividing the number of gates between
the different devices is therefore not a satisfactory approach, and only results in a 1.7x
speedup with only 2 devices.

We could consider the disparities between the different types of gates to evenly divide
the load between the different devices based on performance models, but it would require an
extra training phase per gate type. This may be tedious and not reliable when combining
multiple gates with different compute or memory bandwidth intensity. In practice, the
number of gates is usually large enough that a simpler but effective solution is to assign
the same number of identical gates on all processing units. In our previous example, this
results in putting 1064 and 1063 AND gates respectively on devices 0 and 1, and putting
12500 OR gates and 8375 NOT gates on both devices 0 and 1. We then measure 2.54 ms of
work on both devices, with a negligible difference of less than 0.2 us, which corresponds to
a perfect balancing.

For each wave, ArctyrEX implements this strategy using a hash-table which associates
a vector to each of the opcodes encountered in the wave. Each entry of the wave is then
appended to the list which corresponds to its opcode. Considering that there are only 8
types of standard logic gates currently supported, and that this number would not grow
significantly, appending an entry roughly has a constant complexity. This phase therefore
also has an overall linear complexity. In Section 5 we will show that building such vectors
of identical gates makes it straightforward to implement batched kernels which obtain
much higher performance.

In this Section, we have shown how ArctyrEX converts the frontend IR into a well-
balanced parallel workload. Provided CPUs with a sufficient processing power, nothing
prevents us from assigning them parts of the waves too. This could be done using
performance models based on per-gate performance models, or more simply based on the
respective peak performance of the different types of processing units. Our methodology is
therefore suitable to address hybrid systems combining CPUs and GPUs.

5 A fully asynchronous cryptographic backend
In the previous Section, we described the circuit as a sequence of waves subdivided into
smaller sets of homogeneous gates to obtain an efficient load balancing over the different
processing units. This section details our native CUDA implementation of the CGGI
cryptosystem, and explains how we execute this workload as efficiently as possible thanks
to a fully asynchronous implementation. We will now refer to these sets of concurrent
homogeneous gates as batched gates.

Memory and Communication Considerations
Since we have covered how gates are batched for distribution to different processing units,
we now describe how we can access data across the entire system.

NVIDIA GPUs have a distinct memory hierarchy that differs in key ways from tra-
ditional CPUs. Inside a streaming multiprocessor (SM), there is a fast on-chip piece of
memory partitioned between an L2 cache, and a resource called shared memory. These
on-chip memories are much faster than global memory as they are part of the SM itself. In
fact, shared memory latency is roughly 100x lower than un-cached global memory latency,
provided efficient memory access patterns. Shared memory is allocated per thread block,
so all threads in the block have access to the same shared memory. In the case of the A100
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GPU, the combined capacity of on-chip memory per SM is 192 kB. Global memory is the
largest memory (40 or 80 GB for the A100) and resides off-chip, making it the slowest
aside from accessing memory on the host [45].

Bootstrapping keys have a relatively large size, of approximately 100 MB for 110 bits of
security. They cannot fit into GPU L2 caches, but are used for the majority of encrypted
gate evaluations. Because of this, we replicate them in the global memory of all devices so
that each can access the evaluation keys directly. We note that these keys are constant,
and can be accessed concurrently within a device.

Ciphertexts are processed during circuit evaluation, and may be used simultaneously
on different devices, or accessed from the host. We thus store them in pinned host memory,
which is memory allocated with cudaMallocHost()). Ciphertexts are then cached into
shared memory which is much faster and is located close to the GPU SMs. These kernels
indeed have an extremely high arithmetic intensity and the PCI-e bandwidth consumption
is limited, and the large amount of concurrency overlaps transfers with computation. This
was verified experimentally by profiling a kernel that processes 1024 gates using the ncu

tool. We observed that it only consumed 19.96 MB/s of “system memory” bandwidth,
which is orders of magnitude lower than the available PCI-e bandwidth. Using pinned host
memory to load the input ciphertexts is thus efficient enough, in spite of its simplicity.

A similar strategy is to use managed memory (also called unified memory, and allocated
using cudaMallocManaged). Contrary to pinned memory where devices access host memory
directly though the PCI-e bus, managed memory is kept coherent across the entire machine
by the means of paging mechanisms. When a page fault occurs, the CUDA driver
automatically fetches a valid copy of the page where the fault occurred. Subsequent
accesses to the same page will occur at the speed of the memory embedded on the device,
until the page is evicted from the device.

Both managed memory and pinned host memory incur a significant overhead per
allocation, so that we do not allocate all ciphertexts individually, but group these thanks
to pooled memory allocators. This pooling mechanism may introduce false sharing issues,
but effectively amortizes allocation overhead, which remains noticeable with pinned host
memory, but is several orders of magnitude lower than the time required to evaluate the
circuit. Memory pages allocated with managed memory and modified concurrently by
multiple devices may bounce from one device to another, and have a severe impact on
performance.

In practice, we observe similar performance for an encrypted dot product over 8 GPUs
with both strategies. With pinned memory, circuit evaluation takes 14.8 s, compared to
15.1 s with managed memory. Allocating 1 GB of pinned host memory however takes
0.4 s, but is negligible with managed memory. Due to the expected page faults when using
managed memory on multiple devices, we observe some slightly imperfect parallelism, while
it is flawless with pinned memory. ArctyrEX therefore allows user to store cipertexts
either in host pinned or managed memory, for example depending on the amount of system
memory which can limit the availability of pinned memory. All experiments presented in
the rest of this paper use pinned host memory.

Coordinating multiple devices
A strawman approach to assign tasks to multiple workers involves having a single producer
thread and a set of worker/consumer threads. When using multiple GPUs, each worker
thread will consume an assigned batch from the producer and outsource the computation
to a dedicated GPU. This approach is quite simple to implement, but requires numerous
synchronizations between CPU threads, which negatively impacts scalability by introducing
idle periods on the GPUs when CPU threads fail to provide them computation.

Conversely, a more intuitive method involves utilizing a single host thread that will
submit work asynchronously to different devices. On each device, we create a pool of
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CUDA streams, so that we can submit multiple concurrent CUDA kernels on this device.
The execution of a single wave therefore consists of taking each individual batched kernel
from the wave, selecting a CUDA stream on the device on which our scheduling algorithm
assigned the batched kernel (e.g., with a round-robin strategy), and submit the kernel
in this CUDA stream. Since waves must be executed in-order, we need to ensure that
the execution of a wave does not start until the previous wave has been fully processed.
A simple approach would consist of submitting all kernels in a wave on all devices, and
then having the host thread wait for the completion of all work on all devices. Waiting for
computation to complete from the host however introduce some inefficiency, as devices
become idle during the synchronization phase, until the next phase has been submitted.
Any potential load imbalance or jitter on a device may also reflect on other devices which
could wait longer than expected to get more work. Instead of blocking devices, we have
therefore implemented a non-blocking synchronization fence primitive which ensures that
the work in a CUDA stream cannot start running until all work submitted previously in all
other streams has been done. These fences are implemented by the means of CUDA events
which are asynchronously inserted in the CUDA streams. After inserting an event in each
stream, we insert a non blocking CUDA operation which synchronizes one of our CUDA
streams with all of these events. We then insert another event in that stream, and make
sure all other streams wait for that event. Event insertions and dependency declarations
between an event and a stream can be performed asynchronously, ahead of time, and
therefore do not require the host thread to block during the execution. These event-based
synchronizations are implemented using hardware features, which is much more efficient
that having the host thread block the entire device. This ensures that successive waves
can be executed in order, without ever blocking the submission flow of asynchronous
operations, until the very end of the circuit evaluation. With this distribution methodology,
we observe a speedup of approximately 12% over the strawman approach for an encrypted
dot product benchmark executed on an NVIDIA DGX A100. This may appear to be a
moderate improvement, but more than 99% of the circuit evaluation is spent executing
CUDA kernels. We therefore have a close to optimal scheduling strategy over multiple
devices, which is essential for the scalability of ArctyrEX according to Amdhal’s law.
This also indicates that the latency of result retrieval and synchronizations are almost
completely hidden.

Batched kernels

Due to the relatively small size of TFHE ciphertexts (compared to other FHE schemes),
it is possible to process many FHE gate operations at the same time on GPUs over a
large number of ciphertexts. Prior works have either launched a separate kernel for every
gate evaluation [24] or allow for “vectorized” gates (such as performing a bitwise NAND
between two 32-bit ciphertext arrays) [44]. Conversely, we observe that a better approach
for general computation is to leverage a kernel capable of executing arbitrary numbers of
gates of any supported type. The ArctyrEX backend utilizes a single kernel for each
batch of gates that launches with N thread-blocks of 512 threads each, where N indicates
the number of gates. This approach is more performant compared to the cuFHE library
that initiates host-to-device and device-to-host transfers for each logic gate. This allows
each worker in the runtime environment to launch a single kernel for each batch received
from the coordinator, avoiding additional kernel launch overheads. Additionally, this
technique also allows the GPU to determine the best utilization strategy for the SMs,
instead of relying on the user to distribute gates on a per SM basis. Grouping gates
into homogeneous gates saves memory bandwidth as we only copy the opcode value once
per batched kernel, and the generated code is more regular and requires less registers,
increasing the occupancy of our CUDA kernels [46].
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Designing batched CUDA kernels which do not require blocking the submitting host
thread is also challenging. These kernels indeed need to access buffers with the description
of the work to perform, such as the location of the input ciphertexts. We therefore adopt
a strategy which consists of assigning such a buffer to each CUDA stream of our pool, and
fills them asynchronously from the host using a host callback. As a result, our asynchronous
batched kernels consist of 1) selecting a CUDA stream on the target device, 2) submitting
a host callback that will update the buffer associated to this stream, and 3) launching
a CUDA kernel in this stream which will process the batch described using this buffer.
Assigning each CUDA stream a unique buffer requires a limited memory footprint, and
ensures there is no concurrent buffer update. This also avoids the use of relatively expensive
asynchronous allocations around all asynchronous kernels.

NTT Implementation Details
The performance of bootstrapping in CGGI is largely determined by the efficiency of
the DFT used to facilitate polynomial multiplication. Both nuFHE [44] and cuFHE [24]
use the NTT for this operation, and both employ the same general strategy in terms of
NTT parameters. We opt to use these parameters as well, since they provide multiple key
optimizations that reduce the NTT latency. First, we utilize the modulus Q = 264 −232 +1,
which simplifies the modular reduction step and supports NTTs up to size 232. Lastly, we
use the primitive element g = 12037493425763644479 that allows most multiplications in
the NTT algorithm to become bitshifts modulo Q.

6 Experimental Evaluation

Figure 7: Vector Algebra Benchmarks: All dot products are performed with 16-bit
encrypted elements and the vector addition is performed with 32-bit elements. The speedup
bars are relative to the CPU implementation with 256 threads. |v| indicates the vector
length and M refers to the dimensions of the matrices.

We employ a series of benchmarks representing realistic computational workloads with
FHE to demonstrate the efficacy of ArctyrEX, encompassing areas such as privacy-
preserving machine learning, linear algebra applications, and cryptographic benchmarks.
All experiments were run on an NVIDIA DGX A100, which consists of 8 A100 GPUs
and a dual-socket AMD EPYC 7742 CPU with 64 cores each (a total of 128-cores
running 256 threads with simultaneous multithreading). Unless otherwise indicated,
all benchmarks were run with parameters corresponding to 110 bits of security based
on the BKZ-beta classical cost model provided by the state-of-the-art LWE estimator
framework [2]. Specifically, for RLWE ciphertexts used in bootstrapping, we utilize a
ring dimension of 1024 and set the noise rate to 25 × 10−9. These are the same RLWE
parameters employed by the TFHE library [18] for their parameter set corresponding to 128
bits of security. For LWE ciphertexts, we utilize n = 512 and a noise rate of 2−15, which
yields approximately 110 bits of security. As such, the overall security of the parameter set
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Figure 8: Matrix Algebra Benchmarks: All products are performed with 16-bit
encrypted elements. The speedup bars are relative to the CPU implementation with 256
threads. |v| indicates the vector length and M refers to the dimensions of the matrices.

Figure 9: Topology of Linear Algebra Benchmarks: Vector addition is better suited
for circuit for encrypted evaluation as it exhibits wide levels and a short critical path. The
matrix-vector product and matrix multiplication benchmarks exhibit ample parallelism,
with matrix multiplication being consistently twice as wide for most levels.

used for the following experiments is 110 bits of security. This cost model is also employed
by the TFHE library in the security analysis of its hard-coded parameter sets [18].

FHE Basic Linear Algebra Subroutines
The FHE Basic Linear Algebra Subroutines are benchmarks that form core components
of algorithms in a wide variety of fields, such as image processing and machine learning.
We focus on three distinct tensor multiplication algorithms on 16-bit encrypted data: a
dot product of two vectors of length 500, a matrix-vector multiplication between a vector
of length 125 and a 125 × 4 matrix, and a matrix multiplication between two 10 × 10
matrices. Additionally, we include a vector addition between two vectors of length 500;
this benchmark was executed with a larger wordsize than the previous ones to increase
its computational complexity. We compare a 256-thread CPU execution of these tensor
algorithms with our approach running on up to 8 GPUs.

In Figure 7 and Figure 8, the dark-green vertical bars show running time, and the
light green vertical bars plot the speedup of the GPU execution vs. the CPU execution.
One A100 is 5.9× faster than the reference implementation running on the 256-threaded
CPU execution model, and 8 A100s are 40× faster. We show the latency of these circuits
for an increasing number of A100 GPUs and the speedup for all GPU configurations
versus a CPU configuration with 256 threads. Our analysis shows a linear speedup by
increasing numbers of GPUs, as our design exploits the ample circuit-level parallelism in
both synthesis and runtime phases.

Figure 9 depicts the width of each level in the linear algebra benchmarks; the vector
addition is more performant as the critical path is approximately 2× shorter and the levels
remain relatively wide, increasing parallelism opportunities. Indeed, this is reflected in
the execution times in Figure 7, where the vector addition runs nearly 4× faster on 8
GPUs. Both matrix benchmarks have very wide levels and are well-suited for evaluation
on multi-GPU systems.
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Figure 10: Logistic Regression Inference: We employ 32-bit words for the small
approximation and a 64-bit words for the large approximation to avoid overflow. We
observe a better scaling trend for the higher accuracy LR because it exhibits wider levels.

Figure 11: Neural Network Inference: The encrypted weight variants for both network
configurations represent the scenario where the computing party does not own the model.
On the other hand, the variants with plaintext weights correspond to the scenario where
the computing party owns the proprietary model. We observe a roughly 2× speedup when
plaintext weights are used.

Figure 12: Topology of Machine Learning Benchmarks: For LR inference, the large
variant uses a more accurate sigmoid approximation. It is much deeper due to a larger
word size and more polynomial terms evaluated. The neural network plaintext weight
variant exhibits a shorter critical path and is composed of much fewer gates overall.

Encrypted Machine Learning Applications
One of the most widely explored use-cases for FHE is privacy-preserving machine learning
as a service. This paradigm can be divided into two distinct scenarios depending on who
owns the ML model. In its most basic form (first scenario), a client with sensitive inputs
wants to have them classified but does not have either the computational resources or
trained network to do so. The client can encrypt their data homomorphically, upload to a
third-party cloud server, and receive encrypted classification results after the cloud server
computes the inference procedure.

The two scenarios essentially differ depending on who owns the proprietary model.
If the cloud is the owner, it can simply perform the inference procedure with encrypted
inputs and cleartext weights and biases. This results in faster FHE operations overall,
as plaintext-ciphertext operations are considerably less costly than ciphertext-ciphertext
operations. Even though the model parameters are in plaintext form, there is no security
concern as long as they never leave the cloud server itself. The second scenario involves
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Figure 13: Private Information Retrieval: The reported time outlines the cost of a
query over an encrypted key-value storage with 64-bit encrypted keys and values.

Figure 14: Private Information Retrieval Topology: Increasing the size of the
database linearly increases the critical path, and widens the first few layers of the circuit.

either the client or an additional party owning the proprietary ML model. In this case, the
client or model owner will encrypt the weights and biases homomorphically, and upload
them to the cloud server prior to the inference procedure. Now, all computations are
strictly ciphertext-ciphertext operations, and the overall inference cost is more expensive.
The majority of existing works demonstrating ML inference with FHE adopt the first
scenario as it is generally much more efficient [10,21,28].

Our analysis considers two important machine learning procedures for encrypted
classification in the form of logistic regression (LR) inference and neural network (NN)
inference. For logistic regression, we perform binary classification for datasets with four
attributes, such as the Iris dataset [27]. The key bottleneck in encrypted LR inference is
approximating the sigmoid function ( 1

1+e−x ), since it is not possible to evaluate it directly.
Therefore, we employ a polynomial approximation by evaluating terms of the Maclaurin
series. In general, when approximating nonlinear activation functions, there is a trade-off
between accuracy and computational complexity; the more terms that are evaluated, the
more accurate and more computationally expensive the approximation becomes. We show
this trade-off with ArctyrEX through the use of an approximation that evaluates the
first four terms, and one that evaluates the first six.

Figure 10 shows diminishing returns when increasing the number of GPUs due to
the large critical path and relatively thin circuit levels of the benchmark in Figure 12.
Using 8 GPUs with the more accurate sigmoid approximation still outperforms the CPU
implementation with 256 threads by 21×.
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For neural network inference, we employ the same network architecture used by FHE-
DiNN [10]. The network consists of two fully-connected layers with a sign activation
function and is used to classify the MNIST dataset of handwritten digits. We consider two
variants of this network that differ in whether or not the network parameters are encrypted
and both achieve an accuracy of 96% for MNIST classification. The execution times across
both configurations are depicted in Figure 11 while Figure 12 presents the characteristics
of these workloads. As expected, the variant where the cloud server does not own the
proprietary network (i.e., using encrypted weights) has approximately 2× higher latency
because of the increased number of ciphertext-ciphertext operations. However, this variant
also exhibits lower scaling for large numbers of GPUs because less computation is involved.

Cryptography and Security Applications
Transciphering

At first glance, it seems odd to compute an encryption algorithm homomorphically when
the data is already encrypted. However, these algorithms enable an exciting strategy called
transciphering that dramatically reduces the large communication overhead associated with
FHE [3,20]. Instead of sending large homomorphic ciphertexts to the cloud for outsourced
computation, the client can send encryptions generated with a traditional block or stream
ciphers that result in little to no data expansion. Then, the cloud can homomorphically
decrypt the received symmetric ciphertext by evaluating the corresponding decryption
algorithm of the chosen cipher using an homomorphic encryption of the symmetric key. For
the CGGI cryptosystem at 110 bits of security, this strategy can decrease the communication
overhead associated with the client sending encrypted inputs by a factor of over 16000×.

Table 1: Amortized cost of decryption rounds for Speck and Simon
Configuration Speck-128/128 Round (s) Simon-128/128 Round (s)

256xCPU 2.41 0.80
1xA100 0.34 0.13
2xA100 0.29 0.07

Our analysis employs the lightweight Simon and Speck ciphers proposed by the US
National Security Agency [6]. These ciphers are well-suited to evaluate CGGI cryptosystems
because they are primarily composed of bitwise operations. Other ciphers like AES are less
suitable as they require expensive lookup-table evaluations, or a high number of finite-field
arithmetic operations [31]. For both ciphers we use their 128/128 bit variants, as symmetric
security needs to be commensurate to our FHE parameters. Table 1 presents the cost
per round to evaluate Simon and Speck per 128-bit block size. Overall, Simon is more
efficient than Speck because it uses strictly bitwise operations, whereas Speck has a 64-bit
subtraction in each round that corresponds to a large Boolean circuit.

Private Information Retrieval

Aside from machine learning and cryptographic benchmarks, we explore another realistic
and useful application of FHE enabled by ArctyrEX in the form of private information
retrieval (PIR). The ability to search and perform computation across an encrypted
database has many useful applications, such as managing a directory of health-care records
that must be kept confidential for compliance with standards such as HIPAA [53]. We
represent the encrypted database as a key/value storage where both keys and values
are encrypted. Figure 14 demonstrates the circuit characteristics of a single query for
databases of increasing size. On Figure 13, we observe a linear scaling with increasing
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database size; this is expected as a query requires comparison operations with each record
in the database due to the termination problem. Specifically, the termination problem
states that it is impossible to make a decision based on encrypted data as the computing
party does not know the underlying value of the ciphertext [43]. As such, each element of
the database must be visited and the correct entry needs to be chosen through oblivious
encrypted multiplexing operations. We also performed experiments across PIR problem
sizes: Each value is 64-bits in size and we demonstrate the scalability of PIR with four
database sizes (32, 64, 128, and 256 entries).

7 Related Works
Prior works can be divided into two categories: FHE compilers for general-purpose
computation and acceleration frameworks that reduce the latency or improve throughput
of homomorphic operations. The former category targets the usability issue inherent in
FHE and explores automatic application-level optimizations to facilitate efficient execution
for the target backend. The ArctyrEX frontend and middle-layer address these challenges
as well, and can be directly compared prior works in this line of research. The latter
category includes works that focus on FHE acceleration using both software and hardware
techniques at the primitive level, and are also comparable to our proposed backend.

Comparisons with State-of-the-Art FHE Compilers
The Cingulata framework (formerly Armadillo [12]) allows users to map C++ code into a
sequence of AND and XOR gates. Cingulata works strictly with binary FHE contexts using
the TFHE library (which implements CGGI) and a custom BFV implementation as its
backends. Compared to ArctyrEX, Cingulata only supports single-core execution for
CGGI and does not offer GPU support. The BFV mode is parallelized on CPUs, but
does not support bootstrapping and hence cannot be used for arbitrary general-purpose
computation.

E3 is a C++ library that introduces custom encrypted data types for leveraging FHE in
general applications [17]. It supports a variety of cryptographic backends, including TFHE,
Microsoft SEAL, and HElib, encompassing all major FHE schemes. Unlike ArctyrEX, E3

uses a direct mapping to hardcoded FHE functional units and does not offer an optimizing
compiler. It also does not support any GPU-friendly cryptographic backends and no
parallelization is included.

Google’s FHE Transpiler [32] and Romeo [33] leverage logic synthesis and optimizations
to generate FHE programs for general computation. However, both works employ generic
synthesis scripts that include optimizations not relevant to encrypted computation. The
FHE Transpiler targets TFHE and the OpenFHE implementations of the CGGI cryp-
tosystem as backends, and can evaluate multiple gates in parallel using interpreter mode.
However, it does not support GPUs and its parallelization strategy is not suited for them,
yielding very low device utilization. Likewise, Romeo targets TFHE and generates an
FHE program instead of interpreting it. This approach, however, does not scale for large
programs or HPC systems as described in Section 4. Conversely, ArctyrEX offers a
novel dispatch strategy and multigate kernels that can efficiently compute batches of any
set of gates.

Comparisons with FHE Acceleration Frameworks
The cuFHE [24] and nuFHE [44] constitute the current state-of-the-art for GPU acceleration
of the CGGI cryptosystem. The former is a proof-of-concept library that implements
high throughput logic gate evaluations on a single NVIDIA GPU. However, cuFHE is
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Table 2: Latency comparisons with existing backends for 32-bit arithmetic operations
(taken from Morshed et al. [42]). ArctyrEX is at least 6.4× faster for 32-bit multiplication
compared to prior works. Moreover, ArctyrEX evaluates vector addition with 32 elements
4.1× faster, and 16 × 16 matrix multiplication of 32-bit elements 10.6× faster.

Library Security Level (bits) Addition (s) Multiplication (s)
ArctyrEX 110 1.33 2.13

FHE Transpiler [32] 80 6.53 13.56
Morshed et al. [42] 80 1.47 25.13

TFHE [18] 80 7.04 489.93
nuFHE [44] 80 3.08 137.78
cuFHE [24] 80 1.50 97.5

not configurable (i.e., only supports 80 bits of security), has non-optimal data transfers
and requires frequent high-cost synchronization between GPU and CPU. Each cuFHE
gate evaluation requires all ciphertext inputs be copied from the host to the device, and
each output is copied back from the device to the host. This approach is impractical
for realistic circuit evaluation, as it yields millions of large ciphertext transfers between
the CPU and GPU. Lastly, not all cuFHE computations are outsourced to the GPU and
the CPU needs to perform certain operations (such as evaluating the homomorphic NOT

gate). Unfortunately, this defeats the benefits gained from asynchronous CUDA kernel
launches and the CPU execution must block when it reaches a NOT gate until the GPU
has finished evaluating all prior gates, instead of continuing to do more meaningful work.
Similarly, nuFHE specializes in vectorized gates; for instance, it can evaluate a bitwise AND

operation across 64-bit operands. However, this approach is very restrictive in terms of
circuit evaluations as typically a circuit level is not composed of one type of gate.

REDcuFHE [28] enhances cuFHE to add multi-bit plaintext support and multi-GPU
support. However, it still suffers from the same synchronization issues as cuFHE, and puts
the burden of scheduling and handling communication between multiple GPUs on the
programmer. ArctyrEX, on the other hand, handles all scheduling and communication
procedures automatically. Lastly, Morshed et al. [42] present a GPU implementation of
CGGI that leverage the NVIDIA cuFFT library and incorporates a set of handwritten
circuits such as vector addition and matrix multiplication. Table 2 demonstrates that
ArctyrEX outperforms [42] by a factor of about 1.5× for a small 32-bit addition
and 16× for 32-bit multiplication (which is a significantly larger circuit). Additionally,
ArctyrEX evaluates a vector addition with 32 elements of 32-bit integers 4.1× faster and
a 16 × 16 matrix multiplication of 32-bit elements 10.6× faster. We also emphasize that all
frameworks in Table 2, aside from ArctyrEX and the Google FHE Transpiler, require
developers to write their own circuits by hand, as opposed to automatically generating
them.

8 Concluding Remarks and Future Work
ArctyrEX is the first end-to-end framework for general-purpose encrypted computation
that leverages GPU acceleration and provides novel strategies for executing FHE algorithms
efficiently on GPU-based HPC systems. For realistic workloads such as neural network
inference, we observe a linear speedup with increasing numbers of GPU devices thanks to
the inherent circuit-level parallelism, the proposed dispatch paradigm, and the high degree
of primitive-level parallelism exploited by our CUDA-accelerated CGGI backend.

In future work, we plan to expand our frontend support to schemes beyond CGGI, as
different schemes are better suited to different styles of computation, which can help achieve
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higher throughput and high-accuracy encrypted deep learning inference and training. For
instance, computing multiplications with large word sizes in CGGI is inefficient because
the underlying circuit could eventually grow very large. Other schemes, like CKKS and
BGV, support encrypting multi-bit values directly and can accomplish this multiplication
in one primitive operation instead of many. Moreover, CKKS is an attractive option for
certain machine learning applications, as it natively supports operations on encrypted
floating-point values. With small modifications to our current ArctyrEX frontend,
namely omitting the logic synthesis step, we can readily support all other FHE schemes
that take the form of a general arithmetic circuit as opposed to purely Boolean circuits.

Developments in our middleware layer involves investigating further scheduling opti-
mizations that further reduce device-to-device data transfers. A potential solution to this
challenge involves incorporating graph partitioning methodologies to minimize inter-level
dependencies between computing devices. Regarding our backend, future work will investi-
gate alternative techniques to accelerate the DFT step, such as exploring further NTT
acceleration on GPUs, as well as adopting the FFT. We also plan to investigate fusing
gate evaluations across GPU streaming multiprocessors to minimize latency of FHE gates.
This capability will be useful for thin circuit levels where the total number of gates is less
than that of the total number of SMs across all available GPUs.

For the application level FHE optimization, future research involves integrating deep
neural network optimizations such as [37, 39] and its correctness emphasis [38, 40] with
optimizations in ArctyrEX frontend to achieve higher throughput and reliably accurate
encrypted deep learning inference.
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A Developing FHE Applications
ArctyrEX is designed to run efficiently for any algorithm, yet the way that an algorithm
is expressed can have an impact on the HLS procedures that map the program to a
Boolean netlist. The most important consideration lies in the complexity of the high-level
application code. For complex algorithms that contain several thousand loop iterations or
large loop bodies, the time required to perform the HLS and logic synthesis can increase
significantly, or the synthesis toolchain itself may be unable to successfully generate a
circuit. Notably, we can overcome this challenge by splitting an algorithm into multiple
HLS inputs and invoking them one after the other in the encrypted application. Figure 15
demonstrates this strategy; the kernel implements the inner loop of a 10 × 10 matrix
multiplication and can be invoked multiple times to evaluate the full GEMM procedure.

1 int partial_mm(int x[10], int y[10]) {

2 int res = 0;

3 for (int i = 0; i < 10; i++) {

4 res = res + x[i] * y[i];

5 }

6 return res;

7 }

Figure 15: Partial Matrix Multiplication HLS Kernel

B NVIDIA DGX A100 System
The NVIDIA A100 DGX used in this work consists of 8 A100 GPUs. Two distinct groups of
four GPUs are inter-connected using high speed NVLink buses. These GPUs have hardware
support for direct access to registered host memory, which we leverage for intermediate
encrypted wire transfers before they are cached into the shared memory of the devices
during gate evaluation. Along with the synchronization mechanisms employed by our
custom dispatching system, this naturally ensures data consistency across multiple devices.
The NVIDIA A100 GPUs used in our experimental evaluation are data center GPUs, which
is consistent with prior works (e.g., [19]). Each GPU has 108 streaming multiprocessors
that act as independent processing units. Each streaming multiprocessor can evaluate a
logic gate in the context of ArctyrEX, allowing for 108 concurrent gate evaluations on a
single GPU.

C Security Considerations and Threat Model
ArctyrEX generates code for a third-party cloud server to perform computations on
encrypted data. We assume an honest-but-curious computing party, where the server can
be trusted to do the expected computation but has incentives to view the sensitive user
inputs. The server is aware of the underlying size and type of the data being manipulated
(for example, integer, string, or class), as well as the evaluated algorithm. If the length of
the data needs to be protected for a given application, we assume this is enforced on the
client-side by introducing fixed input lengths.

Our existing backend is based on the CGGI scheme [18] which bases its security on
the (R)LWE problems. In cryptography, the security of a cipher is established using
cryptanalysis and the security is derived from a reliance on underlying mathematical
problems that are known to be NP-hard. this is directly applicable to CGGI, as LWE and
its variants are all hard lattice problems.
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