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Abstract. In the last decade, zero-knowledge proof of knowledge pro-
tocols have been extensively studied to achieve active security of vari-
ous cryptographic protocols. However, the existing solutions simply seek
zero-knowledge for both message and randomness, which is an overkill
in many applications since protocols may remain secure even if some
information about randomness is leaked to the adversary.
We develop this idea to improve the state-of-the-art proof of knowledge
protocols for RLWE-based public-key encryption and BDLOP commit-
ment schemes. In a nutshell, we present new proof of knowledge protocols
without using noise flooding or rejection sampling which are provably
secure under a computational hardness assumption, called Hint-MLWE.
We also show an efficient reduction from Hint-MLWE to the standard
MLWE assumption.
Our approach enjoys the best of two worlds because it has no computa-
tional overhead from repetition (abort) and achieves a polynomial over-
head between the honest and proven languages. We prove this claim by
demonstrating concrete parameters and compare with previous results.
Finally, we explain how our idea can be further applied to other proof of
knowledge providing advanced functionality.

Keywords: Zero-knowledge · Proof of Plaintext Knowledge · BDLOP ·
Hint-MLWE.

1 Introduction

In the last decade, lattice cryptography has emerged as one of the most promis-
ing foundations due to its versatility and robustness against quantum attacks.
In particular, it has wide applications in the construction of cryptographic prim-
itives such as homomorphic encryption (e.g. [12, 11]) and commitment schemes
(e.g. [9, 24]), whose security relies on the hardness of the Learning with Er-
rors (LWE) [33] and the Short Integer Solution (SIS) [2] problems. Furthermore,
these primitives serve as fundamental building blocks for privacy-preserving pro-
tocols, including multi-party computation [16, 5], group signature [25], and ring
signature [28] schemes.
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When constructing such protocols, the usual strategy is to initially design
a protocol in the semi-honest model and then compile it into an adaptively
secure version that provides security against adaptive adversaries. During the
compilation step, zero-knowledge proof of knowledge are typically utilized to
prove the well-formedness of ciphertexts or commitments, without revealing any
secret information about the randomness r, which is used to generate them.
This can be achieved using sigma protocols, where the prover generates a mask
y, receives a challenge γ from the verifier, and then sends a response z = y+γ ·r
to the verifier. Since z potentially leaks partial information about r, two major
methodologies, namely noise flooding [5] and rejection sampling [22], are used
to ensure the zero-knowledge property of z.

First, the noise flooding technique samples y from an exponentially large
distribution to fully hide the information of γ · r. On the other hand, the re-
jection sampling makes the random variable z independent to r by manipulat-
ing its probability distribution. This technique has an advantage in that the
size of masking ∥y∥2 is relatively small, but instead can abort the protocol
repeatedly until generating an accepting transcript. Both methods commonly
aim to prevent any information leakage on the randomness of the input ci-
phertext/commitment, which results in the semantic security of the protocol
including the zero-knowledge of the message.

This work starts from the observation that the previous approach can be
an overkill since it provides zero-knowledge for both message and randomness,
while the primary goal of the zero-knowledge proof is mostly to ensure that there
is no information leakage on the message from the transcripts. In other words,
we do not always have to achieve the zero-knowledge for randomness, but it is
allowed to reveal some information about it as long as the message privacy is
guaranteed.

1.1 Our Contribution

The existing lattice-based proof techniques, such as noise flooding and rejection
sampling, employ statistical analysis to ensure that a transcript includes no
information of both message and randomness. In contrast, we present a novel
approach that allows a proof of knowledge to leak some information on the
randomness used in encryption or commitment.

A natural question is how this information leakage of randomness affects the
security of proof of knowledge protocols. We first analyze the conditional proba-
bility distribution of randomness given such partial information. Specifically, we
show that if both a randomness r and a masking y are sampled from discrete
Gaussians, then the distribution of r conditioned on y+ γ · r also follows a dis-
crete Gaussian distribution. At a high level, we conclude that the real transcript
of a proof of knowledge protocol can be simulated when the underlying scheme
relies on the hardness of MLWE based on discrete Gaussian distributions, even
if it includes non-negligible information on the randomness.

We apply this idea to a Proof of Plaintext Knowledge (PPK) protocol for the
public-key encryption scheme [11, 19], a Proof of Opening Knowledge (POK) pro-
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tocol for the BDLOP commitment scheme [9] and its applications [6, 18] whose
semantic security or hiding property rely on hardness of MLWE. As a result, we
show that it is possible to build secure PPK and POK protocols without noise
flooding or rejection sampling while achieving a polynomial overhead between
the honest and proven languages. Finally, we present concrete parameter sets to
convince that our method outperforms the state-of-the-art results.

1.2 Technical Overview

In this section, we briefly explain that transcripts of our proof of knowledge
protocols can be interpreted as an MLWE instance with hints on the secret and
errors. Then, we demonstrate security proofs based on a new variant of MLWE,
named as Hint-MLWE. Finally, we discuss how MLWE can be reduced to Hint-
MLWE under discrete Gaussian setting, and demonstrate our improvements on
the parameter size.

PPK for RLWE-based Public-Key Encryption. For a public key pk, let
Encpk(m, r) be a ciphertext which we want to prove the plaintext knowledge
where m and r denote the message and encryption randomness, respectively.
Then, the transcript of the PPK protocol consists of a ciphertext c = Encpk(m, r),
random ciphertexts Encpk(ui,yi), challenges γi and responses (vi, zi) = (ui,yi)+
γi ·(m, r) for 0 ≤ i < ℓ and we need to show that it does not leak any information
about m. Since Encpk(ui,yi) = Encpk(vi, zi)− γi · c, it suffices to show that the
following is simulatable for given challenges γ0, . . . , γℓ−1 and a public key pk:(

Encpk(m, r), (v0, z0), . . . , (vℓ−1, zℓ−1)
)
.

Similar to Chen et al. [14], our protocol is based on the BFV scheme [11, 19]
with a plaintext modulus p and a ciphertext modulus q such that p | q. Recall
that Encpk(m, r) = r2 · p+ ((q/p) ·m+ r0, r1) for a public key pk = p ∈ R2

q and
an encryption randomness r = (r0, r1, r2) ∈ R3. Then, the transcript of PPK
described above can be viewed as the following tuples:(

r2 · p+ ((q/p) ·m+ r0, r1)
)

(Ciphertext)
(y0 + γ0 · r, . . . ,yℓ−1 + γℓ−1 · r) (Hints on the randomness r)

POK for BDLOP Commitment. For a commitment key ck = (B0,B1) con-
sisting of two matrices over Rq, the commitment of a message m is defined as
Comck(m, r) = (B0r,B1r+m) for a commitment randomness r, which we want
to prove the opening knowledge. The transcript of the POK protocol consists
of a commitment Comck(m, r), w = B0y for a random masking y, a challenge γ
and the response z = y+γ · r. Similar to the case of PPK, we need to show that

the tuple
(
B,Br+

[
0
m

]
,y+ γ · r

)
for B =

[
B0

B1

]
leaks no information about m.

In BDLOP, a commitment key is written as B = R · [I |A] for some in-
vertible matrix R and a matrix A. Therefore, it suffices to show that the tuple(
A, [I |A]r+R−1 ·

[
0
m

]
,y + γ · r

)
can be simulated without the message m.
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Security Reduction from Hint-MLWE. For the security proof, we define
a variant of Module-LWE (MLWE), which we call Hint-MLWE, and prove the
security of our protocols under the hardness assumption of Hint-MLWE. To
be precise, the Hint-MLWE problem gives MLWE samples (A, [I |A]r) with a
bounded number of hints on the secret and errors as (y0+γ0 ·r, . . . ,yℓ−1+γℓ−1 ·r)
where A ← U(Rm×d

q ), r ← χ,yi ← ξ for some distributions χ, ξ over Rd+m,
and γ0, . . . , γℓ−1 are chosen from some distribution C over Rℓ. The Hint-MLWE
assumption implies that it is hard to distinguish between the MLWE samples
and the uniform samples (a,b) for b ← U(Rm

q ) even if the hints on the secret
and error are given.

We can directly apply the Hint-MLWE assumption to show the security of
our protocols: For PPK, regarding (p, r2 · p + (r0, r1)) as two RLWE samples,
the Hint-RLWE assumption1 implies that one cannot distinguish this tuple from
(p,b) for b← U(R2

q) even when some hints on r are given. Similarly for POK, the
tuple (A, [I |A]r,y+γ·r) is computationally indistinguishable with (A,u,y+γ·r)
for a uniform random u under the Hint-MLWE assumption.

Hardness of Hint-MLWE. We prove that there exists an efficient reduc-
tion from standard MLWE to Hint-MLWE under a discrete Gaussian setting.
Roughly speaking, if χ and ξ are discrete Gaussian distributions with parameters
σ1 and σ2 respectively, then Hint-MLWE is no easier than the MLWE problem of
parameter σ > 0 such that 1

σ2 = 2( 1
σ2
1
+ B

σ2
2
) for some constant B > 0 determined

by the challenge distribution C.
To be precise, we analyze the conditional distribution of the secret r for given

hints y0 + γ0 · r, . . . ,yℓ−1 + γℓ−1 · r and show that it is still a discrete Gaussian
distribution (DZn,

√
2σ,c)

d with width parameter
√
2σ and some center c which

is determined by challenges γi and hints yi + γi · r. This implies that the joint
distribution of (r,y0+γ0 · r, . . . ,yℓ−1+γℓ−1 · r) is essentially identical to that of
(r̂,y0+γ0 ·r, . . . ,yℓ−1+γℓ−1 ·r) where r̂← (DZn,

√
2σ,c)

d. From this observation,
the reduction from MLWE to Hint-MLWE is done at a high level as following:
Let (A,b) = (A, [I |A]r′) be a given MLWE instance where r′ ← (DZn,σ,0)

d. We
sample the hints yi + γi · r first and use them to generate t← (DZn,σ,c)

d. Then,
the output of the reduction is (A,b + [I |A]t,y0 + γ0 · r, . . . ,yℓ−1 + γℓ−1 · r).
Note that the distribution of r′ + t is statistically indistinguishable to that of
r̂ under a certain condition on σ, and hence we finally obtain the Hint-MLWE
instance (A, [I |A]r,y0 + γ0 · r, . . . ,yℓ−1 + γℓ−1 · r).

Performance Improvements. Our result has several advantages over the ex-
isting solutions such as noise flooding and rejection sampling in terms of both
parameter size and computational cost. Under the MLWE assumption of pa-
rameter σ > 0, the noise flooding technique requires σ2 to be exponentially
large compared to σ. On the other hand, the rejection sampling method may
take smaller parameters σ1 = σ and σ2 = O(

√
ℓnd · σ), but it requires several

repetitions to obtain valid proofs.
1 Note that we can naturally define the Hint-RLWE problem as a special case (d = 1)

of Hint-MLWE.
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Our security reduction implies that it is sufficient to set σ1 = O(σ) and
σ2 = O(

√
ℓσ). To be precise, while the rejection sampling requires σ2 to be

proportional to the 2-norm of γi · r, our method enables to set σ2 proportional
to its infinity-norm, and hence there exists the gap O(

√
nd) on the size σ2 of

the masking vectors between our method and rejection sampling. As a result,
our method offers more compact parameters, which is reduced by a factor of
O(
√
nd) compared to the rejection sampling, without requiring any repetitions.

1.3 Related Work

Lattice-based Proof Systems. In the last few years, there have been active
researches in the field of lattice-based proof systems. In particular, the BDLOP
commitment scheme [9] has paved the way for efficient lattice-based proof tech-
niques for multiplicative relations [6], linear relations [18], and integer relations
[26], offering viable proof sizes for practical applications. These proof techniques
have been successfully employed in the construction of efficient group signature
schemes [25] and ring signature schemes [28]. In order to enhance the efficiency of
BDLOP, a recent work [24] introduces the ABDLOP commitment scheme, which
combines the Ajtai commitment scheme [2] with BDLOP. This work takes ad-
vantage of the intrinsic property of the Ajtai commitment scheme, allowing for
amortized commitments, and results in smaller proof sizes, which can be con-
sidered as an orthogonal approach to ours. Based on this work, more compact
lattice-based group and ring signature schemes [23] have also been proposed.
LWE with Side Information. In the previous literature, several variants of
LWE with different forms of side information have been proposed. In [4, 31], a
variant called extended-LWE was firstly proposed which gives a hint on LWE se-
cret and error vectors in a form of a “noisy” inner product, i.e., (A, [I |A]r, ⟨r, z⟩+
f) for a small integer f and given small vectors z, with a reduction from stan-
dard LWE. Later, extended-LWE has been modified in various forms according
to its usage. In [13], for example, the noisy hint was substituted by the “exact”
inner product (i.e., f = 0), and the problem was generalized into the multi-
secret version, which was used to prove the hardness of LWE with a binary
secret. Recently, Lyubashevsky et al. [27] observe that the forementioned type
of side information can improve the efficiency of the rejection sampling method.
Their method specifically reveals the sign value of ⟨z, r⟩, leading to a more ef-
ficient rejection sampling process with smaller parameter sizes. The security of
their method is based on a variant of extended-LWE and has been proven to be
secure for the plain LWE case.2

The Hint-LWE problem was firstly defined in [21, 15], which publishes a hint
on the LWE error with additive Gaussian noise, i.e., (A,As+e, e+f) for a small
vector f . The main differences between the Hint-LWE problems in [21] and our
paper are as followings: (1) We consider multiple hints on both LWE secret and
error, while [21] only considers a single hint on LWE error, (2) We also consider
2 In [27], the authors applied their method to MLWE cases to instantiate new POK

protocol, but they only provided the proof for plain LWE cases.
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the multiplication of challenges to the LWE secret and error in the hints while
[21] did not, (3) We prove the hardness of Hint-LWE under discrete Gaussian
setting while [21] uses continuous Gaussian (Hence, [21] is not able to consider
the hint on LWE secret which should be discrete). A multi-secret version was
considered in [21], but we note that our Hint-LWE problem can also be naturally
generalized to the multi-secret version.
Alternatives to Rejection Sampling. There has been another direction of
research [1, 7] that constructs efficient lattice-based signatures without the use
of rejection sampling or noise flooding. These works share the same motivation
as ours, which is to investigate how partial information leakage in the transcript
affects the security of the signature schemes. Instead of using statistical distance,
these studies use Rényi divergence to quantify the difference between the real
and simulated transcripts, and show that the resulting Rényi divergence does
not compromise the unforgeability of the proposed signature scheme. Although
the Rényi-divergence-based analysis offers provable security for the signature
scheme, it does not inherently provide simulation-based security unless an ad-
ditional assumption known as public sampleability [7] is fulfilled. This inhibits
its black-box usage in the construction of secure protocols compared to noise
flooding or rejection sampling.

2 Preliminaries

2.1 Notation

We use bold lower-case and upper-case letters to denote column vectors, and
matrices respectively. For a positive integer q, we use Z ∩ (−q/2, q/2] as a rep-
resentative set of Zq, and denote by [a]q the reduction of a modulo q.

Let n be a power of two and q be an integer. We denote by R = Z[X]/(Xn+1)
the ring of integers of the 2n-th cyclotomic field and Rq = Zq[X]/(Xn + 1) the
residue ring of R modulo q. For a polynomial f =

∑n−1
i=0 fiX

i ∈ R, the ℓp (p ≥ 1)
and ℓ∞ norms are defined as follows:

∥f∥p := p

√√√√n−1∑
i=0

|fi|p, ∥f∥∞ := max
0≤i<n

|fi|

For a vector of polynomials f = (f (0), . . . , f (m−1)) ∈ Rm, we write

∥f∥p := p

√√√√m−1∑
i=0

∥∥f (i)
∥∥p
p
, ∥f∥∞ := max

0≤i<m

∥∥∥f (i)
∥∥∥
∞

For a polynomial c ∈ R, we denote the vector of its coefficients by a bold letter
c and the corresponding negacyclic matrix by M(c). For a matrix A ∈ Rm×n,
we denote the matrix norm of A by ∥A∥2 := max0̸=x∈Rn

∥Ax∥2
∥x∥2

.
We denoted the largest and the smallest singular value of a real-value matrix

A by σmax(A) and σmin(A), respectively.
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2.2 Probability Distributions

We denote sampling x from the distribution D by x← D. For distributions D1

and D2 over a countable set S (e.g. Zn), the statistical distance of D1 and D2 is
defined as 1

2 ·
∑

x∈S |D1(x)−D2(x)| ∈ [0, 1]. We denote the uniform distribution
over S by U(S) when S is finite.

We define the n-dimensional spherical Gaussian function ρc : Rn → (0, 1]
centered at c ∈ Rn as ρc(x) := exp(−π · (x − c)⊤(x − c)). In general, for a
positive definite matrix Σ ∈ Rn×n, we define the elliptical Gaussian function
ρc,
√
Σ : Rn → (0, 1] as ρc,

√
Σ(x) := exp(−π · (x− c)⊤Σ−1(x− c)).

Let Λ ⊆ Rn be a lattice and v ∈ Rn. The discrete Gaussian distribution
Dv+Λ,c,

√
Σ is defined as a distribution over the coset v + Λ, whose probability

mass function is Dv+Λ,c,
√
Σ(x) = ρc,

√
Σ(x)/ρc,

√
Σ(v + Λ) for x ∈ v + Λ where

ρc,
√
Σ(v + Λ) :=

∑
y∈v+Λ ρc,

√
Σ(y) < ∞. Note that Dv+Λ,c,

√
Σ is identical to

the distribution of c+ x where x← D(v−c)+Λ,0,
√
Σ. When c = 0, then we omit

c in the subscripts of both ρ and D. When Σ = σ2 · In for σ > 0 where In is the
(n× n) identity matrix, then we substitute

√
Σ by σ in the subscript and refer

to σ as the width parameter of DΛ,c,σ. We denote by x← DZn,σ for x ∈ R when
we sample its corresponding coefficient vector x from DZn,σ.

2.3 Module SIS/LWE

Definition 1. Let m, d be positive integers, and 0 < β < q. Then, the goal of
the Module-SIS (MSIS) problem is to find, for a given matrix A ← U(Rm×d

q ),
x ∈ Rd

q such that Ax = 0 (mod q) and ∥x∥2 ≤ β. We say that a PPT adversary
A has advantages ε in solving MSISR,d,m,q,β if

Pr
[
∥x∥2 < β ∧Ax = 0 (mod q) | A← U(Rm×d

q );x← A(A)
]
≥ ε.

Definition 2. Let d,m, q be positive integers, and χ be a distribution over Rd+m.
Then, the goal of the Module-LWE (MLWE) problem is to distinguish (A,u) from
(A, [Im| A]r) for A← U(Rm×d

q ), u← U(Rm
q ), and r← χ. We say that a PPT

adversary A has advantages ε in solving MLWER,d,m,q,χ if

|Pr
[
b = 1 | A← U(Rm×d

q ); r← χ; b← A (A, [Im| A]r)
]

− Pr
[
b = 1 | (A,u)← U(Rm×d

q ×Rm
q ); b← A(A,u)

]
| ≥ ε.

The MLWE problem with d = 1 is called the Ring-LWE problem and denoted
by RLWER,m,q,χ.

2.4 RLWE-based Public-Key Encryption

We describe the BFV scheme [11, 19], which is a standard RLWE-based public-
key encryption with homomorphic property, to describe our PPK protocol.
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• Setup(1λ): Given a security parameter λ, outputs the parameter set pp =

(R, q, p, χ) where χ is a distribution over R2, and p, q are odd integers such that
p | q.

The parameters p, q do not need to satisfy p | q in general, but Chen et al. [14]
introduced this condition to simplify the proof of plaintext knowledge. We make
the same assumption to take its advantage in the protocol construction. The
scaling factor will be denoted by ∆ := q/p ∈ Z.

• Gen(pp): Given a public parameter pp = (R, q, p, χ), sample a secret key s← χ.
Sample a ← U(Rq) and e ← χ. Set a public key pk as p = (b, a) ∈ R2

q where
b = −as+ e (mod q).

• Encpk(m, r): For a public key pk = p, a message m ∈ Rp, and an encryption ran-
domness r = (r0, r1, r2) ∈ R3, output the ciphertext c = r2 ·p+ (r0 +∆ ·m, r1)
(mod q).

• Dec(s, c): For a secret key s and a ciphertext c = (c0, c1) ∈ R2
q , output m =⌊

∆−1 · (c0 + c1 · s)
⌉

(mod p).
The encryption randomness r is generally chosen to be small so that the

decryption works correctly. Note that the additive homomorphism holds for both
message and randomness: For messages m1,m2 ∈ Rp, γ ∈ R, and randomnesses
r1, r2 ∈ R3, it holds that

Encpk(m1, r1) + γ · Encpk(m2, r2) = Encpk(m1 + γ ·m2, r1 + γ · r2) (mod q).

2.5 Lattice-based Commitment Scheme

We first recall the definition of commitment scheme.

Definition 3 (Commitment Scheme). A commitment scheme consists of the
following three algorithms:

– Gen(1λ): Given a security parameter λ, it generates a commitment key ck.
– Comck(m, r): Given a commitment key ck, a message m, and randomness r,

it outputs a commitment c.
– Openck(c,m, r): Given a commitment c, a message m, and randomness r, it

outputs either 0 or 1.

where Gen is probabilistic and Com, Open are deterministic. Let R be a distribution
for randomness. Then a commitment scheme (Gen, Com, Open) is said to be secure
if it satisfies the following properties:

– Hiding: For all PPT adversaries A, the following advantage is negligible:∣∣∣∣Pr [b = b′
∣∣∣ ck←Gen(1λ);(m0,m1)←A(ck);r←R;
b←U({0,1});c=Comck(mb,r);b

′←A(ck,c);

]
− 1

2

∣∣∣∣ .
– Binding: For all PPT adversaries A, the following probability is negligible:

Pr
[
(Openck(c,m, r) = Openck(c,m

′, r′) = 1) ∧ (m ̸= m′)
∣∣∣ ck←Gen(1λ);
(c,m,r,m′,r′)←A(ck)

]
.
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Below, we present the BDLOP commitment scheme, whose binding and hid-
ing properties rely on the hardness of MSISR,µ+ν+k,µ,q,βBDLOP

and MLWER,ν,q,χ,
respectively, where χ is a distribution for commitment randomness. We refer the
reader to [9] for more details.

• BDLOP.Gen(1λ): Given a security parameter λ, it outputs a commitment key
ck = (B0,B1) which are generated as follows:

– B0 =
[
Iµ| B′0

]
∈ R

µ×(µ+ν+k)
q where B′0 ← U(R

µ×(ν+k)
q ).

– B1 =
[
0k×µ| Ik| B′1

]
∈ R

k×(µ+ν+k)
q where B′1 ← U(Rk×ν

q ).

• BDLOP.Comck(m, r): Given a commitment key ck, a message m ∈ Rk
q , and ran-

domness r ∈ Rµ+ν+k, it outputs c = (c0, c1) where c0 = B0r (mod q) and
c1 = B1r+m (mod q).

• BDLOP.Openck(c,m, r): Given a commitment c = (c0, c1), a message m, and
randomness r, it outputs 1 if and only if c = BDLOP.Comck(m, r) and ∥r∥2 ≤
βBDLOP.

In [9], there is a weaker version of opening algorithm supporting for efficient
proof of opening knowledge, which we will describe in Sec. 5.1. The commitment
scheme also satisfy the additive homomorphism for both message and random-
ness as well as the BFV scheme.

2.6 Proof of Knowledge and Simulatability

In this subsection, we present a new approach to building a secure proof-of-
knowledge protocol. The conventional construction involves a zero-knowledge
proof for the prover’s secret input and randomness used in generating statements
to be proved. However, our new definition primarily relies on the idea that the
leakage of some information on randomness does not lead to an attack against
the prover’s secret input, which is formally described below.

Definition 4. Let L,L′ be NP-languages satisfying L ⊆ L′. Let R,R′ be witness
relations for L and L′ respectively i.e., (t ∈ L⇔ ∃w (t, w) ∈ R) and (t ∈ L′ ⇔
∃w′ (t, w′) ∈ R′). Let (P,V) be an interactive protocol where P takes a secret
input m and a public parameter pp as input, and V only takes a public parameter
pp as input. Then (P,V) is called a secure proof-of-knowledge protocol for the
languages (L,L′) if and only if it satisfies the followings:

– Two Phases: The protocol consists of the following phases.
• Generate-phase: In generate-phase, the prover first samples random-

ness r, and then generates a statement t with x and r. At the end of the
phase, it sends the statement t to the verifier V.

• Prove-phase: In prove-phase, the prover and the verifier take (pp, t, x, r)
and (pp, t) as input respectively. Then, they interact each other to prove
that t ∈ L′. At the end of the phase, the verifier outputs either 0 or 1.
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We refer the sequence of messages exchanged between P and V during the
generate-phase and the prove-phase as the transcript, and denote it by
Tr(P(pp, x),V(pp)).

– Completeness: If P generates a statement t ∈ L in the generate-phase, the
prove-phase ends with 1 except for negligible probability.

– Knowledge Soundness: If there exists an adversarial prover P∗ which
makes the verifier outputs 1 at the prove-phase with non-negligible probability,
then there exists an efficient algorithm E, called an extractor, which, given
black-box access to P∗, outputs w′ such that (t, w′) ∈ R′ with non-negligible
probability.

– Simulatability: There exists a PPT algorithm S, called a simulator, whose
input is pp and output is tr which is computationally indistinguishable from
the transcript from the honest prover P and verifier V, for any secret in-
put x. In other words, for all PPT algorithm A, the following advantage is
negligible:∣∣∣Pr [b = 1

∣∣∣x←A(pp); tr←Tr(P(pp,x),V(pp));
b←A(pp,tr)

]
− Pr

[
b = 1

∣∣∣x←A(pp); tr←S(pp);
b←A(pp,tr);

]∣∣∣
In this definition, we reformulate zero-knowledge condition on the prover’s

secret input by simulatability. The main difference between our simulatability
property and the conventional zero-knowledge proof is whether randomness is
perfectly hidden together or not. Since the essential purpose of secure proof-of-
knowledge protocol is to hide the prover’s secret input rather than a randomness,
it suffices to satisfy our simulatability property for the desired security require-
ment. It is worth noting that similar approaches have been considered in [17, 27].

Our definition utilizes two languages L ⊆ L′, called the honest and proven
languages respectively, to address common scenarios in lattice-based construc-
tion. There have been studies, such as [10, 29], which reduce the communication
cost by weakening extractors’ power in the knowledge soundness property. Since
our instantiations of proof-of-knowledge in this paper also employ these meth-
ods, our definition makes use of two languages to cover these cases. The gap
between L and L′ is often referred as soundness slack.

2.7 Useful Lemmas

Lemma 1 ([22, Lemma 4.4]). For any k > 0, Pr [∥x∥∞ < kσ | x← DZn,σ] >
1− 2n · exp(−πk2).

Lemma 2 ([6, Lemma 2.5]). Pr
[
∥x∥2 < σ

√
n/π | x← DZn,σ

]
> 1− 2−n/8.

Lemma 3 (Simplified Convolution Lemma [32]). Let Σ1,Σ2 be positive
definite matrices such that Σ−13 := Σ−11 + Σ−12 satisfies

√
Σ3 ≥ ηε(Zn) for

0 < ε < 1/2. Then for an arbitrary c ∈ Zn, the distribution{
x1 + x2 | x1 ← DZn,

√
Σ1

, x2 ← DZn,c,
√
Σ2

}
is within statistical distance 2ε of DZn,c,

√
Σ1+Σ2

.
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Definition 5 (Smoothing parameter [30]). For an n-dimensional lattice Λ
and positive real ε > 0, the smoothing parameter ηε(Λ) is the smallest s such
that ρ1/s(Λ∗\{0}) ≤ ε.

Definition 6 ([32, Definition 2.3]). Let Σ be a positive-definite matrix. We
say that

√
Σ ≥ ηε(Λ) if ηε(

√
Σ
−1 · Λ) ≤ 1, i.e., ρ

(√
Σ
⊤ · Λ∗\{0}

)
≤ ε.

Lemma 4 ([30, Lemma 3.3]). For any n-dimensional lattice Λ and ε > 0,

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ)

where λn(Λ) is the smallest real number r > 0 such that dim(span(Λ∩ rB)) = n
and B is the n-dimensional unit ball centered at the origin.

Lemma 5. For a positive-definite matrix Σ,
√
Σ ≥ ηε(Λ) if

∥∥Σ−1∥∥
2
≤ ηε(Λ)

−2.

Proof. Note that the matrix norm equals to the largest singular value, and hence√
σmin(Σ) = 1/

√
σmax(Σ−1) = 1/

√
∥Σ−1∥2 ≥ ηε(Λ). Therefore, it holds that∑

x∈Λ∗\{0} exp
(
−πσmin(Σ) · x⊤x

)
≤ ε by Def. 5.

Since Σ is positive-definite, it holds that x⊤Σx ≥ σmin(Σ) · x⊤x for any
x ∈ Λ∗, and we obtain∑

x∈Λ∗\{0}

exp(−π · x⊤Σx) ≤
∑

x∈Λ∗\{0}

exp
(
−πσmin(Σ) · x⊤x

)
≤ ε,

which implies ηε(
√
Σ
−1 · Λ) ≤ 1. ⊓⊔

Lemma 6 ([10, Lemma 3.1]). Let n be a power of two, and let 0 ≤ i, j < 2n
such that i ̸= j. Then, 2(Xi −Xj)−1 is an element of R such that∥∥2(Xi −Xj)−1

∥∥
∞ ≤ 1,

where the inverse of (Xi −Xj) is taken over the field Q[X]/(Xn + 1).

3 Hint-MLWE

In this section, we introduce a variant of the MLWE problem called Hint-MLWE.
The Hint-MLWE problem is inspired by the structure of transcripts generated
by lattice-based proof of knowledge protocols. They often include partial infor-
mation about secret values such as the MLWE secret and the errors in MLWE
instances, which are obtained by adding random errors to them. Since these
‘hints’ on the secret values may affect the security of MLWE, noise flooding or
rejection sampling have utilized to ensure that no useful information is leaked
from a transcript.

Apart from these previous approaches, we aim to precisely measure how much
information on the secret values can be leaked from a transcript and its impact
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on the security of the protocol. In this context, we come up with the Hint-MLWE
problem where the adversary is given the MLWE problem with some hints about
secrets and errors. As expected, this problem is useful for proving the security
of proof-of-knowledge protocols which we will deal with in Sec. 4 and 5.

To return, we will show that our goal can be achieved if both the secret
values and the errors for generating hints are drawn from (discrete) Gaussian
distributions by precisely analyzing the conditional distribution of the secret
values for given hints. We start by giving a formal definition of the Hint-MLWE
problem.

Definition 7 (The Hint-MLWE Problem). Let d,m, ℓ be positive integers,
χ, ξ be distributions over Rd+m, and C be a distribution over Rℓ. The Hint-
MLWE problem, denoted by HintMLWEℓ,ξ,C

R,d,m,q,χ, asks an adversary A to distin-
guish the following two cases:

1.
(
A, [Im|A]r, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
for A← U(Rm×d

q ), r← χ, yi ← ξ,

(γ0, . . . , γℓ−1)← C, and zi = γi · r+ yi for 0 ≤ i < ℓ.

2.
(
A,u, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
for A ← U(Rm×d

q ), u ← U(Rm
q ), r ← χ,

yi ← ξ, (γ0, . . . , γℓ−1)← C, and zi = γi · r+ yi for 0 ≤ i < ℓ.

We call the d = 1 case of Hint-MLWE as the Hint-RLWE problem and denote it
by HintRLWEℓ,ξ,C

R,m,q,χ.

We often refer (z0, . . . , zℓ−1) as hints since it contains partial information about
the secret r. When χ and ξ are spherical discrete Gaussian distributions, we
replace them with their width parameters in the Hint-MLWE notation for sim-
plicity.

Below, we present the key lemma for proving the hardness of the Hint-MLWE
problem when the secret and errors are sampled from discrete Gaussian distri-
butions. At a high level, the lemma states that the conditional distribution of r
given (γ0 · r + y0 . . . , γℓ−1 · r + yℓ−1) follows a (possibly not balanced) discrete
Gaussian distribution again. Namely, the distribution of the first component of
r given zi = γi · r + yi can be expressed as the Gaussian distribution over Zn

with suitable parameters.

Lemma 7. Let ℓ > 0 be an integer and σ1, σ2 > 0 be reals. For γ0, ..., γℓ−1 ∈ R,
let Γi be the negacyclic matrix corresponding to γi and Σ0 := ( 1

σ2
1
· I + 1

σ2
2
·∑ℓ−1

i=0 Γ
⊤
i Γi)

−1. Then, the following two distributions over Rℓ+1 are statistically
identical:{

(r, z0, . . . , zℓ−1) | r ← DZn,σ1 , yi ← DZn,σ2 , zi = γi · r + yi

}
{
(r̂, z0, . . . , zℓ−1)

∣∣∣∣∣ r ← DZn,σ1
, yi ← DZn,σ2

, zi = γi · r + yi,

c = 1
σ2
2
Σ0 ·

∑ℓ−1
i=0 Γ

⊤
i zi, r̂ ← DZn,c,

√
Σ0

}
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Proof. We claim that two random variables have the same probability mass func-
tion. The probability that the first random variable outputs (v, w0, . . . , wℓ−1) ∈
Rℓ+1 can be written as following:

Pr [r = v, γi · r + yi = wi | r ← DZn,σ1
, yi ← DZn,σ2

]

=DZn,σ1
(v) ·

ℓ−1∏
i=0

DZn,σ2
(wi − Γiv)

∝ exp

[
−π

(
1

σ2
1

· v⊤v +
1

σ2
2

·
ℓ−1∑
i=0

(wi − Γiv)
⊤(wi − Γiv)

)]

=exp

[
−π

(
(v − c)⊤Σ−10 (v − c)− c⊤Σ−10 c+

1

σ2
2

·
ℓ−1∑
i=0

w⊤i wi

)]

where c = 1
σ2
2
Σ0 ·

∑ℓ−1
i=0 Γ

⊤
i wi.

Hence, the conditional probability Pr [r = v | γi · r + yi = wi] is proportional
to exp

[
−π(v − c)⊤Σ−10 (v − c)

]
for any w1, . . . , wℓ ∈ R, which implies

Pr [r = v | γi · r + yi = wi] ≡ ρ√Σ0
(v − c) ≡ Pr [r̂ = v | γi · r + yi = wi].

Therefore, the given two distributions are statistically identical. ⊓⊔

Based on the above lemma, we prove the hardness of Hint-MLWE under
the MLWE assumption when the secret and errors are sampled from discrete
Gaussian distributions.

Theorem 1 (Hardness of Hint-MLWE). Let d, k,m, q, ℓ be positive integers
and C be a distribution over Rℓ. Let B > 0 be a real number which satisfies∑ℓ−1

j=0 ∥γj∥
2
1 ≤ B for any possible (γ0, . . . , γℓ−1) sampled from C. For σ1, σ2 > 0,

let σ > 0 be a real number defined as 1
σ2 = 2( 1

σ2
1
+ B

σ2
2
). If σ ≥

√
2 · ηε(Zn)

for 0 < ε ≤ 1/2, then there exists an efficient reduction from MLWER,d,m,q,σ to
HintMLWEℓ,σ2,C

R,d,m,q,σ1
that reduces the advantage by at most (d+m) · 2ε.

Proof. Let (γ0, ..., γℓ−1)← C, and let Σ0 = (σ−21 ·In+σ−22 ·
∑ℓ−1

j=0 Γ
⊤
j Γj)

−1 where
Γj := M(γj) is the corresponding negacyclic matrix of γj for 0 ≤ j < ℓ.

Let (A,b) ∈ Rm×d
q × Rm

q be given MLWER,d,m,q,σ instance. Our reduction
starts by sampling some polynomials in R:

ri ← DZn,σ1 , yi,j ← DZn,σ2 for 0 ≤ i < d+m, and 0 ≤ j < ℓ

ti ← DZn,ci,
√
Σ0−σ2·In for ci =

1

σ2
2

Σ0 ·
ℓ−1∑
j=0

Γ⊤j (Γjri + yi,j) and 0 ≤ i < d+m

We write (r0, . . . , rd+m−1), (y0, . . . , yd+m−1), and (t0, . . . , td+m−1) as r, y,
and t respectively. Note that Σ0 − σ2 · In is positive-definite, since the small-

est singular value of Σ0 is
(
σ−21 + σ−22 ·

∥∥∥∑ℓ−1
j=0 Γ

⊤
j Γj

∥∥∥
2

)−1
≥ (σ−21 + σ−22 ·
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B)−1 = 2σ2 > σ2, where the first inequality is derived from
∥∥∥∑ℓ−1

j=0 Γ
⊤
j Γj

∥∥∥
2
≤∑ℓ−1

j=0

∥∥Γ⊤j Γj

∥∥
2
≤
∑ℓ−1

j=0 ∥γj∥
2
1 ≤ B.

Then, we use the sampled polynomials to transform the given MLWE in-

stance (A,b) into
(
A, b + [Im |A]t, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
where zj =

γj · r+ yj for 0 ≤ j < ℓ, which are the output of the reduction.
We first assume that b = [Im |A]r′ for r′ ← Dd+m

Zn,σ . Then, we have b +

[Im |A]t = [Im |A](r′+t) where r′+t follows the distributions
∏d+m−1

i=0 (DZn,σ+
DZn,ci,

√
Σ0−σ2·In).

Now we show that
√
Σ3 ≥ ηε(Zn) where Σ−13 := σ−2 ·In+(Σ0−σ2 ·In)−1. By

Lem. 5, it is enough to show that
∥∥Σ−13

∥∥
2
≤ ηε(Zn)−2. Recall that the smallest

singular value of Σ0−σ2 ·In is at least σ2 as discussed above. Therefore, it holds
that∥∥Σ−13

∥∥
2
= σ−2 +

∥∥(Σ0 − σ2 · In)−1
∥∥
2
≤ σ−2 + σ−2 = 2σ−2 ≤ ηε(Zn)−2.

By Lem. 3, the distributionsDZn,σ+DZn,ci,
√
Σ0−σ2In

are within the statistical
distance 2ε of DZn,ci,

√
Σ0

. Therefore, the distribution of(
A, b+ [Im |A]t, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
is within statistical distance (d+m) · 2ε of(

A, [Im |A]r̂, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
for r̂←

d+m−1∏
i=0

DZn,ci,
√
Σ0

.

As the last step, we apply Lem. 7 on (r̂, z0, . . . , zℓ−1), then its distribu-
tion is identical to that of (r, z0, . . . , zℓ−1). As a result, the distribution of(
A, [Im |A]r̂, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
is identical to that of(

A, [Im |A]r, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
, which exactly follows the distribu-

tion of samples from HintMLWEℓ,σ2,C
R,d,m,q,σ1

.

If b← U(Rm
q ), then

(
A, b+[Im |A]t, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
follows the

same distribution with
(
A, u, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
where u← U(Rm

q ).

Therefore, the reduction is correct and reduces the advantage at most (d +
m) · 2ε. ⊓⊔

Comparison to Previous Approaches. To illustrate the differences between
our method and two previous approaches, rejection sampling and noise flooding,
we analyze the ratio between the bound for the masking vector and the MLWE
secret multiplied by the challenges, i.e., ∥yi∥∞ and ∥γi · r∥∞. Let T∞ and T2 be
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upper bounds on the size of γi·r in terms of ℓ∞ norm and ℓ2 norm, respectively. In
noise flooding [5, 8], ∥yi∥∞ is set to be exponentially larger than T∞. Rejection
sampling [22, 27] does not require such exponential factor, but it should set
∥yi∥∞ proportional to the ℓ2 norm T2 = O(

√
nd · T∞) and requires the number

of repetitions to be exponential to ℓ. One can alternatively set ∥yi∥∞ = O(
√
ℓnd·

T∞) to avoid such exponentially large number of repetitions.
On the other hand, our method allows us to set ∥yi∥∞ = O(

√
ℓ · T∞), not

proportional to T2, while maintaining a similar security level of the underlying
MLWE assumption. To be precise, the existing proof of knowledge protocols
based on the previous approaches assume the hardness of MLWER,d,m,q,σ1

, while
our new constructions based on Hint-MLWE, which will be introduced in fol-
lowing sections, assume the hardness of MLWER,d,m,q,σ. Here, we note that we
are able to set σ1 = 2σ and σ2 = 2

√
Bσ so that they satisfy the condition of

Theorem 1, and then there is only a single bit difference on σ1 and σ. Hence,
by increasing the modulus q by one bit, we can achieve almost the same level of
security when applying our Hint-MLWE method instead of previous methods.

4 Proof of Plaintext Knowledge for RLWE-based
Public-Key Encryption

The Proof of Plaintext Knowledge (PPK) protocol is frequently used to attain
active security in the constructions of secure multiparty computation proto-
cols [5, 16]. To be precise, the prover would like to send a ciphertext c to the
verifier and convince the verifier that c is well-formed while revealing no infor-
mation about the underlying message m.

One can formalize the functionality of PPK protocol using the framework
of the secure proof of knowledge protocol in Sec. 2.6. Let (Gen, Enc, Dec) be a
public-key encryption scheme, and pk be a public key for Enc. Then, the public
parameter corresponds to pk, the secret input is the prover’s message m, and the
honest language L and the proven language L′ are the set of honestly generated
ciphertexts and the set of accepted ciphertexts respectively. In the generation
phase, the prover samples encryption randomness r and generates a ciphertext
by c = Encpk(m, r). In the proof phase, the verifier checks whether c is valid or
not. If it outputs 1, it is the case that c ∈ L′.

The completeness ensures that an honestly generated ciphertext c ∈ L always
passes the proof phase except for negligible probability. The soundness ensures
that if the prove-phase ends with 1, then c ∈ L′ and the prover knows encryption
randomness r and message m except for negligible probability. Finally, the sim-
ulatability ensures that a verifier cannot know the underlying message m from
the transcript between the honest prover and verifier. Thus, the construction of
PPK protocol based on the proof-of-knowledge framework fulfills all the required
functionality.
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4.1 PPK based on Hint-RLWE

Now, we provide a concrete instantiation of PPK protocol for the BFV scheme [11,
19]. The main objective of the PPK protocol is to convince the verifier that a ci-
phertext is generated with small randomness. For pp = Setup(1λ); pk← Gen(pp),
we first define the witness relationship RPPK and R′PPK as follows:

RPPK = {(m, r, c) | Encpk(m, 2r) = c ∧ ∥r∥∞ ≤ β} ,
R′PPK = {(m, r, c) | Encpk(m, r) = c ∧ ∥r∥∞ ≤ β′} ,

Then, (m, r) can be viewed as a witness for the statement about c. The honest
language LPPK and the proven language L′PPK are defined as follows:

LPPK =
{
c ∈ R2

q | ∃(m, r) ∈ Rp ×R3 s.t. (m, r, c) ∈ RPPK

}
,

L′PPK =
{
c ∈ R2

q | ∃(m, r) ∈ Rp ×R3 s.t. (m, r, c) ∈ R′PPK
}
.

In Fig. 1, we describe the PPK protocol ΠPPK for the BFV scheme whose
security relies on the hardness of (Hint)RLWE. We remark that an encryption
randomness r is multiplied by 2 in RPPK for the honest language due to the
weakened knowledge extractor. In the soundness proof, we show that a knowledge
extractor can obtain (Xi −Xj) · (m, r) for some i ̸= j. Since (Xi −Xj)−1 ̸∈ R
and 2(Xi−Xj)−1 ∈ R by Lem. 6, we can finally get (2m, 2r) rather than (m, r).
The prior work [8] had the same issue, but it resolved the problem by changing
the proven language of PPK. To be precise, the previous PPK protocol does
not guarantee the validity of c, but the validity of 2c instead. However, this
approach induces another issue that 2c is an encryption of 2m, not m. Hence,
we tweak the relation RPPK of the honest prover so that we can guarantee that
the ciphertext c itself is a valid encryption of m in the proven language.

Since the membership decision for RPPK and R′PPK can be done in polynomial
time, both LPPK and L′PPK are NP-languages. The bounds βi and β′i are parameters
that will be determined later after P and V are designated.

Theorem 2. Let ℓ be a positive integer, σ1, σ2 > 0 and κ =
√
ln(2n/ε)/π for

a negligible ε > 0. Let pp = (R, q, p, χ) ← Setup(1λ), pk ← Gen(pp), C = {Xj :
0 ≤ j < 2n}, β = κσ1, and β′ = 2nκ(σ1 + σ2). If (2n)−ℓ is negligible, then ΠPPK

is a secure proof-of-knowledge protocol for the pair of NP-languages (LPPK,L
′
PPK)

under the hardness assumption of RLWER,1,q,χ and HintRLWE
ℓ,σ2,U(Cℓ)
R,2,q,σ1

.

Proof. We show the completeness, knowledge soundness, and simulatability of
ΠPPK as below.

Completeness: Suppose that both prover and verifier honestly follow the proto-
col. Then, the ciphertext c generated by the prover satisfies the honest language
LPPK since ∥r∥∞ < β except for a negligible probability ε from Cor. 1. The equal-
ity Encpk(vi, zi) = wi + γi · c follows from the fact that vi = ui + γi · m and
zi = yi + γi · r. It remains to show that ∥zi∥∞ < (1 + σ2/σ1) · β for 0 ≤ i < ℓ.

Let zi = (z
(0)
i , z

(1)
i , z

(2)
i ). From the definition, z

(j)
i follows the distribution

DZn,σ1
+ γi · DZn,σ2

for 0 ≤ j < 3. Note that γi · DZn,σ2
is statistically identical
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PPK protocol ΠPPK

Prover P Verifier V
Input: m ∈ Rp pk

pk ∈ R2
q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generate-phase:

r← D3
Zn,σ1

c = Encpk(m, 2r) c

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove-phase:
For 0 ≤ i < ℓ :

ui ← U(Rp)

yi ← D3
Zn,σ2

wi = Encpk(ui, 2yi)

wi

(γ0, . . . , γℓ−1)← U(Cℓ)

γi

For 0 ≤ i < ℓ :

vi = ui + γi ·m (mod p)

zi = yi + γi · r

(vi, zi)

For 0 ≤ i < ℓ, check:
Encpk(vi, 2zi) = wi + γi · c (mod q)

∥zi∥∞ ≤ (1 + σ2/σ1) · β

Fig. 1. Our PPK protocol for the BFV scheme.
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to DZn,σ2
regardless of γi, as γi is a monomial with the leading coefficient 1 and

DZn,σ2
is spherical with center zero. Then, z(j)i follows the distribution DZn,σ1

+
DZn,σ2 for all 0 ≤ i < ℓ, which is bounded by (1 + σ2/σ1) · β = (σ1 + σ2) · κ
with an overwhelming probability. Therefore, the verifier outputs 1 except for a
negligible probability.

Soundness: Since the soundness error (2n)−ℓ is negligible, it suffices to show
the existence of an efficient knowledge extractor which can generate a witness
from two accepting transcripts (c,wi, γi, (vi, zi)) and (c,wi, γ

′
i, (v

′
i, z
′
i)) such that

γi ̸= γ′i for some 0 ≤ i < ℓ. We define an extractor E as follows:

1. Find an index i such that γi ̸= γ′i, and set γ̄i = γi−γ′i. It is shown in Lem. 6
that 2γ̄−1i is an element of R with

∥∥2γ̄−1i

∥∥
∞ ≤ 1.

2. Compute and output (m, r) as follows:

m =
p+ 1

2
· (2γ̄−1i ) · (vi − v′i) (mod p)

r = (2γ̄−1i ) · (zi − z′i) (mod q)

From Encpk(vi, 2zi) = wi + γi · c and Encpk(v
′
i, 2z

′
i) = wi + γ′i · c, we get

Encpk(vi − v′i, 2(zi − z′i)) = γ̄i · c. We also note that p+1
2 = q+1

2 (mod p) if p and
q are odd integers such that p | q. Then, we obtain the following equality:

Encpk(m, r) = (2γ̄−1i ) · Encpk
(
p+ 1

2
(vi − v′i), zi − z′i

)
(mod q)

= (2γ̄−1i ) · q + 1

2
· Encpk (vi − v′i, 2(zi − z′i)) (mod q)

= (2γ̄−1i ) · q + 1

2
· γ̄i · c = c (mod q).

Meanwhile, we get ∥r∥∞ ≤ n · ∥zi − z′i∥∞ ≤ β′ since r = 2γ̄−1i · (zi − z′i) ∈ R
and

∥∥2γ̄−1i

∥∥
∞ ≤ 1. Therefore, the output (m, r, c) satisfies the relation R′PPK, so

E is an knowledge extractor for ΠPPK.

Simulatability. We show that SPPK in Fig 2 is a simulator for the protocol ΠPPK.
Let D0(m) and D1 be the distribution of the transcripts generated by the honest
prover and verifier of ΠPPK for each message m ∈ Rp and that generated by SPPK,
respectively. We prove these distributions are computationally indistinguishable
by the hybrid argument: Let H0(m) = D0(m), H1(m), H2 and H3 = D1 be the
distributions of tr which are defined as follows:

H0(m) : tr ← Tr(P(pk,m),V(pk)) for pp = Setup(1λ); pk ← Gen(pp) and given
m ∈ Rp.

H1(m) : tr← Tr(P(pk,m),V(pk)) for pk← U(R2
q) and given m ∈ Rp.

H2 : tr← SPPK(pk) for pk← U(R2
q).
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Simulator SPPK
Input
pk ∈ R2

q

1. Sample c← U(R2
q) and (γ0, . . . , γℓ−1)← U(Cℓ).

2. Sample r← D3
Zn,σ1

.
3. Sample yi ← D3

Zn,σ2
, and compute zi = yi + γi · r for 0 ≤ i < ℓ.

4. Sample vi ← U(Rp), and compute wi = Encpk(vi, 2zi) − γi · c (mod q) for
0 ≤ i < ℓ.

5. Output tr = (c, (wi, γi, (vi, zi))0≤i<ℓ).

Fig. 2. Simulator for ΠPPK.

H3 : tr← SPPK(pk) for pp = Setup(1λ); pk← Gen(pp).

Claim 1: H0(m) and H1(m) are computationally indistinguishable for any mes-
sage m ∈ Rp under the hardness assumption of RLWER,1,q,χ.

For a given RLWE sample pk, one can pick any message m ∈ Rp and generate
the transcript tr ← Tr(P(m, pk),V(pk)) . When pk is sampled from the RLWE
distribution (resp. the uniform distribution), then tr follows H0(m) (resp. H1).
Therefore, H0(m) and H1 are computationally indistinguishable if RLWER,1,q,χ

is hard.

Claim 2: H1(m) and H2 are computationally indistinguishable for any message
m ∈ Rp under the hardness assumption of HintRLWE

ℓ,σ2,U(Cℓ)
R,2,q,σ1

.

Let A be an algorithm that distinguishes H1(m) and H2 with an advan-
tage ε′ for a message m ∈ Rp. Then, we can construct an algorithm B solving
HintRLWE

ℓ,σ2,U(Cℓ)
R,2,q,σ1

by exploiting A.

The algorithm B first receives a sample
(
a,b, γ0, . . . , γℓ−1, z0, . . . , zℓ−1

)
from the Hint-RLWE challenger. Let pk = a, c = 2 · b + ((q/p)m, 0) (mod q),
vi := ui + γi · m (mod p) for ui ← U(Rp), and wi := Encpk(vi, 2zi) − γi · c
(mod q) for 0 ≤ i < ℓ. The algorithm B runs A(pk, tr) for the transcript
tr := (c, (wi, γi, (vi, zi))0≤i<ℓ), and it outputs the response from A.

If b = [I2 |a]r where r← D3
Zn,σ1

, yi ← D3
Zn,σ2

, zi = γi · r+ yi for 0 ≤ i < ℓ.
Then, c = Encpk(m, 2r) holds. Moreover, it holds that wi = Encpk(ui, 2yi) since
p | q. Therefore, tr follows the distribution H1(m). Otherwise, if b is sampled
from U(R2

q), c and vi become uniform over R2
q and Rp, respectively. Therefore,

tr follows the distribution H2.
Thus, the algorithm B solves HintRLWE

ℓ,σ2,U(Cℓ)
R,2,q,σ1

with the same advantage
ε′, and ε′ should be negligible by the hardness assumption, and therefore H1(m)
and H2 are computationally indistinguishable for any message m ∈ Rp.
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Claim 3: H2 and H3 are computationally indistinguishable under the hardness
assumption of RLWER,1,q,χ.

For a given RLWE sample pk, one can generate the transcript tr← SPPK(pk).
When pk is sampled from the RLWE distribution (resp. the uniform distribu-
tion), then tr follows H2 (resp. H3). Therefore, if one can distinguish H2 and H3

with advantage ε′ > 0, then it can also solve RLWER,1,q,χ with advantage ε′.
By Claim 1,2 and 3, the distributions H0(m) and H3 are computationally

indistinguishable for any message m ∈ Rp, and hence ΠPPK is simulatable as-
suming that RLWER,1,q,χ and HintRLWE

ℓ,σ2,U(Cℓ)
R,2,q,σ1

are hard to solve. Thus, the
completeness, knowledge soundness, and simulatability of ΠPPK are completely
proved. ⊓⊔

Soundness Slack. In the previous work [8], the value β′/β is used to describe
soundness slack between LPPK and L′PPK. This measurement correctly captures
the intuition of soundness slack since it represents an overhead derived from the
noise flooding. However, this context does not perfectly fit with our case since
the security of our protocol eventually depends on κσ (rather than β = κσ1) if
we reduce the hardness of Hint-RLWE from RLWE. Thus we use the quantity
β′/κσ = 2n(σ1+σ2)

σ as an alternative measurement for soundness slack in our
protocol since it precisely describes how much cost is incurred to achieve the
security against a malicious adversary.

Parameter Setting. We explain a methodology to choose optimal parameter
sets for ΠPPK following the conditions of Thms 1 and 2. We denote by λSnd and
λZK the security parameters of soundness and simulatability of our protocol, re-
spectively. The soundness security stands for the soundness error of the protocol
so it is determined by the size of the challenge space. The zero-knowledge secu-
rity is originally intended to denote a statistical distance between the simulator
and real accepting conversation because simulators in the previous studies [8, 20]
are based on statistical indistinguishability. Since our simulator is based on com-
putational indistinguishability, we only account for statistical advantage for λZK

neglecting computational ones.
We now set the parameters k, ℓ, σ1, and σ2 for given λSnd and λZK. We first

consider the soundness security. We set ℓ = ⌈λSnd/ log 2n⌉ so that (2n)−ℓ ≤ 2−λSnd

holds. Then, we set the parameters σ1, σ2 which are related to the zero-knowledge
security λZK. Note that indistinguishability for SPPK comes from computational
hardness of RLWER,1,q,χ and HintRLWE

ℓ,σ2,U(Cℓ)
R,2,q,σ1

. Since we use standard HE pa-
rameter sets presented in [3] for RLWER,1,q,χ, it is computationally hard. The
upper bound B of

∑ℓ−1
j=0 ∥γj∥

2
1 can be set to ℓ since the challenges γj are all monic

monomials. Then, by Thm. 1, the hardness of HintRLWE
ℓ,σ2,U(Cℓ)
R,2,q,σ1

is reduced from
RLWER,2,q,σ with loss of advantage at most 6ε where 1

σ2 = 2( 1
σ2
1
+ ℓ

σ2
2
), and ε > 0

is some value satisfying σ ≥
√
2 · ηε(Zn).

Thus, it suffices to consider the hardness of RLWER,1,q,χ and the advantage
6ε occurred during reduction for the zero-knowledge security λZK. We set ε =
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2−λZK/6 and σ =
√
2 ·
√

ln(2n(1+1/ε))
π ≃

√
2 ·
√

λZK+ln (12n)
π so that σ ≥

√
2 ·ηε(Zn)

for given λZK. Note that standard HE parameters presented in [3] use 3.2 ·
√
2π

as width parameter for error distribution of RLWE. Since the value of σ is larger
than that value for λZK = 128, it does not affect on the hardness assumption of
RLWE with our parameter.

Note that the soundness slack of our protocol is determined by σ1+σ2 when
σ is fixed. Hence, we aim to choose σ1 and σ2 so that the soundness slack is
minimized for given σ. It is easy to show that the best parameters are such that
σ1 =

√
ℓ

1
3 + 1 ·σ, σ2 = ℓ

1
3 ·σ1 and Therefore, the soundness slack of our protocol

is calculated as 2n(σ1 + σ2)/σ = 2n(1 + ℓ
1
3 )

3
2 .

Finally, we set the parameter κ which is related to the completeness. If we
set κ =

√
ln(2n/ε)/π for a negligible ε′, a honestly generated conversation gets

accepted with an overwhelming probability by Thm. 2.

4.2 Extension to Multi-prover PPK

Among versatile applications of PPK protocol, we focus on its usage on the
SPDZ multi-party computation (MPC) protocol [16] which utilizes somewhat
homomorphic encryption (HE). To achieve active security, SPDZ runs a zero-
knowledge PPK protocol for HE ciphertexts so that they are ensured to be
honestly generated.

There have been several follow-up studies [8, 20] that improve the efficiency of
the PPK protocol in SPDZ. The current state-of-the-art PPK protocol for SPDZ
is called k-prover PPK protocol [8], which consists of k parties who play roles of
both prover and verifier. In this protocol, all parties verify the validity of a single
(accumulated) ciphertext instead of verifying multiple ciphertexts by repeatedly
running ΠPPK for each party. This reduces the computational cost of verification
by a factor of k. However, for this purpose, all parties must be online to jointly
generate a shared challenge. Therefore, the noise flooding method is enforced
to achieve zero-knowledge since the rejection sampling method would lead to
a slowdown due to potentially having to rerun the protocol multiple times[8].
Hence, it achieves a faster verification procedure at the expense of increased
communication cost due to the larger ciphertext size resulting from the noise
flooding method.

We note that our PPK protocol can be naturally extended to the k-prover
case, as described in Appx. A. Compared to the previous work, which uses the
noise flooding, our method significantly reduces soundness slack, which incurs a
smaller ciphertext size and reduced communication cost. Additionally, we note
that the previous work was based on the BGV scheme [12], but we use BFV as
a substitute.

Parameter Setting. A parameter setting for the k-party PPK protocol for
BFV can be done in a similar manner. The only difference is that the bounds β
and β′ become k times larger since each party adds k commitments or responses
during the prove-phase, but it does not affect the soundness slack as both of
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them get increased by the same factor. As a result, the soundness slack is still
2n(1 + ℓ

1
3 )

3
2 . In asymptotic scale, the soundness slack for our PPK protocol

is 2n(1 + ℓ
1
3 )

3
2 = O(n ·

√
ℓ) = O(n ·

√
λSnd/ log n) since ℓ = O(λSnd/ log n).

Meanwhile, the soundness slack in the previous PPK protocol [8] accompanies
the exponential factor 2λZK which comes from the noise flooding technique.

5 Proof of Opening Knowledge for BDLOP

The commitment scheme has been used extensively as a core building block
of various cryptographic schemes (e.g. [26, 28, 25]). In these applications, the
Proof of Opening Knowledge (POK) protocol is usually incorporated together
to ensure the security against active adversaries. While the existing constructions
of POK rely on zero-knowledge proofs for both input message and commitment
randomness, we aim to construct a more efficient POK protocol that allows us
to leak partial information of the randomness while still guaranteeing the full
message privacy.

Such POK protocol can be implemented using the secure proof-of-knowledge
framework in Sec. 2.6. Let (Gen, Com, Open) be a commitment scheme, and ck be
a commitment key generated by Gen. Then, the public parameter pp is ck, the
secret input x is the prover’s message m, and the honest language L and the
proven language L′ are the set of honestly generated commitments and the set of
accepted commitments, respectively. Then, the completeness guarantees that the
prove-phase ends with 1 if the commitment c ∈ L. The soundness guarantees that
if the prove-phase ends with 1, then c ∈ L′ and the prover knows randomness r
and message m used for generating the commitment c. Finally, the simulatability
guarantees that the transcript between the prover and the verifier does not leak
any information about input message m.

In the rest of this section, we present a concrete instantiation of the POK pro-
tocol for the BDLOP commitment scheme [9] based on the hardness assumption
of Hint-MLWE, and we provide a concrete parameter set of our POK protocol
with a comparison to prior work. It is worth noting that our POK protocol is
free from aborting, contrary to previous constructions in [9, 27] using rejection
sampling. This work also answers the open questions stated in [27], whether it
would be possible to achieve any security proof for POK without rejection.

5.1 POK without Abort based on Hint-MLWE

In this subsection, we propose a POK protocol for the BDLOP commitment
scheme [9], which is one of the most widely used building blocks for lattice-based
cryptographic primitives [28, 25]. While our protocol leaks some information
about commitment randomness, it still satisfies security conditions to be a key
ingredient for the construction of the advanced proof techniques such as proofs
for product relation [6] and proofs for linear relation [18]. We discuss how our
POK protocol can be extended to cover these applications in the next subsection.
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We first recall soundness slack that arises in lattice-based proof-of-knowledge
construction. The BDLOP scheme follows the proof style presented in [29], so a
knowledge extractor can only obtain a witness of the form (γ̄ ·m, r), where γ̄ is an
element from the difference set C̄ := {γ−γ′ | γ, γ′ ∈ C} given a challenge set C.
Hence, it requires a weakened version of the opening algorithm to accommodate
soundness slack. Below, we present the weakened opening algorithm for BDLOP.

• BDLOP.WeakOpenck(c,m, r, γ̄): Given a commitment c = (c0, c1), a message
m ∈ Rk

q , randomness r ∈ Rµ+ν+k, and an element γ̄ ∈ C̄, it outputs 1 if and
only if γ̄ · c = BDLOP.Comck(γ̄ ·m, r) and ∥r∥2 < 2β′BDLOP.

Then, the witness relations for POK are defined as follows:

ROpen := {(c,m, r) | BDLOP.Openck(c,m, r) = 1}
R′Open := {(c,m, r, γ̄) | BDLOP.WeakOpenck(c,m, r, γ̄) = 1}

where ck ← BDLOP.Gen(1λ). We note that (m, r, γ̄) serves the role of witness in
R′Open. The corresponding honest/proven languages are defined as follows:

LOpen := {c ∈ Rµ+k
q | ∃(m, r) (c,m, r) ∈ RBDLOP}

L′Open := {c ∈ Rµ+k
q | ∃(m, r, γ̄) (c,m, r, γ̄) ∈ R′BDLOP}

In Fig. 3, we describe our new POK protocol ΠOpen for the BDLOP com-
mitment scheme. We assume that q is a prime integer satisfying q = 5 (mod 8),
and C := {γ ∈ R | ∥γ∥1 = κ ∧ ∥γ∥∞ ≤ 1}, the set of polynomials with ternary
coefficients in {0,±1} and hamming weight κ > 0. Then, it is known that every
element of C̄ except 0 is invertible in Rq [29, Cor. 1.2].

We formulate the security of ΠOpen for the BDLOP commmitment scheme
as the following theorem. Then, the binding property depends on the hardness
of MSISR,µ+ν+k,µ,q,8κβ′

BDLOP
under the weakened opening algorithm as in the prior

work [9].

Theorem 3. Let ν, µ, k, q be positive integers, σ1, σ2 > 0, β′BDLOP = (κσ1 +

σ2)
√
(µ+ ν + k)n/π, and ck← BDLOP.Gen(1λ). If

(
n
κ

)−1 · 2−κ and 2−(µ+ν+k)n/8

are negligible, then ΠOpen is a secure proof-of-knowledge protocol for (LOpen,L
′
Open)

under the hardness assumption of HintMLWE
1,σ2,U(C)
R,ν,µ+k,q,σ1

.

Proof. We show the completeness, soundness and simulatability of ΠOpen.

Completeness: Suppose that both the prover and the verifier are honest. Since
the relation B0z = w + γ · c0 (mod q) always holds, we only need to check the
condition ∥z∥2 < β′BDLOP = (κσ1 + σ2)

√
(µ+ ν + k)n/π. By Lem. 2, we have

∥r∥2 < σ1

√
(µ+ ν + k)n/π and ∥y∥2 < σ2

√
(µ+ ν + k)n/π with probability

larger than 1 − 2−(µ+ν+k)n/8. Then, we obtain ∥z∥2 = ∥y + γ · r∥2 < (κσ1 +

σ2)
√
(µ+ ν + k)n/π with probability larger than (1−2−(µ+ν+k)n/8)2 as ∥γ∥1 =

κ.
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POK Protocol ΠOpen

Prover P Verifier V

Input: B0 ∈ Rµ×(µ+ν+k)
q B0,B1

B1 ∈ Rk×(µ+ν+k)
q , m ∈ Rk

q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generate-phase:

r← Dµ+ν+k
Zn,σ1

c0 = B0r (mod q)

c1 = B1r+m (mod q) c = (c0, c1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove-phase:

y← Dµ+ν+k
Zn,σ2

w = B0y (mod q) w

γ γ ← U(C)

z = y + γ · r

z

Check ∥z∥2 < β′
BDLOP

Check B0z = w + γ · c0 (mod q)

Fig. 3. The POK protocol for BDLOP.

Therefore, the verifier outputs 1 except for negligible probability since the
value 2−(µ+ν+k)n/8 is negligible.

Soundness: Since the soundness error 1/|C| = 1

(nκ)·2κ
is negligible, it suffices

to show the existence of efficient knowledge extractor for R′BDLOP. Consider two
accepting transcripts generated by a cheating prover, denoted as (w, γ, z) and
(w, γ′, z′) where γ̄ = γ−γ′ is nonzero. Then, γ̄ is invertible in Rq and r = z−z′,
m = c1− γ̄−1 ·B1r (mod q), and γ̄ become a witness for c in the relation R′Open.
For a more detailed analysis, we refer to [9].

Simulatability: In Fig. 4, we describe a simulator SOpen for ΠOpen. Let D0(m)
andD1 be the distributions of the transcript tr generated by an honest prover and



Toward Practical Lattice-based Proof of Knowledge from Hint-MLWE 25

Simulator SOpen
Input
B0 ∈ R

µ×(µ+ν+k)
q ,B1 ∈ R

k×(µ+ν+k)
q

1. Sample u← U(Rµ+k
q ), V← U(Rµ×k

q ) and γ ← U(C).
2. Sample r← Dµ+ν+k

Zn,σ1
and y← Dµ+ν+k

Zn,σ2
.

3. Compute c =

[
Iµ V

0k×µ Ik

]
u (mod q) and parse c =

[
c0
c1

]
for c0 ∈ Rµ

q , c1 ∈ Rk
q .

4. Compute z = y + γ · r, and w = B0z− γ · c0 (mod q).
5. Output (c,w, γ, z).

Fig. 4. Simulator for ΠOpen.

verifier for a message m ∈ Rk
q and that generated by the simulator, respectively,

which are defined as follows:

D0(m): tr← Tr(P(ck,m),V(ck)) for ck← BDLOP.Gen(1λ) and given m ∈ Rk
q

D1: tr← SOpen(ck) for ck← BDLOP.Gen(1λ)

Assume that there exists an algorithm A that distinguishes the distributions
D0(m) and D1 with advantage ε > 0 for a message m ∈ Rk

q . Then, we can
construct an efficient algorithm B for HintMLWE

1,σ2,U(C)
R,ν,µ+k,q,σ1

using A which works
as follows:

1. Receive a Hint-MLWE instance (A,u, γ, z) from a Hint-MLWE challenger.

Write z =

[
z0
z1

]
∈ Rµ+ν+k and parse A =

[
A0

A1

]
for A0 ∈ Rµ×ν

q and A1 ∈

Rk×ν
q .

2. Sample V ← U(Rµ×k
q ). Set B0 =

[
Iµ | V | A0 +VA1

]
∈ R

µ×(µ+ν+k)
q ,

B1 =
[
0k×µ | Ik | A1

]
∈ R

k×(µ+ν+k)
q , and compute c =

[
Iµ V

0k×µ Ik

]
u +

[
0
m

]
(mod q). Parse c =

[
c0
c1

]
for c0 ∈ Rµ

q , c1 ∈ Rk
q .

3. Compute w = B0z− γ · c0 (mod q), and set tr = (c,w, γ, z), ck = (B0,B1).
4. Send tr to A, receive a response b = A(tr), and output b.

We first note that ck always follows the identical distribution with a sample
from BDLOP.Gen(1λ). If u =

[
Iµ+k A

]
r for r← Dµ+ν+k

Zn,σ1
, then it holds that

c =

[
Iµ V

0k×µ Ik

][
Iµ+k A

]
r+

[
0
m

]
=

[
B0

B1

]
r+

[
0
m

]
(mod q).
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By the definition of Hint-MLWE, we can rewrite z as z = y + γ · r for some
r← Dµ+ν+k

Zn,σ1
and y← Dµ+ν+k

Zn,σ2
. Then, we can also check that

w = B0(y + γ · r)− γ ·B0r = B0y (mod q)

Therefore, the distribution of tr is identical to D0(m).
On the other hand, if u← U(Rµ+k

q ), all the variables are defined just as same

with SOpen except c due to the addition of
[
0
m

]
.

Since
[

Iµ V
0k×µ Ik

]
is invertible over R

(µ+k)×(µ+k)
q ,

[
Iµ V

0k×µ Ik

]
u is also uniform

over Rµ+k
q , and hence the distribution of c is identical to that sampled from

SOpen. Therefore, the distribution of tr is identical to D1.
Thus, the adversary B has the same advantage ε as A in distinguishing the

Hint-MLWE instance. As a result, distributions D0(m) and D1 are computation-
ally indistinguishable for any message m ∈ Rk

q if HintMLWE
1,σ2,U(C)
R,ν,µ+k,q,σ1

is hard,
which implies the simulatability of our ΠOpen. ⊓⊔

Parameter Setting. We now present the method for setting parameters in
our POK protocol. The binding property of the commitment scheme is based
on the hardness of MSISR,µ+ν+k,µ,q,8κβ′

BDLOP
, which is identical to the previous

construction in [9]. Meanwhile, the simulatability of our POK protocol is based
on the HintMLWE

1,σ2,U(C)
R,ν,µ+k,q,σ1

assumption. Thus, the parameters must be chosen
in such a way that all three problems remain computationally hard.

We note that C is a distributions over Rℓ where each element γj satisfies
∥γj∥∞ = 1 and ∥γj∥1 = κ for some integer κ. Then, the bound B for

∑ℓ−1
j=0 ∥γj∥

2
1

can be set to ℓκ2. Therefore, we can reduce the hardness of HintMLWE
1,σ2,U(C)
R,ν,µ+k,q,σ1

from MLWER,ν,µ+k,q,σ where 1/σ2 = 2(1/σ2
1 + κ2/σ2

2). To this end, σ ≥
√
2 ·

ηε(Zn) should hold for some negligible ε > 0. Then, we only need to consider
the hardness of MLWER,ν,µ+k,q,σ when setting the parameters for simulatability.
Recall that the upper bound of ∥z∥2 is β′BDLOP = (κσ1 + σ2)

√
(µ+ ν + k)n/π.

Thus, we choose σ1 and σ2 which minimizes κσ1 + σ2 under the constraints
1/σ2 = 2(1/σ2

1 + κ2/σ2
2), σ ≥

√
2 · ηε(Zn).

In Table 1, we present concrete parameters which are calculated according to
the aforementioned method. We measure the hardness of MSIS and MLWE in
terms of the root Hermite factor δ, targeting for δ ≈ 1.0043 which gives 128-bit
security. We first set q ≈ 232 and n = 27 as presented in [27] and then adjust the
MSIS rank µ and the MLWE rank ν. We also set κ = 32 to achieve a negligible

soundness error 1/|C| =
(
n
κ

)−1 · 2−κ < 2−128. We set σ =
√
2 ·
√

ln(2n(1+1/ε))
π so

that the condition σ ≥
√
2 · ηε(Zn) holds by Lem. 4.

Comparison to Rejection Sampling. In the previous work [9, 27], the re-
jection sampling method is used to attain zero-knowledge or simulatability. Al-
though it reduces the soundness slack significantly, it introduces additional com-
putational overheads due to repetition. To provide comparison with our work,
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we also calculate concrete parameters in Table 1 which are obtained by using
the rejection sampling method in [22] and [27]. We follow the notation from [27]
where Rej0 and Rej1 refer to the rejection sampling methods presented in [22]
and its improved version, respectively. In [27], they set randomness distribution
to be U({−1, 0, 1}n) and the number of rejections M = 6. Then, Rej0 and Rej1
output z whose distribution is statistically close to Dµ+ν+k

Zn,τ0
and Dµ+ν+k

Zn,τ1
, re-

spectively, where τ0 = 16.89 · κ
√
(µ+ ν + k)n and τ1 = 1.69 · κ

√
(µ+ ν + k)n.

3 Thus, their bound βi of ∥z∥2 is determined as βi = τi ·
√
(ν + µ+ k)n/π by

Lem. 2.
Simulatability of Rej0 can be obtained by constructing the simulator that

has a negligible statistical distance to the distribution of real transcripts, but the
simulator for Rej1 requires additional assumption called Extended-MLWE [27]
to achieve indistinguishability since it leaks some information on commitment
randomness. We remark that the hardness of the Extended-MLWE problem has
been proven only for the non-algebraic setting. In contrast, simulatability for our
method depends on the Hint-MLWE problem, and its hardness can be reduced
from the MLWE problem by Thm. 1.

We now compare the parameters with ours (Table 1). Note that ν is deter-
mined by the hardness of MLWER,ν,µ+k,q,χter where χter = U({−1, 0, 1}n). As a
result, ν needs to be at least 10 for both Rej0 and Rej1 to attain root Hermite
factor δ ≈ 1.0043, assuming the Extended-MLWE problem is as hard as the
MLWE problem. However, our method enables us to set ν = 9 due to the larger
upper bound on the commitment randomness r. It is worth noting that both
Rej0 and Rej1 have an upper bound on the ratio ∥y∥2/∥γr∥2 in terms of the
rejection rate, and therefore they try to set ∥r∥2 as small as possible. However,
our method is free from this restriction.

Note that µ is determined by the hardness of MSISR,µ+ν+k,µ,q,8κβi
for Reji.

As a result, µ should be at least 7 for Rej0 to attain root Hermite factor δ ≈
1.0043. In case of Rej1, it reduces µ to 6 due to having a smaller width parameter.
Meanwhile, it suffices to set µ = 5 in our case. Therefore, our method gives
smaller µ, ν values compared to the prior work under the same security level.
Additionally, our method reduces computational overheads since it does not
require any repetitions (rejections) to achieve simulatability.

5.2 Optimizations and Extensions

In the realm of lattice-based cryptography, there are several applications of the
BDLOP commitment scheme such as proofs for integral relation [26], group sig-
nature [25] and ring signature [28]. In these applications, advanced proof tech-
niques from [6, 18] are employed to verify additional conditions for the input
message. These conditions vary depending on applications, but they all stem
from the core property of the BDLOP scheme: computational binding.

3 Since the Gaussian function in [27] is defined as ρ(x) = exp(−1/2 · x⊤x), we multi-
plied a factor of

√
2π to those presented in [27].
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Rej0 Rej1 Ours
µ (MSIS rank) 7 6 5
ν (MLWE rank) 10 10 9

Repetition 6 6 −
Simulatability − Ext-MLWE MLWE

Table 1. Parameters of each POK for BDLOP (q ≈ 232, n = 27, κ = 32, k = 1)

In this subsection, we briefly describe how our POK protocol can be fur-
ther extended to advanced proof systems for product relation [6] and for linear
relation over Zq [18].

Modification in Challenge Set. In recent applications of BDLOP, the modu-
lus q is often set to be q = 2n+1 (mod 4n) to obtain the isomorphism Rq ≃ Zn

q .
However, this approach has a disadvantage in that some elements of C̄ are not
invertible in Rq. To cope with this issue, a new challenge distribution C over
{γ ∈ R | ∥γ∥∞ ≤ 1} was proposed in [6] where each coefficient is sampled inde-
pendently from −1, 0, 1 with probability 1/2 for 0 and 1/4 for each −1 and 1. It
has been shown in [6] that the POK protocol using the new challenge distribution
C attains a soundness error of approximately q−1.

The simulatability still holds for this case by simply substituting U(C) with C
in Thm. 3. Since a sample γ ← C satisfies ∥γ∥∞ ≤ 1 and ∥γ∥1 ≤ n, the parameter
setting procedure for this case is equal to that in Sec. 5.1 except κ = n.

Boosting Soundness. As mentioned earlier, the new challenge distribution
provides a soundness error of q−1, which is non-negligible in most applications
where q ≈ 232. To reduce the soundness error further (i.e., q−ℓ), an optimiza-
tion technique [6] that amplifies a single challenge into multiple challenges via
automorphisms is often used. In this case, the prover sends multiple responses
zi = yi + φi(γ) · r for 0 ≤ i < ℓ where φ(X) = X2n/ℓ+1, and the verifier checks
if ∥zi∥2 < β′BDLOP and B0zi = wi + φi(γ) · c0 (mod q) for 0 ≤ i < ℓ.

A further improvement [26, Appx. A.6] was proposed to reduce the size of
transcripts by expressing (φi(γ))0≤i<ℓ as a linear combination of the parsed
polynomials γi =

∑n/ℓ−1
j=0 γ(jℓ+i)Xjℓ for 0 ≤ i < ℓ of γ =

∑n−1
j=0 γ(j)Xj . In this

case, the prover sends w′i = B0y
′
i and z′i = y′i + γi · r for y′i ← D

µ+ν+k
Zn,σ1

and
verifier checks if B0z

′
i = w′i + γi · c0 for 0 ≤ i < ℓ. Then, by computing yi =∑ℓ−1

j=0 φ
i(Xj)y′j , zi =

∑ℓ−1
j=0 φ

i(Xj)z′j , and wi =
∑ℓ−1

j=0 φ
i(Xj)w′j for 0 ≤ i < ℓ,

one can reconstruct the relations zi = yi + φi(γ) · r and B0zi = wi + φi(γ) ·
c0. Thus, the soundness property is still maintained. Since ∥γi∥1 ≤ n/ℓ while∥∥φ(i)(γ)

∥∥
1
≤ n, it results in smaller size of responses.

Adopting these optimizations, the transcript now contains multiple responses
z′i for 0 ≤ i < ℓ, which increases the number of hints from 1 to ℓ in terms of Hint-
MLWE. Let C′ be the distribution of (γ0, . . . , γℓ−1) where γi =

∑n/ℓ−1
j=0 γ(jℓ+i)Xjℓ

for γ =
∑n−1

j=0 γ(j)Xj ← C. Then, the simulatability holds under the hardness
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[18] [27] Ours
µ (MSIS rank) 9 8 7
ν (MLWE rank) 10 10 9

Repetition 18 6 −
Simulatability − Ext-MLWE MLWE

Table 2. Parameters for proof of knowledge of a ternary solution of linear equation
over Zq (q ≈ 232, n = 27, ℓ = 4, k = 19)

assumption of HintMLWEℓ,σ2,C′
R,ν,µ+k,q,σ1

. Meanwhile, the upper bound of ∥zi∥2 be-
comes β′BDLOP = (nσ1+

√
ℓσ2)

√
(µ+ ν + k)n/π since yi =

∑ℓ−1
j=0 φ

i(Xj)y′j follows∑ℓ−1
j=0D

µ+ν+k
Zn,σ2

, which is statistically close to Dµ+ν+k

Zn,
√
ℓσ2

assuming the convolution
lemma (Lem. 3).

Applications. We first discuss the simulatability for advanced BDLOP-based
proof systems: proof of multiplicative relation [6, Fig. 4] and proof of knowledge
for a (ternary) solution to a linear equation [18, Fig. 1 and Fig. 3]. We present
new simulatability proofs of these protocols without abortion under the Hint-
MLWE assumption in Appendix B.

To summarize briefly, in those protocols the elements of the transcripts are
fully simulatable except for c and zi since they are sampled independently from
the commitment randomness r. Therefore, it suffices to consider the simulata-
bility of c and zi, and it can be shown using the same methodology to Thm. 3,
together with the aforementioned modifications. As a result, one can construct
simulators for both protocols in a similar way to SOpen. Note that our new sim-
ulatability proofs for the advanced BDLOP-based proof systems are valid only
for non-aborting transcripts, which is the same restriction for zero-knowledge
proofs in the previous work [6, 18].

As a benchmark, we present parameters for the protocol in [18, Fig. 3] in
Table. 2, which proves knowledge for a ternary solution of a linear equation
over Zq. In [18], a rejection sampling method whose output follows uniform
distribution is used. Meanwhile, [27] uses the improved version of the rejection
sampling method, Rej1, so that it managed to reduce the parameter µ by 1.

For the parameters in our method, the binding property depends on the hard-
ness of MSISR,µ+ν+k,µ,q,8nβ′

BDLOP
. For the simulatability, it depends on the hard-

ness of HintMLWEℓ,σ2,C′
R,ν,µ+k,q,σ1

. We choose σ1, σ2 which minimizes β′BDLOP = (nσ1+√
ℓσ2)

√
(µ+ ν + k)n/π under the constraints 1/σ2 = 2(1/σ2

1 + ℓ · (n/ℓ)2/σ2
2),

and σ ≥
√
2 · ηε(Zn). As a result, our method reduces both parameter µ and

ν to 7 and 9, respectively. We also note that our method does not require any
repetition, so it indeed reduces computation overheads.
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A k-Prover PPK

We present the protocol (Fig. 5) and the simulator (Fig. 6) for the k-prover
PPK. The completeness, soundness, and simulatability of k-Prover PPK can be
proved in similar way to Thm. 2. For more details, refer to [8].

k-PPK Protocol Πk-PPK

Party Pi(0 ≤ i < k) All parties
Input: mi ∈ Rp, pk ∈ R2

q pk ∈ R2
q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generate-phase (for Pi):
ri ← D3

Zn,σ1

ci = Encpk(mi, 2ri) Broadcast ci

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove-phase (for Pi):
For 0 ≤ j < ℓ :

ui,j ← U(Rp),yi,j ← D3
Zn,σ2

wi,j = Encpk(ui,j , 2yi,j)

Broadcast wi,j

Broadcast γj (γ0, . . . , γℓ−1)← U(Cℓ)

For 0 ≤ j < ℓ :
vi,j = ui,j + γj ·mi (mod p)
zi,j = yi,j + γj · ri

Broadcast (vi,j , zi,j)

c =

k−1∑
i=0

ci, wj =

k−1∑
i=0

wi,j ,

vj =

k−1∑
i=0

vi,j , zj =

k−1∑
i=0

zi,j

For 0 ≤ j < ℓ, check:
Encpk(vj , 2zj) = wj + γj · c
∥zj∥∞ < k(1 + σ2/σ1) · β

Fig. 5. PPK protocol for k-prover.
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Simulator Sk-PPK
Input
pk ∈ R2

q : public key

We denote I ⊂ [k] as the set of corrupted parties.

1. Sample ci′ ← U(R2
q) for i′ /∈ I and (γ0, . . . , γℓ−1)← U(Cℓ).

2. Broadcast ci′ for i′ /∈ I and receive ci for i ∈ I in the generate-phase.
3. Sample ri′ ← D3

Zn,σ1
, yi′,j ← D3

Zn,σ2
and vi′,j ← U(Rp) for i′ /∈ I and

0 ≤ j < ℓ.
4. Compute zi′,j = γj · ri′ + yi′,j and wi′,j = Encpk(vi′,j , 2zi′,j) − γj · ci′ for

i′ /∈ I and 0 ≤ j < ℓ.
5. Broadcast wi′,j and receive wi,j for i′ /∈ I, i ∈ I, and 0 ≤ j < ℓ.
6. Broadcast (γ0, . . . , γℓ−1) as a shared challenge.
7. Broadcast (vi′,j , zi′,j) and receive (vi,j , zi,j) for i′ /∈ I, i ∈ I, and 0 ≤ j < ℓ.
8. Output tr = (ci,wi,j , γj , vi,j , zi,j)0≤i<k,0≤j<ℓ.

Fig. 6. Simulator for Πk-PPK.

B Application of BDLOP

ALS.Gen(1λ), ENS.Gen(1λ), and ENS′.Gen(1λ) correspond to BDLOP.Gen(1λ) where
k = 4, 2 and 19, respectively. Simulatability of these protocols are provided in
the following subsections.

B.1 Simulatability of ΠProd

In Fig. 9, we describe a simulator SProd for a non-aborting transcript of ΠProd.
Let D0(m) and D1 be the distributions of the transcript tr which is generated
by an honest prover and verifier for a message m ∈ R3

q and that generated by
the simulator, respectively, which are defined as follows:

D0(m): tr← Tr(P(ck,m),V(ck)) for ck← ALS.Gen(1λ) and given m ∈ R3
q

D1: tr← SProd(ck) for ck← ALS.Gen(1λ)

Let A be an algorithm that distinguishes the distributions D0(m) and D1 of
tr under the condition VerProd(tr) = 1 with advantage ε > 0 for some message
m = (m1,m2,m3) ∈ R3

q . Then, given the algorithm A, we can construct an
efficient algorithm B for HintMLWEℓ,σ2,C′

R,ν,µ+4,q,σ1
which works as follows:

1. Receive a Hint-MLWE instance
(
A,u, γ0, . . . , γℓ−1, z

′
0, . . . , z

′
ℓ−1

)
from the

Hint-MLWE challenger. Compute zi =
∑ℓ−1

j=0 φ
i(Xj)z′j , γ =

∑ℓ−1
i=0 γiX

i.
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Write zi =

[
z0,i
z1,i

]
∈ Rµ+ν+4, parse A =

[
A0

A1

]
for A0 ∈ Rµ×ν

q and A1 ∈

R4×ν
q , and parse u =

[
u0

u1

]
for u0 ∈ Rµ

q and u1 = (u1, u2, u3, u4)
⊤ ∈ R4

q .

2. Sample V ← U(Rµ×4
q ), δ0, . . . , δℓ−1 ← U(Rq). Compute and set B0 =[

Iµ | V | A0 +VA1

]
∈ R

µ×(µ+ν+4)
q , B1 =

[
04×µ | I4 | A1

]
∈ R

4×(µ+ν+4)
q ,

and ck = (B0,B1).
3. Compute c0 =

[
Iµ | V

]
· u, cj = uj +mj for 1 ≤ j ≤ 3,

c4 =u4 +

ℓ−1∑
i=0

δiφ
−i
(
(⟨b3, zi⟩ − φi(γ) · u3)

−m1(⟨b2, zi⟩ − φi(γ) · u2)−m2(⟨b1, zi⟩ − φi(γ) · u1)

)

and set c =

[
c0
c1

]
∈ Rµ+4

q for c1 = (t1, . . . , t4)
⊤ ∈ R4

q .

4. Compute w′i = B0z
′
i−γi ·c0 (mod q), fi,j = ⟨bj , zi⟩−φi(γ) ·cj for 0 ≤ i < ℓ,

1 ≤ j ≤ 3, and f4 = ⟨b4, z0⟩ − γ · c4.
5. Compute v =

∑ℓ−1
i=0 δiφ

−i (fi,1fi,2 + φi(γ)fi,3
)
+ f4.

6. Set tr = (c, v, γ, (w′i, δi, z
′
i)0≤i<ℓ), Send it to A, receive a response b =

A(ck, tr), and output b.

The overall flow is identical to the proof for SBDLOP except for the c4 part.
Assume that u =

[
Iµ+4 A

]
r for r ← Dµ+ν+4

Zn,σ1
. First, it is easy to check that

c0 = B0r and cj = ⟨bj , r⟩+mj for 1 ≤ j ≤ 3. By the definition of Hint-MLWE,
we can express z′i = y′i + γi · r for 0 ≤ i < ℓ where y′i ← D

µ+ν+4
Zn,σ2

. In other
words, zi = yi + φi(γ) · r for zi =

∑ℓ−1
j=0 φ

j(Xi)z′i and yi =
∑ℓ−1

j=0 φ
j(Xi)y′i.

Then it holds that ⟨bj ,yi⟩ = ⟨bj , zi⟩ − φi(γ) ⟨bj , r⟩ = ⟨bj , zi⟩ − φi(γ) · uj for
0 ≤ i < ℓ, 1 ≤ j ≤ 4, and hence we get

wi = B0zi − φi(γ) · c0 = B0yi,

c4 = ⟨b4, r⟩+
ℓ−1∑
i=0

δiφ
−i( ⟨b3,yi⟩ −m1 ⟨b2,yi⟩ −m2 ⟨b1,yi⟩

)
.

Note that v = ⟨b4,y0⟩+
∑ℓ−1

i=0 δiφ
−i (⟨b1,yi⟩ ⟨b2,yi⟩) holds for non-abort tran-

script. Therefore, the distribution of tr is identical to D0(m) under the condition
VerProd(tr) = 1.

Now let us assume that u← U(Rµ+4
q ). We can easily check that if c is deter-

mined then there exists a unique solution u that satisfies the relation between c
and u. Therefore, c also follows the uniform distribution over Rµ+4

q . In simulator
SProd, we can also check that c follows the uniform distribution over Rµ+4

q . By
the definition of Hint-MLWE, we can express z′i = y′i + γi · r for 0 ≤ i < ℓ where
r← Dµ+ν+4

Zn,σ1
and yi ← Dµ+ν+4

Zn,σ2
. All the other variables are defined just as same

with SProd. Therefore, the distribution of tr is identical to D1.
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ΠProd

Prover P Verifier V

Inputs: B0 ∈ Rµ×(µ+ν+4)
q B0,b1, . . . ,b4

b1, . . . ,b4 ∈ Rµ+ν+4
q

m1,m2,m3 ∈ Rq

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generate-phase:

r← D(µ+ν+4)
Zn,σ1

c0 = B0r

cj = ⟨bj , r⟩+mj (1 ≤ j ≤ 3) c0, c1, c2, c3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove-phase:

y′
i ← D

(µ+ν+4)
Zn,σ2

(0 ≤ i < ℓ)

yi =

ℓ−1∑
j=0

φi(Xj)y′
j (0 ≤ i < ℓ)

w′
i = B0y

′
i (0 ≤ i < ℓ) w′

i

δ0, . . . , δℓ−1 ← U(Rq)

δ0, . . . , δℓ−1

c4 = ⟨b4, r⟩

+

ℓ−1∑
i=0

δiφ
−i (⟨b3,yi⟩ −m1 ⟨b2,yi⟩ −m2 ⟨b1,yi⟩)

v = ⟨b4,y0⟩+
ℓ−1∑
i=0

δiφ
−i (⟨b1,yi⟩ ⟨b2,yi⟩) c4, v

γ ← C, γ =

ℓ−1∑
i=0

γiX
i

γ0, ..., γℓ−1

z′i = y′
i + γi · r (0 ≤ i < ℓ) z′i

VerProd(c0, c1, . . . , c4,

w′
i, δi, v, γ, z

′
i)

Fig. 7. Proof of product relation [6].



Toward Practical Lattice-based Proof of Knowledge from Hint-MLWE 37

Thus, the adversary B has the same advantage ε as A in distinguishing the
Hint-MLWE instance. As a result, the distributionsD0(m) andD1 of tr under the
condition VerProd(tr) = 1 are computationally indistinguishable for any message
m ∈ R3

q if HintMLWEℓ,σ2,C′
R,ν,µ+4,q,σ1

is hard, which implies the simulatability of
ΠProd. ⊓⊔

VerProd(c0, c1, c2, c3, c4,w
′
i, δi, v, γ, z

′
i)

1 : Compute zi =

ℓ−1∑
j=0

φi(Xj)z′j , wi =

ℓ−1∑
j=0

φi(Xj)w′
j (0 ≤ i < ℓ)

2 : Check ∥zi∥2 < (nσ1 +
√
ℓσ2)

√
n(µ+ ν + 4)/π (0 ≤ i < ℓ)

3 : Check B0zi = wi + φi(γ)c0 (0 ≤ i < ℓ)

4 : Compute fi,j = ⟨bj , zi⟩ − φi(γ)cj (0 ≤ i < ℓ, 1 ≤ j ≤ 3)

5 : Compute f4 = ⟨b4, z0⟩ − γ · c4

6 : Check
ℓ−1∑
i=0

δiφ
−i

(
fi,1fi,2 + φi(γ)fi,3

)
+ f4 = v

Fig. 8. Verification procedure for ΠProd

Simulator SProd
Input
B0 ∈ R

µ×(µ+ν+4)
q ,B1 ∈ R

4×(µ+ν+4)
q

1. Sample u← U(Rµ+4
q ), V ← U(Rµ×4

q ), (γ0, . . . , γℓ−1)← C′, and δi ← U(Rq)
for 0 ≤ i < ℓ.

2. Sample r← Dµ+ν+4
Zn,σ1

and y′i ← D
µ+ν+4
Zn,σ2

for 0 ≤ i < ℓ.

3. Compute c =

[
Iµ V

04×µ I4

]
u (mod q) and parse c =

[
c0
c1

]
for c0 ∈ Rµ

q and

c1 = (c1, c2, c3, c4)
⊤ ∈ R4

q .
4. Compute z′i = y′i + γi · r, zi =

∑ℓ−1
j=0 φ

i(Xj)z′j and w′i = B0z
′
i − γi · c0

(mod q) for 0 ≤ i < ℓ.
5. Let Bi be the i-th row of B1 for 1 ≤ i ≤ 4. Compute fi,j = ⟨bj , zi⟩−φi(γ)cj

for 0 ≤ i < ℓ, 1 ≤ j ≤ 3 and f4 = ⟨b4, z0⟩ − γ · c4.
6. Compute v =

∑ℓ−1
i=0 γiφ

−i (fi,1fi,2 + φi(γ)fi,3
)
+ f4

7. Output (c, v, γ, (w′i, γi, z
′
i)0≤i<ℓ).

Fig. 9. Simulator for ΠProd.
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B.2 Simulatability of ΠLin

In Fig. 12, we describe a simulator SLin for a non-aborting transcript of ΠLin. Let
D0(M,k,m) and D1 be the distributions of the transcript tr which is generated
by an honest prover and verifier for a message m ∈ Rq, a matrix M and a vector
k, and that generated by the simulator, respectively, which are defined as follows:

D0(M,k,m): tr ← Tr(P(ck,M,k,m),V(ck,M,k)) for ck ← ENS.Gen(1λ) and
given
m ∈ Rq, M ∈ Zm×kn

q , k ∈ Zm
q .

D1: tr← STer(ck,M,k) for ck← ENS.Gen(1λ)

Let A be an algorithm that distinguishes the distributions D0,M,k(m) and D1

of tr under the condition VerLin(tr) = 1 with advantage ε > 0 for some message
m ∈ Rq, matrix M and vector k. Then, given the algorithm A, we can construct
an efficient algorithm B for HintMLWEℓ,σ2,C′

R,ν,µ+2,q,σ1
which works as follows:

1. Receive a Hint-MLWE instance (A,u, γ0, . . . , γℓ−1, z
′
0, . . . , z

′
ℓ−1) from the

Hint-MLWE challenger. Compute γ =
∑ℓ−1

j=0 γjX
j , zi =

∑ℓ−1
j=0 φ

i(Xj)z′j for

0 ≤ j < ℓ. Write zi =

[
z0,i
z1,i

]
∈ Rµ+ν+2, parse A =

[
A0

A1

]
for A0 ∈ Rµ×ν

q and

A1 ∈ R2×ν
q , and parse u =

[
u0

u1

]
for u0 ∈ Rµ

q and u1 = (u1, u2)
⊤ ∈ R2

q .

2. Sample V ← U(Rµ×2
q ), x0, . . . ,xℓ−1 ← U(Zm

q ), and g ← U({a ∈ Rq|a0 =

· · · = aℓ−1 = 0}). Compute and set B0 =
[
Iµ | V | A0 +VA1

]
∈ R

µ×(µ+ν+2)
q ,

B1 =
[
02×µ | I2 | A1

]
∈ R

2×(µ+ν+2)
q , and ck = (B0,B1).

3. Let bi be the i-th row of B1 for 1 ≤ j ≤ 2. Compute c0 =
[
Iµ | V

]
· u,

c1 = u1 +m, and c2 = u2 + g, and set c =

[
c0
c1

]
for c1 = (c1, c2)

⊤ ∈ R2
q .

4. Compute w′i = B0z
′
i − γi · c0 (mod q) for 0 ≤ i < ℓ.

5. Compute f =
∑ℓ−1

j=0
1
ℓX

j
∑ℓ−1

k=0 φ
k
(
iNTT(nM⊤xj)c1 − ⟨k,xj⟩

)
, h = g + f ,

and vi =
∑ℓ−1

j=0
1
ℓX

j
∑ℓ−1

k=0 φ
k
(〈
iNTT(nM⊤xj)b1, zi−k

〉)
+⟨b2, zi⟩−φi(γ)(f+

c2 − h) for 0 ≤ i < ℓ.
6. Set tr = (c, h, γ, (w′i,xi, vi, z

′
i)0≤i<ℓ), send it to A, receive a response b =

A(ck, tr), and output b.

Assume that u =
[
Iµ+2 A

]
r for r ← Dµ+ν+2

Zn,σ1
. First, it is easy to check that

c0 = B0r, c1 = ⟨b1, r⟩ + m and c2 = ⟨b2, r⟩ + g. By the definition of Hint-
MLWE, we can express z′i = y′i + γi · r for 1 ≤ i < ℓ where y′i ← D

µ+ν+2
Zn,σ2

.
Then we get wi = B0zi − φi(γ) · c0 = B0yi (mod q) for 0 ≤ i < ℓ where
yi =

∑ℓ−1
j=0 φ

i(Xj)y′j zi =
∑ℓ−1

j=0 φ
i(Xj)z′j , and wi =

∑ℓ−1
j=0 φ

i(Xj)w′j . Since
⟨b2, zi⟩ = ⟨b2,yi⟩+ φi(γ) ⟨b2, r⟩ = ⟨b2,yi⟩+ φi(γ) · u2 and f + t2 − h = u2, we
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get

vi =

ℓ−1∑
j=0

1

ℓ
Xj

ℓ−1∑
k=0

φk
(〈
iNTT(nM⊤xj)b1, zi−k

〉)
+ ⟨b2, zi⟩ − φi(γ)(f + c2 − h)

=

ℓ−1∑
j=0

1

ℓ
Xj

ℓ−1∑
k=0

φk
(〈
iNTT(nM⊤xj)b1, zi−k

〉)
+ ⟨b2,yi⟩+ φi(γ) · u2 − φi(γ) · u2

=

ℓ−1∑
j=0

1

ℓ
Xj

ℓ−1∑
k=0

φk
(〈
iNTT(nM⊤xj)b1, zi−k

〉)
+ ⟨b2,yi⟩ .

Therefore, the distribution of tr is identical to D0,M,k,m.

Now let us assume that u ← U(Rµ+2
q ). Since c =

[
Iµ V

02×µ I2

]
· u +

[
0µ

m

]
for m = (m, g)⊤ ∈ R2

q and
[

Iµ V
02×µ I2

]
is invertible over R

(µ+2)×(µ+2)
q , c is also

uniform over Rµ+2
q independent to both m and g. In non-abort transcript, h

is an element of {a ∈ Rq|a0 = · · · = aℓ−1 = 0}. Since g is uniform over this
set, h = f + g is also uniform and independent to f . By the definition of Hint-
MLWE, we can express z′i = y′i + γi · r for 0 ≤ i < ℓ where r ← Dµ+ν+2

Zn,σ1

and y′i ← D
µ+ν+2
Zn,σ2

. Therefore, the distribution of tr is identical to D1 under the
condition VerLin(tr) = 1.

Thus, the adversary B has the same advantage ε as A in distinguishing
the Hint-MLWE instance. As a result, distributions D0(M,k,m) and D1 of tr
under the condition VerLin(tr) = 1 are computationally indistinguishable for any
message m ∈ Rq, matrix M and vector k if HintMLWEℓ,σ2,C′

R,ν,µ+2,q,σ1
is hard, which

implies the simulatability of our ΠLin. ⊓⊔
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ΠLin

Prover P Verifier V

Inputs: B0 ∈ Rµ×(µ+ν+2)
q B0,b1,b2

b1,b2 ∈ Rµ+ν+2
q M,k

m ∈ Rq

M ∈ Zm×n
q ,k = M · NTT(m) ∈ Zm

q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generate-phase :

r← Dµ+ν+2
Zn,σ1

c0 = B0r

c1 = ⟨b1, r⟩+m c0, c1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove-phase :

g ← U({g ∈ Rq|g0 = · · · = gℓ−1 = 0})
c2 = ⟨b2, r⟩+ g

y′
i ← Dµ+ν+2

Zn,σ2
(0 ≤ i < ℓ)

yi =

ℓ−1∑
j=0

φi(Xj)y′
j , w′

i = B0y
′
i (0 ≤ i < ℓ) c2,w

′
i

x0, . . . ,xℓ−1 ← U(Zm
q )

x0, . . . ,xℓ−1

h = g +

ℓ−1∑
j=0

1

ℓ
Xj

ℓ−1∑
k=0

φk
(
iNTT(nM⊤xj)m− ⟨k,xj⟩

)

vi =

ℓ−1∑
j=0

1

ℓ
Xj

ℓ−1∑
k=0

φk
(〈

iNTT(nM⊤xj)b1,yi−k

〉)
+ ⟨b2,yi⟩ (0 ≤ i < ℓ) h, vi

γ ← C, γ =

ℓ−1∑
j=0

γjX
j

γ0, ..., γℓ−1

z′i = y′
i + γi · r (0 ≤ i < ℓ) z′i

VerLin(c0, c1, c2,w
′
i,

xi, h, vi, γ, z
′
i)

Fig. 10. Proof of linear relation [18]
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VerLin(c0, c1, c2,w
′
i,xi, h, vi, γ, z

′
i)

1 : Compute zi =

ℓ−1∑
j=0

φi(Xj)z′j , wi =

ℓ−1∑
j=0

φi(Xj)w′
j (0 ≤ i < ℓ)

2 : Check ∥zi∥2 < (nσ1 +
√
ℓσ2)

√
n(µ+ ν + 2)/π (0 ≤ i < ℓ)

3 : Check B0zi = wi + φi(γ)c0 (0 ≤ i < ℓ)

4 : Check h0 = · · · = hk−1 = 0

5 : Compute f =

ℓ−1∑
j=0

1

ℓ
Xj

ℓ−1∑
k=0

φk
(
iNTT(dA⊤xj)c1 − ⟨k,xj⟩

)

6 : Check
ℓ−1∑
j=0

1

ℓ
Xj

ℓ−1∑
k=0

φk
(〈

iNTT(dA⊤xj)b1, zi−k

〉)
+ ⟨b2, zi⟩

7 : = vi + φi(γ)(f + c2 − h) (0 ≤ i < ℓ)

Fig. 11. Verification procedure for ΠLin

Simulator SLin
Input
B0 ∈ R

µ×(µ+ν+2)
q ,B1 ∈ R

2×(µ+ν+2)
q , M ∈ Zm×n

q ,k ∈ Zm
q

1. Sample u← U(Rµ+2
q ), V← U(Rµ×2

q ), and (γ0, . . . , γℓ−1)← C′.
2. Sample x0, . . . ,xℓ−1 ← U(Zm

q ) and h← U({h ∈ Rq|h0 = · · · = hℓ−1 = 0}).
3. Sample r← Dµ+ν+2

Zn,σ1
, y′i ← D

µ+ν+2
Zn,σ2

, and yi =
∑ℓ−1

j=0 φ
i(Xj)y′j for 0 ≤ i < ℓ.

4. Compute c =

[
Iµ V

02×µ I2

]
u (mod q) and parse c =

[
c0
c1

]
for c0 ∈ Rµ

q , c1 ∈ R2
q .

5. Compute z′i = y′i + γi · r, zi =
∑ℓ−1

j=0 φ
i(Xj)z′j , w′i = B0z

′
i− γi · c0 (mod q),

and wi =
∑ℓ−1

j=0 φ
i(Xj)w′j (mod q) for 0 ≤ i < ℓ.

6. Compute f =
∑ℓ−1

j=0
1
ℓX

j
∑ℓ−1

k=0 φ
k
(
iNTT(dA⊤xj)c1 − ⟨k,xj⟩

)
.

7. Compute vi =
∑ℓ−1

j=0
1
ℓX

j
∑ℓ−1

k=0 φ
k
(〈
iNTT(dA⊤xj)b1, zi−k

〉)
+ ⟨b2, zi⟩ −

φi(γ)(f + c2 − h) for 0 ≤ i < ℓ.
8. Output (c, h, γ, (w′i,xi, vi, z

′
i)0≤i<ℓ).

Fig. 12. Simulator for ΠLin.

B.3 Simulatability of ΠTer

In Fig. 15, we describe a simulator STer for non-aborting transcripts of ΠTer. Let
D0(M,k,m) and D1 be the distributions of the transcript tr which is generated
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by an honest prover and verifier for a message m ∈ Rk
q , a matrix M and a

vector k, and that generated by the simulator, respectively, which are defined as
follows:

D0(M,k,m): tr ← Tr(P(ck,M,k,m),V(ck,M,k)) for ck ← ENS′.Gen(1λ) and
given m ∈ Rk

q , M ∈ Zm×kn
q , k ∈ Zm

q .

D1: tr← STer(ck,M,k) for ck← ENS′.Gen(1λ)

Let A be an algorithm that distinguishes the distributions D0(M,k,m) and D1

of tr under the condition VerTer(tr) = 1 with advantage ε > 0 for some message
m = (m1, ...,mk) ∈ Rk

q , matrix M and vector k. Then, given the algorithm
A, we can construct an efficient algorithm B for HintMLWEℓ,σ2,C′

R,ν,µ+k+3,q,σ1
which

works as follows:

1. Receive a Hint-MLWE instance (A,u, γ0, . . . , γℓ−1, z
′
0, . . . , z

′
ℓ−1) from the

Hint-MLWE challenger. Compute γ =
∑ℓ−1

j=0 γjX
j , zi =

∑ℓ−1
j=0 φ

i(Xj)z′j for

0 ≤ i < ℓ. Parse A =

[
A0

A1

]
for A0 ∈ Rµ×ν

q and A1 ∈ R
(k+3)×ν
q , and parse

u =

[
u0

u1

]
for u0 ∈ Rµ

q and u1 = (u1, u2, ..., uk+3)
⊤ ∈ Rk+3

q .

2. Sample V ← U(Rµ×(k+3)
q ), δ0, ..., δℓk−1 ← U(Rq), x0, . . . ,xℓ−1 ← U(Zm

q ),
and g ← U({a ∈ Rq|a0 = · · · = aℓ−1 = 0}), and set B0 =

[
Iµ | V | A0 +VA1

]
∈

R
µ×(µ+ν+k+3)
q , B1 =

[
0(k+3)×µ | Ik+3 | A1

]
∈ R

(k+3)×(µ+ν+k+3)
q , and ck =

(B0,B1).
3. Let bi be the i-th row of B1 for 1 ≤ j ≤ k + 3. Compute c0 =

[
Iµ | V

]
· u,

ci = ui +mi for 1 ≤ i ≤ k, ck+1 = uk+1 + g,

ck+2 = uk+2 + ⟨bk+3, z0⟩ − γ · uk+3 +

ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i(3mj · (⟨bj , zi⟩ − φi(γ) · uj)

2
)
,

ck+3 = uk+3 +

ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i((3m2

j − 1) · (⟨bj , zi⟩ − φi(γ) · uj)
)
.

4. Compute fi,j = ⟨bj , zi⟩ − φi(γ)cj for 0 ≤ i < ℓ, 0 ≤ j < k, fk+2 =
⟨bk+2, z0⟩ − γ · ck+2, fk+3 = ⟨bk+3, z0⟩ − γ · ck+3, and

v =

ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i
(
fi,j
(
fi,j + φi(γ)

)(
fi,j − φi(γ)

))
+ fk+2 + γfk+3

5. Parse M⊤xi = NTT(ξi,0)|| . . . ||NTT(ξi,k−1) for 0 ≤ i < ℓ, and compute τ =∑ℓ−1
i=0

1
ℓX

i
∑ℓ−1

s=0 φ
s
(∑k−1

j=0 nξi,jcj − ⟨k,xi⟩
)
, h = g + τ , and

v′i =

ℓ−1∑
p=0

1

ℓ
Xp

ℓ−1∑
s=0

k−1∑
j=1

φs
(
nξp,j ⟨bj , zi−s⟩

)
+ ⟨bk+1, zi⟩−φi(γ)(τ + ck+1−h).
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6. Set c =

[
c0
c1

]
for c1 = (c1, . . . , ck+3)

⊤ ∈ Rk+3
q .

7. Compute w′i = B0z
′
i − γi · c0 (mod q) for 0 ≤ i < ℓ.

8. Set tr = (c, h, γ, v, (δi)0≤i<ℓk, (w
′
i,xi, v

′
i, z
′
i)0≤i<ℓ), send it to A, receive a

response b = A(ck, tr), and output b.

Assume that u =
[
Iµ+k+3 A

]
r for r ← Dµ+ν+k+3

Zn,σ1
. First, it is easy to check

that c0 = B0r, cj = ⟨bj , r⟩ + mj for 1 ≤ j ≤ k and ck+1 = ⟨bk+1, r⟩ + g. By
the definition of Hint-MLWE, we can express z′i = y′i + γi · r for 1 ≤ i < ℓ where
y′i ← D

µ+ν+k+3
Zn,σ2

. Then we get wi = B0zi−φi(γ)·c0 = B0yi (mod q) for 0 ≤ i <

ℓ where yi =
∑ℓ−1

j=0 φ
i(Xj)y′j , zi =

∑ℓ−1
j=0 φ

i(Xj)z′j , and wi =
∑ℓ−1

j=0 φ
i(Xj)w′j

Since ⟨bj , zi⟩ = ⟨bj ,yi⟩+ φi(γ) ⟨bj , r⟩ = ⟨bj ,yi⟩+ φi(γ) · uj , we get

ck+2 = ⟨bk+2, r⟩+ ⟨bk+3,y0⟩ −
ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i
(
3mj ⟨bj ,yi⟩2

)

ck+3 = ⟨bk+3, r⟩+
ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i ((3m2

j − 1) ⟨bj ,yi⟩
)
.

In non-abort transcript, v and v′i for 0 ≤ i < ℓ are identical to those sampled
from D0(M,k,m). Therefore, the distribution of tr is identical to D0(M,k,m)
under the condition VerTer(tr) = 1.

Now let us assume that u ← U(Rµ+k+3
q ). Since there exists 1-to-1 corre-

spondence between u and c, the distribution of c is also uniform over Rµ+k+3
q

independent to both m and g. In the simulator STer, the distribution of c =[
Iµ V

0(k+3)×µ Ik+3

]
u is also uniform over Rµ+k+3

q since
[

Iµ V
0(k+3)×µ Ik+3

]
is invert-

ible over R
(µ+k+3)×(µ+k+3)
q . In non-abort transcript, h is an element of {a ∈

Rq|a0 = · · · = aℓ−1 = 0}. Since g is uniform over this set, h = g + τ is also
uniform and independent to τ . By the definition of Hint-MLWE, we can express
z′i = y′i+γi·r for 1 ≤ i < ℓ where r← Dµ+ν+k+3

Zn,σ1
and y′i ← D

µ+ν+k+3
Zn,σ2

. Therefore,
the distribution of tr is identical to D1 under the condition VerLin(tr) = 1.

Thus, the adversary B has the same advantage ε as A in distinguishing
the Hint-MLWE instance. As a result, distributions D0(M,k,m) and D1 of tr
under the condition VerTer(tr) = 1 are computationally indistinguishable for
any message m ∈ Rk

q , matrix M and vector k if HintMLWEℓ,σ2,C′
R,ν,µ+k+3,q,σ1

is
hard, which implies the simulatability of our ΠTer. ⊓⊔



44 D. Kim et al.

ΠTer

Prover P Verifier V

Inputs: B0 ∈ R
µ×(µ+ν+k+3)
q B0,b1, . . . ,bk+3

b1, . . . ,bk+3 ∈ R
µ+ν+k+3
q M,k

m1, . . . ,mk ∈ iNTT({−1, 0, 1}n)

M ∈ Zm×kn
q ,k = M · (NTT(m1)|| . . . ||NTT(mk)) ∈ Zm

q

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Generate-phase:

r← Dµ+ν+k+3
Zn,σ1

c0 = B0r, cj = ⟨bj , r⟩+ mj (1 ≤ j ≤ k) c0, c1, . . . , ck

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Prove-phase:
g ← U({g ∈ Rq|g0 = · · · = gℓ−1 = 0})
ck+1 = ⟨bk+1, r⟩+ g

y
′
i ← D

µ+ν+k+3
Zn,σ2

, w
′
i = B0y

′
i (0 ≤ i < ℓ) ck+1,w

′
i

yi =

ℓ−1∑
j=0

φ
i
(X

j
)y

′
i (0 ≤ i < ℓ) δ0, . . . , δℓk−1 ← U(Rq)

δ0,...,δℓk−1
x0,...,xℓ−1 x0, . . .xℓ−1 ← U(Zm

q )

ck+2 = ⟨bk+2, r⟩+ ⟨bk+3,y0⟩

−
ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i

(
3mj ⟨bj ,yi⟩2

)
ck+3 = ⟨bk+3, r⟩

+

ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i

(
(3m

2
j − 1) ⟨bj ,yi⟩

)

v = ⟨bk+2,y0⟩+
ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i

(
⟨bj ,yi⟩3

)
M

⊤
xi = NTT(ξi,0)|| . . . ||NTT(ξi,k−1) (0 ≤ i < ℓ)

h = g +

ℓ−1∑
i=0

1

ℓ
X

i
ℓ−1∑
s=0

φ
s

k−1∑
j=0

nξi,jmj − ⟨k,xi⟩


v
′
i =

ℓ−1∑
p=0

1

ℓ
X

p
ℓ−1∑
s=0

k−1∑
j=0

φ
s
(⟨nξp,jbj ,yi−s⟩)

+ ⟨bk+1,yi⟩ (0 ≤ i < ℓ)
ck+2,ck+3

h,v,v′
i

γ0, ..., γℓ−1 γ ← C, γ =

ℓ−1∑
j=0

γjX
j

z
′
i = y

′
i + γi · r (0 ≤ i < ℓ) z

′
i

VerTer(c0, c1, . . . , ck+3,

w
′
i, δi,xi, h, v, v

′
i, γ, z

′
i)

Fig. 13. Proof of knowledge of a ternary solution for linear system over Zm×kn
q [18].
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VerTer(c,w
′
i, δi,xi, h, v, v

′
i, γ, z

′
i)

1 : Compute zi =

ℓ−1∑
j=0

φi(Xj)z′j , wi =

ℓ−1∑
j=0

φi(Xj)w′
j (0 ≤ i < ℓ)

2 : Check ∥zi∥2 < (nσ1 +
√
ℓσ2)

√
n(µ+ ν + k + 3)/π (0 ≤ i < ℓ)

3 : Check B0zi = wi + φi(γ)c0 (0 ≤ i < ℓ)

4 : Compute fi,j = ⟨bj , zi⟩ − φi(γ)cj (0 ≤ i < ℓ, 0 ≤ j < k)

5 : Compute fk+2 = ⟨bk+2, z0⟩ − γ · ck+2

6 : Compute fk+3 = ⟨bk+3, z0⟩ − γ · ck+3

7 : Check
ℓ−1∑
i=0

k−1∑
j=0

δik+jφ
−i

(
fi,j

(
fi,j + φi(γ)

)(
fi,j − φi(γ)

))
8 : + fk+2 + γ · fk+3 = v

9 : Check h0 = · · · = hℓ−1 = 0

10 : Parse M⊤xi = NTT(ξi,0)|| . . . ||NTT(ξi,k−1) (0 ≤ i < ℓ)

11 : Compute τ =

ℓ−1∑
i=0

1

ℓ
Xi

ℓ−1∑
s=0

φs

( k−1∑
j=0

nξi,jcj − ⟨k,xi⟩
)

12 : Check
ℓ−1∑
p=0

1

ℓ
Xp

ℓ−1∑
s=0

k−1∑
j=1

φs(nξp,j ⟨bj , zi−s⟩
)
+ ⟨bk+1, zi⟩

13 : = v′i + φi(γ)(τ + ck+1 − h) (0 ≤ i < ℓ)

Fig. 14. Verification procedure for ΠTer
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Simulator STer
Input
B0 ∈ R

µ×(µ+ν+k+3)
q ,B1 ∈ R

(k+3)×(µ+ν+k+3)
q , M ∈ Zm×kn

q ,k ∈ Zm
q

1. Sample u← U(Rµ+k+3
q ), V← U(Rµ×(k+3)

q ), and (γ0, . . . , γℓ−1)← C′.
2. Sample x0, . . . ,xℓ−1 ← U(Zm

q ) and h← U({h ∈ Rq|h0 = · · · = hℓ−1 = 0}).
3. Sample δ0, . . . , δkℓ−1 ← U(Rq).
4. Sample r← Dµ+ν+k+3

Zn,σ1
and y′i ← D

µ+ν+k+3
Zn,σ2

for 0 ≤ i < ℓ.

5. Compute c =

[
Iµ V

0(k+3)×µ Ik+3

]
u (mod q) and parse c =

[
c0
c1

]
for c0 ∈ Rµ

q ,

c1 ∈ Rk+3
q .

6. Compute z′i = y′i + γi · r, zi =
∑ℓ−1

j=0 φ
i(Xj)z′j , and w′i = B0z

′
i − γi · c0

(mod q) for 0 ≤ i < ℓ.
7. Compute fi,j = ⟨bj , zi⟩ − φi(γ)cj for 0 ≤ i < ℓ, 0 ≤ j < k.
8. Compute fk+2 = ⟨bk+2, z0⟩ − γ · ck+2.
9. Compute fk+3 = ⟨bk+3, z0⟩ − γ · ck+3.

10. Compute v = fk+2+γ ·fk+3 +
∑ℓ−1

i=0

∑k−1
j=0 δik+jφ

−i
(
fi,j(fi,j+φi(γ))(fi,j−

φi(γ))

)
.

11. Parse M⊤xi = NTT(ξi,0)|| . . . ||NTT(ξi,k−1) for 0 ≤ i < ℓ.

12. Compute τ =
∑ℓ−1

i=0
1
ℓX

i
∑ℓ−1

s=0 φ
s

(∑k−1
j=0 nξi,jcj − ⟨k,xi⟩

)
13. Compute v′i =

∑ℓ−1
p=0

1
ℓX

p
∑ℓ−1

s=0

∑k−1
j=1 φ

s

(
nξp,j ⟨bj , zi−s⟩

)
+ ⟨bk+1, zi⟩ −

φi(γ)(τ + ck+1 − h) for 0 ≤ i < ℓ.
14. Output (c,w′i, δi,xi, h, v, v

′
i, γ, z

′
i)0≤i<ℓ.

Fig. 15. Simulator for ΠTer.


