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Abstract. The Meet-in-the-Middle (MITM) attack is one of the most
powerful cryptanalysis techniques, as seen by its use in preimage attacks
on MD4, MD5, Tiger, HAVAL, and Haraka-512 v2 hash functions and
key recovery for full-round KTANTAN. An efficient approach to con-
structing MITM attacks is automation, which refers to modeling MITM
characteristics and objectives into constraints and using optimizers to
search for the best attack configuration. This work focuses on the sim-
plification and renovation of the most advanced superposition frame-
work based on Mixed-Integer Linear Programming (MILP) proposed at
CRYPTO 2022. With the refined automation model, this work provides
the first comprehensive analysis of the preimage security of hash func-
tions based on all versions of the Rijndael block cipher, the origin of the
Advanced Encryption Standard (AES), and improves the best-known re-
sults. Specifically, this work has extended the attack rounds of Rijndael
256-192 and 256-256, reduced the attack complexity of Rijndael 256-128
and 128-192 (AES192), and filled the gap of preimage security evaluation
on Rijndael versions with a block size of 192 bits.
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1 Introduction

A hash function constructs a fixed-length message digest for an arbitrary-length
plaintext. Hash functions have wide applications in cybersecurity infrastructure,
including but not limited to, digital signatures, fingerprinting, authentication
schemes, commitment schemes, and error correction codes. To be cryptographi-
cally secure, a hash function must satisfy the three fundamental security require-
ments: preimage resistance, second preimage resistance, and collision resistance.

A common strategy for building hash functions follows a two-step approach: first,
a compression function is formed by inserting a block cipher into a PGV mode
[2]; then, a hash function is constructed by iterating the compression function
following the Merkle-Damgård paradigm (Fig. 1). It is proven that the resulting
hash function enjoys security reduction to the underlying encryption. Typical
choices for the PGV mode include Davies-Meyer (DM), Matyas-Meyer-Oseas
(MMO), and Miyaguchi-Preneel (MP) (Fig. 2). The strategy is highly practical
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since block ciphers and hash functions often coexist in an information system.
The cost of implementing an additional hash function is minimized by applying
only an extra mode to the already built-in block cipher.
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Fig. 5. The plain Merkle-Damg̊ard Construction

where for all i, |mi| = κ and f : {0, 1}n+κ → {0, 1}n.
We have already mentioned in introduction a counter-example based on

MAC. Namely, we showed that MAC(k,m) = H(k‖m) provides a secure MAC
in the random oracle model for H, but is completely insecure when H is replaced
by the previous Merkle-Damg̊ard construction MDf , because of the message ex-
tension attack. In the following, we give a more direct refutation based on the
definition of indifferentiability, using again the message extension attack.

We consider only one-block messages or two-block messages. For such mes-
sages, we have that MDf (m1) = f(0,m1) and MDf (m1,m2) = f(f(0,m1),m2).
We build a distinguisher that can fool any simulator as follows. The distinguisher
first makes a MDf -query for m1 and receives u = MDf (m1). Then it makes a
query for v = f(u,m2) to random oracle f . The distinguisher then makes a
MDf -query for (m1,m2) and eventually checks that v = MDf (m1,m2); in this
case it outputs 1, and 0 otherwise. It is easy to see that the distinguisher always
outputs 1 when interacting with MDf and f . However, when the distinguisher
interacts with H and S (who must simulate f), we observe that S has no informa-
tion about m1 (because S does not see the distinguisher’s H-queries). Therefore,
the simulator cannot answer v such that v = H(m1,m2), except with negligible
probability.

3.3 Prefix-free Merkle-Damg̊ard

In this section, we show that if the inputs to the plain MD construction are
guaranteed to be prefix-free, then the plain MD construction is secure. Namely,
prefix-free encoding enables to eliminate the message expansion attack described
previously. This “fix” is similar to the fix for the CBC-MAC [3], which is also
insecure in its plain form. Thus, the plain MD construction can be safely used
for any application of the random oracle H where the length of the inputs is
fixed or where one uses domain separation (e.g., prepending 0, 1, . . . to differen-
tiate between inputs from different domains). For other applications, one must
specifically ensure that prefix-freeness is satisfied.

A prefix-free code over the alphabet {0, 1}κ is an efficiently computable in-
jective function g : {0, 1}∗ → ({0, 1}κ)∗ such that for all x #= y, g(x) is not a
prefix of g(y). Moreover, it must be easy to recover x given only g(x). We provide

Fig. 1: Merkle-Damgård construction [45].

Table 2: Twelve secure PGV constructions [PGV94,Sas11].
No. Computation No. Computation No. Computation No. Computation

Class 1 1 EHi≠1 (Mi) üMi 2 EHi≠1 (Xi) üXi 3 EHi≠1 (Mi) üXi 4 EHi≠1 (Xi) üMi

Class 2 5 EMi (Hi≠1) üHi≠1 6 EMi (Xi) üXi 7 EMi (Hi≠1) üXi 8 EMi (Xi) üHi≠1

Class 3 9 EXi (Mi) üMi 10 EXi (Hi≠1) üHi≠1 11 EXi (Mi) üHi≠1 12 EXi (Hi≠1) üMi

Xi represents Hi≠1 üMi.

EHi�1 Hi

Mi

(a) DM-mode (PGV No.5)
Hi = EMi (Hi≠1) üHi≠1

EMi Hi

Hi�1

(b) MMO-mode (PGV No.1)
Hi = EHi≠1 (Mi) üMi

EMi Hi

Hi�1

(c) MP-mode (PGV No.3)
Hi = EHi≠1 (Mi) üMi üHi≠1

Figure 6: Illustrations for DM, MMO, and MP modes [Sas11,Jea16]

in Table 2, where Hi≠1 and Hi denote the chaining states before and after the update,
Mi the message block, and Xi the XOR of Hi≠1 and Mi. These twelve PGV modes can
be classified according to the material fed in through the key into three classes: Class 1 –
chaining values are fed in through the key (row 1 in Table 2); Class 2 – messages are fed
in through the key (row 2 in Table 2); Class 3 – XOR sum of message and the chaining
values are fed in through the key (row 3 in Table 2). Three of these PGV modes, known
as DM-mode, MMO-mode, and MP-mode, are used in practice (see Figure 6).

In the original pseudo-preimage attack on AES hashing mode by Sasaki [Sas11], the
key is preset to random constants, which can be used by attacker, and the input state is
determined by the attack, hence such pseudo-preimage can be converted into preimages
for modes in Class 1 such as MMO and MP with the same complexity as pseudo-preimage.
Other modes in Class 2 and 3 require conversion, and hence result in higher complexities
for preimages as discussed in the subsection above.

Converting TBC to Compression Function. The tweakable block cipher, denoted
here as ÂE(Kt, Tt, P ), has an additional input tweak T , compared with block ciphers E(K,P ).
We consider here converting a TBC to a block cipher, then to a compression function
through the modes above. The TBC-to-BC conversion can be divided into 3 types:

• Type-I: E(K,P ) = ÂE(Kt = K,Tt = C,P ), where C is a constant.

• Type-II: E(K,P ) = ÂE(Kt = C, Tt = K,P ), where C is a constant.

• Type-III: E(K,P ) = ÂE(Kt = K1, Tt = K2, P ), where K = K1||K2, i.e., both key and
tweak of ÂE are used as the key of the block cipher.

From the cryptanalyst’s point of view, Type-III gives additional input to the attacker;
hence it is likely more rounds could be attacked for Type-III, compared with the other
two types.

4 Techniques of MITM Attack on AES Hashing Modes
4.1 The 7-Round Attack by Sasaki and Its Improvement by Wu et al.
Following the framework of splice-and-cut MITM attack depicted in Figure 4, and based
on an important observation on the slow di�usion of a 4-round AES with the omission of
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Fig. 2: Diagrams for DM, MMO, and MP modes [30].

This work focuses on the preimage security of hash functions built on the Rijn-
dael block cipher. In 2001, NIST selected versions of the Rijndael block cipher
with a block size of 128 bits for the Advanced Encryption Standard (AES) [1].
The MMO mode instantiated with AES has been standardized by Zigbee [3] and
ISO [31] for building hash functions on block ciphers. The excellent performance
and high security of Rijndael motivate dedicated designs built with a similar
structure, for instance, Whirlpool [9], Grøstl [32], PHOTON [33] and LED [34].

1.1 The Meet-In-The-Middle (MITM) Technique

MITM is a well-referenced and well-developed cryptanalysis technique for preim-
age security analysis. The concept of MITM attacks originated from Diffie and
Hellman’s time-memory trade-off on double encryption [35]. Since its introduc-
tion, advanced techniques have been added to the MITM framework to exploit
more freedom and structures, for instance, internal state guesses [36], splice-and-
cut [16, 21], initial structures [19] and indirect partial-matching [18, 20].

Pioneered by Aumasson et al. [5] and Sasaki et al. [18, 20], MITM has demon-
strated its power in the preimage security analysis of hash functions, including
but not limited to MD4 [16], MD5 [19], Tiger [16, 24], HAVAL [27] and KAN-
TAN [10, 25]. The intuition of MITM is to divide the compression function into
two independent chunks that "meet in the middle" at some matching point. A
MITM attack feeds candidate texts into the two chunks independently and filters
the preimage space according to the matching conditions.
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In 2011, Sasaki et al. [17] mounted the first MITM preimage attack on AES-
hashing. The attack circumvented the AES key schedule by fixing round keys to
constants and reached 7 rounds for all AES versions. In [6], Bao et al. revisited
the attack and retrieved degrees of freedom from the key schedule. The observa-
tion led to improvements in the attack rounds of AES-192 and AES-256, from
7 rounds to 8 rounds. In 2021, [7] drove MITM into automation with Mixed-
Integer Linear Programming (MILP). The automatic model generalized and in-
corporated all enhancing tools of MITM attack, and improved 1 attack round
for all best-known attacks on AES (8 rounds AES-128, 9 rounds AES-192, and
9 rounds AES-256). The automation model was then renovated in 2022 with a
novel superposition framework that parallels linear operations [8]. The paper also
presented new technologies to further empower the model and enlarge the search
space, including Guess-and-Determine (GnD), Multiple Ways of AddRoundKey
(MulAK), and Bi-Directional Attribute-Propagation and Cancellation (BiDir).

1.2 Contributions

While the preimage security of AES-hashing is a widely concerned and repeat-
edly investigated proposition in symmetric-key cryptanalysis, the resistance of
hashing modes built on other versions of Rijndael against preimage attacks is
rarely explored. This paper is thus dedicated to initiating the first comprehensive
and comparative study of the preimage security of Rijndael-based hashing using
MITM attacks, with a refined and enhanced automation model. Contributions
include:

Lightweight Model. The automatic search of MITM attacks is extremely time-
demanding and can only be partially optimized. Hence, model simplification has
been a persistent endeavor for the community to unleash the full potential of au-
tomation. In 2022, the superposition structure [8] introduced two virtual states
to separate forward and backward propagation for each intermediate state that
undergoes linear operators. However, redundancies persist, since the encoding
scheme used was originally proposed to address both propagations in one inter-
mediate state. This work provides a dedicated lightweight encoding scheme for
the superposition structure that enables simpler modeling of propagation rules,
thus laying a solid foundation for the automation model to incorporate more
techniques.

Mega-MC Match. In this paper, a new match rule, namely Mega-MC-
Match, is proposed to extend the traditional matching through the MixColumns
operator at intermediate rounds. The Mega-MC-Match further exploits the
properties of the diffusion matrix and utilizes information that was previously
considered ineligible for matching. The naming of the new match originates from
its ability to extend the matching point from a single MixColumns operator to
a ’mega’-variant that involves 3 rounds.
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Accurate Key Schedule. There have been unaddressed dependencies in Ri-
jndael’s key schedule that might lead to inaccurate propagation patterns. In
this work, such dependencies are identified, and a more accurate model of the
Rijndael key schedule is provided. The new model is able to provide adequate
treatment to equivalencies and dependencies in the key schedule and prevent
repeated consumption of degrees of freedom.

Summary of application results. This work has achieved the following ac-
complishments: extended the maximum attack rounds of Rijndael 256-192 and
256-256 by 1 round, reduced the time complexity of 8-round Rijndael 128-192
(AES192) and 9-round Rijndael 256-128, and filled the gap of preimage secu-
rity evaluation on Rijndael versions with 192-bit block size. Detailed results are
shown in Table 1.

Table 1: Updated results on pseudo-preimage and preimage attacks.
Block Key Rounds Pseudo- Preimage Ref.length length preimage

128

128 8/10 2120 2125 [7]

192
8/12 2112 2116 [6]
8/12 2104 2117 Fig. 7
9/12 2112 2121 [8]

256 10/14 2120 2125 [7]

192
128 9/12 2184 2189 Fig. 8

192 9/14 2184 2189 Fig. 9

256 9/14 2176 2185 Fig. 10

256

128 9/14 2248 2253 [7]
9/14 2240 2249 Fig. 11

192 9/14 2248 2253 [7]
10/14 2248 2253 Fig. 12

256 9/14 2248 2253 [7]
10/14 2248 2253 Fig. 6

2 Preliminaries

2.1 The Rijndael Block Cipher

Versions. Rijndael is a family of iterated block ciphers developed by Belgian
cryptographers Joan Daemen and Vincent Rijmen with different key sizes and
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block sizes [1]. Rijndael supports a variety of combinations of block sizes and
key sizes, which can be specified independently as 128, 192, or 256 bits. the
intermediate result in the encryption is denoted as a state and the cipher key
as the key. Intuitively, a state and the key can each be pictured as a 4-rowed
rectangular array with 1 byte per entry. Conventionally, a column is referred to
as a word, and the word size is thus fixed to 32 bits. Nb denotes the number of
words in a state and Nk denotes that of the key. Nr denotes the iterated rounds,
which is dependent on Nb and Nk (Table 2). In 2001, NIST selected the versions
of Rijndael with a 128-bit block length as the new symmetric key encryption
standard (AES).

Round Operators. The Rijndael round function consists of 4 different opera-
tors:

Round function f

AK SB

S

x
x
x
x

SR

C ←M× C

x
x

x
x

MC

wi−1 xi yi zi wi

Fig. 3: Rijndael round function.

SubBytes: A non-linear byte-wise substitution taking 1 byte as input and
producing 1 byte as output. The input and the output byte are interpreted
as polynomials onGF (28) in their vector form. The S-Box contains two steps:
the input a is first mapped to its multiplicative inverse a−1 in GF (28). Then,
a−1 is mapped to the output s by an affine transformation:

b = a−1 ⊕ (a−1 ≪ 1)⊕ (a−1 ≪ 2)⊕ (a−1 ≪ 3)⊕ (a−1 ≪ 4)⊕ 6316

ShiftRows: A linear transformation, visualized as a circular left shift on the
rectangular array. The shift offsets for each row are dependent on Nb, as
shown in Table 3.

MixColumns: A column-wise linear transformation, described as a left mul-
tiplication in GF (28) with a constant 4-by-4 maximum distance separable
(MDS) matrix.

AddRoundKey: The bitwise XOR of the round key and the current state.
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Key Schedule. The round keys are derived from the key by KeySchedule
with two steps:

KeyExpansion The key is first expanded to an array of bytes w with |w| =
4 · Nb · (Nr + 1). When i < Nk, w[i] = key[i]. Otherwise, the expansion
follows the following equation, where Rcon is a constant array, and Rot is a
permutation on the bytes:

w[i] =


w[i−Nk]⊕ SubBytes(Rot(w[i− 1]))⊕Rcon[i/Nk] i mod Nk ≡ 0

w[i−Nk]⊕ SubBytes(w[i− 1]) i mod Nk ≡ 4 and Nk = 8

w[i−Nk]⊕ w[i− 1] otherwise
(1)

RoundKeySelection The round keys, each consisting of Nb words, are taken
sequentially from w.

Although the round keys are generated one byte at a time, for easier illustration,
a KeySchedule round is defined as the period when KeyExpansion produces
an additional Nk words. The key schedule will iterate a total of Nb∗(Nr+1)/Nk
rounds to generate all round keys. Each byte of a round key is uniquely indexed
by (r, i, j) similar to encryption states, where r denotes the key schedule round,
and (i, j) denotes the position of the cell on the key grid.

Rijndael Encryption. Algorithm 1 shows the pseudocode for the encryption
process with Rijndael. The MixColumns operator in the last round is omitted,
resulting in a more symmetric structure and allowing efficient conversion from
encryption to decryption. The cipher starts and ends with an AddRoundKey
operation. This particular design is called "key whitening", which conceals the
information immediately after the iteration starts and before the iteration ends.

2.2 Preimage and pseudo-preimage attacks

A preimage attack finds a preimage of a given digest y for a hash function H:

Given H : X → Y, for y ∈ Y, find x ∈ X, s.t. H(x) = y

For hash functions built with the Merkel-Damgård construction, a pseudo-preimage
attack focuses on the underlying compression function. It finds a pair of messages
x and a chaining value H that leads to the target digest y by the compression
function CF :

Given CF : X → Y, for y ∈ Y, find x ∈ X and H ∈ Y, s.t. CF(H,x) = y

2.3 The MITM pseudo-preimage attack

The MITM technique is, in essence, used for finding pseudo-preimages. It makes
use of the loop structure determined by PGV modes and divides a hash function
into two independent functions, forward and backward. In each function, the
involved bytes are categorized as:
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Algorithm 1: Rijndael Encryption
Input: m, key
Output: c

/* generation of round keys */
1 roundkeys← KeySchedule(key)

/* initialization */
2 state← m

3 state← AddRoundKey(state, roundkeys[0])
4 for r ← 0 to Nr − 2 do
5 state← SubBytes(state)
6 state← ShiftRow(state,Nb)
7 state← MixColumns(state)
8 state← AddRoundKey(state, roundkeys[r])

9 state← SubBytes(state)
10 state← ShiftRow(state,Nb)
11 c← AddRoundKey(state, roundkeys[Nr])

– neutral bytes, whose values are only known in the current function and have
no influence on the other function.

– constant bytes, whose values are predefined and globally known in both
functions.

The two functions meet structurally in a shared intermediate state called the
matching point. Constraints invoked at the matching point for the integrity
of the closed loop are called partial-match constraints, which will be exploited
as a filter to eliminate ineligible candidates. A full match check is performed
only when partial-match constraints are satisfied. The generic MITM attack
framework used in multiple references is reiterated as follows [6–8, 37]:

1. Assign random values to constant bytes.

2. Determine the candidate values for the neutral bytes N+ and N−. Assume
that there are 2d1 candidates for N+ and 2d2 candidates for N−.

3. For each of the 2d1 candidates of N+, compute the forward function and
store the output at the matching point in a table T+.

4. For each of the 2d2 candidates of N−, compute the backward function and
store the output at the matching point in a table T−.

5. Assume that there are 2m constraints at the matching point. For the indices
of T+ and T−, select pairs satisfying the 2m partial-match constraints.

6. For the survived pairs, check for a full match.
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Forward
chunk

Backward
chunk

Initial
structure

Forward
chunk Target

Splice

CutPartial match

Message/Key-schedule

ma ma ma mambmb mb

ML ma mb

Let the space for both neutral words ma and mb be 2¸, the time complexity is 2n≠¸, and memory
complexity is 2¸.

Figure 4: The advanced MITM pseudo-preimage attack on DM-mode [Sas11]

2. The neutral bytes for each chunk – the selection on the neutral bytes will determine
the freedom degrees.

3. The bytes for matching – the derivation on the bytes for match also depends on the
selection of neutral bytes and the computation rule of the attack target.

With the above configurations decided, the attack procedure goes as follows (Figure 4
illustrates the MITM pseudo-preimage attack integrating with these advanced techniques
on Davies-Meyer mode): Denote the neutral words for the forward chunk and backward
chunk by Nf and Nb, respectively:

1. Fix all other words except for the neutral words Nf and Nb in the initial structure
to arbitrary values.

2. For all possible values of Nf, forward compute from the starting point to the matching
point at the final state of the forward chunk to get a list Lf of candidate values
indexed by the value of Nf.

3. For all possible values of Nb, backward compute from the starting point to the
matching point at the final state of the backward chunk to get a list Lb of candidate
values indexed by the value of Nb.

4. Sorting the two lists Lf and Lb using hash tables, check whether there is a match/partial-
match between them.

5. In case of partial-matching used in the above step, for the surviving pairs, check for
a full match.

6. Repeat the whole procedure to find full state matches by changing the values of fixed
words.

3.1.3 The Complexity Analysis.

Denote the size of the internal state by n, the freedom degrees in the forward and backward
directions by d1 and d2 respectively, and the number of bits for the match by m.

8

Fig. 4: The latest MITM pseudo preimage attack framework [17].

7. If there exists a full match, a pseudo-preimage is found. Otherwise, revert to
Step 1, change the arbitrary values, and repeat procedures 2 to 6.

The computational complexity of the attack is calculated as follows [6]:

2n−(d1+d2) · (2max(d1,d2) + 2d1+d2−m) ≃ 2n−min(d1,d2,m) (2)

2.4 Pseudo-preimage to preimage conversion

A pseudo-preimage attack with a computational complexity of 2l (l < n −
2) can be converted to a preimage attack with a computation complexity of
2(n+l)/2+1 [43]. To achieve this, 2(n−l)/2 pseudo-preimages are found. Next, start-
ing from the initialization vector IV , 2(n+l)/2+1 random values are inserted into
the hash function to generate 2(n+l)/2+1 chaining values. With 2(n+l)/2+1 chain-
ing values mapped from the real IV and 2(n−l)/2 pseudo-preimages mapped to
the target hash value, a match can be expected thanks to the birthday bound.

In 2008, Leurent improved the general unbalanced meet-in-the-middle method by
constructing an unbalanced tree using multi-target pseudo-preimage and using
the expandable message technique to overcome the length padding [44]. The
overall time complexity is improved to (n ln 2 − l ln 2 + 1) · 2l. However, the
method assumes a special unbalanced condition where 2l−t computations yield
2t pseudo-preimages.

3 MILP Modeling for Automated Search

This section describes how the search for MITM preimage attacks on Rijndael
is automated with Mixed-Integer Linear Programming (MILP). This paper fol-
lows the conventional MITM coloring schemes for visualizing and demonstrating
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results [6–8, 17, 37]. A byte or a cell in an intermediate state or a round key is
colored as follows:

– A blue cell ( ) denotes a neutral byte for the forward function.

– A red cell ( ) denotes a neutral byte for the backward function.

– A gray cell ( ) denotes a constant byte.

– A white cell ( ) denotes an arbitrary byte, incomputable in both functions.

3.1 Automated Search Framework

An overview of the automatic search framework of MITM attacks is provided
before digging into the details. The essence of a MITM attack lies in the careful
segmentation of the closed computation path. The special states in a MITM
attack are identified using the following notations:

–
←→
S ENC: the starting encryption state for forward and backward functions.

–
←→
S KSA: the starting key schedule state for forward and backward functions.

–
−−→
End: the terminating state in encryption for the forward function.

–
←−−
End: the terminating state in encryption for the backward function.

–
←→
M Match: the matching round operator between the two terminating states.

The locations of the special states mentioned above represent different ways
of segmenting the closed loop, hence uniquely determining the structure of a
MITM attack. The locations are modeled with round-level precision. The attack
configuration parameter config is defined as the ordered tuple with the following
attributes:

– Total : the total attacked rounds.

– EncSt : the round index of
←→
S ENC.

– KeySt : the round index of
←→
S KSA.

– Match: the round index of
←→
M Match,

−−→
End and

←−−
End.

To enable independent computations, the bytes (cells) in
←→
S ENC and

←→
S KSA are

partitioned into subsets with different coloring BENC, RENC, GENC and BKSA, RKSA,
GKSA satisfying the following relations:

BENC ∪RENC ∪ GENC = {0, 1, . . . , Nb}
BENC ∩RENC = ∅
RENC ∩ GENC = ∅
GENC ∩ BENC = ∅

(3)
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BKSA ∪RKSA ∪ GKSA = {0, 1, . . . , Nk}
BKSA ∩RKSA = ∅
RKSA ∩ GKSA = ∅
GKSA ∩ BKSA = ∅

(4)

The initial degrees of freedom of forward and backward computations are de-
noted by ←−ι and −→ι . In the attribute propagation of each function, additional
constraints may be imposed to cancel mutual impact and preserve functional
independence. The consumed degrees of freedom (DOFs) are denoted as −→σ and
←−σ . The remaining DOFs at the end of each computation are denoted as

−→
db and←−

dr . Relations can be formulated intuitively as follows:

−→ι = |BENC|+ |BKSA|
←−ι = |RENC|+ |RKSA|

(5)

−→
db = −→ι −−→σ
←−
dr =←−ι −←−σ

(6)

The distribution of
←→
M Match,

−−→
End, and

←−−
End decides the degree of matching

→←
m .

According to Equation 2, min{−→db ,
←−
dr ,
→←
m } determines the complexity of a MITM

attack. Thus, the search for the optimal MITM attack pattern of given config is
converted to a maximization problem on objective τObj:

max
config

τObj

s.t. τObj ≤
−→
db

τObj ≤
←−
dr

τObj ≤
→←
m

τObj > 0

(7)

Given an n-bit target, the pseudo-preimage attack complexity of an attack con-
figuration (

−→
db ,
←−
dr ,
→←
m ) will be (in the exponent of 2):

n−min{−→db ,
←−
dr ,
→←
m }

A preimage attack can be constructed based on a pseudo-preimage attack with
time complexity (in the exponent of 2) as follows:{

n−min(
−→
db ,
←−
dr ,
→←
m ) + log2(min(

−→
db ,
←−
dr) ln 2 + 1) if min(

−→
db ,
←−
dr) <

→←
m

n−min(
−→
db ,
←−
dr ,
→←
m )/2 + 1 otherwise

(8)
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3.2 The Superposition State Structure

For an intermediate state around linear operators, the superposition structure [8]
introduces two superposition states, each carrying the propagation of only one
function. The rationale behind the separation is due to the linearity of the op-
erators. An intermediate state and its superposition states are denoted as s, sF ,
and sB . If there is a bilinear function λ such that s = λ(sF , sB), then s propa-
gating through a Rijndael linear operator χ is expressed as χ(s) = χ(λ(sF , sB)).
For deterministic bilinear function λ′ = χλ(χ−1 × χ−1), χ(s) can be expressed
as χ(s) = λ′(χ(sF ), χ(sB)). Hence, the propagation of the intermediate state is
equivalent to propagating two superposition states independently if the superpo-
sition states are bilinearly associated before. However, such parallel propagation
must end when undergoing non-linear operators where the linear relation be-
tween two propagation trails will be destroyed.

Specifically, the superposition structure is deployed in Rijndael with the following
heuristic:

1. The single state separates into two superposition states after SubBytes.

2. The superposition states propagate independently through other operators.

3. The superposition states collapse to a single state.

4. The single state propagates through SubBytes.

The superposition technique automatically supports the BiDir technique [8],
which generalizes DOF consumptions in forward and backward computations.

3.3 Simplified Encoding Scheme

The conventional encoding scheme [7, 8] used two encoders x and y to encode
different coloring: = (0, 0), = (1, 0), = (0, 1), = (1, 1). To uniquely
identify and , two additional encoders are used:

g = x ∨ y
w = 1 + g − x− y (9)

The x− y − g −w encoding allows redundancies in the superposition structure.
First, the scheme was originally introduced to cover two propagations simulta-
neously at a single state. However, in superposition states, attribute propagation
no longer requires information from both functions. In other words, will never
appear in the backward computation and in the forward computation. Second,
the identification of and (g and w encoders) is complex in implementation
and difficult for preprocessing.

In this work, a symmetric and efficient encoding scheme is proposed dedicated
to the superposition structure. The scheme involves two variables α and β:

– α: equals 1 if and only if the byte could be calculated in the current function.
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– β: equals 1 if and only if the exact value of the byte is known in the current
function.

It is easy to observe that β = 1 is a stronger condition than α = 1. Therefore,
β ≤ α is enforced. The propagation is symmetrically encoded as: or (α, β) =
(1, 0), (α, β) = (1, 1) and (α, β) = (0, 0). In this encoding scheme, β = 1
uniquely identifies , and α = 0 uniquely identifies .

Due to the symmetric nature of the encoding, in subsequent sections, the MILP
engraving of propagation rules will only be detailed for the forward computation.
The rules for backward computation are autonomous.

Modelling the start and end of superposition states. EnterSUP-Rule
describes the separation of a single state s = (x, y) into two superposition states
sF = (αF , βF ) and sB = (αB , βB) with the α − β encoding. The separation is
performed byte-wise: If a byte s is or , then sF and sB are both arbitrary or
constant, either way, sF and sB share the same coloring as s. Suppose s is or

, which means that the color of s is preserved in the corresponding computation
and the other direction will be compensated with symbolically, indicating a
constant influence:

(αF , βF ) = (x ∨ y, y)
(αB , βB) = (x ∨ y, x) (10)

Before SubBytes, the ExitSUP-Rule collapses the two virtual states sF =
(αF , βF ) and sB = (αB , βB) into a single state s = (x, y) before SubBytes.
If the collapsed state is influenced by an arbitrary byte or by both the forward
and the backward computations, the state is arbitrary. The rule is formulated
as follows:

(x, y) = (αF ∧ βB , αB ∧ βF ) (11)

Modelling SubBytes and ShiftRows. The SubBytes operator itself does
not change the attribute of the cells. As long as the superposition states are col-
lapsed properly before SubBytes, the operator does an identity transformation
on the coloring. The ShiftRows operator permutes the state cells according
to some predefined constants and thus can be modeled by a set of equalities
between dedicated variables or some hardcoded variable substitutions, both of
which are intuitive and autonomous.

Modelling AddRoundKey. XOR is the basic operator in AddRoundKey, which
takes two cells as input and outputs one cell. Under the α − β encoding, the
XOR-Rule could be simplified compared to previous works [7, 8]. The rule is
described as follows:
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– When the inputs contain , the output is .

– When the inputs are both , the output is .

– Otherwise, the output is:

• , with no consumption of DOF.

• , consuming 1 DOF of the forward computation.(−→σ = −→σ + 1)

The above description is converted to constraints by the convex-hull method [23].
The resulting inequalities should involve the following variables: the (α, β)-
encoders of both inputs and the output together with an indicator variable to
track DOF consumptions.

Modelling the KeyExpansion. KeyXOR-Rule is introduced to identify and
address dependencies in the KeySchedule. Recall Equation 1, a node w[i] in
KeyExpansion has two parents: w[i− 1] and w[i−Nk]. If the index i satisfies
the condition:

i ̸≡
{
0 Nk ≤ 6

0, 4 Nk > 6
, (mod Nk) (12)

w[i] = w[i − Nk] ⊕ w[i − 1]. If the same condition holds for i − 1, w[i] can be
expressed using only w[i− 2Nk] and w[i− 2]:

w[i] = w[i−Nk]⊕ w[i− 1]

= w[i− 2Nk]⊕ w[i−Nk − 1]⊕ w[i−Nk − 1]⊕ w[i− 2]

= w[i− 2Nk]⊕ w[i− 2]

(13)

Note that the middle term w[i−Nk − 1] cancels due to the consecutive XORs
without confusion. However, since the basic XOR-Rule sequentially obtains the
parents of w[i] and then w[i] itself, the coloring of w[i−Nk − 1] will still affect
w[i]. For instance, if w[i − Nk − 1] is while w[i − 2Nk] and w[i − 2] are
or , then w[i] will be miscolored to . Moreover, if w[i − 2Nk] and w[i − 2]
are both and w[i − Nk − 1] is , w[i] will be miscolored as or waste an
unnecessary DOF to cancel impact by turning . To address such dependencies,
two additional encoders αeq and βeq are introduced for KeyXOR-Rule:

αeq =

{
min(αw[i−2Nk], αw[i−2]) i, i− 1 s.t. condition 12
0 otherwise

βeq =

{
min(βw[i−2Nk], βw[i−2]) i, i− 1 s.t. condition 12
0 otherwise

(14)

Due to the enforced constraint β ≤ α, it follows that βeq ≤ αeq. The KeyXOR-
Rule is defined as follows:
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– When βeq = 0, and αeq = 0, apply the XOR-Rule with respect to w[i− 1]
and w[i−Nk]

– When βeq = 0, and αeq = 1, apply the XOR-Rule with respect to w[i− 1]
and w[i − Nk], but override the coloring of the output cell whenever the
inputs contain as follows:

• , without consumption of DOF.

• , consuming 1 DOF from the forward computations. (−→σ = −→σ + 1)

– When βeq = 1, and αeq = 1, the output is without DOF consumption.

The above description is also translated into constraints by the convex-hull
method. The inequalities involve the (α, β) encoders of the two inputs and one
output, the equivalence encoders αeq, βeq, as well as an indicator variable to
track DOF consumption.

Modeling MixColumns. A MixColumns operator takes a column as input
and outputs a column. The propagation rule is described as follows:

– When the inputs contain , the outputs are all .

– When the inputs are all , the outputs are all .

– Otherwise, the output will be (WLOG, in forward computation):

• 4 blue cells ( ), without consumption of DOF.

• b blue ( ) cells and g gray ( ) cells, with b+g = 4 and g > 1, consuming
forward DOF(s) [7].

In [7, 8], realizing above rules with x−y−g−w encoding requires three additional
columnwise encoders µ,ν,ω. The input column is superscripted I and the output
column O. The exact implementation is shown as follows:

∑3
i=0 x

O
i + 4 · ω ≤ 4∑3

i=0(x
I
i + xOi )− 8 · µ ≥ 0∑3

i=0(x
I
i + xOi )− 5 · µ ≤ NIO −Br∑3

i=0 y
O
i + 4 · ω ≤ 4∑3

i=0(y
I
i + yOi )− 8 · ν ≥ 0∑3

i=0(y
I
i + yOi )− 5 · ν ≤ 3∑3

i=0 x
O
i − 4 · µ = costF∑3

i=0 y
O
i − 4 · ν = costB

(15)

The modeling of the MixColumns operator can be simplified using the new en-
coding scheme. Only two additional encoders κ and ψ are introduced to provide
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quick identification of a column being all or existing :

κ = min
i
(αI

i )

ψ = min
i
(βI

i )
(16)

By definition, κ = 0 if and only if there is among the input, and ψ = 1 if and
only if the inputs are all . The MC-Rule is thus defined minimally:

αO
i = κ

βO
i = ψ + ςi

(17)

The binary cost variables ςi are byte-wise, as an indication of whether a cost of
DOF occurs locally for a single cell, instead of integer-valued costF and costB
tracking the total cost for the whole column in previous models [7].

To achieve maximum speedup, the modeling does not provide extra treatment in
special scenarios where the actual cost of DOF is less than

∑
i ςi. For example,

if the inputs consist of 1 and 3 , then the outputs will be all with 1 DOF
cost, as the inputs only have 1 DOF. In the above modeling, the total cost will
still be 4 since the cost of DOF is counted byte-wise. However, since the MILP
model is globally optimized, such a propagation pattern in this model will be
equivalent to turning the only in the MixColumns inputs to during the last
AddRoundKey operator, consuming 1 DOF. By doing so, the input column of
MixColumns will be all and the global DOF cost remains the same. Hence,
the special scenario is neglected to maintain minimal construction.

Modeling the matching. There are three types of matching rules used in this
work:

– ID-Match: identity match in the last round.

– MC-Match: match through a single MixColumns operator.

– MegaMC-Match: match through a mega-MixColumns operator.

Following traditional notations, the cell locates at the i-th row and the j-th
column is indexed by n = 4 · j + i.

The ID-Match happens checks
−−→
End and

←−−
End byte by byte in single states, a

matching happens when at index n
−−→
End[n] and

←−−
End[n] are not .

The MC-Match checks
−−→
End and

←−−
End column by column in superposition states:−−→

EndF ,
−−→
EndB ,

←−−
EndF ,

←−−
EndB . ζi,j = 1 if and only if at index n = 4 · j + i the for-

ward branch and backward branch are both non-arbitrary (
−−→
EndF [n],

−−→
EndB [n] ∈

{ , , }). Due to the fact that the MixColumns operator has branch number
5, a linear constraint can be constructed when the input and output columns
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contain 5 eligible bytes,[7]. And one more linear constraint can always be con-
structed with one more eligible byte than 5. Hence, the rules for MC-Match
are formulated as follows: a match occurs in column k if:

∑4
i=1 ζi,k > 4 with

matching degree mk =
∑4

i=1 ζi,k − 4.

The MegaMC-Match is proposed as an extension of MC-Match. In the au-
tomatic search for long-round MITM attacks, the bottleneck often lies in

→←
m .

The intention of the new match is to exploit for matching, which was deemed
impossible in previous works, and to increase

→←
m .
−−→
End and

←−−
End are investigated

column by column in single states. The input and output columns are denoted
X and Y . Then the MixColumns operator could be expressed as follows:

MX = Y (18)

Equation 18 is equivalent to 19 if X and Y are viewed as inputs:

[M|− I4][X|Y ] = 0 (19)

Clearly, the 4 ∗ 8 matrix [M| − I4 has a rank 4. Thus, if there exists 4 , the
exact values of X and Y are known in the forward computation regardless of
the coloring. The forward computation can be reverted back from

←→
M Match and

the matching can be extended to the last superposition states on both sides of←→
M Match, as illustrated in the diagram below:

X ′F , X
′
B

SupP−−−−→ X ′
SubBytes1−−−−−−−→
ShiftRows

X
match↔ Y

SubBytes2←−−−−−−−−
AddRoundKey

Y ′
SupP←−−−− Y ′F , Y ′B

The matching is equivalently considered as the match between X ′ and X ′F , X
′
B

through SubBytes1, and between Y ′ and Y ′F, Y ′B through SubBytes2. For
instance, in Fig. 5, due to the 4 in

−−→
End and

←−−
End, all the green circled

cells are known in the forward computation. The information in
−−→
End[7] can

be backtracked to SB6[3], and a partial match constraint can be constructed as:
SubBytes(SB6

F [3]⊕ SB6
B [3]) = SB6[3]

Using ζi,X′ and ζi,Y ′ to mark the eligible cells for X ′ and Y ′, the degree of match
under MegaMC-Match is mk =

∑4
i=1 ζi,X′ + ζi,Y ′ − 4, since constructing

the relation between X and Y will consume 4 DOFs. Note that to revert the
calculations from Y ′ to Y and produce an eligible byte, the round key at the
corresponding position must be or .

4 Application to Rijndael

The preimage security of all versions of Rijndael-based hash functions is assessed
with the refined and enhanced automation model. The Rijndael versions are
indexed first by block size and then by key size, e.g. Rijndael 128-192 denotes
the version of AES192. The results are given in Table 1.
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Fig. 6: A 8-round attack on Rijnadael 128-192 with search objective 3.

 

I

Fig. 5: Example of MegaMC-Match

During the automatic search, the BiDir technique and the MegaMC-Match are
critical techniques for better attack strategies. The Guess-and-Determine (GnD)
strategy [8] and the Multiple AddRoundKey (MulAK) technique [8] are tested in
the automatic search, both fail in yielding better results, either in attack rounds
or complexity. The observation is in line with the declared Critical Tech. in Table
1 of [8].

In the figures, the intermediate states are indexed according to the type of oper-
ator to which they input, and the round index (i.e. SB8 denotes the intermediate
state immediately before the SubBytes operator in round 8). The special state
AT denotes the intermediate state before XORing of a known text and the
whitening key. Again, following traditional notation, a cell locates at the i-th
row and the j-th column is indexed by n = 4 · j + i.

4.1 Example: Pseudo-preimage Attack on 10-round Rijndael
256-256

The MITM attack procedures are demonstrated using Fig. 6, which depicts a
pseudo-preimage attack on 10-round Rijndael 256-256. The attack starts with the
precomputation of blue and red initial values. Recall that during propagation,
certain cells are imposed constraints to preserve propagation trails, represented
by the consumption of DOF and the coloring of . A MITM attack fixes the
value of such beforehand and precomputes the initial values satisfying those
constraints.

Precomputation of red initial values. First, KS4 and MC3 are equiva-
lently chosen as

←→
S KSA and

←→
S ENC in backward computation, i.e. GKSA = {9, 11, 23},
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Fig. 6: A 10-round attack on Rijndael 256-256 with search objective 1.
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RKSA = {0, 1, . . . , 31}\GKSA,RENC = {0, 1, 2, 3, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31}.
All round keys can be expressed with free variables at RKSA and predefined con-
stants at GKSA = {kcr0, kcr1, kcr2}. There are two additional constraints imposed
by at KS7[9] = kcr3 and KS9[1] = kcr4. A dependency in the key schedule ap-
pears at KS9[9]: when KS7[9] and KS9[1] are , KS9[9] = KS8[9]⊕KS9[5] =
KS7[9]⊕KS9[1] = kcr3+kc

r
4 is without DOF consumption. It is clear that the

KeyXOR-Rule outperforms basic XOR-Rule since the position is essential
for the forward propagation of SB9[9].

For encryption states, the active inputs on RENC can be constrained according to
the predefined constants cr0,...41 locate at SB4

B [4, 5, 17, 18], SB
5
B [5], SB

6
B [0, 1, 2, 3, 17],

SB7
B [2, 12, 17, 20, 22, 29, 31], SB

8
B [13, 22, 27], MC0

B [1], MC1
B [0, 19, 22, 29], and

MC2
B [0, 3, 6, 7, 10, 13, 15, 16, 17, 18, 19, 20, 22, 25, 28, 29].

To sum up, in backward computations, a total of ←−σ = 47 constraints have
been added for ←−ι = 48 variables according to the chosen values of predefined
constants, leaving 28 valid candidates.

Precomputation of blue initial values. The precomputation of blue initial
values is straightforward. SB5

F [5] can be selected equivalently to
←→
S ENC, and since

are no constraints on SB5
F [5], all 28 candidates are valid. To simplify the for-

ward propagation trail, the cost of DOF at MC3 can be equivalently transferred
to AK3. Consequently, all cells in the forward computation can be expressed
using the active byte SB5

F [5] and the predefined constants cb0,...14 located at
SB5

F [4, 6, 7] and SB4
F [5, 6, 7, 8, 10, 11, 16, 17, 19, 20, 21, 22].

The pseudo-preimage attack procedure. The pseudo-preimage attack is
performed as follows:

1. Select an untested set of predefined values for cr0,...41, cb0,...14, and kcr0,...4 from
the pool of size 2x, and initialize forward and backward lists Lf and LB to
empty.

2. Fix the symbolic gray cells MC5
F [0, 1, 2, 3, 8, 9, . . . 31] as zeroes.

3. Feed the 28 candidates for forward computations into the computation path
and compute to the matching point (i.e. MC8[9, 10, 11] and AK8[9]).

4. With the 4 known blue cells at the matching point, calculate MC8[8] =
AK8[9] − 2MC8[9] − 3MC8[10] − MC8[11] and subsequently SB8[8] =
SubBytes(MC8[8]).

5. Store the candidates for forward computations into Lf , index by the value
of SB8[8] and SB8

F [8].

6. Fix the symbolic gray cellsMC3
B [4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23]

as zeros.
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7. Feed the 28 candidates for backward computations into the computation
path and compute to SB8

B .

8. Store the candidates for backward computations into LB , index by the value
of SB8

B [8].

9. Check LF and LB for partial-match by testing if SB8[8]] = SubBytes(SB8
F [8]⊕

SB8
B [8]). A total of 28 candidates is expected to remain in LF × LB (28 =

28 · 28/ →←m ).

10. Check the 28 candidates for a full match. If a full match is found, exit with the
obtained pseudo-preimage of the given target. Otherwise, repeat procedures
from 1 to 9.

Computational complexity. A remnant of 28 candidates (combined forward
and backward) that satisfies the 8-bit partial-match can be obtained with one
selection from the pool of 2x potential predefined constant values. The value of x
is calculated by x = 256−−→db−

←−
dr = 240. Thus, the time complexity of the above

pseudo-preimage attack is 2x+8 = 2248. And by Equation 8, the time complexity
of the converted preimage attack is calculated as 2(256+248)/2+1 = 2253

5 Conclusions

This work has further refined the MILP modeling of the automatic search of
preimage attacks on the Rijndael structure. It has introduced a dedicated and
lightweight encoding scheme for the superposition structure [8]. With new match-
ing methods and treatment of dependencies in Rijndael’s key schedule incorpo-
rated, this work has mounted the first comprehensive study on all versions of
Rijndael-based hashing. This work has successfully replicated all referenced at-
tacks and found improvements.

Further studies should focus on exploring and addressing more complex depen-
dencies among neutral bytes to save repeated consumptions of DOFs, as well as
discovering equivalence in attack patterns and pruning the search space.
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Appendix

Table 2 and 3 show the number of iterations and ShiftRows offsets of Rijndael
encryption.

Table 2: Number of iteration
Nb Nk Nr

4 4 10
6 12
8 14

6 4 12
6 12
8 14

8 4 14
6 14
8 14

Table 3: ShiftRows offsets
Nb Row Index Offset

4/6 0 0
1 1
2 2
3 3

8 0 0
1 1
2 3
3 4

Fig. 7, 8, 9, 10, 11, and 12 show the attack figures for 8-round AES192, 9-round
Rijndael 192-128, 192-192, 192-256, 256-128, and 10-round Rijndael 256-192.
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Fig. 7: A 8-round attack on Rijndael 128-192 with search objective 3.
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Fig. 8: An 8-round attack on Rijndael 192-128 with search objective 2.
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Fig. 9: An 9-round attack on Rijndael 192-192 with search objective 1.
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Fig. 10: A 9-round attack on Rijndael 192-256 with search objective 2.
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Fig. 11: An 9-round attack on Rijndael 256-128 with search objective 1.
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Fig. 12: An 10-round attack on Rijndael 256-192 with search objective 1.


