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Abstract

An n-server information-theoretic Distributed Point Function (DPF) allows a
client to secret-share a point function fα,β(x) with domain [N ] and output
group G among n servers such that each server learns no information about
the function from its share (called a key) but can compute an additive share of
fα,β(x) for any x. DPFs with small key sizes and general output groups are pre-
ferred. In this paper, we propose a new transformation from share conversions
to information-theoretic DPFs. By applying it to share conversions from Efre-
menko’s PIR and Dvir-Gopi PIR, we obtain both an 8-server DPF with key size

O(210
√

log N log log N + log p) and output group Zp and a 4-server DPF with

key size O(τ · 26
√

log N log log N) and output group Z2τ . The former allows us
to partially answer an open question by Boyle, Gilboa, Ishai, and Kolobov (ITC
2022) and the latter allows us to build the first DPFs that may take any finite
Abelian groups as output groups. We also discuss how to further reduce the key
sizes by using different PIR, how to reduce the number of servers by resorting
to statistical security or using nice integers, and how to obtain DPFs with t-
security. We show the applications of the new DPFs by constructing new efficient
PIR protocols with result verification.

Keywords: Distributed point function, Private information retrieval, Secret sharing,
Information-theoretic cryptography
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1 Introduction

An n-server Distributed Point Function (DPF) [1] converts any point function fα,β
(i.e., fα,β(x) = β for x = α and fα,β(x) = 0 for all x ̸= α) into n shares k0, . . . , kn−1

such that every share ki leaks no information about the function but enables the com-
putation of an additive share of fα,β(x). In particular, both the additive shares and
fα,β(x) belong to an Abelian group, which is called the output group. The communi-
cation efficiency of a DPF may be measured by its key size, i.e., the maximum size
of the n shares k0, . . . , kn−1. Ideally, we would like DPFs with general output groups,
small key sizes, and a small number of servers.

DPFs can be computational or information-theoretic. Computational DPFs [1]
base their security on cryptographic assumptions (e.g., the existence of one-way func-
tions) such that every share ki leaks no information about the point function to a
polynomial-time server. Information-theoretic DPFs [2] can tolerate any computa-
tionally unbounded server and have better computation efficiency. These merits make
them especially useful in constructing efficient cryptographic protocols such as private
information retrieval (PIR) [3].

The study of information-theoretic DPFs was initiated by Boyle et al. [2]. For point
functions with domain [N ] and output group Zpτ (p ≥ 3 is a prime, τ ≥ 1), they con-

structed a 4-server perfectly secure DPF with key size O(τ log(p) · 22p
√
logN log logN );

for point functions with domain [N ] and output group Zp (p ≥ 2 is a prime), they con-

structed a 3-server statistically secure DPF with key size O(log(p) · 22p
√
logN log logN ).

Both DPFs were based on share conversions [4–6], which may be derived from the
PIR of [7].

Note that the DPFs of [2] have several restrictions. First, their key sizes are all
exponential in p. When p is large, they will incur unaffordable communication over-
head. In fact, Boyle et al. [2] leave it as an open question to remove this exponential
dependence of key sizes in p. In particular, it is even not known how to reduce the p
in the exponent to poly(log p). Second, the DPFs of [2] cannot handle point functions
with an output group of the form Z2τ for any τ > 1. Consequently, it is impossible
for Boyle et al. [2] to handle point functions with any finite Abelian group as output
group. In many real-life applications, either an output group of the form Z2τ with
τ > 1 (e.g., PIR with result verification [8]) or an output group of the form Zp with a
very large p (e.g., statistical analysis [9, 10]) is needed. Therefore, it is interesting to
lift the above restrictions with new techniques.

1.1 Our Contributions

In this paper, we focus on the open question raised by Boyle et al. [2] and construct
new DPFs with either smaller key sizes or more general output groups.

As the first contribution, we extend the definition of 1-private n-server DPFs of
[2] that requires every key ki leaks no information about a point function to that of
t-private n-server DPFs that can tolerate the collusion of any t servers (t ≥ 1). We
then give a general transformation from share conversions that satisfy certain nice
properties to perfectly secure DPFs. This transformation is novel and of independent
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interest. In particular, we give a t-private DPF transformed from Woodruff-Yekhanin
PIR [11].

As the second contribution, we build a share conversion from the matching vectors
(MVs) based PIR scheme of [12] and apply the transformation to the share conversion

to obtain a perfectly secure 8-server DPF with key size O(210
√
logN log logN + log p),

for point functions with domain [N ] and output group Zp (p ≥ 2 is a prime). We then
adopt the idea of [2] to this DPF and construct a 2−Ω(λ)-statistically secure 4-server

DPF with key size O(λ ·210
√
logN log logN+λ log p), for the same point functions. These

DPFs remove the p from the exponent and partially answer the open question of [2].
We also extend these constructions with the nice integers from [13, 14] and give both
n-server (n ≤ 2r+1) perfectly secure DPFs and n-server (n ≤ 2r) statistically secure

DPFs with key size O(2c(r)
r
√

logN(log logN)r−1
+log p), for point functions with domain

[N ] and output group Zp, where r ≥ 2 and c(r) is a constant. Since the set of functions
we need to share is of size N(p−1)+1, the key size should be at least Θ(logN+log p).
Our construction almost reach the optimal key size when p is quite larger than N . For
applications like secure aggregation [9] or secure writing [15, 16], we need a DPF with
a large prime output group, our new constructions greatly improved the efficiency.

As the third contribution, we build a share conversion from the MVs based PIR
scheme of [7] and apply the transformation to the share conversion to obtain a perfectly

secure 4-server DPF with key size O(τ log p · 2c(p)
√
logN log logN ), for point functions

with domain [N ] and output group Zpτ , where c(p) = 6 for p = 2 and c(p) = 2p for
p ≥ 3. In particular, for p = 2 and τ > 1, our DPFs fill the gap left by Boyle et al.
[2] and thus lead to DPFs with any finite Abelian groups as output groups. In the
problem of private set intersection [17], each element is given a weight and the DPF
is used to sum the weights of the elements in the intersection. In this application,
we may assign weight 2j to the j-th element. Choosing Z2τ as the output group can
reduce the storage cost. Besides, DPFs with arbitrary output groups are more flexible
building blocks for constructing function secret sharing schemes [10, 18].

1.2 Application to PIR-RV

A t-private n-server PIR protocol allows one to privately retrieve an item DBi of a
database DB = (DB1, . . . ,DBN ) from n servers, each of which stores a copy of DB,
such that the collusion of any t servers learn no information about i ∈ [N ]. Such a
protocol is said to be a (v, ϵ)-secure PIR with result verification (PIR-RV) [8] if it
additionally allows one to verify if the correct value of DBi has been recovered, except
with a small probability ϵ, when at most v of the servers provide wrong answers.

As the fourth contribution of this paper, we construct a 1-private 2(ζ + 1)-
server (2ζ, 1

2τ )-secure PIR-RV protocol with communication complexity O(ζ3τ ·
26

√
logN log logN ) for any positive integers ζ and τ together with a 1-private 4(ζ +

1)-server (4ζ, 1p )-secure PIR-RV protocol with communication complexity O(ζ5 ·
26

√
logN log logN + ζ5 log p), by using DPFs. Compared with the 2-server (1, 1p )-secure

PIR-RV [8] with communication complexity O(log p ·
√
N), ours support more servers

and is asymptotically more efficient. Our construction is the most efficient information-
theoretic PIR-RV protocols to date and secure even if a majority of the servers are
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malicious, which is a property not achieved by [8]. Our PIR-RV is constructed from
any perfect secure DPF in our DPF framework, so future improvements in DPF could
lead to improvements in PIR-RV protocols, which is also meaningful.

1.3 Our Techniques

A share conversion allows one to convert the shares of a secret under a secret sharing
scheme (SSS) to the shares of a related secret under another SSS. Our transformation
requires a share conversion Conv(·, ·, ·) from a (t, n)-threshold SSS to an additive SSS.
Given a point function fα,β(x), we secret-share α as (c0, . . . , cn−1) with the threshold
SSS. The function Conv is chosen such that there exist functions ϕ,Φ and ψ (where
ϕ is a homomorphism and Φ is bilinear) with the following property: for any x, there
exists a value σ such that

fα,β(x) = ϕ

(
Φ

((
σ · β

)
⋄ ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

))
, (1)

where ⋄ stands for the action of σ·β on a module element ψ(α). By splitting (σ·β)⋄ψ(α)
as the sum of t + 1 random values h0, . . . , ht and distributing every (hj , cℓ) to a
different server, the algebraic properties of ϕ and Φ allow us to express fα,β(x) as
the sum of n(t + 1) terms, each of which can be computed by exactly one of the
servers. Consequently, this transformation gives a t-private n(t + 1)-server perfectly
secure DPF. Underlying the DPFs of Boyle et al. [2] is a formula similar to (1), which
however lacks the component ϕ. In our language, their transformation is a special case
of ours with ϕ being the identity function. The idea of introducing ϕ to (1) is the core
technique of this work.

Like [2], our 4-server perfectly secure DPF with output group Zpτ is based on a
share conversion from the PIR [7]. The share conversion of [2] needs MVs over Zm for
m = 2pτ . As MVs exist only if m has ≥ 2 different prime divisors, their construction
cannot allow p = 2. A natural idea is to change m to qpτ for a prime q ̸= p. However,
this simple idea turns out not working. We bypass this difficulty by replacing the ring
Z2pτ with Zpτ [γ]/(γq − 1) and applying a homomorphism ϕ from this ring to Zpτ ,
which gives (1). For the 8-server perfectly secure DPF with output group Zp, we use a
share conversion from the PIR [12], which can use MVs over a much smaller ring Zm

and in particular allow us to remove the exponential dependence in p of the key size.

1.4 Organization

In Section 2, we introduce basic notion, definitions and techniques that will be used
in our constructions. Section 3 presents our transformation from share conversion
to information-theoretic DPFs. In Section 4, we build share conversions on several
existing PIR schemes and apply the transformation to obtain our new DPFs. In Section
5, we show the applications of our DPFs to PIR-RV protocols. Finally, Section 6
contains our concluding remarks.
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2 Preliminaries

Let Z+ the set of all positive integers. For any N ∈ Z+, we denote [N ] = {1, . . . , N}.
For any m,h ∈ Z+, we denote by Zm the ring of integers modulo m and denote by Zh

m

the set of all vectors of length h over Zm. For any u = (u1, . . . , uh),v = (v1, . . . , vh) ∈
Zh
m, we denote ⟨u,v⟩m =

∑h
i=1 uivi. For any prime power q, we denote by Fq the finite

field of q elements and denote by F∗
q its multiplicative group. Let u = (u1, . . . , uh).

For any vector z = (z1, . . . , zh), we denote zu = zu1
1 · · · z

uh

h . For any γ, we denote
γu = (γu1 , . . . , γuh). We use δα,x to denote the Kronecker symbol, i.e., δα,x = 1 when
x = α and δα,x = 0 when α ̸= x.

Bilinear functions. Let R a commutative ring with identity. Let H be an R-module
(see Section 2.1 for basics about rings and modules). We denote by r ⋄ h the action of
a ring element r ∈ R on a module element h ∈ H. Let C be a finite Abelian group. A
function Φ : H×C → R is said to be bilinear if for any h1, h2 ∈ H, c1, c2 ∈ C, r1, r2 ∈ R,
Φ(r1 ⋄ h1 + r2 ⋄ h2, c1 + c2) =

∑2
i=1 ri · Φ(hi, cj).

Probability. We denote by Uℓ the uniform distribution over {0, 1}ℓ. For any two
distributions D1, D2 over the same sample space Ω, we denote by SD(D1, D2) =
1
2

∑
ω∈Ω |PrD1

[ω]− PrD2
[ω]| their statistical distance.

Point functions. Let N ∈ Z+ and let G be an Abelian group. For any α ∈ [N ] and
β ∈ G, the point function fα,β : [N ]→ G is defined by fα,β(x) = β · δα,x.

2.1 Rings, Modules and the Structure of Finite Abelian groups

Definition 1. (Commutative ring with identity [19]) A commutative ring R with
identity is a set together with two binary operations + and · satisfying the following
axioms:

1. (R,+) is an Abelian group, we call this group the additive group of R;
2. (a · b) · c = a · (b · c) and a · b = b · a for all a, b, c ∈ R;
3. (a+ b) · c = (a · c) + (b · c);
4. there is an element 1 ∈ R with 1 · a = a · 1 = a for all a ∈ R.

Definition 2. (Module [19]) Let R be a commutative ring with identity. A (left)
R-module is an Abelian group H with an action of R on H denoted by r ⋄ h, for all
r ∈ R and h ∈ H which satisfies

1. (r + s) ⋄ h = r ⋄ h+ s ⋄ h for all r, s ∈ R and h ∈ H;
2. (r · s) ⋄ h = r · (s ⋄ h) for all r, s ∈ R and h ∈ H;
3. r ⋄ (h1 + h2) = r ⋄ h1 + r ⋄ h2 for all r ∈ R and h1, h2 ∈ H;
4. 1 ⋄ h = h for all h ∈ H.

In particular, let m be a positive integer, R is a commutative ring with identity,
G = Zm be a subgroup of the additive group of R with [1]m ∈ G is also the 1 element
of R. Note that G = Zm could also be regarded as a ring.
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Theorem 1. Let ϕ be a surjective (group) homomorphism from the additive group of
R to G that fix G = Zm ⊆ R. Then for all r ∈ R and β ∈ G we have:

ϕ(r · [b]m) = [b]m ⋄ ϕ(r)

Proof. By the 3rd axiom of a ring, we have

ϕ(r · β) = ϕ(r + r + · · ·+ r︸ ︷︷ ︸
b

)

for β = [b]m ∈ Zm. Since ϕ is a Abelian group homormophism,

ϕ(r + r + · · ·+ r︸ ︷︷ ︸
b

) = ϕ(r) + · · ·+ ϕ(r)︸ ︷︷ ︸
b

which is equal to β · ϕ(r) when we regard G as ring Zm.

There is theorem about the structure of finite generated modules over a principal
ideal domain in [19], which could imply the structure of finite Abelian groups.
Theorem 2. (Structure of finite Abelian groups) For any finite Abelian group
G, there exist primes p1, . . . , pℓ and positive integers τ1, . . . , τℓ such that:

G ∼= Z/(pτ11 )× · · · × Z/(pτℓℓ ).

2.2 Distributed Point Function

Informally, a t-private n-server DPF [2] allows one to secret-share a point function
fα,β among n servers such that any t servers learn no information about the function.
However, given any input x ∈ [N ], each server can compute an additive share of
fα,β(x) ∈ G.
Definition 3. (Distributed point function) An n-server DPF Π =
(Gen, {Evali}n−1

i=0 ) is a tuple of n+ 1 algorithms with the following syntax:

• (k0, . . . , kn−1) ← Gen(1λ, fα,β): Given a security parameter λ and a point func-
tion fα,β, the (randomized) key generation algorithm Gen returns n secret keys
k0, . . . , kn−1.

• yi ← Evali(ki, x): Give a secret key ki and an input x ∈ [N ], the (deterministic)
evaluation algorithm Evali (of server i) returns a group element yi ∈ G.

The protocol Π should satisfy the following requirements:

• Correctness. For any λ, any fα,β, any x ∈ [N ], and any (k0, . . . , kn−1) ←
Gen(1λ, fα,β), Pr

[∑n−1
i=0 Evali(ki, x) = fα,β(x)

]
= 1.

• Security. The security of a t-private DPF requires that every ≤ t secret keys leak no
information about the point function. Formally, we consider the following security
experiment between a challenger and an adversary A that controls the j-th server
for j ∈ T (T ⊆ {0, 1, . . . , n− 1}, |T | ≤ t):
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– Given the security parameter λ, A generates two point functions f0 = fα0,β0 and
f1 = fα1,β1 , both having domain [N ] and range G.

– The challenger samples b
$← {0, 1} uniformly, generates n secret keys

(k0, . . . , kn−1) ← Gen(1λ, f b) for the point function f b, and gives kT = {ki : i ∈
T} to A.

– The adversary A outputs a guess b′ ← A(kT ).

Denote by Adv(1λ,A, T ) := |Pr[b = b′]−1/2| the advantage of A in guessing b in the
experiment. For a circuit size bound M = M(λ) and an advantage bound ϵ = ϵ(λ),
we say that Π is (M, ϵ)-secure if for all subset T ⊆ {0, . . . , n− 1} of cardinality ≤ t,
and all non-uniform adversaries A of size M(λ), Adv(1λ,A, T ) ≤ ϵ(λ).

A DPF is said to be statistically ϵ-secure if it is (M, ϵ)-secure for allM , and perfectly
secure if it is statistically 0-secure. Both kinds of DPFs are called information-theoretic
DPFs [2]. In this work, we focus on information-theoretic DPFs.

2.3 Private Information Retrieval

A t-private n-server PIR protocol involves two kinds of participants: a client and n
servers S0, · · · ,Sn−1, where each server has a database DB ∈ {0, 1}N and the client
has an index α ∈ [N ]. It allows the client to retrieve DBα, without revealing α to any
t of the servers.
Definition 4 (Private information retrieval). An n-server PIR Γ =
(Que,Ans,Rec) is a triple of algorithms with the following syntax:

• ({quej}n−1
j=0 , aux) ← Que(N,α): This is a randomized querying algorithm for the

client. Given a retrieval index α ∈ [N ], it outputs n queries {quej}n−1
j=0 , along with

an auxiliary information aux. For each 0 ≤ j < n, the query quej will be sent
to the server Sj. The auxiliary information aux will be used by the client in the
reconstructing algorithm.

• ansj ← Ans(DB, quej): This is a deterministic answering algorithm for the server Sj
(0 ≤ j < n). Given the database DB and the query quej, it outputs an answer ansj.

• DBα ← Rec(α, {ansj}n−1
j=0 , aux): This is a deterministic reconstructing algorithm for

the client. Given the the retrieval index α, the answers {ansj}n−1
j=0 and the auxiliary

information aux, it outputs DBα.

The protocol Γ should satisfy the following requirements:

• Correctness. For any N , any DB ∈ {0, 1}N , any α ∈ [N ], and any
({quej}n−1

j=0 , aux) ← Que(N,α), it holds that Rec(α, {Ans(DB, quej)}n−1
j=0 , aux) =

DBα.
• t-Privacy. For any N , any α1, α2 ∈ [N ], and any T ⊆ {0, 1, . . . , n−1} with |T | ≤ t,

QueT (N,α1) and QueT (N,α2) are identically distributed, where QueT denotes the
concatenation of the j-th output of Que for all j ∈ T .

The efficiency of an n-server PIR protocol is measured by its communication com-
plexity, which is denoted by CCΓ(N) and defined as the number of bits communicated
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between the client and all servers, maximized over the choices of DB ∈ {0, 1}N and

α ∈ [N ], i.e., CCΓ(N) = maxDB,α(
∑n−1

j=0 (|quej |+ |ansj |)).

2.4 Secret Sharing and Share Conversion

In Section 3, we will propose a general transformation from PIR to information-
theoretic DPF. A stepping stone in this transformation is share conversion, which
converts one SSS into another.
Definition 5. (Secret sharing [4, 20]) An SSS L = (Share,Recov) for n participants
allows a dealer to convert a secret s ∈ S into n shares (c0, . . . , cn−1)← Share(s), one
to each participant, such that

• Any authorized set A ⊆ {0, 1, . . . , n− 1} of participants can reconstruct the secret s
by executing the reconstruction algorithm on their shares, i.e., s← Recov({cj}j∈A);

• Any unauthorized set B ⊆ {0, 1, . . . , n− 1} learns no information about s, i.e., for
any s1, s2 ∈ S, ShareB(s1) and ShareB(s2) are identically distributed.

For ease of exposition, we denote an SSS by (L,S). An SSS (L,S) is called a (t, n)-
threshold SSS if the authorized sets are the subsets of {0, 1, . . . , n − 1} of cardinality
≤ t, and called an additive SSS if s = c0+ · · ·+cn−1 for all (c0, . . . , cn−1)← Share(s).
We say that (L,S) has share space C if for any s ∈ S, the n shares output by Share(s)
all belong to C.
Definition 6. (Share conversion [4]) Let (L1,S1) = ((Share1,Recov1),S1) and
(L2,S2) be two SSSs. Let R ⊆ S1 × S2 be a binary relation such that, for every
s1 ∈ S1 there exists at least one s2 ∈ S2 such that (s1, s2) ∈ R. We say that L1

is locally convertible to L2 w.r.t. R if there exist local share conversion functions
(g0, . . . , gn−1) with the following property: For any s1 ∈ S1 and

(
c0, . . . , cn−1) ←

Share1(s1), (g0(c0), . . . , gn−1(cn−1)
)
is a valid sharing for some s2 ∈ S2 such that

(s1, s2) ∈ R.

2.5 Matching Vector Families

Our DPFs are constructed with matching vector (MV) families [12], which also
underlie the most efficient PIR schemes [7, 12, 21] to date.
Definition 7. (S-matching family) Let m,h ∈ Z+ and let S ⊆ Zm \ {0}. A pair
(U, V ), where U = {ux}Nx=1, V = {vx}Nx=1 ⊆ Zh

m, is said to be an S-matching family
of size N if ⟨uα,vα⟩m = 0 for all α ∈ [N ], and ⟨ux,vα⟩m ∈ S for all x, α ∈ [N ] such
that x ̸= α.

Efremenko [12] defined MV families and gave the first superpolynomial size S-
matching families modulo a composite integerm, where S ⊆ Zm\{0} was the canonical
set [13] of m.
Definition 8. (Canonical set) Let m = pe11 . . . perr > 1, where p1, . . . , pr are r > 1
distinct primes and e1, . . . , er ∈ Z+. The canonical set of m, denoted by Sm, is the set
of integers σ ∈ Zm \ {0} such that σ mod peii ∈ {0, 1} for all i ∈ [r].

The Sm-matching families of Efremenko [12] are obtained from the superpolyno-
mial size set systems of Grolmusz [22].
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Theorem 3. ([12, 22]) Let m = pe11 · · · perr > 1, where p1, . . . , pr are r > 1 distinct
primes and e1, . . . , er ∈ Z+. Then there is a constant c = c(m) such that: for any
integer h > 0, there is an Sm-matching family (U, V ) of size N in Zh

m such that

h = O
(
2c

r
√

logN(log logN)r−1)
.

For r = 2, the constant c in Theorem 3 may be taken as 2 ·max{p1, p2}. In the PIR
schemes of [7, 12], the Sm-matching family (U, V ) of Theorem 3 was used to encode
any database DB = (DB1, . . . ,DBN ) ∈ {0, 1}N as

FDB(z) =

N∑
j=1

DBj · zuj , (2)

a polynomial in z = (z1, . . . , zh), such that the problem of privately retrieving a
database entry DBi is reduced to the problem of privately recovering a coefficient of
FDB. In particular, FDB may be interpreted as a polynomial over a finite field [12] or
a finite ring [7].

2.6 Efremenko’s PIR

Let q be a prime power such that q−1 is a multiple of the integer m from Theorem 3.
Then the finite field Fq contains an element γ of multiplicative order m. In Efremenko
[12], the FDB(z) in (2) was interpreted as a polynomial in Fq[z] and any DBα was
recovered by considering the restriction of FDB(z) on a random multiplicative line in
Gh, where G = ⟨γ⟩. The recovering procedure is based on an Sm-decoding polynomial
[12].
Definition 9. (S-decoding polynomial) Let m ∈ Z+ and let S ⊆ Zm \ {0}. Let
q be a prime power such that m|(q − 1) and let γ ∈ F∗

q be of multiplicative order m.
A polynomial P (x) ∈ Fq[x] is called an Sm-decoding polynomial if P (γσ) = 0 for all
σ ∈ S, and P (γ0) = 1.

For any S ⊆ Zm \ {0}, a trivial construction may give an S-decoding polynomial

P (X) =
∏
σ∈S

(X − γσ)
/∏

σ∈S

(1− γσ) (3)

with at most n = |S| + 1 monomials, e.g., P (X) = a0X
b0 + · · · + an−1X

bn−1 . To
retrieve any DBα, Efremenko [12] requires one to communicate with n servers, choose
a random vector w ← Zh

m, send to the j-th server w + bjvα for all 0 ≤ j < n, and
finally output

DBα =

n−1∑
j=0

aj · FDB(γ
w+bjvα). (4)

The number of monomials in P (X) is equal to the number of required servers, which
should be as small as possible. For a given (m,S, q, γ), the S-decoding polynomial in
Definition 9 is not unique. For example, for m = 511 and S = {1, 147, 365}, Efremenko
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[12] showed an S-decoding polynomial with 3 (< |S|+ 1) monomials. Itol and Suzuki
[13] showed a composition theorem for finding Sm-decoding polynomials with fewer
monomials.
Theorem 4. (Composition theorem [13]) Let m = m1m2 be the product of two
coprime integers m1 and m2. If there is an Smi-decoding polynomial with ni monomials
for i = 1, 2, then there is an Sm-decoding polynomial with n monomials such that
n ≤ n1n2.

Chee et al. [14] showed that ifm = p1p2 is a Mersenne number, then there is an Sm-
decoding polynomial with 3 monomials. Such m is nice in the sense that the number
of monomials in an Sm-decoding polynomial can be strictly smaller than |Sm|+1 = 4.
The nice integers [14] gave the most efficient n-server PIR schemes to date for all
n ≥ 27.

2.7 Generalized Dvir-Gopi PIR

Dvir and Gopi [7] constructed an MV-based 2-server PIR with communication com-
plexity exp(O(

√
logN(log logN))). In their PIR, the FDB(z) in (2) is regarded as a

polynomial over the finite ring Zm[γ]/(γm− 1). Each server uses not only FDB(z) but
also the following vector-valued function to answer PIR queries:

F
(1)
DB(z) =

N∑
j=1

DBj · uj · zuj . (5)

Boyle et al. [2] generalized [7] such that the reconstruction algorithm computes a
linear combination of the servers’ answers. They chosem = 2pτ for an odd prime p. We
give a more general version by choosing m = qpτ , where p, q are distinct primes. We

regard FDB(z) and F
(1)
DB(z) as functions from Rh to Zpτ , where R = Zpτ [γ]/(γq−1). To

retrieve DBi, the client interacts with two servers, chooses a random vector w← Zh
m

and sends to the ℓ-th server cℓ = w+ ℓ · vi for ℓ = 0, 1, where vi is from the set V in
an MV family (U, V ). The ℓ-th server replies with

aℓ = (−1)ℓγ1−ℓ
(
FDB(γ

cℓ), F
(1)
DB(γ

cℓ)
)
=

N∑
j=1

DBj · (−1)ℓγ1−ℓ+⟨cℓ,uj⟩m · (1,uj) (6)

which is in Rh+1. Let ϕ(r) = r1 for r = r0 + r1γ+ · · ·+ rq−1γ
q−1 ∈ R. Upon receiving

a0 and a1 from the two servers, the user recovers DBi with

DBi = ϕ
(
⟨(a0 + a1), (1,−vi)⟩pτ · γ−⟨w,ui⟩m

)
∈ Zpτ . (7)

3 Our Transformation from Share Conversion to
DPF

In this section, we show a transformation from share conversions that satisfy certain
properties to DPFs. As many existing PIR protocols [7, 12] imply share conversions
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with the properties, our transformation will give a method of constructing DPFs from
PIR via share conversion, which will be used in Section 4 to obtain our new DPFs.

We construct perfectly secure DPFs for point functions with domain [N ] and range
G, where N ∈ Z+ and G is an Abelian group. From Theorem 2 we know that any finite
Abelian group G is isomorphic to a group of form Z/(pτ11 ) × · · · × Z/(pτℓℓ ). Suppose

there are n-server DPFs (DPF1, . . . ,DPFℓ) with DPFj = (Genj ,Evalj0, . . . ,Eval
j
n−1)

and output group Gj = Z/(pτjj ). Then it’s enough to construct a DPF with output
group G in the following figure.

• Gen(1λ, fα,β) : For α ∈ [N ], β = (β1, . . . , βℓ) ∈ Z/(pτ11 )× · · · × Z/(pτℓℓ ) ∼= G,

– for j = 1, . . . , ℓ, (kj0, . . . , k
j
n−1)← Genj(1

λ, fα,βj
);

– output (k0, . . . , kn−1) where ki = (k1i , . . . , k
ℓ
i ).

• Evali(ki, x) : For ki = (k1i , . . . , k
ℓ
i ), x = (x1, . . . , xℓ) ∈ Z/(pτ11 )× · · ·×Z/(pτℓℓ ) ∼= G,

output

(Eval1i (k
1
i , x1), . . . ,Eval

ℓ
i(k

ℓ
i , xℓ)) ∈ Z/(pτ11 )× · · · × Z/(pτℓℓ ) ∼= G.

Fig. 1 DPF with output group G

Fig. 1 shows that we only need to consider DPFs with output groups of form
Z/(pτ ) = Zpτ , then we can use them to construct DPFs with any output groups. The
construction is essentially a transformation from share conversions with certain nice
properties to DPFs.

Let (L1,S1) = ((Share1,Recov1), [N ]) be a (t, n)-threshold SSS with share space
C1. Let (L2,S2) be an additive SSS with share space C2, where C2 = S2 is an additive
group. Suppose that R ⊆ S1×S2 is a binary relation and (L1,S1) is locally convertible
to (L2,S2). To enable the proposed transformation, we require:

(a) There is a function Conv : {0, 1, . . . , n−1}×S1×C1 → C2 such that for any x ∈ S1,
the functions gx0 , . . . , g

x
n−1 : C1 → C2 defined by

gxℓ (c) = Conv(ℓ, x, c), ∀0 ≤ ℓ < n, c ∈ C1, (8)

are n local share conversion functions for the binary relation R.
(b) There is a commutative ring R with identity such that G ⊆ R is a subgroup of the

additive group of R, G contains the identity element of R and there is a surjective
homomorphism ϕ : R→ G.

(c) There exist an R-module H, a function ψ : S1 → H, and a bilinear function Φ :
H×C2 → R such that: for any α ∈ S1, any (c0, . . . , cn−1)← Share1(α), any x ∈ S1,
and

ρ(α, x) := Φ

(
ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

)
, (9)
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there exists a ring element σ ∈ R that satisfies

ϕ(ρ(α, x) · σ) = δα,x. (10)

Share conversion: the SSSs (L1,S1) and (L2,S2), the binary relation R, the func-
tion Conv, the ring R, the module H, and the functions ϕ, ψ,Φ that satisfy (a), (b)
and (c).

• Gen(1λ, fα,β): Given α ∈ [N ] and β ∈ G, compute (c0, c1, . . . , cn−1)← Share1(α);
choose h0, h1, . . . , ht ← H uniformly subject to

h0 + h1 + · · ·+ ht = (σ · β) ⋄ ψ(α);

output n(t + 1) keys {ki}n(t+1)−1
i=0 , where ki = (hj , cℓ) for i = nj + ℓ (0 ≤ j ≤

t, 0 ≤ ℓ < n).
• Evali(ki, x) : For ki = (hj , cℓ) and x ∈ [N ], output ϕ

(
Φ
(
hj ,Conv(ℓ, x, cℓ)

))
.

Fig. 2 Perfectly secure DPF Π from share conversion

Given the SSSs (L1,S1) and (L2,S2), the binary relation R, the function Conv,
the ring R, the module H, and the functions ϕ, ψ,Φ that satisfy (a), (b) and (c), Fig.
2 shows our construction of perfectly secure DPFs. For a point function fα,β with
domain [N ] and range G, we secret-share α with the (t, n)-threshold SSS (L1,S1) such
that any ≤ t shares leak no information about fα,β . For any x ∈ [N ], the outputs
{Conv(ℓ, x, cℓ)}0≤ℓ<n define a function ρ(α, x) in (9) that satisfies (10), where σ ∈ R.
We normalize the ψ(α) in (9) by acting the ring element σ · β in order to have that

fα,β(x) = ϕ

(
Φ

((
σ · β

)
⋄ ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

))
. (11)

We additively secret-share
(
σ · β

)
⋄ ψ(α) ∈ H such that any ≤ t shares leak no

information about fα,β . In our construction, the n(t + 1) servers are organized as
a (t + 1) × n array, the (j, ℓ)-th server (0 ≤ j ≤ t, 0 ≤ ℓ < n) is given both the
jth share of

(
σ · β

)
⋄ ψ(α) and the ℓth share of α such that any ≤ t servers learn

no information about fα,β . The bilinear property of Φ allows us to distribute the
computation of the left-hand side of (11) to the n(t + 1) servers and obtain a DPF
(Gen,Eval0, . . . ,Evaln(t+1)−1).
Theorem 5. The construction of Fig. 2 gives a t-private n(t + 1)-server perfectly
secure DPF with output group G (= Zpτ ).

Proof. We need to show that Π is correct and t-private. The correctness requires that
for any α ∈ [N ], β ∈ G and x ∈ [N ], the sum of the n(t+ 1) servers’ outputs is equal
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to fα,β(x). Since Φ is bilinear, we have that

Φ
( t∑

j=0

hj ,

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)
)
= Φ

(
(σ · β) ⋄ ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)
)

=
(
σ · β

)
· Φ
(
ψ(α),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)
)
= σ · β · ρ(α, x).

(12)

Note that β ∈ G is the residue class of b modulo pτ for some integer 0 ≤ b < pτ . In
Section 2.1, we show that ϕ(r · β) = β · ϕ(r) for any r ∈ R and β ∈ G. By Eq. (10),
we have that

ϕ(σ · β · ρ(α, x)) = β · ϕ(ρ(α, x) · σ) = β · δα,x = fα,β(x). (13)

Due to Eq. (12) and Eq. (13), we have that

n(t+1)−1∑
i=0

Evali(ki, x) =
t∑

j=0

n−1∑
ℓ=0

ϕ
(
Φ
(
hj ,Conv(ℓ, x, cℓ)

))
= ϕ

(
Φ
( t∑
j=0

hj ,

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)
))

= fα,β(x).

Regarding privacy, we note that c0, . . . , cn−1 are shares of α under the (t, n)-
threshold SSS (L1,S1), h0, . . . , ht are shares of (σ ·β)⋄ψ(α) under a t-private additive
SSS, and any ≤ t servers learn ≤ t of c0, . . . , cn−1 and ≤ t of h0, . . . , ht. It’s easy to
see that any ≤ t servers learn no information about fα,β , i.e., Π is t-private.

Statistically Secure DPFs. Boyle et al. [2] construct a 3-server statistically secure
DPF using a share conversion from (2, 3)-CNF sharing to additive secret sharing. By
choosing

S1 = [N ], G = Zp, S2 = C2 = R = H = Fpτ , Φ(a, b) = a · b, (14)

Under this condition, we have

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)

{
̸= 0, x = α

= 0, x ̸= α
. (15)

Following the techniques in [2], we can generalize their construction to get more general
statistically secure DPFs in Fig. 3, which is a t-private n-server 2−Ω(λ)-statistically
secure DPF with output group Zp.
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Let Share be the Share1 algorithm of SSS (L1,S1), Conv be the algorithm given by
Eq. (8) from the share conversion.

• Gen(1λ, fα,β): For α ∈ [N ] and β ∈ Zp,

– for ξ = 1, . . . , λ draw α∗
ξ ← {α,N+1} at random and compute (cξ0, . . . , c

ξ
n−1)←

Share(α∗
ξ);

– for ξ = 1, . . . , λ set y = (y1, . . . , yλ) as

yξ =


n−1∑
ℓ=0

Conv(ℓ, α, cξℓ) , α∗
ξ = α

0 , α∗
ξ = N + 1

;

– choose r ∈ Fλ
pτ at random under the constraint that ϕ(⟨r,y⟩) = β;

– output n keys {ki}n−1
i=0 , where ki = ((cξℓ)

λ
ξ=1, r) for i = ℓ (ℓ ∈ {0, . . . , n− 1}).

• Evali(ki, x) : For ki = ((cξℓ)
λ
ξ=1, r) and x ∈ [N ];

– for ξ = 1, . . . , λ set yξi = Conv(ℓ, x, cξℓ), and denote by yi ∈ Fλ
pτ the vector of all

yξi values concatenated;
– output ϕ(⟨r,yi⟩).

Fig. 3 Statistically secure MV-based DPF framework

4 DPFs from Our Transformation

In this section, we construct new perfectly secure DPFs by instantiating the trans-
formation from Section 3. We construct perfectly secure DPFs with output group
G = Zpτ for any prime p and any integer τ ∈ Z+. For p = 2 and τ > 1, such DPFs are
not known to exist before this work. These DPFs allow us to obtain perfectly secure
DPFs with any finite Abelian groups as output groups. For any prime p and τ = 1,
we provide a DPF that supports colluding servers and an alternative construction of
DPFs that have much shorter secret keys.

4.1 DPFs with Output Group Zpτ

In this section, we construct a perfectly secure 4-server DPF with output group
G = Zpτ , where p may be any prime and τ ∈ Z+. Our DPFs are obtained by instan-
tiating the transformation from Section 3. Underlying our construction is our new
generalization of the Dvir-Gopi PIR [7] with m = qpτ (see Section 2.7). Our choice
of m only requires that p, q be different primes. In our language, Boyle et al. [2] is a
special case of our generalization by fixing q = 2. It is this new choice of m that allows
us to obtain DPFs with output group G = Z2τ (let p = 2 and q be an odd prime). In
Fig. 1, we show that the techniques of this section enable the construction of DPFs
with any finite Abelian group as output group.
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To present the new DPFs with G = Zpτ , we directly give the share conversion in
our generalization of Dvir-Gopi PIR, and then apply the transformation from Section
3.

Share Conversion. Let fα,β be a point function with domain [N ] and output group
G = Zpτ . We choose a prime q ̸= p and let

R = Zpτ [γ]/(γq − 1) (16)

be the ring of polynomials modulo γq − 1, with coefficients from Zpτ . In our share
conversion, the SSSs (L1 = (Share1,Recov1),S1) and (L2,S2) are chosen such that

S1 = [N ], C1 = Zh
m, S2 = C2 = Rh+1, (17)

where m = qpτ , h ∈ Z+ is an integer such that there is an Sm-matching family
(U, V ) ⊆ Zh

m of size N , and C1, C2 are the share spaces of the two SSSs. For α ∈ S1,
Share1(α) generates two shares c0, c1 ∈ C1 by mapping α to a vector vα ∈ V , randomly
choosing w← Zh

m, and finally setting

cℓ = w + ℓ · vα, ℓ = 0, 1. (18)

Given cℓ and any x ∈ S1, the local conversion function Conv(ℓ, x, cℓ) is defined by

Conv(ℓ, x, cℓ) = (−1)ℓγ1−ℓ+⟨cℓ,ux⟩m · (1,ux), (19)

where ux ∈ U is the x-th element of U . The SSS (L2,S2) is additive and may recover
a value s2(w, α, x) ∈ S2 from the converted shares in Eq. (19) via

s2(w, α, x) =

1∑
ℓ=0

Conv(ℓ, x, cℓ). (20)

Eq. (20) gives a binary relation R ⊆ S1 × S2 that will be used in our transformation:

R = {(α, s2(w, α, x)) : α, x ∈ S1,w ∈ Zh
m}. (21)

From Share Conversion to DPF. Besides the ring R, the SSSs (L1,S1) and
(L2,S2), the binary relation R, and the local share conversion function Conv that sat-
isfies the requirement of (a) in Section 3, we still need to properly choose a module
H and three functions ϕ, ψ,Φ that satisfy (b) and (c), in order to apply our trans-
formation. Note that G is a subgroup of the additive group of R and contains the
identity element of R. For any r ∈ R, there exist q elements r0, . . . , rq−1 ∈ G such that
r = r0 + r1γ + · · · + rq−1γ

q−1. In particular, the representation of r into the sum is
always unique. We choose ϕ : R→ G such that

ϕ(r) = r1, ∀r = r0 + r1γ + · · ·+ rq−1γ
q−1 ∈ R. (22)
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Then it is easy to see that ϕ is a surjective homomorphism and thus satisfies the
requirement of (b). For (c), we choose the R-module H = Rh+1(= S2 = C2) and
ψ : S1 → H such that

ψ(α) = (1,−vα), ∀α ∈ S1. (23)

Then it is easy to verify that the function Φ : H× C2 → R define by

Φ(h, c) = ⟨h, c⟩, ∀h ∈ H = Rh+1, c ∈ C2 = Rh+1. (24)

is bilinear. For any α ∈ S1, any (c0, c1) ← Share1(α), any x ∈ S1, Eq. (20), (23) and
(24) jointly imply that the ρ(α, x) in Eq. (9) is

ρ(α, x) = ⟨(1,−vα), s2(w, α, x)⟩. (25)

For the above choices of w, α, and x, we set

σ = γ−⟨w,uα⟩m , (26)

show that Eq. (10) is satisfied (see the proof for Theorem 6), and thus meet the require-
ment of (c). Applying our transformation from Section 3 with the related building
blocks as above, we get the 4-server perfectly secure DPF (see Fig. 4).

• Gen(1λ, fα,β): Given α ∈ [N ] and β ∈ Zpτ , generate (c0, c1) = (w,w+vα), choose
h0,h1 ← H = Rh+1 uniformly subject to

h0 + h1 = γ−⟨w,uα⟩mβ ⋄ (1,−vα),

output k0 = (h0, c0), k1 = (h0, c1), k2 = (h1, c0), k3 = (h1, c1).
• Evali(ki, x) : For every i ∈ {0, 1, 2, 3}, ki = (hj , cℓ) and x ∈ [N ], output

ϕ
(〈
hj , (−1)ℓγ1−ℓ+⟨cℓ,ux⟩m · (1,ux)

〉)
.

Fig. 4 A 4-server perfectly secure DPF with output group G = Zpτ

Theorem 6. The construction of Fig. 4 gives a perfectly secure 4-server DPF with
output group Zpτ (p is any prime, τ ∈ Z+). For point functions with domain [N ], the

key size of the DPF is O(τ log(p) · 2c(p)
√
logN log logN ), where c(2) = 6, c(p) = 2p for

p ≥ 3.

Proof. First of all, we show the correctness and security of that construction. Since
we have showed that the requirement (a) and (b) in Section 3 is realized, it suffices to
show that

ϕ(ρ(α, x) · σ) = δα,x.
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In this construction we have

ϕ(ρ(α, x) · σ) = ϕ

(
⟨(1,−vα),

1∑
ℓ=0

Conv(ℓ, x, cℓ)⟩ · γ−⟨w,uα⟩m

)
= ϕ

(
⟨(1,−vα), (γ

1+⟨c0,ux⟩m − γ⟨c1,ux⟩m) · (1,ux)⟩ · γ−⟨w,uα⟩m
)

= ϕ
(
γ−⟨w,uα⟩m · γ⟨w,ux⟩m · (γ − γ⟨vα,ux⟩m) · (1− ⟨vα,ux⟩ mod pτ )

)
.

• For x = α, ⟨vα,ux⟩m = 0, ϕ(ρ(α, x) · σ) = ϕ(γ − 1) = 1.
• For x ̸= α, ⟨vα,ux⟩m ∈ {1, σ01, σ10}, where σ01 mod pτ = 0, σ01 mod q = 1,
σ10 mod pτ = 1, σ10 mod q = 0:

– If ⟨vα,ux⟩m = 1 or ⟨vα,ux⟩m = σ01, then γ−γ⟨vα,ux⟩m = 0, hence ϕ(ρ(α, x)·σ) =
0;

– If ⟨vα,ux⟩m = σ10, then 1− ⟨vα,ux⟩m mod pτ = 0, hence ϕ(ρ(α, x) · σ) = 0.

Then the requirement (c) satisfies, then the correctness and security of
(Gen, {Evali}0≤i<4) follows from Theorem 5.

Finally, we determine the key size in this construction. Each key ki is in H×C1 =
Zm × Rh+1, whose size is O(τ log p · h). From Theorem 3 we know the key size |ki| =
O(τ log(p) · 2c(p)

√
logN log logN ), where c(2) = 6, c(p) = 2p for p ≥ 3 which completes

the proof.

4.2 DPFs with Output Group Zp

For G = Zp, the DPFs from Section 4.1 have key sizes exponential in p. Boyle et al. [2]
have statistically secure DPFs for the same output group. However, both schemes are
only 1-private and the key sizes of both schemes are exponential in p as well. In Section
4.2.1, we show that how to obtain a DPF with G = Zp by applying our transformation
to a share conversion from the PIR [11] and get a t-private information-theoretic DPF.
In Section 4.2.2, we show how to get a DPF with key sizes only linear in log p.

4.2.1 t-private DPF

Applying our transformation to Woodruff-Yekhanin PIR of [11], we obtain a t-private
DPF with keys of size sublinear in the point function’s domain. The construction is
as follows.

Share conversion. Let fα,β = (N,G, α, β) be the point function that we want to
share between two servers, where G = Zp. We choose a positive integer τ and let

R = Fpτ . (27)

In our share conversion, the SSSs (L1 = (Share1,Recov1),S1) and (L2,S2) are chosen
such that

S1 = [N ]; C1 = Fh
pτ ; S2 = C2 = Fh+1

pτ ; (28)
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where
(
h
d

)
≥ N , d = ⌊ 2n−1

t ⌋ and p
τ > n. We first take E : [N ]→ {0, 1}h ⊆ Fh

pτ to be

an embedding of the N coordinates into points in {0, 1}h of Hamming weight d. The
SSS (L1,S1) secret-shares any s1 = α ∈ S1 between n servers by firstly mapping α to
a vector E(α), then randomly choosing w← Fh

pτ , and finally setting

cℓ = E(α) + ζℓw, ∀ℓ = 0, 1, . . . , n− 1 (29)

where ζ0, ζ1, . . . , ζn−1 ∈ Fpτ are distinct and nonzero. The ℓ-th server computes

F (ℓ, x, cℓ) =
∏

j:E(x)j=1

cℓj (30)

and its gradients

∇F (ℓ, x, cℓ) :=
(
∂F

∂cℓ0
(ℓ, x, cℓ), . . . ,

∂F

∂cℓn−1

(ℓ, x, cℓ)

)
. (31)

Then if we let f(ζℓ) := F (ℓ, x, cℓ) be a degree d polynomial of ζℓ, we have

f ′(ζℓ) = ⟨w,∇F (ℓ, x, cℓ)⟩. (32)

If f(ζ) = a0 + a1ζ + · · ·+ adζ
d, we can get

a0 = F (ℓ, x,E(α)) =

{
0, x ̸= α

1, x = α
(33)

by solving the linear equation (sometimes we have 2n− 1 > d, then we don’t need all
the 2n equations, but this doesn’t matter)

f(ζ0)
f ′(ζ0)

...
f(ζn−1)
f ′(ζn−1)

 =


1 ζ0 . . . ζd0
0 1 . . . dζd−1

0
...

...
. . .

...
1 ζn−1 . . . ζdn−1

0 1 . . . dζd−1
n−1




a0
a1
...

ad−1

ad

 (34)

Then we can denote the solution of a0 by

a0 = b0f(ζ0) + b′0f
′(ζ0) + · · ·+ bn−1f(ζn−1) + b′n−1f

′(ζn−1). (35)

The local conversion function Conv(ℓ, x, cℓ) is defined by

Conv(ℓ, x, cℓ) = (bℓF (ℓ, x, cℓ), b
′
ℓ∇F (ℓ, x, cℓ)) . (36)
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The SSS (L2,S2) recovers s2 ∈ S2 via computing

s2(w, α, x) =

n−1∑
ℓ=0

Conv(ℓ, x, cℓ) (37)

Eq. (37) gives a binary relation R ⊆ S1 × S2 that will be used in our transformation:

R = {(α, s2(w, α, x)) : α, x ∈ S1,w ∈ Fh
pτ }. (38)

For any α ∈ S1, there exist exactly N · phτ elements s2 ∈ S2 such that (α, s2) ∈ R.

From share conversion to DPF. Besides the ring R, the SSSs (L1,S1) and (L2,S2),
the binary relation R, and the local share conversion function Conv that satisfies the
requirement of (a) in Section 3, we still need to properly choose a module H and three
functions ϕ, ψ,Φ that satisfy (b) and (c), in order to apply our transformation. Note
that G is a subgroup of the additive group of R and shares the same identity element
with R. Let ϕ : Fpτ → Zp be a homomorphism from the additive group Fpτ to the
additive group Zp, which is defined as follows

ϕ(r) = r0, ∀r =
τ−1∑
i=0

riX
i ∈ R. (39)

Note that there exists an irreducible polynomial g(X) ∈ Zp[X] of degree τ such
that R = Fpτ = Zp[X]/⟨g(X)⟩ and any element r ∈ Fpτ can be written as r =∑τ−1

i=0 riX
i ∈ Zp[X] for some r0, . . . , rτ−1. In particular, the representation of r into

the sum is always unique.
Then it is easy to see that ϕ is a surjective homomorphism and thus satisfies the

requirement of (b). For (c), we choose the R-module H = Rh+1(= S2 = C2) and
ψ : S1 → H such that

ψ(α) = (1,w) (40)

Then it is easy to verify that the function Φ : H× C2 → R define by

Φ(h, c) = ⟨h, c⟩, ∀h ∈ H = Rh+1, c ∈ C2 = Rh+1. (41)

is bilinear. For any α ∈ S1, any (c0, c1) ← Share1(α), any x ∈ S1, Eq. (37), (40) and
(41) jointly imply that the ρ(α, x) in Eq. (9) is

ρ(α, x) = ⟨(1,w), s2(w, α, x)⟩. (42)

For the above choices of w, α, and x, we set σ = 1, show that Eq. (10) is satisfied (see
the proof for Theorem 7), and thus finally meet the requirement of (c). Applying our
transformation from Section 3 with the related building blocks as above, we get the
expected perfectly secure DPF.
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• Gen(1λ, fα,β): Given α ∈ [N ] and β ∈ Zp, generate cℓ = E(α) + ζℓw, ∀ℓ =
0, 1, . . . , n− 1, choose h0, . . . ,ht ← H = Rh+1 uniformly subject to

h0 + · · ·+ ht = β ⋄ (1,w),

output knj+ℓ = (hj , cℓ),where j ∈ {0, . . . , t}, ℓ ∈ {0, 1, . . . n− 1}.
• Evali(ki, x) : For every i ∈ {0, 1, 2, 3}, ki = (hj , cℓ) and x ∈ [N ], output

ϕ(⟨hj , (bℓF (ℓ, x, cℓ), b
′
ℓ∇F (ℓ, x, cℓ)) .

Fig. 5 A 4-server perfectly secure DPF with output group G = Zpτ

Theorem 7. The construction of Fig. 5 is a perfectly secure n(t + 1)-server DPF
with output group Zp (p is any prime, n ∈ Z+). for point function with with domain

[N ], the key size of the DPF is O(log(p) ·N1/⌊ 2n−1
t ⌋).

Proof. First of all, we show the correctness and security of that construction. Since
we have showed that the requirement (a) and (b) in Section 3 is realized, it suffices to
show that

ϕ(ρ(α, x) · σ) = δα,x.

In this construction we have

ϕ(ρ(α, x) · σ) = ϕ(ρ(α, x)

= ⟨(1,w), s2(w, α, x)⟩

= ⟨(1,w),

n−1∑
ℓ=0

Conv(ℓ, x, cℓ)⟩

=

n−1∑
ℓ=0

(bℓF (ℓ, x, cℓ) + ⟨w, b′ℓ∇F (ℓ, x, cℓ)⟩)

=

n−1∑
ℓ=0

(bℓf(ζℓ) + b′ℓf
′(ζℓ))

= a0 = δα,x.

Then the requirement (c) satisfies, then the correctness and security of
(Gen, {Evali}0≤i<n(t+1)) follows from Theorem 5.

Finally, we determine the key size in this construction. Each key ki is in H×C1 =
F2h+1
pτ , whose size is O(τ · log(p) · h) with

(
h
d

)
> n and d = ⌊ 2n−1

t ⌋. Thus the key size

is O(log(p) ·N⌊ 2n−1
t ⌋), which completes the proof.

4.2.2 DPF with Smaller Key Sizes

In this section, we show that it is possible to have a perfectly secure DPF with output
group G = Zp and much shorter keys. We construct an 8-server DPF whose key size is
upper bounded by a function only linearly dependent of log p, which reach the optimal
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key size relative to p. To obtain the DPF, we firstly build a share conversion from
Efremenko’s PIR [12] and then apply the transformation from Section 3.

Share Conversion. Let fα,β be a point function with domain [N ] and output group
G = Zp. Given the prime p, we choose an integer m = p1p2 such that gcd(p,m) = 1,
where p1, p2 ≤ 5 are distinct primes. Then there is a prime power q = pτ such that
m|(q − 1). We set

R = Fq, (43)

the finite field of q elements. In our share conversion, the SSSs (L1 =
(Share1,Recov1),S1) and (L2,S2) are chosen such that

S1 = [N ]; C1 = Zh
m; S2 = C2 = R, (44)

where h ∈ Z+ is an integer such that there is an Sm-matching family (U, V ) ⊆ Zh
m of

size N , and C1, C2 are the share spaces of the two SSSs. Let γ ∈ F∗
q have multiplicative

order m. Let P (X) = a0X
b0 + a1X

b1 + a2X
b2 + a3X

b3 ∈ Fq[X] be the trivial Sm-
decoding polynomial from Eq. (3). For α ∈ S1, Share1(α) generates two shares c0, c1 ∈
C1 by mapping α to a vector vα ∈ V , randomly choosing w← Zh

m, and finally setting

cℓ = w + bℓvα, ∀ℓ ∈ {0, 1, 2, 3} (45)

Given cℓ and any x ∈ S1, the local conversion function Conv(ℓ, x, cℓ) is defined by

Conv(ℓ, x, cℓ) = aℓγ
⟨cℓ,ux⟩m (46)

where ux ∈ U is the x-th element of U . Finally, the SSS (L2,S2) is additive and may
recover a value s2(w, α, x) via computing

s2(w, α, x) =

3∑
ℓ=0

Conv(ℓ, x, cℓ). (47)

Eq. (47) gives a binary relation R ⊆ S1 × S2 that will be used in our transformation:

R = {(α, s2(w, α, x)) : α, x ∈ S1,w ∈ Zh
m}. (48)

From Share Conversion to DPF. Besides the ring R, the SSSs (L1,S1) and
(L2,S2), the binary relation R, and the local share conversion function Conv that sat-
isfies the requirement of (a) in Section 3, we still need to properly choose a module H
and three functions ϕ, ψ,Φ that satisfy (b) and (c), in order to apply our transforma-
tion. Note that G is a subgroup of the additive group of R and contains the identity
element of R. As there is an irreducible polynomial g(X) ∈ Zp[X] of degree τ such that

R = Fq = Zp[X]/(g(X)), (49)
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for any r ∈ R, there exist τ elements r0, . . . , rτ−1 ∈ G such that r =
∑τ−1

i=0 riX
i ∈

Zp[X]. In particular, the representation of r into the sum is unique. We choose ϕ :
R→ G such that

ϕ(r) = r0, ∀r = r0 + r1X + · · ·+ rτ−1X
τ−1 ∈ R. (50)

Then it is easy to see that ϕ is a surjective homomorphism and thus satisfies the
requirement of (b). For (c), we choose the R-module H = R (= S2 = C2) and ψ : S1 →
H such that

ψ(α) = 1, ∀α ∈ S1 (51)

Then it is easy to verify that the function Φ : H× C2 → R define by

Φ(h, c) = h · c, ∀h ∈ H = R, c ∈ C2 = R, (52)

is bilinear. For any α ∈ S1, any (c0, c1, c2, c3) ← Share1(α), any x ∈ S1, Eq. (47),
(51), and (52) jointly imply that the ρ(α, x) in Eq. (9) is

ρ(α, x) = s2(w, α, x). (53)

For the above choices of w, α, and x, we set

σ = γ−⟨w,uα⟩m , (54)

show that Eq. (10) is satisfied (see the proof for Theorem 8), and thus meet the require-
ment of (c). Applying our transformation from Section 3 with the related building
blocks as above, we get the expected perfectly secure DPF (see Fig. 6).

• Gen(1λ, fα,β): Given α ∈ [N ] and β ∈ Zp, generate cℓ ← w + bℓvα for all ℓ ∈
{0, 1, 2, 3}, choose h0, h1 ← H = Fq subject to

h0 + h1 = γ−⟨w,uα⟩m · β,

output eight keys {ki}7i=0, where ki = (hj , cℓ) for i = 4j + ℓ (ℓ ∈ {0, 1, 2, 3}, j ∈
{0, 1}).

• Evali(ki, x) : For every i ∈ {0, . . . , 7}, ki = (hj , cℓ) and x ∈ [N ], output

ϕ
(
hj · aℓγ⟨cℓ,ux⟩m

)
.

Fig. 6 An 8-server perfectly secure DPF with output group G = Zp

Theorem 8. The construction of Fig. 6 gives a perfectly secure 8-server DPF with
output group Zp (p is any prime). For point functions with domain [N ], the key size

of the DPF is O(210
√
logN log logN + log p).
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Proof. First of all, we show the correctness and security of that construction. Since
we have showed that the requirement (a) and (b) in Section 3 is realized, it suffices to
show that

ϕ(ρ(α, x) · σ) = δα,x.

In this construction we have

ϕ(ρ(α, x) · σ) = ϕ

(
3∑

ℓ=0

Conv(ℓ, x, cℓ) · γ−⟨w,uα⟩m

)

= ϕ

(
3∑

ℓ=0

aℓγ
⟨cℓ,uα⟩m · γ−⟨w,uα⟩m

)

= ϕ

(
3∑

ℓ=0

aℓγ
⟨w,ux⟩m(γ⟨vα,ux⟩m)bℓ · γ−⟨w,uα⟩m

)
= ϕ

(
P (γ⟨vα,ux⟩m) · γ⟨w,ux⟩m · γ−⟨w,uα⟩m

)
.

• For x = α, γ⟨w,ux⟩m · γ−⟨w,uα⟩m = 1 and P (γ⟨vα,ux⟩m) = 1. Thus ϕ(ρ(α, x) · σ) = 1.
• For x ̸= α, P (γ⟨vα,ux⟩m) = 0. Thus ϕ(ρ(α, x) · σ) = 0.

Then the requirement (c) satisfies, then the correctness and security of
(Gen, {Evali}0≤i<8) follows from Theorem 5.

Finally, we determine the key size in this construction. Each key ki is in H×C1 =
Zh
m×Fq, whose size is O(log(m) ·h+log p). Note that m = p1p2 may be the product of

any two distinct primes such that gcd(m, p) = 1. For p = 2, p = 3, and p ≥ 5, we may
choose m = 15,m = 10 and m = 6 respectively such that max{p1, p2} is minimized. In
particular, we always have that 2max{p1, p2} ≤ 10 and thus from Theorem 3 we have

that h = O(210
√
logN log logN + log p). Then we know the key size is upper bounded by

|ki| = O(210
√
logN log logN + log p), which completes the proof.

Generalization to More Servers. Note that the communication complexity of Efre-
menko’s PIR can be reduced if the modulus m has more prime powers as factors (see
Theorem 3). Next, we show that DPFs that use more servers but have smaller key
sizes can be obtained in a way similar to that of Fig. 6.
Theorem 9. For any integer r ≥ 2, there exists a perfectly secure 2r+1-server DPF
with output group Zp (p is any prime). For point functions with domain [N ], the key

size of the DPF is O(2c(r)
r
√

logN(log logN)r−1
+log p), where c(r) is roughly the (r+1)th

smallest prime and independent of p.

Proof. Let m = p1p2 . . . pr, where p1 ≤ · · · ≤ pr are distinct primes and pi ̸= p for all
i ∈ [r]. Let t be the multiplicative order of p modulo m. Then we have that m|(pτ −
1). There exist an Sm-decoding polynomial with 2r monomials. We can similarly
construct a perfectly secure 2r+1-DPF. The key size of the DPF is upper bounded by

O(2c(r)
r
√

logN(log logN)r−1
+log p) by Theorem 3, where c(r) is independent of p. Since

pr can be taken no more than the (r + 1)th smallest prime, from Grolmusz [22] (see
Section 2.5) c(r) is roughly the (r + 1)th smallest prime.
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Reducing the Number of Servers. The DPF in Theorem 8 doubles the number
of servers required by the underlying PIR, which is exactly equal to the number of
monomials in the Sm-decoding polynomial. Therefore, an Sm-decoding polynomial
with fewer monomials will give DPFs that use fewer servers.
Theorem 10. Let p be a prime. Let m be a product of r distinct primes such that
gcd(m, p) = 1. Let t be the multiplicative order of p modulo m. If there is an Sm-
decoding polynomial in Fpτ [X] that has n monomials, then there is a perfectly secure
2n-server DPF with output group Zp. For point functions domain [N ], the key size

of the DPF is O(2c(r)
r
√

logN(log logN)r−1
+ log p), where c(r) is roughly equal to the

(r + 1)th smallest prime, and is independent of p.
Theorem 10 have many consequences. For example, for p = 2, if we choose the

S511-decoding polynomial from [12], which has only 3 monomials, then we can obtain
a 6-DPF with output group Z2. In general, we can reduce the number of servers with
the composition theorem (Theorem 4). The nice integers [14] allow us to further reduce
the number of required servers.

Statistically Secure DPF. Since our construction satisfies Eq. (14), our construction
could lead to statistically secure DPFs (see Fig. 3).
Theorem 11. For any integer r ≥ 2, there exists a 2−Ω(λ)-statistically secure 2r-
server DPF with output group Zp (p is any prime). For point functions with domain

[N ], the key size of the DPF is O(λ · 2c(r) r
√

logN(log logN)r−1
+ λ log p), where c(r) is

roughly the (r + 1)th smallest prime and independent of p.
Theorem 11 gives a statistically secure 4-server DPF with key size O(λ ·

210
√

logN(log logN)+λ log p) only λ times the key size of the 8-server DPF from Theorem
8 but uses fewer servers.

5 Application to PIR with Result Verification

5.1 PIR with Result Verification

Early PIR protocols always assume honest-but-curious servers that strictly follow the
protocol’s specifications. Recently, a lot of efforts [8, 23–28] have been made to deal
with malicious servers that may collude and provide wrong answers to the client, in
order to deceive the client into reconstructing an incorrect value. The protocols that
can tolerate malicious servers have particular interest in the modern age of cloud
computing because it allows the servers to be implemented by the untrusted cloud
services, i.e., outsourcing the servers’ computations to the cloud.

Ke and Zhang [8] proposed PIR with result verification (PIR-RV) that can deal
with the condition that half or even more servers are malicious without a trusted third
party. Like PIR, an n-server PIR-RV protocol involves two kinds of participants: a
client and n servers, where each server has a database DB ∈ {0, 1}N and the client
has an index α ∈ [N ]. Compared with PIR, PIR-RV allows the client to verify whether
the value of DBα is correctly reconstructed, when some of the servers may collude
and provide wrong answers. The syntax of an n-server PIR-RV Γ = (Que,Ans,Rec)
is identical to that of PIR (see Definition 4), except that Rec is replaced with the
following:
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• {DBα,⊥} ← Rec(α, {ansj}n−1
j=0 , aux): This is a deterministic reconstructing algo-

rithm for the client. Given the the retrieval index α, the answers {ansj}n−1
j=0 and the

auxiliary information aux, it either outputs DBα or a special symbol ⊥ to indicate
that at least one of the answers is incorrect.

The requirements of correctness and privacy are identical to those in Definition 4.
Besides, PIR-RV should satisfy the additional requirement of security. Intuitively, an
n-server PIR-RV protocol is (t, ϵ)-secure if no collusion of up to t servers can cause the
client with input α to output a value /∈ {DBα,⊥} with probability > ϵ, by providing
wrong answers.
Definition 10 (Security). Consider the security experiment in Fig. 7. An n-server
PIR-RV protocol Γ is (t, ϵ)-secure if for any set T ⊆ {0, . . . , n− 1} with |T | ≤ t, any
adversary A that controls the j-th servers for all j ∈ T , any N , any DB ∈ {0, 1}N
and any α ∈ [N ], Pr[EXPVer

A,Γ(N,DB, α, T ) = 1] ≤ ϵ.

• The challenger generates ({quej}n−1
j=0 , aux) ← Que(N,α) and sends {quej}j∈T to

A.
• The adversary A chooses the answers {ans′j}j∈T to the challenger.
• The challenger computes ans′j ← Ans(DB, quej) for all j ∈ {0, . . . , n− 1} \ T .
• If Rec(α, {ansj}n−1

j=0 , aux) /∈ {DBα,⊥}, outputs 1; otherwise outputs 0.

Fig. 7 The security experiment EXPVer
A,Γ(N,DB, α, T ).

5.2 Our Construction

In this section, we generalize the DPF in Fig. 2 to a t-private n(ζ+1)-server DPF Πζ

for any ζ ≥ t and present our t-private n(ζ+1)-server PIR-RV protocol Γ (see Fig. 8).
Since PIR allows the client to privately retrieve DBα from DB of size N , DPF

indicates PIR with the same number of servers by sending every key ki for fα,1 to the

server Si, getting
∑N

ℓ=1 Evali(ki, ℓ) · DBℓ in return and reconstructing
∑N

ℓ=1 fα,1(ℓ) ·
DBℓ(= DBα) by adding up all the answers. A simple idea to construct PIR-RV is to
let the client randomly choose β ∈ G and use fα,β instead of fα,1. The client will learn
DBα = 0 or 1 if the output is 0 or β, respectively. If the DPF output is not in {0, β},
then some answers must be incorrect. Due to the privacy of β, we can get an n(t+1)-
server PIR-RV protocol which can tolerate at most t malicious servers, if the DPF Π
in Fig. 2 is used.

To construct PIR-RV that tolerates more malicious servers, we apply the above
protocol multiple times with different β, in order to make sure the colluding servers
cannot break the security for each time. Suppose there are ≥ n honest servers. The
protocol will be executed multiple times. Each time it sends the keys about h0 to a
different set of n servers. Then the n(t + 1)-server PIR-RV can tolerate nt malicious
servers.

We can replace the t-private n(t + 1)-server DPF Π in above PIR-RV with a t-
private n(ζ+1)-server DPF Πζ for any ζ ≥ t. The protocol Πζ is identical to Π, except
that its key generation Gen divides (σ · β) ⋄ψ(α) into sum of (ζ +1) shares instead of
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(t+1) shares in Π: h0+ · · ·+hζ = (σ ·β)⋄ψ(α). The client can generate n(ζ+1) keys

{ki}n(ζ+1)−1
i=0 , where ki = (hj , cℓ) for i = nj+ℓ (0 ≤ j ≤ ζ, 0 ≤ ℓ < n). With correctness

and privacy similar to that of Π, the protocol Πζ also satisfies that no collusion of up
to ζ servers can learn any information about β since any ζ servers cannot get all of
{hj}ζj=0, the n(ζ + 1) PIR-RV protocol Γ (Fig. 8) constructed with Πζ can tolerate
nζ malicious servers. Let N = {0, 1, . . . , n(ζ + 1) − 1}, B = {b|b ⊆ N , |b| = n} and

let Πζ = (Genζ ,Evalζ0, . . . , Eval
ζ
n−1) be the DPF with output group G. Our PIR-RV

protocol Γ is shown in Fig. 8.

• Que(N,α): For each b ∈ B, randomly choose βb ∈ G, compute(
kb0, k

b
1, . . . , k

b
n(ζ+1)−1

)
← Genζ(1λ, fα,βb

); denote Pb, Qb are bijective functions

where Pb : b→ {0, . . . , n− 1} and Qb : (N \ b)→ {n, n+ 1, . . . , n(ζ + 1)− 1}, for
each j ∈ N , compute

quej,b =

{
kbPb(j)

, j ∈ b

kbQb(j)
, j /∈ b

,

output n(ζ + 1) queries {quej}
n(ζ+1)−1
j=0 where quej = {quej,b}b∈B, together with

the auxiliary information aux = {βb}b∈B.
• Ans(DB, quej , j): Parse quej = {quej,b}b∈B. For each b ∈ B, parse quej,b = kb,
compute

ansj,b =
N∑
ℓ=1

DBℓ · Evalζj (k
b, ℓ),

output ansj = {ansj,b}b∈B.

• Rec(α, {ansj}n(ζ+1)−1
j=0 , aux) : Parse aux = {βb}b∈B and ansj = {ansj,b}b∈B for all

j ∈ N . For each b ∈ B, compute Rb =
∑n(ζ+1)−1

j=0 ansj,b. If there exists b ∈ B
such that Rb /∈ {0, βb}, output ⊥; otherwise, for each b ∈ B, set resb = δRb,βb

. If
there exist distinct b1, b2 ∈ B such that resb1 ̸= resb2 , output ⊥; otherwise, output
{resb}b∈B.

Fig. 8 n(ζ + 1)-Server PIR-RV protocol Γ.

Theorem 12. The n(ζ+1)-server PIR-RV protocol Γ is t-private and (nζ, 1
|G| )-secure.

If the key size of the DPF used in the PIR-RV is K, then the total communication
complexity of the PIR-RV is CCΓ(N) = O(ζn+1K)

Proof. The privacy and correctness of the PIR-RV protocol follows directly from the
perfect security and correctness of the DPF Πζ . It suffices to prove the security and
the communication complexity.

If there exists an adversary Adv that can wins the security experiment in Fig. 7,
for every b ∈ B, the sum of all outputs of servers should be changed from 0 to βb or
from βb to 0 for every b ∈ B. This shows that Adv can only break the PIR-RV by
guessing every βb correctly. We only need to show that there exist a b ∈ B such that
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Adv knows no information about βb. The privacy of βb depends on the privacy of β of
Πζ .

Each server can only get one share of (σ · βb) ⋄ψ(α). Since (σ · βb) ⋄ψ(α) is shared
additively to h0,b + · · ·+ hζ,b, and the n h0,bs are contained in the first n keys. Thus
the h0,bs generated from function Gen(1λ, fα,βb

) are contained in {kbi }
n−1
i=0 . Since the

image of Pb(j) for j ∈ b is in {0, . . . , n − 1}, these keys containing h0,b are given to
the servers with index in b. As there exist a b ∈ B that the n servers with index in
b are all honest. For this case, Adv know nothing about h0,b. Since (σ · βb) ⋄ ψ(α)
is additive shared to h0,b, . . . , hζ,b, for every b, the distribution of (h1,b, . . . , hζ,b) is
uniform in Hn−1. This means that any β0, β1 ∈ G, the distribution of (h1,b, . . . , hζ,b)
under the case βb = β0 and βb = β1 are the same. Furthermore, the change of βb have
no effect on c0, . . . , cn−1, which means the distribution of the keys that Adv gets can
reveal nothing about βb. Thus the malicious servers have no information of βb. For
the server, the distribution of βb is the uniform distribution over Zpτ , so the protocol
is (nζ, 1

pτ )-secure.
For each b ∈ B, the client only send the key to each server and the size of answer

is independent of N , so the communication complexity is O(K). Since |B| = O(ζn),
the communication complexity of the PIR-RV protocol Γ is O(ζn ·K) to each server,
hence the total communication complexity is CCΓ(N) = O(ζn+1 ·K).

In particular, if we use the DPF in Section 4.1, and share (σ · β) ⋄ ψ(α) additively
to more shares, then we can get a PIR-RV that only need 2 honest servers with
subpolynomial communication complexity. We state this as follow.
Theorem 13. For any ζ ∈ Z+, there exist a 1-private 2(ζ +1)-server (2ζ, 1

2τ )-secure
PIR-RV protocol with database size N and total communication complexity CCΓ(N) =

O(ζ3τ · 26
√
logN log logN ).

If we use the DPF in Section 4.2, similarly we can get a PIR-RV that needs 4
honest servers which is quite more efficient. When we take a very large Zp as the
output group, our PIR-RV protocol could be very close to perfect security with an
extremely slow growth in communication complexity.
Theorem 14. For any ζ ∈ Z+, there exists a 1-private 4(ζ +1)-server (4ζ, 1p )-secure

PIR-RV protocol with database size N and total communication complexity CCΓ(N) =

O(ζ5 · 26
√
logN log logN + ζ5 log p).

Ke and Zhang [8] proposed a 2-server (1, 3
p−2 )-secure PIR-RV protocol with com-

munication complexity O(log p ·
√
N). Compared with [8], our protocol provides

subpolynomial communication complexity and higher malicious server tolerance with
at least 4 servers.

6 Conclusions

In this paper, we provide a transformation from share conversion to information-
theoretic DPFs. With this transformation, we give a perfectly secure 4-DPF for any
output group and a 8-DPF with smaller key size for output group Zp. We also construct
new efficient PIR-RV protocols with the new DPFs. Our DPFs with subpolynomial
key size are all t-private for t = 1. The question is open for t > 1.
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