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Abstract

The graphs GF = {(x, F (x));x ∈ Fn
2 } of those (n, n)-functions F :

Fn
2 7→ Fn

2 that are almost perfect nonlinear (in brief, APN; an impor-
tant notion in symmetric cryptography) are, equivalently to their original
definition by K. Nyberg, those Sidon sets (an important notion in com-
binatorics) S in (Fn

2 × Fn
2 ,+) such that, for every x ∈ Fn

2 , there exists
a unique y ∈ Fn

2 such that (x, y) ∈ S. Any subset of a Sidon set be-
ing a Sidon set, an important question is to determine which Sidon sets
are maximal relatively to the order of inclusion. In this paper, we study
whether the graphs of APN functions are maximal (that is, optimal) Sidon
sets. We show that this question is related to the problem of the existence
/ non-existence of pairs of APN functions lying at distance 1 from each
others, and to the related problem of the existence of APN functions of
algebraic degree n. We revisit the conjectures that have been made on
these latter problems.

Keywords: Almost perfect nonlinear function; Sidon set in an Abelian group;
symmetric cryptography.

1 Introduction

Almost perfect nonlinear (APN) functions, that is, vectorial functions F : Fn
2 7→

Fn
2 whose derivatives DaF (x) = F (x) + F (x + a); a 6= 0, are 2-to-1, play an

important role in symmetric cryptography (see for instance the book [9]), since
they allow an optimal resistance against the differential cryptanalysis of the
block ciphers that use them as substitution boxes. Their mathematical study
is an important domain of research, whose results (and in particular those by
K. Nyberg in the early nineties) made possible the invention of the Advanced
Encryption Standard (AES), chosen as a standard by the U.S. National Institute
of Standards and Technology (NIST) in 2001, and today used worldwide as a
cryptosystem dedicated to civilian uses. APN functions also play an important
role in coding theory (see [11]).

Sidon sets, which are subsets S in Abelian groups such that all pairwise
sums x + y (with {x, y} ⊂ S, x 6= y), are different, are an important notion in
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combinatorics [1], whose name refers to the Hungarian mathematician Simon
Sidon, who introduced the concept in relation to Fourier series.

These two notions are related: by definition, a vectorial function F : Fn
2 7→

Fn
2 is APN if and only if its graph GF = {(x, F (x));x ∈ Fn

2} is a Sidon set in
(Fn

2 ×Fn
2 ,+). Since, given a Sidon set S, every subset of S is also a Sidon set, it

is useful to study optimal Sidon sets (that is, Sidon sets that are maximal with
respect to inclusion). In the present paper, we study the optimality of the graphs
of APN functions as Sidon sets. We characterize such optimality in different
ways (by the set GF +GF +GF and by the Walsh transform of F ) and we relate it
to the two problems of the existence / non-existence of pairs of APN functions at
Hamming distance 1 from each others, and of APN functions of algebraic degree
n. We revisit the conjectures that have been made on these two problems. We
address the case of the so-called plateaued APN functions by exploiting further
a trick that Dillon used for showing that, for every APN function and every
c 6= 0, there exist x, y, z such that F (x) + F (y) + F (z) + F (x + y + z) = c.
The situation is more demanding in our case, but thanks to previous results
on plateaued functions, we find a way to reduce the difficulty and this provides
a much simpler proof that a plateaued APN function modified at one point
cannot be APN, implying that its graph is an optimal Sidon set. We leave open
the case of non-plateaued functions and list the known APN functions whose
graphs could possibly be non-optimal Sidon sets (for values of n out of reach by
computers).

2 Preliminaries

We call (n,m)-function any function F from Fn
2 to Fm

2 (we shall sometimes write
that F is “in n variables”). It can be represented uniquely by its algebraic nor-
mal form (ANF) F (x) =

∑
I⊆{1,...,n} aI

∏
i∈I xi, where aI ∈ Fm

2 . The algebraic

degree of an (n,m)-function equals the global degree of its ANF. Function F
is affine if and only if its algebraic degree is at most 1; it is called quadratic
if its algebraic degree is at most 2; and it has algebraic degree n if and only
if
∑

x∈Fn
2
F (x) 6= 0. In particular, if F is Boolean (that is, valued in F2, with

m = 1) then its algebraic degree is n if and only if it has odd Hamming weight
wH(F ) = |{x ∈ Fn

2 ; F (x) 6= 0}.
The vector space Fn

2 can be identified with the field F2n , since this field is
an n-dimensional vector space over F2. If F is an (n, n)-function viewed over
F2n , then it can be represented by its (also unique) univariate representation

F (x) =
∑2n−1

i=0 aix
i, ai ∈ F2n . Its algebraic degree equals then the maximum

Hamming weight of (the binary expansion of) those exponents i in its univariate
representation whose coefficients ai are nonzero.

An (n, n)-function is called almost perfect nonlinear (APN) [17, 2, 16] if, for
every nonzero a ∈ Fn

2 and every b ∈ Fn
2 , the equation DaF (x) := F (x) + F (x+

a) = b has at most two solutions. Equivalently, the system of equations{
x+ y + z + t = 0
F (x) + F (y) + F (z) + F (t) = 0

has for only solutions quadruples (x, y, z, t) whose elements are not all distinct
(i.e. are pairwise equal). The notion is preserved by extended affine (EA) equiv-
alence (in other words, if F is APN then any function obtained by composing it
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Table 1: Known APN exponents on F2n up to equivalence and to inversion.

Functions Exponents d Conditions

Gold 2i + 1 gcd(i, n) = 1

Kasami 22i − 2i + 1 gcd(i, n) = 1

Welch 2t + 3 n = 2t + 1

Niho 2t + 2
t
2 − 1, t even n = 2t + 1

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 or 2n − 2 n = 2t + 1

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t

on the left and on the right by affine permutations x→ x×M + u, where M is
a nonsingular n × n matrix over F2 and u ∈ Fn

2 , and adding an affine function
to the resulting function is APN). It is also preserved by the more general CCZ-
equivalence (two functions F and G are called CCZ-equivalent if their graphs
GF = {(x, F (x));x ∈ Fn

2} and GG = {(x,G(x));x ∈ Fn
2} are the image of each

other by an affine permutation of ((Fn
2 )2,+), see more in [9]).

APN functions have been characterized by their Walsh transform [14]. Let us
recall that the value at u ∈ Fn

2 of the Fourier-Hadamard transform of a real-
valued function ϕ over Fn

2 is defined as ϕ̂(u) =
∑

x∈Fn
2
ϕ(x)(−1)u·x, (where

“·” denotes an inner product in Fn
2 ). The Fourier-Hadamard transform is bi-

jective. The value of the Walsh transform of F at (u, v) ∈ Fn
2 × Fn

2 equals
the value at u of the Fourier-Hadamard transform of the function (−1)v·F (x),
that is, WF (u, v) =

∑
x∈Fn

2
(−1)v·F (x)+u·x. In other words, the Walsh trans-

form of F equals the Fourier-Hadamard transform of the indicator function of
its graph (which takes value 1 at the input (x, y) if and only if y = F (x)).
Then F is APN if and only if

∑
u,v∈Fn

2
W 4

F (u, v) = 3 · 24n − 23n+1. This

is a direct consequence of the easily shown equality:
∑

u,v∈Fn
2
W 4

F (u, v) =

22n|{(x, y, z);F (x) + F (y) + F (z) + F (x+ y + z) = 0}|.

The nonlinearity1 of F equals the minimum Hamming distance between the

component functions v ·F , v 6= 0, and the affine Boolean functions u ·x+

{
0
1

.

It equals nl(F ) = 2n−1 − 1
2 maxu,v∈Fn

2
v 6=0

|WF (u, v)|.
A large part of known APN functions is made of functions EA-equivalent to

power functions, that is, to functions of the form F (x) = xd, after identification
of Fn

2 with the field F2n (which is possible since this field is an n-dimensional
vector space over F2). The known APN power functions are all those whose
exponents d are the conjugates 2id (mod 2n − 1) of those d given in Table 1
below, or of their inverses when they are invertible in Z/(2n − 1)Z.

A subset of an elementary 2-group is called a Sidon set if it does not contain
four distinct elements x, y, z, t such that x+y+z+t = 0. The notion is preserved
by affine equivalence: if S is a Sidon set and A is an affine permutation, then
A(S) is a Sidon set.

By definition, an (n, n)-function F is then APN if and only if its graph GF
1The relationship between nonlinearity and almost perfect nonlinearity is not clear. The

question whether all APN functions have a rather large nonlinearity is open.
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is a Sidon set in the elementary 2-group ((Fn
2 )2,+).

Any set included in a Sidon set being a Sidon set, the most important for the
study of Sidon sets in a given group is to determine those which are maximal
(that is, which are not contained in larger Sidon sets); the knowledge of all
maximal Sidon sets allows knowing all Sidon sets. A particular case of maximal
set is when the set has maximal size, but the maximal size of Sidon sets is
unknown. As far as we know, only an upper bound is known: the size |S| of

any Sidon set of ((Fn
2 )2,+) satisfies

(|S|
2

)
= |S| (|S|−1)

2 ≤ 22n − 1, that is (see

e.g. [13]), |S| ≤
⌊
1+
√
22n+3−7
2

⌋
≈ 2n+

1
2 . And an obvious lower bound on the

maximal size of Sidon sets in ((Fn
2 )2,+) is of course |S| ≥ 2n since there exist

APN functions whatever is the parity of n.
We shall see that there are many cases of APN functions whose graphs are

maximal Sidon set. The size 2n of the graph is roughly
√

2 times smaller than
what gives the upper bound on the size of Sidon sets, and there seems to be
room for the existence of APN functions whose graphs are non-maximal Sidon
sets. However, there is no known case where the graph is non-maximal. We
relate the question of such existence to a known conjecture on APN functions,
and this may lead to conjecturing that no APN function exists whose graph is
non-maximal as a Sidon set (however, many conjectures made in the past on
APN functions have subsequently been disproved; it may then be risky to state
explicitly such conjecture).

3 Characterizations

Note that the property that GF is an optimal Sidon set is preserved by CCZ
equivalence.
The graph of an APN function F is a non-optimal Sidon set if and only if there
exists an ordered pair (a, b) such that b 6= F (a) and such that GF ∪ {a, b} is
a Sidon set. It is easily seen that GF ∪ {a, b} is a Sidon set if and only if the
system of equations {

x+ y + z + a = 0
F (x) + F (y) + F (z) + b = 0

(1)

has no solution. Indeed, if this system has a solution (x, y, z) then x, y, z are
necessarily distinct, because b 6= F (a), and then, GF ∪ {a, b} is not a Sidon
set, since the four points (x, F (x)), (y, F (y)), (z, F (z), and (a, b) are pairwise
distinct (because (a, b) by hypothesis cannot equal one of the other points) and
sum to (0, 0). Conversely, if the system (1) has no solution, then GF ∪ {a, b}
is a Sidon set because, F being APN, four distinct points in GF cannot sum
to 0 and three points in GF cannot sum to (a, b) either. Hence, the graph
of an APN function is an optimal Sidon set if and only if, for every ordered
pair (a, b) such that b 6= F (a), the system (1) has a solution, that is, since
(x+y+z, F (x)+F (y)+F (z)) lives outside GF when x, y, z are distinct because
F is APN2, {(x+ y + z, F (x) + F (y) + F (z));x, y, z ∈ Fn

2} covers the whole set
(Fn

2 )2\GF . And since, for every (n, n)-function F , (x+y+z, F (x)+F (y)+F (z))
covers GF when x, y, z are not distinct in Fn

2 , we have:

2This is a necessary and sufficient condition for APNness.
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Proposition 3.1 The graph of an APN (n, n)-function F is an optimal Sidon
set in ((Fn

2 )2,+) if and only if the set

GF + GF + GF = {(x+ y + z, F (x) + F (y) + F (z));x, y, z ∈ Fn
2}

covers the whole space (Fn
2 )2.

Remark. For a vectorial function, APNness implies a behavior as different as
possible from that of affine functions from the viewpoint of derivatives, since
for F APN, DaF (x) = F (x) + F (x + a) covers a set of (maximal) size 2n−1

for every nonzero a, while for an affine function, this set has (minimal) size 1.
Having a graph that is an optimal Sidon set also implies a behavior as different
as possible from affine functions, from the viewpoint of GF + GF + GF , since if
F is affine, then (x + y + z, F (x) + F (y) + F (z)) = (x + y + z, F (x + y + z))
covers a set of size 2n, which is minimal. �

Remark. J. Dillon (private communication) observed that, for every nonzero
c ∈ F2n , the equation F (x) + F (y) + F (z) + F (x + y + z) = c must have a
solution. In other words, there exists a in Fn

2 such that the system in (1) with
b = F (a) + c has a solution.
Dillon’s proof is given in [9] (after Proposition 161). Let us revisit this proof and
say more: let v and c be nonzero elements of Fn

2 and letG(x) = F (x)+(v·F (x)) c.
Then we have G(x) +G(y) +G(z) +G(x+y+ z) = F (x) +F (y) +F (z) +F (x+
y + z) + (v · (F (x) + F (y) + F (z) + F (x+ y + z))) c and G(x) +G(y) +G(z) +
G(x+ y+ z) = 0 if and only if t := F (x) + F (y) + F (z) + F (x+ y+ z) satisfies
t = (v · t) c. If v · c = 1, then this is equivalent to t ∈ {0, c}. Hence, we have
|{(x, y, z);G(x) +G(y) +G(z) +G(x+ y+ z) = 0}| = |{(x, y, z);F (x) +F (y) +
F (z) + F (x + y + z) ∈ {0, c}}|. The common size of these two sets is strictly
larger than the number of triples (x, y, z) such that x, y, z are not distinct (that
is, 3 · 24n − 23n+1) since G having zero nonlinearity because v · G = 0 (still
assuming that v · c = 1), it cannot be APN, as proved in [7]. This proves that
|{(x, y, z);F (x) +F (y) +F (z) +F (x+ y+ z) = c}| > 0, since F being APN, we
have |{(x, y, z);F (x) + F (y) + F (z) + F (x + y + z) = 0}| if and only if x, y, z
are not distinct.
Dillon’s result shows (as we already observed) that for every nonzero c, there
exists a in Fn

2 such that the system in (1) with b = F (a) + c has a solution,
while in Proposition 3.1, we want that this same system has a solution for every
a and every nonzero c in Fn

2 .
In the case of a quadratic function F , since the derivative DaF (x) = F (x) +
F (x + a) is affine, its image set Im(DaF ) = {DaF (x);x ∈ Fn

2} when a 6= 0
is an affine hyperplane, say equals ua + Ha where ua is an element of Fn

2 and
Ha is a linear hyperplane of Fn

2 , say Ha = {0, va}⊥, where va 6= 0. Since
F (x) + F (y) + F (z) + F (x + y + z) equals DaF (x) + DaF (z) with a = x + y,
and since Im(DaF ) + Im(DaF ) = Ha + Ha = Ha, Dillon’s result means then
in this particular case that

⋃
a∈Fn

2
a6=0

Ha equals Fn
2 . �

Let us now translate Proposition 3.1 in terms of the Walsh transform (by a
routine method):

Corollary 3.2 The graph of an APN (n, n)-function F is an optimal Sidon set
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in ((Fn
2 )2,+) if and only if:

∀(a, b) ∈ (Fn
2 )2,

∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·a W 3
F (u, v) 6= 0. (2)

Indeed we have:∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·a W 3
F (u, v) =

∑
x,y,z∈Fn

2

∑
(u,v)∈(Fn

2 )
2

(−1)v·(F (x)+F (y)+F (z)+b)+u·(x+y+z+a) =

22n|{(x, y, z) ∈ (Fn
2 )3; (x+ y + z, F (x) + F (y) + F (z)) = (a, b)}.

Remark. An APN function F has then a graph that is non-maximal as a Sidon
set if and only if, making the product of all the expressions in Corollary 3.2 for
(a, b) ranging over (Fn

2 )2, we obtain 0:∑
U=(ua,b,va,b)(a,b)∈(Fn

2 )2

∈((Fn
2 )2)

((Fn
2 )2)

(−1)
∑

(a,b)∈(Fn
2 )2 (va,b·b+ua,b·a) ∏

(a,b)∈(Fn
2 )

2

W 3
F (ua,b, va,b) = 0.

�

Remark. Without loss of generality (by changing F (x) into F (x) + F (0)),
let F (0) = 0. Then, since F is APN, we know that

∑
(u,v)∈(Fn

2 )
2 W 3

F (u, v) =

3 · 23n − 22n+1 (this can be easily calculated since
∑

(u,v)∈(Fn
2 )

2 W 3
F (u, v) =

22n|{(x, y, z) ∈ (Fn
2 )3; x+ y + z = F (x) + F (y) + F (z) = 0}| = 22n|{(x, y, z) ∈

(Fn
2 )3; x = 0 and y = z or y = 0 and x = z or z = 0 and x = y}|). Hence,

Inequality (2) is, under the condition F (0) = 0, equivalent to:

∀(a, b) ∈ (Fn
2 )2,

∑
(u,v)∈(Fn

2 )2

v·b+u·a=0

W 3
F (u, v) 6= 3 · 23n−1 − 22n.

Searching for APN (n, n)-functions whose graphs are non-maximal Sidon sets
corresponds then to searching for APN (n, n)-functions F and linear hyperplanes
H of (Fn

2 )2 such that
∑

(u,v)∈H W 3
F (u, v) = 3 · 23n−1 − 22n. �

4 Relation with the problem of the (non)existence
of pairs of APN functions at distance 1 from
each others

The question of the existence of pairs of APN functions lying at Hamming dis-
tance 1 from each others, and the related question of the existence of APN
functions of algebraic degree n have been studied in [4]. The question of the
possible distance between APN functions has been studied further in [3]. The
following proposition will show the close relationship between these two ques-
tions and the maximality of the graphs of APN functions as Sidon sets.
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Proposition 4.1 Let n be any positive integer and F any APN (n, n)-function.
The graph of F is non-maximal as a Sidon set if and only if there exists an
APN (n, n)-function G which can be obtained from F by changing its value at
one single point (i.e. such that G lies at Hamming distance 1 from F ).

Proof. Assume first that the graph of F is non-maximal as a Sidon set. Then
there exists (a, b) ∈ (Fn

2 )2 such that b 6= F (a) and GF ∪ {(a, b)} is a Sidon set.
Then the set (GF ∪ {(a, b)}) \ {(a, F (a))} being automatically a Sidon set, the

function G such that G(x) =

{
F (x) if x 6= a
b if x = a

is also APN.

Conversely, if a pair (F,G) of APN functions at distance 1 from each other ex-
ists, then there exists a unique a ∈ Fn

2 such that F (a) 6= G(a) (and F (x) = G(x)
for any x 6= a). Let us show that the set equal to the union of the graphs of F
and G is then a Sidon set (and the graphs of F and G are then non-optimal as
Sidon sets): otherwise, let X,Y, Z, T be distinct ordered pairs in this union and
such that X + Y + Z + T = 0. Since F and G are APN, two elements among
X,Y, Z, T have necessarily a for left term. Without loss of generality, we can
assume that Z = (a, F (a)) and T = (a,G(a)). But then we have X = (x, F (x))
and Y = (y, F (y)) for some x, y and since X + Y + Z + T = 0 we must then
have x = y and therefore X = Y , a contradiction. �

Note that if F and G are defined as in Proposition 4.1 and F has algebraic
degree smaller than n, then G has algebraic degree n, since

∑
x∈Fn

2
G(x) =∑

x∈Fn
2
F (x) + b+ F (a) = b+ F (a) 6= 0. Hence one function at least among F

and G has algebraic degree n.

The following conjecture was stated in [4] (we number it as in this paper):

Conjecture 2: any function obtained from an APN function F by changing
one value is not APN.

In other words, there do not exist two APN functions at Hamming distance
1 from each other. Another conjecture was even stated as follows (we number
it as in [4] as well):

Conjecture 1: there does not exist any APN function of algebraic degree
n for n ≥ 3.

This conjecture is stronger than Conjecture 2 since if it is true then a pair
(F,G) of APN functions at distance 1 from each other would need to be made
with functions of degrees less than n, and this is impossible according to Propo-
sition 4.1 and to the observation below it.

According to Proposition 4.1, Conjecture 2 is equivalent to:

Conjecture 3: the graphs of all APN functions are maximal Sidon sets.

Conjectures 1 and 2-3 are still completely open. Ref. [3] has studied further
the Hamming distance between APN functions, but no progress was made on
Conjectures 1 and 2.
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5 The case of plateaued APN functions

Let C be a class of (n, n)-functions that is globally preserved by any translation
applied to the input of the functions or to their output. For proving that the
graphs of all the APN functions in C are optimal Sidon sets by using Proposition
3.1, it is enough, thanks to a translation of the input by a and of the output
by F (a), to prove that, for any APN function F in this class, the system (1)
with a = F (0) = 0 (and b = c) has a solution3. Moreover, according to what
we have seen in the remark recalling Dillon’s observation, if we define G(x) =
F (x) + (v ·F (x)) c, where v · c = 1, if G also belongs to C for every F in C, it is
enough to show that, for every function G ∈ C such that G(0) = 0 and having
zero nonlinearity, the equation G(x) +G(y) +G(x+ y) = 0 has solutions (x, y)
where x and y are linearly independent over F2. Indeed, we have |{(x, y);G(x)+
G(y)+G(x+y) = 0}| = |{(x, y);F (x)+F (y)+F (x+y) ∈ {0, c}}|, and since F is
APN such that F (0) = 0, the equality F (x) +F (y) +F (x+y) = 0 requires that
x and y are linearly dependent. Hence, the equation F (x)+F (y)+F (x+y) = c
has solutions if and only if the equation G(x)+G(y)+G(x+y) = 0 has solutions
(x, y) where x and y are linearly independent.

Recall that an (n, n)-function is called plateaued (see e.g. [9]) if, for every
v ∈ Fn

2 , there exists a number λv ≥ 0 (which is necessarily a power of 2) such
that WF (u, v) ∈ {0,±λv} for every u ∈ Fn

2 . All quadratic APN functions (and
more generally all generalized crooked functions, that is, all functions F such
that for every a 6= 0, the image set Ha of DaF is an affine hyperplane4 are
plateaued and some other non-quadratic functions are plateaued as well (e.g.
all Kasami APN functions, see [19], and all AB functions).

The class of plateaued functions is preserved by translations of the input
and by translations of the output; moreover, if F is plateaued then G(x) =
F (x) + (v ·F (x)) c, where v · c = 1, is plateaued (since the component functions
of G are also component functions of F ) and is non-APN since it has zero
nonlinearity. We know from [8, Proposition 7] that, when G is plateaued, the
condition “the equation G(x) + G(y) + G(x + y) = 0 has linearly independent
solutions x, y” is equivalent to non-APNness. This provides a much simpler
proof of the next proposition, which has been initially proved in [4, Theorem 3],
but the proof was long, globally, and technical for n even.

Corollary 5.1 Given any plateaued APN (n, n)-function F , changing F at one
input gives a function which is not APN. Hence, the graphs of plateaued APN
(n, n)-functions are all optimal Sidon sets.

The proof is straightforward thanks to the observations above and to Proposition
4.1.

According to Proposition 3.1, we have then that, for every plateaued APN
function, GF +GF +GF covers the whole space (Fn

2 )2, and according to Corollary
3.2, that ∀(a, b) ∈ (Fn

2 )2,
∑

(u,v)∈(Fn
2 )

2(−1)v·b+u·a W 3
F (u, v) 6= 0.

Among plateaued APN functions are almost bent functions. A vectorial
Boolean function F : Fn

2 → Fn
2 is called almost bent (AB) [14] if its nonlinearity

achieves the best possible value 2n−1−2
n−1
2 (with n necessarily odd), that is, if

3Note that we could also reduce ourselves to a = b = 0 but we could not reduce ourselves
to a = F (0) = b = 0 without loss of generality. This is why we consider G in the sequel.

4See more in [9], where is recalled that no non-quadratic crooked function is known.
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all of the component functions v · F , v 6= 0, satisfy WF (u, v) ∈ {0,±2
n+1
2 }. All

AB functions are APN. The converse is not true in general, even when n is odd,
but it is true for n odd in the case of plateaued functions (and more generally

in the case of functions whose Walsh transform values are all divisible by 2
n+1
2 ).

In Table 1, the AB functions are all Gold and Kasami functions for n odd and
Welch and Niho functions.

Remark. The fact that the graphs of AB functions are optimal Sidon sets can
also be directly shown by using the van Dam and Fon-Der-Flaass characteriza-
tion of AB functions [18]: any (n, n)-function is AB if and only if the system{
x+ y + z = a
F (x) + F (y) + F (z) = b

admits 3 · 2n − 2 solutions if b = F (a) (i.e. F

is APN) and 2n − 2 solutions otherwise. It can also be deduced from Corollary
3.2; F being AB, we have:∑

(u,v)∈(Fn
2 )

2

(−1)v·b+u·a W 3
F (u, v) =

23n + 2n+1

 ∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·a WF (u, v)− 2n


and this equals 23n + 23n+1 − 22n+1 6= 0 if b = F (a) and 23n − 22n+1 6= 0 other-
wise. �

For n even there also exist plateaued APN functions: all Gold and all Kasami
functions.

Quadratic functions (i.e. functions of algebraic degree at most 2) are plateaued,
as well as the APN function in 6 variables that is now commonly called the
Brinkmann-Leander-Edel-Pott function [15]:

x3 + α17(x17 + x18 + x20 + x24) + α14[α18x9 + α36x18 + α9x36 + x21 + x42] +

α14 Tr61(α52x3 + α6x5 + α19x7 + α28x11 + α2x13),

where α is primitive (see [9] for the history of this function).

5.1 An interesting particular case

Some APN functions have all their component functions v · F unbalanced (i.e.
of Hamming weight different from 2n−1, that is, such that WF (0, v) 6= 0); this is
the case for instance of all APN power functions in even number n of variables. A
simpler characterization than by Proposition 3.1 (and Corollary 3.2) is possible
in such case, providing an interesting property of such functions:

Corollary 5.2 For every APN plateaued (n, n)-function whose component func-
tions are all unbalanced, the set ImF + ImF = {F (x) + F (y); (x, y) ∈ (Fn

2 )2}
(where ImF is the image set of F ) covers the whole space Fn

2 .
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Proof. Since we have WF (0, v) 6= 0 for every v, we have then W 3
F (u, v) =

W 2
F (0, v)WF (u, v), for every u, v and therefore:∑

(u,v)∈(Fn
2 )

2

(−1)v·b+u·aW 3
F (u, v) =

∑
(u,v)∈(Fn

2 )
2

(−1)v·b+u·aWF (u, v)W 2
F (0, v)

=
∑
v∈Fn

2

(−1)v·bW 2
F (0, v)

( ∑
u∈Fn

2

(−1)u·aWF (u, v)
)

= 2n
∑
v∈Fn

2

(−1)v·bW 2
F (0, v)(−1)v·F (a)

= 2n
∑

v,x,y∈Fn
2

(−1)v·(b+F (x)+F (y)+F (a))

= 22n|{(x, y) ∈ (Fn
2 )2;F (x) + F (y) + F (a) = b}|.

Hence, since the graph of F is an optimal Sidon set, for every (a, b), the set
{(x, y) ∈ (Fn

2 )2;F (x) + F (y) + F (a) = b} is not empty, that is, we have
ImF + ImF = Fn

2 . �.

This can also be deduced from [9, Theorem 19] and Dillon’s result recalled
above.

We have then ImF +ImF = Fn
2 in particular for every APN power function

in even dimension n. Of course, this is also true for n odd, since APN power
functions are in this case bijective.

Note the difference between the condition in Proposition 3.1, “(x + y +
z, F (x) + F (y) + F (z)) covers the whole space (Fn

2 )2” which lives in (Fn
2 )2 and

deals with three elements x, y, z, and that in Corollary 5.2, “F (x) +F (y) covers
the whole space Fn

2”, which lives in Fn
2 , involves two elements x, y and is simpler.

Remark. We know from [12, 10] that the size of the image set of any APN
(n, n)-function is at least 2n+1

3 when n is odd and 2n+2
3 when n is even. Since

both numbers are considerably larger than 2
n
2 , the size of ImF is plenty suffi-

cient for allowing the condition of Corollary 5.2 to be satisfied. Of course, the
fact that ImF has size much larger than 2

n
2 is not sufficient and the question

whether some APN functions may have graphs that are not optimal as Sidon
sets remains open. �

6 Candidate APN functions for having non-optimal
graphs as Sidon sets

Plateaued functions are a large part of all known APN functions but they are
most probably a tiny part of all APN functions. The only known APN functions
that are not plateaued are power functions (the inverse and Dobbertin functions
in Table 1) and some APN functions found in [6] and in [5].
In [4] is proved that if F is an APN power function, then given u 6= 0, ux2

n−1+F
is not APN (or equivalently uδ0 + F is not APN, where δ0 is the indicator of
{0}) when either u = 1 or F is a permutation. But, for covering all cases
of change at one point of an APN power function, we would need to address

10



ux2
n−1 + F for n even and F not plateaued, and u(x + 1)2

n−1 + F for every
n and F not plateaued. This was done with the multiplicative inverse function
x2

n−2 for n odd (which is APN): changing it at one point (any one) gives a
function that is not APN. According to Proposition 4.1, the graph of the APN
multiplicative inverse function is then a maximal Sidon set. But there is some
uncertainty about general APN power functions (however, it was checked with
a computer that for n ≤ 15, changing any APN power function at one point
makes it non-APN).

Given the APN functions covered in [4], the only possibility of finding known
APN functions with a graph that is not maximal as a Sidon set is with:

• functions EA equivalent to Dobbertin functions in a number of variables
divisible by 5, at least 20,

• the functions obtained in [6] as CCZ equivalent to Gold functions in even
numbers of variables (because in odd numbers of variables, they are AB,

since ABness is preserved by CCZ equivalence), that is: x2
i+1 + (x2

i

+

x + 1)tr(x2
i+1), n ≥ 4 even, gcd(i, n) = 1, and [x + Trn3 (x2(2

i+1) +

x4(2
i+1)))+ tr(x)Trn3 (x2

i+1 +x2
2i(2i+1))]2

i+1, where 6|n and gcd(i, n) = 1,

and Trn3 (x) = x+ x8 + x8
2

+ · · ·+ x8
n
3
−1

,

• and the following functions found in [5]: x3 + tr(x9) + (x2 +x+ 1)tr((x3),

where n ≥ 4 is even and gcd(i, n) = 1, and
(
x + Trn3 (x6 + x12) +

tr(x)Trn3 (x3 + x12)
)3

+ tr
(

(x + Trn3 (x6 + x12) + tr(x)Trn3 (x3 + x12))9
)

,

where 6|n and gcd(i, n) = 1.

But these two last cases cannot provide graphs that are non-maximal Sidon
sets. Indeed, the functions to which these functions are CCZ-equivalent are
quadratic - and then plateaued - and their graphs are then maximal Sidon sets.
Plateauedness is not CCZ-invariant, but the fact that the graph of a function
is a maximal Sidon set is CCZ-invariant.
With no surprise, the investigation made in [4] did not find any example of a
known APN function with a graph that is not maximal as a Sidon set (which
means that the graphs of the Dobbertin functions in 5, 10 and 15 variables are
maximal Sidon sets). It seems difficult to push it to larger values of n.
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