
IACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 0, No. 0, pp. 0–0. DOI:10.46586/tosc.v0.i0.0-0

Classification of All t-Resilient Boolean Functions
with t + 4 Variables

Shahram Rasoolzadeh

Radboud University, Nijmegen, The Netherlands, firstname.lastname@ru.nl

Abstract. We apply Siegenthaler’s construction, along with several techniques, to
classify all (n − 4)-resilient Boolean functions with n variables, for all values of n ≥ 4,
up to the extended variable-permutation equivalence. We show that, up to this
equivalence, there are only 761 functions for any n larger than or equal to 10, and
for smaller values of n, i.e., for n increasing from 4 to 9, there are 58, 256, 578, 720,
754, and 760 functions, respectively. Furthermore, we classify all 1-resilient 6-variable
Boolean functions and show that there are 1 035 596 784 such functions up to the
extended variable-permutation equivalence.
Keywords: correlation immunity · resilient functions · Boolean functions

1 Introduction
Correlation immune Boolean functions were first introduced by Siegenthaler in [Sie84] as a
countermeasure against correlation attacks on the combination of generators of stream
ciphers. Soon after, the balanced correlation immune functions also known as resilient
functions were used to resist the bit extraction problem in [CGH+85].

Resilient functions were extensively studied in the 1990s in relation to nonlinear-
ity. However, in 2003, the introduction of the fast algebraic attack [Cou03] and the
Rønjom-Helleseth attack [RH07] revealed their vulnerability against stream ciphers uti-
lizing nonlinear functions with limited algebraic degrees. This led to the perception that
correlation immune and resilient functions, with their bounded algebraic degrees, are weak.
Nonetheless, a new use of correlation immune functions has appeared in the framework of
side-channel attacks [CG13]. Moreover, these functions have found utility in secret sharing
applications, as demonstrated previously in [PSD96].

Siegenthaler found all the t-resilient functions with n variables for t ≥ n − 2 in [Sie84]
and showed that all of them are affine functions. Later in [CCCS91], Camion, Carlet,
Charpin, and Sendrier used Siegenthaler’s construction, introduced in [Sie84], to find all
the t-resilient functions with (t + 3) variables. However, the number of t-resilient functions
with (t + 4) variables were not investigated before this paper.

In [Tar00], Tarannikov showed that for every positive integer m, there exists a number
p(m) such that for n > p(m), any (n − m)-resilient n-variable function f(x0, . . . , xn−1)
is equivalent, up to a permutation of its input variables, to a function of the form
g(x0, . . . , xp(m)−1) ⊕ xp(m) ⊕ . . . ⊕ xn−1 and it is proven in [TK00] that p(4) = 10.

Moreover, in [CC05], Carlet and Charpin classified all the cubic t-resilient functions
with (t + 4) variables up to the spectrum of their Walsh transform and showed that, up to
this equivalence, there are only four types of such functions.

This paper presents a comprehensive classification of all t-resilient Boolean functions
with (t + 4) variables, for all values of n ≥ 4, up to the extended variable-permutation
equivalence. We first establish that the resilience behavior of Boolean functions remains

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/10.46586/tosc.v0.i0.0-0
mailto:firstname.lastname@ru.nl
http://creativecommons.org/licenses/by/4.0/

2 Classification of All t-Resilient Boolean Functions with t + 4 Variables

unchanged under the extended variable-permutation equivalence. Next, we use Siegen-
thaler’s construction to generate Boolean functions of (t+1)-resilience and (n+1) variables
from two t-resilient Boolean functions in n variables. To efficiently search for all such
resilient Boolean functions, we develop several techniques to present an efficient algorithm.
Compared to a naive approach, in this paper, we introduce the concept of representa-
tive pairs and by applying the developed techniques, we reduce the number of potential
representative pairs to construct higher order resilient functions.

We show that up to this equivalence, for any n larger than or equal to 10, there are
only 761 functions, and for smaller values of n, there are 58, 256, 578, 720, 754, and 760
functions, for n = 4 increasing to n = 9, respectively. Furthermore, we classify all 1-resilient
6-variable Boolean functions up to the extended variable-permutation equivalence and
show that there are 1 035 596 784 such functions.

The classification of (n − 4)-resilient functions with n variables establishes a foundation
for further exploration and application of resilient functions in symmetric cryptography.
These functions, compared to (n−3)-resilient functions, potentially possess higher algebraic
degrees and can involve more variables in a nonlinear manner. The cubic (n − 4)-resilient
functions, in comparison to quadratic (n − 3)-resilient functions, exhibit greater resistance
against algebraic attacks, making them suitable for stream cipher designs. Additionally,
their resistance to side-channel attacks makes them applicable in the construction of
S-boxes for block ciphers. Moreover, the efficient techniques and algorithms developed in
this study present promising avenues for future classifications and advancements in the
field of Boolean functions.

2 Preliminaries
In this section, we explain the notations used in this paper, along with the necessary basics
related to Boolean and resilient functions.

We use F2 to denote the finite field of two elements {0, 1}, and ⊕ to denote the addition
in this field. We use Fn

2 to denote the vector space over F2 with dimension n.
Let a, b ∈ Fn

2 be two n-variable binary vectors. We denote the i-th element of a by a[i],
that means a = (a[0], . . . , a[n − 1]) and we use a to denote the complement value of a, i.e.,
a = (a[0] ⊕ 1, . . . , a[n − 1] ⊕ 1). We use hw(a) and hp(a) to denote the Hamming weight
and parity of a, respectively, defined as hw(a) =

∑n−1
i=0 a[i] and hp(a) =

⊕n−1
i=0 a[i].

We denote the inner product between a and b with ⟨a, b⟩ defined as ⟨a, b⟩ =
⊕n−1

i=0 a[i]b[i];
and to denote concatenation of two vectors a and b, we use a ∥ b, which is equivalent to
(a[0], . . . , a[n − 1], b[0], . . . , b[n − 1]).

Boolean Functions
The functions from the vector space Fn

2 to the binary field F2 are called Boolean functions
with n-variables. We use Bn to denote the set of all n-variable Boolean functions. Truth
table is the most basic way to represent a Boolean function. The truth table of f ∈ Bn is a
binary vector Tf ∈ F2n

2 such that for any x ∈ Fn
2 , Tf [x] shows the value of f(x).

Balanced Boolean functions are the ones which the number of inputs with output 1 is
equal to the number of inputs with output 0; i.e., the weight of the truth table is 2n−1.

Algebraic normal form (ANF) is another often used representation of Boolean functions
in cryptography. It is the n-variable polynomial representation over F2 of the form

f(x) =
⊕
I∈Fn

2

aIxI =
⊕
I∈Fn

2

aI

(n−1∏
i=0

x
I[i]
i

)
,

Shahram Rasoolzadeh 3

where xi is the i-th variable of x, that is x = (x0, . . . , xn−1). By xI , we denote the
monomial x

I[0]
0 · · · x

I[n−1]
n−1 that corresponds to the monomial with xi variables with I[i] = 1.

Note that each aI is a binary value and every coordinate xi appears in this polynomial
with exponents at most 1.

Algebraic normal form degree of a Boolean function f is the maximum degree of all
existing monomials in the ANF representation of the function, that is maxI∈Fn

2 , aI =1 hw(I),
which we will simply call it algebraic degree of f .

Classifying Boolean functions by their algebraic degree, the ones with degree zero, one,
two, or three are called constant, affine, quadratic, and cubic functions, respectively. Affine
functions are the extension of linear functions by adding a constant at the output, and
can be displayed as ⟨α, x⟩ ⊕ c with α ∈ Fn

2 and c ∈ F2.
Walsh transform is a powerful tool for studying various properties of Boolean functions,

as it is closely related to the concept of linear correlation. Given a Boolean function f ∈ Bn

and an element α ∈ Fn
2 , the Walsh transform of f at α is defined by

f̂(α) =
∑

x∈Fn
2

(−1)⟨α,x⟩⊕f(x) =
∣∣{x | f(x) = ⟨α, x⟩}

∣∣ −
∣∣{x | f(x) ̸= ⟨α, x⟩}

∣∣ .

To make the study of the properties of Boolean functions easier, they can be partitioned
according to an equivalence relation that preserves the properties of interest. Various
equivalence relations have been used in the literature, but in this paper, we only use the
extended variable-permutation equivalence as defined in [LP07].

Definition 1 (extended variable-permutation equivalence). Two Boolean functions f and
g with n variables are said to be extended variable-permutation equivalent if there exist a
mapping P corresponding to permutation of n variables, a ∈ Fn

2 , and b ∈ F2 such that for
all x ∈ Fn

2 , we have g(x) = f ◦ P (x ⊕ a) ⊕ b. In other words, g can be obtained from f by
permuting and adding a constant in the input, with a possible inversion of the output.

In an equivalence relation, all the functions that are equivalent to each other form an
equivalence class, which can be represented by a single function in the class known as its
representative. It is common practice to choose the lexicographically smallest function in
the equivalence class as the representative. In this paper, we follow the same convention
for representatives. In more details for an n-variable Boolean function f(x0, x1, . . . , xn−1),
we use the lexicographic order of f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), f(1, 1, . . . , 0),
and so on. Besides, we use the notation B∗

n to refer to the set of representatives in Bn.

Correlation Immune and Resilient Functions
Definition 2 (correlation immune and resilient Boolean function [Sie84, CGH+85]). A
Boolean function f is called t-th order correlation immune if its output distribution
probability remains unchanged when at most t (or, equivalently, exactly t) of its input
variables are fixed. It is called t-resilient if it is balanced and t-th order correlation immune.
Equivalently, f ∈ Bn is t-th order correlation immune if f̂(u) = 0 for all u ∈ Fn

2 with
1 ≤ hw(u) ≤ t, and it is t-resilient if f̂(u) = 0 for all u ∈ Fn

2 with hw(u) ≤ t.

Note that when a function is t-th order correlation immune (or t-resilient), it does not
necessarily mean that t is the maximum correlation immunity order of the function. To
make this distinction clear, we use the term maximum t-resilient to refer to a function
that is t-resilient, but not (t + 1)-resilient.

By definition, a Boolean function is 0-resilient if and only if it is balanced. Therefore,
the set of all n-variable 0-resilient functions is the same as the set of all n-variable balanced
functions.

Lemma 1. t-resilience is invariant under the extended variable-permutation equivalence.

4 Classification of All t-Resilient Boolean Functions with t + 4 Variables

Proof. If f and g are two equivalent Boolean functions in Bn, then there exists P , a
mapping corresponding to a permutation of n variables, a ∈ Fn

2 , and b ∈ F2 such that for
all x ∈ Fn

2 , we have g(x) = f ◦ P (x ⊕ a) ⊕ b. Then,

ĝ(α) =
∑

x∈Fn
2

(−1)⟨α,x⟩⊕g(x) =
∑

x∈Fn
2

(−1)⟨α,x⟩⊕f◦P (x⊕a)⊕b

= (−1)b ·
∑

x∈Fn
2

(−1)⟨α,x⟩⊕f◦P (x⊕a) = (−1)b ·
∑

x∈Fn
2

(−1)⟨α,x⊕a⟩⊕f◦P (x)

= (−1)⟨a,α⟩⊕b ·
∑

x∈Fn
2

(−1)⟨α,x⟩⊕f◦P (x) = (−1)⟨a,α⟩⊕b · f̂(P (α)) .

f is a t-resilient function if and only if f̂(α) is zero for any α ∈ Fn
2 with hw(α) ≤ t. Since P

is a mapping corresponding to a permutation of variables, it does not change the Hamming
weight value. Hence, for any α ∈ Fn

2 with hw(α) ≤ t, ĝ(α) is also zero, meaning that g is a
t-resilient function.

Based on Lemma 1, it is sufficient to study the correlation immune or resilient functions
up to the extended variable-permutation equivalence. In the rest of the paper, when we
refer to two functions being equivalent, we mean up to the extended variable-permutation
equivalence.

We will use Rn,t to denote the set of all n-variable t-resilient Boolean functions, and
R∗

n,t to denote the set of all representatives in Rn,t. Note that since each (t + 1)-resilient
function is also a t-resilient function, we have Rn,t+1 ⊂ Rn,t and R∗

n,t+1 ⊂ R∗
n,t. Besides,

Rn,t − Rn,t+1 (and R∗
n,t − R∗

n,t+1) represents the set of all n-variable maximum t-resilient
(representative) Boolean functions.

A Boolean function that can be represented as the direct sum of two smaller-dimension
Boolean functions is called a decomposable function. In other words, h ∈ Bn+m is called a
decomposable function if it can be written as the direct sum of f ∈ Bn and g ∈ Bm, that
is for all x ∈ Fn

2 and y ∈ Fm
2 , we have h(x, y) = f(x) ⊕ g(y).

Lemma 2. [Sie84] The function h which is the direct sum of two functions f ∈ Rn,t and
g ∈ Rm,u, is a (t + u + 1)-resilient function.

Let f ∈ Bn and g ∈ Bn+1. We call g is the type-1 extension of f if for all x ∈ Fn
2

and xn ∈ F2, g is defined as g(x, xn) = f(x) ⊕ xn. Note that if f is a t-resilient function,
then its type-1 extension is a (t + 1)-resilient function. Besides, since we choose the
lexicographically smallest function in the equivalence class as the representative, if f is a
representative function, then its type-1 extension is also a representative function.

Proposition 1. [Sie84] Any t-th order correlation immune n-variable Boolean function
has an algebraic degree of at most n − t. Additionally, any t-resilient function has algebraic
degree at most n − t − 1 if t < n − 1, and has degree 1 (i.e., is affine) if t = n − 1.

Based on Proposition 1, Siegenthaler classified all n-, (n − 1)-, and (n − 2)-th order
correlation immune n-variable Boolean functions.

Lemma 3. [Sie84] An n-variable Boolean function is n-th order correlation immune
if and only if it is a constant function. A non-constant n-variable Boolean function is
(n − 1)-th correlation immune if and only if it is equal to x0 ⊕ . . . ⊕ xn−1 ⊕ c with c ∈ F2.
Moreover, a non-constant Boolean function is maximum (n − 2)-th correlation immune if
and only if it is equal to x0 ⊕ . . . ⊕ xj−1 ⊕ xj+1 ⊕ . . . ⊕ xn−1 ⊕ c with 0 ≤ j < n and c ∈ F2.
Therefore, the only function in R∗

n,n−1 is f(x) = x0 ⊕ . . . ⊕ xn−1, and the only function in
R∗

n,n−2 − R∗
n,n−1 is f(x) = x1 ⊕ . . . ⊕ xn−1.

Shahram Rasoolzadeh 5

Siegenthaler also introduced a construction for building (n + 1)-variable (t + 1)-resilient
functions using n-variable t-resilient functions, which is known as the Siegenthaler’s
construction. This construction is explained in detail in Theorem 1 which is the main
principle used in the next section to construct R∗

n+1,t+1 using all the functions in R∗
n,t.

Theorem 1. [Sie84] Let f ∈ Bn+1, and f0 ∈ Bn and f1 ∈ Bn be the two functions derived
from f using the following equation:

f(x, xn) = xn · f0(x) ⊕ xn · f1(x) ∀ x ∈ Fn
2 and xn ∈ F2 .

If both f0 and f1 are t-resilient functions, then f is also a t-resilient function. Furthermore,
f is (t + 1)-resilient if and only if:

• both f0 and f1 are t-resilient functions, and

• for any α ∈ Fn
2 with hw(α) = t + 1, f̂1(α) = −f̂0(α).

Note that by following Siegenthaler’s construction, any Boolean function with n +
1 variables (n > 1) can be uniquely decomposed into two functions with n variables.
Additionally, the truth table of f can be obtained by concatenating the truth tables of f0
and f1, i.e., Tf = Tf0 ∥ Tf1 .

Consider Siegenthaler’s construction for a fixed f0 ∈ Rn,t. One trivial solution for
f1 ∈ Rn,t to make the resulting (n + 1)-variable function f a (t + 1)-resilient function is to
define f1(x) = f0(x) ⊕ 1 for all x ∈ Fn

2 .
In this case, the resulting (n+1)-variable (t+1)-resilient function is given by f(x, xn) =

f0(x) ⊕ xn for all x ∈ Fn
2 and xn ∈ F2, which is the type-1 extension of f0. Therefore,{

f ∈ Bn+1 | f(x, xn) = g(x) ⊕ xn ∀ x ∈ Fn
2 and xn ∈ F2 , with g ∈ R∗

n,t

}
⊂ R∗

n+1,t+1 .

In [CCCS91], another solution is found that f1(x) = f0(x) ⊕ ϵ for all x ∈ Fn
2 , with ϵ = t

mod 2. Then the Walsh transform of f1 for any α ∈ Fn
2 will be

f̂1(α) =
∑

x∈Fn
2

(−1)⟨α,x⟩⊕f1(x) =
∑

x∈Fn
2

(−1)⟨α,x⟩⊕f0(x)⊕ϵ

= (−1)ϵ ·
∑

x∈Fn
2

(−1)⟨α,x⟩⊕f0(x) = (−1)hp(α)⊕ϵ ·
∑

x∈Fn
2

(−1)⟨α,x⟩⊕f0(x)

= (−1)hp(α)⊕ϵ · f̂0(α) = (−1)hw(α)+t · f̂0(α) ,

and the resulting (n + 1)-variable (t + 1)-resilient function is given by:

f(x, xn) = xn · f0(x) ⊕ xn · f1(x) = xn · f0(x) ⊕ xn ·
(
f0(x) ⊕ ϵ

)
= (xn ⊕ 1) · f0(x) ⊕ xn ·

(
f0(x) ⊕ ϵ

)
= xn ·

(
f0(x) ⊕ f0(x) ⊕ ϵ

)
⊕ f0(x) .

Note that if f0(x) ⊕ f0(x) = ϵ for all x ∈ Fn
2 , then the aforementioned f function is equal

to the type-1 extension of the f0 function.
Based on Siegenthaler’s construction, Camion, Carlet, Charpin, and Sendrier classified

all the functions in R∗
n,n−3 [CCCS91].

Lemma 4. [CCCS91] R∗
n,n−3 − R∗

n,n−2 includes only five functions:

• f(x) = x2 ⊕ . . . ⊕ xn−1 (n ≥ 3) ,

• f(x) = x0x1 ⊕ x2 ⊕ . . . ⊕ xn−1 (n ≥ 3) ,

• f(x) = x0x1 ⊕ x0x2 ⊕ x2 ⊕ . . . ⊕ xn−1 (n ≥ 3) ,

6 Classification of All t-Resilient Boolean Functions with t + 4 Variables

• f(x) = x0x1 ⊕ x0x2 ⊕ x1x2 ⊕ x3 ⊕ . . . ⊕ xn−1 (n ≥ 3) ,

• f(x) = x0x1 ⊕ x0x2 ⊕ x1x3 ⊕ x2x3 ⊕ x2 ⊕ . . . ⊕ xn−1 (n ≥ 4) .

Later in [Tar00], Tarannikov proved that for each positive integer m, when considering
all integer values of n, there exists only a finite number of n-variable (n − m)-resilient
representatives such that all the variables are involved nonlinearly.

Theorem 2. [Tar00] For each positive integer m, there exists a minimal nonnegative
integer p(m) such that any (n − m)-resilient function in Bn depends nonlinearly on at most
p(m) variables.

According to Theorem 2, for positive integers n and m such that n > p(m), any
(n − m)-resilient n-variable function f(x0, . . . , xn−1) is extended variable-permutation
equivalent to a representative function of the form g(x0, . . . , xp(m)−1) ⊕ xp(m) ⊕ . . . ⊕ xn−1
with g ∈ R∗

p(m),p(m)−m.
This implies that for n ≥ p(m), any (n + 1)-variable (n − m + 1)-resilient representative

is a type-1 extension of an n-variable (n − m)-resilient representative. In other words, for
n ≥ p(m):

R∗
n+1,n−m+1 =

{
f ∈ B∗

n+1 | f(x, xn) = g(x)⊕xn ∀ x ∈ Fn
2 and xn ∈ F2 with g ∈ R∗

n,n−m

}
.

Since each function has a unique type-1 extension, we can conclude that for each n ≥ p(m),
|R∗

n+1,n−m+1| = |R∗
n,n−m|. Moreover, as a remark of Theorem 2, to classify all n-variable

(n − m)-resilient functions, it is sufficient to classify them for n ≤ p(m).

3 An Algorithm for Classifying R∗
n,n−m

In this section, we explain our approach for classifying all n-variable (n − m)-resilient
Boolean functions up to the extended variable-permutation equivalence. This approach
follows the principle of Siegenthaler’s constructions introduced in Theorem 1. We introduce
several speed-up techniques that help us to develop the basic search algorithm into an
efficient one that enables us to compute R∗

n,n−4 for any value of n.

Basic Approach based on Siegenthaler’s Construction
Based on Siegenthaler’s construction, to compute R∗

n,n−m for a fixed value of m and
all values of n ≥ m, we start by using B∗

m−1 to compute R∗
m,0. Then, we use R∗

m,0 to
compute R∗

m+1,1, and so on. We continue these steps until the number of representatives
in R∗

n+1,n−m+1 is the same as the number of representatives in R∗
n,n−m, i.e., each repre-

sentative in R∗
n+1,n−m+1 is a type-1 extension of a representative in R∗

n,n−m. Note that
Tarannikov showed in [Tar00] that such an n value exists, which is denoted by p(m), and
later in [TK00], Tarannikov and Kirienko proved that p(4) = 10.

To explain our approach, consider that we have already computed R∗
n,t. To compute

all functions in R∗
n+1,t+1, the simplest approach is to take two functions f0 and f1 from

Rn,t and check the condition for the values of their Walsh transform at α points where
hw(α) = t + 1. Then, we check if the resulting function of Siegenthaler’s construction, f ,
is a representative function.

Lemma 5. Let f ∈ Bn+1 and f0 ∈ Bn and f1 ∈ Bn be the functions derived from f using
the following equation:

f(x, xn) = xn · f0(x) ⊕ xn · f1(x) ∀ x ∈ Fn
2 and xn ∈ F2 .

If f is a representative function, then f0 is also a representative function and is lexico-
graphically smaller than or equal to the representative function for the class of f1.

Shahram Rasoolzadeh 7

Proof. If f is an (n + 1)-variable representative, then the truth table for f(x, xn) is
lexicographically smaller than or equal to the truth table for any function equivalent to f .
Note that the truth table of f(x, xn) can be represented as (Tf0(x) ∥ Tf1(x)).

Let fi(x) = f∗
i ◦ Pi(x ⊕ ai) ⊕ bi for all values of x ∈ Fn

2 and i ∈ {0, 1}, with f∗
i ∈ R∗

n,t,
Pi, a mapping corresponding to a permutation of n variables, ai ∈ Fn

2 , and bi ∈ F2. Then,
we have f∗

i (x) = fi

(
P −1

i (x) ⊕ ai

)
⊕ bi for all values of x ∈ Fn

2 and i ∈ {0, 1}.
The truth table of f

(
P −1

0 (x)⊕a0, xn

)
⊕b0 is equal to (Tf∗

0 (x) ∥ Tf1(P −1
0 (x)⊕a0)⊕b0

), which
lexicographically must be greater than or equal to (Tf0(x) ∥ Tf1(x)); that is,

(Tf∗
0 (x) ∥ Tf1(P −1

0 (x)⊕a0)⊕b0
) ≥ (Tf0(x) ∥ Tf1(x)) ⇒ Tf∗

0 (x) ≥ Tf0(x) .

However, since f∗
0 is an n-variable representative, the truth table for f∗

0 (x) is lexicograph-
ically smaller than or equal to the truth table for f0(x); i.e., that is Tf∗

0 (x) ≤ Tf0(x).
Combining these two inequalities, we have Tf∗

0 (x) = Tf0(x) or, equivalently, f∗
0 = f0 which

means that f0 is a representative function.
Besides, the truth table of f

(
P −1

1 (x)⊕a1, xn

)
⊕b1 is equal to (Tf∗

1 (x) ∥ Tf0(P −1
1 (x)⊕a1)⊕b1

),
which lexicographically must be greater than or equal to (Tf0(x) ∥ Tf1(x)). Hence, Tf∗

1 (x) ≥
Tf0(x) = Tf∗

0 (x) which means that the representative function for the class of f1 is lexico-
graphically greater than or equal to the representative function f0.

Based on Lemma 5, to compute R∗
n+1,t+1, we do not need to go through all |Rn,t|2

possible choices for (f0, f1). It is enough to take two representative functions f∗
0 and

f∗
1 , with f∗

0 being lexicographically smaller than or equal to f∗
1 . For each function f1

equivalent to f∗
1 , we check the condition for values of the Walsh transform at α points

with hw(α) = t + 1 for f∗
0 and f1 functions. Then, we check if the resulting function of

Siegenthaler’s construction, f , is a representative function.
Note that there are at most 2n+1 ·n! functions equivalent to each representative function.

This means that for each (f∗
0 , f∗

1) representative pair, we need to repeat the condition
check 2n+1 · n! times. For all the operations and computations required for a fixed (f∗

0 , f∗
1)

representative pair, we refer to it as the iteration for (f∗
0 , f∗

1) representative pair.
In the following, we first focus on reducing the number of representative pairs from

R∗
n,t that need to be evaluated to build R∗

n+1,t+1. Then, we focus on the amount of
computation needed within each iteration for a representative pair.

As a result of Lemma 5, we need to go through |R∗
n,t| ·

(
|R∗

n,t| + 1
)
/2 iterations for

representative pairs in R∗
n,t. Based on the numbers reported in Table 2 for |R∗

n,n−4|, to
compute R∗

n+1,n−3 with n = 3 to n = 10, we need to go through 105, 1 711, 32 896, 167 331,
259 560, 284 635, 289 180, and 289 941 iterations, respectively.

Technique 1: Excluding Type-1-Extension Representatives for f0

Lemma 6. Let f ∈ Bn+1 and f0 ∈ Bn and f1 ∈ Bn be the two functions derived from f
using the following equation:

f(x, xn) = xn · f0(x) ⊕ xn · f1(x) ∀ x ∈ Fn
2 and xn ∈ F2 .

If f is representative and f0 is a type-1 extension of a function in Bn−1, then f is the
type-1 extension of f0.

Proof. Let f00, f10 f01 and f11 be the four (n − 1)-variable Boolean functions derived from
f using the following equation for all x′ ∈ Fn−1

2 and xn, xn−1 ∈ F2:

f(x′, xn−1, xn) =
xn−1 · xn · f00(x′) ⊕ xn−1 · xn · f10(x′) ⊕ xn−1 · xn · f01(x′) ⊕ xn−1 · xn · f11(x′) .

8 Classification of All t-Resilient Boolean Functions with t + 4 Variables

Then the truth table of f(x′, xn−1, xn) can be represented by (Tf00 ∥ Tf10 ∥ Tf01 ∥ Tf11), and
since f is representative, its truth table is lexicographically smaller than or equal to the
truth table for any function equivalent to f . Furthermore, since f0 is a type-1 extension of
an (n−1)-variable function, we have f10(x′) = f00(x′)⊕1 for all x′ ∈ Fn−1

2 , or equivalently,
Tf10 = Tf00 . Then, we have

Tf(x′,xn−1,xn) = (Tf00 ∥ Tf00 ∥ Tf01 ∥ Tf11)
Tf(x′,xn,xn−1) = (Tf00 ∥ Tf01 ∥ Tf00 ∥ Tf11) ≥ (Tf00 ∥ Tf00 ∥ Tf01 ∥ Tf11) ⇒ Tf01 ≥ Tf00

Tf(x′,xn−1,xn)⊕1 = (Tf00 ∥ Tf00 ∥ Tf11 ∥ Tf01) ≥ (Tf00 ∥ Tf00 ∥ Tf01 ∥ Tf11) ⇒ Tf11 ≥ Tf01

Tf(x′,xn,xn−1)⊕1 = (Tf00 ∥ Tf11 ∥ Tf00 ∥ Tf01) ≥ (Tf00 ∥ Tf00 ∥ Tf01 ∥ Tf11) ⇒ Tf11 ≥ Tf00

Tf(x′,xn,xn−1) = (Tf01 ∥ Tf00 ∥ Tf11 ∥ Tf00) ≥ (Tf00 ∥ Tf00 ∥ Tf01 ∥ Tf11) ⇒ Tf01 ≥ Tf00

Tf(x′,xn−1,xn) = (Tf11 ∥ Tf01 ∥ Tf00 ∥ Tf00) ≥ (Tf00 ∥ Tf00 ∥ Tf01 ∥ Tf11) ⇒ Tf11 ≥ Tf00

Tf11 ≥ Tf00 is equivalent to Tf11 ≤ Tf00 , and since we also have Tf11 ≥ Tf00 , it follows
that Tf11 = Tf00 , or equivalently, f11 = f00. Similarly, combining Tf01 ≥ Tf00 and
Tf11 ≥ Tf01 with f11 = f00 yields Tf01 = Tf00 , or equivalently, f01 = f00 ⊕ 1. Altogether,
the truth table of f(x′, xn−1, xn) will be (Tf00 ∥ Tf00 ∥ Tf00 ∥ Tf00) which is equivalent to
f(x′, xn−1, xn) = f00(x′)⊕xn−1 ⊕xn = f0(x)⊕xn for all x′ ∈ Fn−1

2 and xn−1, xn ∈ F2.

Lemma 6 enables us to reduce the number of representative pairs from R∗
n,t that need

to be evaluated to construct R∗
n+1,t+1 in the following manner. We know that the type-1

extension of each function in R∗
n,t is already included in R∗

n+1,t+1. Hence, we only need to
find all the representatives in R∗

n+1,t+1 that are not type-1 extensions of representative
functions in R∗

n,t. We denote the set of such functions by R†
n+1,t+1, i.e.,

R†
n+1,t+1 = R∗

n+1,t+1

−
{

f ∈ Bn+1 | f(x, xn) = g(x) ⊕ xn ∀ x ∈ Fn
2 and xn ∈ F2 , with g ∈ R∗

n,t

}
.

Based on Lemma 6, any representative pair (f∗
0 , f∗

1) from R∗
n,t with f∗

0 being a type-1
extension (of a function in R∗

n−1,t−1) only produces a single representative in R∗
n+1,t+1,

and this representative is the type-1 extension of f∗
0 . Therefore, to compute R†

n+1,t+1,
we only need to consider representative pairs (f∗

0 , f∗
1) from R∗

n,t where f∗
0 is not a type-1

extension (i.e., f∗
0 ∈ R†

n,t) and it is lexicographically smaller than or equal to f∗
1 .

Applying this technique guarantees that the number of representative pairs which need
to be evaluated for computing R†

n+1,t+1 (and accordingly for computing R∗
n+1,t+1) is less

than |R†
n,t| ·

∣∣R∗
n,t|. We emphasize that this number is only an upper bound since we only

need to use (f∗
0 , f∗

1) representative pairs which satisfy the condition f∗
0 is smaller than or

equal to f∗
1 , and determining the exact value requires knowledge of functions in R∗

n,t.
The exact number of such representative pairs needed for computing R†

n+1,n−3 with
n = 3 until n = 10 is reported in Table 2. Specifically, we need to go through 90, 1 429,
26 385, 89 855, 43 874, 8 009, 773, and 62 iterations, respectively. As you see, applying only
technique 1 results in a significant reduction in the number of representative pairs from
R∗

n,t that need to be considered for computing R†
n+1,t+1, particularly as the value of n

increases.

Technique 2: Excluding Single-Solution-Extension Representatives
Let f∗

0 ∈ R∗
n,t such that, using Siegenthaler’s construction, there exists exactly one f1

among all functions in Rn,t that can be used to construct an (n + 1)-variable (t + 1)-
resilient function f . Note that this implies f1(x) = f∗

0 (x) ⊕ 1 = f∗
0 (x) ⊕ ϵ with ϵ = t

Shahram Rasoolzadeh 9

mod 2. Accordingly, f(x, xn) = f∗
0 (x) ⊕ xn for all x ∈ Fn

2 and xn ∈ F2, which is the type-1
extension of f∗

0 . We refer to such f∗
0 function as a single-solution representative, and to

such f function as a single-solution-extension representative.

Lemma 7. Let f∗
0 ∈ R∗

n,t be a single-solution representative, and f∗ ∈ R∗
n+1,t+1 be

the type-1 extension of f∗
0 . Then, for any function g∗ ∈ R∗

n+1,t+1 \ {f∗}, the iterations
related to (n + 1)-variable representative pairs (f∗, g∗) and (g∗, f∗) cannot produce an
(n + 2)-variable (t + 2)-resilient function.

Proof. Assume that the representative pair (f∗, g∗) can build an (n + 2)-variable (t + 2)-
resilient function. Then, there is a function g equivalent to g∗ such that g(x, xn) =
xn · g0(x) ⊕ xn · g1(x) for all x ∈ Fn

2 and xn ∈ F2, where g0 and g1 are both t-resilient.
Furthermore, there is an (n + 2)-variable (t + 2)-resilient function h such that, for all
x ∈ Fn

2 and xn, xn+1 ∈ F2, we have

h(x, xn, xn+1) = xn+1 · f∗(x, xn) ⊕ xn+1 · g(x, xn) =
xn · xn+1 · f∗

0 (x) ⊕ xn · xn+1 · (f∗
0 (x) ⊕ 1) ⊕ xn · xn+1 · g0(x) ⊕ xn · xn+1 · g1(x) .

Since h is a (t + 2)-resilient function, the following two (n + 1)-variable functions must
also be (t + 1)-resilient:

• h′ defined by h′(x, xn) = xn · f∗
0 (x) ⊕ xn · g0(x) for all x ∈ Fn

2 and xn ∈ F2,

• h′′ defined by h′′(x, xn) = xn ·
(
f∗

0 (x) ⊕ 1
)

⊕ xn · g1(x) for all x ∈ Fn
2 and xn ∈ F2.

Since f∗
0 is a single-solution function, h′ and h′′ can be (t + 1)-resilient if g0(x) = f∗

0 (x) ⊕ 1
and g1(x) = f∗

0 (x) for all x ∈ Fn
2 . This implies that g(x, xn) = f∗(x, xn) ⊕ 1 for all x ∈ Fn

2
and xn ∈ F2, and thus g∗ = f∗, which contradicts the assumption of the lemma that
g∗ ∈ R∗

n+1,t+1 \ {f∗}. A similar approach holds for the case of the representative pair
(g∗, f∗), that this representative pair can build an (n + 2)-variable (t + 2)-resilient function
only if f∗ = g∗.

We use Lemma 7 for further reduction on the number of representative pairs needed to
build R†

n+2,t+2. At the step of computing R†
n+1,t+1, for a fixed f∗

0 representative in R†
n,t,

while iterating through all (f∗
0 , f∗

1) representative pairs, we check if f∗
0 is a single-solution

representative or not. Based on this saved information about each f∗
0 ∈ R†

n,t, we form the
following set at the end of the current step:

R‡
n+1,t+1 = R∗

n+1,t+1 − {type-1 extension of all f ∈ R∗
n,t such that f is single-solution} .

Then, in the next step, for computing R†
n+2,t+2, we only need to iterate through all (g∗

0 , g∗
1)

representative pairs with g∗
0 ∈ R†

n+1,t+1, g∗
1 ∈ R‡

n+1,t+1, and g∗
0 lexicographically smaller

than or equal to g∗
1 .

Note that for all possible values of n and t, we always have R†
n,t ⊂ R‡

n,t ⊂ R∗
n,t.

By applying this technique, we can reduce the number of representative pairs that need
to be evaluated for computing R†

n+2,t+2 with negligible overhead computation. The exact
number of such representative pairs for computing R†

n+2,n−2 with n = 3 up to n = 9 is
reported in Table 2. That is, we need to go through 1 266, 24 356, 79 631, 28 450, 1 919, 61,
and 3 iterations, respectively.

Technique 3: Equal Spectrum of Walsh Transform at the Check Points
Lemma 8. In Siegenthaler’s construction, the two functions f0 and f1 from Rn,t can
form (n + 1)-variable (t + 1)-resilient functions if the distribution of magnitudes for their
representatives’ Walsh transform at the α points with hw(α) = t + 1 are equal.

10 Classification of All t-Resilient Boolean Functions with t + 4 Variables

Proof. For each i ∈ {0, 1}, we define the multiset Ai as follows:

Ai =
{

|f̂i(α)|
∣∣ α ∈ Fn

2 with hw(α) = t + 1
}

.

According to Theorem 1, f0 and f1 from Rn,t can construct (n+1)-variable (t+1)-resilient
functions in Siegenthaler’s construction if A0 = A1, and this is due to that for all α ∈ Fn

2
with hw(α) = t + 1, we have f̂1(α) = −f̂0(α).

Let fi(x) = f∗
i ◦ Pi(x ⊕ a) ⊕ bi for all x ∈ Fn

2 and i ∈ {0, 1}, where f∗
i ∈ R∗

n,t, Pi is
a mapping corresponding to a permutation of n variables, ai ∈ Fn

2 , and bi ∈ F2. Hence,
for α ∈ Fn

2 and i ∈ {0, 1}, we have f̂i(α) = (−1)⟨ai,α⟩⊕bi · f̂∗
i (Pi(α)) and consequently,

|f̂i(α)| = |f̂∗
i (Pi(α))|. Therefore,

Ai =
{

|f̂∗
i (Pi(α))|

∣∣ α ∈ Fn
2 with hw(α) = t + 1

}
=

{
|f̂∗

i (α)|
∣∣ α ∈ Fn

2 with hw
(
P −1

i (α)
)

= t + 1
}

=
{

|f̂∗
i (α)|

∣∣ α ∈ Fn
2 with hw(α) = t + 1

}
.

Note that the last equality is a result of the fact that Pi is a mapping corresponding to a
permutation of variables, which preserves the Hamming weight value. As A0 = A1, we
have{

|f̂∗
0 (α)|

∣∣ α ∈ Fn
2 with hw(α) = t + 1

}
=

{
|f̂∗

1 (α)|
∣∣ α ∈ Fn

2 with hw(α) = t + 1
}

.

This implies that the distribution of magnitudes for representatives’ Walsh transform at
the points with Hamming weight t + 1 is the same for both functions.

We can apply Lemma 8 to reduce the number of representative pairs that need to be
evaluated from R∗

n,t in order to construct R∗
n+1,t+1. For each representative pair remaining

after technique 2, we check the distribution of magnitudes for the Walsh transform at
points with Hamming weight t + 1.

Note that for a fixed m and t = n − m, the number of points with Hamming weight of
t + 1 is equal to (

n

n − m + 1

)
= n · (n − 1) · · · · · (n − m + 2)

(m − 1)! .

As n increases, the number of such points also increases. Therefore, the probability that
two representatives from R∗

n,t have the same distribution at points with Hamming weight
n − m + 1 decreases significantly.

We have reported the number of representative pairs for the case of m = 4 in Table 2.
The number of pairs that need to be evaluated for computing R†

n+1,n−3 with n ranging
from 3 to 10 are 23, 133, 1 911, 6 423, 1 779, 149, 8, and 1, respectively.

Computations for Each Iteration with a Representative Pair
Let (f∗

0 , f∗
1) be a representative pair from R∗

n,t that satisfies all the conditions from the
previous three techniques. To determine whether this representative pair can be used to
construct (n + 1)-variable (t + 1)-resilient functions using Siegenthaler’s construction, we
need to examine all (at most) 2n+1 · n! equivalent functions within the class of f∗

1 .
Let f1 be an equivalent function to f∗

1 , where f1(x) = f∗
1 ◦ P (x ⊕ a) ⊕ b for all

x ∈ Fn
2 , with P representing a mapping corresponding to a permutation of n variables,

a ∈ Fn
2 , and b ∈ F2. Using Siegenthaler’s construction, f∗

0 and f1 can construct a (t + 1)-
resilient function if for all α ∈ Fn

2 with hw(α) = t + 1, we have f̂1(α) = −f̂∗
0 (α), which

means |f̂1(α)| = |f̂∗
0 (α)|. Moreover, since f̂1(α) = (−1)⟨a,α⟩⊕b · f̂∗

1
(
P (α)

)
, we must have

|f̂∗
0 (α)| = |f̂∗

1
(
P (α)

)
| for each α ∈ Fn

2 with hw(α) = t + 1. This condition only depends on

Shahram Rasoolzadeh 11

the mapping P and is independent of the values for a or b. Therefore, instead of checking
all 2n+1 · n! equivalent functions, we only need to consider all n! possible choices for the
mapping P and verify if |f̂∗

0 (α)| = |f̂∗
1

(
P (α)

)
| for all α ∈ Fn

2 with hw(α) = t + 1.
It should be noted that when checking this condition for different P mappings, there is

no need to repeat the computation of the Walsh transform for the function f∗
1 ◦ P for each

choice of P mapping. It is sufficient to have the Walsh transform values of the functions
f∗

0 and f∗
1 (at α points with hw(α) = t + 1) computed previously, at the starting point for

the step of computing R∗
n+1,t+1.

For a representative pair (f∗
0 , f∗

1) and a mapping P , in the case where the condition for
magnitudes of the Walsh transforms at the α points is satisfied, we then check if there exist
any a ∈ Fn

2 and b ∈ F2 that satisfy the condition for signs of the Walsh transform at these
points. If such values for a and b exist, then we have successfully built an (n + 1)-variable
(t + 1)-resilient function. Note that this step could be made more efficient, but since it is
not the bottleneck for the computational complexity of our algorithm, we leave it in its
current simple form.

The bottleneck for the computational complexity of our algorithm (up to this point) is
when we go through all n! possible mappings of P for each representative pair (f∗

0 , f∗
1).

However, since there are very few mappings P that can pass the condition for magnitudes
of the Walsh transform at the α points with hw(α) = t + 1, going through all choices for a
and b will not increase the computational complexity of the algorithm. In other words, if
N3 denotes the number of remaining representative pairs after technique 3 is applied, the
computational complexity of the step for building R∗

n+1,t+1 will be N3 · n! times the cost
of a few look-up tables.

Checking Representativeness of a Function
All (n + 1)-variable (t + 1)-resilient functions produced within each iteration are not
necessarily representative functions. Therefore, for each (n + 1)-variable (t + 1)-resilient
function f built by Siegenthaler’s construction, we need to check if it is representative. To
do this, we go through all possible choices for P , a mapping corresponding to a permutation
of n + 1 variables, and a ∈ Fn+1

2 . For each mapping P and constant a, we fix b ∈ F2 to
the value of f ◦ P (a) and compute the function f ′(x) = f ◦ P (x ⊕ a) ⊕ b for all values of
x ∈ Fn

2 . We then check if the function f ′ is lexicographically smaller than f .
Note that if there is a single choice for mapping P and constant a such that the

corresponding equivalent function f ′ is smaller than f , it is enough to decide that f is
not a representative function. Also, it is not necessary to compute all the truth table for
function f ′ to compare it with f . We only need to compute its truth table until the point
y ∈ Fn

2 such that f(x) = f ′(x) for all x ∈ Fn+1
2 with x < y and f(y) ̸= f ′(y). Note that

the point y always exists if f ̸= f ′.
If f is a type-1 extension of an n-variable representative function f∗

0 , then it is definitely
a representative function. Hence, before checking representativeness of functions, we check
for being a type-1 extension. Therefore, only the representative functions in R†

n+1,t+1 will
go through all possible choices for mapping P and constant a.

By applying these techniques, with comparatively smaller complexity, we can check
if a function is not a representative. However, if the function is in R†

n+1,t+1, we need to
go through all possible choices for mapping P and constant a to make sure that it is a
representative function. This means that the computational complexity of this part is
about |R†

n+1,t+1| · (n + 1)! · 2n+1 times of partially computing an equivalent function.

Final Step of the Algorithm
Lemma 7 not only helps us develop our algorithm for building R∗

n,n−m for each n value,
but it also provides information about the step in our algorithm where we should stop.

12 Classification of All t-Resilient Boolean Functions with t + 4 Variables

Table 1: Number of (n−4)-resilient n-variable representatives. The second part of the table
shows number of representatives in R†

n,t for each algebraic degree and Walsh transform
spectrum. By (x, y, z) for the Walsh transform spectrum, we mean x times appearance of
2n−2, y times 2n−1 and z times 3 · 2n−2 in absolute values of the Walsh transform.

n 3 4 5 6 7 8 9 10
|R∗

n,n−4| 14 58 256 578 720 754 760 761
|R‡

n,n−4| 14 53 240 509 416 114 19 3
|R†

n,n−4| 10 44 198 322 142 34 6 1
cubic (16, 0, 0) – – 25 199 112 31 6 1
cubic (12, 1, 0) – – 106 85 21 2 – –
cubic (8, 2, 0) – 28 58 35 9 1 – –
cubic (7, 0, 1) 4 9 4 1 – – – –

quadratic (0, 4, 0) 5 7 5 2 – – – –

Note that according to Theorem 2 for a fixed value of m, there is such a value for n to
stop the algorithm.

Lemma 9. If |R∗
n+1,n−m+1| = |R∗

n,n−m|, then for any n′ > n, we have |R∗
n′,n′−m| =

|R∗
n,n−m| and, more precisely,

R∗
n′,n′−m = {type-1 extension of all functions in R∗

n′−1,n′−m−1} .

Proof. If there is an n such that |R∗
n+1,n−m+1| = |R∗

n,n−m|, it means that all the n-valriable
representatives are single-solution representatives. Therefore, based on Lemma 7, all the
representatives in R∗

n+2,t+2 are the type-1 extension of each representative in R∗
n+1,t+1.

This means that to classify R∗
n,n−m for all values of n ≥ m, we only need to continue

our algorithm until the step of computing R∗
n+1,n−m+1 such that R†

n+1,n−m+1 = ∅, or
equivalently |R∗

n+1,n−m+1| = |R∗
n,n−m|.

Results for the Case of R∗
n,n−4

We apply our algorithm to classify all n-variable (n − 4)-resilient functions (up to the
extended variable-permutation equivalence). We begin by using all 3-variable representative
functions, denoted by R∗

3,−1, to build R∗
4,0 and repeat for another 7 steps until we reach

the step of building R∗
11,7 using R∗

10,6. The algorithm stops at this step by reaching to
R†

11,7 = ∅.
The number of representatives in each R∗

n,n−4 with 4 ≤ n ≤ 11 is summarized in
Table 1. We recall that R∗

n,t, R‡
n,t and R†

n,t denote the set of all, not-single-solution, and
not-type-1 extension n-variable t-resilient representatives, respectively.

For n = 4 increasing to n = 9, and n ≥ 10, there are 58, 256, 578, 720, 754, 760, and
761 of n-variable (n − 4)-resilient representatives, of which 44, 198, 322, 142, 34, 6, and
1 involve all the variables nonlinearly, respectively. Moreover, among all the n-variable
(n − 4)-resilient representatives, there are always only 3 linear ones, and only 13, 18, and
20 quadratic ones for n = 4, n = 5, and n ≥ 6, respectively. Furthermore, n-variable
(n − 4)-resilient representatives with minimum linearity (2n−2) only exist for n ≥ 5 that
for n = 5 increasing to n = 9, and n ≥ 10, there are 25, 224, 336, 367, 373, and 374 of
such representatives, respectively.

The computational complexity of this search is summarized in Table 2, by separately
reporting the cost for building (n+1)-variable (t+1)-resilient functions using Siegenthaler’s

Shahram Rasoolzadeh 13

Table 2: Number of representative pairs remaining after applying each technique for step
of computing R∗

n+1,t+1 together with the computational complexity of each step. N0, N1,
N2 and N3 denote the number representative pairs before technique 1, after technique 1,
after technique 2, and after technique 3, respectively. Besides, C1 denotes the cost for
building (n + 1)-variable (t + 1)-resilient functions using Siegenthaler’s construction and
C2 denotes the cost for checking if the constructed functions are representatives.

n 4 5 6 7 8 9 10 11
N0 105 1 711 32 896 167 331 259 560 284 635 289 180 289 941
N1 90 1 429 26 385 89 855 43 874 8 009 773 62
N2 90 1 266 24 356 79 631 28 450 1 919 61 3
N3 23 133 1 911 6 423 1 779 149 8 1

C1 138 3 192 229 320 4 624 560 8 966 160 6 007 680 2 903 040 3 628 800
C2 16 896 760 320 14 837 760 91 607 040 350 945 280 1 114 767 360 negligible -

construction and the cost of checking if the constructed functions are representatives. The
first part’s cost is about 225 times a few look-up tables, and for the second part, it is about
231 times of partially computing the truth-table of an equivalent function. One can apply
complicated methods to check for representativeness of a function to further reduce the
computational cost of the algorithm. However, since the total complexity of the algorithm
falls within the range of computing it in less than an hour using single-thread computation
in a typical PC or laptop, we leave it as is for now.

Results for R∗
5,0 and R∗

6,1

We have also applied our algorithm to classify all n-variable (n − 5)-resilient functions
(up to the extended variable-permutation equivalence). To do so, we begin by using all
4-variable representative functions to construct R∗

5,0, and then repeat this process to
compute R∗

6,1.
However, due to the sheer size of R∗

6,1 which contains approximately 230 representatives,
we estimate that it will be impossible to save all representatives in R∗

7,2. The exact number
of representatives in R∗

5,0 and R∗
6,1 are 86 603 and 1 035 596 784 respectively.

4 Conclusion
This paper classifies (n − 4)-resilient Boolean functions with n variables, considering the
extended variable-permutation equivalence. By leveraging Siegenthaler’s construction
and introducing efficient techniques, we have identified the number of such functions for
different values of n. Specifically, there are 761 functions for n ≥ 10, and for smaller values
of n ranging from 4 to 9, there are 58, 256, 578, 720, 754, and 760 functions, respectively.
Additionally, we have classified 1-resilient 6-variable Boolean functions, finding a total of
1 035 596 784 such functions under the extended variable-permutation equivalence.

This work contributes valuable insights into the structure of resilient Boolean functions,
with potential implications for practical applications. It also prepares a solid foundation for
further exploration and refinement of resilient function analysis. The efficient techniques
and algorithm developed in this study offer promising directions for future classifications
in the field of Boolean functions.

All the results of this paper are publicly available at the following link:

https://gitlab.science.ru.nl/shahramr/ResilientFunctions.git

https://gitlab.science.ru.nl/shahramr/ResilientFunctions.git

14 Classification of All t-Resilient Boolean Functions with t + 4 Variables

Acknowledgments
The work described in this paper is supported by the Netherlands Organization for Scientific
Research (NWO) under TOP grant TOP1.18.002 SCALAR.

References
[CC05] Claude Carlet and Pascale Charpin. Cubic boolean functions with highest

resiliency. IEEE Trans. Inf. Theory, 51(2):562–571, 2005.

[CCCS91] Paul Camion, Claude Carlet, Pascale Charpin, and Nicolas Sendrier. On
correlation-immune functions. In Joan Feigenbaum, editor, Advances in Cryp-
tology - CRYPTO ’91, 11th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1991, Proceedings, volume 576 of
Lecture Notes in Computer Science, pages 86–100. Springer, 1991.

[CG13] Claude Carlet and Sylvain Guilley. Side-channel indistinguishability. In Ruby B.
Lee and Weidong Shi, editors, HASP 2013, The Second Workshop on Hardware
and Architectural Support for Security and Privacy, Tel-Aviv, Israel, June
23-24, 2013, page 9. ACM, 2013.

[CGH+85] Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich,
and Roman Smolensky. The bit extraction problem of t-resilient functions
(preliminary version). In 26th Annual Symposium on Foundations of Computer
Science, Portland, Oregon, USA, 21-23 October 1985, pages 396–407. IEEE
Computer Society, 1985.

[Cou03] Nicolas T. Courtois. Fast algebraic attacks on stream ciphers with linear
feedback. In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer
Science, pages 176–194. Springer, 2003.

[LP07] Gregor Leander and Axel Poschmann. On the classification of 4 bit s-boxes.
In Claude Carlet and Berk Sunar, editors, Arithmetic of Finite Fields, First
International Workshop, WAIFI 2007, Madrid, Spain, June 21-22, 2007, Pro-
ceedings, volume 4547 of Lecture Notes in Computer Science, pages 159–176.
Springer, 2007.

[PSD96] Dingyi Pei, Arto Salomaa, and Cunsheng Ding. Chinese remainder theorem:
applications in computing, coding, cryptography. World Scientific, 1996.

[RH07] Sondre Rønjom and Tor Helleseth. A new attack on the filter generator. IEEE
Trans. Inf. Theory, 53(5):1752–1758, 2007.

[Sie84] Thomas Siegenthaler. Correlation-immunity of nonlinear combining functions
for cryptographic applications. IEEE Trans. Inf. Theory, 30(5):776–780, 1984.

[Tar00] Yuriy Tarannikov. On the structure and numbers of higher order correlation-
immune functions. In IEEE International Symposium on Information Theory,
pages 185–, 2000.

[TK00] Yuriy Tarannikov and Denis Kirienko. Spectral analysis of high order correlation
immune functions. IACR Cryptol. ePrint Arch., page 50, 2000.

	Introduction
	Preliminaries
	An Algorithm for Classifying R*n,n-m
	Conclusion

