
From Substitution Box To Threshold

Anubhab Baksi1, Sylvain Guilley2, Ritu-Ranjan Shrivastwa2, and Sofiane Takarabt2

1 Nanyang Technological University, Singapore

2 Secure-IC, Rennes, France

anubhab001@e.ntu.edu.sg, sylvain.guilley@secure-ic.com,
ritu-ranjan.shrivastwa@secure-ic.com, sofiane.takarabt@secure-ic.com

Abstract. With the escalating demand for lightweight ciphers as well as side channel protected
implementation of those ciphers in recent times, this work focuses on two related aspects. First,
we present a tool for automating the task of finding a Threshold Implementation (TI) of a given
Substitution Box (SBox). Our tool returns ‘with decomposition’ and ‘without decomposition’ based
TI. The ‘with decomposition’ based implementation returns a combinational SBox; whereas we
get a sequential SBox from the ‘without decomposition’ based implementation. Despite being high
in demand, it appears that this kind of tool has been missing so far. In the process, we report
new decomposition for the PRESENT SBox (improving from Poschmann et al.’s JoC’11 paper)
and that of the GIFT SBox (improving from Jati et al.’s TIFS’20 paper). Second, we show an
algorithmic approach where a given cipher implementation can be tweaked (without altering the
cipher specification) so that its TI cost can be significantly reduced. We take the PRESENT cipher
as our case study (our methodology can be applied to other ciphers as well). Indeed, we show over 31
percent reduction in area and over 52 percent reduction in depth compared to the basic threshold
implementation.

Keywords: Lightweight Cryptography · Block Cipher · SBox · Side Channel Countermeasure ·
Threshold Implementation · PRESENT

1 Introduction

Over the last few years, we have observed a surge of research works dedicated to finding new
lightweight ciphers and/or low-cost implementation of those ciphers. Recently we have also seen
side channel protected implementation of the lightweight ciphers gaining traction [15,23]. While
the community is proactive in advocating side channel protected implementation, surprisingly, a
systematic and generic study on how to do that appears to be missing from the literature. There
is an overall theory, but for the most part, a detailed study is required to be undertaken for
better understanding of the context. The authors seem to come up with some ad-hoc approach
(see, e.g., [23]) for the implementation. This further hinders the overdue tasks such as, finding
proper algorithms, easy-to-use and publicly available tools, and various optimisations that can be
employed to reduce the cost.

This work makes a humble attempt to look into the problem of finding a Threshold Im-
plementation (TI) of a given SBox. The TI is a well-known concept that aims at protecting
against the most common type of side channel attack which relies on power or electromagnetic
leakage [9,23,26]. Such SBoxes are probably the most common choice for the non-linear component
in the modern lightweight ciphers, thus an automated tool to find TI of those SBoxes is of prime
importance.

The first author would like to thank Robert Hines, Bijoy Das (IIT Bhilai, India), Gan Peizhou (NTU,
Singapore) and Aneesh Kandi (IIT Madras, India). This is an extended version of the paper with the same title
accepted in Indocrypt 2023.

https://crsind.in/indocrypt2023/


2 A. Baksi, S. Guilley, et al.

Further, we observe that with a slight modification in the implementation, it is possible to
reduce the cost for a TI of cipher. This does not alter the actual description of the cipher, hence
there is no need to redo the security analysis. We show how to adopt a systematic approach with
the lightweight cipher PRESENT [11], and how it successfully reduces the TI cost, by more than
31% in terms of area or by more of 52% in terms of depth. This methodology is generic, hence it
can be applied to other ciphers that use a similar structure.

Our Contributions

The side channel attack is considered among the major threats, though, the field of studying the
protected implementations seems less than developed at multiple levels. While working on this
general area, we find ourselves in a situation where we need/want to find threshold implementation
of a fairly large pool of SBoxes. Effectively, we look for automated tools to do the batch processing,
but to our dismay, cannot find anything suitable (except for the tool by Petkova-Nikova mentioned
in Section 4). Parallel to this, the problem of finding some optimisations at the algorithmic level
is another interesting direction, which seems underdeveloped too.

Ultimately, we decide to make our own tool for this purpose. As we go along, we discover a
proper algorithm is missing. For the most part, the previous authors such as [23, Section III]
or [9, Chapter 3] convey the idea behind threshold through examples, instead of a well-formed
algorithm. Naturally, several pertinent issues remain unexplored, such as automating the process
or dealing with the corner cases. We therefore look further down with adequate clarity to come
up with algorithms (as well as release our codes as open-source1). Our tool has two segments, one
segment returns ‘without decomposition’ based threshold implementation (Section 3), and the
other segment returns ‘with decomposition’ based threshold implementation (Section 4). The idea
for decomposition presented here, while being similar to that one used in [23,39], is simplified. On
top of that, we show decomposition for the PRESENT and GIFT SBoxes, which improve in terms
of ASIC cost compared to the currently best-known results from [39] (for PRESENT) and [23] (for
GIFT).

On the other hand, better understanding of TI motivates us to find other avenues for cost
reduction. With the lightweight block cipher PRESENT [11], we show an optimisation strategy
(Section 5) that uses less resources. The basic idea stems from the concept of affine equivalence
(Section 2.2) of SBoxes, i.e., by opting for another SBox than specified by the designers. This
SBox is chosen in such as a way that the netlist optimisation tool can leverage on the new SBox’s
algebraic properties. However, our approach does not change the overall cipher specification (so
one does not need to carry out the usual security analysis). Thus, our analysis reveals, some
alternative representations are indeed more efficient to implement than the näıve implementation
(which is used as a baseline). Further, this strategy can be applied to any other cipher with a
similar structure.

2 Background

2.1 Möbius Transform

The Möbius transform is used to find the coordinate function representation (in ANF) of a given
(bijective) SBox. For the sake of better clarity, it is described here. Given an n× n SBox S, we
first need to define the corresponding 2n × 2n Möbius matrix (see Definition 1).

1Our codes can be accessed at https://github.com/anubhab001/sbox-threshold-public.

https://github.com/anubhab001/sbox-threshold-public


From Substitution Box To Threshold 3

Definition 1 (Möbius Matrix). The 2n × 2n Möbius matrix M2n takes elements from F2 and

is recursively defined as: M20 =
[
1
]
, M21 =

[
1 1
0 1

]
, and M2n =

[
M2n−1 M2n−1

0 M2n−1

]
for n ≥ 2.

Remark 1. The Möbius matrix is self-inverse. ⊓⊔

Example 1. One of the most commonly used Möbius matrix that corresponds to a 4-bit SBox is
given by:

M24 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




⊓⊔

Definition 2 (Coordinate Function). Suppose F : Fn
2 → Fn

2 is defined as F (x) = (f0(x), . . . ,
fn−1(x)) for all x ∈ Fn

2 , where fi : Fn
2 → F2 for i = 0, . . . , n − 1. Then each fi is called a

coordinate function of F .

We also use the following two terms, bit-slice matrix and coordinate matrix. Informally, these
two can be defined as follows. The bit-slice matrix of an n× n SBox is a n× 2n matrix where
column i stores the ith look-up entry as a binary column vector. The coordinate matrix is the
n × 2n binary matrix which is the result of post-multiplying the Möbius matrix M2n to the
bit-slice matrix.

The coordinate matrix plays an important role in representing the SBox in its coordinate
functions (Definition 2) in Algebraic Normal Form (ANF). The rows indicate the coordinate
functions, while the columns indicate which product of the input variables is present. This is
shown in Example 2 with respect to the SBox used in PRESENT [11].

Example 2 (PRESENT SBox). The bit-slice matrix of the PRESENT SBox (C56B90AD3EF84712) is
given as follows:

BPRESENT =




0 1 0 1 1 0 0 1 1 0 1 0 0 1 1 0
0 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1
1 1 1 0 0 0 0 1 0 1 1 0 1 1 0 0
1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 0




For instance, the last column of this matrix, (0, 1, 0, 0)⊤, is the last look-up entry (2) written
as the binary column vector. After post-multiplying the Möbius matrix with this matrix, one



4 A. Baksi, S. Guilley, et al.

gets the following as the coordinate matrix of the PRESENT SBox:

CPRESENT = BPRESENT ×M24 =




0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0
1 0 0 1 1 0 0 0 1 1 1 1 0 1 0 0
1 1 1 0 0 0 1 1 1 0 0 1 0 1 0 0




Following the conventional notation, we denote the input variables as x0, x1, x2, x3 and
the coordinate functions as y0, y1, y2, y3. Then the rows of the CPRESENT denote (in sequence)
y0, y1, y2, y3, and the columns denote (in sequence) whether or not (1, x0, x1, x0x1, x2, x0x2,
x1x2, x0x1x2, x3, x0x3, x1x3, x0x1x3, x2x3, x0x2x3, x1x2x3, x0x1x2x3) is present. For instance, con-
sider the top row, where 1 is present corresponding to columns {x0, x2, x1x2, x3}, it means that:
y0 = x0 ⊕ x1x2 ⊕ x2 ⊕ x3.

In this way, rest of the coordinate functions of the PRESENT SBox can be computed:

y1 = x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 ⊕ x1x3 ⊕ x1 ⊕ x2x3 ⊕ x3,

y2 = x0x1x3 ⊕ x0x1 ⊕ x0x2x3 ⊕ x0x3 ⊕ x1x3 ⊕ x2 ⊕ x3 ⊕ 1,

y3 = x0x1x2 ⊕ x0x1x3 ⊕ x0x2x3 ⊕ x0 ⊕ x1x2 ⊕ x1 ⊕ x3 ⊕ 1.

Note that the algebraic degree of the three coordinate functions is 3 and some of the monomials
are common (indeed reducing the number of monomials of algebraic degree 3 is the working
factor in our work at Section 5). ⊓⊔

Remark 2. The bit-slice matrix (and consequently the coordinate matrix too) of a bijective SBox
is of full row-rank. ⊓⊔

Remark 3. Sometimes the coordinate functions of an SBox (written in algebraic normal form)
are called “SBox to ANF” in the literature. ⊓⊔

Remark 4. For a bijective SBox, the last column of its coordinate matrix is null. ⊓⊔

Remark 5. The maximum of the algebraic degrees of the coordinate functions of an SBox is
termed as the algebraic degree of the SBox. ⊓⊔

2.2 Affine Equivalence of SBoxes

We call SBoxes S0 and S1 Affine Equivalent (AE) if there exist two non-singular binary matrices
A0, A1 (each with compatible dimension) such that S1 = A0 ◦ S0 ◦A1; i.e., S1(x) = A0S0(A1(x⊕
c0))⊕ c1, for all inputs x and for some binary vectors c0, c1 of compatible dimension.

To find affine equivalent SBoxes of a given n × n SBox, binary non-singular matrices are
required. The General Linear group over Fq of degree n, denoted by GL(n,Fq), consists of n× n
non-singular matrices with each entry is from Fq. It is known thanks to Euler that, the order
of GL(n,Fq) is,

∏n−1
k=0 (q

n − qk). Therefore, the number of 3 × 3 and 4 × 4 binary (so, q = 2)
non-singular matrices are 168 and 20160, respectively.

2.3 Side Channel Attack and Countermeasure

Side channel attacks, particularly those relying on information from power consumption or
electromagnetic emanation, are of prominent concern while dealing with the physical security
of the ciphers [5, 9, 25,27,31,38]. It has been systematically shown that a cipher with sufficient



From Substitution Box To Threshold 5

classical security claims falls short against an adversary equipped with a side channel attack set-up.
It therefore goes without saying, understanding the attacks and finding low-cost countermeasures
are among the top research priorities by/for the community.

Side-channel attacks are based on the connection between a (learned) model and any inter-
mediate variable in the implementation that might be leaking. Therefore, the countermeasures
attempt to destroy the linkage of the model and the intermediate variables. Masking [31, Chapter
9] is considered a prominent countermeasure. A masking scheme randomly distributes each
intermediate to introduce randomness in a way that the overall algorithmic flow in the cipher
is unchanged, but the randomised operations makes the side channel leakage free from the
intermediate variables. Depending on the strength of the attacker, various degrees of masking can
be adopted.

Threshold Implementation

The threshold implementation (TI) is a form of masking, and is among the top recommendations
against the side channel attacks [9, 10,23,26,32,34,35,36] specially for protecting the hardware
implementation. Aside from a protection against the hardware implementation, TI is also claimed
to work with the software implementation of a cipher [21,40].

Typically, the TI of an affine function is considered straightforward, while that of a non-
linear (in most block ciphers, the only non-linear component is the SBox) function is considered
a strenuous task to accomplish. The TI of a given SBox can be realised either as without
decomposition (the SBox is implemented as a combinational circuit) or as with decomposition
(the SBox is implemented as a sequential circuit, typically it allows for smaller and more shallow
netlists at the expense of pipelining) [23].

3 Threshold without Decomposition (Combinational SBox)

In essence, the without decomposition based threshold implementation takes the coordinate
function (in ANF) form of an SBox, then converts into a suitable implementation satisfying a set
of conditions. We consider the usual notation here, i.e., for an n× n SBox S we denote the input
variables as x0, x1, . . . , xn−1 and the output variables as y0, y1, . . . , yn−1. Then it substitutes each
xi and each yj by d + 1 shares (where d ≥ the algebraic degree of the SBox). In the process,
each the xi and yi variables are respectively replaced by the new variables xi,j and yi,j ; where
i ∈ {0, 1, . . . , n − 1} and j ∈ {0, 1, . . . , d}. For simplicity, we write an SBox S in terms of its
coordinate functions (in this case, y0, y1, . . . , yn−1) as:

S :





y0

y1
...

yn−1

Based on the existing literature [9, 16,23,26,36], the ‘without decomposition’ based TI of S
satisfies the following conditions:

(α) Sharing of input variables.
⊕d

j=0 xi,j = xi, for i = 0, 1, . . . , n− 1.

(β) Sharing of output variables/Correctness.
⊕d

j=0 yi,j = yi for i = 0, 1, . . . , n− 1.



6 A. Baksi, S. Guilley, et al.

(γ) Non-completeness. At least one variable from {xi,0, xi,1, . . . , xi,d} is missing in each of
yj,0, yj,1, . . . ,yj,d for all i, j ∈ {0, 1, . . . , n− 1}.

(δ) Uniformity. All non-zero entries in the xi (∀i) versus yj,k (∀j, k) frequency distribution table
are equal.

After this, d + 1 separate SBoxes S0, S1, . . . , Sd are implemented in parallel, where these
SBoxes are given by the following arrangement of the coordinate functions:

S0 :





y0 = y0,0

y1 = y1,0
...

yn−1 = yn−1,0

S1 :





y0 = y0,1

y1 = y1,1
...

yn−1 = yn−1,1

...

Sd :





y0 = y0,d

y1 = y1,d
...

yn−1 = yn−1,d

Thanks to the ingenious arrangement, each of the component SBoxes (S0, . . . , Sd) computes
some share of the original SBox (S). When combined, the coordinate functions of S (namely,
y0, . . . , yn−1) can be realised even if one xi,j variable in each S0, . . . , Sd is randomised. Since
one input variable xi,j is randomised, it makes the corresponding side channel leakage random,
making it hard for the attacker to exploit secret information from the leakage (this outlines the
philosophy of the side channel protection). At the beginning of the (protected) cipher execution,
some input variables are fed random inputs and at the end all the shares are combined to get the
intended cipher output. In other words the fundamental concept can be described as running
multiple randomised modules (each is a bit different from the others) among which the inputs to
the cipher are distributed. One module does not give exploitable information to the attacker, still
the combined output from the modules results in the desired cipher output.

Example 3 (Uniformity). For the sake of clarity, here we present an example of a threshold sharing
that does not have the uniformity property (Condition (δ)), which is adopted from [9, Chapter
3.3.1]. Consider the function, y = x0x1 with the sharing (where xi = xi,0 ⊕ xi,1 ⊕ xi,2 for i = 0, 1;
and y = y0 ⊕ y1 ⊕ y2)

2:

2Notice that all 9 = 3× 3 cross-terms (i.e., quadratic monomials) appear in the expressions. Further, notice
that yj does not contain any x·,j , this satisfies non-completeness (Condition (γ)).



From Substitution Box To Threshold 7

y0 = x0,1x1,1 ⊕ x0,1x1,2 ⊕ x0,2x1,1,

y1 = x0,2x1,2 ⊕ x0,0x1,2 ⊕ x0,2x1,0,

y2 = x0,0x1,0 ⊕ x0,0x1,1 ⊕ x0,1x1,0.

Table 1: Non-conformity to uniformity property (example with y = x0x1)

(a) Frequency distribution table for (x0, x1)
versus (y0, y1, y2)

x0 x1
(y0, y1, y2)

000 011 101 110 001 010 100 111

0 0 7 3 3 3 0 0 0 0
0 1 7 3 3 3 0 0 0 0
1 0 7 3 3 3 0 0 0 0
1 1 0 0 0 0 5 5 5 1

(b) Computation for (x0, x1) = (1, 1)

(x1,0, x1,1, x1,2)
(0, 0, 1) (0, 1, 0) (1, 0, 0) (1, 1, 1)

(x
0
,0
,x

0
,1
,x

0
,2
)

(0, 0, 1)
y0 = 0
y1 = 1
y2 = 0

y0 = 1
y1 = 0
y2 = 0

y0 = 0
y1 = 1
y2 = 0

y0 = 1
y1 = 0
y2 = 0

(0, 1, 0)
y0 = 1
y1 = 0
y2 = 0

y0 = 1
y1 = 0
y2 = 0

y0 = 0
y1 = 0
y2 = 1

y0 = 0
y1 = 0
y2 = 1

(1, 0, 0)
y0 = 0
y1 = 1
y2 = 0

y0 = 0
y1 = 0
y2 = 1

y0 = 0
y1 = 0
y2 = 1

y0 = 0
y1 = 1
y2 = 0

(1, 1, 1)
y0 = 1
y1 = 0
y2 = 0

y0 = 0
y1 = 0
y2 = 1

y0 = 0
y1 = 1
y2 = 0

y0 = 1
y1 = 1
y2 = 1

The example is given through Table 1. In particular, the corresponding frequency distribution
table is shown in Table 1(a). An instance on how Table 1(a) is computed is shown in Table 1(b);
where the computation corresponding to the last row (i.e., (x0, x1) = (1, 1); and consequently,
y = 1) is shown. One may note from Table 1(b) that (y0, y1, y2) equals (0, 0, 1), (0, 1, 0), (1, 0, 0))
and (1, 1, 1) with respective frequency of 5, 5, 5 and 1.

Notice from Table 1(a) that, the non-zero entries are not equal. Hence, this sharing does not
conform to the uniformity property. ⊓⊔

Remark 6 (Note on uniformity). As stated in [9, Chapter 3.3], the absence of the uniformity
property (Condition (δ)) in a threshold circuit does not leak side channel information by itself;
but if it is used to drive another circuit, this second circuit may leak side channel information.
However, we could not find any experimental evaluation in the literature, and this could be an
interesting problem for future study. ⊓⊔

Remark 7 (Operational uniformity (relaxed) condition). In this article, we consider a more natural
uniformity constraint. We aim at specifying a condition whereby the template attacks on the
SBoxes are not possible. For all coordinate 0 ≤ i < n and share 0 ≤ j ≤ d, each distribution of
Yi,j |X = x must be the same, irrespective the value of x ∈ Fn

2 .

As each Yi,j is a Boolean variable, this means that for all fixed value of x ∈ Fn
2 , we check that

Pr(Yi,j) ∈ [0, 1] is the same. This reflects the first-order probing resistance in the Strong Non-
Interference (SNI, see [7]) setting. Now, note that Pr(Yi,j = 1) = E(Yi,j). For the PRESENT SBox,
we get for all x (see Section 5) the same distributions that follow:



8 A. Baksi, S. Guilley, et al.





Pr(Y0,0|X = x) = 1
25

, Pr(Y0,1|X = x) = 1
25

, Pr(Y0,2|X = x) = 3
27

, Pr(Y0,3|X = x) = 0 ;

Pr(Y1,0|X = x) = 1
25

, Pr(Y1,1|X = x) = 1
25

, Pr(Y1,2|X = x) = 27
210

, Pr(Y1,3|X = x) = 21
210

;

Pr(Y2,0|X = x) = 1
25

, Pr(Y2,1|X = x) = 1
25

, Pr(Y2,2|X = x) = 27
210

, Pr(Y2,3|X = x) = 21
210

;

Pr(Y3,0|X = x) = 1
25

, Pr(Y3,1|X = x) = 1
25

, Pr(Y3,2|X = x) = 27
210

, Pr(Y3,3|X = x) = 21
210

.

For instance, the fact that ‘Pr(Y0,3) = 0’ is not a weakness. This results from the fact that the
first coordinate of the SBox could be split in simply in d = 3 shares while obeying TI precepts.
From what we can tell, this is not a vulnerability. Otherwise, plunging any licit TI implementation
enjoying a sharing into d into a sharing into d+ 1 would no longer be considered a valid, as the
extra added share would be consistently equal to 0 (as in our case of the first coordinate function
of the PRESENT SBox). ⊓⊔

3.1 Need for a Well-developed Algorithm

As noted (Section 1), the corresponding engineering methods to apply TI does not appear to be
developed enough. No specific algorithm is available to the best of our understanding/finding,
rather the concept is described mostly through some cherry-picked examples [9, 23]. This is
somewhat surprising, specially given the state-of-the-art explores advanced side channel attack
(e.g., [28, 29]). The problems that arise from explaining a concept through examples instead of a
developing a proper algorithm can be manifested in a number of ways, as listed next.

Problem 1 (Ambiguous sharing). Since the concept is mostly communicated through examples,
it is in general hard to come up with a proper algorithm. To illustrate the point, we look into
the example given in [23, Section III.A]. The 3-variable quadratic function f(x, y, z) = xy ⊕ z is
shown with the following 3-shares:

f1 = z2 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2,

f2 = z3 ⊕ x1y3 ⊕ x3y1 ⊕ x3y3,

f3 = z1 ⊕ x1y1 ⊕ x1y2 ⊕ x2y1.

This sharing is not unique. For instance, the following is also valid sharing of f1 and f2 (f3 is
unchanged):

f1 = z3 ⊕ x2y2 ⊕ x2y3 ⊕ x3y2,

f2 = z2 ⊕ x1y3 ⊕ x3y1 ⊕ x3y3.

⊓⊔

Problem 2 (Corner case: Low algebraic degree of a coordinate function). Consider the 3-bit SBox,
03214756, which is given by the following coordinate functions:

y0 = x0 ⊕ x1x2,

y1 = x0 ⊕ x1x2 ⊕ x1,

y2 = x2.

Note that the coordinate function y2 is of algebraic degree 1 whereas the rest are of algebraic
degree 2 (i.e., not every coordinate function has the maximum algebraic degree). Thus, it is
possible to consider 3-share masking for y0 and y1, but only 2-share is sufficient for y2. Based



From Substitution Box To Threshold 9

on the existing literature (such as, the threshold implementation of PRESENT in [39]), it is not
clear if this (3, 3, 2)-sharing is not considered valid (the number of shares for an SBox is taken as
a constant for all its coordinate functions, regardless of the algebraic degree of the individual
coordinate functions), even though it may be possible that this unequal sharing for individual
coordinate functions does not leak any exploitable side channel information. Further research
may be conducted on this.

The same problem appears with some of the mainstream SBoxes. High-profile examples
include PRESENT (given in Example 2), PICCOLO (E4B238091A7F6C5D) [41], and PYJAMASK-128

(2D397BA6E0F4851C) [22], which are respectively given by the following coordinate functions
(parenthesised numbers indicate the algebraic degree):

y0 = x0x1x2 ⊕ x0x1 ⊕ x0x2 ⊕ x0x3 ⊕ x1x2x3 ⊕ x1x3 ⊕ x1 ⊕ x2 ⊕ x3 (3),

y1 = x0x1 ⊕ x0 ⊕ x1x2x3 ⊕ x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ x3 ⊕ 1 (3),

y2 = x1x2 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ 1 (2),

y3 = x0 ⊕ x2x3 ⊕ x2 ⊕ x3 ⊕ 1 (2);

and

y0 = x0x1x2 ⊕ x0x1 ⊕ x0x2 ⊕ x0x3 ⊕ x0 ⊕ x1 ⊕ x2x3 ⊕ x2 (3),

y1 = x0x2 ⊕ x0 ⊕ x2x3 ⊕ 1 (2),

y2 = x0x1x2 ⊕ x0x1 ⊕ x0 ⊕ x1x2x3 ⊕ x1x2 ⊕ x2 ⊕ x3 (3),

y3 = x0 ⊕ x1x2 ⊕ x3 (2).

⊓⊔

Problem 3 (No automation). There does not appear to be any publicly available tool to serve
the purpose. For instance, the without decomposition based threshold implementation for the
GIFT SBox (1A4C6F392DB7508E) [6] is computed manually. It is a laborious task, as it requires
to compute the entire expression consisting of a few hundred to a few thousands (if not more)
of monomials. In general, this task is tedious to carry out manually beyond 3-bit SBoxes and
borderline impossible starting from 5-bit SBoxes. ⊓⊔

Problem 4 (Lack of further optimisation). In certain cases, there could be opportunity to further
optimise the threshold expressions. For example, one may look for factorisation so that the netlist
can be further optimised (without compromising the side channel protection). Other logic gates
than {AND, XOR} can also be used to reduce the hardware cost. ⊓⊔

3.2 Our Approach

In this work, we take each coordinate function of the given SBox (which is essentially a vectorial
Boolean function) one at a time, before moving on the next one. A bird’s eye view of our approach
can be found in Algorithm 1.

First we introduce the input and output sharing variables (xi,j , yi,j) to compute the Boolean
function of the form:

⊕
j yi,j = function of xi,j where i is fixed3. After this, each monomial from

3Note that, the näıve AND count in the coordinate functions of the SBox affects the total number of monomials
in the shares (more näıve AND count means more monomials in the coordinate functions of the SBox, this in turn
leads to more monomials in the shares). The exact relationship in which the näıve AND count affects the total
number of monomials is complicated, but it seems the relationship is similar to exponential.



10 A. Baksi, S. Guilley, et al.

the RHS is taken one-by-one and assigned to the LHS variables (i.e., yi,j for a fixed i) so that
the Condition (β)) (i.e., use all the monomials from the RHS) and non-completeness) is satisfied.
Next, in order to satisfy Condition (γ) (i.e., not all input sharing variables are used in any yi,j),
we determine a conflict list. For instance, if this list looks like this: ({xi,0}, {xi,1}, . . .); it means
that, no yi,0 can contain xi,0, no yi,1 can contain xi,1, and so on. Then each monomial (which is
picked up from the RHS of the expression before sharing) is checked for intersection with the
element of conflict list corresponding to each yi,j . If the intersection is null, then that monomial
is assigned to xi,j . The remaining property, Condition (δ), is hard to ensure in this way; therefore
we simply check if it holds after the threshold implementation is completed, if it does not hold
then we randomise and try again.

In total, we offer 3 options to randomise. In the first option, we shuffle the RHS of the
combined expression. In the second option, we allow the ordering in which the yi,j variables are
picked (for a fixed i). In the third, we allow to randomise the conflict list (e.g., allowing yi,0 to
have conflict with xi,1 instead of xi,0).

Algorithm 1: Sharing for threshold (without decomposition) for an SBox

Input: An n× n SBox given as coordinate functions (y0, . . . , yn−1 with input variables x0, . . . , xn−1)
Output: Assignment of d+ 1 SBoxes given as coordinate functions
1: for i← 0 to n− 1 do ▷ Iterate over each coordinate function
2: for j ← 0 to n− 1 do ▷ Iterate over all input variables
3: Xj ← xj,0 ⊕ xj,1 ⊕ · · · ⊕ xj,d ▷ Share input variables

4: Y ← Substitute xj = Xj in yi for all j ▷ Compute RHS of complete output sharing
5: for j ← 0 to d do
6: yi,j ← 0 ▷ Shares for yi

7: for each monomial m ∈ Y do ▷ Ordering can be randomised
8: for j ← 0 to d do ▷ Ordering can be randomised
9: if m is not conflicting with yj then ▷ Conflicting variables can be randomised
10: yi,j ← yi,j ⊕m ▷ Non-completeness is respected

11: if Uniformity not satisfied then
12: Go back to Step 5 with randomised options ▷ Try again with other assignment of yi,j ’s

13: return Sharing of yi as (yi,0, yi,1, . . . , yi,d) ▷
⊕

j yi,j = yi

Warning for Zero-sharing We display a warning message if some yi,j is a constant (happens
if some coordinate function has less algebraic degree). As an illustration, reconsider the SBox
described in Problem 2 (03214756). By exactly following Algorithm 1, the sharing is given as
(notice that a warning is shown for y2,2):

y2,0 = x2,1 ⊕ x2,2,

y2,1 = x2,0,

y2,2 = 0.

It can be stated that, the presence of a zero sharing does not inherently contradict uniformity
(Condition (δ)). Further, one may note that, the case for zero sharing can happen for a larger (≥
4-bit) SBox. For instance, consider a high degree SBox but some of its coordinate functions are
affine (this kind of SBox is used in practice, such as that one used in DEFAULT-LAYER [3]).



From Substitution Box To Threshold 11

3.3 Results

In the following results, we do not enforce uniformity (Condition (δ)). This is in concordance
with the existing literature (e.g., [23]). Further, although not conclusive yet, our experiment hints
that it may be hard to ensure this property (as our tool sometimes has to iterate few thousand
times before finding a uniform sharing) in general. It is even possible that the this property does
not hold for some Boolean functions4.

Minimal Order (Algebraic Degree + 1) Sharing Our approach can deal with 3× 3 and
4× 4 SBoxes without any difficulty. Further, 5× 5 SBoxes, such as that of ASCON’s [19] works
well (one may note from [37] that ASCON is recently selected as the primary choice in the LWC
project run by NIST, and also used in [42]). Results with some SBoxes are summarised in Table
2, where we show the number of monomials along with STM 130nm ASIC cost (HCMOS9GP,
Cadence v14.20 2016) in terms of gate equivalent (rounded off to nearest integer). Each of the
SBoxes is used in a cipher, save for 048AFC691EBD7532 which is presented in [20, Section 3.4].
The number of shares are taken as the algebraic degree of the SBox plus 1.

Table 2: Without decomposition cost of some SBoxes (uniformity not enforced)

Shares # Monomials Hardware

GIFT [6] 1A4C6F392DB7508E 4 265 526

PRESENT [11] C56B90AD3EF84712 4 666 1132

PRINCE [12] BF32AC916780E5D4 4 731 991

PICCOLO [41] E4B238091A7F6C5D 4 399 645

SKINNY-64 [8] C6901A2B385D4E7F 4 398 723

TWINE [43] C0FA2B9583D71E64 4 626 723

PYJAMASK-128 [22] 2D397BA6E0F4851C 4 373 640

QARMA [1] ADE6F735980CB124 4 562 826

NOEKEON Gamma [17] 7A2C48F0591E3DB6 4 387 697

DEFAULT [2, 3]
LS 037ED4A9CF18B265 3 102 60

Non-LS 196F7C82AED043B5 4 213 412

Gao-Roy-Oswald [20] 048AFC691EBD7532 4 988 1658

ASCON [19] 3 160 85

: Gate equivalent in STM 130nm ASIC library (HCMOS9GP)
: Used in [23, Appendix B]
: 4B1F141A15921B58121D361C1E137E0D111810C11916AF17

Higher Order (≥ Algebraic Degree + 2) Sharing Our tool can work with higher number
of shares as well, without any actual change in the algorithm flow. We show some examples in
Table 3, where the number of shares is taken as the algebraic degree of the SBox plus 2.

4 Threshold with Decomposition (Sequential SBox)

The theory for a decomposition based TI requires finding two other SBoxes such that the
composition of these SBoxes is the target SBox. Given an n× n SBox S, we want to find two
n× n (bijective) SBoxes F0 and F1 such that

4To the best of our knowledge, no proof about the existence of the uniformity property is presented in the
literature.



12 A. Baksi, S. Guilley, et al.

Table 3: Higher order without decomposition cost of some SBoxes (uniformity not enforced)
Shares # Monomials Hardware

GIFT [6] 1A4C6F392DB7508E 5 451 432

SKINNY-64 [8] C6901A2B385D4E7F 5 682 681

QARMA [1] ADE6F735980CB124 5 967 983

ASCON [19] 4 257 142

: Gate equivalent in STM 130nm ASIC library (HCMOS9GP)
: 4B1F141A15921B58121D361C1E137E0D111810C11916AF17

(i) F1 ◦ F0 ≡ S (i.e., F1(F0(x)) = S(x) ∀x);
(ii) the algebraic degrees of both F0 and F1 are less than the algebraic degree of S.

Example 4 (PRESENT SBox decomposition from [39]). The authors in [39] find the following
decomposition for the PRESENT SBox (C56B90AD3EF84712, cubic): F1 = 1A4F3C69D2875E0B

(quadratic) and F0 = 5C6F7E184D3A2B09 (quadratic). The coordinate functions are:

F1 :





y0 = x0 ⊕ x1 ⊕ 1,
y1 = x0 ⊕ x2x3 ⊕ x2,
y2 = x0x2 ⊕ x0x3 ⊕ x1 ⊕ x3,
y3 = x0 ⊕ x2x3 ⊕ x3.

F0 :





y0 = x0 ⊕ x1x2 ⊕ x1 ⊕ x3 ⊕ 1,
y1 = x1 ⊕ x2,
y2 = x1x2 ⊕ x1x3 ⊕ x2x3 ⊕ 1,
y3 = x0.

Note that, when constructing the coordinate functions of the target SBox (refer Example 2
for this); yi of F0 becomes the corresponding xi of F1, ∀i. In other words, we first start with the
coordinate functions of F1, the replace each xi with the RHS of the ith coordinate function of
F0. For instance, to get y0 of the PRESENT SBox (= x0 ⊕ x1x2 ⊕ x2 ⊕ x3); we start with y0 of
F1 (= x0 ⊕ x1 ⊕ 1); then we replace x0 with y0 of F0 (= x0 ⊕ x1x2 ⊕ x1 ⊕ x3 ⊕ 1), and x1 with
y1 of F0 (= x1 ⊕ x2). ⊓⊔

Remark 8. It is not possible to decompose a quadratic SBox S in this way. In order to decompose
a quadratic SBox, one needs that F0 and F1 both have lower algebraic degree than that of S,
implying that both F0 and F1 are affine. However, composition of two affine SBoxes does not
produce a quadratic SBox. Hence, the quadratic SBoxes such as those used in ASCON [19] or
BAKSHEESH [4] cannot be decomposed in this way. ⊓⊔

Despite being quite popular [23,33,39], it appears that there exists only one (publicly available)
tool which is a courtesy of Petkova-Nikova5. This tool, available exclusively as executable files,
can find decomposition based threshold for a given 3× 3 or 4× 4 SBox.

Here we describe a simple idea to find such decomposition in Algorithm 2. In short, we
generate F1 and F0 in a way that F1 ◦F0 ≡ S is always satisfied (by randomly constructing F0 in
a way so that the algebraic degree requirement is already satisfied, then adjusting F1 according
to F0 and S); then we decide whether to keep or discard depending on the algebraic degree of F1.

In Step 1, we specify that the algorithm be given candidate SBoxes from which it can
generate F0 (F0 is affine equivalent to a given candidate SBox). For instance, suppose, we want
to find the decomposition of a given cubic 4 × 4 SBox (which is typically the case for the
common ciphers like PRESENT [11], SKINNY-64 [8] or GIFT [6]). In that case, we need to supply
quadratic SBoxes to Algorithm 2. Following [9, Chapter 5], we choose the quadratic affine classes,
{4, 12, 293, 294, 299, 300}.

Remark 9. For decomposition of 5-bit SBoxes, one may consider [13, Table 2]. ⊓⊔
5Hosted at Svetla Petkova-Nikova’s official web-page: https://homes.esat.kuleuven.be/~snikova/ti_tools.

html.

https://homes.esat.kuleuven.be/~snikova/ti_tools.html
https://homes.esat.kuleuven.be/~snikova/ti_tools.html


From Substitution Box To Threshold 13

Algorithm 2: Threshold (with decomposition) for an SBox

Input: An n× n SBox S
Output: Two n× n SBoxes F1 and F0 such that F1 ◦ F0 ≡ S
1: Pick F0 randomly which is affine equivalent to a given lower algebraic degree SBox
2: for i← 0 to 2n − 1 do ▷ Iterate over all SBox inputs
3: r ← F0(i)
4: F1(r)← S(i) ▷ F0 : i 7→ r, F1 : r 7→ S(i)

5: if algebraic degree of F1 that of S then
6: Discard F1, and go back to Step 1

7: return (F1, F0)

Overall, Algorithm 2 simplifies the problem (cf. the complication in [39, Section 3.2] or [23,
Section III.A]). In summary, the previous approach constructs an exhaustive pool of SBoxes first
in a deterministic way, which is extensively time and space consuming.

Remark 10. Based on the existing literature, it is not clear what exactly would be the problem
if the algebraic degree of F0 or F1 is greater than (or equal to) that of S. The case where the
algebraic degree requirement is not satisfied could be considered a future research. ⊓⊔

Some examples of decomposition with respect to three high-profile ciphers can be found in
Table 4 (Table 4(a) for PRESENT [11], 4(b) for SKINNY-64 [8], and 4(c) for GIFT [6]). In order to
estimate the implementation cost in ASIC (TSMC 65nm and UMC 180nm logic libraries), we
use the LIGHTER tool [24] (the backward-compatible code from [18] is used for this purpose,
as the URL for the LIGHTER code does not seem accessible). From the estimates, one can see
that the our (F1, F0) take lower total cost compared to the PRESENT (F1 = 1A4F3C69D2875E0B

F0 = 5C6F7E184D3A2B09) and GIFT (F1 = 7DB58E02CA4639F1, F0 = F9A8BECD71203645) SBox
decomposition given in [39] and [23], respectively. This observation is further supported when we
check the total ASIC cost under the STM 130nm library (HCMOS9GP, Cadence v14.20 2016),
as shown in Table 5(a). More in-depth results for the UMC 65nm technology are shown in Table
5(b); we can see that the SBox pairs that we report in this paper in terms of total GE, total
power and total delay. Thus, we infer that our research improves the state-of-the-art results for
SBox decomposition, thereby opening the possibility for further reducing the threshold cost for
PRESENT [39] and GIFT [23].

Table 4: ASIC costs (in GE) for SBox decomposition using LIGHTER
(a) PRESENT (C56B90AD3EF84712)

F1 F0 TSMC 65nm UMC 180nm

08B7A31C46F9ED52 7E92B04D5CA1836F 33.50 27.67

547C0129BDA6E8F3 30B874A9FCED1256 36.50 30.67

47095C12E3DA8FB6 54FE32BA98DC0167 36.00 30.67

C5DAF706849BE312 017BA632DC4895EF 38.50 31.67

1A4F3C69D2875E0B 5C6F7E184D3A2B09 29.00 24.67

9B5C7F12DA483E06 32F10E98CD5BA467 37.50 32.67

: Taken from [39, Table 2]

Remark 11 (Third order decomposition). It is possible to find third order decomposition (i.e.,
F2, F1, F0 such that F2 ◦ F1 ◦ F0 ≡ S; and the algebraic degree of each of F2, F1, F0 is less



14 A. Baksi, S. Guilley, et al.

(b) SKINNY-64 (C6901A2B385D4E7F)

F1 F0 TSMC 65nm UMC 180nm

863C72FBA41E50D9 31FDA85720CE9B46 26.00 22.34

B72F0D95843E1CA6 DF64CE20A8759B13 26.50 22.67

2B7FA1E43C68D095 9AED54018BFC7623 28.00 24.34

863CFB72D950A41E 319BEC7520A8DF64 25.00 22.33

C46E18A37DF529B0 02DF46CE75B9138A 24.50 21.34

A3186EC45FD70B92 64EC20FD138A75B9 26.50 23.00

C368950D1EA47BF2 02468AFD1357B9CE 21.50 19.00

D0593C86A14E2BF7 573198CD4620ABFE 30.00 25.67

4AE1F27BD05968C3 ECB93157FDA80264 27.50 22.34

59D0863CE41A7FB2 7513ABFE640298CD 30.00 26.00

C6A1907F2BD54E38 01453289EFBACD67 30.50 27.01

CB30D42F6E95718A 0B81A3F4297E5CD6 35.00 29.67

570231CEFDB9A846 6FB25C3A4D09E718 29.50 23.67

20138A9BCEDF7546 8F61250734DAE9CB 25.00 22.34

(c) GIFT (1A4C6F392DB7508E)

F1 F0 TSMC 65nm UMC 180nm

5638127C9EF0DAB4 4DF71A285CE60B39 26.00 22.34

AC14D72B39F68E05 2031BA896475FECD 26.00 21.34

FB2673D90415C8AE AE9C30572614B8DF 29.00 25.33

7DB58E02CA4639F1 F9A8BECD71203645 23.50 21.34

CA7DB1428E39F506 5160FCAB7342DE89 28.00 24.34

E596308FD2A1CB74 BAFC374298DE1560 26.50 22.67

C1A472DBF9630E58 1230A8B95674ECFD 27.50 23.00

754AF982BDC6310E D32AB4C579801E6F 28.00 24.33

D5A6192E803F4CB7 42CD3BA560EF1987 28.00 23.67

ACE8B6F27D395410 E0D156AB7948CF32 35.50 30.33

: Taken from [23, Table II]

than that of S) using our tool (see also [14, Section 4.1] for an example of higher order
decomposition). For instance, the SKINNY-64 SBox (C6901A2B385D4E7F, cubic) can be de-
composed as F2 = 329EAD7645BC8F01 (quadratic), F1 = 5B941CE0A37D826F (quadratic) and
F0 = 1AD6F3487520C9EB (quadratic). ⊓⊔

5 Further Optimisation Based on Affine Equivalence

In this part, we attempt to reduce the cost of an existing TI by optimising its SBox. In essence, we
redesign the cipher with an affine equivalent SBox (so that the cipher specification is unchanged)
which reduces the TI cost. The SBox is implemented as a combinational only circuit (i.e., no
register) per coordinate functions. We show our method on the lightweight block cipher PRESENT
[11], though it can be applied to any other cipher with similar construction. The idea used here
can be somewhat compared to the weighted sum based SBox decomposition filtering method
presented in [39, Section 3.2].

We study in this section the impact of affine equivalence on the SBox to reduce the cost
of TI. Notice that the concept of affine equivalence we propose here is with respect to the
representation of the cipher, not about changing the specification of the cipher. In other words,
only the implementation changes, but the cipher description remains unchanged.



From Substitution Box To Threshold 15

Table 5: Decomposition of PRESENT and GIFT SBoxes with ASIC costs
(a) STM 130nm

F1
Area

F0
Area Total area

µm2 GE µm2 GE µm2 GE

PRESENT
1A4F3C69D2875E0B 104.894 17.34 5C6F7E184D3A2B09 62.533 10.34 167.427 27.68

08B7A31C46F9ED52 90.774 15.00 7E92B04D5CA1836F 88.757 14.67 179.531 29.67

GIFT
7DB58E02CA4639F1 94.808 15.67 F9A8BECD71203645 60.516 10.00 155.324 25.67

5638127C9EF0DAB4 86.740 14.34 4DF71A285CE60B39 82.705 13.67 169.445 28.01

: Taken from [39, Table 2]
: Taken from [23, Table II]

(b) UMC 65nm and TSMC 65nm

UMC 65nm TSMC 65nm

GE Power∗ Delay⋆ GE Power∗ Delay⋆

PRESENT

F1 1A4F3C69D2875E0B 15.00 9.072 142 23.75 559.0 700

F0 5C6F7E184D3A2B09 11.75 6.542 224 18.00 471.0 660

F1 08B7A31C46F9ED52 13.75 7.612 244 26.00 641.0 990

F0 7E92B04D5CA1836F 15.25 8.989 215 26.00 665.0 880

GIFT

F1 7DB58E02CA4639F1 13.25 8.422 123 14.00 29.3 310

F0 F9A8BECD71203645 10.50 5.998 121 19.00 432.0 570

F1 5638127C9EF0DAB4 12.50 6.033 238 20.00 514.0 840

F0 4DF71A285CE60B39 16.00 8.714 226 21.50 508.0 660

: Taken from [39, Table 2] ∗: Measured in ×10−7 W

: Taken from [23, Table II] ⋆: Measured in ps

5.1 Motivation and Basic Observation

The complexity of threshold implementations directly relates to the number of monomials
in the coordinate function of the SBox. Let us consider the PRESENT [11] (which is also a
standard, ISO/IEC 29192-2:20126) SBox, C56B90AD3EF84712. From its coordinate functions
given in Example 2, we notice the following properties:

◦ 8 monomials of degree 3,

◦ 7 monomials of degree 2,

◦ 10 monomials of degree 1, and

◦ 2 monomials of degree 0 (constant 1).

Upon a closer inspection, however, we observe some monomials are duplicates. The following
factors contribute to the total cost:

1. Computation: Number of unique monomials of given degree (i.e., each monomial of a given
degree is counted only once even if its multiplicity is higher).

2. Reduction: Number of XORs in the coordinate functions (represented in ANF).

About the PRESENT SBox, the contributing components are:

◦ 3 unique monomials of degree 3 (namely, x0x1x2, x0x1x3, and x0x2x3),

6https://webstore.ansi.org/Standards/ISO/ISOIEC291922012-1383736.

https://webstore.ansi.org/Standards/ISO/ISOIEC291922012-1383736


16 A. Baksi, S. Guilley, et al.

◦ 5 unique monomials of degree 2, (the only absent one being x0x2),
◦ 4 monomials of degree 1, and 1 monomial of degree 0 (constant 1),
◦ 23 XORs.

Since the cost for TI for a higher degree monomial is much higher than a lower degree
monomial, our aim here is to minimise the number of unique monomials of degree 3, then of
degree 2, etc.

5.2 Improving Efficiency with Affine Equivalent SBox

From an implementation cost standpoint, it can be beneficial to represent the PRESENT block
cipher in an equivalent notation where the SBox S is traded for one of its affine equivalent SBox,
S′ = A−1 ◦ S ◦A, where A is an invertible affine mapping operating in F4

2. We reiterate that we
do not aim at altering the cipher functionality, simply its representation. The usage of the affine
mapping is compensated before and after the SBox application.

While detailed description of the cipher is skipped here for space constraint, an overview is
given in Figure 1 for a quick reference. The use of the affine equivalent SBox is illustrated in

Plaintext Key

⊕

SBoxLayer

(C56B90AD3EF84712)

PermutationLayer Key Schedule

⊕ AddRoundKey

(for each round)

Ciphertext

31 rounds

Figure 1: PRESENT encryption (schematic)

Figure 2. In the part (a) of the figure, a simplified block diagram of PRESENT is depicted, with
the main components:

• Ports are plaintext (denoted as, “ptx”), round key (denoted as “K”), a selection signal
indicating whether the encryption starts (denoted as, “round = 0?”) or not, and an output
ciphertext denoted as “ctx”).

• Building blocks are the affine equivalent SBox S, the permutation layer P , a multiplexer
allowing to input the plaintext or to iterate, and a DFF barrier storing the result computed
till that particular round.

This can be implemented with a shorter critical path by pushing the conversion to/from affine
representation outside of the main path. This is represented in the Figure 2(b): Assuming that
the plaintext and the round keys are applied the affine transformation, then a regular datapath
can be used, provided finally the ciphertext is applied to inverse affine mapping. This equivalent
representation leverages the fact that all elements in the PRESENT cipher (permutation layer and
multiplexer) are linear. Notice that the scheme in Figure 2(b) is correct only if A is linear. If it is
affine, then the constant of the transformation shall be adapted for each operation, in particular



From Substitution Box To Threshold 17

the outer ones. The critical path, highlighted as the green box in Figure 2(b), is no different than
the original critical path. The architecture shown in Figure 2 is thus suitable for masked TI with
combinational SBox (i.e., without decomposition).

round = 0? K S′

ptx 0
1

DFF
⊕

A A−1 S A A−1 P • ctx>
>

(a) PRESENT leveraging S′ = A−1 ◦ S ◦A

round = 0?

K

A S′

ptx A 0
1

DFF
⊕

A−1 S A P • A−1 ctx>
>

(b) Equivalent PRESENT leveraging S′ = A−1 ◦ S ◦A

Figure 2: PRESENT leveraging affine equivalent SBox

5.3 Results

Efficiency Based on Algebraic Property For 1000 random choices of A, we count the number
of monomials in each degree, and we get statistics as depicted in Figure 3. More specifically,
Figure 3(a) shows the relative frequency distribution for number of unique monomials for each
individual degrees. For instance, there exists a unique monomial for degree 0 (constant 1) 100%
of the cases. Figure 3(b) shows the probability distribution of XOR count.

It can be seen that it is possible to reduce the number of monomials of degree 3 to only 2.
We observe that there is no preferred choice for the constant in the affine transformation.

In our case, the transformed SBox is found as follows. The binary matrix multiplied to obtain

the linear part, and the constant binary vector are given respectively by:




1 0 0 0
1 1 1 0
1 1 0 0
1 0 1 1


,




0
1
1
1


. The

transformed SBox, 4EC20B1A5F3D9867, has the coordinate functions:

y0 = x0x2 ⊕ x1x2 ⊕ x3,

y1 = x0x2x3 ⊕ x0 ⊕ x1x3,

y2 = x0x1x2 ⊕ x0x1 ⊕ x1x3 ⊕ x2 ⊕ 1,

y3 = x0x2x3 ⊕ x0 ⊕ x1x2 ⊕ x1x3 ⊕ x1 ⊕ x2x3.

Therefore, we manage to get a transformed SBox with the following properties in its coordinate
functions:



18 A. Baksi, S. Guilley, et al.

0 1 2 3 4 5 6
Number of unique monomials →

0.0

0.2

0.4

0.6

0.8

1.0
R

el
at

iv
e

F
re

q
u

en
cy
→

Degree 0

0 1 2 3 4 5 6
Number of unique monomials →

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
q
u

en
cy
→

Degree 1

0 1 2 3 4 5 6
Number of unique monomials →

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
q
u

en
cy
→

Degree 2

0 1 2 3 4 5 6
Number of unique monomials →

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
F

re
q
u

en
cy
→

Degree 3

(a) Monomials

0 5 10 15 20 25 30 35 40
XOR Count →

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

b
ab

il
it

y
→

(b) XOR

Figure 3: Statistics for affine equivalent SBox search for PRESENT

◦ 2 unique monomials of degree 3 (x0x2x3 and x0x1x2),
◦ 5 unique monomials of degree 2 (x0x2, x1x2, x1x3, x0x1 and x2x3),
◦ 4 monomials of degree 1, and 1 monomial of degree 0 (constant 1),
◦ only 13 XORs.

Statistics on Netlist Parameters Now we study the real impact of affine transformation to
the property of the netlist; namely, we are interested in the algebraic features that drive the
netlist properties. We study the netlist area (number of monomials vs. GE) and its logical depth
(number of monomials vs. critical path). For the sake of simplicity, every gate is attributed a
unitary area and propagation time.

The goal is to figure out which property of the algebraic expression determines most the area
and/or depth in the netlist. The following features are considered:

• The number of unique monomials of various degrees (3, 2, 1, and 0) – mostly, the number of
unique monomials of degree 3 is to be minimised.



From Substitution Box To Threshold 19

• XOR count is to be reduced to make area usage low.

15 20 25 30 35 40
Total number of third degree monomials →

500

1000

1500

2000

2500
G

E
in

n
et

li
st
→

Unique

2

3

4

(a) Area (GE) vs. third degree monomials

15 20 25 30 35 40
Total number of third degree monomials →

20

40

60

80

100

D
ep

th
of

n
et

li
st
→

Unique

2

3

4

(b) Logical depth vs. third degree monomials

The results are summarised in Figure 4 (Figure 4(a) for area, 4(b) for logical depth; and
finally Figure 4(c) for area versus logical depth); based on 10000 random selections of affine
transformation A : F4

2 → F4
2; where we group based on the number of unique monomials for

better readability. It can be seen that, as expected, reducing the unique number of monomials
of degree 3 is the main parameter to reduce the gate count and the depth of the netlists. The
smallest netlist has 589 gates (of depth 18), and the most shallow one has depth 11 (and 728
gates). For comparison, the reference netlist (i.e., when A is the identity matrix) has 863 gates
and depth of 23. Hence an area reduction of more than 31% or depth reduction of more than
52% is observed by applying our methodology. Further, as it can be seen from Figure 4(c), larger
netlists also have (slightly) longer critical path, on average.



20 A. Baksi, S. Guilley, et al.

500 1000 1500 2000 2500
GE in netlist →

20

40

60

80

100

D
ep

th
of

n
et

li
st
→

Unique

2

3

4

(c) Area (GE) vs. logical depth for third degree monomials

Figure 4: SBoxes AE to PRESENT SBox

6 Conclusion

This work takes a deeper looks into the problem of finding threshold implementation of SBoxes.
The first main contribution of this work is to present an open-source tool for automating the task
for threshold implementation for a large pool of SBoxes. Our tool returns ‘without decomposition’
(Section 3) and ‘with decomposition’ (Section 4) based implementations. Despite being quite
popular, such a tool seems overdue. Among other results, we show improvement over [39]
and [23]. The second main contribution (Section 5) comes from an alternate representation of
the PRESENT SBox [11] so that the TI cost can be reduced. The idea is to replace the original
SBox by one of its affine equivalent SBox (so that the cipher description remains unchanged),
but this new SBox has lower threshold cost. Overall, we show over 31% improved area and over
52% improved depth compared to the näıve implementation.

One interesting follow-up work could be to find SBoxes with lower AND count (but with other
desirable cryptographic properties) so that the cipher is more suitable for adopting TI. Besides,
as noted in Remark 6, it would be interesting to evaluate the amount of side channel leakage
from the circuit which takes input from another circuit not obeying the uniformity property. As
the main objective in Section 5 is to find another SBox, works like [30,44] can be incorporated in
the search procedure in the future.

References

1. Avanzi, R.: The qarma block cipher family – almost mds matrices over rings with zero divisors, nearly symmetric
even-mansour constructions with non-involutory central rounds, and search heuristics for low-latency s-boxes.
Cryptology ePrint Archive, Report 2016/444 (2016) https://eprint.iacr.org/2016/444. 11, 12

2. Baksi, A.: Classical and Physical Security of Symmetric Key Cryptographic Algorithms. PhD thesis,
School of Computer Science & Engineering, Nanyang Technological University, Singapore (2021) https:

//dr.ntu.edu.sg/handle/10356/152003. 11
3. Baksi, A.: DEFAULT: Cipher-Level Resistance Against Differential Fault Attack. Springer, Singapore (2022)

https://link.springer.com/chapter/10.1007/978-981-16-6522-6_8. 10, 11
4. Baksi, A., Breier, J., Chattopadhyay, A., Gerlich, T., Guilley, S., Gupta, N., Isobe, T., Jati, A., Jedlicka, P.,

Kim, H., Liu, F., Martinásek, Z., Sakamoto, K., Seo, H., Shiba, R., Shrivastwa, R.R.: Baksheesh: Similar yet

https://eprint.iacr.org/2016/444
https://dr.ntu.edu.sg/handle/10356/152003
https://dr.ntu.edu.sg/handle/10356/152003
https://link.springer.com/chapter/10.1007/978-981-16-6522-6_8


From Substitution Box To Threshold 21

different from gift. Cryptology ePrint Archive, Paper 2023/750 (2023) https://eprint.iacr.org/2023/750.
12

5. Baksi, A., Kumar, S., Sarkar, S.: A new approach for side channel analysis on stream ciphers and related
constructions. IEEE Transactions on Computers (2021) 4

6. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: Gift: A small present. Cryptology ePrint
Archive, Report 2017/622 (2017) https://eprint.iacr.org/2017/622. 9, 11, 12, 13

7. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P., Grégoire, B., Strub, P., Zucchini, R.: Strong Non-Interference
and Type-Directed Higher-Order Masking. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. (2016) 116–129 7

8. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.: The
SKINNY family of block ciphers and its low-latency variant MANTIS. IACR Cryptology ePrint Archive 2016
(2016) 660 11, 12, 13

9. Bilgin, B.: Threshold Implementations As Countermeasure Against Higher-Order Differential Power Analysis.
PhD thesis, Katholieke Universiteit Leuven and University of Twente (2015) https://www.esat.kuleuven.
be/cosic/publications/thesis-256.pdf. 1, 2, 4, 5, 6, 7, 8, 12

10. Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold Implementations of Small
S-boxes. Cryptography and Communications 7(1) (2015) 3–33 5

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe,
C.: PRESENT: An ultra-lightweight block cipher. In: CHES. Volume 4727., Springer (2007) 450–466 2, 3, 11,
12, 13, 14, 15, 20

12. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knežević, M., Knudsen, L.R., Leander, G., Nikov,
V., Paar, C., Rechberger, C., Rombouts, P., Thomsen, S.S., Yalçin, T.: Prince - a low-latency block cipher
for pervasive computing applications (full version). Cryptology ePrint Archive, Report 2012/529 (2012)
https://ia.cr/2012/529. 11

13. Božilov, D., Bilgin, B., Sahin, H.A.: A note on 5-bit quadratic permutations’ classification. IACR Transactions
on Symmetric Cryptology 2017(1) (Mar. 2017) 398–404 12

14. Božilov, D., Knežević, M., Nikov, V.: Optimized threshold implementations: Securing cryptographic accelerators
for low-energy and low-latency applications. Cryptology ePrint Archive, Paper 2018/922 (2018) https:

//eprint.iacr.org/2018/922. 14

15. Caforio, A., Collins, D., Glamocanin, O., Banik, S.: Improving first-order threshold implementations of skinny.
Cryptology ePrint Archive, Report 2021/1425 (2021) https://ia.cr/2021/1425. 1

16. Daemen, J.: Changing of the guards: a simple and efficient method for achieving uniformity in threshold
sharing. Cryptology ePrint Archive, Report 2016/1061 (2016) https://ia.cr/2016/1061. 5

17. Daemen, J., Peeters, M., Assche, G.V., Rijmen, V.: Nessie Proposal: NOEKEON (2000) http://gro.noekeon.
org/Noekeon-spec.pdf. 11

18. Dasu, V.A., Baksi, A., Sarkar, S., Chattopadhyay, A.: LIGHTER-R: optimized reversible circuit implementation
for sboxes. In: 32nd IEEE International System-on-Chip Conference, SOCC 2019, Singapore, September 3-6,
2019. (2019) 260–265 13

19. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to NIST
(2019) https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/

spec-doc-rnd2/ascon-spec-round2.pdf. 11, 12

20. Gao, S., Roy, A., Oswald, E.: Constructing ti-friendly substitution boxes using shift-invariant permutations.
In Matsui, M., ed.: Topics in Cryptology – CT-RSA 2019, Cham, Springer International Publishing (2019)
433–452 11

21. Gaspoz, J., Dhooghe, S.: Threshold implementations in software: Micro-architectural leakages in algorithms.
Cryptology ePrint Archive, Paper 2022/1546 (2022) https://eprint.iacr.org/2022/1546. 5

22. Goudarzi, D., Jean, J., Kölbl, S., Peyrin, T., Rivain, M., Sasaki, Y., Sim, S.M.: Pyjamask v1.0 (2019) 9, 11

23. Jati, A., Gupta, N., Chattopadhyay, A., Sanadhya, S.K., Chang, D.: Threshold implementations of gift: A
trade-off analysis. IEEE Trans. Inf. Forensics Secur. 15 (2020) 2110–2120 1, 2, 5, 8, 11, 12, 13, 14, 15, 20

24. Jean, J., Peyrin, T., Sim, S.M., Tourteaux, J.: Optimizing implementations of lightweight building blocks.
IACR Trans. Symmetric Cryptol. 2017(4) (2017) 130–168 13

25. Kumar, S., Dasu, V.A., Baksi, A., Sarkar, S., Jap, D., Breier, J., Bhasin, S.: Side Channel Attack On Stream
Ciphers: A Three-Step Approach To State/Key Recovery. IACR Transactions on Cryptographic Hardware
and Embedded Systems (2022) 4

26. Kutzner, S., Nguyen, P.H., Poschmann, A.: Enabling 3-share threshold implementations for any 4-bit s-box.
Cryptology ePrint Archive, Report 2012/510 (2012) https://eprint.iacr.org/2012/510. 1, 5

27. Lomné, V.: Power and Electro-Magnetic Side-Channel Attacks: Threats and Countermeasures. PhD thesis,
Docteur de l’Université Montpellier II (2010) https://sites.google.com/site/victorlomne/research. 4

https://eprint.iacr.org/2023/750
https://eprint.iacr.org/2017/622
https://www.esat.kuleuven.be/cosic/publications/thesis-256.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-256.pdf
https://ia.cr/2012/529
https://eprint.iacr.org/2018/922
https://eprint.iacr.org/2018/922
https://ia.cr/2021/1425
https://ia.cr/2016/1061
http://gro.noekeon.org/Noekeon-spec.pdf
http://gro.noekeon.org/Noekeon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/ascon-spec-round2.pdf
https://eprint.iacr.org/2022/1546
https://eprint.iacr.org/2012/510
https://sites.google.com/site/victorlomne/research


22 A. Baksi, S. Guilley, et al.

28. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to Estimate the Success Rate of Higher-Order
Side-Channel Attacks. In Batina, L., Robshaw, M., eds.: Cryptographic Hardware and Embedded Systems -
CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings. Volume
8731 of Lecture Notes in Computer Science., Springer (2014) 35–54 8

29. Lomné, V., Prouff, E., Roche, T.: Behind the scene of side channel attacks. Cryptology ePrint Archive, Report
2013/794 (2013) https://eprint.iacr.org/2013/794. 8

30. Lu, Z., Mesnager, S., Cui, T., Fan, Y., Wang, M.: An stp-based model toward designing s-boxes with good
cryptographic properties. Des. Codes Cryptogr. 90(5) (2022) 1179–1202 20

31. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - Revealing the secrets of smart cards. Springer
(2007) 4, 5

32. Moradi, A., Schneider, T.: Side-channel analysis protection and low-latency in action - case study of prince
and midori. Cryptology ePrint Archive, Paper 2016/481 (2016) https://eprint.iacr.org/2016/481. 5

33. Müller, N., Moos, T., Moradi, A.: Low-latency hardware masking of PRINCE. In Bhasin, S., Santis, F.D.,
eds.: Constructive Side-Channel Analysis and Secure Design - 12th International Workshop, COSADE 2021,
Lugano, Switzerland, October 25-27, 2021, Proceedings. Volume 12910 of Lecture Notes in Computer Science.,
Springer (2021) 148–167 12

34. Nikova, S., Nikov, V., Rijmen, V.: Decomposition of permutations in a finite field. Cryptogr. Commun. 11(3)
(2019) 379–384 5

35. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches.
In: International conference on information and communications security, Springer (2006) 529–545 5

36. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of nonlinear functions in the presence
of glitches. J. Cryptol. 24(2) (2011) 292–321 5

37. NIST: Lightweight Cryptography Standardization Process: NIST Selects Ascon (February 7 2023) https:

//csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon. 11
38. Peeters, E.: Advanced DPA Theory and Practice: Towards the Security Limits of Secure Embedded Circuits. 1

edn. Springer-Verlag New York (2013) 4
39. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-Channel Resistant Crypto for Less

than 2, 300 GE. J. Cryptology 24(2) (2011) 322–345 2, 9, 12, 13, 14, 15, 20
40. Sasdrich, P., Bock, R., Moradi, A.: Threshold implementation in software - case study of PRESENT. In Fan,

J., Gierlichs, B., eds.: Constructive Side-Channel Analysis and Secure Design - 9th International Workshop,
COSADE 2018, Singapore, April 23-24, 2018, Proceedings. Volume 10815 of Lecture Notes in Computer
Science., Springer (2018) 227–244 5

41. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An Ultra-Lightweight
Blockcipher. In: Cryptographic Hardware and Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings. (2011) 342–357 9, 11

42. Srivastava, V., Gupta, N., Jati, A., Baksi, A., Breier, J., Chattopadhyay, A., Debnath, S.K., Hou, X.: Ascon-
sign. NIST PQC Additional Round 1 Candidates (2023) https://csrc.nist.gov/csrc/media/Projects/

pqc-dig-sig/documents/round-1/spec-files/Ascon-sign-spec-web.pdf. 11
43. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: A lightweight, versatile block cipher. ECRYPT

(2011) https://www.nec.com/en/global/rd/tg/code/symenc/pdf/twine_LC11.pdf. 11
44. Wadhwa, M., Baksi, A., Hu, K., Chattopadhyay, A., Isobe, T., Saha, D.: Finding desirable substitution box

with SASQUATCH. IACR Cryptol. ePrint Arch. (2023) 742 20

https://eprint.iacr.org/2013/794
https://eprint.iacr.org/2016/481
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Ascon-sign-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/Ascon-sign-spec-web.pdf
https://www.nec.com/en/global/rd/tg/code/symenc/pdf/twine_LC11.pdf

	From Substitution Box To Threshold

