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Abstract

A fundamental result dating to Ligero (Des. Codes Cryptogr. ’23) establishes that each fixed linear
block code exhibits proximity gaps with respect to the collection of affine subspaces, in the sense that
each given subspace either resides entirely close to the code, or else contains only a small portion which
resides close to the code. In particular, any given subspace’s failure to reside entirely close to the code is
necessarily witnessed, with high probability, by a uniformly randomly sampled element of that subspace.
We investigate a variant of this phenomenon in which the witness is not sampled uniformly from the
subspace, but rather from a much smaller subset of it. We show that a logarithmic number of random
field elements (in the dimension of the subspace) suffice to effect an analogous proximity test, with
moreover only a logarithmic (multiplicative) loss in the possible prevalence of false witnesses. We discuss
applications to recent noninteractive proofs based on linear codes, including Brakedown (CRYPTO ’23).

1 Introduction

Proximity testing of linear block codes is an important target of many reductions, for example throughout the
literature on succinct noninteractive proofs. In the basic version of this problem, a claimed codeword is tested
for proximity to some given fixed linear block code, by means of an interactive protocol (or more generally,
an interactive oracle proof ). The resulting protocol should accept genuine codewords with probability one;
conversely, it should reject non-codewords with a probability closely related to the initial vector’s distance
from the code. It should also feature efficiency—say, measured in the number of oracle queries, or rounds of
interaction—which grows favorably as a function of the code’s block length (say, logarithmically).

In many applications, it is necessary to test whether a list of vectors consists entirely of words which are
close to the code. This task is made precise as a proximity test for the code’s interleaved code, defined as the
set of matrices whose rows are all codewords, where the distance between two matrices is defined to be the
number of columns at which the two matrices don’t entirely agree. Indeed, proximity tests for interleaved
linear codes reside at the heart of many recent zero-knowledge proof protocols, including Ames, Hazay, Ishai
and Venkitasubramaniam’s Ligero [AHIV23] and Golovnev et al.’s Brakedown [Gol+23].

Interleaved proximity tests are typically effected by random linear combinations. In this paradigm, the
verifier samples a uniformly random coefficient vector as long as the list is, requests the corresponding
combination of the list elements, and finally subjects the combination to a standard proximity test. (Other
tests use powers of a single element, as we discuss below.) In order for this reduction to be sound, it should
hold that the linear subspace generated by the list feature related maximal and average distances from the
code. More precisely, it should hold that the failure of the subspace’s farthest element to be close to the code
implies in turn that of the vast majority of the subspace’s elements. This property is established for general
linear codes by Ligero [AHIV23]. In this setting, the notion of “closeness” is given meaning by means of a
so-called proximity parameter (whose value, as we explain below, cannot be completely arbitrary).

A drawback of this approach stems from its communication and randomness complexity. Indeed, it
requires that the verifier sample and send as many coefficients as there are elements in the list. Even in the
random oracle model, this requirement can induce practical consequences, as it does, for example, in the
setting of proof composition, in which the verifier’s check must necessarily be encoded into a circuit. In fact,
below, we explain how this issue impacts the zero-knowledge proof protocol Orion of Xie, Zhang and Song
[XZS22, Fig. 4], and invalidates that protocol’s stated polylogarithmic verifier complexity.
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1.1 Our Contribution

We introduce a batching process for proximity tests of general linear codes—that is, a reduction from the
interleaved code’s proximity testing problem to the standard proximity testing problem—which consumes
only logarithmically many random coefficients in the size m of the initial list of vectors. Moreover, our pro-
cedure’s error parameter—which, by definition, upper-bounds the probability with which the verifier selects
a proximal element despite testing a non-proximal subspace—exceeds by only a logarithmic multiplicative
factor the “base” error parameter applicable to the standard affine parameter test (this latter parameter is
given by the proximity-gap result of [AHIV23, Lem. A.1]).

In the particular setting of Reed–Solomon codes, a result of Ben-Sasson et al. [Ben+23, Thm. 1.5]
achieves a proximity test with sublinear randomness; indeed, that result uses just a single random parameter
to test an m-generator subspace for proximity. Its error parameter, however, exceeds by a multiplicative
factor of m − 1 that of the affine case. In the setting of general linear codes, Ben-Sasson, Kopparty,
and Saraf [BKS18, Thm. 12] describe a single-parameter proximity test, which, on the other hand, incurs
exponential soundness loss in the list size m. In view of these previous results, our protocol achieves a
favorable randomness–soundness tradeoff; it requires only logarithmically many parameters, and incurs only
logarithmic multiplicative soundness loss. Our test is the first that we know of which achieves a practical
soundness error bound, and consumes sublinear randomness, in the setting of general linear codes.

An interleaved test’s proximity parameter, by definition, captures the degree of proximity the test detects
(i.e., the closeness to the code which either all of the space or else almost none of it attains). Our result
works only for proximity parameters smaller than a third of the code’s distance. We inherit this range
restriction from the state-of-the-art for standard (i.e., linear-complexity) proximity testing. This state-of-
the-art—whose proof, attributed to Roth and Zémor, appears in a recent update to Ligero [AHIV23, § A] (see
also Theorem 2.1 below)—establishes proximity gaps for affine lines for those proximity parameters smaller
than a third of the code’s distance. (Various strengthenings of this result in the Reed–Solomon setting have
been attained by [Ben+23].) We note that the analogue of this latter result for more general proximity
parameters—say, smaller than half of the code’s distance (i.e., up to its unique decoding radius)—remains
an important open problem; our work would immediately profit upon its hypothetical future resolution.

Our construction entails, roughly, that the verifier, given the initial list u0, . . . , um−1 of vectors, sample
logarithmically many random scalars r0, . . . , rlogm−1, send these to the prover, and finally request the com-
bination of the vectors u0, . . . , um−1 whose coefficient vector is given by the tensor product (or Kronecker
product) expansion (1− r0, r0)⊗ · · ·⊗ (1− rlogm−1, rlogm−1). The verifier then subjects this latter combina-
tion to a standard proximity test. As above, in order for this maneuver to be sound, it should hold that, for
each initial list for which the subspace ⟨u0, . . . , um−1⟩ does not consist entirely of elements which are close
to the code, most tuples (r0, . . . , rlogm−1) ∈ Flogm

q yield tensor-products whose corresponding combinations
are themselves far from the code. This is essentially what we prove in our main result, given in Section 3.

Besides its attractive asymptotic profile and its simplicity, our construction is moreover strongly motivated
by its applications to polynomial commitment schemes, as we now explain. Indeed, a certain approach to the
problem of multilinear polynomial commitment—which appears to date to Ligero [AHIV23], and is explicitly
isolated in the subsequent work Brakedown [Gol+23]—makes use of a suitable error-correcting code. This
scheme, which we call the Brakedown multilinear polynomial commitment scheme, proceeds by collating
the coefficients of a given multilinear polynomial into the rows of a matrix, and then encoding this matrix
row-wise (under the particular linear block code chosen for use). Crucially, if the resulting matrix is close
to an interleaved codeword, then the committed polynomial is well-defined, and may be extracted. The
Brakedown scheme thus subjects the encoded matrix to an interleaved proximity test (the “testing” phase),
before finally requesting its underlying polynomial’s evaluation (the “evaluation” phase). The observation
underlying our work is that if our batching procedure is used for the interleaved proximity test—and if the
verifier’s evaluation point is random (a minor condition which holds in all applications we’re aware of)—then
the testing and evaluation phases of the Brakedown scheme become identical, and can be consolidated. The
resulting gains in simplicity and efficiency are substantial. For example, we reduce the proof size of the
Brakedown scheme—regardless of the code used—by a factor of

√
2. In the special case that a linear-time-

encodable code is used (as it is in Brakedown [Gol+23] and Orion [XZS22]), we moreover improve both the
prover’s and verifier’s respective runtimes by a factor of 2, up to lower-order terms. We provide further
details in Section 4 and thorough concrete benchmarks in Section 5.
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We briefly sketch our proof (see also Theorem 3.1 below). Our proof makes blackbox use of the proximity
gaps result for affine lines due to Roth and Zémor (see Theorem 2.1 below, in which we present a thorough,
and somewhat simpler, proof of this result). Essentially, we observe that the tensor product exhibits a
recursive substructure, whereby, when a ℓ-variable tensor product is used as a combination vector, the
resulting combination is itself an interpolation, over an affine line, of two ℓ−1-variable tensor combinations.
Under the hypothesis whereby many among the initial ℓ-tensor combinations are close to the code, we manage
to deduce that many ℓ − 1-tensor combinations yield lines which contain large close-to-the-code subsets.
Applying Theorem 2.1 to these lines, we conclude that both ℓ− 1-combinations themselves frequently reside
close to the code, thereby “pushing down” the initial hypothesis to two half-sized instances of the problem.
Inducting, we reach the base case, which is once again simply Theorem 2.1. Finally, we show that two half-
dimensional subspaces which individually exhibit correlated agreement may be “reconciled”, so as to yield
correlated agreement on their sum. We isolate a condition under which this reconciliation can be performed,
whereby both ℓ− 1-tensors are simultaneously as far as is possible from the code (in that they disagree with
the code everywhere outside of the correlated agreement set of the subspace in which they reside). The
difficult part is to produce an appropriate such ℓ− 1-tensor (i.e., for which both combinations are far from
the code). To achieve this, we bound the sizes of the “bad” sets within which the relevant ℓ − 1-tensors
become spuriously close to the code; this in turn entails a union bound over the vanishing loci of ℓ−1-variate
polynomials, each bounded in size by the Schwartz–Zippel lemma. This latter technique can be viewed as
a multivariate generalization of an idea which, in univariate form, appears throughout several prior works
(see e.g. Roth and Zémor [AHIV23, § A] and Ben-Sasson, Kopparty, and Saraf [BKS18, Lem. 8]). The idea
whereby a maximally far element of a subspace can, in a sense, “force agreement” between words appears,
implicitly, in a proof of Ben-Sasson et al. [Ben+23, § 6.3].

Section 4—in which, applying our new proximity test, we describe a certain improved scheme for mul-
tilinear polynomial commitment—also presents technical difficulties. The difficult part is to show that our
polynomial commitment scheme features witness-extended emulation. We note that emulation is trivial for
codes which admit efficient decoders, like the Reed–Solomon codes used by Ligero [AHIV23, § A]; we, how-
ever, treat general codes. When efficient decoding is not assumed, emulation becomes much more difficult
(and requires rewinding). Indeed, our scheme imposes somewhat sophisticated demands on the emulator,
which must collect a sequence of passing proximity tests with linearly independent combination vectors. We
introduce a new emulation strategy, departing significantly from Brakedown’s. Our emulator is actually
quite simple, and is inspired by that of Bootle et al.’s classic forking lemma [Boo+16, Lem. 1]. Its analysis,
however, is challenging, and introduces a handful of new ideas. The main technical issue is that a malicious
prover could, in principle, act in such a way as to thwart the emulator, by, say, outputting successful proofs
with vastly higher probability when the verifier’s challenge vector yields a tensor belonging to some proper
subspace. In particular, its conditional distribution of proofs—that is, these proofs’ distribution, conditioned
on success—may depart radically from uniform, and may tend towards certain events which cause the emula-
tor to fail. Our idea is to show that if the prover’s success probability is sufficiently high—specifically, higher
than the square root of that of the failure events, a quantity which, though likewise negligible, decays much
more slowly—then this conditional distribution necessarily concentrates away from the failure events. The
idea is to “split the difference” in the exponent (the square root operation has precisely the effect of halving
the superlogarithmic decay function implicit in the failure probability’s exponent). This square root is over-
whelmingly higher than the failure probability itself; on the other hand, it’s still negligible. We compare our
proof strategy to Brakedown’s [Gol+23, Lem. 3] at the end of Subsection 4.2 below. We identify a handful
of issues in that proof. While we suggest possible remediation strategies for certain among these issues, we
contend that our approach represents a compelling alternative to Brakedown’s. Indeed, our emulator admits
a much simpler description than Brakedown’s does. While the analysis of its success probability is, on the
other hand, undeniably involved, we believe that it is nonetheless more natural and checkable than is that
demanded by Brakedown’s emulator.

In Subsection 4.3 below, we describe how our technique improves the efficiency of the Ligero-style scheme.
Indeed, we exhibit a

√
2-factor improvement to that protocol’s proof size, up to lower-order terms, for each

input polynomial size. In the setting of a linear-time encodable code, we also improve the protocol’s prover
and verifier time by at least twofold, up to lower-order terms, for each input polynomial size. We benchmark
our scheme concretely in Section 5.
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1.2 Prior Work

Ideas related to ours appear throughout several prior works. Brakedown [Gol+23] identifies Ligero [AHIV23]
as the progenitor of many of its ideas, though the latter work treats only arithmetic circuits, and doesn’t
present a polynomial commitment scheme per se.

On the other hand, Ligero appears to have initiated the study of proximity gaps; we use extensively that
work’s proximity gap result for affine spaces [AHIV23, § A]. In fact, the proof of that result resides in partial
form across the two stated results [AHIV23, Lem. 4.3] and [AHIV23, Lem. A.1]. The former is due to Ames,
Hazay, Ishai and Venkitasubramaniam, and appears in the original, 2017 conference version of that work; the
latter, on the other hand, is attributed by the authors to Roth and Zémor, and was added in a subsequent
update. We observe that the former result—that is, [AHIV23, Lem. 4.3]—in fact already contains most of
the techniques required to make the proof go through. Roth and Zémor’s [AHIV23, Lem. A.1], on the other
hand, introduces the idea of replacing both generators of the line with elements which are close to the code
(though in an unnecessarily complicated form, in which the elements are assumed moreover to reside close
to the origin). We synthesize and simplify these various ideas in our treatment below, given in Theorem 2.1.

A further conceptual predecessor to Brakedown [Gol+23] appears in the form of Bootle et al. [Boo+16,
§ 3]; that work presents a univariate polynomial commitment scheme, which, nonetheless, arranges the poly-
nomial’s coefficients into a square matrix, and commits to its rows. That work doesn’t use an error-correcting
code or Merkle hashing, and admits square-root-sized—as opposed to constant-sized—commitments. More-
over, it doesn’t invoke a proximity test at all, so that our topic is inapplicable to it.

The work Bootle, Chiesa and Groth [BCG20] bears some resemblance to ours, though differs fundamen-
tally. That work presents a protocol for R1CS in the tensor IOP model, as well as a compiler from tensor
IOPs to standard IOPs. The latter compiler invokes a proximity test for so-called tensor codes. In that
protocol, over the course of multiple rounds, the prover repeatedly “folds” an initial tensor, using verifier-
supplied randomness, and, in each round, sends the resulting intermediate tensor to the verifier. While
the security proof of that protocol invokes the proximity-gaps result [AHIV23, § A], that result is applied
“fold-wise” to the prover’s successive intermediate tensors. That proof’s structure thus differs importantly
from ours; our prover performs logm folds “in one shot”, sending only the final result, and our protocol is
constant-round. In a sense, our proof of soundness must thus “do more work” than that protocol’s, since it
lacks access to the prover’s intermediate folds. (The verifier of [BCG20, p. 30], by contrast, has access to
these intermediate folds, and can check them “incrementally”.)

Our polynomial commitment scheme, again, exploits the setting in which the verifier’s point query is
random. The insight whereby a polynomial commitment scheme suitable only for random points can be
made more efficient than one suitable for arbitrary points appears to date to the work Marlin of Chiesa
et al. [Chi+20, § 6], though that work treats univariate polynomials. The work Vortex of Belling and
Soleimanian [BS22] also makes this observation, in, moreover, the setting of a commitment scheme involving
a proximity test, though that work’s polynomials are again univariate. Indeed, Vortex observes that—in
the random setting—its scheme’s testing and evaluation phases can be merged. Puzzlingly, Vortex [BS22,
§ 6.2] cites Brakedown for this observation; beyond the fact that Brakedown’s polynomials are multilinear,
we have moreover failed to find a remark to this effect in Brakedown. Separately, Vortex claims that the
soundness of their merged test is proven by [BCG20]. As noted above, the result proved by [BCG20, p. 30] is
incomparable to that required to merge Brakedown’s—or Vortex’s—testing and evaluation phases. Rather,
in the univariate setting, the soundness of this merge is, at least in the special case of Reed–Solomon codes
(which Vortex uses), established in fact by [Ben+23, Thm. 1.5]. In the multilinear setting, the soundness of
the merged procedure is precisely what we prove in this paper.

Brakedown [Gol+23] serves as the most direct inspiration for this work. That work isolates the “Ligero-
style” multilinear polynomial commitment scheme, citing both [AHIV23] and [BCG20]. We also take a
degree of inspiration from the proof strategy of [Gol+23, § 4], though we depart from that work’s approach.

1.3 Technical Overview

In this subsection, we discuss in further detail how our proximity gap result allows a certain well-known
polynomial commitment scheme to be simplified and improved. Several recent constructions of succinct
proofs—such as Brakedown [Gol+23], Orion [XZS22], and Vortex [BS22]—make use of a particular subpro-
tocol for multilinear polynomial commitment, which we call the Brakedown multilinear polynomial commit-
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ment scheme. The Brakedown scheme—like polynomial commitment schemes in general—allows the prover
to commit to a polynomial, and later, given an evaluation point supplied by the verifier, to evaluate the
polynomial at the given point, and finally to produce a proof attesting to its evaluation’s correctness.

We observe that—in all of the above protocols—the verifier evaluates each committed polynomial only
a random point, as opposed to at an arbitrary point. This latter fact is itself explained by the sum-check
reduction, as we briefly explain. That protocol reduces the problem of obtaining the sum of a multivariate
polynomial’s respective evaluations over the unit cube to the problem of evaluating the polynomial once at
a single point in its domain, which, crucially, is random (sampled throughout the course of the sum-check
protocol). We refer to [Set20, § 3] for further details. In other words, these succinct proof protocols employ
a tool which is more powerful than necessary. Capitalizing on this observation, we isolate a special sort
of multilinear polynomial commitment scheme, suitable only for random queries (see Definition 4.3). Our
restricted notion serves as a drop-in replacement for the standard scheme in all of the above applications.

We moreover introduce a new commitment scheme—suitable only for random samplers—which signifi-
cantly simplifies Brakedown’s protocol, as we now explain. We observe that, in that variant of the Brakedown
scheme which uses our batching procedure in lieu of the standard, linear-complexity proximity test (and
where, once again, we assume that the verifier’s evaluation point is random), the resulting “testing” and
“evaluation” phases become identical, and can be consolidated. This measure yields gains in both sim-
plicity and efficiency. Indeed, our approach reduces the Brakedown commitment scheme’s proof size by a√
2 factor, and also significantly improves the prover’s and verifier’s concrete computational costs in the

random-evaluation setting.
This observation—i.e., whereby a polynomial commitment scheme suitable only for random evaluation

points may be made more efficient than one suitable for arbitrary evaluation points—dates back to Chiesa
et al.’s Marlin [Chi+20, § 6], in which the polynomial commitment schemes at hand are proven secure
only for so-called “admissible query samplers” (we note, separately, that that work treats commitments
to arbitrary-degree, and univariate, polynomials). In that setting, a query sampler is, by definition, an
efficient algorithm which determines where the polynomials at hand are to be evaluated; a query sampler
is said to be admissible if (roughly) it necessarily requests that each polynomial at hand be evaluated at
least once on some point drawn uniformly from a superpolynomially-sized set (with additional queries also
permissible). In Marlin’s setting, a general query sampler may always be bootstrapped into an admissible
one, by means of the concatenation of additional random queries; this transformation, however, imposes
obvious efficiency costs. If the desired query sampler, on the other hand, is admissible to begin with—at is
in their applications—then this extra work can be saved. In the language of Marlin, we prove, essentially,
that our scheme is secure provided the query sampler is admissible (we treat, however, a restricted notion
of “admissibility”, for notational convenience, as we discuss below). Put differently, we apply an insight
already independently attained by Marlin to the setting of multilinear commitments.

The case of Orion. Beyond its efficiency advantages, our approach moreover resolves a more serious
obstacle in the setting of proof composition. Indeed, in typical applications—which assume the random
oracle model—the verifier need not send its combination coefficients explicitly to the prover, as both parties
may generate them locally by the means of queries to the random oracle. The generation and transmission
of these coefficients, in this setting, thus do not impact the protocol’s verifier or communication complexity.
In contrast, in the setting of proof composition—in which the verifier’s check is necessarily encoded into a
circuit—the random oracle introduces problems. For one, it must be instantiated concretely, so that it ceases
to be a (true) random oracle. This fact may affect the security analysis of the inner protocol. Separately,
hash function evaluations are expensive to encode in circuits. To evade these issues, many protocols extract
the inner verifier’s generation of the relevant random coefficients from the relevant circuit, and stipulate that
the outer verifier instead populate them directly, as public inputs to the outer proof.

This latter strategy may impact the computational complexity of the outer verifier, particularly when,
say, the inner verifier uses a proximity test in the style of [AHIV23, § A] or [Ben+23, Thm. 1.6] (with
linear randomness complexity in the list size). For example, the Orion zero-knowledge proof protocol of
Xie, Zhang and Song [XZS22, Prot. 4] proves satisfiability of a size-N arithmetic circuit by recursively
invoking a linear-randomness batched proximity test on a list of Θ(

√
N) vectors, and moreover delegates

the randomness-generation required by this latter task to the outermost verifier. This strategy makes the
computational complexity of its outermost verifier Ω(

√
N), and invalidates its stated O(log2 N) complexity.
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Indeed, we explain this issue in detail, using the notation of Orion. In line 7 of [XZS22, Prot. 4], the
outer prover “receives a random vector γ0 ∈ Fk from the verifier”; here, k = Θ(

√
N). While the outer prover

may certainly use Fiat–Shamir to generate γ0 locally (i.e., from the statement and transcript), this is beside
the point, since the outer verifier must, in this setting, do the same, and supply γ0 as a public input to
the outer proof in line 18 of [XZS22, Prot. 4]. Alternatively, the outer verifier could demand that the outer
prover prove that it correctly generated γ0 ∈ Fk from the transcript during the course of its proof (i.e., that
it applied Fiat–Shamir correctly). This, however, would prohibitively increase the outer prover’s cost. Orion
does not take this latter measure; its verifier’s complexity is thus actually Ω(

√
N), contrary to its claims.

The approach whereby single-parameter batching—i.e., using powers of a single random parameter—is
instead used does not resolve the issue. Indeed, that approach would prohibitively increase the protocol’s
soundness error, by a factor linear in the list length Θ(

√
N) in the Reed–Solomon case [Ben+23, Thm. 1.5],

and—what is much worse—by an exponential factor in the case of general codes [BKS18, Thm. 12].

Our protocol. We now sketch slightly more thoroughly how our batching procedure allows the Brakedown
multilinear polynomial commitment scheme to be simplified (in the random-evaluation setting). We recall
that the Brakedown scheme begins by collating them2 coefficients of a given multilinear polynomial in 2·logm
variables (say), expressed moreover with respect to the Lagrange basis over the unit cube {0, 1}2·logm, into
the rows of an m ×m matrix. This matrix is then encoded row-wise, using some fixed linear block code;
the resulting matrix is finally committed to. (In Ligero [AHIV23], as well as in Shockwave [Gol+23], the
Reed–Solomon code is used; in Brakedown [Gol+23, § 4.2], a newly introduced linear-time-encodable code
is used instead.) Crucially, if the committed matrix is close to an interleaved codeword, then the committed
polynomial is well-defined, and may be extracted.

The Brakedown-style scheme thus proceeds in two phases. In the testing phase, the verifier applies
an interleaved proximity test to the committed matrix. Specifically, the verifier reduces the interleaved
proximity problem given by the initial matrix to a standard proximity testing problem, by means of a
random combination of its rows. It then solves the latter by directly requesting the message underlying
the combination (which is well-defined if the prover is honest), encoding the supplied message, and finally
probabilistically testing it for equality with the combination by means of queries at random columns.

Having established the matrix’s proximity to the interleaved code, the verifier initiates the evalua-
tion phase, in which the committed polynomial is evaluated at the verifier’s chosen point. In light of
the of committed polynomial’s assumed structure, this latter phase may be effected by means of a fur-
ther combination of the committed rows (and a further proximity test), where—this time—the coeffi-
cient vector is a tensor. Indeed, it is straightforward to check that for each multilinear polynomial
t(X0, · · · , X2·logm−1) ∈ Fq[X0, · · · , X2·logm−1] and each point (r0, . . . , r2·logm−1) ∈ F2·logm

q , we have the
equality:

t(r0, . . . , r2·logm−1) =
[ ⊗2·logm−1

i=logm (1− ri, ri)
]
·

 t0
...

tm−1

 · [ ⊗logm−1
i=0 (1− ri, ri)

]T
,

where both vectors above contain tensor products in the sense of Section 2 below, and where the length-
m rows t0, . . . , tm−1 contain t’s collated Lagrange coefficients. It follows that if the verifier requests the

message t′ :=
⊗2·logm−1

i=logm (1− ri, ri) · (ti)m−1
i=0 during the evaluation phase, then it may calculate t’s value at

(r0, . . . , r2·logm−1) by means of the further local calculation t′ ·
⊗logm−1

i=0 (1− ri, ri) = t(r0, . . . , r2·logm−1). If
the point (r0, . . . , r2·logm−1) ∈ F2·logm

q is random, then this latter evaluation procedure becomes identical to
our batched proximity test, and can supplant the testing phase altogether.

Acknowledgements. We would like to thank Benedikt Bünz for suggesting to us that the Brakedown
scheme’s testing and evaluation phases could be combined, given a soundness proof for tensor product-
based batching. We would like to thank Pratyush Mishra for explaining certain aspects of Marlin. We
would like to wholeheartedly thank Gyumin Roh for catching a flaw in an earlier version of our emulator’s
Merkle-extraction procedure, as well as for ably assisting our efforts to rectify that flaw.
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2 Background and Notation

We generally adopt the notation of [AHIV23] and [Ben+23]. A code of length n over the alphabet Σ is a
subset of Σn. We write q for a prime power, Fq for the finite field of order q, and C ⊂ Fn

q for a linear
[n, k, d]-code over Fq. We write w(u) for the Hamming weight of a vector, d for the Hamming distance, and
d(u,C) := minv∈C d(u, v) for the distance from a point to a code. We write B(u, e) :=

{
y ∈ Fn

q

∣∣ d(u, y) ≤ e
}

for the Hamming ball of radius e ≥ 0 centered at u ∈ Fn
q . The unique decoding radius of an [n, k, d]-

code C is
⌊
d−1
2

⌋
; in particular, for each u ∈ Fn

q , we have that
∣∣B(

u,
⌊
d−1
2

⌋)
∩ C

∣∣ ≤ 1. We finally write
∆(u, v) ⊂ {0, . . . , n− 1} for the disagreement set between u and a codeword v. The puncturing of a code C
at an index setM ⊂ {0, . . . , n−1} is the projection of C onto the set of components indexed {0, . . . , n−1}\M .

Given a linear code C ⊂ Fn
q and an integer m ≥ 1, we have its corresponding m-fold interleaved code,

defined as the subset Cm ⊂
(
Fn
q

)m ∼= (
Fm
q

)n
. We understand this latter set as a length-n block code over

the alphabet Fm
q . In particular, its elements are naturally identified with matrices in Fm×n

q , where two
such matrices differ at a column if they differ at any of that column’s components. We write matrices
(ui)

m−1
i=0 ∈ Fm×n

q row-wise. That a matrix (ui)
m−1
i=0 ∈ Fm×n

q is within distance e to the code Cm—in which

event we write dm
(
(ui)

m−1
i=0 , Cm

)
≤ e—entails precisely that there exists a subset D := ∆m

(
(ui)

m−1
i=0 , Cm

)
,

say, of {0, . . . , n− 1}, of size at most e, for which, for each i ∈ {0, . . . ,m− 1}, the row ui admits a codeword
vi ∈ C for which ui|{0,...,n−1}\D = vi|{0,...,n−1}\D. We emphasize that the subset D ⊂ {0, . . . , n−1} is fixed,
and does not vary as the row-index i ∈ {0, . . . ,m−1} varies. In this circumstance, following the terminology

of [Ben+23], we say that the vectors (ui)
m−1
i=0 feature correlated agreement outside of the set D, or that they

feature e-correlated agreement. We note that the condition whereby the vectors (ui)
m−1
i=0 feature e-correlated

agreement with Cm implies a fortiori that every element in (ui)
m−1
i=0 ’s row-span is itself within distance at

most e from C.
We define the tensor product of vectors inductively on length-two vectors of the form (1 − r, r), where

r ∈ Fq; that is, we stipulate that (s0, . . . , sm/2−1)⊗(1−r, r) := (1−r) ·
(
s0, . . . , sm/2−1

)
∥r ·

(
s0, . . . , sm/2−1

)
. In

particular, we thereby give meaning to iterated expressions of the form (1− r0, r0)⊗ · · ·⊗ (1− rℓ−1, rℓ−1) by
left-association (the natural extension of this definition to operands of arbitrary length is associative). We
note that the tensor product operation is not commutative. For notational purposes, we use the abbreviation⊗ℓ−1

i=0(1 − ri, ri) to refer to the above expression (where the left-to-right order is again understood), which
is a length-2ℓ vector. We note that this vector in fact consists precisely of the evaluations at the fixed
point (r0, . . . , rℓ−1) ∈ Fℓ

q of the 2ℓ Lagrange basis polynomials in Fq[X0, . . . , Xℓ−1], taken with respect to the

evaluation set {0, 1}ℓ ⊂ Fℓ
q. Indeed, this latter basis is precisely the list of polynomials

⊗ℓ−1
i=0(1 −Xi, Xi).

We note that these polynomials are Fq-linearly independent elements of Fq[X0, . . . , Xℓ−1], where we view
the latter ring as an Fq-vector space.

The probability distributions we consider are exclusively uniform over sets of the form Fℓ
q. We write µ(R)

for the probability mass of the subset R ⊂ Fℓ
q; that is, µ(R) := |R|

qℓ
.

Two distribution ensembles {Y0(a, λ)}a∈{0,1}∗,λ∈N and {Y1(a, λ)}a∈{0,1}∗,λ∈N, with values in {0, 1}, say,
are statistically close if there exists a negligible function negl(λ) for which, for each a ∈ {0, 1}∗ and each
λ ∈ N,

|Pr[Y0(a, λ) = 1]− Pr[Y1(a, λ) = 1]| ≤ negl(λ).

We note that the negligible function negl must suffice simultaneously for each possible a ∈ {0, 1}∗. For details
on indistinguishability and further context, we refer to Lindell [Lin17].

We recall certain notions related to Merkle trees. We fix parameters m and n, which we assume to be
powers of 2; throughout, we write (ui)

m−1
i=0 for an m×n matrix with entries in Fq. For each j ∈ {0, . . . , n−1},

we write (ui,j)
m−1
i=0 for the jth column of (ui)

m−1
i=0 .

For our purposes, a Merkle tree on the data (ui)
m−1
i=0 is a tree whose leaves take the form H

(
(ui,j)

m−1
i=0

)
,

for j ∈ {0, . . . , n − 1}, and where each internal node is the hash of the concatenation of its children. A

Merkle opening or Merkle path is the data of a column (ui,j)
m−1
i=0 , for some j ∈ {0, . . . , n − 1}, together

with the respective siblings of those nodes contained in the path from the jth leaf to the root. For each

j ∈ {0, . . . , n− 1}, the Merkle opening
(
(ui,j)

m−1
i=0 , h0, . . . , hlogn−1

)
is valid against the Merkle root c if the

following algorithm returns true:
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1: procedure ValidateMerkleOpening
(
j, (ui,j)

m−1
i=0 , h0, . . . , hlogn−1, c

)
2: initialize h := H

(
(ui)

m−1
i=0

)
.

3: write j = (jlogn−1, . . . , j0) for the bits of j ∈ {0, . . . , n− 1}.
4: for i ∈ {0, . . . , log n− 1} do overwrite h := H(h ∥ hi) if ji = 0 else H(hi ∥ h).
5: return c

?
= h.

Figure 1 below illustrates a Merkle opening. We shade in grey the actual contents of the Merkle opening
(i.e., the data it explicitly supplies). We moreover enclose in a solid border those nodes whose values are
“determined” by the Merkle opening. Figure 2 below depicts a collection of distinct Merkle openings. In
that figure, we shade in grey those nodes explicitly included in some Merkle path; moreover, as before, we
enclose in a solid line those nodes collectively determined by the tree’s Merkle paths.

c

h1

h0

(u
i,
3
)m

−
1

i=
0

h2

Figure 1: A Merkle path.

c

(u
i,
2
)m

−
1

i=
0

(u
i,
3
)m

−
1

i=
0

(u
i,
5
)m

−
1

i=
0

Figure 2: A collection of Merkle openings.

2.1 The Proximity Gap for Affine Lines

We now recapitulate a key result due to Ames, Hazay, Ishai and Venkitasubramaniam [AHIV23, Lem. 4.3]
and Roth and Zémor [AHIV23, § A]. For completeness, we record a thorough proof of this result. We closely
follow [AHIV23, Lem. 4.3] and [AHIV23, § A], though we manage to significantly simplify those proofs.

Theorem 2.1 (Roth–Zémor [AHIV23, § A]). Fix an arbitrary [n, k, d]-code C ⊂ Fn
q , and a proximity

parameter e ∈
{
0, . . . ,

⌊
d−1
3

⌋}
. If given elements u0 and u1 of Fn

q satisfy

Pr
r∈Fq

[d((1− r) · u0 + r · u1, C) ≤ e] >
e+ 1

q
,

then d2
(
(ui)

1
i=0, C

2
)
≤ e.

Proof. We write R∗ := {r ∈ Fq | d((1− r) · u0 + r · u1, C) ≤ e}. The theorem’s hypothesis clearly implies
that |R∗| > e + 1 ≥ 1. We thus write r∗0 and r∗1 for two distinct elements of R∗. Clearly, the elements
(1− r∗0) ·u0+ r∗0 ·u1 and (1− r∗1) ·u0+ r∗1 ·u1 span the same affine line u0 and u1 do. It thus suffices to prove
the theorem after performing the replacements u0 := (1− r∗0) · u0 + r∗0 · u1 and u1 := (1− r∗1) · u0 + r∗1 · u1.
In particular, we may safely assume without loss of generality that d(u0, C) ≤ e and d(u1, C) ≤ e hold. We
write v0 and v1 for codewords for which d(u0, v0) ≤ e and d(u1, v1) ≤ e, respectively, hold.

We suppose for contradiction that the conclusion of the theorem is false, and that d2
(
(ui)

1
i=0, C

2
)
> e.

We note that (ui)
1
i=0 clearly has correlated agreement with C outside of ∆(u0, v0)∪∆(u1, v1); our supposition

thus implies in particular that |∆(u0, v0) ∪∆(u1, v1)| > e. For each j ∈ ∆(u0, v0) ∪∆(u1, v1), we write

Rj :=
{
r ∈ Fq

∣∣∣ ((1− r) · u0 + r · u1)|{j} = ((1− r) · v0 + r · v1)|{j}
}
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for the set of parameters r ∈ Fq at which (1−r)·u0+r ·u1 and (1−r)·v0+r ·v1 “spuriously agree” at the index
j. For each j ∈ ∆(u0, v0)∪∆(u1, v1), |Rj | ≤ 1, as Rj ⊂ Fq is the zero locus of a nonzero affine-linear function.
By the guarantees |∆(u0, v0)| ≤ e and |∆(u1, v1)| ≤ e, and because |∆(u0, v0) ∪∆(u1, v1)| > e (by the above
argument), applying the identity |∆(u0, v0) ∪∆(u1, v1)| = |∆(u0, v0)|+ |∆(u1, v1)| − |∆(u0, v0) ∩∆(u1, v1)|,
we conclude that |∆(u0, v0) ∩∆(u1, v1)| < e. We finally observe that for each j outside of this intersection,
the set Rj is either {0} or {1}. Specifically, for j ∈ ∆(u0, v0) \∆(u1, v1), Rj = {1}, while for j ∈ ∆(u1, v1) \
∆(u0, v0), Rj = {0}. It thus follows that

∣∣∣⋃j∈∆(u0,v0)∪∆(u1,v1)
Rj

∣∣∣ ≤ e+ 1.

We fix an element r∗ ∈ R∗, and write v∗ ∈ C, say, for the (uniquely determined) codeword for which
d((1− r∗) · u0 + r∗ · u1, v

∗) ≤ e. We note that d((1− r∗) · u0 + r∗ · u1, (1− r∗) · v0 + r∗ · v1) ≤ 2 · e, since
these two vectors agree outside of ∆(u0, v0) ∪∆(u1, v1). By the triangle inequality, we thus have that:

d((1− r∗) · v0 + r∗ · v1, v∗) ≤ d((1− r∗) · v0 + r∗ · v1, (1− r∗) · u0 + r∗ · u1) + d((1− r∗) · u0 + r∗ · u1, v
∗)

≤ 3 · e
< d,

so that v∗ = (1 − r∗) · v0 + r∗ · v1, and in fact d((1− r∗) · u0 + r∗ · u1, (1− r∗) · v0 + r∗ · v1) ≤ e holds. We
conclude that r∗ ∈

⋃
j∈∆(u0,v0)∪∆(u1,v1)

Rj . It follows in turn that R∗ ⊂
⋃

j∈∆(u0,v0)∪∆(u1,v1)
Rj , so that

|R∗| ≤ e+ 1 and Prr∈Fq
[d((1− r) · u0 + r · u1, C) ≤ e] ≤ e+1

q , and the theorem’s hypothesis is false.

Remark 2.2. A result exactly analogous to Theorem 2.1—with identical parameters—holds for arbitrary-
dimensional affine subspaces, and can moreover be proven using Theorem 2.1. In fact, precisely this reduc-
tion is carried out in [Ben+23, § 6.3] (in the list-decoding setting no less, though that work’s approach is
straightforwardly specialized). Since we don’t need this more general result below, we omit its treatment.

Remark 2.3. Theorem 2.1 is sharp, in the sense that its false witness probability e+1
q cannot be decreased.

This fact is demonstrated by the following example of Ben-Sasson et al. [Ben+23, Rem. 1.1]. We fix an
[n, k, d]-code C ⊂ Fn

q , and set e ∈
{
0, . . . ,

⌊
d−1
3

⌋}
arbitrarily. We assume that q > e + 1 and d > 1. We fix

distinct elements x0, . . . , xe of Fq, and set u0 := (x0, . . . , xe, 0, . . . , 0) and u1 := (x0 − 1, . . . , xe − 1, 0, . . . , 0).
Writing again R∗ := {r ∈ Fq | d((1− r) · u0 + r · u1, C) ≤ e}, we claim that R∗ = {x0, . . . , xe}. Indeed,
for each i ∈ {0, . . . , e}, we clearly have d((1− xi) · u0 + xi · u1, C) ≤ e. On the other hand, for each r ̸∈
{x0, . . . , xe}, we claim that d((1− r) · u0 + r · u1, C) > e. Indeed, d((1− r) · u0 + r · u1, 0) = e + 1 clearly
holds; on the other hand, for each nonzero codeword v ∈ C, we have by the reverse triangle inequality that

d((1− r) · u0 + r · u1, v) ≥ |d(v, 0)− d((1− r) · u0 + r · u1, 0)| ≥ d− (e+ 1) > e,

where, in the final step, we use the guarantee 2 · e + 1 < d (a consequence of 3 · e < d if e > 0, or else of
d > 1 in the case e = 0). We see that Prr∈Fq

[d((1− r) · u0 + r · u1, C) ≤ e] = e+1
q . On the other hand, the

conclusion d2
(
(ui)

1
i=0, C

2
)
≤ e of Theorem 2.1 certainly fails to hold, since it would imply that R∗ = Fq,

whereas we have instead that |R∗| = e+ 1.

In the Reed–Solomon setting, Ben-Sasson et al. [Ben+23, Thm. 1.4] achieve an analogue of Theorem 2.1
for e as high as the unique decoding radius, albeit with an upper-bound n

q on the false witness probability

somewhat worse than that of e+1
q attained by Theorem 2.1. (They also present results beyond the unique

decoding radius, which feature, on the other hand, much-more-complicated bounds.) We record the following
analogue of this statement in our setting:

Conjecture 2.4. We wonder whether Theorem 2.1 holds even for proximity parameters e ∈
{
0, . . . ,

⌊
d−1
2

⌋}
.

3 Main Result

We now describe our new interleaved-to-standard reduction for proximity testing. We assume in what follows
that the list length m is a power of 2. In our test, we use the tensor product expression (1− r0, r0)⊗ · · · ⊗
(1−rlogm−1, rlogm−1), where the elements r0, . . . , rlogm−1 of Fq are independently random, as a combination
vector over the input list; our error parameter exceeds that of the affine case by a multiplicative factor of
2 · logm. We make blackbox use of Theorem 2.1 throughout.
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Theorem 3.1. Fix an arbitrary [n, k, d]-code C ⊂ Fn
q , and a proximity parameter e ∈

{
0, . . . ,

⌊
d−1
3

⌋}
. If

given elements u0, . . . , um−1 of Fn
q satisfy

Pr
(r0,...,rlog m−1)∈Flog m

q

d
[ ⊗logm−1

i=0 (1− ri, ri)
]
·

 u0

...

um−1

, C
 ≤ e

 > 2 · logm · e+ 1

q
,

then dm
(
(ui)

m−1
i=0 , Cm

)
≤ e.

Proof. We write ℓ := logm once and for all. In the base case ℓ = 1, the result follows immediately from
Theorem 2.1, since 2 · e+1

q ≥
e+1
q .

We now let ℓ > 1 be arbitrary, and assume the hypothesis of the theorem. By way of induction, we
construct two smaller instances of the problem, each of size ℓ− 1, and establish the theorem’s hypothesis on
these instances. We prepare the process by introducing notation. For each tuple (r0, . . . , rℓ−2) ∈ Fℓ−1

q , we

record the following abbreviations, each involving an appropriate half-list of the initial list (ui)
2ℓ−1
i=0 :

M0 :=
[ ⊗ℓ−2

i=0(1− ri, ri)
]
·

 u0

...

u2ℓ−1−1

, M1 :=
[ ⊗ℓ−2

i=0(1− ri, ri)
]
·

 u2ℓ−1

...

u2ℓ−1

.
We emphasize that each pair M0 := M0(r0, . . . , rℓ−2) and M1 := M1(r0, . . . , rℓ−2) actually depends on a
fixed choice of tuple (r0, . . . , rℓ−2) ∈ Fℓ−1

q ; we slightly abuse notation by omitting this tuple.

Our recursive approach relies on the following identity, valid for each (r0, . . . , rℓ−1) ∈ Fℓ
q:

[ ⊗ℓ−1
i=0(1− ri, ri)

]
·

 u0

...

u2ℓ−1

 =
[
1− rℓ−1 rℓ−1

]
·
[

M0

M1

]
.

This identity follows directly from the definition of the tensor product, and is easily verified by
means of an explicit calculation. We finally define various loci in Fℓ−1

q . We write R0 :={
(r0, . . . , rℓ−2) ∈ Fℓ−1

q

∣∣ d(M0, C) ≤ e
}

and R1 :=
{
(r0, . . . , rℓ−2) ∈ Fℓ−1

q

∣∣ d(M1, C) ≤ e
}

for the loci con-
sisting of those ℓ− 1-tuples for which M0 and M1 (respectively) are at most e-far from the code. We finally
write, for each (r0, . . . , rℓ−2) ∈ Fℓ−1

q ,

p(r0, . . . , rℓ−2) := Pr
rℓ−1∈Fq

[
d

([
1− rℓ−1 rℓ−1

]
·
[

M0

M1

]
, C

)
≤ e

]
,

and set R∗ :=
{
(r0, . . . , rℓ−2) ∈ Fℓ−1

q

∣∣∣ p(r0, . . . , rℓ−2) >
e+1
q

}
. In words, R∗ ⊂ Fℓ−1

q is that locus consisting

of those ℓ − 1-tuples whose resulting combinations M0 and M1 (with the initial matrix’s lower and upper
halves, respectively) span a line a substantial proportion of whose elements reside close to the code.

We begin with the following lemma:

Lemma 3.2. R∗ ⊂ R0 ∩R1.

Proof. Indeed, that (r0, . . . , rℓ−2) ∈ R∗ holds entails, by definition, that the hypothesis of Theorem 2.1 holds
with respect to the affine line spanned by the relevant combinations M0 and M1. That theorem implies that
d(M0, C) ≤ e (so that (r0, . . . , rℓ−2) ∈ R0) and d(M1, C) ≤ e (so that (r0, . . . , rℓ−2) ∈ R1).

The following lemma shows that the subset R∗ ⊂ Fℓ−1
q is necessarily large:

Lemma 3.3. µ(R∗) > 2 · (ℓ− 1) · e+1
q .
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Proof. The result follows from a probability decomposition argument, as we explain below:

2 · ℓ · e+ 1

q
< Pr

(r0,...,rℓ−1)∈Fℓ
q

d
[ ⊗ℓ−1

i=0(1− ri, ri)
]
·

 u0

...

u2ℓ−1

, C
 ≤ e


= Pr

(r0,...,rℓ−1)∈Fℓ
q

[
d

([
1− rℓ−1 rℓ−1

]
·
[

M0

M1

]
, C

)
≤ e

]
≤ e+ 1

q
+ Pr

(r0,...,rℓ−2)∈Fℓ−1
q

[(r0, . . . , rℓ−2) ∈ R∗].

The first step is the hypothesis of the theorem; the second step follows from the recursive substructure
explained above. To achieve the final step, we upper-bound the second-to-last expression slice-wise, either

by e+1
q or by 1, depending on whether the slice (r0, . . . , rℓ−2)

?
∈ R∗. In this way, we obtain the upper-

bound e+1
q · Pr(r0,...,rℓ−2)∈Fℓ−1

q

[
p(r0, . . . , rℓ−2) ≤ e+1

q

]
+ Pr(r0,...,rℓ−2)∈Fℓ−1

q

[
p(r0, . . . , rℓ−2) >

e+1
q

]
≤ e+1

q +

Pr(r0,...,rℓ−2)∈Fℓ−1
q

[(r0, . . . , rℓ−2) ∈ R∗]. From the entire inequality, we conclude finally that µ(R∗) ≥ 2 · ℓ ·
e+1
q −

e+1
q = (2 · ℓ− 1) · e+1

q ≥ 2 · (ℓ− 1) · e+1
q , as desired. This completes the proof of the lemma.

Upon combining Lemmas 3.2 and 3.3, we immediately conclude that the probabilities µ(R0) and µ(R1)
are both themselves greater than 2 · (ℓ− 1) · e+1

q . In other words, the hypothesis of the theorem is fulfilled

with respect to the parameter ℓ− 1 and to both of the half-sublists (ui)
2ℓ−1−1
i=0 and (ui)

2ℓ−1
i=2ℓ−1 . This justifies

our inductive use of the theorem with respect to these half-sublists.

We thus conclude the consequence of the theorem with respect to the sublists (ui)
2ℓ−1−1
i=0 and (ui)

2ℓ−1
i=2ℓ−1 .

We write e0 := d2
ℓ−1

(
(ui)

2ℓ−1−1
i=0 , C2ℓ−1

)
and e1 := d2

ℓ−1
(
(ui)

2ℓ−1
i=2ℓ−1 , C2ℓ−1

)
for these sublists’ interleaved

distances, as well as D0 and D1 for their corresponding (correlated) disagreement subsets of {0, . . . , n− 1}.
We finally write (vi)

2ℓ−1−1
i=0 and (vi)

2ℓ−1
i=2ℓ−1 for their corresponding lists of close codewords. By analogy with

M0 and M1, we now record, for each (r0, . . . , rℓ−2) ∈ Fℓ−1
q , the following abbreviations:

N0 :=
[ ⊗ℓ−2

i=0(1− ri, ri)
]
·

 v0
...

v2ℓ−1−1

, N1 :=
[ ⊗ℓ−2

i=0(1− ri, ri)
]
·

 v2ℓ−1

...

v2ℓ−1

.
We define further loci in Fℓ−1

q :

B0 :=
{
(r0, . . . , rℓ−2) ∈ Fℓ−1

q

∣∣ d(M0, N0) < e0
}
, B1 :=

{
(r0, . . . , rℓ−2) ∈ Fℓ−1

q

∣∣ d(M1, N1) < e1
}
.

We understand these loci as the subsets of the parameter space at which M0 and M1 (respectively) become
closer to N0 and N1 than correlated agreement demands.

The following lemma shows that the loci B0 and B1 are not too large:

Lemma 3.4. µ(B0) ≤ (ℓ− 1) · eq and µ(B1) ≤ (ℓ− 1) · eq .

Proof. We let b ∈ {0, 1} be arbitrary, and prove the result for Bb. For each index j ∈ Db, we write

Rb,j :=
{
(r0, . . . , rℓ−2) ∈ Fℓ−1

q

∣∣∣ Mb|{j} = Nb|{j}
}

for the locus in Fℓ−1
q on which Mb and Nb “spuriously agree” at the index j. We note that each Rb,j ⊂ Fℓ−1

q

is precisely the vanishing locus of a certain combination of the ℓ − 1-variate multilinear Lagrange basis
polynomials, where the combination vector—because j ∈ Db—is not identically zero. We conclude that the
combination is itself nonzero; the Schwartz–Zippel lemma in turn implies that µ(Rb,j) ≤ ℓ−1

q . These sets’

union thus has mass at most µ
(⋃

j∈Db
Rb,j

)
≤ |Db| · ℓ−1

q ≤ (ℓ− 1) · eq , where, in the last step, we exploit the

inductive hypothesis |Db| = eb ≤ e. On the other hand, Bb =
⋃

j∈Db
Rb,j . This completes the proof.
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For the following lemma, we recall the set R∗ ⊂ Fℓ−1
q introduced above.

Lemma 3.5. R∗ ̸⊂ B0 ∪B1.

Proof. Indeed, by Lemma 3.3, µ(R∗) > 2 · (ℓ− 1) · e+1
q ; on the other hand, Lemma 3.4 gives that the masses

µ(B0) and µ(B1) are each at most (ℓ− 1) · eq .

By Lemma 3.5, there necessarily exists some element (r∗0 , . . . , r
∗
ℓ−2) ∈ R∗ \ (B0 ∪ B1). We write M∗

0

and M∗
1 for the corresponding values of M0 and M1, and moreover define N∗

0 and N∗
1 analogously. Because

(r∗0 , . . . , r
∗
ℓ−2) ∈ R∗, an application of Theorem 2.1 to the line spanned by M∗

0 and M∗
1 yields a subset

D∗ ⊂ {0, . . . , n − 1}, satisfying |D∗| = e∗, say, where e∗ ≤ e, together with codewords O0 and O1 which
respectively agree with M∗

0 and M∗
1 outside of D∗.

For each b ∈ {0, 1}, because (r∗0 , . . . , r
∗
ℓ−2) ̸∈ Bb moreover holds, we have in fact the disagreement set

equality ∆(M∗
b , N

∗
b ) = Db (as opposed to a proper inclusion). We write ∆(M∗

b , Ob) for the disagreement set
of M∗

b and Ob. By definition of D∗, ∆(M∗
b , Ob) ⊂ D∗ clearly holds; on the other hand, because d(M∗

b , N
∗
b ) ≤

eb ≤ e and d(M∗
b , Ob) ≤ e∗ ≤ e simultaneously hold, unique decoding implies that N∗

b = Ob, and that in fact
∆(M∗

b , Ob) = Db. We conclude that Db ⊂ D∗.

It follows that D0 ∪ D1 ⊂ D∗. We conclude that (ui)
2ℓ−1−1
i=0 and (ui)

2ℓ−1
i=2ℓ−1 have mutual correlated

agreement outside of the set D0 ∪D1 of size at most e∗ ≤ e. This completes the proof of the theorem.

Remark 3.6. The false witness probability 2 · logm · e+1
q of Theorem 3.1 seems not to be sharp; for example,

we wonder whether the factor of 2 can be eliminated.

4 Polynomial Commitment

In this section, we present our main multilinear polynomial commitment scheme, and analyze its efficiency.

4.1 Definitions and Notions

We begin by defining multilinear polynomial commitment schemes, following Setty [Set20, § 2.4].

Definition 4.1. A multilinear polynomial commitment scheme is a tuple of algorithms Π =
(Setup,Commit,Open,Prove,Verify), with the following syntax:

• params ← Π.Setup(1λ, ℓ). On input the security parameter λ and a size parameter ℓ = O(log λ),
Π.Setup samples params, which includes (possibly among other things) a finite field order q = 2O(λ).

• (c, u) ← Π.Commit(params, t). On input a multilinear polynomial t(X0, . . . , X2·ℓ−1) ∈
Fq[X0, . . . , X2·ℓ−1], Π.Commit returns a commitment c to t, together with an opening hint u.

• b ← Π.Open(params, c; t, u). On input a commitment c, a multilinear polynomial t(X0, . . . , X2·ℓ−1) ∈
Fq[X0, . . . , X2·ℓ−1], and an opening hint u, Π.Open verifies the claimed decommitment t of c, using u.

• π ← Π.Prove(params, c, s, (r0, . . . , r2·ℓ−1); t, u). On input a commitment c, a purported evaluation
s ∈ Fq, an evaluation point (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q , a multilinear polynomial t(X0, . . . , X2·ℓ−1) ∈
Fq[X0, . . . , X2·ℓ−1], and an opening hint u, Π.Prove generates an evaluation proof π.

• b ← Π.Verify(params, c, s, (r0, . . . , r2·ℓ−1), π). On input a commitment c, a purported evaluation s, an
evaluation point (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q , and a proof π, Π.Verify outputs a success bit b ∈ {0, 1}.

The demand ℓ = O(log λ) is necessary, lest the number of coefficients m2 = 22·ℓ of each multilinear
t(X0, . . . , X2·ℓ−1) be superpolynomial in λ. Similarly, the requirement q = 2O(λ) ensures that Fq-elements
are efficiently representable.

The scheme Π is complete if the obvious correctness properties hold. That is, for honestly generated
params ← Π.Setup(1λ, ℓ), each honestly generated commitment (c, u) ← Π.Commit(params, t) to some mul-
tilinear polynomial t(X0, . . . , X2·ℓ−1) ∈ Fq[X0, . . . , X2·ℓ−1] should satisfy Π.Open(params, c; t, u) = 1; more-
over, each honestly generated proof π ← Π.Prove(params, c, s, (r0, . . . , r2·ℓ−1); t, u)—for (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q

given arbitrarily—should satisfy Π.Verify(params, c, s, (r0, . . . , r2·ℓ−1), π) = 1 with probability 1.
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We say that Π is moreover efficient if the size of each commitment satisfies |c| = O(λ), the size of each

proof satisfies |π| = o(λ ·m2), the routines Π.Commit, Π.Open, and Π.Prove all run in time Õ(λ ·m2), and
Π.Verify runs in time o(λ ·m2).

We now give security definitions for multilinear polynomial commitment schemes, closely following both
Marlin [Chi+20, Def. 6.2] and Setty [Set20, Def. 2.11].

Definition 4.2. For each multilinear polynomial commitment scheme Π, size parameter ℓ, and PPT adver-
sary A, we define the binding experiment BindingΠ,ℓ

A (λ) as follows:

1. The experimenter samples params← Π.Setup(1λ, ℓ), and gives params to A.

2. The adversary outputs (c, t0, t1, u0, u1)← A(params), where c is a commitment, t0(X0, . . . , X2·ℓ−1) and
t1(X0, . . . , X2·ℓ−1) are multilinear polynomials in Fq[X0, . . . , X2·ℓ−1], and u0 and u1 are opening hints.

3. The output of the experiment is defined to be 1 if Π.Open
(
params, c; t0, u0

)
, Π.Open

(
params, c; t1, u1

)
,

and t0 ̸= t1 all hold; otherwise, it is defined to be 0.

The multilinear polynomial commitment scheme Π is said to be binding if, for each PPT adversary A, there
exists a negligible function negl(λ) for which, for each λ ∈ N and ℓ = O(log λ), Pr

[
BindingΠ,ℓ

A (λ)
]
≤ negl(λ).

Definition 4.3. For each multilinear polynomial commitment scheme Π, security parameter λ, size param-
eter ℓ, PPT query sampler Q, stateful PPT adversary A, expected PPT emulator E , and PPT distinguisher
D, we define two random variables RealΠ,ℓ

Q,A,E,D(λ) and EmulΠ,ℓ
Q,A,E,D(λ), each valued in {0, 1}, as follows:

1. The experimenter samples params← Π.Setup(1λ, ℓ), and gives params to A, Q and E .

2. The adversary outputs a commitment c← A(params).

3. The query sampler outputs (r0, . . . , r2·ℓ−1)← Q(params).

4. The experimenter proceeds in one of two separate ways:

• RealΠ,ℓ
Q,A,E,D(λ): Run (s, π)← A(r0, . . . , r2·ℓ−1). Output the single bit D(c, s, π).

• EmulΠ,ℓ
Q,A,E,D(λ): Run (s, π; t, u) ← EA(r0, . . . , r2·ℓ−1). Output the single bit D(c, s, π) ∧

(Π.Verify(params, c, s, (r0, . . . , r2·ℓ−1), π) =⇒ (Π.Open(params, c; t, u) ∧ t(r0, . . . , r2·ℓ−1) = s)).

The multilinear polynomial commitment scheme Π is said to be extractable with respect to the query sam-
pler Q if, for each PPT adversary A, there exists an expected PPT emulator E for which, for each PPT

distinguisher D, the distributions
{
RealΠ,ℓ

Q,A,E,D(λ)
}
ℓ,λ∈N

and
{
EmulΠ,ℓ

Q,A,E,D(λ)
}
ℓ,λ∈N

are statistically close.

In step 4 of Definition 4.3, we give E full rewinding access to A, including its random tape; we suppress
this fact for notational convenience. We emphasize that the implicit negligible function negl in Definition
4.3, which depends in general on Q, A, E , and D, is not allowed to depend on ℓ; rather, it must work
simultaneously for all λ ∈ N and ℓ ∈ N.

The following definition is a simplification of [Chi+20, Def. 6.5], which requires that Q sample uniformly
randomly ([Chi+20, Def. 6.5] permits Q to instead sample uniformly from a superpolynomially large set).

Definition 4.4. The query sampler Q is admissible if, for each λ and ℓ, and each parameter set params←
Π.Setup(1λ, ℓ), containing the field size q say, it holds that (r0, . . . , r2·ℓ−1)← Q(params) is uniform over F2·ℓ

q .

Remark 4.5. We compare our definitional framework to those of Setty [Set20, Def. 2.11] and Bünz, Fisch
and Szepieniec [BFS20, Def. 4] (which are identical) and to that of Marlin [Chi+20, Def. 6.2]. Our treatment
can be viewed as the “meet” of these two approaches, as we presently explain. We prove our scheme’s
security only for a certain class of query samplers (as Marlin does); [Set20, Def. 2.11] and [BFS20, Def. 4] on
the other hand require the scheme at hand to be simultaneously secure against all efficient query samplers.
On the other hand, we allow our extractor full rewinding access to A (as [Set20, Def. 2.11] and [BFS20,
Def. 4] do); Marlin instead requires that E extract t immediately after seeing c, before seeing (r0, . . . , r2·ℓ−1)
or π. Our definition thus selectively incorporates these definitions’ respective slight weakenings with respect
to each other. We note that Marlin’s “early extraction” requirement meets the demands imposed by non-
constant-round protocols, where, in fact, E must moreover be non-rewinding. As this latter setting doesn’t
apply to us, we accept the relaxation adopted by [Set20, Def. 2.11] and [BFS20, Def. 4].
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4.2 Our Construction

We now instantiate our concrete scheme Π in the random oracle model. We use Merkle tree commitments,
in a manner which evokes Ben-Sasson, Chiesa and Spooner [BCS16]’s transformation from interactive oracle
proofs to non-interactive random oracle proofs.

CONSTRUCTION 4.6 (Main polynomial commitment scheme).
We define Π = (Setup,Commit,Open,Prove,Verify) as follows.

• params← Π.Setup(1λ, ℓ). On input 1λ and ℓ, set m := 2ℓ, and return a prime power q ≥ 2ω(log λ),
an [n,m, d]-code C ⊂ Fn

q for which n = 2O(ℓ) and d = Ω(n), and a repetition parameter γ = Θ(λ).

• (c, u) ← Π.Commit(params, t). On input t(X0, . . . , X2·ℓ−1) ∈ Fq[X0, . . . , X2·ℓ−1], express t =
(t0, . . . , tm2−1) in coordinates with respect to the Lagrange basis on {0, 1}2·ℓ, collate the resulting

vector into an m×m matrix (ti)
m−1
i=0 , and encode (ti)

m−1
i=0 row-wise, so obtaining a further, m×n

matrix (ui)
m−1
i=0 . Output a Merkle commitment c to (ui)

m−1
i=0 and the opening hint u := (ui)

m−1
i=0 .

• b← Π.Open(params, c; t, u). On input the root c, opening t(X0, . . . , X2·ℓ−1) ∈ Fq[X0, . . . , X2·ℓ−1],
and opening hint a collection of distinct Merkle paths against c, missing the columns M ⊂
{0, . . . , n−1}, say, write t into a matrix (ti)

m−1
i=0 and check

∣∣∣∆m
(
(ui)

m−1
i=0 , (Enc(ti))

m−1
i=0

)
∪M

∣∣∣ ?
< d

2 .

We define Π.Prove and Π.Verify by applying the Fiat–Shamir heuristic to the following interactive
protocol, where P has t(X0, . . . , X2·ℓ−1) and (ui)

m−1
i=0 , and P and V have c, s, and (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q .

• P sends V t′ :=
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ti)m−1
i=0 in the clear.

• For each i ∈ {0, . . . , γ − 1}, V samples ji ← {0, . . . , n− 1}. V sends P the set J := {j0, . . . , jγ−1}.

• P sends V the columns
{
(ui,j)

m−1
i=0

}
j∈J

, each featuring an accompanying Merkle path against c.

• V computes Enc(t′). For each j ∈ J , V verifies the Merkle path attesting to (ui,j)
m−1
i=0 , and moreover

requires that
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ui,j)
m−1
i=0

?
= Enc(t′)j . Finally, V requires s

?
= t′ ·

⊗ℓ−1
i=0(1− ri, ri).

In the last step of Construction 4.6 above, we write Enc : Fm
q → Fn

q for C’s encoding function.

Our scheme is clearly complete. We note that the requirement n = 2O(ℓ) is necessary merely for C to be
efficiently encodable. The requirement d = Ω(n) entails that C has constant relative distance.

We moreover have the following security guarantees:

Theorem 4.7. The scheme of Construction 4.6 is binding.

Proof. We fix an adversary A who outputs a commitment c and pairs (t0, u0) and (t1, u1). Assuming that
Π.Open

(
params, c; t0, u0

)
and Π.Open

(
params, c; t1, u1

)
both hold, we argue as follows. We write M0 and

M1 for the subsets of {0, . . . , n− 1} respectively missing from the hints u0 and u1. We moreover write:

X := ∆m
((

u0
i

)m−1

i=0
,
(
Enc(t0i )

)m−1

i=0

)
∪M0 ∪∆m

((
u1
i

)m−1

i=0
,
(
Enc(t1i )

)m−1

i=0

)
∪M1.

On the one hand, our hypothesis immediately implies that |X| < d. On the other hand, we claim that

∆m
((

Enc(t0i )
)m−1

i=0
,
(
Enc(t1i )

)m−1

i=0

)
⊂ X. Indeed, proceeding by contraposition, we fix an index j ̸∈ X.

Since j ̸∈ M0 ∪M1, we see that the hints u0 and u1 respectively Merkle-open the columns
(
u0
i,j

)m−1

i=0
and(

u1
i,j

)m−1

i=0
against c, so that—barring an oracle collision on the part of A—these columns are necessarily

identical. On the other hand, since j ̸∈ ∆m
((

u0
i

)m−1

i=0
,
(
Enc(t0i )

)m−1

i=0

)
∪ ∆m

((
u1
i

)m−1

i=0
,
(
Enc(t1i )

)m−1

i=0

)
, we

see that
(
Enc(t0i )j

)m−1

i=0
=

(
u0
i,j

)m−1

i=0
and

(
Enc(t1i )j

)m−1

i=0
=

(
u1
i,j

)m−1

i=0
. Combining these facts, we see that(

Enc(t0i )j
)m−1

i=0
=

(
Enc(t1i )j

)m−1

i=0
, so that j ̸∈ ∆m

((
Enc(t0i )

)m−1

i=0
,
(
Enc(t1i )

)m−1

i=0

)
, as desired. We conclude

that
(
Enc(t0i )j

)m−1

i=0
=

(
Enc(t1i )j

)m−1

i=0
. Since Enc is injective, we conclude finally that t0 = t1.
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Theorem 4.8. If the query sampler Q is admissible, then the scheme of Construction 4.6 is extractable.

Proof. We define an emulator E . Given access to A, and on inputs params, c and (r0, . . . , r2·ℓ−1), E operates
as follows.

1. Having observed and collected A’s queries up until the point of its outputting c, E initializes the empty
matrix (ui)

m−1
i=0 . E defines the following algorithm, which is essentially a slight simplification of an

algorithm, called Valiant’s extractor, given in Ben-Sasson, Chiesa and Spooner [BCS16, § A.1].

1: procedure TreeBuilder(h, i, j)

2: if i = 0 and h
?
= H

(
(xi)

m−1
i=0

)
arises as some oracle output then

3: overwrite the value of the jth column (ui,j)
m−1
i=0

:= (xi)
m−1
i=0 .

4: else if i > 0 and h
?
= H(h0 ∥ h1) arises as some oracle output then

5: recursively kick off TreeBuilder(h0, i− 1, 2 · j) and TreeBuilder(h1, i− 1, 2 · j + 1).

E executes TreeBuilder(c, log n, 0). E writes M ⊂ {0, . . . , n−1} for the set of never-assigned indices.

2. E internally runs A on the further input (r0, . . . , r2·ℓ−1) in a straight-line manner, until A outputs s
and π. If Π.Verify(params, c, s, (r0, . . . , r2·ℓ−1), π) = 0, then E outputs (s, π;⊥,⊥) and terminates.

3. E defines:

1: procedure ExtractProof()
2: while true do
3: rewind A to its initial point (i.e., immediately after outputting c).
4: freshly sample (r0, . . . , r2·ℓ−1)← Q(params).
5: run A on (r0, . . . , r2·ℓ−1), with fresh verifier randomness, until it outputs (s, π).
6: if Π.Verify(params, c, s, (r0, . . . , r2·ℓ−1), π) then return t′ and (r0, . . . , r2·ℓ−1).

E writes (r0,0, . . . , r0,2·ℓ−1) for the randomness it used in A’s initial proof above and t′0 for the message
sent by A during the course of its initial proof. By running the routine ExtractProof() above m−1

further times, E extends these quantities to matrices (t′i)
m−1
i=0 and (ri,0, . . . , ri,2·ℓ−1)

m−1
i=0 .

4. E checks if the m×m matrix
(⊗2·ℓ−1

j=ℓ (1− ri,j , ri,j)
)m−1

i=0
is invertible. If it’s not, E outputs (s, π;⊥, u).

5. Otherwise, E performs the matrix operation: t0
...

tm−1

 :=


⊗2·ℓ−1

j=ℓ (1− r0,j , r0,j)
...⊗2·ℓ−1

j=ℓ (1− rm−1,j , rm−1,j)


−1

·

 t′0
...

t′m−1

,
sets as t(X0, · · · , X2·ℓ−1) ∈ Fq[X0, · · · , X2·ℓ−1] the polynomial whose coefficients (in the multilinear

Lagrange basis) are given by the concatenation of (ti)
m−1
i=0 ’s rows, and outputs (s, π; t, u).

In the algorithm TreeBuilder, we understand the conditions 2 and 4 as demanding that the relevant
preimages be well-formed. That is, in case h does arise as the output of a prior query, whose input, however,
is malformed (in that it doesn’t match the format demanded), we understand the relevant condition as failing
to be fulfilled. If h arises as the output of multiple, distinct, well-formed preimages, then we stipulate that
E select arbitrarily among these preimages (this event can only occur if A finds an oracle collision).

We now argue that E runs in expected polynomial time in λ. We write ε for the probability that A passes,
conditioned on its state as of the point at which it first outputs c (this probability is taken over the coins
of both Q and V, and over the further coins of A). We note that, for each fixed c, E proceeds beyond step
2 above with probability exactly ε. Moreover, each execution of ExtractProof terminates in expected
time exactly 1

ε , since that algorithm’s line 6 passes with probability exactly ε per iteration of that algorithm.
Finally, TreeBuilder is straight-line and polynomial time. We conclude that E ’s total expected runtime
is at most that of TreeBuilder plus 1+ ε · m−1

ε = m times the time it takes to run Construction 4.6 once;
this total time is thus polynomial in λ (and independent of c and ε).
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We now analyze the distribution returned by E . We note that the outputs (c, s, π) upon which D
runs are identically distributed in the distributions RealΠ,ℓ

Q,A,E,D(λ) and EmulΠ,ℓ
Q,A,E,D(λ). It thus suffices to

show that it holds in at most a negligible proportion of executions of A, Q and E that, simultaneously,
Π.Verify(params, c, s, (r0, . . . , r2·ℓ−1), π) = 1 and either Π.Open(params, t; c, u) = 0 or t(r0, . . . , r2·ℓ−1) ̸= s.
We write Q(λ) for a polynomial upper bound on the number of random oracle queries A makes. We recall

from [BCS16, § A.1] that it holds with probability at most Q(λ)2+1
2λ

, which is negligible, that A outputs—
during any particular among its executions—either a valid Merkle path on a missing column j ∈ M or, for
some j ̸∈M , a valid Merkle opening (ui,j)

m−1
i=0 inconsistent with the matrix extracted by E in step 1 above.

In the following lemma, we write C for the puncturing of C at M .

Lemma 4.9. If E’s matrix satisfies dm
(
(ui)

m−1
i=0 , C

m
)
≥ d

3 − |M |, then A passes with negligible probability.

Proof. We first argue that we may freely assume that |M | < d
3 . Indeed, if |M | ≥ d

3 , then J ∩M = ∅ holds

with probability at most
(
1− d

3·n
)γ
, which is negligible, since d = Ω(n) and γ = Θ(λ). On the other hand,

A can pass in case J ∩M ̸= ∅ only by submitting valid a Merkle opening against a missing column.
We thus assume that |M | < d

3 , and moreover write e :=
⌊
d−1
3

⌋
−|M |. Since the distance, say d, of C is at

least d− |M |, which itself satisfies
⌊
d−1
3

⌋
≥

⌊
d−|M |−1

3

⌋
≥

⌊
d−1
3

⌋
− |M | = e, we see that e ∈

{
0, . . . ,

⌊
d−1
3

⌋}
.

On the other hand, by our hypothesis, dm
(
(ui)

m−1
i=0 , C

m
)
> e. We abbreviate u′ :=

⊗2·ℓ−1
i=ℓ (1−ri, ri)·(ui)

m−1
i=0 .

Applying the contraposition of Theorem 3.1 to the code C, we conclude that, provided that the second half
(rℓ, . . . , r2·ℓ−1) ∈ Fℓ

q of the verifier’s random point resides outside a set of mass at most 2 · ℓ · e+1
q in Fℓ

q, we

have d
(
u′, C

)
> e. In particular, for each such (rℓ, . . . , r2·ℓ−1), |∆(u′,Enc(t′)) ∪M | > e + |M | =

⌊
d−1
3

⌋
in

fact holds, since Enc(t′) is a codeword. We conclude that J∩(∆(u′,Enc(t′)) ∪M) = ∅ holds with probability
at most

(
1− d

3·n
)γ
. On the other hand, if J ∩ (∆(u′,Enc(t′)) ∪M) ̸= ∅, then we claim that V accepts with

negligible probability. Indeed, A can pass on an index j ∈M only by Merkle-opening a missing column, and
on an index j ∈ ∆(u′,Enc(t′)) \M only by Merkle-opening a column inconsistent with that extracted by E .

Putting the pieces together, we see that A’s chance of passing is at most Q(λ)2+1
2λ

+ 2 · ℓ · dq +
(
1− d

3·n
)γ

(here, we crudely upper-bound 2 · ℓ · e+1
q ≤ 2 · ℓ · dq ). As q ≥ 2ω(log λ) holds by construction, and d and ℓ are

polynomial in λ, 2 · ℓ · dq is negligible. On the other hand, we again have that
(
1− d

3·n
)γ

is negligible. This
completes the proof of the lemma.

Applying Lemma 4.9, we assume henceforth that dm
(
(ui)

m−1
i=0 , C

m
)
< d

3−|M |. We conclude immediately

that there exists an interleaved message (ti)
m−1
i=0 for which

∣∣∣∆m
(
(ui)

m−1
i=0 , (Enc(ti))

m−1
i=0

)
∪M

∣∣∣ < d
3 . We note

that, a fortiori, dm
(
(ui)

m−1
i=0 , (Enc(ti))

m−1
i=0

)
< d

3 too holds. The following lemma shows that we may further

restrict our attention to the case in which A correctly outputs t′ =
⊗2·ℓ−1

i=ℓ (1 − ri, ri) · (ti)m−1
i=0 during its

initial proof.

Lemma 4.10. If its message t′ ̸=
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ti)m−1
i=0 , then A passes with negligible probability.

Proof. We write e :=
⌊
d−1
3

⌋
, and abbreviate u′ :=

⊗2·ℓ−1
i=ℓ (1 − ri, ri) · (ui)

m−1
i=0 ; we moreover write v′ :=⊗2·ℓ−1

i=ℓ (1−ri, ri)·(Enc(ti))m−1
i=0 . By the argument just given, we may freely assume that dm

(
(ui)

m−1
i=0 , Cm

)
≤

e holds; in particular, d(u′, v′) ≤ e. On the other hand, our hypothesis implies that Enc(t′) ̸= v′. By the
reverse triangle inequality, we thus have:

d(u′,Enc(t′)) ≥ |d(Enc(t′), v′)− d(u′, v′)| ≥ d− e.

We see that J ∩ ∆(u′,Enc(t′)) = ∅ holds with probability at most
(
1− d−e

n

)γ ≤ (
1− 2·d

3·n
)γ
, which is

negligible. On the other hand, if V queries any position j ∈ ∆(u′,Enc(t′)), then either j ∈ M or j ∈
∆(u′,Enc(t′)) \M ; in these cases, A can pass only by exhibiting an oracle collision (on a missing or on an
existing column, respectively). This again completes the proof, in light of the guarantees d = Ω(n) and
γ = Θ(λ).
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We thus restrict our attention to the case in which A’s initial proof π passes and there exists a message

(ti)
m−1
i=0 for which both

∣∣∣∆m
(
(ui)

m−1
i=0 , (Enc(ti))

m−1
i=0

)
∪M

∣∣∣ < d
3 and t′ =

⊗2·ℓ−1
i=ℓ (1 − ri, ri) · (ti)m−1

i=0 hold.

We denote:

δ :=
Q(λ)2 + 1

2λ
+

(
1− 2 · d

3 · n

)γ

+
ℓ

q
.

Since δ is negligible in λ,
√
δ also is. In this light, we may simply ignore each execution for which A’s

probability of success ε ≤
√
δ, since in that case E proceeds into step 3 in the first place with negligible

probability. We thus assume that ε >
√
δ in what follows. In the following technical lemma, we write V for

the event in which A submits an accepting proof, and E for a further, arbitrary event.

Lemma 4.11. Assuming as above that Pr[V ] >
√
δ, if Pr[V ∧E] ≤ δ moreover holds, then Pr[E | V ] ≤

√
δ.

Proof. Assuming the hypotheses of the lemma, we see that

Pr[E | V ] =
Pr[V ∧ E]

Pr[V ]
<

δ√
δ
=
√
δ,

as required.

Lemma 4.12. The probability that t′i ̸=
⊗2·ℓ−1

j=ℓ (1−ri,j , ri,j) ·(ti)m−1
i=0 for any i ∈ {1, . . . ,m−1} is negligible.

Proof. For each i∗ ∈ {1, . . . ,m− 1}, we write Ei∗ for the event in which A’s i∗th message t′i∗ ̸=
⊗2·ℓ−1

j=ℓ (1−
ri∗,j , ri∗,j) · (ti)m−1

i=0 . By the argument of Lemma 4.10, Pr[V | Ei∗ ] is at most Q(λ)2+1
2λ

+
(
1− 2·d

3·n
)γ ≤ δ. We

thus see that Pr[V ∧ Ei∗ ] = Pr[V | Ei∗ ] · Pr[Ei∗ ] ≤ δ, so that the hypothesis of Lemma 4.11 is fulfilled, and
Pr[Ei∗ | V ] ≤

√
δ holds. The probability that any among the events E1, . . . , Em−1 holds is thus at most

1−
(
1−
√
δ
)m−1

≤ (m− 1) ·
√
δ, which is negligible (here, we use a standard binomial approximation).

Lemma 4.13. The probability that the rows
(⊗2·ℓ−1

j=ℓ (1− ri,j , ri,j)
)m−1

i=0
are linearly dependent is negligible.

Proof. We first argue that for A ⊂ Fm
q an arbitrary proper linear subspace, and S :={

(rℓ, . . . , r2·ℓ−1) ∈ Fℓ
q

∣∣∣ ⊗2·ℓ−1
i=ℓ (1− ri, ri) ∈ A

}
its preimage under the tensor map, we have µ(S) ≤ ℓ

q . It

suffices to prove the result only in case A is a hyperplane. We write a = (a0, . . . , am−1) for a vector of
coefficients, not all zero, for which A =

{
u ∈ Fm

q

∣∣ u · a = 0
}
holds. By construction, (rℓ, . . . , r2·ℓ−1) ∈ S if

and only if
⊗2·ℓ−1

i=ℓ (1− ri, ri) · a = 0. We see that S ⊂ Fℓ
q is nothing other than the vanishing locus of that

combination of the ℓ-variate multilinear Lagrange polynomials given by the coefficient vector a. Because
a is not identically zero and these polynomials are linearly independent, the combination is itself nonzero.
Applying Schwartz–Zippel, we see that the vanishing locus S ⊂ Fℓ

q is of mass at most µ(S) ≤ ℓ
q , as desired.

We note that
⊗2·ℓ−1

j=ℓ (1− r0,j , r0,j) is not the zero vector, since its components necessarily sum to 1. For

each i∗ ∈ {1, . . . ,m− 1}, we set as Ai∗ ⊂ Fm
q the span of

(⊗2·ℓ−1
j=ℓ (1− ri,j , ri,j)

)i∗−1

i=0
, and write Ei∗ for the

event in which
⊗2·ℓ−1

j=ℓ (1 − ri∗,j , ri∗,j) ∈ Ai∗ . The argument above implies exactly that Pr[Ei∗ ] ≤ ℓ
q ≤ δ;

we conclude in particular that Pr[V ∧ Ei∗ ] = Pr[V | Ei∗ ] · Pr[Ei∗ ] ≤ δ, and the hypothesis of Lemma 4.11
is again fulfilled. Applying Lemma 4.11 repeatedly, we conclude again that the probability that any of the

events Ei∗ holds, for i∗ ∈ {1, . . . ,m−1}, is at most 1−
(
1−
√
δ
)m−1

≤ (m−1) ·
√
δ, which is negligible.

We finally argue that the values t and u = (ui)
m−1
i=0 extracted by E satisfy Π.Open(params, c; t, u) and

t(r0, . . . , r2·ℓ−1) = s. Indeed, under the condition guaranteed by Lemma 4.9, a matrix (ti)
m−1
i=0 for which∣∣∣∆m

(
(ui)

m−1
i=0 , (Enc(ti))

m−1
i=0

)
∪M

∣∣∣ < d
3 exists. Under the conditions guaranteed by Lemmas 4.12 and 4.13,

E extracts precisely this matrix (ti)
m−1
i=0 in steps 3 and 5. Finally, Lemma 4.10 guarantees that A’s first

message satisfies t′ =
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ti)m−1
i=0 ; on the other hand, Π.Verify(params, c, s, (r0, . . . , r2·ℓ−1), π)

implies that s = t′ ·
⊗ℓ−1

i=0(1− ri, ri). We conclude that s =
⊗2·ℓ−1

i=ℓ (1− ri, ri) · (ti)m−1
i=0 ·

⊗ℓ−1
i=0(1− ri, ri) =

t(r0, . . . , r2·ℓ−1). This completes the proof of the theorem.
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We record a few remarks about our proof. Theorem 4.8’s difficulty arises, roughly, from the fact that
the conditional distribution of the messages t′ and of the random vectors (r0, . . . , r2·ℓ−1) ∈ F2·ℓ

q which E
adds—that is, the distribution of these values, conditioned on A passing—can be highly arbitrary; A could,
for example, output a successful proof with vastly higher probability when

⊗2·ℓ−1
i=ℓ (1− ri, ri) resides in some

fixed low-dimensional subspace A ⊂ Fm
q (let’s say) than when it doesn’t, thereby thwarting E ’s extraction.

Our proof thus argues that if A succeeds with high enough probability—specifically, with probability greater
than a certain cutoff which, crucially, is still negligible, but which decays much more slowly than that of the
relevant failure events—then the conditional distribution of A’s outputs necessarily concentrates away from
these bad events. The key idea is that δ, by virtue of being negligible, necessarily admits an expression of
the form δ = 2−f(λ), for some f(λ) = ω(log(λ)); we thus have in turn that

√
δ takes the form 2−

1
2 ·f(λ). This

latter quantity is greater than δ by a factor of 2
1
2 ·f(λ), which is superpolynomial; on the other hand, it is

itself nonetheless still negligible. This maneuver, whereby the exponent is halved, can be performed on any
negligible function. Upon excluding from our treatment those executions for which ε ≤

√
δ, we find that, in

the remaining executions, A’s success probability is sufficiently “high” that failure events necessarily figure
negligibly in it, regardless of A’s strategy. This latter step is made precise by a Bayes-like argument.

Brakedown’s proof. We compare our proof strategy to that of Brakedown [Gol+23, Lems. 2 and 3],
which proves a similar result. We ignore purposefully those differences between our proofs which pertain
specifically to our consolidation of that protocol’s two phases, and focus instead on the “rest of” the proof,
which poses similar challenges in our respective settings.

Brakedown’s proof, essentially, handles the non-uniformity of A’s conditional output distribution by
stipulating that the emulator E filter “actively”, using rejection sampling to curate an artificially uniform
distribution over some sufficiently large set of coefficient vectors. This procedure requires that E “know”
A’s success probability ε. Brakedown’s emulator brings about this state of affairs using various techniques,
including a procedure of Hazay and Lindell [HL10, Thm. 6.5.6] (which these latter authors attribute to
Goldreich). Informally, Brakedown’s approach makes the independence analysis of the emulator’s coefficient
vectors easier, since the relevant vectors are, by fiat, drawn from a uniform distribution over some set (cf.
our Lemma 4.13). On the other hand, it makes the acquisition of these vectors more complicated, since it
mandates that the emulator evaluate their membership in the relevant set.

We record a few possible issues with that proof as written, which seem, by and large, rectifiable. First of
all, [Gol+23, Lem. 2] assumes a deterministic prover. This property is indeed used by that proof, namely in
its assertion that E ’s inspection of P’s response u′ “enables E to determine whether r ∈ T”. Sure enough,
the membership of each given r ∈ Fm in T depends, in general, both on the coins P flips while constructing
u and on the coins V flips while selecting its challenge columns. It would thus fail to hold—for randomized
P—that E could even determine which among its candidates r reside in T , given these vectors’ accompanying
responses u′ alone, let alone that those vectors r which do belong to T moreover feature responses u′ which
cause V to accept with probability ϵ/2 or more (over its choice of random columns). This latter condition in
turn is invoked—implicitly—in the extraction procedure by which E , from the vectors u′

1, . . . , u
′
m, obtains its

witness [Gol+23, pp. 208–209]. (Actually, this latter reduction moreover implicitly assumes that ϵ is large
enough—that is, greater than both N/|F|+(1−γ/3)ℓ and (1−(2/3)γ)ℓ [Gol+23, (5) and (6)]—and certainly
fails otherwise; some hypothesis on ε is thus necessary for this extraction to go through.)

For randomized P, E may be able to rectify this issue by extracting not just one response u′ from P, but
many (running P with fresh random tape each time), and testing each u′ for agreement with π vis-à-vis r.
By a Chernoff-style calculation akin to that which [Gol+23, Lem. 2]’s current extractor runs with respect to
the property r ∈ T , that approach might successfully force the existence (with high probability) of at least
one response u′ whose acceptance probability is sufficiently high as to make E ’s subsequent extraction go
through (or else, barring that, supply sufficiently strong evidence that r ̸∈ T as to justify E ’s abandoning r).
Alternatively, the proof would need to justify its assumption whereby P is deterministic. Interestingly, the
most compelling strategy whereby this latter assumption might be justified appears to encounter an identical
obstacle. That strategy would, it seems, proceed by showing that E may bootstrap any given random prover
into a deterministic one, without excessively impacting that prover’s probability of success. To do this, E
would proceed by repeatedly sampling candidate random tapes for its random prover P until finding one
which causes P to pass with “high” probability over V’s coins. The problem of determining this suitable
random tape is essentially the same as that—just discussed—of determining whether r ∈ T .
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The proof’s claim that “if ϵ is not inverse-polynomial in m and λ, this expected runtime is not polynomial
in m and λ” seems unduly pessimistic. While the runtime of E—conditioned on its entering the extraction
phase in the first place—is certainly not polynomial in λ in general, it is polynomial in λ and 1

ϵ . (In fact,

that procedure will, roughly, terminate in time either 36(m+λ)
ϵ or 36(m+λ)

2−λ/8 , whichever is smaller.) Since E only
enters this phase in the first place with probability ϵ, it is the latter condition, and not the former, which is
necessary to establish an expected polynomial-time emulator. We thus question whether the simultaneous
use both of Hazay and Lindell [HL10, Thm. 6.5.6] and of the geometric decay technique is necessary.

We find that our proof strategy represents an interesting alternative to Brakedown’s. Our emulator’s
description and our estimation of its runtime are significantly simpler. Our emulator’s success probability
is perhaps comparably complicated to analyze, though we have undertaken our analysis with considerable
attention to detail.

4.3 Complexity

We discuss the theoretical efficiency of Construction 4.6. Implemented näıvely, Construction 4.6 admits
proofs consisting of exactly m · (γ + 1) Fq-elements (P must send the single m-element message t′, as well

as the γ m-element columns (ui,j)
m−1
i=0 ). We recall an optimization discussed in Brakedown [Gol+23, § 4],

and attributed by that work to Ligero. Construction 4.6 works even when the input matrix (ti)
m−1
i=0 is not

square, but rather of size m0×m1, say, where m0 ·m1 = 22·ℓ. Moreover, the resulting variant of the protocol
has proof size exactly m1 + γ ·m0. To minimize this size, we choose m0 and m1 so that m1 = γ ·m0 holds;
in particular, we set m0 := 1√

γ ·m and m1 :=
√
γ ·m (where m here denotes 2ℓ). The resulting proof clearly

has size m1 + γ ·m0 = 2 · √γ ·m. This measure thus improves the proof size quadratically in γ (compared
to the näıve approach in which a square matrix is used).

The standard Brakedown commitment scheme—that is, the variant in which the two phases are not
consolidated—features proofs containing 2 · m1 + γ · m0 elements, since two messages must be sent (our
improvement eliminates this factor of two). Brakedown’s optimization thus seeks to achieve 2 ·m1 = γ ·m0,

and accordingly sets m0 :=
√

2
γ ·m and m1 :=

√
γ
2 ·m. The resulting proof is thus of size 2 ·

√
2 · γ ·m. We

note the resulting extra factor of
√
2, absent from our proof’s size.

We finally discuss Construction 4.6’s prover and verifier runtime efficiency. We write Enc(λ) for the
runtime of C’s encoding procedure. It is easy to see that P’s runtime is 1√

γ ·m·Enc(λ) during the commitment

phase and 1√
γ ·m ·

√
γ ·m = m2 in the evaluation phase, for a total of 1√

γ ·m · Enc(λ) +m2. In the special

case that Enc is linear-time in m—Brakedown’s code [Gol+23, § 5], e.g., satisfies this property—the total

cost across both phases becomes m2 + O
(

1√
λ
·m2

)
; since each polynomial t(X0, . . . , X2·ℓ−1) requires m2

field elements to represent, this efficiency is essentially optimal. The prover cost of the standard Brakedown
scheme is 1√

γ ·m·Enc(λ)+2·m2 (we note the extra factor of 2). Specializing again to the linear-time-encodable

case, we obtain a total cost of 2 ·m2 + O
(

1√
λ
·m2

)
for the standard scheme; we see that we improve the

prover runtime of Brakedown’s commitment scheme by a factor of 2, up to lower-order terms. (If the implicit
linear constant in the runtime of Enc is very large, however, then our improvement may remain limited until
λ becomes large.)

Construction 4.6’s verifier complexity is Enc(λ)+ γ · 1√
γ ·m = Enc(λ)+

√
γ ·m. Assuming again that Enc

is linear-time in m, this cost becomes
√
γ ·m+O(m), which is of square-root complexity in both λ and the

size of t. The verifier complexity of the standard Brakedown scheme is 2 · Enc(λ) + 2 ·
√
2 · γ ·m. We thus

improve the verifier’s complexity as well by a factor of more than two.

5 Concrete Efficiency

We implemented our polynomial commitment scheme by modifying the open-source repository controi /

lcpc. We ran all benchmarks on a c7g.8xlarge AWS instance, with an AWS Graviton3 processor with
32 virtual cores. We used a prime field Fq of 191 bits, so attaining a security level of at least 128 bits
throughout. We used the hash function Blake3. Benchmarks are given in Tables 1, 2 and 3.
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Commitment Scheme Number of Coefficients

Variant Code 216 220 224 228

[Gol+23]

Reed–Solomon, γ = 1
2 2.054 8.146 54.256 632.380

Reed–Solomon, γ = 1
4 1.389 5.448 45.183 603.177

Brakedown, γ = 0.65 8.138 26.136 119.125 876.627

This work

Reed–Solomon, γ = 1
2 1.183 4.252 27.163 314.819

Reed–Solomon, γ = 1
4 1.122 4.190 27.011 313.479

Brakedown, γ = 0.65 5.197 14.173 60.700 439.457

Table 1: Time (ms) for Π.Prove, ⌈log q⌉ = 191

Commitment Scheme Number of Coefficients

Variant Code 216 220 224 228

[Gol+23]

Reed–Solomon, γ = 1
2 4.501 11.314 34.308 119.849

Reed–Solomon, γ = 1
4 4.039 9.211 24.582 79.406

Brakedown, γ = 0.65 23.758 89.216 384.866 2,266.047

This work

Reed–Solomon, γ = 1
2 2.582 6.158 17.992 61.849

Reed–Solomon, γ = 1
4 3.155 7.501 21.804 75.097

Brakedown, γ = 0.65 12.883 45.780 194.597 1,114.807

Table 2: Time (ms) for Π.Verify, ⌈log q⌉ = 191

Commitment Scheme Number of Coefficients

Variant Code 216 220 224 228

[Gol+23]

Reed–Solomon, γ = 1
2 0.459 1.384 5.016 19.471

Reed–Solomon, γ = 1
4 0.329 1.040 3.841 14.999

Brakedown, γ = 0.65 5.227 9.791 26.537 92.013

This work

Reed–Solomon, γ = 1
2 0.365 1.009 3.516 13.471

Reed–Solomon, γ = 1
4 0.267 0.771 2.740 10.557

Brakedown, γ = 0.65 4.852 8.291 20.537 68.013

Table 3: Proof size (MiB), ⌈log q⌉ = 191

Tables 1, 2, and 3 exhibit improvements matching those predicted by the abstract efficiency analysis in
Section 4. We recall that we used matrix sizes designed to minimize proof size throughout. Different choice
strategies could target, for example, verifier time. Finally, all benchmarks include various lower-order costs,
including the costs of generating, transmitting, and verifying Merkle paths, for example.

We record a remark about the concrete security achieved by our protocol. The analyses of Lemmas 4.9
and 4.10 show that the prover’s soundness is controlled by the expression 2 · ℓ · dq +

(
1− d

3·n
)γ

(the soundness

error of Lemma 4.9 dominates). This expression’s first term is larger by a factor of 2 · ℓ = 2 · log
(

m√
γ

)
than

that of the analogous expression in [Gol+23]. For all sizes benchmarked above, for which m2 ≤ 228, we have

that log (2 · ℓ) = log
(
2 · log

(
m√
γ

))
≤ 5; in this light, our protocol technically requires a field Fq roughly 5

bits larger (in the worst case) in order to achieve equivalent security. On the other hand, in practice, our
chosen field size is governed by the limb size of our machines; this 5-bit difference is thus immaterial in
practice. This picture would be different if our logarithmic loss ℓ were replaced by, say, a linear loss of m.
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