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Abstract. We present an attack on SIDH utilising isogenies between
polarized products of two supersingular elliptic curves. In the case of
arbitrary starting curve, our attack (discovered independently from [8])
has subexponential complexity, thus significantly reducing the security
of SIDH and SIKE. When the endomorphism ring of the starting curve
is known, our attack (here derived from [8]) has polynomial-time com-
plexity assuming the generalised Riemann hypothesis. Our attack applies
to any isogeny-based cryptosystem that publishes the images of points
under the secret isogeny, for example Séta [13] and B-SIDH [11]. It does
not apply to CSIDH [9], CSI-FiSh [3], or SQISign [14].
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1 Introduction

Supersingular Isogeny Diffie-Hellman (SIDH) [19] is a key exchange proposed
in 2011 by Jao and De Feo. It has since become an archetype of isogeny-based
cryptography, a branch of cryptography whose security relates to the presumed
hardness of computing isogenies: given two (supersingular) elliptic curves over
a finite field, find an isogeny between them. Many other such cryptosystems
∗ Author list in alphabetical order; see https://ams.org/profession/leaders/
CultureStatement04.pdf. This paper is a merge of [24] by Maino and Martindale,
which gives an attack on SIDH, and [39] by Wesolowski, which constitutes the proof
of the main result in this paper. The implementation and algorithmic details of the
implementation were contributed by Panny and Pope. This research was funded
in part by the UK Engineering and Physical Sciences Research Council (EPSRC)
Centre for Doctoral Training (CDT) in Trust, Identity, Privacy and Security in
Large-scale Infrastructures (TIPS-at-Scale) at the Universities of Bristol and Bath,
the Academia Sinica Investigator Award AS-IA-109-M01, the Agence Nationale de
la Recherche under grant ANR MELODIA (ANR-20-CE40-0013), and the France
2030 program under grant agreement No. ANR-22-PETQ-0008 PQ-TLS. Date of
this document: 2023-05-05.
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have been developed [9,3,14,13,11], fuelled by the presumed quantum hardness
of the isogeny problem, thereby providing security against quantum adversaries.
The influence of SIDH is notably illustrated by its incarnation “Supersingular
Isogeny Key Encapsulation” (SIKE) [18], a primitive submitted to the NIST
standardisation effort to find a new quantum-safe cryptographic standard [27].

Yet, the security of SIDH (hence, SIKE) is not guaranteed by the hardness of
the ‘pure’ isogeny problem. It in fact relies on a variant, where the image of some
torsion points under a hidden isogeny are also revealed. This is the supersingular
isogeny with torsion (SSI-T) problem.

Supersingular Isogeny with Torsion (SSI-T):
Given coprime integers A and B, two supersingular elliptic curves E0/Fp2

and EA/Fp2 connected by an unknown degree-A isogeny φA : E0 → EA,
and given the restriction of φA to the B-torsion of E0, recover an isogeny φ
matching these constraints.

This variant has been shown to be weaker than the pure isogeny problem in
a line of work pioneered by Petit [30] in 2017 and expanded in multiple papers in
the last 5 years [31,5,16]. However, the SIKE parameters had not been affected
by these attacks, which all applied only to variants of SIDH.

In this paper, we present an algorithm that solves SSI-T for parameters that
were believed to be secure, including SIKE as well as a few other similar protocols
such as B-SIDH [11] and Séta [13]. The first such polynomial-time algorithm was
described (and demonstrated against SIKE) by Castryck and Decru [8]: they
show that when the endomorphism ring End(E0) is known (as is the case in
SIKE, B-SIDH or Séta), then SSI-T can be solved in polynomial time, under
plausible heuristic assumptions. The idea of the algorithm of [8] is the following.
First, they guess a small part of the isogeny φA. Based on this guess, they
construct some isogeny Φ : EA × E → X, where E is a carefully crafted elliptic
curve, and X is some abelian surface. They prove that the guess is correct if
X is itself a product of elliptic curves, which can be efficiently detected. This
guessing approach allows one to reconstruct φA one ternary-bit at a time, at a
cost dominated by the many 2-dimensional isogenies Φ that must be computed.

The present work is semi-independent: it is the merge of a mostly indepen-
dently discovered7 attack against SIDH [24], with another work [39] subsequent
to [8]. In addition to the independent discovery to [8] of such an attack, our main
contributions reside in:

Practicality: We develop methods fast enough to possibly find constructive
applications. Similarly to [8], we solve SSI-T via isogenies between elliptic
products like EA × E, but we avoid using the iterative ‘decision strategy’.
Instead, we recover the isogeny φA directly from a component of the matrix
form of a (B,B)-isogeny, for some integer B > 0. As a result, in favourable

7 Maino had been working together with Castryck and Decru on a tangentially related
project using similar underlying ideas.
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settings, only one 2-dimensional isogeny computation is required,8 instead
of one per ternary digit (trit) of the secret.

Provability: When End(E0) is known, we prove that our method runs
in polynomial time, assuming the generalised Riemann hypothesis (GRH).
When End(E0) is unknown, we prove that there is a subexponential attack.

The attack is further supported by a SageMath [36] proof-of-concept imple-
mentation available at:

https://github.com/Breaking-SIDH/direct-attack
In the case where End(E0) is unknown, Robert [32] proved, following the

first version of this work, that there also is a polynomial-time attack. This is
asymptotically the fastest known attack in this setting. However, it involves the
computation of a special 8-dimensional endomorphism of E4

0 × E4
A (or, under

plausible heuristics, 4-dimensional), which may limit its practicality.
Finally, note that as in [8] and [32], our attack makes full use of the public

torsion points, and as such, it has no effect on isogeny-based cryptosystems that
do not publish images of points under a secret isogeny, such as CSIDH [9], CSI-
FiSh [3], and SQISign [14].

Outline. The success of our attack on the SSI-T problem relies on Theorem 1,
which is proved in Section 2. The section additionally includes background mate-
rial on polarized abelian surfaces. Section 3 describes a subexponential algorithm
to solve the SSI-T problem without using knowledge of the endomorphism ring
of the starting curve. In Section 4, we then show how knowledge of the endo-
morphism ring improves the performance of the attack, resulting in a provable
polynomial time algorithm to solve the SSI-T problem. The paper concludes
with a discussion of future work in Section 5.

Acknowledgements. We would like to thank Christophe Petit for useful com-
ments regarding methods to compute isogenies with irrational kernel points and
Eda Kirimli, for useful discussions. We are also extremely grateful to Luca
De Feo, who shared with us a better method to find attack parameters dur-
ing ANTS-XV, which in particular led to the argument in this paper that our
algorithm has subexponential complexity. We would also like to thank COSIC
and KU Leuven, especially Wouter Castryck and Thomas Decru, for hosting
Luciano Maino as an intern, sparking his collaboration that led to this paper.

2 The core of the attack

Let all notation be as in the SSI-T problem statement above. The core of the
attack is the following. First suppose that B > A, and that we have access to
some isogeny φf : E → E0 of degree f = B−A, given in any form that allows to
evaluate it on the B-torsion. We postpone the discussion on finding such a φf ,
8 Together with the computation of the image of one point under said isogeny.

https://github.com/Breaking-SIDH/direct-attack
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as the method may depend on the context. Assuming φf is provided, we give
an algorithm (Algorithm 1) that recovers a generator of ker(φA) (i.e., solves
SSI-T), at a cost dominated by one evaluation of a (B,B)-isogeny with known
kernel (with an A-torsion point as input), and two evaluations of φ̂f (with two
B-torsion points as input). In this section, we focus on the design and analysis
of Algorithm 1 for this core task.

The idea is the following. Write gA : E → F for the isogeny of kernel φ̂f (ker(φA)),
and gf : F → EA for the isogeny of kernel gA(ker(φf )), so that the following di-
agram commutes:

E0 EA

E F .

φf

φA

gA

gf

(1)

Now, consider the 2-dimensional isogeny

Φ : E × EA −→ E0 × F
(P,Q) 7−→ (φf (P )− φ̂A(Q), gA(P ) + ĝf (Q)).

Observe that −φ̂A is equal to the composition

EA

0×idEA−−−−−→ E × EA
Φ−→ E0 × F

pr1−−→ E0,

where the first map is the inclusion map with image {0} × EA, the middle
map is Φ, and the last is the natural projection map. Assuming that each map
in this composition is efficiently computable, then we can evaluate φ̂A on any
input. That directly leads to a recovery of ker(φA), hence to a solution of SSI-T.
The difficulty is in proving that each step is indeed efficiently computable. The
computation of the first inclusion is trivial. The step Φ requires a delicate analysis
of this 2-dimensional isogeny, to prove that its kernel can be computed, and that
this kernel permits an efficient evaluation of Φ. The last step — the projection—
may seem clear, but in fact hides a subtlety. The decomposition E0 × F is only
available if Φ is of a certain kind: it must behave well with respect to the implicit
product polarizations of the domain and codomain.

2.1 Isogenies between abelian surfaces

Abelian surfaces can come equipped with a polarization. A polarization of X is
an isogeny λX : X → X∨ to the dual variety X∨. For a primer on the theory of
polarizations, we refer the reader to [26]; for the purpose at hand, we recall in
this section the relevant useful facts as a black-box.

Computationally, a polarization is essentially the data of an equation of the
abelian surface. A relevant example: given two elliptic curves E1 and E2, the
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surface E1 × E2 comes naturally equipped with a product polarization λE1,E2 ,
which is computationally represented by the data of the equations of E1 and E2.

The importance of this notion becomes clear in the context of supersingular
curves. If E1/Fp2 and E2/Fp2 are supersingular, the abelian surface E1 × E2 is
called superspecial. There is a unique isomorphism class of superspecial abelian
surfaces over Fp2 . In particular, if E3 and E4 are any other supersingular curves
defined over Fp2 , then E1 ×E2 and E3 ×E4 are isomorphic as abelian surfaces.
However, they can be distinguished by their implicit product polarizations: the
polarized surfaces (E1×E2, λE1,E2) and (E3×E4, λE3,E4) are isomorphic if and
only if E1

∼= Ei and E2
∼= Ej for {i, j} = {3, 4}.

Given a positive integer B, a B-isogeny Φ : (X,λX) → (Y, λY ) is an isogeny
such that [B] ◦ λX = Φ∨ ◦ λY ◦ Φ, where Φ∨ : Y ∨ → X∨ is the dual isogeny. A
(B,B)-isogeny is a B-isogeny between abelian surfaces whose kernel is isomor-
phic to (Z/BZ)2. As we shall recall in Section 3.1, there are algorithms which,
given a source (X,λX), and the kernel of a (B,B)-isogeny Φ : (X,λX) → (Y, λY ),
compute the target (Y, λY ) and can evaluate Φ at points, in time polynomial in
log(B) and in the largest prime factor of B. In particular, if

Φ : E1 × E2 −→ E3 × E4

is a (B,B)-isogeny with respect to the product polarizations, the algorithm is
given as input equations of E1 and E2, and generators of ker(Φ), and recovers
equations for E3 and E4. It can also take as input two points P1 ∈ E1 and
P2 ∈ E2, and output P3 and P4 such that Φ(P1, P2) = (P3, P4).

Finally, as products of elliptic curves will be of particular interest, let us
introduce some convenient notation. Given four elliptic curves E1, E2, E

′
1, and

E′
2, and four isogenies φij : Ei → E′

j for i, j ∈ {1, 2}, the matrix

M =

(
φ11 φ12

φ21 φ22

)
,

represents the isogeny

Φ : E1 × E2 −→ E′
1 × E′

2

(P1, P2) 7−→ (φ11(P1) + φ12(P2), φ21(P1) + φ22(P2)).

We call M a matrix form of Φ.

2.2 The algorithm

Our attack is a consequence of the following theorem, which is based on a cri-
terion due to Kani [20]. This criterion determines whether a polarized isogeny
originating from an elliptic product admits an elliptic product as codomain.

Theorem 1. Let f , A, and B be pairwise coprime integers such that B = f+A,
and let E, EA, E0, and F be elliptic curves connected by the following commu-
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tative diagram of isogenies:

E0 EA

E F

φf
φ

φA

gA

gf

(2)

where deg(φf ) = deg(gf ) = f and deg(φA) = deg(gA) = A.
The isogeny

Φ =

(
φf −φ̂A

gA ĝf

)
∈ Hom(E × EA, E0 × F ),

is a (B,B)-isogeny with respect to the natural product polarizations on E × EA

and E0 × F , and has kernel ker(Φ) = {([A]P,φ(P )) | P ∈ E[B]}.

This theorem allows us to compute the isogeny Φ efficiently (as long as B is
smooth— preferably a power of two for good practical performance). Further-
more, it implies that this computation leads to the product polarization on the
codomain. It leads to the following result.

Corollary 1. Algorithm 1 is correct and costs 2 evaluations of φ̂f on B-torsion
input points, at most two evaluations of a (B,B)-isogeny (given by its kernel)
on A-torsion input points, and one inversion modulo B.

Algorithm 1: Solving SSI-T, provided an isogeny of degree B −A.
Input: Coprime integers A and B, two supersingular elliptic curves E0/Fp2 and

EA/Fp2 connected by an unknown degree-A isogeny φA : E0 → EA of
cyclic kernel, a basis {PB , QB} of E0[B], a basis {PA, QA} of EA[A], the
image points P ′

B = φA(PB), Q′
B = φA(QB), an isogeny φf : E → E0 of

degree f = B −A.
Output: A generator of ker(φA).

1 Let c ∈ Z such that cf ≡ 1 mod B.
2 Let P ′′

B = [c] ◦ φ̂f (PB) and Q′′
B = [c] ◦ φ̂f (QB). We have φA ◦ φf (P

′′
B) = P ′

B , and
φA ◦ φf (Q

′′
B) = Q′

B .
3 Let Φ : E × EA → E0 × F be the (B,B)-isogeny with kernel

⟨([A]P ′′
B , P

′
B), ([A]Q′′

B , Q
′
B))⟩.

4 Compute Φ(0, PA) = (P ′
A, x). We have P ′

A = φ̂A(PA).
5 Return P ′

A if it has order A.
6 Else, compute Φ(0, QA) = (Q′

A, y) (satisfying Q′
A = φ̂A(QA)), and return Q′

A.
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Remark 1. Note that while the algorithm necessitates at most two evaluations
of the (B,B)-isogeny, a single one is often sufficient. Indeed, suppose the basis
{PA, QA} is uniformly random. If, for instance, A = 2a, then [2a−1]PA ̸∈ ker φ̂A

(i.e., P ′
A has order A) with probability 2/3. Even if P ′

A does not have order
precisely A, it is likely to be close to A, in which case P ′

A generates most of
ker(φA), and a simple exhaustive search can recover the missing information.

2.3 Proof of Theorem 1

In this section, we prove Theorem 1.

Prelude on the adjoint. Consider an isogeny Φ : E1 × E2 → E′
1 × E′

2 repre-
sented by the matrix M = ( φ11 φ12

φ21 φ22 ), where φij : Ei → E′
j . The adjoint of Φ is

the isogeny Φ̃ : E′
1 × E′

2 → E1 × E2 represented by the matrix

M̃ =

(
φ̂11 φ̂21

φ̂12 φ̂22

)
.

Our interest in this notion is that it offers a practical characterisation of isogenies
that preserve the product polarizations: the isogeny Φ is a B-isogeny with respect
to the product polarizations if and only if M̃M = BId2, where Id2 is the identity.
While this property seems standard, let us provide a proof that only relies on
well-documented properties of pairings. First, we show that the adjoint is closely
related to the dual.

Lemma 1. We have Φ̃ = λ−1
E1,E2

◦ Φ∨ ◦ λE′
1,E

′
2
, where

Φ∨ : (E′
1 × E′

2)
∨ → (E1 × E2)

∨

is the dual.

Proof. The dual Φ∨ is the unique isogeny that satisfies

eE′
1×E′

2,n
(Φ(P ), Q) = eE1×E2,n(P,Φ

∨(Q)),

for any positive integer n, any P ∈ (E1 × E2)[n], and any Q ∈ (E′
1 × E′

2)
∨[n],

where e−×−,n denotes the (unpolarized) Weil pairings. Let us now show that
Ψ = λE1,E2

◦ Φ̃ ◦ λ−1
E′

1,E
′
2

satisfies this property (thus Ψ =Φ∨, proving the lemma).

Recall that the polarized Weil pairing e
λE1,E2
n (for the product polarization

λE1,E2
: E1 × E2 → (E1 × E2)

∨) satisfies

e
λE1,E2
n (P,Q) = eE1×E2,n(P, λE1,E2

(Q)) = eE1,n(P1, Q1)eE2,n(P2, Q2),
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where P = (P1, P2) and Q = (Q1, Q2) are in (E1 × E2)[n], and eEi,n are the
Weil pairings on elliptic curves. We deduce that

e
λE′

1,E′
2

n (Φ(P ), Q) =
∏
j

∏
i

eE′
j ,n

(φij(Pi), Qj)

=
∏
j

∏
i

eEi,n(Pi, φ̂ij(Qj))

= e
λE1,E2
n (P, Φ̃(Q)).

It follows that

eE′
1×E′

2,n
(Φ(P ), Q) = e

λE′
1,E′

2
n (Φ(P ), λ−1

E′
1,E

′
2
(Q))

= e
λE1,E2
n (P, Φ̃ ◦ λ−1

E′
1,E

′
2
(Q))

= eE1×E2,n(P, λE1,E2 ◦ Φ̃ ◦ λ−1
E′

1,E
′
2
(Q)),

hence Ψ = Φ∨ as desired. ⊓⊔

Lemma 2. Let B be a positive integer. An isogeny Φ : E1 ×E2 → E′
1 ×E′

2 is a
B-isogeny with respect to the product polarizations if and only if Φ̃ ◦ Φ = [B].

Proof. Recall that Φ is a B-isogeny with respect to the product polarizations if
and only if [B] ◦ λE1,E2 = Φ∨ ◦ λE′

1,E
′
2
◦ Φ. The result thus immediately follows

from Lemma 1. ⊓⊔

For the rest of this section, assume the notation from Theorem 1.

Lemma 3. The map Φ is a B-isogeny with respect to the product polarizations.

Proof. The isogeny Φ has matrix form
(

φf −φ̂A

gA ĝf

)
, so its adjoint has matrix form(

φ̂f ĝA
−φA gf

)
. We have(

φ̂f ĝA
−φA gf

)(
φf −φ̂A

gA ĝf

)
=

(
[deg(φf ) + deg(gA)] 0

0 [deg(φA) + deg(gf )]

)
=

(
[B] 0
0 [B]

)
.

The result follows from Lemma 2. ⊓⊔

Lemma 4. We have ker(Φ) = {([A]P,φ(P )) | P ∈ E[B]}.

Proof. Let K = {([A]P,φ(P )) | P ∈ E[B]}, and let us show that ker(Φ) = K.
The inclusion K ⊆ ker(Φ) follows from

Φ([A]P,φ(P )) = (φf ([A]P )− φ̂A ◦ φ(P ), gA([A]P ) + ĝf ◦ φ(P ))
= ([A] ◦ φf (P )− φ̂A ◦ φA ◦ φf (P ), [A] ◦ gA(P ) + ĝf ◦ gf ◦ gA(P ))
= ([A−A] ◦ φf (P ), [A+ f ] ◦ gA(P ))
= (0, [B] ◦ gA(P )) = (0, 0).
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To show that ker(Φ) ⊆ K, let ([A]P,Q) ∈ ker(Φ). Then, φf ([A]P ) = φ̂A(Q),
hence

[A] ◦ φ(P ) = φA ◦ φf ([A]P ) = φA ◦ φ̂A(Q) = [A]Q.

Since P ∈ E[B], and A and B are coprime, we deduce Q = φ(P ), hence
([A]P,Q) ∈ K. ⊓⊔

Theorem 1 now follows from Lemma 3 and Lemma 4: the isogeny Φ is
a B-isogeny with respect to the product polarizations, with kernel ker(Φ) =
{([A]P,φ(P )) | P ∈ E[B]} isomorphic to (Z/BZ)2, hence it is a (B,B)-isogeny.

3 The case of unknown endomorphism ring

To use Theorem 1 to solve the SSI-T problem, any f -isogeny φf : E → E0

suffices. When End(E0) is unknown, for example in the case of a trusted setup,
the problem faced by the attacker is that the computation of φf is not necessarily
easy as there is no reason to expect B − A to be smooth. To mitigate this, we
increase our pool of available cofactors f by brute-forcing the last few steps of
φA and/or by brute-forcing some extra torsion-point images; this amounts to
multiplying A and B respectively by small (fractions of) integers. For ease of
notation, in all that follows we will assume that A = ℓaA and B = ℓbB , where ℓA
and ℓB are coprime integers.

The picture that we should keep in mind when reading through the attack
below is the following commutative diagram, where:

– φA : E0 → EA is the secret isogeny,
– φf : E → E0 is a f -isogeny chosen by the attacker,9

– φℓiA
: E′ → EA is a guess of the (dual of the) last i steps of φA,

– φ′ : E0 → E′ is the corresponding first a − i steps of φA such that φA =
φℓiA

◦ φ′, and
– φ : E → E′ is the fℓa−i

A -isogeny to which we apply Theorem 1.

E0 E′ EA

E

φf φ

φ′ φℓiA

φA

(3)

The attack is described in Algorithm 2, which is a natural generalisation of
Algorithm 1. The parameters e, i, j are introduced to make f = eBℓ−j

B −Aℓ−i
A > 0

smooth enough and apply Theorem 1 on the parameters A⇝ Aℓ−i
A , B ⇝ eBℓ−j

B ,

9 In practice, the attacker computes φ̂f and deduces φf from this.
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and f ⇝ eBℓ−j
B −Aℓ−i

A . Once a f -isogeny φf : E → E0 is computed, the attacker
reconstructs an eBℓ−j

B -basis on E matching the B-basis on E0 defined in the
setup stage in SIDH. Then, the attacker guesses the last i steps of the secret
isogeny φA computing an isogeny φℓiA

: E′ → EA of degree ℓi. For each guess, it
is necessary to check all the eBℓ−j

B -torsion points matching the B-torsion points
on EA defined by the public key. For each pair of the eBℓ−j

B -torsion points found,
the attacker tries to compute a (eBℓ−j

B , eBℓ−j
B )-isogeny Φ as in Theorem 1. If

the codomain of Φ consists of an elliptic product, the first a − i steps of the
secret isogeny are revealed in one of the components of the matrix form of Φ.
This high-level overview is made clear in Algorithm 2.

Algorithm 2: Solving SSI-T, general approach.
Input: Coprime integers A = ℓaA and B = ℓbB , two supersingular elliptic curves

E0/Fp2 and EA/Fp2 connected by an unknown degree-A isogeny
φA : E0 → EA, a basis {PB , QB} of E0[B], a basis {PA, QA} of E0[A],
the image points φA(PB), φA(QB).

Output: A generator of ker(φA).

1 Compute integers e, j, f , and i such that the overall cost according to the
estimates in Section 3.1 is minimised, and eBℓ−j

B = f +Aℓ−i
A . For ease of

notation, we set A′ = Aℓ−i
A and B′ = Bℓ−j

B .
2 Compute a curve that is f -isogenous to E0, define the dual of the computed

isogeny to be φf : E → E0, and compute φ̂f (PB), φ̂f (QB). For more details,
see Section 3.2.

3 Compute a basis {PeB′ , QeB′} of E[eB′] such that [e]PeB′ = [ℓjB ]φ̂f (PB) and
[e]QeB′ = [ℓjB ]φ̂f (QB).

4 Choose a guess φℓi
A
: E′ → EA for the last i steps of φA, recall the definition of

the corresponding φ : E → E′ from diagram (3), and choose R,S ∈ E′[eB′]
such that

[e]R = [ℓ−i
A fℓjB ]φ̂ℓi

A
◦ φA(PB)

and
[e]S = [ℓ−i

A fℓjB ]φ̂ℓi
A
◦ φA(QB),

i.e. R,S are a guess for the images φ(PeB′), φ(QeB′) respectively.
5 Compute a (eB′, eB′)-isogeny with domain E × E′ and kernel

ker(Φguess) = ⟨([A′]PeB′ , R), ([A′]QeB′ , S)⟩.

If the codomain splits, continue (see Remark 2). Else, return to Step 4 and
take a new guess (φℓi

A
, R, S). For more details see Section 3.3.

6 Choose a basis {P,Q} of E′[A′]; compute φ̂′(P ) and φ̂′(Q) via

Φ(0E , P ) = (−φ̂′(P ), ĝf (P ))) and Φ(0E , Q) = (−φ̂′(Q), ĝf (Q))).

7 Compute ker(φ′) = ⟨φ̂′(P ), φ̂′(Q)⟩ and return a generator of ker(φℓi
A
◦ φ′).
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Remark 2. Step 5 in Algorithm 2 has a small chance of causing the overall al-
gorithm to fail, as a split Jacobian may accidentally be the codomain for an
incorrect guess. However it is easy to check whether or not E0 is a factor, and
furthermore the chance of failure is very small.

To discuss the complexity of this attack we should split it into three parts:
1. The precomputation step (Step 1); this can be done once and for all for each

parameter set A,B.
2. The cofactor isogeny computation (Step 2); if SIDH is set up with a fixed

(arbitrary) E0, this can be done once and for all for this E0.
3. The online steps (Steps 3 to 7); these steps need to be performed for every

new public key.

The cost of the cofactor isogeny computation. The cofactor isogeny remains fixed
and is chosen by the attacker. As such, it does not need to be recomputed at
any point due to a wrong guess when brute-forcing. We compute the isogeny
φf via a chain of isogenies φqf of prime degree qf . It is worth noting that
if a square factor appears in the factorization of f , we can simply perform a
scalar multiplication [qf ] rather than computing two qf -isogenies. The cost of
computing φqf for the larger factors qf is discussed in detail in Section 3.2; an
estimate (in terms of Fp-multiplications) can be given as Õ(qf

2).

The cost of the online steps. The discussion in Section 3.1 approximates the cost
of Steps 3 to 7 by ≈ C · e4ℓiAq4e log qe, where qe is the largest prime dividing e
and C is polynomial in log(p). We allow i and e to grow to increase the pool of
options for f in order to get a smaller qf , where qf is the largest prime dividing f .

The precomputation. If SIDH is set up to start every key exchange with a new
E0, the optimal choice of (e, i, j, f) for the attacker ensures that the cost of
Step 2 is approximately the same as the cost of Steps 3 to 5. One could perform
a brute force search over all parameters (e, i, j, f) such that q2f ≤ e4ℓiAq

4
e log qe

and 0 ≤ j ≤ b, which would be costly.
Even though this exhaustive search should be done once and for all, the

search space for SIKE parameters is too big to be bruteforced. However, since
sharing the first version of this paper [25], Luca De Feo shared with us a heuris-
tic subexponential algorithm for the precomputation leading both to a subex-
ponential cofactor isogeny computation and to subexponential online steps. His
argument is as follows: suppose that we wish to target A ≈ B ≈ 2b. To achieve
subexponential complexity L2b(c, 1/2), one can see from the complexity discus-
sion of the online and cofactor steps above that it is sufficient to find parameters

(e, i, j, f) such that e, ℓiA ≈ 2
√
b, and f is

√
b

√
b
-smooth.

To achieve this, we search for solutions to the equation

xAℓ−i
A + yBℓ−j

B = z, (4)

where x, y ≤ 2
√
b, z is

√
b

√
b
-smooth, and i and j are fixed at some chosen values

such that ℓiA ≈ ℓjB ≈ 2
√
b. This corresponds to e = −y (not necessarily coprime
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to B) and f = −xz; if xz, y > 0 then we switch the roles of A and B and
this will correspond to e = −x and f = −yz. Writing f = −xz corresponds to
decomposing φf : Ef → E0 into a degree-(−z) isogeny φ−z : Ef → E′

0 and a
degree-x isogeny φx : E

′
0 → E0, and recovering φA ◦φx by applying Algorithm 2

with A = xA, E0 = E′
0, and φA = φA ◦ φx. Pictorially, this situation can be

summarised by the following diagram.

E0E′
0 E′ EA

E

φ−z

φx

φ

φ′ φℓiA

φA

To find such (x, y, z) for a given (i, j), we run Euclid’s xgcd algorithm on
(Aℓ−i

A , Bℓ−j
B ) until we find (x0, y0, z0) and (x1, y1, z1) such that xi, yi ≈ 2

√
b/2;

this should correspond to zi ≈ 2b−
√
b/2. Then, we search through all linear com-

binations uz0 + vz1 with u, v ≤ 2
√
b/2 and save the smoothest result; call this z.

An integer (such as z) of size 2b is
√
b

√
b
-smooth with probability ρ(β), where

2b/β =
√
b

√
b

and ρ is the Dickman-ρ function which can be approximated by

ρ(β) ≈ β−β . Therefore, we are likely to find a
√
b

√
b
-smooth choice z if the

number of choices for (u, v), that is 2
√
b, is ≈ ββ . A short calculation shows that

log2(β
β) =

√
b

(
1 +

2− 2 log2 log2 b

log2 b

)
≈ log2(2

√
b).

We give some examples for concrete parameters in Section 3.1.

3.1 Heuristic complexity of Algorithm 2

Here, we give some details on and study the complexity of the first four steps
of Algorithm 2 in the case relevant to SIKE, namely A = 3a and B = 2b, with
a focus on the Microsoft challenge parameters A = 367 and B = 2110 and the
parameters A = 3137 and B = 2216 that were proposed for NIST Level I.

Choosing parameters. To understand Step 1, we recall the commutative di-
agram that we keep in mind during this attack, where:

– φA : E0 → EA is the secret isogeny,
– φf : E → E0 is a f -isogeny chosen by the attacker,
– φℓiA

: E′ → EA is a guess of the last i steps of φA,
– φ′ : E0 → E′ is the corresponding first a − i steps of φA such that φA =
φℓiA

◦ φ′, and
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– φ : E → E′ is the fℓa−i
A -isogeny to which we apply Theorem 1.

E0 E′ EA

E

φf φ

φ′ φℓiA

φA

(5)

Choosing f . The shape of f determines the complexity of computing φf . The
cofactor f does not need to be small as the isogeny can be precomputed once
and for all, but it does need to be smooth: considering the extreme case that f is
a prime ≈ A, computing φf directly will be harder than computing φA directly
(because of the extension field arithmetic). Exactly how smooth we require f to
be depends on what we hope we can achieve in complexity for the attack. If qf
is the largest prime divisor (of odd multiplicity) of f , the complexity of Step 2
will be dominated by the cost of the computation of a qf -isogeny, which involves
operations in the field of definition of a generator of the kernel of the isogeny. The
field of definition is unfortunately hard to control, and large field extensions can
have a very serious performance impact. However, note that the required degree
depends on arithmetic properties of the pair (p, qf ), rather than just the size of
qf : for some values of qf the minimal k for which E(Fpk) contains a qf -torsion
point will be much smaller than qf , but the typical case in our setting is k ≈ qf .
Based on this preliminary discussion, we will see in more detail in Section 3.2
that the cost of computing φqf , and therefore φf , can be approximated as Õ(q2f ).

Choosing i and e. The cost coming from i is the cost of brute-forcing all the
cyclic 3i = ℓiA-isogenies from EA, which costs ≈ 3i multiplications in Fp2 . This is
however multiplied by the brute-force cost of guessing the images of the e-torsion
points in Step 4 and by the cost of computing Φ. Guessing the images of the
e-torsion points amounts to checking all the pairs of points of order e on E′,
which is ≈ e4. As a result, we have to run Steps 3 to 5 of Algorithm 2 ≈ e43i

times.
Additionally, the isogeny Φ (which we will attempt to compute ≈ e43i times)

is an (eB′, eB′)-isogeny; in particular it factors via an (e, e)-isogeny. So, in ad-
dition we require e to be qe-smooth, where qe is the largest prime for which
it is feasible to compute (qe, qe)-isogenies (potentially over an extension field,
which again will add a non-negligible cost). The need for the computation of
the (e, e)-isogeny is the main barrier to implementing our algorithm for the
proposed NIST parameters, as to do so requires a working implementation
of (qe, qe)-isogenies, which while should theoretically be possible and reason-
ably fast, requires some research to achieve. There exists literature on this
topic [4,23,22,6], from which we have made a baseline assumption that compu-
tations of (qe, qe)-isogenies over Fpk can be performed in O(q3e) multiplications
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in Fpk . However, there is very little existing work in the way of practical im-
plementation of supersingular Jacobians and products of elliptic curves. We do
note here that it would be possible to avoid implementing the factors of the
(e, e)-isogenies to also map to and from products of elliptic curves, as we can
ensure to start and finish the computation of Φ with a (2,2)-isogeny, which may
make the practical implementation of (e, e)-isogenies with regards to this attack
a more achievable goal.

Working with our baseline assumption that a (qe, qe)-isogeny can be com-
puted in approximately q3e multiplications over the base field of its kernel, we
expect the cost of computing Φ as a (eB, eB)-isogeny to be dominated by the
cost of computing a (qe, qe)-isogeny where qe is the largest prime factor of e. We
leave a careful analysis of the sizes of the field extensions for genus 2 to later work
that includes a practical implementation of (qe, qe)-isogenies for prime qe ̸= 2,
but let us assume for the sake of argument that the slow down for the extension
field arithmetic scales with qe similarly to the elliptic curve case. Then, assuming
that the field extensions required are large enough that it is best to use the Fast
Fourier Transform for multiplication, we approximate the cost of computing the
(qe, qe)-isogeny by O(q3e · qe log qe). This is probably an overestimate: more re-
search is needed into the existence of

√
élu-style-algorithms in the case of abelian

surfaces. However, if the attack costs 2λ, note that e is already forced to be rel-
atively small compared to this by the fact that we have to search through ≈ e4

pairs of possible images of e-torsion points. Because of this, we can expect e to
be fairly smooth compared to f , for example, so qe (and the corresponding field
extension) need not be particularly large.

In our choice of parameters for our toy example, we have chosen to demon-
strate the use of e without the need to delve into (qe, qe)-isogenies for qe > 2
by choosing e = 2. In this case we need a field extension of degree 4 for the
2b+1-torsion points. This is not special to this instance but a consequence of the
fact that the pull-back of the multiplication-by-2 map contains a square root
(and no other rational but not integral powers), and so each lift of a point of or-
der 2i to a point of order 2i+1 will either double the degree of the field extension
or keep it the same.

Choosing j. The choice of j only potentially effects the precomputation step,
Step 1 of Algorithm 1, as we achieve B′ = 2−jB-torsion points by multiplying the
known B-torsion by 2j ; for this reason we have no restrictions on non-negative j.
Notice that we do not require e to be coprime to B, so e may contain powers of
two, accounting also for the possibility of negative j.

Concrete attack parameters. We present here some choices of attack parameters
in three cases of interest: two toy examples to test our algorithm, the Microsoft
challenge parameters, and the parameters of SIKEp434 that were proposed for
NIST Level I.

Toy parameters: First, we construct a small example to test our algorithm using
the 34-bit prime p = 219 · 39 − 1, with attack parameters e = 2, i = 1, j = 0 and
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f = 5·13·17·23·41. The largest field extension that we need for the computation
of φf is Fp20 , for the 41-isogeny. The largest field extension for e = 2 is Fp4 , for
the pullbacks of the order-219 points to order-220 points. This runs in less than
10 seconds on a single core on a standard laptop; see our code linked below.

We additionally demonstrate our attack on the 64-bit prime p = 233 ·319−1,
which was introduced in [29] as a small example instance for the Castryck–Decru
attack, using the attack parameters (e, i, j, f) = (1, 3, 5, 5 · 11 · 13 · 19 · 47 · 353).
The largest field extension involved in computing φf is Fp176 , for the 353-isogeny.
As e = 1, no extension is required to perform point division. This runs in less
than 1 minute on a single core on a standard laptop.

Our code for attacking both of the above parameter sets is available at:
https://github.com/Breaking-SIDH/direct-attack

Challenge parameters: We consider one of the sets of challenge parameters put
forward by Microsoft [12]: A = 367, B = 2110, i = 7, e = 1, j = 2,

f = 5 · 7 · 133 · 432 · 73 · 151 · 241 · 269 · 577 · 613 · 28111 · 321193.

The largest field extension we would need for the computation of φ321193

using
√

élu is of degree 642384; in this case it might be faster to use a variant of
Kohel’s algorithm to avoid the extension field arithmetic (see Section 3.2). The
extension field degrees for all the factors of f are given by

[k, qf ] = [8, 5], [12, 7], [24, 13], [28, 43], [144, 73], [75, 151], [480, 241],

[67, 269], [1152, 577], [1224, 613], [56220, 28111], [642384, 321193].

The choice of i = 7 also means that we need to run Steps 3 to 5 of Algorithm 2 up
to 37 ≈ 211 times. In particular, if the SIDH instantiation uses a fixed (arbitrary)
starting curve, the computation of φf can be performed as a precomputation
and the attack on an individual public key is relatively fast, just the computation
of some (2, 2)-isogenies and 3-isogenies of elliptic curves, repeated potentially 37

times.
We have thus far restricted ourselves to e and B being a powers of two,

as we want to demonstrate our attack and do not yet have adequate resources
at our disposal to compute (ℓ, ℓ)-isogenies for ℓ > 2. However, looking at the
Microsoft challenge parameters can already illustrate the freedom that being
able to compute efficiently (ℓ, ℓ)-isogenies for ℓ ̸= 2 can provide: we open up
more options for attack parameters, including in this case in which one requires
very little brute-force (only repeating Steps 4 to Step 5 up to 4 times): A = 2110,
B = 367, A′ = 2a−j = 2108, B′ = 3b−i = 348, e = 1, and

f = 5 · 7 · 13 · 61 · 73 · 431 · 593 · 607 · 881 · 36997 · 139393 · 227233.

The extension field degrees for all the factors of f are given by

[k, qf ] = [8, 5], [12, 7], [24, 13], [60, 61], [144, 73],

[860, 431], [1184, 593], [303, 607], [220, 881],

[73992, 36997], [34848, 139393], [56808, 227233].

https://github.com/Breaking-SIDH/direct-attack
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NIST Level I parameters: To select attack parameters for SIKEp434, that is,
with A = 3137 and B = 2216, we rely on the algorithm for parameter selection
outlined in the ‘precomputation step’ complexity analysis of Section 3. Table 1
shows some outputs of the algorithm for SIKEp434 parameters; these represent
(i, j, x, y, z) such that

x3137−i + y2216−j = z.

We leave the details on the best parameter choice to further study, as all these
parameters require a working implementation of (ℓ, ℓ)-isogenies for ℓ > 2. Note
that the last entry in the table only requires the computation of (3, 3)-isogenies,
at the expense of some smoothness of f = −yz; the largest degree of elliptic-curve
isogeny required in this choice is 11144321.

Table 1. Some possible attack parameters for SIKEp434

i j x y z

19 27 41 · 2333 −101 · 241 −54 · 19 · 47 · 61 · 857 · 2903 · 60889 · 216617
· 342497 · 2309969 · 2945407 · 3951767 · 4037069

16 24 1823581 −239 · 6553 −11 · 13 · 19 · 29 · 631 · 6043 · 16451 · 29759 · 139987
· 364513 · 1850837 · 3464849 · 6344729 · 26440207

15 27 123551 −2546657 −52 · 29 · 103 · 1549 · 28201 · 55933 · 243431
· 1874903 · 4421117 · 6553021 · 14183149 · 39691591

16 29 5 · 72 · 1171 −7884713 −173 · 853 · 883 · 8627 · 26759 · 692929 · 3500557
· 5202137 · 6065333 · 15108221 · 28512793

16 25 79 · 139 · 499 −197 · 47777 −5 · 11 · 17 · 571 · 35099 · 40639 · 48889 · 81281
· 138899 · 1285429 · 8464307 · 13664309 · 17314859

16 24 −467 · 5419 5 · 434689 −7 · 103 · 109 · 2791 · 3643 · 36191 · 47581 · 99817
· 401119 · 749467 · 2690497 · 2863607 · 3014203

16 25 −197 · 9391 11 · 307 · 941 −5 · 233 · 431 · 659 · 4219 · 237277 · 371341 · 820643
· 2362589 · 3896323 · 14204429 · 55510211

17 26 −1 1 −11 · 23 · 31 · 131 · 281 · 311 · 601 · 3331 · 8059 · 8761
· 163411 · 1164091 · 2101681 · 4027511 · 11144321

3.2 Computing the cofactor isogeny

First, notice that any finite subgroup of an elliptic curve appearing in the SIDH
setting defines an Fp2-rational isogeny: this is simply because Frobenius equals
a scalar multiplication for the supersingular elliptic curves employed by SIDH,
hence stabilizes any subgroup by definition. Thus, when computing isogeny fac-
tors φq : En → En+1 of φf , the rationality of En+1 or of the images of rational
points on En is no concern. Moreover, if Kohel’s algorithm or the ‘irrational’
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variant of the
√

élu algorithm [1, § 4.14] is used, evaluating the isogeny at points
in some E(Fpr ) can be done using arithmetic in Fpr rather than (as is the case for
Vélu and

√
élu) the potentially much bigger composite of the fields of definition

of the kernel points and the evaluation point.
In order to make an approximation of the complexity of computing φf on

which we can base our search for good parameters for our attack, we ran some
experiments to investigate the behaviour of extension degrees for different values
of p. As an illustration we consider E1728/Fp with p = 22163137 − 1 as in the
proposed NIST Level I parameters for SIKE. Only the even-degree fields are
relevant as we are working with extensions of Fp2 . Figures 2, 3, and 4 show the
qf for which there exists an even k ≤ 1000 such that there is an Fpk -rational
point of order qf (only the minimal even k is depicted). In total, we find 72% of
the primes < 102 (cf. Figure 2), 62.5% of the primes < 103 (cf. Figure 3), and
22% of the primes < 104 (cf. Figure 4). Based on these experiments, to guide our
parameter selection for our attack we crudely estimate that the minimal field
extension degree k for the maximal qf dividing f is close to degree qf over Fp2 .
Below, we will often use the fact k ≤ qf .

To compute with elements in an extension field of degree k, one requires an
irreducible polynomial of that degree over the ground field (here, Fp2). There
are many algorithms for this task. We specifically mention one approach due to
Shoup [33], which has a complexity of Õ(k2 + k log p) operations in Fp.

To find a point of order qf , we may then sample a random point P ∈ E(Fpk)
and multiply it by a cofactor on the order of pk. Using square-and-multiply,
this amounts to O(k log p) multiplications in Fpk . Thus, finding a point of order
qf in this way costs Õ(k2 log p) when using FFT-based multiplication for Fpk .
Under the assumption that log p ∈ (log qf )

O(1), which would for instance follow
from the heuristic estimates on f given above, this gives us a rough estimate of
Õ(q2f ) for the complexity of computing the kernel of a φq-isogeny. Note that if
the largest factor of the smoothest possible choice of f only admits very large
extension fields, it will be worthwhile to opt for a slightly less smooth f , i.e., a
slightly bigger qf , for which the field extensions are smaller.

To compute a large-degree isogeny from an explicit kernel point over Fpk ,
we can either apply

√
élu directly over Fpk or first recover the kernel polynomial

using [15, Algorithm 4] and then run Kohel’s algorithm. The cost for the first
method is Õ(q

1/2
f ) arithmetic operations in Fpk , or Õ(q

3/2
f ) operations in Fp

using FFT-based multiplication in Fpk . The cost for the second method is O(q2f ).
(Note that the first method will require working in composite extension fields to
evaluate the isogeny at points, whereas the second gives an expression for the
isogeny with coefficients in Fp2 .)

Overall, the dominating part of the algorithm is the large scalar multiplica-
tion to find the kernel of a qf -isogeny. Therefore, to guide our choice of attack
parameters, we take the complexity of computing and evaluating large-degree
isogenies to be Õ(q2f ).

We mention in passing that the field extension degree can be halved whenever
it is even, by using x-only elliptic-curve arithmetic.
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Fig. 1. Extension field degrees < 1000 needed for Fpk -rational qf -torsion

Fig. 2. qf < 102

Fig. 3. qf < 103

Fig. 4. qf < 104
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An alternative approach. Instead of finding an irreducible polynomial for Fpk

and computing a large scalar multiplication, it is also possible to extract an
isogeny kernel from the qf -division polynomial directly, as follows.

The qf -division polynomial for E/Fp2 is the unique monic squarefree poly-
nomial with coefficients in Fp2 whose roots are precisely the x-coordinates of
nonzero qf -torsion points on E. It can either be precomputed for a generic
curve E with symbolic coefficients (e.g., a single Montgomery coefficient A)
or computed directly for a given E using a recursive expression [34, Exercise
3.7]. A careful analysis of both approaches to computing division polynomials is
given in [2, § 9]: Evaluation of a precomputed polynomial can be faster if qf is
fairly small, but once qf is large enough that multiplying polynomials of degree
q2f benefits from FFT-based multiplication, it becomes faster to compute the
polynomials instantiate for a given E directly. For these large qf , the cost of
computing the division polynomial is O(q2f log qf ) base-ring operations.

Let Fp2k be the smallest extension of Fp2 where the qf -torsion is defined,
and define k′ = k/2 if k is even and k′ = k otherwise. All irreducible divisors
of the division polynomial have degree k′: for the curves used in SIDH, the
p2-Frobenius π equals [−p], hence for any point P = (x, y) of order qf we
have πk(P ) = [(−p)k]P = P . Dropping the y-coordinate corresponds to quo-
tienting the elliptic-curve group by negation, which shows xk

′
= x, and k′ is

minimal with this property since k was minimal. Thus, the irreducible divisor
of ψqf which vanishes at x has degree k′ as claimed. We may thus apply ‘equal-
degree splitting’— see e.g. [17, Algorithm 14.8]) — recursively to find a single
irreducible divisor h of ψqf . This involves O(d log p+ log qf ) operations on poly-
nomials of degree O(q2f ); assuming the use of FFT-based multiplication the cost
in Fp-operations is Õ(q3f ) log p. By construction h is then a minimal polynomial
for a qf -isogeny in the sense of [15, Definition 15]. We may compute the isogeny
in time O(k′qf ) + Õ(qf ) by running [15, Algorithm 3] and applying Kohel’s al-
gorithm. The total cost for this is Õ(q3f ) log p, which is worse than finding an
irreducible polynomial first and running the multiplication-based method above.

3.3 Computing (ℓ, ℓ)-isogenies

In order for our algorithm to reach its full potential, it is necessary to consider
integers e in Step 1 of Algorithm 2 that do not divide B, and in particular are not
necessarily powers of two. It may also be that there is a nice parameter choice
(e, i, j, f) with A a power of 2 and B a power of 3 (cf. the attack parameter
suggestions in Section 3.1), or one may want to consider more general setups.
In all of these cases, in Step 5 of Algorithm 2 it will be necessary to compute
(ℓ, ℓ)-isogenies for ℓ ̸= 2, which as observed above requires more research to
achieve practically (for ℓ = 3 there is however already some interesting work on
this topic [6]). For this reason, we leave all instantiations of the attack that use
e not dividing B to future work and focus on the case of (2, 2)-isogenies, that is,
B = 2b and e | B. Recall that we set B′ = B2−j , where 0 ≤ j ≤ b.
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In order to compute the chain of (2, 2)-isogenies whose composition is the
(eB′, eB′)-isogeny Φ, we need to able to compute three different flavours of
(2, 2)-isogenies between principally polarized abelian surfaces:

– A (2,2)-isogeny from a Jacobian of a genus 2 curve to a Jacobian of a genus
2 curve, for which we refer to reader to [37, §2.3.1].

– A (2,2)-isogeny from a product of elliptic curves to the Jacobian of a genus 2
curve, for which we refer the reader to [8] for more details. (This is required
for the first step of Φ).

– A (2,2)-isogeny from a Jacobian of a genus 2 curve to a product of elliptic
curves, for which we refer the reader to [35, Proposition 8.3.1]. (This is
required for the last step of Φ).

Our proof-of-concept implementation uses Rémy Oudompheng and collabora-
tors’ SageMath implementation [28,29] for these steps.

4 The case of known endomorphism ring

Algorithm 1 solves SSI-T, assuming that B > A, and an isogeny φf : E → E0

of degree B −A is known, in a way that allows efficient evaluation of φ̂f on the
B-torsion. In this section, we describe how to find such an isogeny in polynomial
time, provided E0 and a description of the endomorphism ring End(E0).

More precisely, we prove the following theorem. An efficient representation
of an isogeny φ is an encoding of the isogeny, together with an algorithm that
can evaluate it on points in time polynomial in the length of the input.

Theorem 2. Assume the generalised Riemann hypothesis. There is an algo-
rithm that solves the following task in polynomial time (in the length of the
input): given a supersingular curve E0, four endomorphisms of E0 in efficient
representation, and a positive integer f , finds an isogeny φ : E0 → E of degree
f in efficient representation.

Together with Corollary 1, this theorem immediately implies a polynomial
time algorithm for SSI-T, when the endomorphism ring of E0 is known, and
assuming the generalised Riemann hypothesis (GRH).

Proof of Theorem 2. The idea is the following: first, find an ideal I in End(E0)
of norm f . Then, assuming GRH, one can find the codomain of φ = φI : E0 → E
and evaluate φ on any input using [16, Lemma 3.3].

Finding the ideal I requires more explanation. First observe that the problem
reduces to the case where f is coprime to 2p: write f = 2ipjf ′ with (f ′, 2p) = 1,
solve the problem for f ′, and then compose the resulting isogeny with i isogenies
of degree 2 and j Frobenius isogenies. The steps to find I are then given in
Algorithm 3. Let us explain Step (2). Finding the desired solution heuristically
is simple, so the motivation of the following discussion is mostly to get a provable
method. Write the solutions (α, z) in the form (x, z) ∈ Z4×Z, where x represents
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Algorithm 3: Finding an ideal of prescribed norm.
Input: A basis (αi)

4
i=1 of End(E0) in efficient representation, and an integer f

coprime to 2 and p.
Output: A left ideal I of norm f in End(E0)

1 Find a solution of deg(α0) = z20f with α0 ∈ End(E0) and z0 ∈ Z. It is a
homogenous quadratic equations of dimension 5, so can be solved in
polynomial time by [7].

2 Deduce another solution (α, z) for which z is coprime with f , using the
technique of [38, Algorithm 7, Step 3].

3 Return I = End(E0)α+ End(E0)f .

the coefficients of α in the provided basis of End(E0). The equation can then be
written as xtGx = z2f , or xtQx = 0, where G is the Gram matrix of the basis,
and Q = G⊕ ⟨−f⟩ (the 5× 5 matrix with G in the upper-left corner, −f in the
lower-right corner, and zeros elsewhere). Note that we can assume that x0 (the
vector of coordinates of α0) is primitive (i.e., the greatest common divisor of its
coefficients is 1) and z0 ∈ Z>0. We are looking for another solution where x is
coprime with f . The rest of the proof reproduces mutatis mutandi the technique
of [38, Algorithm 7, Step 3]. From [10, Proposition 6.3.2], the general solution
X = (x, z) is given by

X = d((RtQR)X0 − 2(RtQX0)R),

for arbitrary R ∈ Q5 and d ∈ Q∗, where X0 = (x0, z0) is our initial solution. Fix
d = 1. Write R = (rx, rz) with rx ∈ Z4 and rz ∈ Z. The last coordinate of X is
given by the integral quadratic form

rtxGrxz0 − 2rtxGx0rz + fz0r
2
z =

(rxz0 − x0rz)
tG(rxz0 − x0rz)

z0
.

It is of rank 4, so let M ∈ M4×4(Z) be a matrix whose columns generate Λ =
z0Z4 + x0Z, and

g(v) =
vt(M tGM)v

z0
.

It is positive definite, since G is and z0 > 0. Let us show that g is (almost)
primitive. If s is a prime that does not divide z0, both M and z0 are invertible
modulo s, so g is primitive at s because G is. Now suppose s | z0. Then, writing
Mv = rxz0 − x0rz, we have

g(v) ≡ −2rtxGx0rz mod s.

Therefore, if s ̸= 2 and Gx0 ̸≡ 0 mod s, then g is primitive at s. If Gx0 ≡ 0
mod s, since x0 is primitive, s must divide disc(G), so s is 2 or p. This proves
that the only primes where g might not be primitive are 2 and p. We can then
write g = g′/a where g′ is primitive and a may only be divisible by the primes 2
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and p. Applying [38, Proposition 3.6], we can find in polynomial time a v such
that z′ = g′(v) is a prime larger than f . With z = az′, we obtain a solution of
xtGx = fz2. Since f is coprime to 2p, it is also coprime to z.

5 Future work

We have provided an implementation of a toy example, but with a practical
implementation of (ℓ, ℓ)-isogenies for ℓ > 2 it should be possible to provide a
practical implementation of larger interesting instances. Additionally, our im-
plementation does not yet incorporate the fast (2,2)-isogeny formulas of Kun-
zweiler [21], which especially when working over field extensions will have a
positive impact on performance.

Finally, given the speed of recovering the secret isogeny using our algorithm,
especially in the case of known endomorphism ring, we also hope that it will be
possible to use these methods for constructive purposes.
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