OPRFs from Isogenies: Designs and Analysis
(Full Version)*

Lena Heimberger¹, Tobias Hennerbichler¹, Fredrik Meisingseth¹,², Sebastian Ramacher³, Christian Rechberger¹

¹Graz University of Technology, ²Know-Center, ³AIT Austrian Institute of Technology

lenz.heimberger@tugraz.at

Abstract. Oblivious Pseudorandom Functions (OPRFs) are an elementary building block in cryptographic and privacy-preserving applications. While there are numerous pre-quantum secure OPRF constructions, it is unclear which of the proposed options for post-quantum secure constructions are practical for modern-day applications. In this work, we focus on isogeny group actions, as the associated low bandwidth leads to efficient constructions. We introduce OPUS, a novel Naor-Reingold-based OPRF from isogenies without oblivious transfer, and show efficient evaluations of the Naor-Reingold PRF using CSIDH and CSI-FiSh. Additionally, we analyze a previous proposal of a CSIDH-based OPRF and that the straightforward instantiation of the protocol leaks the server’s private key. As a result, we propose mitigations to address those shortcomings, which require additional hardness assumptions. Our results report a very competitive protocol when combined with lattices for Oblivious Transfer. Our evaluation shows that OPUS and the repaired, generic construction are competitive with other proposals in terms of runtime efficiency and communication size. More concretely, OPUS achieves almost two orders of magnitude less communication overhead compared to the next-best lattice-based OPRF at the cost of higher latency and higher computational cost, and the repaired construction. Finally, we demonstrate the efficiency of OPUS and the generic NR-OT in two use cases: first, we instantiate OPAQUE, a protocol for asymmetric authenticated key exchange. Compared to classical elliptic curve cryptography, which is considered insecure in the presence of efficient quantum computers, this results in less than 100 × longer computation on average and around 1000 × more communication overhead. Conversely, for sets of the size 2^{15}, we report a runtime around 200 × slower than the elliptic curve PSI. This concretizes the overhead of performing PSI and using OPAQUE with isogenies for the first time.

* Please cite the conference version of this paper published at AsiaCCS 2024.
Cloud computing, authenticated key exchange and secure data sharing are ubiquitous in modern-day computation. All of these high-level applications may use Oblivious Pseudorandom Functions (OPRFs) as an underlying building block to strengthen security and guarantee privacy. Informally, OPRFs take input from a client and a key from a server, then return a pseudorandom output to the client. The OPRF is secure when the client learns nothing about the key, and the server learns nothing about the output or the client input. This basic functionality gives rise to various applications.

For example, consider password authentication: To prove the knowledge of a pre-registered password, the client transmits their password, ideally in a salted and hashed form. The server checks the transmitted password against a stored record and authenticates the client if the record matches the password. However, passwords notoriously lack entropy and may be recovered from a server record in the event of a breach. In addition, this ideal setting is not always the case, as attacks leaking cleartext passwords are still common. For example, PwnedPasswords [Hun] consolidates breaches of passwords and finds over 90 matches when searching for plain text breaches. This attack vector can be mitigated by never storing passwords on a server in the first place. A great example of a protocol solving the password storage problem is OPAQUE, an asymmetric password-authenticated key agreement protocol for which standardization efforts are ongoing at the CFRG [DFHSW22].

Use cases of OPRFs expand beyond passwords and include private set intersection (PSI), where two parties with respective datasets wish to compute the overlapping elements in both sets without revealing their non-shared elements. This can be used for private contact discovery [KRS+19] to protect the highly sensitive social graph of messenger app users from ever being uploaded to a server.

While there is a variety of sound and efficient constructions for OPRFs from classical primitives, efficient and secure OPRFs from post-quantum hardness assumptions remain an open question. An interesting primitive for quantum-resistant OPRFs are isogenies, which have small communication complexity but suffer from slow runtimes. Until now, there was only one OPRF based on CSIDH [BKW20]. We show that the naïve approach to the implementation is not sufficient, and subsequently propose a fix using uniform sampling for the keys as used in the signature scheme CSI-FiSh [BKV19]. We combine the OPRF with a lattice-based Oblivious Transfer protocol to achieve a relatively fast construction that computes the OPRF in under 100 ms online time. Of independent interest, we report that the Naor-Reingold PRF is nearly constant-time with respect to the input length when using the lattice reductions of CSI-FiSh. Based on the work on this OPRF, we introduce OPUS, a novel construction that only uses CSIDH operations. It efficiently computes the Naor-Reingold OPRF while only using 60% of the group actions of the previous proposal, without needing a trusted setup. Furthermore, we present the first post-quantum implementation
of OPAQUE using two isogeny-based OPRFs. In addition, we implemented and evaluate private set intersection with both OPRFs.

2 Preliminaries

We recall (Oblivious) Pseudorandom Functions.

Definition 1 (Pseudorandom Function). A pseudorandom function (PRF) \[GGM84, GGM86 \] is a deterministic and polynomial time function \(F : \{0,1\}^k \times \{0,1\}^x \rightarrow \{0,1\}^n \) such that there is no probabilistic polynomial-time algorithm to distinguish any output \(N \) from a randomly chosen element from \(\{0,1\}^n \).

Definition 2 (Oblivious Pseudorandom Function). An oblivious pseudorandom function (OPRF) \[FIPR05 \] is a protocol between two parties. One party holds the secret key \(K \) and the other holds their secret input \(X \). The OPRF privately realizes the joint computation outputting \(F(K, X) \) for a PRF \(F \) to the party holding \(X \), and nothing to the party holding \(K \).

2.1 CSIDH

CSIDH \[CLM^{+}18 \], was originally proposed as a quantum-safe replacement for Diffie-Hellman key exchanges. It builds on the ideas of Couveignes \[Cou06 \] and Rostovtsev-Stolbunov \[RS06 \] (CRS), but restricts the isogeny graph to supersingular curves over \(\mathbb{F}_p \). \(p \) is a prime in the form \(p = 4 \prod_{i=1}^{k} \ell_i - 1 \) and \(p \equiv 3 \mod 4 \). For \(\pi = \sqrt{-p} \) and \(\mathcal{O} = \mathbb{Z}[\pi] \), each \(\ell_i \) splits the endomorphism ring \(\mathcal{O} \) into \(\ell_i \) isogenies with degree \(\ell_i \). The isogeny \(\phi : E \rightarrow E' \) is a map from an elliptic curve \(E \) to another curve \(E' \) that preserves the point at infinity and the algebraic structure \[Sil86 \]. Hence, both curves have the same number of rational points. The isogeny is unique up to isomorphism. It is computed using Velu’s formula \[Vel71 \].

The heart of CSIDH is the group action \(* \), which iteratively computes the \(\ell_i \) isogenies. It acts on the set of elliptic curves \(\mathcal{E} \mathcal{U}_{p}(\mathcal{O}, \pi) \), denoted as \(\mathcal{E} \). To ensure the group action is efficient, each \(\ell_i \) is required to be a small, distinct, odd prime.

Private Key and Public Key The ideal class group \(Cl(\mathcal{O}) \) acts freely and transitively on \(\mathcal{E} \). The element \(\{\ell_1 \cdots \ell_k\} \) of \(Cl(\mathcal{O}) \) is represented in CSIDH as the private exponent vector. This array of \(k \) elements \((e_1, \ldots, e_k) \) forms the private key whereas a single element of the vector is called a key coefficient. Each key coefficient \(e_i \) is a random element in the range \([-m, m] \). \(m \) is a bound obtained from the parameter generation to store approximately \(\frac{\log p}{2} \) bits. The sign of the key coefficient describes the direction of the walk: Walking \(e \) steps from some point and then \(-e\) steps results in returning to the starting point. This is a result of the dual isogeny theorem, which states that for each isogeny \(E \rightarrow E' \), a corresponding isogeny \(E' \rightarrow E \) exists. The dual isogeny can be directly used to invert the key: negating each key coefficient \(e_i \mapsto -e_i \) results in
the inversion of k, which we will denote as k^{-1}. It is also possible to add two private keys, where their respective coefficient vectors are added, which we will denote as $k + l$, with k and l being CSIDH private keys. Following the notation in [LGD21], we use $s \ast E$ as shorthand to denote the class group action between $s = \{l_1, \ldots, l_k\}$ and E using the vector $s = (s_1, \ldots, s_k)$.

The corresponding CSIDH public key is the Montgomery coefficient $A \in \mathbb{F}_p$ of the supersingular curve $E : v^2 = u^3 + Au^2 + u$ and deterministically obtained by repeatedly applying the private key to the base curve $E_0 : v^2 = u^3 + 0 \cdot u^2 + u$. Of p possible public keys, approximately \sqrt{p} of those keys are valid, meaning that they describe supersingular curves.

Computational Assumptions For the security proof, we recall the key recovery problem [CLM+18, Problem 10] for CSIDH.

Problem 1 (Key Recovery Problem). Given the two different supersingular curves $E, E' \in \mathcal{E}$, find an $s \in Cl(O)$ such that $s \ast E = E'$.

[LGD21] give a useful lemma showing that sampling elements of the class group $Cl(O)$ is statistically close to uniform which follows directly from the Key Recovery Problem.

Lemma 1 (Computational Hiding in CSIDH). Given a curve $E \in \mathcal{E}$ and a distribution D on $Cl(O)$, let $D \ast E$ be the distribution on \mathcal{E} of $a \ast E$ for $a \stackrel{\$}{\leftarrow} D$. If D is statistically indistinguishable from the uniform distribution on $Cl(O)$, $D \ast E$ is statistically indistinguishable from the uniform distribution on \mathcal{E}. Therefore, we say that D statistically hides E.

We recall the computational CSIDH problem from [CLM+18].

Problem 2 (Computational CSIDH Problem). Given curves $E, r \ast E \in \mathcal{E}$, and $s \ast E \in \mathcal{E}$ where $r, s \in Cl(O)$, find $E' \in \mathcal{E}$ such that $E' = r \ast s \ast E$.

Finally, we recall the decisional CSIDH problem from [EKP20]:

Problem 3. Decisional CSIDH Problem Given the set of curves \mathcal{E} and the ideal class group $Cl(O)$, the decisional CSIDH (D-CSIDH) problem asks to distinguish between the following two distributions:

- $(E, H, a \ast E, a \ast H)$ with $E, H \stackrel{\$}{\leftarrow} \mathcal{E}$ and $a \stackrel{\$}{\leftarrow} Cl(O)$.
- (E, H, E', H') where $E, H, E', H' \stackrel{\$}{\leftarrow} \mathcal{E}$.

If for all PPT adversaries A, the advantage in distinguishing the two distributions is negligible, we say that the C-CSIDH assumption holds.

Parameterization and Security The size of the prime p denotes the security parameter of CSIDH. There is heavy disagreement in the literature on the secure parameterization of CSIDH [BLMP19,BS20,Pei20], as several theoretical and concrete quantum attacks with subexponential complexity dispute
that a prime p which is 512 bits long is sufficient for security. Related work on OPRFs \cite{BKW20} recommends using 2260-bit prime numbers for aggressive parameterization and 5280-bit primes for a conservative instantiation based on analysis of these algorithms. Recent work analyzing and implementing CSIDH with bigger primes concludes that a bitlength of at least 2048 bits, up to 9216 bits is necessary \cite{CSCJR22}.

For best comparability with other implementations, we use the 512-bit reference implementation of CSIDH throughout this paper, but point out that the prime length may not be sufficient. An additional benefit of this implementation is the use of hardware instructions, which speed up the computation.

2.2 CSI-FiSh

Building on CSIDH, the signature scheme CSI-FiSh introduces a uniform representation of the class group elements. In their paper, this is necessary for the Fiat-Shamir transformation to obtain a signature scheme, but the use cases stretch beyond signatures. Intuitively, increasing the bound m of the key coefficient comes closer to sampling uniformly over the class group. To sample fully uniform keys, CSI-FiSh computes the class number and class group structure and reduces the key after the arithmetic operation to avoid leakage. Due to the different distribution of the class group ideals, the group action is around 15% slower.

2.3 The Naor-Reingold Pseudorandom Function (NR-PRF)

The Naor-Reingold PRF \cite{NR04} is a generic construction for PRFs from Abelian group actions that is widely used in the literature and practice. The PRF requires $n + 1$ group elements, or keys, for n bits of PRF input. To compute the PRF, we take the initial group element k_0. For each input bit x_i for $i \in [1, n]$, a group action is performed if the ith bit x_i is set. For a group action denoted as \circ, the Naor-Reingold PRF is defined as

$$F_{NR}((k_0, k_1, \ldots, k_n, E_0), (x_1, \ldots, x_n)) := k_0 \circ k_1^{x_1} \circ \ldots \circ k_n^{x_n}$$

where the exponentiation with x_i may be read as perform \circ if input bit is set.

2.4 Oblivious Transfer and Naor-Reingold OPRF

The NR-PRF gives rise to oblivious evaluation using oblivious transfer (OT). OT takes two messages (m_0, m_1) from the sender, usually the server, and a choice bit c from the receiver, usually the client. The protocol functionality returns m_c to the client and is secure when the client learns nothing about $m_1 - c$ and the server learns nothing about c.

To compute the NR-PRF obliviously using OT, the input X is bit-decomposed into $X = [x_1, \ldots, x_n]$ to use as an input for the OT. The server samples n blinding elements $[r_1, \ldots, r_n]$ and inputs $r_i, k_i \circ r_i$ to the OT, with r_i perfectly
hiding k_i. The client queries the OT with each x_i to obtain $k_i^{x_i} \circ r_i$ and aggregates all results with the group action to obtain the blinded group element $k_1^{x_1} \circ r_1 \circ \ldots \circ k_n^{x_n} \circ r_n$. To finalize the computation, the server evaluates the inverse of all blinding elements with the key and sends the result, which we will call finalization element, $f_{in} = k_0 \circ r_1^{-1} \circ \ldots \circ r_n^{-1}$ to the client. The client now performs a final group action with the finalization element and the blinded group elements to obtain the result:

$$k_1^{x_1} \circ r_1 \circ \ldots \circ k_n^{x_n} \circ r_n \circ k_0 \circ r_1^{-1} \circ \ldots \circ r_n^{-1} = k_0 \circ k_1^{x_1} \circ k_n^{x_n}$$

2.5 Notation

We write a vector v as a bold, lowercase variable, which is used for private exponent vectors. For two vectors a and b, $a + b$ and $a - b$ denote coefficient-wise addition and subtraction.

We denote the sequential application of the group action $\text{csidh}(\text{csidh}(E, a), b)$ as $b \ast (a \ast E)$. Due to the commutativity of CSIDH, this is also equivalent to $(a + b) \ast E$. We denote the zero curve as E_0 and any other curve as E, potentially annotating it to give more context. For example, the result of applying some key c will be denoted $E_c = \text{csidh}(c, E_0) = c \ast E_0$.

We will use an ideal functionality keygen() to sample random, uniform CSIDH private keys. $[k_1, k_2] \leftarrow \text{keygen()}$ samples two random, independent and uniform keys. We will call a curve E randomized after sampling a private key $r \leftarrow \text{keygen()}$ and computing $E' = r \ast E$. We remove the property after applying r^{-1} to the curve E', therefore removing the randomness.

2.6 Benchmarks

All benchmarks, unless specified otherwise, are averaged over 100 executions with random input and have been run on a computer with an AMD Ryzen 7 PRO 4750U Processor with a fixed processor speed at 1.7 GHz and 24 GiB RAM, under the Linux kernel 6.1.44-1-lts. We will refer to this setup as the test machine. Unless otherwise stated, the input length to the OPRF is 128 bits.

3 Attacking and Repairing the Generic Naor-Reingold OPRF from CSIDH

Previous work [BKW20] describes the Naor-Reingold (NR) OPRF for CSIDH to compare against their SIDH-based proposal. While the latter has been broken [BKM+21] and subsequently repaired [Bas23], the approximations for the Naor-Reingold OPRF from CSIDH are widely cited in the literature and have not been studied further. We fill this gap with a thorough investigation of both NR-PRF and NR-OPRF from CSIDH. More concretely, we show in this section that the naïve instantiation of the OPRF leads to a full key recovery in a passive attack and propose a mitigation.
3.1 Instantiating the NR-PRF from CSIDH

To instantiate the NR-PRF with CSIDH, the protocol samples \(n + 1 \) CSIDH private keys and computes the group action as in Section 2.3. The textbook variant of the PRF outlined in Figure 1 is prohibitively slow, requiring \(n + 1 \) sequential group actions to compute the PRF for \(n \) input bits. A recent paper [ADMP20] describes an effective way to evaluate the PRF by splitting the evaluation into two parts: First, a subset-product, in the case of CSIDH addition of all key elements where \(x_i = 1 \), is computed. This first step can be parallelized. The group action is then evaluated using the aggregated key elements in a second step on the base curve.

The subset-sum computation requires a tiny tweak in the CSIDH implementation\(^1\) from 8-bit to 32-bit key elements to avoid overflows. Other than adding addition and subtraction subroutines, the implementation is the same. In Figure 3 we benchmark the PRF computation for input sizes between 1 and 512 bits. We see that the two-step computation approach reduces the evaluation time. This is due to two factors: one, the key coefficients are in the range \([-5, 5]\) and will partially cancel out when added, reducing the required steps on the isogeny graph. Two, the optimization saves \(n - 1 \) computations of the first step of the algorithm, which is computing a point of the correct order. A smaller value of \(\ell_i \) corresponds to a higher cost in computing a point of correct order, as the probability of sampling a correct point is \(\frac{\ell_i - 1}{\ell_i} \). Therefore, the optimization is particularly of interest for an aggressive parameter choice in CSIDH.

Additionally, this PRF is updatable; that is, if parts of the input change, updating the output requires a single group action to update the PRF. This is useful for applications requiring to hash multiple inputs, so the individual inputs differ in less than \(\frac{n}{2} \) bits. In Figure 4 we show that the effort between recomputing the OPRF and updating a previous result holds fairly clearly to our

\(^1\) All CSIDH benchmarks use the reference implementation from https://yx7.cc/code/csidh/csidh-latest.tar.xz, which is from 27-06-2021.
Fig. 3. Runtime divergence between the traditional Naor-Reingold CSIDH PRF in blue and the same PRF with our optimization in green for different bit lengths.

Fig. 4. Runtime divergence between updating x bits of the PRF vs. recomputing the full 256 bits of the PRF.

expectations: It is cheaper to update the OPRF when less than 128 bits differ and otherwise recomputation is more efficient. Note that the divergence in the runtime is due to non-uniform keys in CSIDH.
\[F_{\text{NR-CSIFish-OPT}}((k_0, k_1, \ldots, k_n, E_0), (x_1, \ldots, x_n)) := \]
\[\text{reduce}_\text{mod} \left((k_0 + \sum_{i=1}^{n} k_i \ast x_i), cn \right) \ast E_0 \]

Fig. 5. Optimized two-step Naor-Reingold PRF from CSIDH. The first step is a subset-sum of the required keys and the second step is the application of the group action to the base curve \(E_0 \).

Fig. 6. Comparing PRF runtimes using aggregation only and aggregation and a reduction modulo the class group number before applying the group action.

Instantiation from CSI-FiSh The PRF is even more efficient with CSI-FiSh, as the keys can be added and then reduced modulo the class group number as depicted in Figure 5. The reduction step leads to an almost constant-time computation. In Figure 6, we show the improvement in runtime when using a reduction, leading to an almost constant time complexity when computing the PRF, independent of the input. More concretely, the difference between the lowest and the highest execution time is 0.0032s for the optimized variant and 0.4377s for the aggregation variant.

3.2 Oblivious NR-PRF from CSIDH

The OPRF in [BKW20] is not rigorously described; they initially give a description of the NR-PRF in Protocol 24 of the same paper. In a later paragraph, they state instantiating their protocol with CSIDH results in a NR-OPRF similar to the protocol in Section 2.3. Since the protocol uses OT, we will call it NR-OT henceforth. Using our addition trick from Section 2.3, a correct intuition to com-
pute the OPRF is to instantiate the OT with \((r, k_i + r_i)\) and finalizing the OT by sending \(k_0 \ast \sum_{i=1}^{n} -r_i\). We sketch this protocol in Figure 14.

Analyzing the Construction While the OPRF above produces a correct result, due to the non-uniform representation of the CSIDH private key, the construction leaks the server key. A passive adversary, that is, an adversary who carries out the protocol faithfully, can observe the distribution of the blinded keys.

Key Leakage Example Consider the key coefficient \(k_i = y\), with \(y \in [m, -m]\) (for a discussion on bounds, see Section 2.1). When it is blinded with a random element \(r_i\), the blinded element \(r_i + k_i\) is always within the range \([y - m, y + m]\), as the blinding coefficient is uniformly sampled within the same range \(r_i \in [-m, m]\). Over several iterations, \(r_i\) will change and reveal more and more information about the key, giving the information outright when the difference between the blinding results is \(2m\). To obtain the correct coefficient \(y\), take the largest result \(l\) and compute \(y := l - m\).

3.3 Fixing the NR-OPRF

Signature schemes using the Fiat-Shamir Transformation\(^2\) require uniform keys as well. For CSIDH, the signature scheme SeaSign \[^{16}\] mitigates the non-uniform mitigation by rejection sampling, concretely using the Fiat-Shamir transformation with aborts \[^{20}\]. To translate the technique to the CSIDH setting, SeaSign uses somewhat short, long-term secret keys \(k\) with coefficients \(k_i \in [-B, B]^k\) for some \(B\) and large, ephemeral secret keys \(r\) with each coefficient \(r_i \in [-\delta + 1)B, (\delta + 1)B]^k\), rejecting any \(r\) where the vector \(r - k\) contains a coefficient outside of the range \([-\delta B, \delta B]\). In the NR-OT setting, the long-term sender keys are the short keys \(s\) and the ephemeral keys are sampled as \(r\). While using tactics from SeaSign is a good mitigation, it puts a computational load on the server and introduces the drawbacks of lattice signatures in the scheme. Additionally, the large ephemeral keys add communication overhead to the protocol.

Most of these issues are mitigated by using the sampling algorithm from the signature scheme CSI-FiSh \[^{19}\] introduced in Section 2.2. The protocol in Figure 14 would largely remain the same, with \(k_i + r_i\) being a reduced element of the class group.

\(^2\) In personal communication, authors of \[^{20}\] confirmed that the specific instantiation of their construction using class groups (or isogenies) blinds the class group element representing the key by multiplying a random element, but that the non-uniform key distribution leads to the CSIDH instantiation of protocol \[^{20}\] being "currently broken".
Trusted Setup in Oblivious Transfer Another roadblock on the way to a secure NR-OT instantiation is the underlying OT. The estimations for the communication complexity of the NR-OT [BKW20] use an isogeny-based OT protocol [LGD21] that requires a supersingular curve with an unknown endomorphism ring. A recent paper [BCC+23] proposes an algorithm for the generation of supersingular curves with unknown endomorphism over \(\mathbb{F}_{p^2} \). However, there are no known efficient algorithms for the curves over \(\mathbb{F}_p \) used by CSIDH, which is denoted as an open problem in the same paper. Therefore, using the OPRF protocol requires either an efficient construction of curves with unknown endomorphism over \(\mathbb{F}_p \) or a different OT protocol without a trusted setup.

Alternate OT protocols using CSIDH The semi-honest protocol [dSGOPS20] gives similar performance to the OT protocol of [LGD21], but requiring two trusted curves for the setup. A good alternative may be the single-bit OT of [ADMP20], which requires a key distribution closer to uniform than CSIDH and therefore uses the CSI-FiSh key sampling algorithm for the entire protocol. The main issue with this protocol is that the number of isogeny computations depends on the length of the client input and the bitlength of the input \(\log_2 p = \sigma \). The overall number of isogeny computations would be \(\gamma(5\sigma + 5) \). For an input length of 128 bits and a key size of 256 bits, this would amount to 164480 isogeny computations, which is prohibitive.

Hence, to instantiate the protocol chose a two-round OT protocol based on additive homomorphic encryption [BDK+20], as it provides an implementation and is round-optimal. In addition, the protocol offers batching, making it more efficient for multiple OT invocations, and expects the input to be given as a GMP integer, which is how CSI-FiSh encodes the private key. The protocol is implemented in C++ using Microsoft SEAL [SEA21] for the homomorphic operations. Using the BFV [Bra12,FV12] scheme, it follows in three steps, with \(\square \) denoting homomorphic operations on encrypted messages.

1. The client encrypts their choice bit \(c_b = \text{Enc}(pk, b) \) and sends it to the server.
2. The server computes \(c_{m_b} = (m_0 \oplus (1 \square c_b)) \oplus (m_1 \oplus c_b) \) and sends \(c_{m_b} \) to the client.
3. The client decrypts the ciphertext to obtain \(m_b = \text{Dec}(sk, c_{m_b}) \)

Using the OT and CSI-FiSh, the full protocol is displayed in Figure 7.

Performance Using the lattice-based OT, the NR-OT OPRF becomes relatively efficient. This is due to two factors: first, the added keys are reduced modulo the class number, which results in a very fast PRF runtime, see Section 3.1. This results in a protocol that only requires two group actions to complete. Second, while the lattice OT requires a lot of communication, it is relatively fast.

Conclusion The construction repairs the issues from the initial proposal [BKW20], namely by using an OT protocol that does not require a trusted setup and using
the sampling approach from CSI-FiSh for uniform keys. This introduces two new issues: First, the OT protocol allows the client’s choice bit to be neither 0 nor 1, which may result in a response that is a superposition of messages. Hence, the security model is weaker, as a semi-honest client would only be passively secure. Second, when using uniform sampling, the class group structure is only available for primes of length 512 [BKV19] or 1024 [DFK+23], which may not provide a sufficient security margin as discussed in Section 2.1.
4 **OPUS: Oblivious Pseudorandom Function using CSIDH**

While the above construction is relatively efficient, it would be of interest to build a similar OPRF exclusively from a single type of problem, i.e., isogenies, without the need for hard lattice problems. To avoid sending any private keys over the network, we propose OPUS, a novel OPRF that only sends evaluated curves, that is, CSIDH public keys. In the protocol, both parties iteratively blind their intermediate results, with the client getting anything useful only in the end, beforehand computing over randomized curves. This eliminates the need for a trusted setup, which is the main obstacle hampering other OPRF protocols from CSIDH. The main operations in OPUS are blinding and key addition. In each step, the client blinds a curve, starting with E_0, with a random class group element $r_{c, i}$ and sends it to the server, which returns the curve blinded again with its own, fresh blinding element $r_{s, i}$ and once with the own blinding element and the key. Now, the client decides based on the i^{th} bit of the input with which curve the computation should continue, blinding again to ensure the server learns nothing about their choice. By the hiding Lemma, this perfectly protects the client input and the server keys from malicious parties, see Figure 8.

![Protocol Diagram](image-url)

Fig. 8. The full protocol of our novel OPRF OPUS.
Table 2. Comparison of OPUS complexity on the test machine. The overall time is the addition of the time from the client and the server, as the protocol is sequential.

<table>
<thead>
<tr>
<th>Bit-length</th>
<th>Keygen Comp. PRF</th>
<th>Client Time</th>
<th>Server Time</th>
<th>Overall Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>0.11ms 168ms PRF</td>
<td>3.00s 5.73s</td>
<td>8.73s 8.06kiB</td>
<td>24.13kiB</td>
</tr>
<tr>
<td>256</td>
<td>0.26ms 234ms PRF</td>
<td>5.83s 11.30s</td>
<td>17.13s 16.1kiB</td>
<td>48.13kiB</td>
</tr>
<tr>
<td>512</td>
<td>0.51ms 326ms PRF</td>
<td>11.47s 22.42s</td>
<td>33.89s 32.06kiB</td>
<td>96.13kiB</td>
</tr>
</tbody>
</table>

4.1 Efficiency

Once again, the OPRF is made more efficient with the addition trick from Section 2.3, as both client and server aggregate the blinding keys in vector R to quickly reduce the number of group actions. Overall, OPUS needs $2n + 1$ group action computations for the server and $n+1$ for the client. Experimental runtimes can be found in Table 2 and concrete runtimes in Table 8.

The low communication cost gives lower bandwidth requirements. This is also of benefit in cloud environments and when data is transmitted over cellular networks. An additional advantage of OPUS is that the server carries the highest computational load, while the client only has to perform $n+1$ CSIDH computations.

![Fig. 9. Online runtimes of clients in different cities computing OPUS with a bit length of 128 with a server in London. All machines run on Debian 11 using the simplest Google Cloud instance.](image)
Aside from the isogeny computations, the main performance issue in OPUS is the large number of rounds. To address this concern, we rented virtual machines around the world and used them as clients performing OPUS with a server in London. As clear from Figure 9, the runtime of OPUS directly corresponds to the round-trip time of the ping. In a real-life setting, this overhead may be mitigated by running several, distributed instances of a server.

4.2 Verifiability

When the OPRF is used as a building block in a protocol, and the resulting OPRF output is utilized at a later stage, it is crucial to safeguard user anonymity by preventing any link between the result and the OPRF evaluation. For instance, a malicious server may tag an individual by using a distinct key for OPRF evaluation. This discloses the user’s identity when revealing the OPRF result. For example, the PrivacyPass protocol [DGS+18] hands out tokens to the user after they completed a CAPTCHA. These tokens can be redeemed instead of completing a new CAPTCHA. By using a different key for each challenge, the browser can distinguish tokens handed out for different challenges and track the user across websites.

To mitigate this attack, some OPRFs are verifiable, which means the functionality ensures a server uses a certain key that it previously committed to for the evaluation. Adding verifiability to OPUS is difficult as the communication is entirely over randomized curves, similar to the challenges imposed by the requirements for malicious security. Another OPRF based on isogenies over \mathbb{F}_{p^2} [Bas23] uses a proof of parallel isogeny, which provides a zero-knowledge proof to show that two curves were computed by applying the same secret key to two starting curves and torsion points. Unfortunately, this does not carry over to CSIDH’s \mathbb{F}_p and cannot be applied OPUS or the NR-OT. A recent survey [BFGP23] details strategies and gives an overview of zero-knowledge proofs for isogenies. While it seems possible, we leave the task of constructing a verifiable OPRF for future work.

5 Security Analysis

To prove our novel OPRF secure against a semi-honest adversary in the ROM, we will first show that the OPUS is a PRF. We now show that the protocol OPUS in Figure 8 generates output in correspondence to the CSIDH NR-PRF F_{NR} from Section 2.3.

Proposition 1 (OPUS produces correct NR-PRF outputs).

For all keys $k \in K$ and inputs $x \in \{0, 1\}^n$, the output of an honest computation of OPUS is an evaluation of the CSIDH-based F_{NR}. That is $P[F_{OPUS}(k, x) = F_{NR}(k, x)] = 1$, with the probability being over the internal randomness of OPUS.

Proof (Correctness of OPUS). Given input $X = (x_1, \ldots, x_n)$ and keys $K = (k_0, \ldots, k_n)$, the client C initializes $E \leftarrow E_0$. For each $i \in [1, n]$, C generates a
random key $r_{c,i}$ and sends a randomized curve $r_{c,i} \cdot E$ to the server S, which samples their randomness $r_{s,i}$ and returns $E_{i,0} \leftarrow r_{s,i} \cdot E$ and $E_{i,1} \leftarrow k_i \cdot r_{s,i} \cdot E$ to C. If $x_i = 1$, C sets $E \leftarrow E_{i,0}$ and $E \leftarrow E_{i,1}$ otherwise. Clearly, repeating this step n times is equivalent to computing
\[
\left((\sum_{i=1}^n r_{s,i} + \sum_{i=1}^n r_{c,i} + \sum_{i=1}^n k_{i}^{x_i}) \cdot E_0 \right).
\]
The computation is finalized by C blinding the result again with the term $r_{c,0}$ and sending it to the server, which applies k_0 as well as the sum of the inverse blinding terms r_s such that
\[
(k_0 - \sum_{i=1}^n r_s) \cdot ((r_{c,0} + \sum_{i=1}^n r_{s,i} + \sum_{i=1}^n r_{c,i} + \sum_{i=1}^n k_{i}^{x_i}) \cdot E_0),
\]
which is equivalent to
\[
(\sum_{i=0}^n r_{c,i} + k_0 + \sum_{i=1}^n k_{i}^{x_i}) \cdot E_0.
\]
The client is left to compute the inverse of their respective blinding elements such that
\[
\sum_{i=0}^n -(r_{c,i}) \cdot (\sum_{i=0}^n r_{c,i} + k_0 + \sum_{i=1}^n k_{i}^{x_i}) \cdot E_0,
\]
which is equivalent to computing
\[
(k_0 + \sum_{i=1}^n k_{i}^{x_i}) \cdot E_0.
\]
Therefore, OPUS correctly evaluates the NR-PRF for honest parties.

Consequently, we obtain the following corollary from [BKW20, Theorem 23]:

Corollary 1. Assuming computational CSIDH holds, then OPUS is a secure pseudorandom function.

For the security proof, we consider the one-more pseudorandomness game of Everspaugh et al. [ECS+15] in the fully oblivious setting.

Definition 3. A OPRF $F_k : M \rightarrow R$ provides one-more pseudorandomness if for any PPT adversary A the advantage in the one-more pseudorandomness experiment defined in Figure 10, $| \Pr[\text{om-PRF} = 1] - \frac{1}{2} |$ is negligible.

This notion, as shown by Everspaugh et al., implies the weaker one-more unpredictability security notion of OPRFs. Note though, that in Figure 10 the PRF-Srv oracle is modelled as a single query. In our case, this algorithm takes part in a multi-round protocol, whereas the output depends on client-provided random values which on their own depend on previous outputs of PRF-Srv. We will however keep the notation for simplicity and assume that all the required information to produce a transcript is passed as part of m. We now show that OPUS is one-more pseudorandom based on the D-CSIDH assumption:

Theorem 1. If the D-CSIDH assumption holds, then OPUS is one-more pseudorandom.
Experiment om-PRF:

- \((pk, sk) \leftarrow K, q, c \leftarrow 0\)
- \((i_1, \ldots, i_\ell, b') \leftarrow A_{\text{RoR}, \text{PRF-Srv}}\)
- If \(\ell > q\) or \(c \geq \ell\) or \(\exists \alpha \neq \beta: i_\alpha = i_\beta\) return 0.
- Return \(\beta' = \bigoplus_{\alpha=1}^{\ell} b_\alpha\)

\(\text{RoR}(m):\)

- \(q \leftarrow q + 1, b_q \leftarrow \{0, 1\} Z_0 \leftarrow R, Z_1 \leftarrow F_k(m)\)
- Return \(Z_{b_q}\)

\(\text{PRF-Srv}(m):\)

- \(c \leftarrow c + 1\)
- Return \(\text{PRF-Srv}_k(m)\)

Fig. 10. Security game for one-more pseudorandomness.

Proof. The basic idea is to replace the use of the secret key \(k_i\) step-by-step with randomly sampled curves.

- Game 0: The initial game.
- Game \(i\): Everything is as before, but compute \(E_{s,i,1}\) by sampling uniformly at random from \(E\).
- Transition \(i-1\) to \(i\): an adversary that can distinguish between game \(i-1\) and \(i\), can also solve D-CSIDH. Indeed, let \((E, H, E', H')\) be from a D-CSIDH challenger. We set \(E_{s,i,0} \leftarrow H\) and \(E_{s,i,1} \leftarrow H'\) which interpolates between the two games.\(^3\)

In Game \(n\), the adversary can only guess as none of the \(k_1, \ldots, k_n\) are used in the protocol execution.

Proofing the security of OPUS in the universal composability model and in an adaptive setting, is currently open and future work. To achieve adaptive security, it would be required at least to produce the output of OPUS via a random oracle, i.e., by outputting \(H(m, E_{\text{client}})\), as observed by Jarecki et al. [JKXX18].

6 Case Study: OPAQUE

The OPAQUE [JKXX18] protocol introduces a Password-Authenticated Key Exchange (PAKE) protocol that does not reveal the user’s password to the server. Instead, it performs an OPRF calculation with the server, using the hash of the password as the user’s input and a PRF key provided by the server. Hence, we could set \(E_0 \leftarrow E\) and \(E'\) would represent the public key of the server. As we do not have a public key, though, this step is not required.
offline dictionary attacks effectively require compromise of the server’s PRF key and are otherwise rendered impossible. OPAQUE is unable to prevent online attacks, yet they incur additional costs for the attacker as they have to perform the client’s side of the OPRF evaluation. To make online attacks even more costly, additional client hardening steps (e.g., memory hard functions) can be employed as discussed in [JKX18].

OPAQUE consists of two phases: Password Registration and Password Authentication with Key Generation. Authentication and key generation are accomplished by either combining the OPRF with an asymmetric PAKE (aPAKE) or an Authenticated Key Exchange (AKE) protocol. In our implementation, we focus on the composition using the AKE protocol, since no CSIDH-based aPAKE protocols are available. During registration, both parties generate a long-term asymmetric keypair, later used during authentication to perform the AKE protocol. Using the output of the OPRF, the client derives a symmetric key and uses it to encrypt its private key. For simplicity, our implementation includes the client and server public key in the encryption process. The ciphertext is sent and stored on the server. During authentication the server fetches the ciphertext and sends it to the client, where it is decrypted after performing the OPRF again, requiring the user to only remember their password, but not the long-term key-pair, to authenticate. A shared key is then generated by performing the AKE protocol.

6.1 Post-Quantum OPAQUE Implementation

Constructing a post-quantum version of the OPAQUE protocol requires the replacement of the used OPRF and AKE protocols with suitable post-quantum variants. We instantiate two PQ versions, one using our novel OPRF OPUS and the other one using our NR-OT OPRF. Both versions use a post-quantum secure replacement of the X3DH protocol, proposed by Hashimoto et al. [HKKP21], as the AKE. We chose this AKE since it provides security against Key Compromise Impersonation (KCI) attacks and forward secrecy, as required by the OPAQUE protocol, and is suitable for implementation using CSIDH-based primitives. The protocol is based on a Key Encapsulation Mechanism (KEM) scheme and a signature scheme. We chose the CSIDH-based CSIKE [Q22] as the KEM, since it is IND-CCA secure as required by the used AKE. As the signature scheme, we chose CSI-FiSh [BKV19], as there already is an implementation available. The full protocol flow for the OPAQUE Password Registration and Password Authentication is detailed in Figure 11 and Figure 12 respectively. Ext\textsubscript{s} and F\textsubscript{k} are PRF using KMAC256 instead of HMAC256, since we require variable length output. The PRF uses s and k as the respective keys, with different labels to differentiate between Ext\textsubscript{s} and F\textsubscript{k}.

Note that the security of PAKE is defined in the UC setting and OPAQUE is proven secure for UC-secure OPRFs. As this is left open as future work for OPUS, we consider the evaluation of OPUS with in an OPAQUE as an outlook for future applications of OPUS.
Fig. 11. Description of PQ OPAQUE Password Registration

Table 3. Comparison between the execution time of libopaque and our two OPAQUE instantiations. The execution time is averaged over 100 runs. *Reg.* refers to the registration and *Auth.* to the authentication phase of the protocol.

<table>
<thead>
<tr>
<th>Function</th>
<th>libopaque</th>
<th>PQ</th>
<th>PQ / libopaque</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>OPUS</td>
<td>NR-OT</td>
</tr>
<tr>
<td>OPUS</td>
<td>119.37ms</td>
<td>39.82s 11.59s</td>
<td>× 333.62 × 97.10</td>
</tr>
<tr>
<td>OPUS</td>
<td>95.63ms</td>
<td>39.84s 11.61s</td>
<td>× 416.62 × 121.42</td>
</tr>
<tr>
<td>NR-OT</td>
<td>96.54ms</td>
<td>31.21s 3.25s</td>
<td>× 323.27 × 33.69</td>
</tr>
<tr>
<td>NR-OT</td>
<td>120.32ms</td>
<td>32.01s 2.74s</td>
<td>× 268.15 × 22.80</td>
</tr>
</tbody>
</table>

6.2 Comparison to Pre-Quantum implementation

To measure the performance difference, we compare our implementation to [libopaque][1], an open-source, pre-quantum implementation of OPAQUE. The average execution time for the client and the server is shown in Table 3, while the communication cost is shown in Table 4. Our implementation is the first PQ-secure instantiation of the OPAQUE protocol. While it leads to an increase in execution time and communication cost, this concretizes the overhead of switching to post-quantum cryptography for advanced protocols.

[1] https://github.com/stef/libopaque
Client Server

\[
\text{username, password} \quad \rightarrow \quad \text{Retrieve User Record for given username}
\]

\[
y \leftarrow \text{Hash(password)[out]}
\]

\[
yu \leftarrow \text{HashExtract(y)}/\text{PWHash(y)}
\]

\[
(ek, dk) \leftarrow \text{KEM.KeyGen}()
\]

\[
[Ipk_C || Ipk_S || Isk_C] \leftarrow \text{AuthDec}(ru)
\]

\[
\sigma_C \leftarrow \text{SIG.Sign}sk_C(ek_T)
\]

\[
\text{Output } k_C \text{ as shared secret key}
\]

\[
\sigma \leftarrow \text{SIG.Verify}vk_S(ek_T, \sigma_C)
\]

\[
\text{Output } k_S \text{ as shared secret key}
\]

Fig. 12. Description of PQ OPAQUE Password Authentication and Key Generation

Table 4. Comparison between the communication overhead of libopaque and our PQ OPAQUE instantiations

<table>
<thead>
<tr>
<th>Function</th>
<th>libopaque</th>
<th>PQ</th>
<th>PQ / libopaque</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reg. Client</td>
<td>224B</td>
<td>64kiB</td>
<td>817kiB</td>
</tr>
<tr>
<td>Reg. Server</td>
<td>64B</td>
<td>48kiB</td>
<td>144kiB</td>
</tr>
<tr>
<td>Auth. Client</td>
<td>160B</td>
<td>17kiB</td>
<td>769kiB</td>
</tr>
<tr>
<td>Auth. Server</td>
<td>320B</td>
<td>65kiB</td>
<td>161kiB</td>
</tr>
</tbody>
</table>

7 Case Study: Private Set Intersection

In a private set intersection (PSI), two or more parties, commonly a server and a client, hold data sets \(S \) and \(C \). After performing the PSI protocol, one or both parties learn \(S \cap C \) without revealing anything about the other parties set. In the client-server case, the sets are very often unbalanced, as the server set is much larger than the client set \(|S| \gg |C| \). A well-studied application of PSI is Private Contact Discovery, where clients want to know which of their contacts also use the same service \([KRS^{+}19]\).

To perform PSI using OPRFs, the holder of the larger set computes the PRF for each set entry and, optionally, inserts the results in an efficient data structure,
Performing PSI without a verifiable OPRF may lead to a tagging attack where a malicious server uses different keys for each client when performing the OPRF, leading to the identification of the results later (see also Section 4.2). This is why previous work by \cite{KRS+19} relaxes the security assumption and assumes a malicious client and a semi-honest server. They also postulate three goals for unbalanced PSI: The server should perform the computationally most expensive tasks, all expensive tasks are only performed once and updates are fast. We now instantiate their PSI framework with both isogeny-based OPRFs and compare it to our implementation. Of independent interest, we propose a small optimization for the setup of the elliptic curve Naor-Reingold (ECNR) PSI protocol in Appendix A. The results can be found in Table 5.

7.1 PSI with ECNR

The ECNR-PSI protocol is divided into three phases: First setup phase, where a Cuckoo filter is filled with the PRF results of server set entries and sent to the client. Then, a base phase, where some initial, data-independent Oblivious Transfer is performed. Using cheap symmetric cryptography, the parties generate many more OT pairs from this base OT using a technique called OT Extension. Then, in the online phase, the OPRF is performed using the extended OT pairs. This is currently the most efficient PSI protocol. \cite{KRS+19}

7.2 PSI with NR-OT

The implementation with the NR-OT is relatively close to the ECNR files. The setup phase is identical other than replacing the communication interface with the one provided by the PQ-OT implementation. Since the PQ-OT implementation does not provide an implementation for OT extensions, we skip the base phase and only implement an online phase. In the online phase, the OPRF is performed with all client elements. The communication overhead may be lower when using OT extensions, which uses symmetric cryptography to generate more OT pairs from a few base OT queries. \cite{BDK+20} show that the IKNP protocol \cite{IKNP03} is secure against quantum adversaries conditional on updating the bit length of both the hash function and the base OT length, but unfortunately do not integrate the extensions in their implementation.

To perform PSI with OPUS, we use parallel execution to amortize the round cost. Observe that the protocol is relatively stateless, as a curve is either awaiting evaluation or in transit. More concretely, on a client side, the client either awaits a server result or performs a blinding/unblinding evaluation. This can be parallelized by attaching an ID to the curve to note the element that is evaluated. Since we assume that the server is semi-honest, the client can trust the server that the ID is correct. In Figure 13, the ID is denoted as i. To keep track
Table 5. PSI comparison using ECNR, NR-OT, and OPUS as the OPRF for set intersection. The ECNR column combines base and online for better comparability.

<table>
<thead>
<tr>
<th>parameters</th>
<th>setup</th>
<th>online</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>S</td>
</tr>
<tr>
<td>20 20</td>
<td>0.26s</td>
<td>0.51s</td>
</tr>
<tr>
<td>20 20</td>
<td>134 bytes 1 byte</td>
<td>128 kiB</td>
</tr>
<tr>
<td>25 25</td>
<td>1.63s</td>
<td>1.88s</td>
</tr>
<tr>
<td>25 25</td>
<td>263 bytes 1 byte</td>
<td>4 MiB</td>
</tr>
<tr>
<td>210 210</td>
<td>45.04s</td>
<td>45.28s</td>
</tr>
<tr>
<td>210 210</td>
<td>4.31 MiB 1 byte</td>
<td>128 MiB</td>
</tr>
<tr>
<td>20 20</td>
<td>0.26s</td>
<td>0.26s</td>
</tr>
<tr>
<td>20 20</td>
<td>133 bytes 0 bytes</td>
<td>17.07 kiB</td>
</tr>
<tr>
<td>25 25</td>
<td>8.71s</td>
<td>8.71s</td>
</tr>
<tr>
<td>25 25</td>
<td>262 bytes 0 bytes</td>
<td>546.25 kiB</td>
</tr>
<tr>
<td>210 210</td>
<td>303.38s</td>
<td>303.38s</td>
</tr>
<tr>
<td>210 210</td>
<td>4.31 kiB 0 bytes</td>
<td>34.14 MiB</td>
</tr>
<tr>
<td>20 20</td>
<td>0.01s</td>
<td>0s</td>
</tr>
<tr>
<td>20 20</td>
<td>133 bytes 0 bytes</td>
<td>12.04 kiB</td>
</tr>
<tr>
<td>25 25</td>
<td>0.02s</td>
<td>0s</td>
</tr>
<tr>
<td>25 25</td>
<td>262 bytes 0 bytes</td>
<td>137.05 kiB</td>
</tr>
<tr>
<td>210 210</td>
<td>0.3s</td>
<td>0s</td>
</tr>
<tr>
<td>210 210</td>
<td>4.36 kiB 0 bytes</td>
<td>4.04 MiB</td>
</tr>
</tbody>
</table>

of the current index, we attach a state variable j. Then, the only state kept on the client about an element is the corresponding unblinding key.

7.3 PSI with OPUS

The server pregenerates all blinding keys and computes the unblinding element at the time an element is first seen. This simplifies the implementation and also ensures that no intermediate values are leaked when the client decides to finish the computation prematurely by setting $j = n$. Using the stateless approach, we forego the limitation imposed by the required rounds in the protocols, as we simply evaluate other set elements while an element is in transit.

In our measurements, the client seems to perform badly in the setup phase. This is a measurement artifact as most of the time is spent waiting for the cuckoo filter from the server due to the choice of network connection.

Updatable OPRF For very large sets, the probability that several elements are quite similar is relatively high. It would be thus be beneficial to take an existing evaluation and update the value where the bits differ. This could yield a runtime improvement: consider two inputs X_1, X_2 and the evaluation $Y_1 = \text{OPUS}(X_1)$, with $X_1 \oplus X_2$ having a low Hamming weight. A potential improvement could
come from an updatable form of OPUS, where Y_1 is updated at the indices. For example, imagine X_1 and X_2 only differ at the first bit, which is set in X_2 but not X_1, and the third bit, which is not set in X_2 but is set in X_1. Then, $\text{OPUS}(X_2)$ can be computed as $\text{OPUS}(X_1) = k_1 * k_2^{-1} * \text{OPUS}(X_2)$. This results directly from the commutativity of CSIDH.

The simple realization of this functionality has the client reveal the indices where two inputs X_1, X_2 differ. The parties then engage in a reduced execution of OPUS, where the server responds with $(r * k_i^{-1} * E, k_i * r * E)$ for the given indices i. The client iteratively updates the PRF by selecting the correct output. Note that the finalization step is still necessary for the unblinding to ensure that no intermediate results are leaked, but without adding k_0.

While this produces another PRF result, the simple protocol violates the OPRF security guarantee of the server learning nothing about the client input, since the server knows the index where two evaluations differ. An extended version sends some dummy indices as well and requires the server to respond with $(r * k_i^{-1} * E, r * E, k * r * E)$, with $r * E$ being used if the index was a dummy index. This approach would reduce the latency introduced by the rounds and the group actions, but requires either very similar inputs or extensive preprocessing by the client to ensure the results are updated ideally.

Fig. 13. Amortizing the round cost of OPUS by reducing the state and adding labels.
Table 6. Comparison with all other post-quantum OPRF proposals. DM denotes the dark matter PRF [BIP18,CCKK21]. The instances aim at a security level of roughly 128 bits and use $\log_2 p = 512$ for the isogeny protocols. This table is continuously updated on https://heimberger.xyz/oprfs.html.

<table>
<thead>
<tr>
<th>work</th>
<th>assumption</th>
<th>rounds</th>
<th>comm cost</th>
<th>model</th>
<th>no setup</th>
<th>no full impl.</th>
<th>available</th>
<th>verifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDS21</td>
<td>R(LWE)+SIS</td>
<td>2</td>
<td>2MB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>ADDS21</td>
<td>R(LWE)+SIS</td>
<td>2</td>
<td>> 128GB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>SHB21</td>
<td>multivariate</td>
<td>3</td>
<td>γ 13 kB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>DGH+21</td>
<td>DM</td>
<td>2</td>
<td>308 B</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>ADDG23</td>
<td>DM+lattices</td>
<td>2</td>
<td>16.9 MB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bas23</td>
<td>Isogenies \mathbb{F}_p^2</td>
<td>2</td>
<td>3.0 MB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Bas23</td>
<td>Isogenies \mathbb{F}_p^2</td>
<td>2</td>
<td>8.7 MB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NR-OT</td>
<td>Isogenies \mathbb{F}_p^2 + lattices</td>
<td>2</td>
<td>20.34 kB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NR-OT</td>
<td>Isogenies \mathbb{F}_p^2 + lattices</td>
<td>4</td>
<td>34.88 kB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>NR-OT</td>
<td>Isogenies \mathbb{F}_p^2 + lattices + HE OT</td>
<td>2</td>
<td>640 kB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>OPUS</td>
<td>CSIDH</td>
<td>258</td>
<td>24.7 kB</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

7.4 Result and Overhead

We compare against the EC-NR implementation of [KRS+19] as it is the most performant implementation of OPRFs for set intersection.

While we were able to remedy the round cost of OPUS, the high number of group action computations still make the protocol less efficient than the NR-OT protocol. However, OPUS requires less than $14\times$ the bandwidth of the NR-OT protocol, making it more attractive for use-cases where bandwidth criteria are of concern.

We point out that recent work [HWW23] optimizes the PSI protocol with sublinear communication size of the server’s client database, which may make the ECNR protocol more efficient.

8 Related Work

OPUS and the generic NR-OPRF from isogenies are only two of several recent proposals. In Table 6 we provide a comparison of these proposals which we discuss in more detail below. Note that the estimates for the communication complexity may change drastically as the concrete security of CSIDH remains an open research question (cf. Section 2.1). We give further estimates and provide parameter-agnostic approximations in Appendix B, showing that OPUS is still competitive even with larger parameters.

The CSIDH proposals of this paper only cover Naor-Reingold style OPRFs. SIDH, which also uses isogenies but operates over \mathbb{F}_p^2, uses isogenies of degree two and three and is not commutative, enables the construction of a Diffie-Hellman style OPRF [Bas23,BKW20]. The resulting OPRF is round-optimal and gives rise to a verifiable construction, which the Naor-Reingold Constructions
(including ours) do not offer, but requires a 9000 bit prime due to the SIDH attack mitigations \[\text{FMP23}\]. A drawback of the SIDH-based construction is that an expensive trusted setup is necessary \[\text{BCC}^+23\].

On the lattice side, an initial proposal for round-optimal, verifiable OPRFs \[\text{ADDS21}\] has a very large overhead imposed by heavy zero-knowledge proofs. A proof-of-concept implementation is available in Sage and takes around one second for an offline computation, being around nine times faster than OPUS. However, the implementation is not necessarily complete, as it omits proofs and samples from a uniform instead of a Gaussian distribution.

A recent lattice OPRF \[\text{ADDG23}\] improves the communication cost in a malicious setting. The provided implementation in Rust does not include the non-interactive zero-knowledge proofs needed for a malicious client security and therefore is only semi-honest, while the communication estimates in Table 6 include proofs from a malicious client. Comparing the runtime of OPUS to \[\text{ADDG23}\] is a bit more nuanced. While the former needs \(\approx 15s\) for the key generation, the NR-OT OPRF is vastly faster, as it only requires 0.14ms for the same operation. The communication complexity of the lattice OPRF is also largely dominated by the key generation, which accounts for 108.5 MB of the communication cost. For the actual OPRF, only 36 kB of communication are necessary, which is slightly more than OPUS. A big advantage of the construction is the lower round complexity. The current implementation gives around 14.4s of execution time, making the NR-OPRF with a CSIDH security parameter \(p = 512\) vastly faster. However, the authors describe an optimization that could lead to both OPRFs matching in speed.

Dinur et al. \[\text{DGH}^+21\] propose a very efficient, semi-honest OPRF using preprocessing and dedicated symmetric primitives. They also require a trusted third party to generate correlated randomness. The implementation is unfortunately not publicly available. A different path is taken by Seres et al. \[\text{SHB23}\], who use their result that key-recovery of the Legendre PRF is equivalent to solving sparse multivariate equations over a prime field to construct an OPRF. It requires a preprocessing step to distribute correlated randomness amongst the participants of the protocol.

9 Conclusion

In this paper, we have shown that the computational complexity of Naor-Reingold OPRFs can be significantly reduced by using properties of the CSIDH group action. We introduced OPUS, an OPRF that gains its hardness directly from the underlying CSIDH group action. The new construction explores the generic construction of Naor-Reingold protocols, which traditionally use oblivious transfer to send blinded private keys. In comparison to previous work, OPUS has three strong advantages: First, it can be used stand-alone without requiring any trusted setup. The only hardness assumption is CSIDH which improves over previous proposals \[\text{BKW}20\]. Second, the simple structure also makes it straightforward to extend to a threshold and distributed OPRFs. Third, OPUS requires
40% fewer isogeny computations than the best previous CSIDH-based OPRF proposals as shown in Table 9. When using no preprocessing, no trusted setup, and a semi-honest client and server, OPUS requires $83 \times$ less communication than the next-best approach which uses LWR. The main drawback of our construction is the large number of rounds, which can be amortized over several executions.

We also revisited the previous proposal CSIDH-based OPRF from Boneh et al. [BKW20] and showed that the implementation is more complex than described in the original paper: A straightforward implementation leaks the entire server key after a few evaluations. To secure the construction, it is necessary to use CSI-FiSh, which introduces several new hardness assumptions, concretely lattice assumptions for either rejection sampling or reducing the private key, and also adds additional overhead.

Of independent interest, we also discuss the Naor-Reingold PRF in CSIDH further and give a concrete strategy that gives rise to optimizations in all of our protocols and also enables somewhat fast offline computation of both our novel OPRF and the Naor-Reingold OPRF. All the code to obtain our benchmarks and the CSV files for the figures are available with the submission and will be made public with the publication of this paper.

To show the real-world impact of our protocols, we benchmarked the OPRFs for two use-cases: first, asymmetric password authentication using OPAQUE, where we report an overhead of around $35 \times$ for authentication and $123 \times$ for registration. Second, we implement private set intersection with the OPRFs. To the best of our knowledge, these are the first implementations of a post-quantum version of OPAQUE and PSI using isogenies.

Future Work While our results are immediately useful for a variety of protocols requiring OPRFs, the slow group action is still hindering large-scale deployment. Based on our findings, we envision future studies for the applicability of OPUS and the NR-OT OPRF, especially in settings with low bandwidth.

The recent call for threshold cryptography by NIST [BDV20] opens a new avenue for post-quantum threshold schemes which distribute the secret key amongst several servers but only requires that t out of n honest servers are required to produce an OPRF result. For CSIDH, a recent paper [DM20] demonstrates threshold key sharing. Their results should be directly applicable to OPUS and the NR-OT to obtain a threshold OPRF.

On the implementation side, we point out that the current implementations are neither optimized nor side-channel free, and that the code is not audited. We expect a side-channel free implementation to be relatively easy for OPUS, as it only requires side-channel free key addition and group actions, as well as the conditional assignment of E_{client}. On a theoretical side, elliptic curves with trusted setup over \mathbb{F}_p would greatly add to the current research, as it eases concretizing the overhead of the OT for the NR-OT proposal over OPUS using only isogenies.
Acknowledgements

We wholeheartedly thank Carsten Baum for many helpful discussions concerning OPUS in particular and OPRFs in general. In addition, we are gracious of the very helpful feedback of the reviewers of PKC2022, CCS2023 and AsiaCCS2024. Furthermore, we thank Serge Bazanski for some helpful suggestions that led to the creation of Figure 4, Piotr Dobrowolski for ensuring the benchmarks are done in time for the submission and Yifan Zheng for spotting two errors in an earlier draft of this paper. We thank the authors of [BKW20] for confirming our suspicions about the protocol and clarifying their instantiation.

This work was partly funded by the Digital Europe Program under grant agreement number 101091642 (“QCI-CAT”), from the European Union’s Horizon Europe research and innovation programme under the project “Quantum Security Networks Partnership” (QSNP, grant agreement number 101114043), and the “DDAI” COMET module within the COMET – Competence Centers for Excellent Technologies Programme, funded by the Austrian Federal Ministries BMK and BMDW, the Austrian Research Promotion Agency (FFG), the province of Styria (SFG) and partners from industry and academia. The COMET Programme is managed by FFG.

References

Improving the PSI setup phase for the ECNR PRF

The setup phase of the ECNR-PRF in the PSI protocol in Section 7 is quite slow, as e.g. a PRF with 128 bits of input requires, on average, 65 point multiplications on the elliptic curve. We propose using lookup tables to speed up the computations.

The lookup table (LUT) contains a set of \(x \) bits where all possible combinations of multiplication results per set bit are stored. More concretely, the input space is split into blocks of size \(x \) during a pre-computation phase. Within those blocks, all possible combinations of input values are precomputed. That means in the case of \(x = 4 \) and a block with \(\{ x_1, \ldots, x_4 \} \), the LUT will consider all possible inputs \(\{ 0001, \ldots, 1111 \} \), and set the table entries to the corresponding intermediate NR values \(\{ k_4, \ldots, k_1 \cdot k_2 \cdot k_3 \cdot k_4 \} \). To compute the PRF, the correct entry for an input block is retrieved from the LUT and multiplied with the other input blocks. Using this optimization, we can get a performance improvement for the PRF computation of up to almost 16%.

Note that the lookup table for a specific block grows exponentially in size. We split the blocks evenly and get the best result at a block size of 16 bits. After this point, the memory complexity becomes too large. Potential fine-tuning with unbalanced blocks may yield even faster results (e.g. splitting 128-bit input in blocks of 20 and a final block of 8 results in seven blocks that need to be multiplied instead of eight), but we leave this optimization for future work as we believe the gain to be negligible. The corresponding code can be found in code/mobile_psi_cpp.

Performance

To compare the different protocols for computing the Naor-Reingold OPRF from isogenies, we give a cost overview in Table 8. To approximate communication
Table 7. Performance differences when computing 2^{21} ECNR PRFs with lookup tables of differing size. The performance improvement is given with and without taking LUT generation into account. Nr.mult. gives the number of required multiplications to obtain a PRF. The LUT size is computed with -1 as the all-zero entry is disregarded.

<table>
<thead>
<tr>
<th>LUT nr. size</th>
<th>pre-comp. size</th>
<th>Time for PRF comp. with LUT w/o LUT</th>
<th>improv. with LUT</th>
<th>improv. w/o LUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2^0 - 2^7$</td>
<td>/</td>
<td>599.45s</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>$2^2 - 2^5$</td>
<td>0.05ms</td>
<td>572.10s</td>
<td>4.78%</td>
<td>4.78%</td>
</tr>
<tr>
<td>$2^4 - 2^5$</td>
<td>0.16ms</td>
<td>538.26s</td>
<td>11.36%</td>
<td>11.37%</td>
</tr>
<tr>
<td>$2^8 - 2^4$</td>
<td>6.24ms</td>
<td>514.61s</td>
<td>16.48%</td>
<td>16.49%</td>
</tr>
<tr>
<td>$2^{10} - 2^3$</td>
<td>1.73s</td>
<td>482.11s</td>
<td>17.74%</td>
<td>18.15%</td>
</tr>
</tbody>
</table>

To approximate computation costs, we consider the most expensive operation, the CSIDH group operation, only the total number of class group actions performed, again as functions of the security parameters, and assume all other operations are negligible in relation to these. For conciseness, let us denote $\log_2 p$ as σ and let γ be the security parameter (which, in practice, is equal to n). We point out that the communication cost estimates differ from the original estimate for the Naor-Reingold OPRF using [BKW20]. This is in part due to an update of the OT protocols used for NR-OT in [LGD21] and partly due to a small miscalculation in [BKW20], where they give communication complexity as

$$
\gamma \cdot \left(3\sigma + 4\frac{\sigma}{2} + \gamma\right) = 5\sigma \cdot \gamma + \gamma^2,
$$

(1)

where the $4\frac{\sigma}{2}$ term is for the encryptions of class-group elements, which are private keys of size $\log_2 p$, see Section 2.1. The encryptions in question are not of just class-group elements but these are also appended by a γ-bit random string, and the final round of the protocol also incurs the sending of an additional elliptic curve. Therefore the communication complexity of the NR-OT protocol is rather

$$
\gamma \cdot \left(3\sigma + 4\left(\frac{\sigma}{2} + \gamma\right) + \gamma\right) + \sigma = 5\sigma \cdot \gamma + 5\gamma^2 + \sigma.
$$

(2)

The comparison (Table 8) between the NR-OT protocol from Section 2.3 and OPUS from Section 4 shows that our novel proposal is more efficient in terms of computation (and thus also time) and falls probably somewhere in between the semi-honest and one-sided maliciously secure versions of NR-OT in terms of communication (dependent on parameter choices).

In Table 9, we show how the communication complexity compares for different parameter sets to better illustrate the concrete complexity. From the figure it is clear that for reasonable parameter regimes such as these, OPUS is currently the most efficient OPRF that is secure against semi-honest adversaries in a post-quantum setting.
Table 8. Cost of the oblivious evaluation of the Naor-Reingold OPRF. σ denotes the CSIDH/CSI-FiSh security parameter and γ the security parameter. \triangledown denotes a semi-honest party, and \blacklozenge a malicious party.

<table>
<thead>
<tr>
<th>protocol rounds</th>
<th>comm. cost</th>
<th>isog. comp. model (C-S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NR-OT 2</td>
<td>$2\sigma \cdot \gamma + 2\gamma^2 + \sigma 5\gamma + 2$</td>
<td>\blacklozenge</td>
</tr>
<tr>
<td>NR-OT 4</td>
<td>$5\sigma \cdot \gamma + 5\gamma^2 + \sigma 11\gamma + 2$</td>
<td>\blacklozenge</td>
</tr>
<tr>
<td>OPUS</td>
<td>$2\gamma + 2 3\sigma \cdot \gamma + 2\sigma$</td>
<td>\blacklozenge</td>
</tr>
</tbody>
</table>

Table 9. Communication and computation complexity estimates of the protocols with different concrete parameters.

<table>
<thead>
<tr>
<th>parameters γ, σ</th>
<th>protocol rounds</th>
<th>comm. cost</th>
<th>isog. comp. model (C-S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma = 128$, $\sigma = 512$</td>
<td>NR-OT 2</td>
<td>21 kB</td>
<td>624 \blacklozenge \blacklozenge</td>
</tr>
<tr>
<td></td>
<td>NR-OT 4</td>
<td>51 kB</td>
<td>1410 \blacklozenge \blacklozenge</td>
</tr>
<tr>
<td></td>
<td>OPUS</td>
<td>258</td>
<td>386 \blacklozenge \blacklozenge</td>
</tr>
<tr>
<td>$\gamma = 256$, $\sigma = 2548$</td>
<td>NR-OT 2</td>
<td>148 kB</td>
<td>1282 \blacklozenge \blacklozenge</td>
</tr>
<tr>
<td></td>
<td>NR-OT 4</td>
<td>369 kB</td>
<td>2818 \blacklozenge \blacklozenge</td>
</tr>
<tr>
<td></td>
<td>OPUS</td>
<td>514</td>
<td>197 kB 770 \blacklozenge \blacklozenge</td>
</tr>
<tr>
<td>$\gamma = 256$, $\sigma = 5280$</td>
<td>NR-OT 2</td>
<td>355 kB</td>
<td>1282 \blacklozenge \blacklozenge</td>
</tr>
<tr>
<td></td>
<td>NR-OT 4</td>
<td>886 kB</td>
<td>2818 \blacklozenge \blacklozenge</td>
</tr>
<tr>
<td></td>
<td>OPUS</td>
<td>514</td>
<td>508 kB 770 \blacklozenge \blacklozenge</td>
</tr>
</tbody>
</table>

C Freely and Transitively Acting Class Group

We revisit the necessary properties of the class group action for our security proofs. Given a group element $g \in G$ and two elements $x, y \in Cl(O)$, the group action acts freely if,

$$\forall x \in Cl(O) \exists g \in G : gx = x \implies g = I,$$

with I being the identity element of the group. This is important to capture all isomorphic curves. Further, the class group action acts transitively, if

$$\forall (x, y) \in Cl(O)^2 : gx = y$$

A group action that acts both freely and transitively has that

$$\forall (x, y) \in Cl(O)^2 \exists y \in G : gx = y.$$

CSIDH samples ideal classes within the bound $[-m, m]$. Increasing m leads to distributions closer to uniform. CSIDH only offers statistic indistinguishability from uniform, as discussed in [LGD21]. For uniform sampling, CSI-FiSh [BKV19] can be used.
D Auxiliary Figures

<table>
<thead>
<tr>
<th>Server</th>
<th>Client</th>
</tr>
</thead>
<tbody>
<tr>
<td>keys $K = k_0, \ldots, k_n$</td>
<td>input $X = [x_1, \ldots, x_n]$</td>
</tr>
<tr>
<td>$R \leftarrow [0]$</td>
<td>$K \leftarrow [0]$</td>
</tr>
<tr>
<td>for $i \in [1, n]$:</td>
<td>for $i \in [1, N]$:</td>
</tr>
<tr>
<td>$r_i \leftarrow \text{keygen}()$</td>
<td></td>
</tr>
<tr>
<td>$R \leftarrow R + r_i$</td>
<td>$K \leftarrow K + x_i \cdot k_i + r_i$</td>
</tr>
<tr>
<td>$r_i \cdot x_i \cdot k_i + r_i$</td>
<td></td>
</tr>
<tr>
<td>$E_{f_{i,n}} \leftarrow (k_0 - R) \cdot E_0$</td>
<td>$E_{f_{i,n}}$</td>
</tr>
<tr>
<td>$E \leftarrow K \cdot E_{f_{i,n}}$</td>
<td></td>
</tr>
<tr>
<td>return E</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 14. Evaluating the NR-OGRP with CSIDH and N OT calls.

E Artifact Description

We provide all benchmark-generating files as well as example instantiations of OPUS in the artifact under https://github.com/meyira/OIDA/ A Makefile is provided in the artifact for easy compilation and linking. The code is in the subdirectory `code/` and the corresponding CSV files, if needed, are in `csv-files/`.

E.1 Generation of Figure 4

The data used in Figure 3 is in `csv-files/prf_opus.csv`, and the code is in `code/test/prf.c`.

E.2 Generation of Figure 5

The data for Figure 5 is in `csv-files/updateable.csv`, and the code to generate it is in `code/test/updatable.c`. A verification routine is commented out as it is a bit annoying during benchmarking.

E.3 Generation of Table 1

test_oprf_nrot_server.c and test_oprf_nrot_client.c perform local computations of the NROT. The code was used to generate Table 1.
E.4 Generation of Table 2

opus.c performs local computations of OPUS. The code was used to generate Table 2. The results can be found in csv-files/opus.csv.

E.5 Generation of Figure 10

The online evaluation of OPUS with different servers in London in Figure 9 was generated with averages over a few runs. The data can be seen in online.csv in the artifact. The client used single-threaded sockets for evaluation, as visible in code/opus/files/simple-client.c. The server is multithreaded, the source is in code/opus/files/simple-server.c. Due to the high network latency and multithreading, no effect on concurrent execution was visible, but for clear benchmarks, we refrained from concurrent execution to have a comparable result.

The server has a KAT functionality built-in but commented out, where for a fixed message both the client and the server should obtain the same result. This sanity check may be of use to implementors.

We also benchmarked Sao Paulo, where the online evaluation and ping were (34.54s, 190ms), respectively, Hongkong with (43.43s, 257ms) and Frankfurt with (11.91s, 12.6ms). They were omitted as they made the graph unreadable, being too close to Santiago de Chile, Sydney, and the Netherlands, respectively.

E.6 OPUS-PSI

The files for OPUS are in a separate folder in code/opus-psi. This is practically a stripped-down version of the Contact Discovery Implementation [KRS+19].

E.7 Approximation for Key Leakage

code/leak_OPRF_key_csidh.py gives a rough approximation on how long it would take for a simple attack on the NR-OT OPRF as described in Section 3.

E.8 Generic Naor-Reingold OPRF (NR-OT)

We cloned the PQ-MPC implementation from [BDK+20].

In code/nr-ot/test/oprf_server.cpp and code/nr-ot/test/oprf_client.cpp, we provide the code for the NR-OPRF using the PQ-OT from [BDK+20] and CSI-FiSh from [BKV19]. The PSI files code/nr-ot/test/psi_server.cpp and code/nr-ot/test/psi_client.cpp can be found in the same folder, as well as the file code/nr-ot/test/prf_opt.cpp used to generate Figure 6. The CSV file of the measurements is in csv-files/prf_csifish.csv.
E.9 OPAQUE

The OPAQUE code is in code/opaque and includes both libopaque and our implementations. There were several changes to the used libraries:

- OPAQUE/X3DH
 - Ext_s and F_K do not use HMAC256 but instead KMAC256 to allow for variable length output
 - The used KMAC256 function does also not use a domain separator as described in the X3DH paper but instead uses a different customization string.
 - For the password used for encrypting the payload stored on the server, we truncate the output of the SHA512 output and only take the first 256 bits
 - Identifier for sid used as input to F_K functions uses the username and the hostname instead of the hash of long-term public keys as described OPAQUE Draft.

- TLS-OPAQUE
 - Server requires a certificate to sign key share, changed to accept almost all ciphers (only PSK should work without certificate).

- SEAL
 - src/seal/util/locks.h to add #include <mutex>
 - CMakeLists.txt to compile library as SHARED and not STATIC

- emp-tool
 - NetIO: add a constructor for an already opened socket.
 - NetIO: remove closing of the socket from the destructor.
 - CMakeLists.txt to compile library as SHARED

- PQ-MPC
 - CMakeLists.txt adapt C++ standard from C++14 to C++17
 - CMakeLists.txt to compile library as SHARED