
Fast Enumeration Algorithm for Multivariate
Polynomials over General Finite Fields

Hiroki Furue and Tsuyoshi Takagi

Department of Mathematical Informatics, The University of Tokyo, Tokyo, Japan
{furue-hiroki261,takagi}@g.ecc.u-tokyo.ac.jp

Abstract. The enumeration of all outputs of a given multivariate poly-
nomial is a fundamental mathematical problem and is incorporated in
some algebraic attacks on multivariate public key cryptosystems. For a
degree-d polynomial in n variables over the finite field with q elements,
solving the enumeration problem classically requires O

((
n+d
d

)
· qn

)
op-

erations. At CHES 2010, Bouillaguet et al. proposed a fast enumeration
algorithm over the binary field F2. Their proposed algorithm covers all
the inputs of a given polynomial following the order of Gray codes and
is completed by O(d · 2n) bit operations. However, to the best of our
knowledge, a result achieving the equivalent efficiency in general finite
fields is yet to be proposed.
In this study, we propose a novel algorithm that enumerates all the out-
puts of a degree-d polynomial in n variables over Fq with a prime number
q by O(d · qn) operations. The proposed algorithm is constructed by us-
ing a lexicographic order instead of Gray codes to cover all the inputs.
This result can be seen as an extension of the result of Bouillaguet et al.
to general finite fields and is almost optimal in terms of time complex-
ity. We can naturally apply the proposed algorithm to the case where q
is a prime power. Notably, our enumeration algorithm differs from the
algorithm by Bouillaguet et al. even in the case of q = 2.

Keywords: multivariate polynomial, finite fields, enumeration algorithm,
exhaustive search, MQ problem, MPKC

1 Introduction

Currently used public key cryptosystems such as RSA and ECC can be broken
in polynomial time by Shor’s algorithm [15] using a quantum computer. Thus,
the amount of research conducted on post-quantum cryptography (PQC), which
is secure against quantum computing attacks, has been accelerating. Indeed, the
U.S. National Institute for Standards and Technology (NIST) has initiated a
PQC standardization project [14]. Among various PQC candidates, multivari-
ate public key cryptosystem (MPKC) is one of the main categories. MPKCs
are cryptosystems constructed based on the difficulty of solving a system of
multivariate quadratic polynomial equations over a finite field (the multivariate
quadratic (MQ) problem). The MQ problem is proven to be NP-complete [11]
and is thus likely to be secure against quantum computers.

The security of MPKCs is strongly dependent on the difficulty of solving
some algebraic problems in addition to the MQ problem. Especially, there have
been proposed many key recovery attacks on MPKCs solving the MinRank prob-
lem [1, 3, 12, 16], which finds one low-rank matrix from linear combinations of
given matrices. An enumeration problem is also one of the algebraic problems
relevant to the security of MPKCs. The enumeration problem is defined over
the finite field Fq with a prime power q as follows: Given a single-degree-d poly-
nomial f in Fq[x1, . . . , xn], evaluate f over all the points in Fn

q (to find all the
zeros of f). Indeed, there exist many algebraic attacks partly using enumeration
algorithms, such as the claw finding attack, Crossbred algorithm [13], and poly-
nomial XL [10]. Therefore, improving the complexity of solving the enumeration
problem directly improves the complexity of some algebraic attacks on MPKCs
and strongly affects the security of MPKCs. In the rest of this paper, we focus on
the theoretical asymptotic complexity of algorithms for solving the enumeration
problems.

Fast exhaustive search over F2. At CHES 2010, Bouillaguet et al. [7] pro-
posed a fast enumeration algorithm in F2 and a way of solving non-linear systems
using this enumeration algorithm. Given a single-degree-d polynomial in n vari-
ables over F2, their enumeration algorithm requires O(d ·2n) bit operations. This
complexity is smaller than that of the classical exhaustive search O

((
n
d

)
· 2n

)
.

In their algorithms, all the inputs are covered in the order of Gray codes. Here,
Gray codes are orderings of the elements of Fn

2 such that two consecutive ele-
ments differ in only one bit. For consecutive two elements x0 and x1 in the order
of Gray codes, which only differs in the k-th bit, their enumeration algorithm
computes the output f(x1) as follows using the derivative ∂kf with respect to
the k-th variable

f(x1) = f(x0) + ∂kf(x0),

where + denotes addition in the binary field. By using this method recursively,
outputs can be updated by O (d) bit operations. Efficient implementations of
their proposed algorithms are given in [6, 8].

Our study aims to extend the results of Bouillaguet et al. to general finite
fields. In [7], their enumeration algorithm uses one property of polynomials over
F2 such that derivatives ∂kf do not include the variable xk because polynomials
over F2 are represented as a sum of monomials where the exponent of each vari-
able is at most one (due to x2

i = xi). Such a property does not hold over general
finite fields, and this renders naturally extending the results of Bouillaguet et al.
to general finite fields difficult.

Our Contributions. We propose a novel efficient enumeration algorithm over
general finite fields Fq with a prime number q. Given a single-degree-d polynomial
in n variables over Fq, the proposed algorithm enumerates all the outputs of
the given polynomial by O (d · qn) operations with an initialization phase. This
result achieves efficiency comparable to the enumeration algorithm proposed by

2

Bouillaguet et al. Furthermore, we also show a method of applying the proposed
algorithm to the case of Fpr with a prime number p and a positive integer r in
Remark 3.

From a theoretical point of view, the main difference between the proposed
enumeration algorithm and one of Bouillaguet et al. is the order to cover all
the inputs Fn

q . In the proposed algorithm, an order like a lexicographic one is
used instead of Gray codes. For example, in the case of q = 3 and n = 2, all
the inputs are ordered as follows: (0, 0) → (0, 1) → (0, 2) → (1, 0) → (1, 1) →
(1, 2) → (2, 0) → (2, 1) → (2, 2). However, unlike the algorithm proposed by
Bouillaguet et al., we compute not all the outputs by adding some derivatives
into the output to the last input. In the proposed algorithm, if an input has the
form (x1, . . . , xk, 0, . . . , 0) with xk ̸= 0, then the output to (x1, . . . , xk, 0, . . . , 0)
is computed as follows:

f(x1, . . . , xk, 0, . . . , 0) =

f(x1, . . . , xk − 1, 0, . . . , 0) + ∂kf(x1, . . . , xk − 1, 0, . . . , 0).

The proposed algorithm following this rule covers all the inputs by a branching
structure, unlike the algorithm proposed by Bouillaguet et al. (See Figure 1.) We
then can achieve the time complexity limited to a small value as that proposed by
Bouillaguet et al. Note that our enumeration algorithm differs from the algorithm
proposed by Bouillaguet et al. even in the case of q = 2.

From a practical point of view, as we mentioned above, our enumeration
algorithm can revise the complexity of attacks including the enumeration part,
such as the claw finding attack, Crossbred, and polynomial XL, in finite fields
with odd characteristics. This has an impact on MPKCs since some multivariate-
based signature schemes in finite fields with odd characteristics have been pro-
posed recently [2, 9]. Furthermore, by using the method proposed in [7], our
enumeration algorithm can be applied to solve systems of polynomial equations,
and its complexity is estimated as O

(
d2 · log n · qn

)
. (See Remark 4.)

We finally discuss the optimality of the proposed enumeration algorithm in
terms of time complexity. The lower bound of the complexity of the exhaustive
search is conjectured to be O (qn) because outputs have to be computed qn

times for all the inputs in Fn
q . Therefore, in the case of d ≪ n, the proposed

enumeration algorithm with O (d · qn) operations can be considered to be almost
optimal in terms of time complexity.

Organizations. Section 2 reviews a classical enumeration algorithm and its
complexity. After describing the enumeration algorithm proposed by Bouillaguet
et al. in Section 3, the proposed algorithm is detailed in Section 4. Finally, Section
5 presents the conclusion, which summarizes the key points and suggests possible
future directions.

3

2 Classical Approach

Let q be a prime power, and n and d be positive integers. This section deals
with the enumeration problem on a polynomial f ∈ Fq[x1, . . . , xn] with degree
d. The conventional method to solve the enumeration problem is to evaluate the
given polynomial f at all the points of Fn

q . This section explains the conventional
approach and its complexity.

Given a polynomial f in n variables with degree d, f can be decomposed as
follows:

f(x1, . . . , xn) = x1 · f1(x1, . . . , xn) + f2(x2, . . . , xn), (2.1)

where the degrees of f1(x1, . . . , xn) and f2(x2, . . . , xn) are at most d − 1 and
d, respectively. Then, the output f(x1, . . . , xn) can be obtained by evaluating
f1(x1, . . . , xn) and f2(x2, . . . , xn). Therefore, the enumeration problem in n vari-
ables with degree d can be reduced to the problem in n variables with degree
d− 1 and the problem in n− 1 variables with degree d. From the discussion, the
following theorem can be explained for evaluating complexity.

Lemma 1. Let f be a polynomial in n variables with degree d over Fq. Denoting
by T (n, d) the upper bound of the number of additions and multiplications over
Fq for the evaluation of f for any input with the aforementioned approach, we
have

T (n, d) = 2 ·
((

n+d
d

)
− 1

)
. (2.2)

Proof. The aforementioned statement can be proved by induction. We have
T (n, 1) = 2n and T (1, d) = 2d, which satisfy the aforementioned statement.
We assume that, for n, d ≥ 2, T (n, d− 1) and T (n− 1, d) satisfy equation (2.2).
Since we have T (n, d) = T (n, d − 1) + T (n − 1, d) + 2 from equation (2.1), the
following equation can be obtained:

T (n, d) = 2 ·
((

n+d−1
d−1

)
− 1

)
+ 2 ·

((
n−1+d

d

)
− 1

)
+ 2

= 2 ·
((

n+d−1
d−1

)
+
(
n+d−1

d

)
− 1

)
= 2 ·

((
n+d
d

)
− 1

)
.

Thus, we confirmed T (n, d) satisfies equation (2.2), and the aforementioned
statement holds for any n and d. □

From this lemma, the time complexity of the evaluation of f at each point

of Fn
q is given as O

((
n+d
d

))
. Therefore, the complexity of the classical approach

to the enumeration problem is given as follows:

O
((

n+d
d

)
· qn

)
.

4

3 Enumeration Algorithm of Bouillaguet et al.

This section describes an enumeration algorithm over the binary field proposed
by Bouillaguet et al. [7]. After presenting some notations, we describe their
enumeration algorithm in Subsection 3.2. We change some notations from [7] for
readability and consistency with the description of the proposed algorithm in
Section 4.

3.1 Notations

We here give some notations about the vector space over the binary field, Gray
codes, and Derivatives. These Gray codes and derivatives play crucial roles in
their enumeration algorithm given in Subsection 3.2,

Binary vector. For the n-dimensional vector space Fn
2 over the binary field, the

indices are allocated from 1 to n from the most left bit to the most right bit
such as (x1, . . . , xn). For a vector a ∈ Fn

2 and two integers 0 ≤ i ≤ 2n − 1 and
1 ≤ k ≤ n, we use the following notations:

– i(2): an n-dimensional vector over F2 representing i in base-2
– ek: the k-th canonical basis in Fn

2

– a ≪ k (resp. a ≫ k): the binary left (resp. right) shift of a vector a by k
bits.

– ρ(a) (resp. σ(a)): the index of the most left (resp. right) nonzero bit of a (If
a = 0, then ρ(a) = σ(a) = 0.)

Gray codes. The Gray code is an ordering of the binary vector space such that
two successive values differ in only one bit. For the vector space Fn

2 , several
orderings satisfy the aforementioned condition. However, in this study, we defined
the Gray code GC(i) for 0 ≤ i ≤ 2n − 1 uniquely as follows:

GC(i) = i(2) + (i(2) ≫ 1). (3.1)

Then, it can be easily confirmed that GC(i) and GC(i+1) differ in only one bit.

Derivatives. Finally, for an integer 1 ≤ k ≤ n, F2 derivative ∂kf is defined as
follows:

∂kf(x) = f(x+ ek) + f(x).

We can easily confirm that if the degree of f is d, then that of ∂kf is at most
d− 1.

3.2 Enumeration Algorithm

This subsection recalls an enumeration algorithm proposed in [7]. The input f
is a polynomial in F2[x1, . . . , xn] with degree d.

5

First, a method of storing some information through the enumeration is given.
For any a = (a1, . . . , an) ∈ Zn

≥0 with |a| =
∑n

i=1 ai ≤ d, D[a] contains the

information of the derivative ∂af =
∏n

i=1 ∂
ai
i f . Here, a is restricted by |a| ≤ d

because ∂af = 0 for any a with |a| > d. In their enumeration algorithm, three
values can be read from D[a]: D[a].x ∈ Fn

2 , D[a].y ∈ F2, and D[a].i ∈ Z≥0.
These invariants satisfy relationships that D[a].y = ∂af(D[a].x) and D[a].i is
used to update D[a].x.

The enumeration algorithm is composed of three functions: INIT, MAIN, and
NEXT. The main function MAIN first performs INIT and sets the initial values
of each derivative. After the initialization phase, MAIN derives the outputs of f
from D and uses NEXT to update D at each point. See Algorithm 1, 2, and 3
for details.

The main idea of this algorithm is to update the input x of f following Gray
codes and obtain f(x + ei) by adding a derivative ∂if(x) into f(x). Such a
construction is feasible because two successive values differ in only one bit in
the Gray code order. In the following, we show a way of evaluating ∂if for some
inputs to update f . From the definition of the Gray code in equation (3.1), we
have the following equation:

GC(i+ 1) = GC(i) + eσ((i+1)(2)).

From this equation, GC(i + 1) is equal to GC(i) + ek in the case where i =
j ·2n−k+1+2n−k−1 with 0 ≤ j ≤ 2k−1−1. Namely, the enumeration algorithm
requires the output of ∂kf at each point

(
j · 2n−k+1 + 2n−k − 1

)
(2)

for 0 ≤ j ≤
2k−1 − 1. The following lemma can be easily derived from Lemma 3 in [7]

Lemma 2. For 0 ≤ j ≤ 2k−1 − 1,

GC
(
j · 2n−k+1 + 2n−k − 1

)
={

GC(2n−k − 1) + (GC(j)≪ (n− k + 1)) (j is even)
GC(2n−k − 1) + (GC(j)≪ (n− k + 1)) + ek (j is odd)

.

From this lemma, the first (k − 1) bits of GC
(
j · 2n−k+1 + 2n−k − 1

)
for 0 ≤

j ≤ 2k−1 − 1 behaves like Gray codes in (k − 1) variables, and the last (n −
k) bits of them are constants. The k-th bit of GC

(
j · 2n−k+1 + 2n−k − 1

)
is

determined by the parity of j. However, the k-th bit does not affect the value
of ∂kf

(
GC

(
j · 2n−k+1 + 2n−k − 1

))
because we have ∂kf(x+ ek) = ∂kf(x) for

any x. Therefore, ∂kf
(
GC

(
j · 2n−k+1 + 2n−k − 1

))
for 0 ≤ j ≤ 2k−1 − 1 can

be enumerated in the order of Gray codes in the first (k − 1) variables. By
applying this reduction recursively, the enumeration in the Gray code order can
be realized for any ∂af with |a| ≤ d.

Following Theorem 1 in [7], the time and space complexities of the enumer-
ation algorithm of Bouillaguet et al. are estimated as follows:

Theorem 1. All the zeros of a single polynomial f in n variables with degree
d over the binary field can be found in essentially O (d · 2n) bit operations, us-
ing O

(
nd

)
bits memory, after an initialization phase of negligible complexity

O
(
n2d

)
.

6

Algorithm 1 MAIN(f)

1: D ← INIT(D, f,0,0)
2: for i = 0, . . . , 2n − 1 do
3: “f (D[0].x) = D[0].y”
4: D ← NEXT(D,0)
5: end for

Algorithm 2 INIT(D, f,a,x0)

1: D[a].i← 0
2: D[a].x← x0

3: D[a].y ← f(x0)
4: if |a| < d then
5: k0 ← ρ(a) (k0 ← n+ 1 if a = 0.)
6: for k = 1, . . . , k0 − 1 do
7: D ← INIT(D, ∂kf,a+ ek,x0 + ek+1) (en+1 = 0)
8: end for
9: end if
10: return D

Algorithm 3 NEXT(D,a)

1: D[a].i← D[a].i+ 1
2: k ← ρ(a) + σ((D[a].i)(2))− n− 1
3: D[a].x← D[a].x+ ek

4: D[a].y ← D[a].y +D[a+ ek].y
5: if |a| < d− 1 then
6: D ← NEXT(D,a+ ek)
7: end if
8: return D

7

Remark 1 (Case of Fq with a prime number q ̸= 2). It is critical to consider the
extension of the enumeration algorithm in Subsection 3.2 to general finite fields
Fq with a prime number q ̸= 2. Indeed, there exist Gray codes over Fq called q-
array Gray codes, and derivatives are feasible over Fq. However, the enumeration
algorithm of Bouillaguet et al. cannot be simply extended to Fq.

Subsection 3.2 reveals that some outputs of ∂kf required to enumerate f
can be enumerated in the order of Gray codes. A similar result as Lemma 2
holds in Fq with q ̸= 2. However, it does not hold that ∂kf(x+ ek) = ∂kf(x) in
Fq, and thus, some required outputs of ∂kf cannot be enumerated using Gray
codes in the first (k−1) variables. Therefore, applying the proposed enumeration
recursively for a polynomial in Fq is difficult.

4 Our Proposed Algorithms

This section proposes a novel efficient enumeration algorithm on a degree-d poly-
nomial f ∈ Fq[x1, . . . , xn] with a prime number q. This section is organized as
follows: Subsection 4.1 prepares some notations. Subsection 4.2 explains the or-
der used in the proposed algorithm instead of Gray codes. Subsection 4.3 intro-
duces the data structure used in the proposed algorithm. Subsection 4.4 prepares
a function to classify the inputs used in the main algorithm. Subsection 4.5 de-
scribes the details of the proposed algorithm. Subsection 4.6 discusses the time
and space complexities.

4.1 Notations

This subsection gives some notations for the proposed enumeration algorithm
over Fq as in Subsection 3.1 for the enumeration algorithm of Bouillaguet et al.

For the n-dimensional vector space over the finite field Fq, the indices are
allocated from 1 to n from the most left bit to the most right bit as described in
Section 3. For a vector a ∈ Fn

q and two integers 0 ≤ i ≤ qn − 1 and 1 ≤ k ≤ n,
we use the following notations

– ek: the k-th canonical basis in Fn
q

– ρ(a): the index of the most left nonzero bit of a (If a = 0, then ρ(a) = n.)

Furthermore, derivatives over Fq are defined as follows: For an integer 1 ≤
k ≤ n, the Fq derivative ∂kf(x) for x ∈ Fn

q is

∂kf(x) = f(x+ ek)− f(x).

For example, given f(x1, x2) = 2x2
1 + x1x2 + x1 + 2 ∈ F3[x1, x2], it holds

∂1f(x1, x2) = x1 + x2. As in the case of F2, if the degree of f is d, then that of
∂kf is at most d− 1.

8

4.2 Enumeration Order

We here introduce the order in all inputs Fn
q used to enumerate a given polyno-

mial in the proposed algorithm. The enumeration of Bouillaguet et al. computes
all the outputs of a polynomial consecutively in the order of Gray codes. On the
other hand, the proposed algorithm follows a different order from Gray codes,
like a lexicographic order.

The proposed algorithm enumerates all the inputs in Fn
q following the order

like a lexicographic order starting from (0, . . . , 0) to (q− 1, . . . , q− 1) as follows:

(0, . . . , 0)→ (0, . . . , 0, 1)→ · · · → (0, . . . , 0, q − 1)→
(0, . . . , 0, 1, 0)→ · · · → (0, . . . , 0, 1, q − 1)→
...

(q − 1, . . . , q − 1, 0)→ · · · → (q − 1, . . . , q − 1).

We then compute all the outputs in this order as follows: We first prepare f(0)
as an initial point. For any input with the form of (x1, . . . , xk, 0, . . . , 0) with
xk ̸= 0, the output is computed by

f(x1, . . . , xk, 0, . . . , 0) =

f(x1, . . . , xk − 1, 0, . . . , 0) + ∂kf(x1, . . . , xk − 1, 0, . . . , 0),
(4.1)

using derivatives ∂kf . If we have the value of ∂kf(x1, . . . , xk − 1, 0, . . . , 0), then
this computation is clearly feasible since the value of f(x1, . . . , xk−1, 0, . . . , 0) is
computed before the computation of f(x1, . . . , xk, 0, . . . , 0) in the lexicographic
order. In the rest of this paper, we call by a lexicographic order the order given
above including the way of computation with derivatives like equation (4.1).

We also use the lexicographic order to enumerate each derivative ∂af with
a ∈ Zn

≥0. To realize the enumeration of f , it is not necessary to evaluate ∂af at
all the inputs in Fn

q . Indeed, in the example on f ∈ F3[x1, x2], ∂1f and ∂2f are
only evaluated at (0, 0), (1, 0) and (0, 0), (0, 1), (1, 0), (1, 1), (2, 0), (2, 1), respec-
tively. (See Figure 1.) For any a = (a1, . . . , an) ∈ Zn

≥0 with |a| ≤ d satisfying
a1, . . . , aα−1 = 0 and aα ̸= 0, we then can define the subset Aa ⊆ Fn

q composed
by elements at which the proposed algorithm evaluates ∂af as follows:

Aa = {(x1, . . . , xα, 0, . . . , 0) | x1, . . . , xα−1 ∈ Fq, xα ∈ {0, . . . , q−aα−1}}. (4.2)

One can confirm the correctness of this definition of Aa from the following three
points:

– For any a ∈ Zn
≥0, Aa can be covered by the lexicographic order.

– A0 = Fn
q .

– For any a ∈ Zn
≥0, Aa+ek

is derived from Aa.

We finally prepare some subsets of Aa to realize our enumeration in the
lexicographic order. For any a = (a1, . . . , an) ∈ Zn

≥0 with |a| ≤ d satisfying

9

Fig. 1. The order of our proposed enumeration on a polynomial f ∈ F3[x1, x2] with
degree 2.

Fig. 2. Comparison of the order to cover all the outputs of f ∈ F2[x1, x2] in our
enumeration order and Gray codes

a1, . . . , aα−1 = 0 and aα ̸= 0, we define subsets Ba
1 , . . . , B

a
α of Aa as follows:

Ba
1 = {(x1, 0, . . . , 0) | x1 ∈ Fq},

Ba
i = {(x1, . . . , xi, 0, . . . , 0) | x1, . . . , xi−1 ∈ Fq, xi ̸= 0}. (2 ≤ i ≤ α− 1), (4.3)

Ba
α = {(x1, . . . , xα, 0, . . . , 0) | x1, . . . , xα−1 ∈ Fq, xα ∈ {1, . . . , q − aα − 1}}.

We then have Ba
i ∩ Ba

j = ϕ if i ̸= j and Ba
1 ∪ · · · ∪ Ba

α = Aa. In the proposed
algorithm given in Subsection 4.5 below, outputs for inputs in each Ba

i are stored
separately to realize the branching structure due to the lexicographic order. (See
Figure 1.)

Remark 2. For a polynomial over the binary field F2, this remark shows the
difference of the behaviors of the proposed enumeration order in Subsection 4.2
and Gray codes used in the enumeration algorithm of Bouillaguet et al. Figure 2
shows the difference of enumerating all the outputs f ∈ F2 in two variables. As
displayed in Figure 2, our enumeration order computes f(0, 1) and f(1, 0) by
adding derivatives into f(0, 0) and computes f(1, 1) from f(1, 0). By contrast,
the enumeration of Bouillaguet et al. computes all the outputs in the order
f(0, 1), f(0, 1), f(0, 1), f(0, 1) successively. These examples indicate that the
enumeration order and Gray codes are definitely different even in the case of the
binary field.

10

4.3 Data Structure

Our proposed algorithm uses a different way of holding some data from the
enumeration algorithm of Bouillaguet et al. For any a = (a1, . . . , an) ∈ Zn

≥0 with
|a| ≤ d, D[a] corresponding to the derivative ∂af stores following values

– α (= ρ(a)): the index of the most left nonzero elements of a (If a = 0, then
α = n.),

– y1, . . . , yα ∈ Fq: an output of ∂af for an input as an element of each
Ba

1 , . . . , B
a
α,

– i ∈ {1, . . . , α}: the index that indicates that the input is an element of Ba
i ,

– t = (t1, . . . , tn) ∈ {0, . . . , n−1}n, u = (u1, . . . , un) ∈ {0, . . . , q−1}n: two vec-
tors used in the classification of elements of Aa into the subsets Ba

1 , . . . , B
a
α.

Compared with the data structure used in the enumeration by Bouillaguet et
al., we add some data to realize the enumeration in the lexicographic order given
in Subsection 4.2. Note that these additional data only provide a small cost of
memory complexity as discussed in Subsection 4.6 below.

4.4 Successive Classification of Inputs

We here prepare a subroutine CLASS used in the main algorithm described
in Subsection 4.5 below. This CLASS classifies given elements of Aa into the
subsets Ba

1 , . . . , B
a
α defined in equation (4.3) successively in the lexicographic

order in constant time. This computation is mainly equivalent to the successive
computation of the index of the most right nonzero bit for vectors in Fn−1

q in the
lexicographic order due to the definition of Ba

1 , . . . , B
a
α. The following algorithm

is constructed by revising an algorithm for Gray codes proposed in [4].
We first describe a way of successively computing the index of the lowest

nonzero bit for vectors in Fn−1
q using a stack as the data structure. A stack is

an abstract data type with two main operations as follows: push which adds
an element to the collection and pop which removes the most recently added
element. For a stack and u1, . . . , un−1 ∈ {0, . . . , q−1}, the computation is realized
as follows: The stack initially contains 1, . . . , n− 1 with the n− 1 on top and we
set u1 = · · · = un−1 = 0. Next, the top element i is popped off and added into
the sequence of the index to be found. If ai < q−2, then the elements i, . . . , n−1
are pushed onto the stack and we increase ui by one. If ai = q − 2, then the
elements i+1, . . . , n−1 are pushed onto the stack and we set ui = 0. Comparing
this algorithm with the algorithm proposed in [4], we introduce u1, . . . , un−1 to
represent the structure of the base-q positional system.

In the above algorithm, the stack can be replaced by an array t1, . . . , tn ∈
{0, . . . , n− 1}. For this array, tj denotes the element below j on the stack if j is
on the stack, tj is set as j − 1 if j is not on the stack, and tn points to the top
element of the stack. By following these rules, the way of updating the stack is
changed as follows: If ui < q − 2, then we set tn = n − 1. On the other hand,
in the case of ui = q − 2, we set tn = n − 1, ti+1 = ti, and ti = i − 1 since i is
removed from the top and i+ 1, . . . , n− 1 are pushed onto the top.

11

Algorithm 4 CLASS (a = (a1, . . . , an), α, (t1, . . . , tn), (u1, . . . , un))

1: if un < q − aα − 1 then
2: i← n
3: un ← un + 1
4: else
5: i← tn
6: if α+ i− n = 0 then
7: return 0, (t1, . . . , tn), (u1, . . . , un)
8: end if
9: un ← 0
10: tn ← n− 1
11: if ui < q − 2 then
12: ui ← ui + 1
13: else
14: ti+1 ← ti
15: ti ← i− 1
16: ui ← 0
17: end if
18: end if
19: return α+ i− n, (t1, . . . , tn), (u1, . . . , un)

Then, our classification algorithm is constructed by combining the above
algorithm with t1, . . . , tn and u1, . . . , un−1 and one counter un ∈ {0, . . . , q − 1}
to represent the structure of Aa. In Aa, only the D[a].α-th bit is carried up by
q−aD[a].α from the definition, and un represents the value of this D[a].α-th bit.
In the case where un = q − aD[a].α − 1, we carry up the D[a].α-th bit, that is,
we update t1, . . . , tn and u1, . . . , un−1 and set un = 0. By contrast, in the case
where un < q − aD[a].α − 1, we increase un by one and output D[a].α as the
index of Ba

1 , . . . , B
a
D[a].α.

Finally, we describe our classification algorithm CLASS. After two arrays
t1, . . . , tn and u1, . . . , un are initially set as (0, 1, . . . , n − 1) and (0, . . . , 0), re-
spectively, following the above discussion, these arrays are updated each time
through CLASS. Other than these arrays, a = (a1, . . . , an) and α following the
notation in Subsection 4.3 are included in the inputs. The outputs are given as
the classification index of Ba

i and the updated two arrays. (See Algorithm 4 for
more details.)

4.5 Our Enumeration Algorithm

This subsection describes the proposed efficient enumeration algorithm over fi-
nite fields Fq. As in the enumeration of Bouillaguet et al. in Subsection 3.2, the
proposed enumeration algorithm is composed of three functions, namely MAIN,

12

INIT, and NEXT. In the following, we will describe these three algorithms. See
Algorithm 5, 6, and 7 for more details.

MAIN. From Algorithm 1, our main algorithm differs in the following two points:
First, we cover all the inputs in Fn

q in the lexicographic order. Second, from the
definition,D[0] holds n outputs y1, . . . , yn and we select one output from them as
an output of f . The value D[0].i indicates that yD[0].i is updated in the preceding
NEXT as an output for an input x. Thus, we take yD[0].i as an output in line 3.

INIT. As in Algorithm 2, the function INIT sets initial values for D[a]. Line 1
sets α following the aforementioned definition. Line 2-3 set initial values for two
arrays t and u according to the description in Subsection 4.4. Because 0 ∈ Ba

1 ,
we set i = 1 and store f(0) in y1. If |a| = d, then we store f(0) in y1, . . . , yα for
convenience. In the case where |a| < d, the function proceeds to ∂1f, . . . , ∂αf
in line 8, because, for any element of Aa, the last n− α values are always zeros
from the definition in (4.2).

NEXT. First, we show the basic strategy of the function NEXT. For any a,
we shift over an input x in Aa following the lexicographic order and store an
output for the input in one of y1, . . . , yα following the definition of Ba

1 , . . . , B
a
α.

The update of outputs of ∂af is performed according to the following equation

∂af(x1, . . . , xk, 0, . . . , 0) =

∂af(x1, . . . , xk − 1, 0, . . . , 0) + ∂a+ekf(x1, . . . , xk − 1, 0, . . . , 0),
(4.4)

like equation (4.1) for any input (x1, . . . , xk, 0, . . . , 0) ∈ Ba
k ⊂ Aa with xk ̸= 0. In

NEXT, every time updating outputs of ∂af using ∂a+ekf , we call NEXT(D,a+
ek) and update outputs of ∂a+ekf . By doing so, we always have the following:
When we try to add ∂a+ekf(x) into ∂af(x) for the update of ∂af , the output
∂a+ekf(x) for x is the value updated in the last NEXT(D,a+ek). This is because
every Aa is covered following the same order.

We then show a practical way of realizing the update like the above discus-
sion. The update requires two indices i and i′ that denote

(x1, . . . , xi, 0, . . . , 0) ∈ Ba
i , (x1, . . . , xi − 1, 0, . . . , 0) ∈ Ba

i′ .

If we have these two values, then the update like (4.4) is realized as follows:

D[a].yi ← D[a].yi′ +D[a+ ek].yi′ .

From the definition, this i is represented as D[a].i. Furthermore, from the above
discussion, this i′ is equal to the index i of D[a+ ek] in the last time updating.

We finally explain the construction of Algorithm 7. We first determine the
index D[a].i by using the classification algorithm CLASS described in Subsec-
tion 4.4. In line 2-5, we update D[a].y(D[a].i),and the correctness of this part
directly follows the aforementioned discussion. If |a| = d, we do not update
D[a].y(D[a].i) in line 2-5, because ∂af is constant. However, even in this case, we
compute D[a].i for the correctness of NEXT(D,a′) with |a′| = d− 1.

13

Algorithm 5 MAIN(f)

1: D ← INIT(D, f,0)
2: for x ∈ Fn

q (in the lexicographic order) do
3: “f (x) = D[0].yD[0].i”
4: D ← NEXT(D,0)
5: end for

Algorithm 6 INIT(D, f,a)

1: D[a].α← ρ(a)
2: D[a].t← (0, 1, . . . , n− 1)
3: D[a].u← (0, . . . , 0)
4: D[a].i← 1
5: if |a| < d then
6: D[a].y1 ← f(0)
7: for k = 1, . . . , α do
8: D ← INIT(D, ∂kf,a+ ek)
9: end for
10: else
11: D[a].y1, . . . , yα ← f(0)
12: end if
13: return D

Algorithm 7 NEXT(D,a = (a1, . . . , an))

1: D[a].i,D[a].t, D[a].u← CLASS(a, D[a].α,D[a].t, D[a].u)
2: if |a| < d and D[a].i ̸= 0 then
3: i′ ← D[a+ e(D[a].i)].i
4: D[a].y(D[a].i) ← D[a].yi′ +D[a+ e(D[a].i)].yi′

5: D ← NEXT(D,a+ e(D[a].i))
6: end if
7: return D

14

4.6 Complexity

This subsection considers the time and space complexities of the initial part and
the enumeration part of the proposed algorithm in Subsection 4.5.

Theorem 2. For a single polynomial f in n variables of degree d over Fq with
a prime number q, the enumeration algorithm proposed in Subsection 4.5 can
be performed in O (d · qn) operations after an initialization phase of negligible

complexity O
((

n+d
d

)2)
using O

(
log (q · n) · n ·

(
n+d
d

))
bits memory.

Proof. We first consider the time complexity of INIT. The computation of deriva-
tives ∂kf in line 8 is clearly dominant in terms of the time complexity. This means
that the time complexity of INIT is estimated as that of computing ∂af for any
a ∈ Zn

≥0 with |a| ≤ d. We here estimate that the number of a satisfying the

condition of |a| ≤ d is
(
n+d
d

)
and the number of operations required to compute

derivatives is at most O
((

n+d
d

))
. Therefore, the time complexity of the initial

phase is given as O
((

n+d
d

)2)
over Fq.

We then estimate the time complexity of the enumeration part. The function
NEXT can be performed in constant time excluding the recursive part in line 5,
since the function CLASS is clearly completed by constant operations from Al-
gorithm 4. Therefore, the time complexity of NEXT(D,0) is given as O(d), and
that of the enumeration part is estimated by O(d · qn).

Finally, the space complexity of the proposed algorithm is discussed. Through
the whole algorithm, for each a, D[a] consumes O (log (q · n) · n) bit memory
from the description in Subsection 4.3. Therefore, the space complexity con-

sumed by D is given as O
(
log (q · n) · n ·

(
n+d
d

))
. Other than memory consump-

tion by D, we consider the space of derivatives ∂af consumed in INIT. From the
description of Algorithm 6, we prepare the memory that can store polynomials
of degree d to degree 0 simultaneously. The size of this memory is estimated as
follows:

log2 q ·
((

n+d
d

)
+ · · ·+

(
n+1
1

)
+ 1

)
≈ O

(
log q ·

(
n+d
d

))
.

In conclusion, the space complexity of the proposed enumeration algorithm is

given as O
(
log (q · n) · n ·

(
n+d
d

))
. □

The comparison between these complexities and those of the enumeration
algorithm of Bouillaguet et al. reveals that the proposed enumeration algorithm
is as efficient as that of Bouillaguet et al. at the expense of a small amount of
memory consumption.

Remark 3 (Case of q = pr). In this paper, we only discuss the case in which the
number q of elements of the finite field is a prime number. This remark explains
a method to apply the enumeration algorithm to the case of q = pr with a prime
number p and a positive integer r.

15

One polynomial in n variables over Fpr can be clearly regarded as r poly-
nomials in n · r variables over Fp (i.e., if θ1, . . . , θr are basis of Fpr over Fp,

for each variable xi over Fpr , we set r variables x
(i)
1 , . . . , x

(i)
r over Fp satisfying

xi =
∑r

j=1 x
(i)
j θj). After performing this transformation, our enumeration algo-

rithm can be applied to each one of the resulting r polynomials over Fp. Then,
the time complexity is given as O (r · d · pr·n) = O (r · d · qn), whereas the space

complexity is given as O
(
r · log (p · n · r) · n · r ·

(
n·r+d

d

))
.

Remark 4 (Application to solving polynomial equations). By using the method
proposed in [7], our enumeration algorithm can be applied to solve systems
of polynomial equations, and its complexity is estimated as O

(
d2 · log n · qn

)
.

(See Appendix A.) Unfortunately, this is not the theoretically best algorithm
for solving multivariate non-linear systems, since Lokshtanov et al. proposed an
algorithm over general finite fields with the time complexity O

(
qn·(1−ϵ)

)
, where

ϵ > 0. However, our method of solving non-linear systems would be more practi-
cal than the algorithm proposed by Lokshtanov et al. due to our simple structure
as in the FES algorithm proposed by Bouillaguet et al. We leave optimizing our
implementation as our future work.

5 Conclusion

This paper proposes a novel enumeration algorithm over finite fields Fq with a
prime number q. Given a single-degree-d polynomial in n variables over Fq, the
proposed algorithm evaluates the given function at all the inputs with the time
complexity O (d · qn). The proposed enumeration algorithm is constructed by
using a lexicographic order instead of Gray codes used in the enumeration algo-
rithm by Bouillaguet et al. over F2. Compared with the enumeration algorithm
by Bouillaguet et al., the proposed method achieves the equivalent efficiency
with a small cost of memory consumption. Note that this small cost of the mem-
ory complexity is caused by our brunching structure of enumeration due to our
lexicographic order. Furthermore, the proposed algorithm can be easily applied
to the case where q is a prime power.

This paper discusses only the theoretical side, and thus one of our future
works is to realize an efficient implementation of the proposed algorithm.

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR2113, Japan,
and JSPS KAKENHI Grant Number JP22KJ0554, Japan.

References

1. W. Beullens. Improved cryptanalysis of UOV and Rainbow. In EUROCRYPT
2021, pages 348–373. Springer, 2021.

16

2. W. Beullens. MAYO: Practical post-quantum signatures from oil-and-vinegar
maps. In SAC 2021, pages 355–376. Springer, 2021.

3. O. Billet and H. Gilbert. Cryptanalysis of Rainbow. In SCN 2006, pages 336–347.
Springer, 2006.

4. J. R. Bitner, G. Ehrlich, and E. M. Reingold. Efficient generation of the binary
reflected Gray code and its applications. Commun. ACM, 19(9):517–521, 1976.

5. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symb. Comput., 24(3-4):235–265, 1997.

6. C. Bouillaguet. Boolean polynomial evaluation for the masses. Cryptology ePrint
Archive, Paper 2022/1412, 2022. https://eprint.iacr.org/2022/1412.

7. C. Bouillaguet, H.-C. Chen, C.-M. Cheng, T. Chou, R. Niederhagen, A. Shamir,
and Yang B.-Y. Fast exhaustive search for polynomial systems in F2. In CHES
2010, pages 203–218. Springer, 2010.

8. C. Bouillaguet, C.-M. Cheng, T. Chou, R. Niederhagen, and Yang B.-Y. Fast
exhaustive search for quadtaric systems in F2 on FPGAs. In SAC 2013, pages
205–222. Springer, 2014.

9. H. Furue, Y. Ikematsu, Y. Kiyomura, and T Takagi. A new variant of unbalanced
oil and vinegar using quotient ring: QR-UOV. In ASIACRYPT 2021, pages 187–
217. Springer, 2021.

10. H. Furue and M. Kudo. Polynomial XL: A variant of the XL algorithm us-
ing Macaulay matrices over polynomial rings. Cryptology ePrint Archive, Paper
2021/1609, 2021. https://eprint.iacr.org/2021/1609.

11. M.-R. Garey and D.-S. Johnson. Computers and intractability: a guide to the theory
of NP-completeness. W. H. Freeman, 1979.

12. L. Goubin and N. Courtois. Cryptanalysis of the TTM cryptosystem. In ASI-
ACRYPT 2000, pages 44–57. Springer, 2000.

13. A. Joux and V. Vitse. A Crossbred algorithm for solving boolean polynomial
systems. In NuTMiC 2017, pages 3–21. Springer, 2017.

14. NIST. Post-quantum cryptography CSRC. https://csrc.nist.gov/Projects/

post-quantum-cryptography/post-quantum-cryptography-standardization.
15. P. W. Shor. Polynomial-time algorithms for prime factorization and discrete log-

arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509,
1997.

16. C. Tao, A. Petzoldt, and J. Ding. Efficient key recovery for all HFE signature
variants. In CRYPTO 2021, pages 70–93. Springer, 2021.

A Application to Solving Polynomial Equations

In this section, we consider finding common zeros of m polynomials f1, . . . , fm
in n variables with degree d. This section first recalls a way of applying the
enumeration algorithm of Bouillaguet et al. described in Subsection 3.2, and
shows that our enumeration algorithm in Subsection 4.5 is also applicable. We
here only consider the case of n = m case, because if n > m, then n−m variables
can be specified, and if n < m, then we can focus on n equations as they should
have a constant number of solutions.

We here roughly describe the way of applying an enumeration algorithm to
find common zeros of f1, . . . , fn proposed in [7]. Let Zi be the set of common
zeros of f1, . . . , fi, and then it is clear that Zn is the set of the solutions of the
system. For an integer 1 ≤ k ≤ n, the proposed algorithm is described as follows:

17

(1) Find Zk using the enumeration algorithm on each f1, . . . , fk.
(2) Compute Zk+1, . . . , Zn one by one by substituting each value of Zi for fi+1.

The enumeration algorithm in Section 4 can be clearly applied to find com-
mon zeros of f1, . . . , fn over Fq in a similar manner. In the following, we estimate
the time complexity of solving a system. As estimated in [7], the time complexity
of the first step is estimated by O (k · d · qn) from the statement of Theorem 2.
Furthermore, because the expected cardinality of Zi is q

n−i, the time complexity

of the second step is given as
∑n−1

i=k

(
n+d
d

)
· qn−i ≈ O

((
n+d
d

)
· qn−k

)
due to the

complexity of the classical evaluation described in Section 2. Therefore, the opti-
mal k minimizing the complexity is given by solving k ·d · qn =

(
n+d
d

)
· qn−k, and

k is estimated by d log n when n→∞. By substituting k = d log n in k ·d·qn, the
whole complexity of solving a polynomial system is given as O

(
d2 · log n · qn

)
over Fq.

B Toy Example of Our Enumeration

We give an example of the behavior of the proposed enumeration algorithm on
a concrete function. We take f = x2

1 + x1x2 + x2 + 2 ∈ F3[x1, x2] with degree
d = 2 as an input. Then, derivatives of f are computed as follows:

∂1f = 2x1 + x2 + 1,

∂2f = x1 + 1,

∂2
1f = 2,

∂1∂2f = 1,

∂2
2f = 0.

From these derivatives, for any a ∈ Z≥0 with |a| ≤ d = 2, D is obtained as
follows after INIT(D, f,0,0) in line 1 of Algorithm 5:

D[(0, 0)]. (α, t,u, (y1, y2) , i) = (2, (0, 1) , (0, 0) , (2, ·) , 1) ,
D[(1, 0)]. (α, t,u, y1, i) = (1, (0, 1) , (0, 0) , 1, 1) ,

D[(0, 1)]. (α, t,u, (y1, y2) , i) = (2, (0, 1) , (0, 0) , (1, ·) , 1) ,
D[(2, 0)]. (α, t,u, y1, i) = (1, (0, 1) , (0, 0) , 2, 1) ,

D[(1, 1)]. (α, t,u, y1, i) = (1, (0, 1) , (0, 0) , 1, 1) ,

D[(0, 2)]. (α, t,u, (y1, y2) , i) = (2, (0, 1) , (0, 0) , (0, 0) , 1) .

Note that, for the case of a = (0, 0) and (0, 1), D[a].y2 is not determined in
INIT(D, f,0,0). In the following, we show how D is updated for each x in line
2-5 of Algorithm 5 after the aforementioned initialization phase. We here omit
D[a].α because this value is not changed through the algorithm. We also omit
values stored in D[(2, 0)], D[(1, 1)], and D[(0, 2)] because D[a].i with |a| = 2
does not change from 1 in this case due to the relationship of q and d. Here, D

18

is updated as follows:

x = (0, 1),

D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (0, 1) , (2, 0) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 0) , 1, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 1) , (0, 1) , (1, 1) , 2) ,

x = (0, 2),

D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (0, 2) , (2, 1) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 0) , 1, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 0) , (2, 1) , 1) ,

x = (1, 0),

D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 0) , (0, 1) , 1) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 0) , (2, 1) , 1) ,

x = (1, 1),

D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 1) , (0, 2) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 1) , (2, 2) , 2) ,

x = (1, 2),

D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 1) , (1, 2) , (0, 1) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 1) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 0) , (0, 2) , 1) ,

x = (2, 0),

D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 0) , (0, 1) , 1) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 0) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 0) , (0, 2) , 1) ,

x = (2, 1),

D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 1) , (0, 0) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 0) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 1) , (0, 0) , 2) ,

x = (2, 2),

D[(0, 0)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 2) , (0, 0) , 2) ,

D[(1, 0)]. (t,u, y1, i) = ((0, 1) , (0, 1) , 0, 0) ,

D[(0, 1)]. (t,u, (y1, y2) , i) = ((0, 0) , (0, 1) , (0, 0) , 0) .

Then, by seeing D[(0, 0)].
(
yD[(0,0)].i

)
for each x ∈ F2

3, one can confirm that the
proposed algorithm enumerates the outputs of f correctly as follows:

19

x (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2)

f(x) 2 0 1 0 2 1 0 0 0

C Magma Code

We here provides a code of the proposed enumeration algorithm in Magma [5].
Note that this implementation is not an optimized one.

Listing 1.1. Magma code for the proposed algorithm

1 //q: the number of elements of the finite field
2 //n: the number of variables
3 //f: a given polynomial
4 //d: the degree of f
5

6 // Given a polynomial f and an index k,
7 // compute the k-th derivative of f.
8 function deriv(f,k)
9 P<[x]>:=Parent(f);

10 n:=#x;
11 Hom := hom<P->P|[x[i]: i in [1..k-1]] cat [x[k]+1] cat [x[i

]: i in [k+1..n]]>;
12 ff:=Hom(f)-f;
13 return ff;
14 end function;
15

16 // Given a vector a representing the derivative \partial^a f and
the degree d,

17 // compute the index of data structures corresponding to the
derivatives of a.

18 function accD(a,d)
19 n:=#a;
20 b:=0;
21 c:=0;
22 for i in [1..n] do
23 b:=b+ &+([Binomial((n-i)+(d-c-j),(d-c-j)):j in [0..a[i

]-1]] cat [0]);
24 c:=c+a[i];
25 end for;
26 if c gt d then
27 return 0;
28 end if;
29 return b+1;
30 end function;
31

32 // Given a vector a,
33 // output the index of the most left nonzero bit of a.
34 function bit_a(a)
35 n:=#a;
36 for i in [1..n] do
37 if a[i] ne 0 then
38 return i;
39 end if;

20

40 end for;
41 return n;
42 end function;
43

44 //a: a vector representing the derivative \partial^a f
45 //D: outputs y_1,...y_\alpha for any a
46 //aa: \alpha=\rho(a) for any a
47 //ii: indices D[a].i for any a
48 //tt: vectors D[a].t for any a
49 //uu: vectors D[a].u for any a
50

51 function CLASS(q,n,d,a,aa,tt,uu)
52 k:=accD(a,d);
53 if uu[k][n] lt q-a[aa[k]]-1 then
54 i:=n;
55 uu[k][n]:=uu[k][n]+1;
56 else
57 i:=tt[k][n];
58 if aa[k]+i-n eq 0 then
59 return 0, tt, uu;
60 end if;
61 uu[k][n]:=0;
62 tt[k][n]:=n-1;
63 if uu[k][i] lt q-2 then
64 uu[k][i]:=uu[k][i]+1;
65 else
66 tt[k][i+1]:=tt[k][i];
67 tt[k][i]:=i-1;
68 uu[k][i]:=0;
69 end if;
70 end if;
71 return aa[k]+i-n, tt, uu;
72 end function;
73

74 function INIT(f,a,D,d,aa)
75 P<[x]>:=Parent(f);
76 n:=#x;
77 aa[accD(a,d)]:=bit_a(a);
78 if &+[a[i]:i in [1..n]] lt d then
79 D[accD(a,d)][1]:=Evaluate(f,[0: i in [1..n]]);
80 for k in [1..aa[accD(a,d)]] do
81 ab:=a;
82 ab[k]:=ab[k]+1;
83 D,aa:=INIT(deriv(f,k),ab,D,d,aa);
84 end for;
85 else
86 DD:=Evaluate(f,[0: i in [1..n]]);
87 for i in [1..aa[accD(a,d)]] do
88 D[accD(a,d)][i]:=DD;
89 end for;
90 end if;
91 return D,aa;
92 end function;
93

94 function NEXT(q,n,d,D,a,aa,ii,tt,uu)

21

95 ii[accD(a,d)],tt,uu:=CLASS(q,n,d,a,aa,tt,uu);
96 if &+[a[i]:i in [1..n]] lt d and ii[accD(a,d)] ne 0 then
97 a1:=a;
98 a1[ii[accD(a,d)]]:=a1[ii[accD(a,d)]]+1;
99 i1:=ii[accD(a1,d)];

100 D[accD(a,d)][ii[accD(a,d)]]:=D[accD(a,d)][i1]+D[accD(a1,
d)][i1];

101 D,ii,tt,uu:=NEXT(q,n,d,D,a1,aa,ii,tt,uu);
102 end if;
103 return D,ii,tt,uu;
104 end function;
105

106 function MAIN(q,n,d,f)
107 P:=Parent(f);
108 K:=BaseRing(P);
109 D:=ZeroMatrix(K,Binomial(n+d,d),n);
110 aa:=[0:i in [1..Binomial(n+d,d)]];
111 ii:=[1:i in [1..Binomial(n+d,d)]];
112 tt:=[[0..n-1]:i in [1..Binomial(n+d,d)]];
113 uu:=[[0: i in [1..n]]:i in [1..Binomial(n+d,d)]];
114 D,aa:=INIT(f,[0:i in [1..n]],D,d,aa);
115 solution:=[];
116 for i in [0..q^n-1] do
117 Append(~solution,D[accD([0:i in [1..n]],d)][ii[accD([0:i

in [1..n]],d)]]);
118 D,ii,tt,uu:=NEXT(q,n,d,D,[0:i in [1..n]],aa,ii,tt,uu);
119 end for;
120 return solution;
121 end function;

22

