
SEC: Fast Private Boolean Circuit Evaluation from

Encrypted Look-ups

Debadrita Talapatra
IIT Kharagpur, India
debadritat.fg2219@gmail.com

Nimish Mishra
IIT Kharagpur, India
neelam.nimish@gmail.com

Arnab Bag
IIT Kharagpur, India
amiarnabbolchi@gmail.com

Sikhar Patranabis
IBM Research India

sikharpatranabis@gmail.com

Debdeep Mukhopadhyay
IIT Kharagpur, India

debdeep.mukhopadhyay@gmail.com

Abstract

Encrypted computation has over the past thirty years, turned into one of the holy
grails of modern cryptography especially with the advent of cloud computing. Modern
cryptographic techniques like Fully Homomorphic Encryption (FHE) allow arbitrary
Boolean circuit evaluation with encrypted inputs. However, the prohibitively high
computation and storage overhead coupled with high communication bandwidth of
FHE severely limit its scalability in practical applications like real-time analytics or
machine learning inference. In summary, the current cryptographic literature lacks
robust and scalable methods for efficient encrypted computation in practical outsourced
applications.

In this work, we introduce a new approach for encrypted computation called SEC
(Symmetric Encryption-based Computation) which offers fast Boolean circuit evalua-
tion with optimal storage and communication overhead while scaling smoothly to real
applications. SEC relies on an efficient Searchable Symmetric Encryption (SSE) con-
struction to leverage the power of encrypted lookups in Boolean circuit evaluation.
SEC is specifically suited for client-server systems, and the server, honest-but-curious
receives the client’s encrypted inputs and outputs the encrypted evaluation result while
leaking only benign information to the server. SEC essentially extends the capabilities
of SSE schemes from searching over encrypted databases to arbitrary function evalu-
ation over encrypted inputs. SEC supports Boolean function composition, allowing it
to evaluate complex functions efficiently without blowing up storage overhead. SEC
outperforms the state-of-the-art FHE, namely, Torus FHE (TFHE) scheme with an
average 103× speed-up in basic Boolean gate evaluations. We present a prototype
implementation of SEC and experimentally validate its practical efficiency. Our ex-
periments show that SEC executes arbitrary depth Boolean circuit in a single round
of communication between client and server with a significant improvement in perfor-
mance than the fastest TFHE backends. We exemplify the applicability of our scheme
by implementing one byte AES SBox using SEC and comparing the results with TFHE.

1

mailto:debadritat.fg2219@gmail.com
mailto:neelam.nimish@gmail.com
mailto:amiarnabbolchi@gmail.com
mailto:sikharpatranabis@gmail.com
mailto:debdeep.mukhopadhyay@gmail.com

Contents

1 Introduction 3
1.1 Our Contributions . 6
1.2 Technical Challenges and Proposed Solutions 7

2 Preliminaries and Background 10
2.1 Notations . 10
2.2 SSE: Syntax and Security Model . 11
2.3 Overview of OXT . 12
2.4 Overview of TSet . 13

3 SECBasic: Basic Construction 15
3.1 Syntax . 15
3.2 Technical Details . 16
3.3 Proof of Correctness of SECBasic . 19
3.4 SECBasic Complexity Analysis . 19
3.5 Limitations of SECBasic . 20

4 SEC: Final Construction 20
4.1 Revised Encrypted Look-up Table Design . 21
4.2 An Illustrative Example . 22
4.3 Evaluating Function Compositions . 22
4.4 Proof of Correctness . 24
4.5 Computation and Storage Overhead . 24

5 Security of SEC 26
5.1 Leakage Profile Analysis of SEC . 26

6 Experimental Results 30

7 Conclusion and Future Work 33

2

1 Introduction

Outsourced Computation. In modern digital infrastructures, outsourced data pro-
cessing has gained significant attention from government organizations, industries, and
academia. The advancement of cloud computing and other connected applications like
the Internet of Things (IoT) involves storage and processing of sensitive data of millions
of users. The majority of these tasks are handled by third-party manufacturers and cloud
service providers who can access the associated data - be it sensor readings from home au-
tomation devices or large-scale enterprise servers executing huge machine learning models
over medical data. This typically raises privacy concerns about the users’ sensitive informa-
tion as untrusted parties can gain access to sensitive information while processing outsourced
data.

The densely connected network of low-cost embedded systems in several applications,
including IoT, home automation, medical devices, and production lines etc provides an ef-
fective and robust way of managing and controlling essential systems. However, the limited
computation capability of the end-point devices often calls for an asymmetric computation
overhead. In this way, computationally heavy tasks can be offloaded to powerful back-end
computing infrastructure, and the low-end embedded devices process computationally light
tasks. Such task distribution is critical for real-time and high-throughput applications, such
as biometric scanners for door locks or machine learning (ML) based driver assistant sys-
tems in cars. This asymmetric task distribution is adopted in state-of-the-art computation
paradigms such as edge computing, and is demonstrated in multiple applications such as ML
inferences [1, 2], health-care [3, 4, 5], and industrial production lines [6, 7, 8].

The end devices in the aforementioned applications rely on the back-end infrastructure
for full system operation, which executes heavy computational tasks. With the adoption
of modern cloud-based remote computing platforms, the back-end computation services are
deployed (outsourced) on third-party cloud platforms. Naturally, without specific privacy
mechanisms, the third-party remote servers can “see” all user data sent to the server for
processing, thus leading to serious privacy concerns. In recent years, multiple attacks [9, 10]
have been demonstrated targeting such systems in practice, essentially pushing towards
the adoption of secure and scalable privacy mechanisms for protecting sensitive data from
unauthorised access.

Privacy-preserving Computation Framework. While developing use-case centric
privacy preserving solutions is one option, it is often restrictive because of the need to
depend upon the specifics of the underlying offloaded computation as well. For instance,
a privacy-preserving machine learning inference scheme [11, 12, 13] needs to consider the
underlying machine learning algorithms in its design. As such, these solutions cannot be
considered as generic privacy preserving compute mechanisms. Therefore, in recent years,
much attention has been given to developing generic frameworks of arbitrary computation
over encrypted data, so that such mechanisms support application agnostic privacy pre-
serving capabilities. There exists in literature a number of elegant cryptographic solutions1

that provide a secure way of computing over outsourced encrypted data, such as - Fully
Homomorphic Encryption (FHE) [16] Oblivious Random Access Memory model (ORAM)

1Note that we do not consider implementations like [14] that rely on hardware assumptions to achieve
this objective, because such assumptions are challenged by platform dependent side-channel attack vectors
[15].

3

[17], Multi-party Computation (MPC) [18, 19], and Functional Encryption (FE) [20]. How-
ever, each has limitations from a practicality viewpoint [21]. For instance, ORAM promises
oblivious memory access patters, but is hard to actualize in hardware, closed-source, and
not tested against scaled databases [22]. Likewise, MPC involves functional computation on
data disjointly owned by multiple clients, which is completely different threat model consid-
ered in this work. Finally, while FE provides fine-grained query processing over encrypted
data, its practical efficiency is much worse than FHE and is unsuitable for deployment.
While these FE based techniques offer an “ideal” notion of privacy, they incur high compu-
tation cost, communication bandwidth, and storage overhead. This essentially prohibits the
adoption of these techniques in real cloud applications. Consequently, amongst these, FHE
(even with limitations which we expound next) is currently the most practical alternative
with real-world adoption. FHE thus becomes the basis of comparison with our proposal.

Fully Homomorphic Encryption (FHE). FHE has recently gained traction in the
cryptographic literature for privacy-preserving computation with rich functionalities. Due
to the ideal notion of privacy, FHE is widely researched and actively developed for practical
adoption. Introduced by Gentry et al. [16], FHE achieves critical functional homomorphism
properties necessary for encrypted processing and outsourced computation workloads.

Practical Limitations. The scheme by Gentry [16] is based of Learning-With-Errors
(LWE) problem [23], which incurs incremental noise overhead with number of operations.
This growing noise essentially restricts the number of encrypted evaluations before the
output is corrupted leading to incorrect decryption or result. Gentry’s scheme handled this
noise growth by introducing bootstrapping that refreshes the ciphertext to reduce the amount
of noise. However, bootstrapping is computationally extremely heavy and incurs enormous
storage overhead that prohibits deploying FHE in real-time and critical workloads.

A number of works have attempted algorithmic improvements [24, 25, 26, 27, 28, 29,
30, 31, 32] and implementation-oriented optimisations [33, 34, 35, 36, 37, 38] which still
do not attain real-time performance and optimal storage overhead. The state-of-the-art
TFHE construction by Chillotti et al. [32] achieve fast sub-second bootstrapping time in
practice. However, as each primitive function evaluation is preceded by bootstrapping, it
results in prohibitively high computation delay. Combined with the huge storage overhead,
FHE remains unsuitable for practical privacy-preserved computation to date.

While FHE offers a more direct approach for function evaluation over encrypted data,
reducing the bootstrapping overhead certainly improves the performance. However, despite
these clever and heavy optimisations, the actual improvement is insufficient and FHE still
remains practically unsuitable for real workloads due to costly bootstrapping. Clearly,
bypassing the bootstrapping phase in FHE would certainly open up the bottleneck and
one possible way to achieve that by not explicitly performing the function evaluation over
encrypted inputs. Rather, a more fundamental approach can be adopted by considering
pre-computed primitive functions and use these is a secure way. In more general way, the
FHE framework can be replaced by a lookup based approach that does not require any
bootstrapping mechanism. We summarise the goal of this work by asking the following
question.

Can we build an efficient and generic computation framework from encrypted lookup of
basic primitives that potentially supports arbitrary computation depth?

4

In this work, we present our construction SEC that achieves the aforementioned goals.
To elucidate more on the core idea of our construction, we detail the fundamental approach
using a basic computation operation - a full adder, which we discuss below.

Function Evaluation via lookup. We consider the circuit model of computation in this
discussion. we assume a poly-time function of n variables can be equivalently expressed as
a poly-sized circuit of n variables. Equivalently any Boolean function representing a circuit
can be decomposed into basic Boolean operations or gates operating on input variables.
Consider a simple 1-bit full adder adding two 1-bit values A,B with carry Cin, without loss
of generality.

A

B

Cin

S

Cout

Figure 1: 1-bit full adder circuit comprising of two-input logic gates

Structurally, a full adder can be expressed by circuit presented in Figure 1, where the
basic logic primitives {AND,OR,XOR} are evaluated on the respective input values. In this
approach, the basic logic operations are computed on the inputs values. However, these
computations can be replaced with corresponding lookup tables (LUT) encoding each logic
operation. Thus, when the basic logic operations of the circuit is replaced with LUTs, the
transformed circuit evaluates the same function (as shown in Figure 2). Since a lookup
operation is typically faster than a computation, the overall function evaluates faster with
lookup in physical implementations2.

In applications, where the data is not encrypted, look-ups do not bring huge efficiency im-
provement over primitive computations. However, in an encrypted computation framework,
the primitive computations are typically implemented using costly primitives like FHE, and
thus affects the overall computation performance adversely. In contrast, encrypted look-ups
are faster than primitive encrypted computations, and as a result, the overall computation
time required reduces significantly for encrypted lookup based approach. Thus, when a ba-
sic logic circuit is used in encrypted computation application, the transformed circuit with
encrypted lookup (Figure 3) offers faster computation time compared to usual encrypted
computation based approaches such as FHE or MPC.

However, encrypted look-ups still need to be performed in a privacy-preserving way.
This implies that generic lookup techniques for unencrypted data can not be directly used
in our context. Hence we rely on another class of cryptographic schemes - Searchable
Symmetric Encryption (SSE) schemes [39, 40, 41, 42] which provision users with search
capabilities over symmetrically encrypted data. For example, consider a client that offloads
an encrypted database of (potentially sensitive) emails to an untrusted server and later
issues a conjunctive query of the form “retrieve all emails received from xyz@foobar.org with
the keyword “research” in the subject field” (which is a conjunction of the queries “retrieve
all emails received from xyz@foobar.org or “retrieve all emails with the keyword “research”
in the subject field”). For any SSE scheme to be truly practical, it should at least support

2Note that, this difference may not be visible for small functions, but as the depth of the circuit increases,
the lookup based evaluation is faster than straightforward computation

5

A

B

Cin

S

Cout

XOR LUT

AND LUT
OR LUT

XOR LUT

AND LUT

Figure 2: 1-bit full adder circuit - logic gates replaced with LUT

A

B

Cin

S

Cout

Encrypted
DB

Encrypted
DB

Encrypted
DB

Encrypted
DB

Encrypted
DB

Figure 3: 1-bit full adder circuit - logic gates replaced with encrypted lookup.

such conjunctive keyword queries, i.e., given a set of keywords (w1, . . . ,wn), it should be
able to find and return the set of documents that contain all of these keywords. There exist
today efficient SSE schemes that support conjunctive (and more general Boolean) queries
[42, 43, 44]. Modern SSE schemes trade-off security for efficiency. Concretely, these schemes
allow the server to learn “some” information during query execution, referred to as leakage.
While SSE schemes are extremely fast and highly scalable with arbitrarily large real-world
datasets, their restricted functionality renders them inapt for practical deployment in an
encrypted computation framework.

In this work, we focus on developing an encrypted computation framework that internally
uses encrypted look-ups for Boolean function evaluation by leveraging the highly efficient
search capability of a conjunctive SSE scheme.

1.1 Our Contributions

In this work, we propose a novel approach towards developing an efficient and coherent
generic encrypted computation framework called SEC which offers fast evaluation of ar-
bitrary Boolean circuits with optimal storage and communication overhead while scaling
smoothly to real-world applications. SEC leverages the computation efficiency and optimal
storage overhead of a conjunctive SSE scheme for encrypted look-ups. The technical center-
piece of SEC lies in bypassing the explicit circuit evaluation (as in FHE) while evaluating
a function over encrypted data. Instead the function is evaluated via an efficient search
mechanism rendered by a conjunctive SSE scheme over encrypted lookup tables. To the
best of our knowledge SEC is the first encrypted computation framework capable of arbi-
trary function evaluation over encrypted data using fast and efficient look-ups. We list the
main technical achievements of this work below.

Fast Encrypted Computation. SEC relies on “encoding” a computation as a series of
encrypted lookup tables of primitive operations, and use a fast encrypted search mechanism
for necessary look-ups. This way, SEC bypasses explicit computation via look-ups, and does
not incur heavy overhead similar to bootstrapping in FHE. Since, any function computation
can be modeled into an equivalent logic circuit of Boolean variables and basic logic gates -

6

AND, OR, XOR, creating the encrypted lookup tables for these basic gates allows to evaluate the
function in SEC. For fast lookup over encrypted databases (the lookup tables of primitive
operations), we resort to state-of-the-art efficient adaptively secure SSE algorithms. In
our case, we selected Oblivious Cross Tags (OXT) by Cash et al. [45] as the underlying
conjunctive SSE scheme. Thus combining encrypted look-ups with SSE, allows extremely
fast circuit evaluation (circuits representing functions), which is significantly faster than
FHE with bootstrapping.

Supporting Function Composition. A pivotal feature of SEC is the support for func-
tion composition. The ability to evaluate a function composition is the key to evaluate an
arbitrary function in SEC. An arbitrary function can be decomposed into an expression
of function composition with lesser number of variables (following Shannon’s theory, for
Boolean circuits). Thus, a complex function can be easily evaluated systematically using
SEC with optimal computation overhead proportional to the circuit size. At the same time,
SEC incurs nominal storage overhead for encrypted lookup tables compared to huge storage
required to store bootstrapping key. Furthermore, SEC supports arbitrary function evalu-
ations in single round of communication with the expense of a small amount of additional
storage, which is practically ideal for outsource computations and leaks less compared to a
multi-round solution.

Concrete Security Analysis and Implementation. SEC relies on an efficient adap-
tively secure conjunctive SSE scheme for the encrypted lookup. Thus, SEC inherits adaptive
security properties of the underlying SSE construction, in this case OXT, to achieve adaptive
security as well. We present detailed security and leakage analysis of SEC following the
security properties of OXT. We discuss the leakage profile and security analysis of SEC in
Section 5. Furthermore, we demonstrate the efficacy of our framework by evaluating ba-
sic Boolean gates and cascaded gates as function composition. Section 6 gives a detailed
analysis of our experimental evaluations.

We start with a basic version of the SEC framework called SECBasic in Section 3.
SECBasic introduces the core technique and outlines the main algorithmic routines instan-
tiated from conjunctive SSE subroutines. However, the basic SECBasic construction does
not support arbitrary function evaluation. Subsequently, we augment this SECBasic with
specific strategies to develop the final construction SEC that supports function composition
evaluation. We outline the final construction is Section 4 which discusses the computation
flow in detail.

1.2 Technical Challenges and Proposed Solutions

The fundamental technical novelty of SEC is fast and efficient encrypted computation via
encrypted look-ups rendered by leveraging search capabilities of a conjunctive SSE scheme
thereby bypassing the explicit circuit evaluation (as in FHE). While designing such a fast
and generic privacy-preserving framework we encountered a number of technical challneges.
We provide dedicated solutions to these challenges by proposing our novel techniques most
crucial being encrypted computation via lookups. For simplicity of exposition, we first
explain the technical challenges and our core solution ideas for the design of XOR function,
without loss of generality. The designs for AND and OR follow suit. The objective of the
entire design is to allow evaluation of a 2-bit XOR through encrypted lookup tables. That is,

7

given encryptions of two bits x and y, SEC uses a conjunctive SSE scheme which returns
a single encrypted document which upon decryption outputs 0/1 in accordance with the
actual value of XOR(x, y).

Challenge 1: Keyword mapping. A generic SSE scheme maps alphanumeric strings
as keywords and performs search queries on the encrypted database. However, evaluation
of an arbitrary function requires logical bit inputs. Hence, there needs to be a mapping
between one-bit inputs to the function and alphanumeric keywords that SEC can delegate
for encrypted look-ups using an SSE scheme. However, a generic SSE construction does not
support such a conversion.

Our Solution. We propose our novel solution with an example. Without loss of generality,
we consider the example of XOR being computed by SECBasic (SEC performs such binary
function evaluation by invoking SECBasic). For arbitrary input bits x, y ∈ {0, 1}, we want
SECBasic to compute XOR(x, y). SECBasic thus first chooses alphanumeric strings w1 and w2

to serve as keywords. However, unlike a generic SSE scheme [46, 47, 48] where keywords are
a part of the encrypted documents’ contents, the keywords in SECBasic are instead encoding
for bits x and y. As an example, w1 may be treated as an encoding for x (likewise the
relationship betweenw2 and y). Thus, if x = 0, SECBasic looks for absence of the keywordw1

in the encrypted database (likewise for x = 1 where presence of w1 matters). Assume that
an encrypted document subset Dw1 = {Dw1

1 , Dw1
2 , Dw1

3 , ..., Dw1
n } is returned upon querying

for w1. Likewise, assume an encrypted document set Dw2 = {Dw2
1 , Dw2

2 , Dw2
3 , ..., Dw2

n } is
returned upon a query for w2. The final result of SECBasic is the intersection Dw1 ∩Dw2 .

The technical centerpiece of our proposed scheme is to choose two alphanumeric strings
w1 and w2, wherein w1 is logically equivalent to an input x to XOR (likewise for w2 being
equivalent to the input y to XOR). Without loss of generality, assume x = 1. When SEC in-
vokes an underlying generic conjunctive SSE, it includes w1 in its search query thereby
extracting all encrypted documents in which the keyword w1 is present. In contrast, if
x = 0, then SEC does not include w1 in its search query, thereby seeking to extract all
encrypted documents in which the keyword w1 is absent.

Challenge 2: Absence of Keyword. We emphasise upon the fact that, absence of a
keyword is tricky to handle for a conjunctive SSE scheme. Firstly, a generic conjunctive SSE
is exclusively constructed to operate upon presence of keywords in the encrypted database.
If keywords are absent from a subset of documents, such documents are never returned by
the search query. Consequently, this means that using a generic conjunctive SSE instead of
SEC would not return the correct set of documents when x = 0 and/or y = 0. Moreover,
modern conjunctive SSE designs take a performance hit if searches are done for absence of
keywords [42]. This is because absence of a keyword is logically equivalent to presence of any
combination of other keywords. Depending on the total number of keywords in database
under consideration, an abnormally large number of encrypted documents may be retrieved,
causing major performance bottleneck in SSE’s execution.

Our Solution. To solve this problem, we introduce the novel concept of an inversion map
I. An inversion map I is a one-to-one map on the set of alphanumeric strings such that
SEC can denote the absence of some keyword w1 as presence of another distinct keyword

8

I(w1). Note that I is chosen in a way to avoid collisions like w1 ̸= I(w1). Hence, the key-
word mapping SEC introduces has exactly four distinct keywords- {w1, I(w1),w2, I(w2)}-
associated with the input bits x and y of XOR. Concretely, if x = 0, the search query looks for
documents in the encrypted lookup table in which the keyword I(w1) is present. Likewise,
for y = 0, the search proceeds with looking for the presence of the keyword I(w2) in the
encrypted lookup table.

Challenge 3: Mapping Primitive Operations to Encrypted Lookup Table . In a
generic conjunctive SSE scheme, an arbitrary number of documents can be matched with a
search query. In our case however, we desire exactly one document to be matched, such that
for appropriate bit inputs x and y, SEC gives a deterministic evaluation of XOR(x, y). The
encrypted database in SECBasic should act as an encrypted lookup table for the function XOR

(similarly for {AND, OR}). Therefore, to ensure functionally correct evaluation of the XOR it
is necessary to ensure that the result of the lookup is always a singleton set, consisting of a
single document. This is not trivially guaranteed by the underlying SSE scheme.

Our Solution: SEC guarantees correctness of a function evaluation by ensuring Dw1 ∩
Dw2 is a singleton that corresponds to the actual output of XOR(x, y). We create such
an encrypted lookup table for XOR by assigning exactly one document to every possible
combination of w1 and w2. Thereby, by extension of the keyword mapping already discussed,
there is exactly one encrypted document against all four combinations of x and y. To
complete the design of the encrypted lookup table, a document D against input bits x
and y is itself an encryption of XOR(x, y), such that upon decryption, the content of the
decrypted document is either 0/1 which is exactly the same as the output bit obtained upon
application of XOR to x and y.

Concretely, we design the encrypted lookup table in a way such that for arbitrary one-bit
inputs x and y (as well as their corresponding keyword mappings), exactly one encrypted
document is returned, which upon decryption reveals a single bit b = XOR(x, y), thereby
allowing SEC to correctly compute the function XOR. We elaborate on the same here. There
are two aspects to the design: (i) the encrypted content of the documents in the encrypted
lookup table, and (ii) the inverted index (i.e. defining the mapping between the keywords and
the encrypted documents). Table 1 elucidates the contents of documents in the encrypted
lookup table. There is a single and uniquely identifiable document corresponding to every
possible input combination to the function XOR (similar design strategy applies to {AND,OR}).
Moreover, for any possible input combination, that document is an encryption of a single
bit corresponding to the actual output of XOR(x, y).

Table 1: Identifiers and contents of documents related to functional evaluation of 2-bit XOR,
as well as mapping of document identifiers to their corresponding keywords (KW 1 and
KW 2). Here, Enck refers to any generic encryption scheme with private key k.

x KW 1 y KW 2 XOR(x, y) doc id Doc. content
0 I(w1) 0 I(w2) 0 D0 Enck(0)
0 I(w1) 1 w2 1 D1 Enck(1)
1 w1 0 I(w2) 1 D2 Enck(1)
1 w1 1 w2 0 D3 Enck(0)

9

SEC is specifically designed to ensure that exactly one document (or record) matches
with an unique combination of x and y. The above discussion elaborates the relation between
single-bit inputs x and y, and the keyword set {w1, I(w1),w2, I(w2)}. An overview of this
relation is illustrated in Table 1. We note that for every possible combination of x and
y (and by extension, for possible combination of KW 1 and KW 2), there is exactly one
document associated. This, along with the Doc. content expressed in Table 1, ensures that
for any combination of one-bit inputs x and y, exactly one encrypted document is returned,
which upon decryption provides the correct bit output of XOR(x, y).

Table 1 summarizes a forward index, a representation of keywords and doc id mappings
wherein every doc id is enumerated against the keywords associated with it. For SEC’s pur-
pose, we can derive the inverse index too, or the mapping from a given keyword to the doc ids
wherein that keyword exists. An astute reader might note that there is exactly one common
document between any combination of KW 1 and KW2, which is returned as response to
the SEC query. This design, in conjunction with the Doc. content from Table 1, ensures
that only the correct evaluation of XOR is obtained as a result of querying on SEC. The
reader will also note that at no point in this entire process have we performed an explicit
computation of XOR gate (unlike what FHE does). The entire computation has completed
by searching over encrypted lookup tables.

2 Preliminaries and Background

In this section, we present the notations and the preliminary background material used in
our construction. We begin by listing the notations used throughout the paper followed by
a generic SSE syntax, a brief discussion on OXT scheme and the TSet data structure. Any
other notation used is defined in-place within the context in the main text.

2.1 Notations

We write x
$←− χ to represent that an element x is sampled uniformly at random from a

set/distribution X . The output x of a deterministic algorithm A is denoted by x = A and
the output x′ of a randomized algorithm A′ is denoted by x′ ← A′. We refer to λ ∈ N
as the security parameter, and denote by poly(λ) and negl(λ) any generic (unspecified)
polynomial function and negligible function in λ, respectively3. We denote integers by
Z and multiplicative group modulo some prime (q) over integers as Zq. F and Fq are
pseudorandom functions with output range in {0, 1}λ and Zq respectively.

Databases. Let W = {w1, . . . ,wN} be a dictionary of keywords where N is the total
number of keywords in the database. The total number of documents in the database is
denoted by d, each document is associated with a unique identifier denoted as id (or doc-id)
and contains keywords from W. We denote by DB a database of identifier-keyword pairs,
such that (id,w) ∈ DB if and only if the document with identifier id contains the keyword w.
We denote by DB(w) the set of all identifiers corresponding to documents containing w. We
denote by |W| the number of distinct keywords in DB, by |DB| the number of distinct id-w
pairs in DB, and by |DB(w)| the number of documents containing w. Maximum number of

3Note that a function f : N → N is said to be negligible in λ if for every positive polynomial p, f(λ) ≤
1/p(λ) when λ is sufficiently large

10

keywords in a query in denoted by n and the result set returned by the server to the client
is denoted by Rq.

2.2 SSE: Syntax and Security Model

In this section, we formally define searchable symmetric encryption (SSE).

Formal Definition of SSE. A searchable symmetric encryption (SSE) scheme Π consists
of an algorithm Setup and a protocol Search between the client and server, mentioned as
follows:

• Setup takes as input a database DB, and outputs a secret key K along with an
encrypted database EDB.

• The Search protocol is between a client and server, where the client takes as input
the secret key K and a query q and the server takes as input EDB. At the end, the
client outputs a set of identifiers, and the server has no output.

Correctness. An SSE scheme is said to be correct if for all inputs DB and queries q, if

(K,EDB)
$←− Setup(DB), after running Search with client input (K, q) and server input

EDB, the client outputs the set of indices DB(q).

Adaptive Security of SSE. We recall the semantic security definitions of SSE from
[41, 49]. The definition is parameterized by a leakage function L, which describes what an
adversary (the server) is allowed to learn about the database and queries. Formally, security
says that the server’s view during an adaptive attack (where the server selects the database
and queries) can be simulated given only the output of L.

Let Π = (Setup,Search) be an SSE scheme and let L be a stateful algorithm. For
algorithms A (denoting the adversary) and SIM (denoting a simulator), we define the ex-
periments (algorithms) RealΠA(λ) and IdealΠA,SIM(λ) as in Algorithm 1 and Algorithm 2,
respectively. We say that Π is L-semantically-secure against adaptive attacks if for all
adversaries A there exists an algorithm SIM such that

| Pr[RealΠA(λ) = 1]− Pr[IdealΠA,SIM(λ) = 1] |≤ negl(λ).

The leakage function for SSE is expressed as

LSSE = (LSetup
SSE ,LSearch

SSE),

where LSetup
SSE encapsulates the leakage to an adversarial server during the Setup phase,

and LSearch
SSE encapsulates the leakage to an adversarial server during each execution of the

Search protocol.

11

Algorithm 1 Experiment RealSSEA (λ)

1: function RealSSEA (λ)
2: N ← A(λ)
3: (sk, st0,EDB0)← SSE.Setup(λ,N)
4: for k ← 1 to Q do
5: Let qk ← A(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (stk,EDBk,DB(qk))←

SSE.Search(sk, stk−1, qk;EDBk−1)
7: Let τk denote the view of the adversary after

the kth query
8: b← A(λ,EDBQ, τ1, . . . , τQ)
9: return b

Algorithm 2 Experiment IdealSSEA,SIM(λ,Q,L)

1: function IdealSSEA,SIM(λ,Q,L)
2: Parse the leakage function L as:

L =
(
LSetup,LSearch

SSE

)
.

3: (stSIM,EDB0)← SIMSetup(LSetup(λ,N))
4: for k ← 1 to Q do
5: Let qk ← A(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (stSIM,EDBk, τk)← SIMSearch

(stSIM,LSearch
SSE (qk);EDBk−1)

7: Let τk denote the view of the adversary after
the kth query

8: b← A(λ,EDBQ, τ1, . . . , τQ)
9: return b

Conjunctive SSE Scheme . A conjunctive SSE scheme CSSE provisions the client with
conjunctive search capabilities over the encrypted database. The Setup phase is similar to
a generic SSE scheme where the encrypted database is generated and offloaded to the server.
During the Search phase the client issues a conjunctive query of the form (w1 ∧ . . .∧wn).
It sends search tokens to the server corresponding to each keyword in the query like -
(st1 ∧ . . . ∧ stn). The operation ∧ represents a logical AND, implying the final document
identifiers (i.e. DB(st1 ∧ . . .∧ stn)) returned to the client refer to the encrypted documents
that contain all w1 to wn. Correctness and security guarantee of a CSSE scheme follows
from a generic SSE scheme. A CSSE scheme follows the adaptive security definition of SSE
discussed earlier in this section. We consider w1 as the least frequent keyword in the query
without loss of generality. Throughout the paper we denote w1 as sterm and rest of the
keywords in the query w2, . . . ,wn as the xterm.

2.3 Overview of OXT

We adopted OXT by Cash et al. [45] as our underlying CSSE scheme for SEC. OXT is
a state-of-the-art sublinear SSE scheme supporting conjunctive Boolean queries efficiently
while incurring optimal linear storage overhead. OXT has the routines Setup and Search
in its construction, defined in Algorithm 3 and 4.

Concretely, OXT uses oblivious cross-tags which are elements of a prime order subgroup

12

of the discrete-log hard group Z∗
p. The cross-tags are elements in Z∗

p computed as a com-
position of keywords and the corresponding document identifiers, which are stored in a
specialised data structure called cross-set or XSet. XSet facilitates conjunctive search as it
allows to check the validity of a queried (w,id) pair using XSet lookup. At the end of Setup,
XSet is offloaded to the untrusted server as a part of the encrypted database EDB. The
encrypted document identifiers and associated pre-computed blinding factors are stored in
a specialised data-structure called TSet (see Section 2.4 for detail). TSet is offloaded to
the untrusted server as a part of EDB, and the server looks up EDB during search using
encrypted search tokens generated from client’s query to retrieve matched encrypted doc-
ument identifiers OXT is proven simulation-secure against semi-honest adversarial server.
Hence, the server learns no information about the encrypted query keywords or the data
stored in EDB based on the information received during search. Since SEC uses OXT for
encrypted look up on the server, it is guaranteed by the simulation security guarantee of
OXT that the server does not learn anything, such as the function itself or the encrypted
inputs, beyond precisely defined benign information. Algorithm 3 and 4 explains formally
the Setup and Search routine of OXT.

2.4 Overview of TSet

We briefly explain the syntax of the special primitive introduced in OXT, the tuple set or
TSet. Intuitively, a TSet associates a list of fixed-sized data tuples (list for each keyword is
made of every document identifier that contains the particular keyword) with each keyword
in the database. The original OXT scheme uses it as an “expanded inverted index”. For

Algorithm 3 Setup algorithm of OXT

Input: 1λ,DB
Output: mk, param,EDB
1: function EDB.Setup(1λ,DB)
2: Initialise T ← ϕ indexed by keywords W
3: Select key KS for PRF F
4: Select keys KI ,KZ ,KZ for PRF Fp

5: Initialise EDB← {}
6: Initialise XSet← {}
7: for w ∈ W do do
8: Initialise t← {}
9: Compute ke ← F (KS ,w)

10: Set counter c← 1
11: for id ∈ DB(w) do do
12: Compute xid← Fp(KI , id)
13: Compute zw ← Fp(KZ ,w||c)
14: Compute yid ← xid · z−1

w

15: Compute ec ← Sym.Enc(ke, id)
16: Set xtag ← gFp(KX ,w)·xid

17: Add xtag to XSet
18: Append (yid, ec) to t and set c← c+ 1
19: Set T [w]← t
20: Compute {TSet,KT } ← TSet.SetUp(T) ▷ (See [45] for TSet routines)
21: return mk = {msk,KS ,KI ,KZ ,KX ,KT }, EDB = (TSet,XSet)

13

Algorithm 4 Search algorithm of OXT

Input: mk, param, q = (w1 ∧ . . . ∧ wn),EDB
Output: Result Rq

1: function EDB.Search(mk, param, q,EDB)
2: Client’s inputs are (mk, param, q) and server’s inputs are (param,EDB)
3: Client initialises Rq ← {} and computes stag ← TSet.GetTag(KT ,w1)
4: Client sends stag to the server
5: Server recovers EDB(1) = TSet. starts accepting xtokens computed by client as follows:
6: for c = 1 : until server sends stop do
7: Client computes fw1 ← Fp(kZ ,w1||c)
8: for l = 2 : n do do
9: Client computes xtoken[c, l]← gfw1 ·Fp(kX ,wl)

10: Client sets xtoken[c]← (xtoken[c, 2], . . . , xtoken[c, n]).
11: Client send xtoken[c] to server.
12: Server initialises E ← {}.
13: Server computes t← TSet.Retrieve(TSet, stag)
14: for c = 1 : |t| do do
15: Server recovers (yid, ec) from c-th component of t.
16: for l = 2 : n do do
17: Server computes xtag = xtoken[c, l]yid

18: If ∀l ∈ [2, n], xtag ∈ XSet, then send ec to the client.
19: When last tuple in t is reached, send stop to client and halt.
20: Client computes Ke ← F (KS ,w1).
21: Client computes idc ← Sym.Dec(Ke, ec), and adds idc to Rq for all ec received.
22: return Rq

conjunctive keyword search, the TSet is used to store the encrypted indices of document
along with some additional information, that is later used by the server to obliviously
compute tokens for xtag generation. Formally TSet instantiation consists of three algorithms
Σ = (TSet.SetUp,TSet.GetTag,TSet.Retrieve), each of these algorithm is briefly explained
below.

TSet Syntax. Formally, a TSet implementation Σ = (TSet.SetUp,TSet.GetTag,TSet.Retrieve)
will consist of three algorithms with the following syntax

• TSet.SetUp takes as input T = (T1, . . . , TN), where each Ti for i ∈ [N] is an array of
lists of equal-length bit strings indexed by the elements ofWi, and outputs (TSet,KT).

• TSet.GetTag takes as input the key KT and a tuple (i,w) and outputs stagi.

• TSet.Retrieve takes as input TSet and stagi, and returns a list of strings.

TSet Correctness. We say that Σ is correct if for all {Wi}i∈[N], all T = (T1, . . . , TN),
and any w ∈ Wi, we have

TSet.Retrieve(TSet, stag) = Ti[w],

when we have (TSet,KT) ← TSet.SetUp(T) and stag ← TSet.GetTag(KT , (i,w)). Intu-
itively, T holds lists of tuples associated with keywords and correctness guarantees that the
TSet.Retrieve algorithm returns the data associated with the given keyword.

14

TSet Security. The security goal of a TSet implementation is to hide as much as possible
about the tuples in T = (T1, . . . , TN) and the attribute-value pairs these tuples are associ-
ated to, except for the vectors Ti[w1], Ti[w2], . . . of tuples revealed by the client’s queried
attribute-value pairs w1,w2, (For the purpose of TSet implementation we equate client’s
query with a single attribute-value pair.)

The formal definition of security for TSet is similar to that of keyword-search based SSE
for single-keyword queries. We refer the reader to prior works [45, 43, 50] for the formal
definition and concrete instantiations of TSet; in our paper, we adopt the same definition of
security and the same concrete instantiation as used in these works.

3 SECBasic: Basic Construction

In this section we present our first encrypted compute-framework construction SECBasic -
an end-to-end privacy-preserving framework for evaluating arbitrary depth Boolean circuits
using encrypted lookup tables. Before delving into the technical details of our construction
we outline the formal syntax of SEC below.

3.1 Syntax

We briefly explain a general syntax of our construction SEC. The basic construction SECBasic

follow similar syntax. SEC uses static conjunctive SSE construction CSSE as a black-box
following the syntax above. We assume a single benign client and a semi honest server4 in
SEC system model. A SEC scheme comprises of the following algorithms, as defined below.
• SEC.Setup(1λ, f, {xi}i∈[n]): SEC Setup is a PPT algorithm takes the security parameter
λ and a collection of lookup tables f for basic gates/functions of n variables {xi}i∈[n], and
outputs the master secret key mk and the encrypted database EDB.
• SEC.Evaluate(f, {xi}i∈[n],mk,EDB): SEC Evaluate is a deterministic polynomial
time protocol jointly executed by the client and the server, where the client’s inputs are the
input values to the circuit to be evaluated and the server’s input is EDB. At the end of
protocol execution, the client receives the encrypted output of the circuit evaluation over
the input values provided by the client and the server receives nothing.

Note that, although the Evaluate routine takes client input values in plain-text in this
syntax, these values are encrypted on the client-side prior to sending to server and circuit
evaluation. Thus, SEC operates on encrypted inputs and produces encrypted output.

Correctness. SEC is said to be correct if SEC.Evaluate returns a correct output for a
circuit and inputs provided by the client.

Security of SEC. Formally, SEC is said to be adaptively secure with respect to a leakage
function L if for any stateful PPT adversary A that evaluates a maximum of F = poly(λ)
circuits, there exists a stateful PPT simulator SIM = (SIMSetup,SIMEvaluate) such that
the following holds:∣∣Pr

[
Real

SEC
A (λ, F) = 1

]
− Pr

[
Ideal

SEC
A,SIM(λ, F) = 1

]∣∣ ≤ negl(λ),

4We consider a semi-honest server because traditional FHE schemes [16] consider a semi-honest server
model. Verifiable FHE [51] which considers malicious-server model is incredibly inefficient.

15

where the “real” experiment RealSEC and the “ideal” experiment IdealSEC are as described
in Algorithm 5 and Algorithm 6. The leakage function for SEC is expressed as

LSEC = (LSetup
SEC ,LEvaluate

SEC),

where LSetup
SEC captures the leaked information during Setup, and LEvaluate

SEC captures the
leaked information during Evaluate execution.

Algorithm 5 Experiment RealSECA (λ, F)

1: function RealSECA (λ, F)
2: N ← A(λ)
3: (sk, st0,EDB0)← SEC.Setup(λ,N)
4: for k ← 1 to F do
5: Let fk ← A(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (stk,EDBk,DB(fk))←

SEC.Evaluate(sk, stk−1, fk;EDBk−1)
7: Let τk denote the view of the adversary after

the kth query
8: b← A(λ,EDBF , τ1, . . . , τF)
9: return b

Algorithm 6 Experiment IdealSECA,SIM(λ, F,L)

1: function IdealCSSE
A,SIM(λ, F,L)

2: Parse the leakage function L as:
L =

(
LSetup,LSearch

SEC

)
.

3: (stSIM,EDB0)← SIMSetup(LSetup(λ,N))
4: for k ← 1 to F do
5: Let fk ← A(λ,EDBk−1, τ1, . . . , τk−1)
6: Let (stSIM,EDBk, τk)← SIMEvaluate

(stSIM,LEvaluate
SEC (fk);EDBk−1)

7: Let τk denote the view of the adversary after
the kth query

8: b← A(λ,EDBF , τ1, . . . , τF)
9: return b

3.2 Technical Details

For SECBasic, the objective is to implement the universal Boolean function set {XOR,AND,OR},
which in turn can be used for evaluation of arbitrary Boolean function. We define SECBasic

as a triple of algorithms {GenDB, Setup, Evaluate}.

GenDB Workflow. Algorithm 7 formally describes the GenDB routine for SECBasic

construction. It takes as input the set of functions f to be modelled (for example, the
universal Boolean function set {XOR,AND,OR}), as well as the bits x1 and x2 to the Boolean
functions in f . GenDB generates a sub-database for each function fi in f as follows.

16

Algorithm 7 SECBasic.GenDB

Input: f = (f1, . . . , fn),x1,x2

Output: DB

1: function SECBasic.GenDB(f,x1,x2.)
2: for i ∈ 1 to |f | do
3: Assign unique keyword string to each bit value taken by x1 and x2

4: Evaluate fi on all possible combination of x1 and x2 and store the output bit after each
evaluation in an encrypted document.

5: Map the keywords to the documents such that the output bit stored in the document is
obtained after evaluating fi with the keyword under consideration as one of the inputs.

6: Set DBfi as the keyword-document map thus generated.
7: DB← DB ∪DBfi

8: Return DB

• Following the novel keyword mapping introduced in Section 1.2, both bits x1 and x2

are mapped to suitable alphanumeric keywords.

• Against each possible value of bits x1 and x2, the functional evaluation fi(x1,x2)
is stored in a document encrypted with a generic IND-CPA secure symmetric-key
encryption scheme.

• Following the encrypted lookup table design detailed in Section 1.2, construct the
inverted index for SECBasic.

The final unencrypted database DB is a collection of disjoint databases. For instance,
considering the set {XOR,AND,OR}, the final unencrypted database returned by GenDB func-
tion is DB ← {DBXOR ∪ DBAND ∪ DBOR}. The structure of DB as a collection of the
sub-databases however leads to an ambiguity: the server cannot distinguish between the
different sub-databases when they are all collectively combined into DB, thereby perform
a correct lookup. To circumvent this ambiguity, we append the function fi in f along with
each input value in such a way that the pointer to a particular entry in a specific encrypted
sub-database is always correctly computed thereby ensuring a correct lookup by the server.
Table 2 represents a better understanding of how the keywords are mapped to the cor-
responding document-identifiers (doc-id) along with the function (f) appended with each
entry. The actual DB generated by GenDB is in the form of an inverted index where each
keyword is appended with a specific function fi and maps to exactly two documents.

Algorithm 8 SECBasic.Setup

Input: 1λ, f = (f1, . . . , fn),x1,x2

Output: mk,EDB
1: function SECBasic.Setup(1

λ, f,x1,x2.)
2: DB← GenDB(f,x1,x2)
3: (EDB,mk)← OXT.Setup(1λ,DB)
4: return mk = {KS ,KI ,KZ ,KX ,KT }, EDB = (TSet,XSet)

Setup Workflow . The Setup routine is explained in Algorithm 8. It generates the
unencrypted lookup table (denotes by DB) for the function set f = (f1, f2, · · · , fn) by

17

Table 2: Mapping of document identifiers to their corresponding keywords along with the
specific function (f). KW symbolizes the keyword linked to a specific doc id. I(wi) refers to
the absence of keyword wi corresponding to doc id. Enck symbolizes the encryption oracle
of a IND-CPA secure symmetric-key encryption scheme.

x1 KW 1 x2 KW 2 f doc id doc content
0 I(w1) 0 I(w2) AND D0 Enck(0)
0 I(w1) 1 w2 AND D1 Enck(0)
1 w1 0 I(w2) AND D2 Enck(0)
1 w1 1 w2 AND D3 Enck(1)

0 I(w1) 0 I(w2) OR D4 Enck(0)
0 I(w1) 1 w2 OR D5 Enck(1)
1 w1 0 I(w2) OR D6 Enck(1)
1 w1 1 w2 OR D7 Enck(1)

0 I(w1) 0 I(w2) XOR D8 Enck(0)
0 I(w1) 1 w2 XOR D9 Enck(1)
1 w1 0 I(w2) XOR D10 Enck(1)
1 w1 1 w2 XOR D11 Enck(0)

invoking GenDB function. Thereafter, it invokes the Setup routine of OXT to generate
the encrypted database or EDB, which is a collection of the TSet and XSet data structure
(Section 2.3). Along with EDB it also returns a parameter mk which encapsulates the
keys used for different PRFs and TSet operations specific to OXT. Concretely, EDB is the
encrypted lookup table that is offloaded to the cloud server. Note that Setup is a one-
time process that is executed only once at the beginning of the SECBasic scheme. It may
be emphasized that the Setup is like generating the basic libraries based upon which any
function can be evaluated, and thus the Setup is a one-step process catering to all possible
function evaluations.

Algorithm 9 SECBasic.Evaluate

Input: fi,x1,x2,mk,EDB
Output: y = fi(x1,x2)
1: function SECBasic.Evaluate(fi,x1,x2,mk,EDB.)
2: Client: Generate a query qfi using keyword mappings of x1, x2, appended with fi
3: Server: Run OXT.Search(fi,EDB, qfi ,mk) and retrieve EDB(x1 ∧ x2)
4: Server: Return doc id← EDB(x1 ∧ x2) to the client at the end of the protocol.
5: Client: y← Deck(Ddoc id)
6: Client obtains y which is equal to the output of fi(x1,x2).

Evaluate Specifications . The corresponding algorithm for the Evaluate phase of
SECBasic is summarized in Algorithm 9. To evaluate an arbitrary Boolean function fi in f
on the input bits x1 and x2, Evaluate first generates a query qfi = stx1 ∧ stx2 . Herein,
stx1

represents the search token corresponding to the keyword matched with the specific
bit value of x1 appended with the specific function that is to be evaluated. Likewise, stx2

represents the search token corresponding to the keyword matched with x2 appended with

18

the specific function fi. The query q is sent to the server, which runs the OXT.Search
algorithm to retrieve a single document identifier doc id against the specific values of x1,
x2, and the function (fi. From Table 2 it can be guaranteed that only one document exists
per each possible value of the entry (x1,x2, fi). This encrypted doc id is returned back
to the client, which decrypts it to get the document corresponding to the evaluated result
of fi(x1,x2). In one extra round of communication between the server and the client, the
actual encrypted document corresponding to doc id is retrieved by the client from the server,
which upon decryption gives the unencrypted bit y = fi(x1,x2). The design of EDB, as is
evident from Table 2 ensures only a single doc id is returned for every possible variation of
the search query qfi = stx1

∧ stx2
.

3.3 Proof of Correctness of SECBasic

The proof of correctness for SECBasic follows from the correctness of CSSE. The correctness
of CSSE ensures that a conjunctive query q = w1 ∧ · · · ∧ wn over an encrypted database
satisfies the following relations.

EDB ←− CSSE.Setup(DB),

DB(w1) ∩ · · · ∩DB(wn) = CSSE.Search(q,EDB).

Proof. Consider a binary function f which takes as input two bits say x1 and x2. The
evaluation of f(x1,x2) should return and output bit y. The goal of SECBasic is to com-
pute y = f(x1,x2) when both x1 and x2 are encrypted. By deploying CSSE as a black-
box, SECBasic generates the encrypted database specific to the functions supported by the
scheme. The database consists of keywords corresponding to input bits and documents
corresponding to the output of the function evaluation. During a conjunctive search the
CSSE.Search protocol generates search tokens corresponding to the input bits to the
function. The search token retrieves a document which consists of the encrypted output of
the computation. The client decrypts it locally and obtains y = f(x1,x2).

The result returned by the CSSE.Search protocol is equivalent to the output y evalu-
ated by f(x1,x2). For a functionally correct and exact conjunctive SSE scheme CSSE, a
set of functions f = (f1, . . . , fn) supported by the scheme, and input literals x1,x2, SECBasic

is functionally correct if the following expressions hold.

mk,EDB ← SECBasic.Setup(1
λ, f,x1,x2),

y = SECBasic.Evaluate(fi,x1,x2,mk,EDB).

where, y is the output of the evaluation of some i-th function from the function set f ,
expressed as y = fi(x1,x2).

3.4 SECBasic Complexity Analysis

Computation Overhead. The evaluation time of SECBasic for computing a binary func-
tion fi(x1,x2) over encrypted inputs x1 and x2 scales linearly with the search time com-
plexity of the underlying conjunctive SSE scheme. According to OXT the search tokens
generated are searched for in the encrypted database and the time required to retrieve the
documents scale with the frequency of the least frequent keyword in the conjunctive query.
Since the database under consideration is very small the search time scales to few millisec-
onds. The document returned by the OXT Search is returned to the client, who decrypts it

19

locally and obtains the output bit. Hence the overall time required to compute a function fi
is essentially equal to the search time complexity of the underlying CSSE scheme, which in
our case is OXT. SECBasic is hence highly efficient and fast with sub-linear time complexity
for evaluating a binary function of the form f(x1,x2) over encrypted inputs x1 and x2.

Storage Overhead. The server-side storage required for SECBasic depends upon the num-
ber of functions the scheme claims to support. Each function specific sub-database consists
of exactly eight keyword-document pairs. The storage for each sub-database will scale with
the total number of keyword-document pairs (as shown in Section 1.2). SECBasic is func-
tionally complete as it supports three basic universal logic gates {XOR,AND,OR}. Therefore,
the final DB is collectively composed of three sub-databases DB = {DBAND,DBOR,DBXOR},
using which we can evaluate any arbitrary Boolean function over encrypted data. Since,
we consider 2-bit input functions the space complexity scales with a constant number of
keyword-document pair (the constant here is equal to 8). It is evident from the above
discussion that the server-side storage required by SECBasic is extremely small and highly
optimized.

3.5 Limitations of SECBasic

Any arbitrary privacy-preserving computation framework should be capable of evaluating
arbitrary Boolean circuits of unbounded depth. While SECBasic harbors this capability,
there is a huge bottleneck. The specific design of the encrypted lookup table (Section 1.2)
allows the server to return a single document id doc id as illustrated in SECBasic.Evaluate
(Algorithm 9).

However, to evaluate function compositions of the form fk(fi(.), fj(.)) (where fi, fj ,
fk ∈ f), the doc id retrieved by the innermost functional evaluation (qfk) needs to be
returned to the client (Step 5; Algorithm 9). The client retrieves the encrypted document,
decrypts it to retrive y (Step 6; Algorithm 9), creates a new query qfj , and resends it to the
server for next encrypted table lookup. Concretely, the resultant encrypted document D by
running SECBasic.Evaluate on query qfj = stx1

∧ stx2
cannot be directly used as a search

token for future queries. This requires the intervention of the client, which creates search
tokens for future queries after decrypting the document returned by query qfj .

However, this drawback negates any advantages offered by the usage of encrypted lookup
tables. Not only did it introduce (i) multiple rounds of communication between the server
and the client for securely computing Boolean circuits of arbitrary depth, but also (ii)
increased the computation load of the (already) resource-constrained client by requiring
decryptions for every functional evaluation. To circumvent these issues, we introduce the
novel idea of replacing the elements in the encrypted lookup table with search tokens specific
to input bits and functions in a way such that, it allows the results of SEC search queries
to act as search queries themselves. This then aids in arbitrary depth Boolean function
evaluation on the server side without requiring any intermediate round of communication
with the client. We elaborate our final construction SEC below.

4 SEC: Final Construction

Herein, we propose our final construction SEC that supports extremely fast and efficient
encrypted function evaluation of arbitrary depth with a single round of communication

20

between the client and server. We introduce a novel encrypted lookup table design that
stores search tokens such that the entries retrieved by an inner query serves as the search
token for the outer query. We elucidate the technical details of the novel lookup table design
subsequently.

Composition via Pseudo-documents. For computing an n-depth Boolean circuit, we
store an additional pseudo-doc along with the documents corresponding to every keyword
for every n-1 levels of functions. The pseudo-doc consists of search tokens required for
evaluation of the function at the immediate higher level (immediate higher level for fn−2(·)
corresponds to fn−1(·)). Only the last or n-th level function fn will retrieve encrypted
values that maps the corresponding input keywords (bits) to the documents (output bits).
For all other functions at (n-1) levels, search tokens will retrieve a pseudo-doc which returns
another search token required to evaluate function at the immediate higher level. Our design
and implementation of SEC is specific to OXT , but we note that it can be incorporated
using any conjunctive SSE scheme. To the best of our knowledge, we are the first to show
that arbitrary depth Boolean functions can be computed over encrypted data with a single
round of communication between client and server by leveraging the extremely efficient
sublinear search mechanism of a conjunctive SSE scheme (OXT in our construction).

Consider the following example setting for a better understanding. We would expect
SEC to evaluate functional compositions of the form fk(fi(x1,x2), fj(x3,x4)) (where fi,
fj , fk ∈ f for any universal function set f . Example- {AND, OR, XOR}). Likewise, xi :
∀i ∈ {1, 2, 3, 4} are input bits. For ease of exposition we consider an example of the form
fk(w, fi(x1,x2)) (where fi, fk ∈ f). Without loss of generality, we assume the inner function
fi is AND and the outer function fk is XOR. Under this context, the precise objective of SEC
is to support conjunctive search query (say qAND) over the sub-database of AND (Table 2)
such that the result of qAND is a valid input to the conjunctive search query to qXOR.

4.1 Revised Encrypted Look-up Table Design

The database generation process in SEC comprises of two phases as follows.

Phase-I. The first phase is similar to SECBasic where the function specific sub-databases
are generated. The sub-databases comprises of keywords that correspond to the input
bits. Each keyword map to a pair of documents. Documents store the encrypted output bit
value of the function with the particular keyword as one of the inputs. As mentioned earlier,
CSSE scheme deployed in SEC is OXT and hence theCSSE.Setup andCSSE.Search pro-
tocol is directly extended from original OXT scheme in SECBasic. In order to understand the
technical novelty devised in Phase-II, we give a brief overview of the mathematical struc-
ture of each component used to build the encrypted database in Phase-I. The documents
(id) are encrypted as e ← Enc(Ke, id). Specific to OXT a blinding factor z is calculated as
F (Kz,x||f ||c), where f is the specific function for which the sub-database is being gener-
ated, and c is a counter value that keeps a count of the frequency of the keyword x. The
blinding factor z is an element in Z∗

p which is inverted and multiplied with xid = F (KI , id)
(which is also a value in Z∗

p) to pre-compute a blinded value y and stored in an encrypted
data-structure. For each keyword-id pair an entry (y, e) is stored in the TSet by invoking the
TSet.SetUp routine (Section 2.4). The cross-tags (xtag = gF (KX ,x)·F (KI ,id)) are generated
as elements in a prime order subgroup of Z∗

p and stored in a special data-structure called

21

XSet. The TSet and XSet collectively comprise of the encrypted database EDB which is
offloaded to the server.

Phase-II. In the second phase for every keyword in a sub-database an additional “pseudo-
document” (pseudo-doc) is stored. The pseudo-doc actually stores a search token that
involves a particular keyword and a function that could be possibly composed with the
function of the sub-database under consideration. For evaluating a function composition
over encrypted bits of the form - f1(w, f2(x1,x2)) we devise some modifications to the
structure of elements stored in EDB. The idea is to use blinded exponentiation in a prime
order sub-group G of Z∗

p (as done in DH-based oblivious PRF) to generate the search tokens

for computing the inner level of function (f2) in the composition. For each input x of f2, xid
′

is computed as Fp(KI ,w||x||f2) which is again an element in Z∗
p. The blinding factor which

is an element in Z∗
p is calculated as z = Fp(KZ ,x||f2||c), it is calculated for each input to the

inner function. The blinded value y′x1
= xid′ · z−1 is calculated similar to that in OXT. The

encrypted value e′ (pseudo-doc) is computed as e′ = gFp(KX ,x) and stored in EDB along
with yx1 . It is to be noted here that e′ does not hold the encrypted document identifier
(output bit), but it stores a search token (an element in G). The entire database generation
process is formally explained in Algorithm 10. We explain the database generation process
with the following simple example.

4.2 An Illustrative Example

Let us consider the setting where a client who wants to compute a function composition of
the form fOR(w, fAND(x1,x2)) = w+(x1 ·x2). Our construction SEC supports the set of three
basic logic gates that are functionally complete. Therefore DB = {DBOR,DBAND,DBXOR}.
The SEC.Setupexecution proceeds as follows.

Generating EDB

The routine SEC.Setupin Algorithm 10 generates EDB = {EDBOR,EDBAND,EDBXOR}.
It comprises of two phases for every sub-database generation. We elaborate one such sub-
database generation below -

EDBOR:

Phase-I: Generates the database EDBOR mapping each keyword (input bit) to the corre-
sponding documents (containing encrypted output bit) using SECBasic.Setup (Algorithm 8)
as the black box.

Phase-II: Adds an additional pseudo-document in DBOR for every keyword. A pseudo-
document consists of a (partial) search token e′. A blinded value y′x and cross-tags are
generated and stored in EDB.
At the end EDBOR is generated and added to the final EDB = EDB ∪ {EDBOR}. The
entire EDB generation process is formally explained in Algorithm 10.

4.3 Evaluating Function Compositions

We briefly outline the workflow of OXT Search routine (provided in Section 2.3) that
is necessary for the exposition of function composition technique of SEC. During the

22

Search phase of OXT, a search token, denoted by xtoken), is generated by the client
pertaining to each keyword in the conjunctive query. The search tokens are essentially el-
ements in a discrete log hard group (prime order sub-group of Z∗

p), hence by the structure
of xtoken the underlying queried keywords are indistinguishable form random elements in
Z∗
p. The search tokens are generated on the fly as - xtoken = gF (Kx,x)·F (Kz,w||c) according

to the conjunctive query (say, q = w ∧ x) issued by the client. The xtoken is raised to some
pre-computed value yw = F (KI , id) · F (Kz,w||c)−1 by the server to obliviously compute
the cross-tag. After the cross-tag is matched in XSet the documents stored in the encrypted
database corresponding to the queried keywords are retrieved.

During the Evaluate phase as presented in Algorithm 11, the client sends a value
r = Fp(KZ ,w||c||f1) ∈ Z∗

p along with the search token (for f2) which is used to retrieve
the pseudo-doc e′. To obliviously calculate the search token (for f1) the server raises
(e′)r which eventually gives xtoken = (e′)r = g[Fp(KX ,x))·(Fp(KZ ,w||c||f1)]. This oblivious
computation of xtoken ensures that the server does not learn any information about the
function being evaluated as well as the underlying inputs to the function. We meticulously
design and bifurcate the search tokens into two parts - one stored in the pseudo-doc e′

(consists of the part involving the queried keyword), the second part is sent by client as
r ∈ Z∗

p (consists of the underlying function). This ensures two things - (i) search tokens are
generated on-the-fly depending upon the queried keywords and the functions to evaluate; (ii)
The server can neither learn any information about the functions or the keywords (input
bits) being evaluated nor can it infer any information from cross-query leakage. We explain
the Evaluate phase with the following example.

Computing fOR(w, fAND(x1,x2))

Let us assume, that fOR(w, fAND(x1,x2)) = w+(x1 ·x2), [where w→ 1;x1 → 0;x2 → 1].
The output of the above equation should therefore be equal to 1. SEC.Evaluate protocol
first evaluates AND operation (fAND) by searching for common pseudo-documents in EDBAND.
It then retrieves the search token for the outer function and computes fOR by performing
OXT.Search on EDBOR. The matched documents are checked and the result returned is
a singleton set with one document which is equivalent to the encrypted output bit of the
computation fOR(w, fAND(x1,x2)). By correctness of our construction the the client receives
a value equal to 1 after decrypting the document locally.

Client: It identifies the sterms (we consider the first input as the sterm since frequency
of all keywords are same) in both functions and computes stag and stag′ corresponding to
w, and x1, respectively (by invoking TSet.GetTag, provided in Section 2.4). The search
tokens are also generated as elements in G for computing fAND. Also it computes a value
r ∈ Z∗

p which is used to generate the search token obliviously for fOR at the server.

Server: The server receives xtoken′ (for fAND) from the client and raises it to y′ and
obtains the cross-tag (xtag′) obliviously. The cross-tags are matched in XSet and e′ is
recovered ((e′, y′) is recovered from TSet.Retrieve(TSet, stag′) (Section 2.4)). The server
computes xtoken (for fOR) obliviously by raising e′ to the power r. The xtoken computed
thus, is raised to y ((e, y) is recovered from TSet.Retrieve(TSet, stag)) and xtag is obtained.
Finally the XSet is checked for the presence of the corresponding cross-tag and e is returned
to the client for all matched documents.

23

Algorithm 10 SEC.Setup

Input: 1λ, f = (f1, f2),x1,x2

Output: mk,EDB
1: function SEC.Setup(1λ, f,x1,x2.)
2: DB← GenDB(f,x1,x2)
3: Phase - I
4: EDBI ← SECBasic.Setup(1

λ,DB, f)
5: EDB← EDB ∪ {EDBI}
6: Phase - II
7: for w ∈ W do
8: Set counter c← 1
9: for x ∈ W \ {w} do

10: Compute xid′ ← Fp(KI ,w||x||f2)
11: Compute zx ← Fp(KZ ,x||c||f1)
12: Compute y′

x ← xid′ · z−1
x

13: Compute e′c ← gFp(KX ,x)

14: Set xtag′ ← gFp(KX ,w||x)·xid′

15: Add xtag′ to XSet
16: Append (y′

x, e
′
c) to t′ and set c← c+ 1

17: Set T [w||f2]← t′

18: Compute {TSet,KT } ← TSet.SetUp(T)
19: EDBII = (TSet,XSet)
20: EDB← EDB ∪ {EDBII}
21: return mk = {KS ,KI ,KZ ,KX ,KT }, EDB

4.4 Proof of Correctness

The proof of correctness for SEC follows from the correctness of SECBasic and the underlying
CSSE scheme i.e. OXT. Consider a function composition of the form f1(w, f2(x1,x2)),
where w,x1,x2 are keywords (input bit to the function). The evaluation of f2(x1,x2) should
return a pseudo-document which is essentially a (partial) search token e′. The output of
this evaluation will return a single pseudo-document, hence a single search token will be
returned which is used as the second input for f1.

e′ = f2(x1,x2),

As soon as the server retrieves e′ (partial search token) it computes the final search token
(xtoken) for f1 by raising (e′)r, where from Algorithm 11 r is observed as an element in
Z∗
p. Once the search token is generated, f1(w, xtoken) is evaluated by using OXT as the

underlying CSSE scheme in SECBasic. The output is returned as a singleton set consisting
of an encrypted document which essentially encapsulates the resultant bit after evaluating
f1(w, f2(x1,x2)).
By correctness of OXT we claim that the search token generated obliviously at the server
will retrieve the correct pseudo-document corresponding to the particular query.

4.5 Computation and Storage Overhead

Computation Overhead. The evaluation time of SEC for computing arbitrary depth
Boolean circuit over encrypted data scales linearly with the search time complexity of the
underlying conjunctive SSE scheme (OXT) times some constant which depends upon the

24

Algorithm 11 SEC.Evaluate

Input: f1, f2,w,x1,x2,mk,EDB
Output: y = f1(w, f2(x1,x2))
1: function SEC.Evaluate(f1, f2,w,x1,x2,mk,EDB)

▷ Tweak OXT Search as follows -
2: Client
3: Computes stag′ ← TSet.GetTag(KT ,x1||f2); stag← TSet.GetTag(KT ,w) and sends to

Server.
4: Computes xtoken′ as follows: ▷ for f2
5: for c = 1 to |DB(x1)| do
6: for x ∈ W \ {x1} do
7: Computes xtoken′[c, x]← gFp(KZ ,x||c|f1)·Fp(KX ,w||x||f2)

8: Sets xtoken′[c]← (xtoken′[c,x]) and sends to Server.
9: for c′ = 1 to |DB(w)| do

10: Sets r ← Fp(KZ ,w||c′||f1) and sends to Server
11: Server
12: t′ ← TSet.Retrieve(TSet, stag′); t← TSet.Retrieve(TSet, stag)
13: for c = 1 : |t′| do
14: Server recovers (y′

x1
, e′c) from c-th component of t′.

15: for l = 2 : n do
16: Server computes xtag′ = xtoken′[c, l]y

′
x1 ▷ for f1

17: if for all l ∈ [2, n], xtag′ ∈ XSet then
18: Computes xtoken = (e′c)

r

19: When last tuple in t′ is reached, send stop to client and halt.
20: for c = 1 : |t| do
21: Server recovers (yw, ec) from c-th component of t.
22: for l = 2 : n do do
23: Server computes xtag = xtoken[c, l]yw

24: if for all l ∈ [2, n], xtag ∈ XSet then
25: Send ec to the client.
26: Client
27: y← Decrypt(ec)
28: Client obtains y which is equal to the output of f1(w, f2(x1,x2)).

depth of the circuit. For evaluating an n-bit Boolean gate, we require an arbitrary number of
2-input equivalent gates. SEC is extremely efficient and fast with average time complexity
in order of milliseconds for evaluating a function composition of the form fi(fj(·), fk(·)) over
encrypted data.

Storage Overhead. The storage required for SEC depends upon the number of functions
the scheme claims to support along with the possible combinations of function composition
(as discussed in Section 4. Each function specific sub-database consists of exactly eight
keyword-document pairs. The storage for each sub-database will scale with the total number
of keyword-document pairs. With a set of three universal gates (functions) there are nine
possible combinations in which any two function can be composed. Hence, for a set of
functions supported by SEC i.e, f = {fAND, fOR, fXOR}, the space overhead will be |f |2 ×
|(keyword-id)| pairs per sub-database, which is a constant. It is evident from the above
discussion that the storage required is extremely small and highly optimized.

25

5 Security of SEC

We informally analyse the security of SEC construction here. We follow a semi-honest
adversarial setting for this analysis where the remote server is assumed to be a honest-
but-curious entity. That implies the untrusted server follows the algorithmic specification
exactly, but can also observe and record additional information for analysis.

SEC inherits security properties and leakage profile from the underlying OXT construc-
tion. We assume OXT construction is an adaptively secure sub-linear conjunctive SSE
algorithm which is secure against a semi-honest adversary A and the leakage of OXT is
characterised by the leakage function LOXT. The leakage function LOXT is an ensemble of
the leakage functions for Setup and Search individually, expressed in the following way.

LOXT = {LSetup
OXT ,LSearch

OXT , }

Given the above OXT leakage functions, security of SEC can be analysed using SEC
leakage function LSEC in the same adaptive semi-honest adversarial model. Similar to LOXT,
LSEC is composed of two separate leakage functions for Setup and Evaluate, as expressed
below, that capture the leakage from SEC execution in the meta-keyword setting.

LSEC = {LSetup
SEC ,LEvaluate

SEC , }

Concretely, LSEC is identical to LOXT with f (the set of functions) as an additional
benign component. In other words, we show that LSEC is equal to L̄OXT where L̄OXT

is LOXT in the context of input bits and f = {fAND, fOR, fNOT}. At a high level, LSetup
SEC

incorporates DB generated by the GenDB during SEC.Setup. Similarly, the evaluation
leakage encapsulates leakages from input bits and function to be evaluated. We quantify this
through a leakage function instance that encapsulates the leakage during an evaluation of a
binary function over encrypted input bits. We show that this leakage is covered by the same
as of the OXT construction. Due to the uniform keyword frequency SEC restricts certain
non-trivial leakages like size-pattern, result-pattern leakages that analyses the frequency
pattern of the sterm and xterm in OXT over multiple queries. .

5.1 Leakage Profile Analysis of SEC

Leakage Profile of SEC. The significance of each component of the leakage function
in SEC is equivalent to that in OXT except for a few which we point out subsequently. We
define each leakage component as follows.

• N =
∑d

i=1 |Wi| - the total number of appearances of keywords in documents. The
parameter N signifies an upper bound which is equivalent to the total size of EDB.
Leaking such a bound is unavoidable and is considered as a trivial leakage in literature
of SSE.

• s̄ ∈ [m]n - equality pattern of s ∈ Wn that indicates which queries have the equal
sterms. Repetition of sterms of different queries is leaked by s̄. This occurs due to the
optimization technique devised in OXT in order to ensure sublinear search complexity
by filtering out the least frequent term during search. In SEC this leaks the first input
of two functions if they are similar.

26

• SP - size pattern of the queries i.e., the number of documents matching the sterm in
each query. Formally, SP ∈ [d]n and SP[i] = |DB(s[i])|. It leaks the number of
documents satisfying the sterm in a query. In SEC this is always constant (equal to
2).

• RP - result pattern of the queries or the indices of documents matching the entire
conjunction. Formally, RP is vector of size n with RP[i] = DB(s[i]) ∩ DB(x[i]) for
each i. It is the final output of the search query and is not considered as a real leakage
in the context of SSE. This is always a single document in SEC.

Leakage Mitigation in SEC. The strategic database generation process of SEC, tends
to mitigate certain non-trivial information leakage which is otherwise leaked by the under-
lying OXT scheme. Due to the uniform keyword frequency SEC restricts certain non-trivial
leakages like size-pattern, result-pattern leakages that analyses the frequency pattern of the
sterm and xterm in OXTover multiple queries. Furthermore, a crucial yet subtle leakage in
OXT called the Conditional Intersection Pattern leakage is prevented in SEC due to the
design structure of the database.

Size Pattern Leakage. It leaks the number of documents satisfying the sterm in a query.
In SEC since every keyword maps to exactly two documents this leakage reveals no signifi-
cant information as every sterm has the same frequency.

Result Pattern Leakage. It is the final output of the search query i.e. indices of docu-
ments matching the entire conjunction. By the design of SEC the result of a conjunctive
query is always a single document and hence this does not reveal any significant information
to the server. Although it is not considered as a real leakage in the context of SSE, SEC
prevents this leakage which is otherwise present in OXT.

Conditional Intersection Pattern Leakage. It is a subtle leakage in OXT that occurs
when two distinct queries have a common xterm but different sterm and there exists a
document that satisfies both the sterms. In such a scenario the set of document indices
matching both sterms is leaked (if no document matching both sterms exist then nothing is
leaked). This leakage is not present in our SEC as by the design of the encrypted database,
two different sterms will never have a document in common (c.f. Table 1).

Resistance to Volume Attacks. The uniform frequency distribution of the keywords
in the database makes SEC robust against volume-based attacks even without padding or
using volume-hiding encrypted multimaps. Such leakage abuse attacks pose serious threats
to many existing conjunctive SSE scheme in literature.

Ordering of function composition. Apart from hiding the size pattern, result pattern
leakages thereby resisting volume-based attack, SEC also conceals the order in which the
functions are composed. Since the function to be evaluated is encapsulated in input to
a PRF, the server cannot distinguish which particular function is being evaluated during
a particular search operation. This is ensured by the PRF security guaranteed by OXT.
Therefore, SEC is able to compute arbitrary functions over encrypted database without

27

revealing the inputs as well as the function being evaluated to the server, which is leaked in
the state-of-the-art FHE schemes.

Theorem 1 (Security of SEC) Given that OXT is an adaptively secure SSE scheme
with respect to the leakage function LOXT = {LSetup

OXT ,LSearch
OXT } against a polynomially-bound

adaptive adversary, SEC is also an adaptively secure encrypted computation scheme with
respect to the leakage function LSEC = {LSetup

SEC ,LEvaluate
SEC }, where the SEC instantiation

operates on a plaintext database DB and a pair of two-input functions {f1, f2}.

Remark. Note that, even though we outline Theorem 1 for depth two (comprising of two
functions f1 and f2) for the ease of exposition, the extension to depth n is straightforward.

Proof. The security analysis of SEC (proof of Theorem 1) stems from the provable security
guarantee of OXT. We first outline the leakage sources of OXT, with respect to whichOXT
is simulation secure. Subsequently, we show that the leakage profile of SEC is covered by the
same leakage profile with respect to the workflow of SEC, and the simulator can simulate
the real instance of SEC just from the leakage information available.

We resort to the same simulation-based security analysis approach for SEC as of OXT.
We show that SEC is secure against an adaptive semi-honest adversary A, which has access
to leakages from LSEC. We build a simulator SIM for SEC Real experiment where the
simulator emulates SEC execution just from the knowledge of public information and leakage
LSEC.

Leakage Cover. We briefly describe the significance of each individual leakage compo-
nents of LSEC comprising of N, s̄,SP,RP for correct simulation results by the simulator.
In order to simulate SEC correctly each of the leakage components are critically analysed
and their significance is justified. N or the total number of appearances of keywords in
the database gives the size of the XSet, i.e. number of xtag entries for each keyword-id
pair in the database. The equality pattern s̄ is important as it indicates the queries with
same stags. By the design of OXT the stags are deterministic hence the server can observe
repetition in stags of different queries. In order to know the number of documents matching
the sterm, the size pattern leakage component is important. In SEC SP is always equal
for all queries. SP is equal to the number of tuples returned by the TSet. SEC does not
incur conditional intersection pattern leakage by virtue of its design strategy. Therefore for
evaluating functions of the form f(x1,x2) = q = st1 ∧ st2 , the server cannot observe the
queries in which the xterms (x2) repeat and that have a document identifier common in
their stag (x1).

Simulating SEC Setup and Evaluate. For the adaptive proof of security, we assume
an adaptively secure instantiation of TSet in the standard model. While the original con-
struction of TSet [45] requires random oracles for adaptive security, the authors of [45]
also discuss an alternative instantiation of adaptively secure TSets in the standard model
without incurring additional rounds of communication. In the context of our SEC proto-
col, using the standard model instantiation of TSet increases the communication overhead
for the TSet component, but not the (asymptotic) communication overhead for the overall
search protocol. The main crux of our adaptive security proof is that the simulator for SEC
initializes the XSet to consist entirely of uniformly random elements initially (while relying

28

on the DDH assumption for indistinguishability of the real and simulated XSet entries).
Additionally, the simulator for SEC can directly invoke the simulator for the adaptively
secure TSet to simulate the TSet entries at setup and the corresponding TSet tokens dur-
ing searches. The simulator also uses the (adaptive) result pattern leakage to program the
xtoken entries to be consistent with the adversarially issued queries. Overall SIM takes as
input the leakage components as defined by LSEC and produces the result pattern which is
similar to the document identifiers returned by the original scheme on input of an adaptive
conjunctive query.

Simulating SEC.Setup. To simulate SEC Setup, observe that, SEC Setup comprises
of the GenDB, OXT.Setup, and a number of values generated through PRF and group
operations, which are finally inserted into TSet using TSet.Setup. Note that, GenDB
routine creates the plain look-up table for the supported primitive operations, and it is
executed on the client side. Hence, the adversarial server learns no information from the
GenDB execution itself and thus the leakage from GenDB can be expressed as null.

LSetup,GenDB
SEC =⊥,

Thus, the simulator SIM can exactly simulate GenDB execution straightforwardly.
Subsequently, theOXT.Setup is invoked with the plainDB generated by SEC.GenDB.

Since the OXT.Setup algorithm is executed in black-box way, the leakage from this phase
of SEC.Setup is same as the OXT.Setup executed over DB. Thus, the leakage for this
phase can be expressed as below.

LSetup,Phase-I
SEC (DB) = LSetup

OXT (DB),

Therefore, SIM can run executeOXT.Setup internally to simulatePhase-I of SEC.Setup.
The execution of SEC.Setup Phase-II follows a sequence of PRF evaluations and group

operations. Essentially, during simulation, each of the PRF evaluations can be replaced with
a uniformly randomly sampled value from the PRF space, and each group operation output
can be replaced by a uniformly randomly sampled element of the group. This is executed
entirely on the client side, and the server learns nothing about the computation of this
phase.

LSetup,Phase-II
SEC =⊥,

Hence, the simulator SIM can simulate Phase-II by replacing the PRF and group opera-
tions.

Finally, the TSet Setup execution does not leak additional information apart from
already known public information (the size of the dictionary |W| is known). The leakage
for this part can be expressed as below.

LSetup,TSet
SEC = |W| =⊥ as this is a public information,

SIM can run the TSet simulator (as discussed in the original paper [45]). Combined
all, the simulator for Setup (SIMSetup) simulates SEC Setup with access to following the
leakage.

LSetup
SEC ={LSetup,GenDB

SEC ,LSetup,Phase-I
SEC (DB),LSetup,Phase-II

SEC ,

LSetup,TSet
SEC } for fAND, fOR, fXOR data in DB

= LSetup
OXT (DB),

29

Simulating SEC.Evaluate. For simulating SEC Evaluate, we observe that the
Evaluate routine of SEC is similar to OXT with specific additional steps. Thus, we
write the additional hybrids needed to simulate SEC Evaluate on top of the existing
hybrids of OXT, as presented in [45].

First, the client side computation in Algorithm 11 incorporates xtoken′ computation as
additional steps from OXT. Thus we need to introduce additional hybrids into the sequence
of games as presented in [42]. Note that, this particular game (additional) considers the
view of adversary before and after modifying the steps from line 4 to line 10 in Algorithm
11.

Game a0 . View of the adversary till line 4 according to the sequence of games of OXT
in [45].

Game a1 . View of the adversary till line 10 after replacing all Fp instances with values
sampled uniformly at random from the range of Fp.

Lemma 1 Game a0 and Game a1 are computationally indistinguishable, given Fp is a
secure PRF.

Proof. By the indistinguishability property of a PRF output from a random value, Game
a0 and Game a1 are identical.

Thus, SIM can simulate Evaluate with the leakage

LEvaluate
SEC = LSearch

OXT (f1, f2) for fAND, fOR, and fXOR data,

This implies the Real experiment of SEC (Algorithm 1) is indistinguishable from the
Ideal experiment (Algorithm 2), and proves Theorem 1.

6 Experimental Results

In this section, we report on a prototype implementation of SEC and SECBasic and compare
it with a prototype implementation of the TFHE library [38], which implements an efficient
and fast gate-by-gate bootstrapping [32].

Implementation Details. Our prototype implementations are developed in C++ and
we used Redis as the database backend. More specifically, we realize all PRF operations
using AES-256 in counter mode, BLAKE3 hash function for computing all hash operations
and all group operations in SEC and SECBasic over the elliptic curve Curve25519 [52]. We
implement the TSet data structure using Redis, which serves as a key-value store, while the
XSet dictionary is realized using a Bloom filter [53].

Platform. For our experiments, we used a single node with 64-bit Intel Xeon Silver 4214R
v4 3.27GHz processors, running Ubuntu 20.04.4 LTS, with 128GB RAM and 1TB SSD hard
disk.

30

Evaluation of Storage Overhead. As discussed in Section 4.5 the storage required for
SEC depends upon the number of functions supported along with all possible combina-
tions of function composition. Each function specific sub-database consists of exactly eight
keyword-document pairs (since we consider 1-bit binary functions). For a set of functions
supported by SEC i.e, f = {fAND, fOR, fXOR}, the storage overhead is |f |2×|(keyword-id)| pairs
per sub-database, which is a constant. In our implementations the server storage required to
store TSet and XSet is around 63 KB. We thus note that SEC is highly optimized and scal-
able with significantly less storage requirements than state-of-the- art FHE schemes. Table 3
compares the storage overhead comparison of SEC with state-of-the-art FHE schemes.

Table 3: Storage Overhead comparison (in MB) of SEC with existing FHE schemes in
literature. Storage overhead of FHE scheme typically indicate the bootstrapping key size
where as for SEC it implies the size of the encrypted database stored at the cloud server.

Scheme Storage Overhead (in MB)

Gentry et. al[25] 3700

Gentry et. al[29] 2300

Halevi et. al.[34] 1600

Ducas et. al[33] 1000

Chillotti et. al.[32] 24

SEC 0.063

Evaluation of computation time. The evaluation time of SECBasic for computation of
basic binary function of the form fi(x1,x2) (where fi ∈ f = {XOR,AND,OR} and x1 and x2

are encrypted input bits) scales linearly with the search time complexity of OXT. According
to OXT the time required to retrieve the documents corresponding to a conjunctive query

Figure 4: Time taken (in seconds) for 1000 invocations of SECBasic.Evaluate against
different TFHE backends.

31

scales with the frequency of the least frequent keyword in the query. Since the database
under consideration is very small the search time of OXT would be significantly less. The
average time required by SEC for one binary function evaluation is extremely fast, in order
of milliseconds. Figure 4 plots the time taken for different iterations of SECBasic.Evaluate
(note that SECBasic.Setup is a one-time process, and thus its time is not included in our
analysis).

The evaluation time of SEC for computing arbitrary depth Boolean circuit over en-
crypted data also scales linearly with the search time complexity of OXT times some con-
stant which depends upon the depth of the circuit. For evaluating an n-bit Boolean gate, we
require an arbitrary number of 2-input equivalent gates. Our experimental results validates
that SEC is highly efficient and fast with sub-linear time complexity for evaluating arbitrary
Boolean function of the form fi(fj(·), fk(·)) over encrypted data. Figure 5 compares the
execution time of SECwith different TFHE backends for varying depth of circuits.

Figure 5: Time taken (in seconds) for different circuit depths of SEC.Evaluate against
different TFHE backends.

Table 4: Time taken (in seconds) for evaluation of one byte AES SBox by SEC.Evaluate
against different TFHE backends.

Scheme Time taken (in seconds)

Nayuki AVX 214.63

Nayuki Portable 408.968

Spqlios AVX 46.6688

Spqlios FMA 44.948

SEC 0.38664

Comparison with FHE. We compare SECBasic and SEC with different variations of
TFHE in Figure 4. One variation is Nayuki portable (non AVX) and AVX builds, which

32

implement very efficient versions of Fast Fourier Transform. Another back-end family is
spqlios AVX and spqlios FMA back-ends, which are efficient assembly implementations of
ring operations. It is observed from Figure 4 SECBasic is 103× faster than all four TFHE
backends that we compared in our experiments. Figure 5 compares the increase of execution
time with an increase in the depth of the circuit. SEC performs function evaluation of
arbitrary depth in order of milliseconds which is again 103× improvement over the fastest
TFHE backend using Spqlios AVX optimization. Furthermore, in table 4, we also show
a practical use case of the AES SBox5, wherein SEC again outperforms various TFHE
backends.

7 Conclusion and Future Work

Encrypted computation enables us to develop complex privacy-preserved solutions for prac-
tical applications with outsourced processing, for instance - IoT networks, home automation,
and machine learning inference, to name a few. However, the existing solutions, like FHE or
MPC, are prohibitively computation-intensive and do not scale to large real applications. In
this work, we introduce a fast, scalable, and efficient technique for encrypted computation
called SEC. Concretely, SEC transforms primitive functions or operations into encrypted
look-ups and uses an efficient conjunctive SSE scheme to process the encrypted look-ups
necessary to evaluate a function privately. SEC is extremely fast due to the use of an under-
lying conjunctive SSE scheme based on fast classical symmetric-key cryptographic primitives
and incurs minimal encrypted storage overhead that is linear in the size of the look-up table
of the primitive operations. This way, SEC executes composition of functions almost 103

times faster compared to FHE and incurs 5.8 × 104 times less storage overhead than FHE
in our experiments.

In this paper, we presented the core SEC construction outlining the fundamental idea
of encrypted computation via encrypted look-ups. Our current construction is developed
from state-of-the-art conjunctive SSE scheme built using classical cryptographic primitives.
However, the rising threat of quantum computers against classical encryption primitives
poses a severe concern for future applications. Therefore, developing a post-quantum secure
version of SEC is a prominent research direction with immense practical relevance and we
leave this as an interesting future work.

References

[1] M. Ribeiro, K. Grolinger, and M. A. Capretz, “Mlaas: Machine learning as a ser-
vice,” in 2015 IEEE 14th international conference on machine learning and applications
(ICMLA). IEEE, 2015, pp. 896–902.

[2] A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, “A survey on the computation
offloading approaches in mobile edge computing: A machine learning-based perspec-
tive,” Computer Networks, vol. 182, p. 107496, 2020.

[3] X. Yuan, H. Tian, H. Wang, H. Su, J. Liu, and A. Taherkordi, “Edge-enabled wbans
for efficient qos provisioning healthcare monitoring: A two-stage potential game-based
computation offloading strategy,” IEEE Access, vol. 8, pp. 92 718–92 730, 2020.

5For fair evaluation, we use unparallelized version of the SBox [54], which involves 5 XORs per bit in the
output, thereby totalling 40 XORs for the entire byte.

33

[4] Y. Qiu, H. Zhang, and K. Long, “Computation offloading and wireless resource man-
agement for healthcare monitoring in fog-computing-based internet of medical things,”
IEEE Internet of Things Journal, vol. 8, no. 21, pp. 15 875–15 883, 2021.

[5] X. Li, R. Ding, X. Liu, W. Yan, J. Xu, H. Gao, and X. Zheng, “Comec: Computation
offloading for video-based heart rate detection app in mobile edge computing,” in 2018
IEEE Intl Conf on Parallel & Distributed Processing with Applications. IEEE, 2018.

[6] R. Chaari, O. Cheikhrouhou, A. Koubâa, H. Youssef, and H. Hmam, “Towards a dis-
tributed computation offloading architecture for cloud robotics,” in 2019 (IWCMC).
IEEE, 2019.

[7] Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “Qos-aware cooperative compu-
tation offloading for robot swarms in cloud robotics,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 4, pp. 4027–4041, 2019.

[8] A. Koubâa, A. Ammar, M. Alahdab, A. Kanhouch, and A. T. Azar, “Deepbrain: Ex-
perimental evaluation of cloud-based computation offloading and edge computing in
the internet-of-drones for deep learning applications,” Sensors, vol. 20, no. 18, p. 5240,
2020.

[9] B. Yuan, Y. Jia, L. Xing, D. Zhao, X. Wang, D. Zou, H. Jin, and Y. Zhang, “Shattered
chain of trust: Understanding security risks in cross-cloud iot access delegation.” in
USENIX Security Symposium, 2020.

[10] W. Zhou, Y. Jia, Y. Yao, L. Zhu, L. Guan, Y. Mao, P. Liu, and Y. Zhang, “Discovering
and understanding the security hazards in the interactions between iot devices, mobile
apps, and clouds on smart home platforms,” in 28th USENIX Security Symposium,
2019.

[11] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron: Privacy-
preserving machine learning as a service,” arXiv preprint arXiv:1803.05961, 2018.

[12] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-preserving machine
learning as a service.” Proc. Priv. Enhancing Technol., vol. 2018, no. 3, pp. 123–142,
2018.

[13] H. C. Tanuwidjaja, R. Choi, S. Baek, and K. Kim, “Privacy-preserving deep learning
on machine learning as a service—a comprehensive survey,” IEEE Access, vol. 8, pp.
167 425–167 447, 2020.

[14] C. Priebe, K. Vaswani, and M. Costa, “Enclavedb: A secure database using sgx,” in
2018 IEEE Symposium on Security and Privacy (SP). IEEE, 2018, pp. 264–278.

[15] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on intel sgx,” in
Proceedings of the 10th European Workshop on Systems Security, 2017, pp. 1–6.

[16] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings of the
forty-first annual ACM symposium on Theory of computing, 2009, pp. 169–178.

[17] R. Ostrovsky, “Efficient computation on oblivious rams,” in Proceedings of the twenty-
second annual ACM symposium on Theory of computing, 1990, pp. 514–523.

34

[18] A. C.-C. Yao, “How to generate and exchange secrets,” in 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), 1986, pp. 162–167.

[19] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental game or A com-
pleteness theorem for protocols with honest majority,” in TOC, 1987, A. V. Aho, Ed.
ACM, 1987.

[20] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions and chal-
lenges,” in Theory of Cryptography: 8th Theory of Cryptography Conference, TCC
2011, Providence, RI, USA, March 28-30, 2011. Proceedings 8. Springer, 2011, pp.
253–273.

[21] C. Mascia, M. Sala, and I. Villa, “A survey on functional encryption,” arXiv preprint
arXiv:2106.06306, 2021.

[22] Z. Chang, D. Xie, and F. Li, “Oblivious ram: A dissection and experimental evalua-
tion,” Proceedings of the VLDB Endowment, vol. 9, no. 12, pp. 1113–1124, 2016.

[23] O. Regev, “On lattices, learning with errors, random linear codes, and cryptography,” in
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, H. N. Gabow and R. Fagin, Eds., 2005.

[24] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in lwe-based homomorphic
encryption,” in Public-Key Cryptography–PKC 2013. Springer, 2013, pp. 1–13.

[25] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the aes circuit,”
in CRYPTO 2012. Springer, 2012.

[26] ——, “Fully homomorphic encryption with polylog overhead.” in Eurocrypt, vol. 7237.
Springer, 2012, pp. 465–482.

[27] ——, “Better bootstrapping in fully homomorphic encryption,” in PKC 2012.
Springer, 2012, pp. 1–16.

[28] C. Gentry, S. Halevi, C. Peikert, and N. P. Smart, “Ring switching in bgv-style homo-
morphic encryption,” in SCN. Springer, 2012.

[29] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic encryption
scheme,” in EUROCRYPT 2011. Springer, 2011.

[30] J. Alperin-Sheriff and C. Peikert, “Faster bootstrapping with polynomial error,” in
Advances in Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34. Springer, 2014, pp.
297–314.

[31] ——, “Practical bootstrapping in quasilinear time,” in Advances in Cryptology–
CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2013. Proceedings, Part I. Springer, 2013, pp. 1–20.

[32] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene, “Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds,” in ASIACRYPT 2016. Springer,
2016, pp. 3–33.

35

[33] L. Ducas and D. Micciancio, “Fhew: bootstrapping homomorphic encryption in less
than a second,” in EUROCRYPT 2015. Springer, 2015, pp. 617–640.

[34] S. Halevi and V. Shoup, “Design and implementation of helib: a homomorphic encryp-
tion library,” Cryptology ePrint Archive, 2020.

[35] F. Boemer, S. Kim, G. Seifu, F. DM de Souza, and V. Gopal, “Intel hexl: accelerating
homomorphic encryption with intel avx512-ifma52,” in WAHC, 2021, pp. 57–62.

[36] A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise, S. Halevi,
H. Hunt, A. Kim, Y. Lee et al., “Openfhe: Open-source fully homomorphic encryption
library,” in WAHC, 2022, pp. 53–63.

[37] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic
of approximate numbers,” in ASIACRYPT 2017. Springer, 2017, pp. 409–437.

[38] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe: Fast fully homomorphic
encryption library,” 2019.

[39] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted
data,” in Proceeding 2000 IEEE symposium on security and privacy. S&P 2000. IEEE,
2000, pp. 44–55.

[40] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric encryp-
tion: improved definitions and efficient constructions,” in ACM CCS, 2006, pp. 79–88.

[41] M. Chase and S. Kamara, “Structured encryption and controlled disclosure,” in ASI-
ACRYPT 2010. Springer, 2010, pp. 577–594.

[42] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner, “Highly-
scalable searchable symmetric encryption with support for boolean queries,” in
CRYPTO. Springer, 2013.

[43] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner,
“Dynamic searchable encryption in very-large databases: Data structures and imple-
mentation,” in NDSS 2014, 2014.

[44] S. Patranabis and D. Mukhopadhyay, “Forward and backward private conjunctive
searchable symmetric encryption,” in NDSS 2021, 2021.

[45] D. Cash, S. Jarecki, C. S. Jutla, H. Krawczyk, M. Rosu, and M. Steiner, “Highly-
scalable searchable symmetric encryption with support for boolean queries,” in
CRYPTO 2013, 2013, pp. 353–373.

[46] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably secure searchable
encryption,” ACM Computing Surveys (CSUR), vol. 47, no. 2, pp. 1–51, 2014.

[47] G. S. Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo, and M. S. Mohamad, “Searchable
symmetric encryption: designs and challenges,” ACM Computing Surveys (CSUR),
vol. 50, no. 3, pp. 1–37, 2017.

[48] R. Dowsley, A. Michalas, M. Nagel, and N. Paladi, “A survey on design and implemen-
tation of protected searchable data in the cloud,” Computer Science Review, vol. 26,
pp. 17–30, 2017.

36

[49] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric en-
cryption: improved definitions and efficient constructions,” in ACM CCS 2006, 2006,
pp. 79–88.

[50] C. Jutla and S. Patranabis, “Efficient searchable symmetric encryption for join queries,”
Cryptology ePrint Archive, 2021.

[51] A. El-Yahyaoui and M. D. E. E. Kettani, “A verifiable fully homomorphic encryption
scheme for cloud computing security,” CoRR, 2018.

[52] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in Public Key Cryp-
tography - PKC, ser. Lecture Notes in Computer Science, 2006.

[53] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,” Commun.
ACM, 1970.

[54] N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “A systematic evaluation of
compact hardware implementations for the rijndael s-box,” in Topics in Cryptology–
CT-RSA 2005. Springer, 2005.

37

	Introduction
	Our Contributions
	Technical Challenges and Proposed Solutions

	Preliminaries and Background
	Notations
	SSE: Syntax and Security Model
	Overview of OXT
	Overview of TSet

	SECBasic: Basic Construction
	Syntax
	Technical Details
	Proof of Correctness of SECBasic
	SECBasic Complexity Analysis
	Limitations of SECBasic

	SEC: Final Construction
	Revised Encrypted Look-up Table Design
	An Illustrative Example
	Evaluating Function Compositions
	Proof of Correctness
	Computation and Storage Overhead

	Security of SEC
	Leakage Profile Analysis of SEC

	Experimental Results
	Conclusion and Future Work

