
Novel Approach to Cryptography
Implementation using ChatGPT

Hyeokdong Kwon1[0000−0002−9173−512X],
Minjoo Sim1[0000−0001−5242−214X],

Gyeongju Song1[0000−0002−4337−1843],
Minwoo Lee2[0000−0002−2356−3055], and
Hwajeong Seo2[0000−0003−0069−9061]

1Department of Information Computer Engineering,
Hansung University, Seoul (02876), South Korea,

2Department of Convergence Security,
Hansung University, Seoul (02876), South Korea,

{korlethean, minjoos9797, thdrudwn98, minunejip, hwajeong84}@gmail.com

Abstract. ChatGPT, which emerged at the end of 2022, has gained
significant attention as a highly advanced conversational artificial intel-
ligence service. Developed by OpenAI, ChatGPT is a natural language
processing model. There are instances where individuals might want to
attempt programming using ChatGPT. In this paper, we utilized the
ChatGPT to implement a cryptographic algorithms. Despite numerous
trial and error efforts, it was possible to implement cryptography through
ChatGPT. This implies that even without extensive coding skill or pro-
gramming knowledge, one can implement cryptography through Chat-
GPT if they understand the cryptographic structure. However, the abil-
ity to analyze the source code is essential, as it is necessary to identify
incorrect parts within the implemented code.

Keywords: Block Cipher · ChatGPT · Cryptography Implementation
· Software Implementation.

1 Introduction

ChatGPT, developed by OpenAI, is a natural language processing model that
generates sentences at a level similar to human language. Introduced in Novem-
ber 2022, ChatGPT demonstrated powerful processing capabilities and created a
significant sensation. Many users have utilized ChatGPT in various fields such as
academic writing, search engines, and coding [1]. Although ChatGPT is primar-
ily a language model, it is also capable of programming. In particular, if require-
ments are specified by users, a program can be written according to the specifi-
cations. However, implementing highly complex programs using only ChatGPT
remains challenging. Cryptographic algorithms are based on intricate mathemat-
ical operations, and their internal workings are also complex. In this paper, we
introduce a methodology to implement complex cryptographic algorithms using
ChatGPT.

2 Kwon et al.

1.1 Contributions

– First implementation of cryptography algorithms using ChatGPT.
There are many examples of programming using ChatGPT. However, it has
not been applied to specialized fields, such as cryptographic algorithms. In
this paper, the cryptographic algorithm was completely implemented using
only the source code written by ChatGPT without human code writing. Al-
though the source code was not complete, cryptography engineers checked
and requested modifications, but most of the code was implemented success-
fully by ChatGPT.

– Presenting a methodology for implementing cryptographic algo-
rithms through artificial intelligence. We introduce a method for imple-
menting cryptography through AI. This approach enables AI to directly gen-
erate the source code without any manual modification during algorithm im-
plementation. This presents a novel avenue for implementing cryptographic
algorithms by analyzing test vectors, even for those who may not possess
the skills to write source code themselves.

2 Related Works

2.1 ChatGPT

ChatGPT is a state-of-the-art Large Language Model (LLM) announced by Ope-
nAI at 2022. While previous classes of AI models were primarily deep learning
(DL) models designed to learn and recognize patterns in data, LLMs are a new
type of AI algorithm trained to predict the likelihood of a given sequence of words
based on the context of the preceding word. Thus, if an LLM is trained on a
sufficiently large amount of text data, it can generate new word sequences that
have never been observed before by the model, but represent plausible sequences
based on natural human language [2].

ChatGPT is based on GPT-3 (Generative Pre-trained Transformer-3), a deep
learning-based language model. It is an extensive neural network comprising 175
billion parameters. The use of the GPT-3 model is increasing in fields such as
language translation and question answering, and since it corresponds to unsu-
pervised learning, content is created based on a vast amount of big data learned
from the Internet. GPT-3 not only performs tasks that machine learning can do
but also interacts and converses in a manner similar to humans. In particular,
ChatGPT is an interactive artificial intelligence model that learns through user
feedback and verifies the generated output, enabling the model to self-adjust its
bias by incorporating a reinforcement learning element to influence the learning
results. After being released to the public in November 2022, its user base has
rapidly grown, and various use cases across different fields are being presented,
leading to a new paradigm in artificial intelligence [3].

Designed to interact with users in a human-like manner and learn from feed-
back, ChatGPT can provide answers to user prompts or offer relevant infor-
mation. The responses or information provided are generated results that, while

Novel Approach to Cryptography Implementation 3

not identical, exhibit similarities, using unstructured data that exists on the web
learned by 2021. The currently applied GPT-3.5 model does not automatically
provide sources and has limitations, such as the difficulty of real-time web data
search.

2.2 Target Cryptography Algorithm

AES (Advanced Encryption Standard) Block Cipher AES is a project
that solicits block cipher algorithms globally to replace DES, which has sig-
nificant security issues at the National Institute of Standards and Technology
(NIST). Rijndael, developed by Joan Daemen and Vincent Rijmen, was chosen
as the AES encryption algorithm in October 2000. Since then, AES has become
the most widely used block cipher algorithm worldwide. The input plaintext
length for the AES algorithm is fixed at 128 bits, while the round key length
used for encryption can be chosen from 128-bit, 192-bit, or 256-bit. The number
of rounds varies depending on the key length, with 10, 12, and 14 rounds being
applied [4]. AES represents the intermediate result values generated during the
encryption and decryption processes as a 4×4 two-dimensional byte matrix. The
4×4 two-dimensional matrix is arranged in a column-first order rather than row-
first. There are primarily four independent functions within the round function
of AES, with each round function as follows.matrix. There are largely four inde-
pendent functions within the round function of AES, and each round function
is as follows.

– SubBytes (SB): Non-linear byte substitution function using an 8-bit S-box.
– ShiftRows (SR): A function that performs left rotation by row. The first row

remains unchanged, the second row is rotated by 1 byte, the third row is
rotated by 2 bytes, and the fourth row is rotated by 3 bytes.

– MixColumns (MC): A 32-bit linear transformation function that performs
column-by-column mixing.

– AddRoundKey (ARK): A function that executes addition with a round key.

During the encryption process of AES, before applying the round function,
plaintext and round key addition are initially applied as a whitening step, fol-
lowed by the execution of the four round functions. In the final round, all round
functions are performed except for the MixColumn function. In the decryption
process, there are inverse transformation functions for the four individual func-
tions carried out during the encryption process. These inverse transformation
functions and the round key used in the encryption process are applied in re-
verse order.

CHAM Block Cipher The CHAM block cipher is a lightweight block cipher
introduced at ICISC’17 [5]. It primarily targets low-end processors such as 8-bit
AVR, 16-bit MSP320, and 32-bit ARM processors. Moreover, the hardware size
can be implemented at a minimum when compared to existing block encryption

4 Kwon et al.

algorithms and bit-serial implementations. CHAM is an ARX (Addition, Rota-
tion, eXclusive-or) based algorithm, which contributes to its lightweight feature.
In particular, CHAM successfully reduces key storage space by using a state-
less round key technique that does not store the key state. CHAM offers three
encryption schemes in total. The entire parameters for each CHAM scheme are
shown in Table 1 [6].

Table 1: Parameters of block cipher CHAM. n: block size (bit), k: key size (bit),
w: word size (byte), r: number of round for revised CHAM, rlegacy: number of
round for original CHAM.

Scheme n k w r rlegacy

CHAM-64/128 64 128 16 88 80

CHAM-128/128 128 128 32 112 80

CHAM-128/256 128 256 32 120 96

The encryption algorithm of the CHAM block cipher differs in the offset
used in odd and even rounds, and the detailed encryption process is depicted
in Figure 1. The plaintext is divided into four parts and transitions from Xi to
ωi. Xi becomes an XOR operation with the counter. Next, Yi undergoes a left
rotation. After XOR with the round key, Xi is added, and a left rotation oper-
ation is performed eight times. The subsequent values are moved word by word
and stored [7]. CHAM has the advantage of being resistant to error injection
attacks that analyze secret keys based on incorrect output after injecting inten-
tional errors into the cryptographic device’s operation [8]. In ICISC’19, Revisited
CHAM, which has the same structure and specifications as existing CHAM but
with an increased number of rounds, was introduced [9]. The previous CHAM
rounds consisted of 80 rounds for CHAM-64/128, 80 rounds for CHAM-128/128,
and 96 rounds for CHAM-128/256, but Revised CHAM used 88, 112, and 120
rounds for CHAM-64/128, CHAM-128/256, and CHAM-128/256, respectively.

3 Implementation of Cryptography Algorithm using
ChatGPT

In this section, we show the implementation of the cryptographic algorithm
using ChatGPT. We went through four steps to implement a cryptographic
algorithm with ChatGPT. The first is a check on the algorithm. Checks whether
ChatGPT knows the cryptographic algorithm. The second step is teach algorith
to ChatGPT if it doens’t know about target cipher. The third step is to request
coding in C language. The last step is to run the provided source code to check
if the algorithm is properly implemented. Check the test vector, and if this value
is normal, it is judged that the implementation is successful. If not, ChatGPT
is requested again to find and correct the wrong part. This process is repeated

Novel Approach to Cryptography Implementation 5

Xi Yi Zi Wi

8

1

Xi+1 Yi+1 Zi+1 Wi+1

1

8

Xi+2 Yi+2 Zi+2 Wi+2

i

i+1

i mod 2k/w

i+1 mod 2k/w

XOR

Modular addition

n n times right rotation

Fig. 1: The round function structure of CHAM block cipher.

to complete the encryption algorithm. A detailed explanation is provided in
Section 3.1. We have classified two types of ciphers to be implemented. One
is a well-known algorithm. This did not explain the algorithm separately to
ChatGPT, but only confirmed that it knew the algorithm and proceeded with
the implementation immediately. The other is an obscure algorithm. In this
case, since ChatGPT has an unknown structure, the algorithm was separately
explained and the implementation proceeded. We used ChatGPT 4.0 to obtain
accurate implementation results.

6 Kwon et al.

Inquire if ChatGPT is

familiar with the target

cipher algorithm.

Provide information on

the algorithm to

ChatGPT.

Ask for the correction

of erroneous sections.

Is ChatGPT knowledgeable

about the algorithm?

Has the algorithm

been correctly implemented?

Request ChatGPT to

implement the

algorithm.

Cryptographic

algorithm

implementation is

complete.

: Yes

: No

Fig. 2: The Cryptographic Algorithm Implementation Approach Using Chat-
GPT.

3.1 Procedure of Cryptography Implementation using ChatGPT

To implement a cryptographic algorithm through ChatGPT, a four-step ap-
proach was designed. The first step is the algorithm verification stage. It is
important to note that ChatGPT’s knowledge is limited to data up to 2021 [10].
Therefore, it is crucial to ensure that ChatGPT is familiar with the desired algo-
rithm for implementation. If ChatGPT knows the target algorithm, step 2 can
be skipped.

The second step involves teaching the algorithm. If ChatGPT is unfamiliar
with the algorithm to be implemented, it must be taught. Considering that
ChatGPT is a conversational language model, the algorithm is taught through
explanations using words and occasional mathematical expressions.

Step 3, focuses on algorithm implementation. ChatGPT is asked to imple-
ment the known or learned algorithms in a specific language. In this paper, C
language was chosen for implementation.

Step 4, entails algorithm integrity verification and modification. It is neces-
sary to determine if the algorithm implemented by ChatGPT functions properly.
Generally, cryptographic algorithms reveal their structure and provide test vec-
tors. Consequently, if the results obtained from running the source code supplied
by ChatGPT match the test vector, the algorithm can be deemed successfully
implemented. If the results are incorrect, the source code needs to be adjusted
to rectify any errors in the algorithm’s implementation. It was assumed that

Novel Approach to Cryptography Implementation 7

individuals attempting to implement the algorithm through ChatGPT may not
have extensive programming knowledge. As a result, instead of directly modify-
ing the code, users should identify the incorrect portions and request ChatGPT
to make the necessary corrections. The overall process is illustrated in Figure 2.

3.2 Implementation of Well-known Algorithm: AES

AES is a well-known algorithm due to its establishment as a standard in 2001
and its long-standing usage. As a result, when asking ChatGPT about AES, it is
evident that it understands the algorithm correctly, as demonstrated in Listing 1.
Moreover, ChatGPT recommends using open-source libraries such as OpenSSL
for implementing AES. This suggests that utilizing an already-implemented li-
brary is more common than directly implementing a cryptographic algorithm.

8 Kwon et al.

I want implement AES algorithm written in C language. Before start
this one, do you know about structures of AES algorithm?

Yes, I’m familiar with the Advanced Encryption Standard (AES)
algorithm. AES is a symmetric key encryption algorithm, which means
it uses the same key for both encryption and decryption. It operates on
fixed block sizes of 128 bits and supports key sizes of 128, 192, or 256
bits. The algorithm consists of several stages, including key expansion,
initial round, main rounds, and a final round.
Here’s a high-level overview of the main stages in AES encryption:
1. Key expansion: The original key is expanded into an array of key sched-
ule words, which will be used in subsequent rounds of the algorithm.
2. Initial round:

• AddRoundKey: The input block (plaintext) is XORed with the ini-
tial round key derived from the key schedule.
3. Main rounds (9, 11, or 13 rounds, depending on the key size):

• SubBytes: A non-linear substitution step where each byte of the
block is replaced with a corresponding byte from a pre-determined sub-
stitution table (S-box).

• ShiftRows: A transposition step where the last three rows of the
state are shifted cyclically a certain number of steps.

• MixColumns: A linear mixing operation that operates on the
columns of the state, combining the four bytes in each column using
a pre-determined matrix.

• AddRoundKey: The result of the previous three steps is XORed
with a round key derived from the key schedule.
4. Final round (no MixColumns):

• SubBytes
• ShiftRows
• AddRoundKey

The decryption process follows a similar structure but in reverse order,
using inverse operations for SubBytes, ShiftRows, and MixColumns.
Now that you have an overview of the AES algorithm, you can start im-
plementing it in C. There are many open-source libraries available that
you can use as a reference or starting point.

Keep in mind that implementing cryptographic algorithms from scratch
can be challenging and prone to errors. It’s often recommended to use
well-established libraries, such as OpenSSL or mbedtls, for production
use cases.

Listing 1: Answer when asking ChatGPT about AES.

Novel Approach to Cryptography Implementation 9

This indicates that ChatGPT is familiar with the AES algorithm. Conse-
quently, the implementation was carried out for each module without explaining
the AES algorithm. ChatGPT can output 4096 tokens at once. However, this
can cause the output to stop when values such as the S-Box table are output. To
ensure stable code output, large table values like the S-Box table were requested
to be omitted, and other parts were printed. The modules for which output was
requested are as follows.

– Key Expansion.
– Subbytes
– Inverse subbytes
– Shift rows.
– Inverse shift rows.
– Mix columns.
– Inverse Mix columns.
– Add round key
– AES encryption.
– AES decryption.

Primarily, the implementation was requested for subbytes, shift rows, mix
columns, and add round key steps, which are essential components of AES oper-
ation. For instance, key expansion is implemented in the form shown in Listing 2.

Then implement AES key expansion in C language. If you are going
to use the Rcon table as well, define this as a global variable.

Here’s an implementation of the AES key expansion in C, along with
the Rcon table as a global variable:

1 #include <stdint.h>

2

3 // Rcon table for key expansion

4 static const uint8_t rcon [11] = {

5 0x00 , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0

x1B , 0x36

6 };

7

8 // S-box (SubBytes) - Please fill in the values

9 static const uint8_t s_box [256];

10

11 // Helper functions

12 static uint32_t RotWord(uint32_t word) {

13 return (word << 8) | (word >> 24);

14 }

15

16 static uint32_t SubWord(uint32_t word) {

10 Kwon et al.

17 uint32_t result = 0;

18 result |= s_box [(word >> 24) & 0xFF] << 24;

19 result |= s_box [(word >> 16) & 0xFF] << 16;

20 result |= s_box [(word >> 8) & 0xFF] << 8;

21 result |= s_box[word & 0xFF];

22 return result;

23 }

24

25 // Key expansion

26 void AES_KeyExpansion(const uint8_t *key , uint32_t *

key_schedule , int key_size) {

27 int num_words = key_size / 32; // Number of words in the

initial key

28 int key_schedule_size = (key_size == 128) ? 44 : (

key_size == 192) ? 52 : 60;

29

30 // Copy the initial key to the key schedule

31 for (int i = 0; i < num_words; i++) {

32 key_schedule[i] = (key[4 * i] << 24) | (key[4 * i +

1] << 16) | (key[4 * i + 2] << 8) | key[4 * i + 3];

33 }

34

35 // Generate the remaining words in the key schedule

36 for (int i = num_words; i < key_schedule_size; i++) {

37 uint32_t temp = key_schedule[i - 1];

38

39 if (i % num_words == 0) {

40 temp = SubWord(RotWord(temp)) ^ (rcon[i /

num_words] << 24);

41 } else if (key_size == 256 && i % num_words == 4) {

42 temp = SubWord(temp);

43 }

44

45 key_schedule[i] = key_schedule[i - num_words] ^ temp;

46 }

47 }

Listing 2: Key expansion source code generated by ChatGPT.

Once the implementation of each module is completed, AES encryption pro-
cess is requested from ChatGPT. Consequently, ChatGPT directly implements
the encryption process of AES. Although no specific modules were mentioned to
be called for AES encryption and in what order, ChatGPT successfully handled
it. When implementing encryption algorithms with modularization, it is crucial
to understand the purpose of each module and the calling sequence for encryp-
tion and decryption. ChatGPT demonstrated a perfect understanding of AES.
Listing 3 displays the AES encryption code written by ChatGPT.

Novel Approach to Cryptography Implementation 11

Now we implemented Key expansion, SubBytes(InvSubBytes),
ShiftRows(InvShiftRows), MixColumns(InvMixColumns), and Ad-
dRoundKey in C language. Use these to complete the Encrypt rough
you wrote at the beginning.

Here’s the complete AES encryption implementation using the
previously defined functions:

1 #include <stdint.h>

2

3 // S-box (SubBytes) - Please fill in the values

4 static const uint8_t s_box [256];

5

6 // Inverse S-box (InvSubBytes) - Please fill in the values

7 static const uint8_t inv_s_box [256];

8

9 // Rcon table for key expansion

10 static const uint8_t rcon [11] = {

11 0x00 , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0

x1B , 0x36

12 };

13

14 // Previously defined helper functions and transformations go

here

15

16 void AES_Encrypt(const uint8_t *plaintext , const uint8_t *key

, uint8_t *ciphertext , int key_size) {

17 uint8_t state [4][4];

18 uint32_t key_schedule [60]; // Maximum size (for 256-bit

key)

19

20 // Initialize state array with input plaintext

21 for (int row = 0; row < 4; row ++) {

22 for (int col = 0; col < 4; col ++) {

23 state[row][col] = plaintext[row + 4 * col];

24 }

25 }

26

27 // Perform key expansion

28 AES_KeyExpansion(key , key_schedule , key_size);

29

30 // Initial AddRoundKey

31 AddRoundKey(state , key_schedule);

32

33 // Main rounds

34 int num_rounds = (key_size == 128) ? 10 : (key_size ==

192) ? 12 : 14;

12 Kwon et al.

35 for (int round = 1; round < num_rounds; round ++) {

36 SubBytes(state);

37 ShiftRows(state);

38 MixColumns(state);

39 AddRoundKey(state , key_schedule + 4 * round);

40 }

41

42 // Final round (without MixColumns)

43 SubBytes(state);

44 ShiftRows(state);

45 AddRoundKey(state , key_schedule + 4 * num_rounds);

46

47 // Copy state array to output ciphertext

48 for (int row = 0; row < 4; row ++) {

49 for (int col = 0; col < 4; col ++) {

50 ciphertext[row + 4 * col] = state[row][col];

51 }

52 }

53 }

Listing 3: AES encryption source code generated by ChatGPT.

In this manner, AES encryption and decryption functions were created. How-
ever, one might be uncertain about how to utilize these functions for encryption.
Assuming that no one directly writes the source code, ChatGPT was requested
to provide the code that proceeds with encryption in the main function. During
this process, the values of some variables were specified to check the test vector.
The result is visible in Listing 4.

Now create the main function. Write the main function to
call the AES-128 Encryption and Decryption functions once. The
key value is ’000102030405060708090a0b0c0d0e0f’ and the plain-
text value is ’00112233445566778899aabbccddeeff’. Declare the name
of the key variable as ’key 128’, the name of the plaintext vari-
able as ’plaintext 128’, the name of the ciphertext variable as
’ciphertext 128’, and the name of the decryption variable as
’decrypted 128’.

Here’s a main function that demonstrates the use of the AES-128
Encryption and Decryption functions with the provided key and plain-
text:

1 #include <stdio.h>

2 #include <stdint.h>

Novel Approach to Cryptography Implementation 13

3

4 // S-box (SubBytes), Inverse S-box (InvSubBytes), Rcon table ,

and previously defined functions go here

5

6 int main() {

7 uint8_t key_128 [16] = {0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05

, 0x06 , 0x07 ,

8 0x08 , 0x09 , 0x0A , 0x0B , 0x0C , 0x0D

, 0x0E , 0x0F};

9

10 uint8_t plaintext_128 [16] = {0x00 , 0x11 , 0x22 , 0x33 , 0x44

, 0x55 , 0x66 , 0x77 ,

11 0x88 , 0x99 , 0xAA , 0xBB , 0xCC

, 0xDD , 0xEE , 0xFF};

12

13 uint8_t ciphertext_128 [16];

14 uint8_t decrypted_128 [16];

15

16 AES_Encrypt(plaintext_128 , key_128 , ciphertext_128 , 128);

17 AES_Decrypt(ciphertext_128 , key_128 , decrypted_128 , 128);

18

19 printf("Plaintext :\n");

20 for (int i = 0; i < 16; i++) {

21 printf("%02x ", plaintext_128[i]);

22 }

23 printf("\n");

24

25 printf("Ciphertext :\n");

26 for (int i = 0; i < 16; i++) {

27 printf("%02x ", ciphertext_128[i]);

28 }

29 printf("\n");

30

31 printf("Decrypted :\n");

32 for (int i = 0; i < 16; i++) {

33 printf("%02x ", decrypted_128[i]);

34 }

35 printf("\n");

36

37 return 0;

38 }

14 Kwon et al.

This ’main’ function demonstrates the encryption and decryption pro-
cess using the provided ’key 128’ and ’plaintext 128’. The encrypted
result is stored in ’ciphertext 128’, and the decrypted result is stored
in ’decrypted 128’. The program prints the plaintext, ciphertext, and
decrypted values in hexadecimal format. Please ensure that you fill in
the ’s box’ and ’inv s box’ arrays and include the previously defined
functions before running this code.

Listing 4: A main function source code that runs AES-128 generated by Chat-
GPT.

Based on this, the creation of source code for operating AES-192 and AES-256
was requested. The corresponding source code was compiled with the minGW
compiler, and the output is shown in Figure 3. The result matches the AES test
vectors, which are excerpted from Appendix C of NIST FIPS-197 [11]. It was
determined that the AES implementation by ChatGPT aligns perfectly with the
test vector, indicating a successful implementation. This makes it easy for Chat-
GPT to implement well-known ciphers like AES. The overall implementation
process and source code can be found in Appendix 5.1.

Fig. 3: The running result of the AES source code generated by ChatGPT.

Novel Approach to Cryptography Implementation 15

3.3 Implementation of Unknown Algorithm: CHAM

The next target is the CHAM block cipher, a domestic standard cryptography in
Korea that is not well-known outside the country. ChatGPT was also unfamiliar
with the CHAM block cipher. When using ChatGPT 3.5 and inquiring about
CHAM, it provided incorrect information as shown in Listing 5. Several aspects
are wrong, including CHAM being a block cipher, not HMAC, and lacking an
authentication function. Additionally, CHAM is just the name of a block cipher,
and there is no such thing as a CHAM mode other than a block cipher mode of
operation.

Do you know about CHAM algorithm?

Yes, I’m familiar with the CHAM algorithm. The CHAM (Cipher-
based Hashing and Message Authentication) algorithm is a cryptographic
primitive that provides both hashing and message authentication code
(MAC) functionality. It was designed by Joo Yeon Cho, Jong Hwan Park,
and Seokhie Hong in 2011 as a more efficient alternative to the HMAC
(Hash-based Message Authentication Code) algorithm.
The CHAM algorithm uses a block cipher to generate a hash or MAC
value for a given message. The block cipher operates in a special mode
called the CHAM mode, which ensures that the output is secure and
unique for each message. The CHAM algorithm can operate with different
block sizes and key sizes, depending on the desired level of security.
Overall, the CHAM algorithm is a promising cryptographic primitive
that offers both hashing and MAC functionality with high efficiency and
security. However, it is not yet widely adopted in practice and is still
undergoing analysis and testing by the cryptographic community.

Listing 5: ChatGPT answers questions about the CHAM block cipher with fake
information.

When posing the same question to ChatGPT 4.0, it responded with no knowl-
edge on the subject, as seen in Listing 6. Consequently, it was believed that
ChatGPT lacked information about CHAM, the Korean standard block cipher,
and so information about the CHAM block cipher was provided to ChatGPT.

Do you know about CHAM algorithm?

16 Kwon et al.

As an AI language model, I’m familiar with a wide range of al-
gorithms and techniques. However, as of my knowledge cutoff date in
September 2021, I am not aware of a specific algorithm called CHAM.
It’s possible that it has been developed or popularized after that date or
that it’s an abbreviation or acronym for a more widely known algorithm
or method.
If you could provide more information or context about the CHAM al-
gorithm, I’d be happy to help answer any questions or discuss the topic
further.

Listing 6: ChatGPT answers questions about the CHAM block cipher with fake
information.

ChatGPT was taught about the CHAM block cipher in the following order:

– Scheme. The CHAM block cipher has three types of schemes: CHAM-
64/128, CHAM-128/128, and CHAM-128/256. The first number indicates
the block size, and the second represents the key size (in bits).

– Parameters. n: block size (bits), k: secret key size (bits), w: word size
(bits), r: number of rounds. CHAM has both legacy and revised versions,
with the only difference between the two being r. Information about the
revised version was provided.

– Round functions. The CHAM has different round function structures for
odd and even rounds. The difference lies in the number of rotation operations.
Thus, the odd-numbered round function was explained first, followed by the
even-numbered round function. When informing about the even-numbered
round function, the entire structure of the round function was not detailed;
only the parts differing from the odd-numbered round function were high-
lighted.

– Key scheduling. The key scheduling used in CHAM is the same across all
versions, so it was taught all at once.

There was no need to provide information about ARX and Feistel structures,
as ChatGPT already knew about these concepts. After the learning process,
ChatGPT was asked about its knowledge on CHAM, as shown in Listing 7,
to verify if it remembered the precise content. The explanation of the even-
numbered round function was skipped because it was too lengthy to include in
a full answer and closely resembled the odd-numbered round function.

What I have told you so far is all about the CHAM block cipher.
Based on what I told you, explain the CHAM block cipher.

Novel Approach to Cryptography Implementation 17

The CHAM block cipher is a lightweight symmetric-key crypto-
graphic algorithm designed for resource-constrained environments, such
as IoT devices and embedded systems. It is a Korean lightweight cryp-
tographic standard that uses an ARX structure (Addition, Rotation,
and XOR operations) and a Feistel network. CHAM has three differ-
ent schemes to cater to various security and performance requirements:
1. CHAM-64/128: Block size (n) = 64 bits, secret key size (k) = 128 bits,
word size (w) = 16 bits, number of rounds (r) = 88.
2. CHAM-128/128: Block size (n) = 128 bits, secret key size (k) = 128
bits, word size (w) = 32 bits, number of rounds (r) = 112.
3. CHAM-128/256: Block size (n) = 128 bits, secret key size (k) = 256
bits, word size (w) = 32 bits, number of rounds (r) = 120.
The CHAM block cipher processes plaintext through multiple rounds of
a round function, which is slightly different for odd and even rounds:
Odd rounds:
1. Divide plaintext into four w-bit words: xi, yi, zi, and wi, where ”i”
represents the current round number.
2. XOR xi with the round number (i).
3. Rotate yi to the left by 1 bit.
4. XOR the result of step 3 with the round key, which is the (i mod
2k/w)th key.
5. Add the results of steps 2 and 4.
6. Rotate the result of step 5 to the left by 8 bits.
7. Rotate each word to the left (e.g., x0 moves to the w1 position, y0
moves to the x1 position, etc.).
Even rounds:

(Omitted, because similar with odd rounds.)

The key scheduling algorithm generates round keys from the original se-
cret key. The secret key is divided into k/w w-bit words, K[0], K[1], ...,
K[k/w-1]. The algorithm then generates 2k/w w-bit round keys, rk[0],
rk[1], ..., rk[2k/w-1]:

For 0 <= i < k/w:
rk[i] = K[i] ^ (K[i] <<< 1) ^ (K[i] <<< 8)

rk[(i+k/w)^1] = K[i] ^ (K[i] <<< 1) ^ (K[i] <<< 11)

The round keys generated by the key scheduling algorithm are used in the
round functions of the cipher to provide security and resistance against
various cryptanalytic attacks. The CHAM block cipher leverages the sim-
plicity, efficiency, and platform independence of ARX operations, as well
as the proven security properties of the Feistel network, making it suit-
able for lightweight cryptographic applications.
If you could provide more information or context about the CHAM al-
gorithm, I’d be happy to help answer any questions or discuss the topic
further.

18 Kwon et al.

Listing 7: ChatGPT answers questions about the CHAM block cipher with fake
information.

This demonstrates that ChatGPT has learned the CHAM block cipher. Based
on this, an implementation request was made to see if ChatGPT could implement
the learned cipher. ChatGPT implemented CHAM-64/128 and wrote the code.
The initial code included key scheduling in the encryption process. A request
was made to separate the code for modularization and to match the test vector
values, with the output result visible in Listing 8.

There is something slightly wrong. Please fix like this first. 1. Sep-
arate the key scheduling function from the encrypt function and write
it separately. It should be written in the form of sending the round key
obtained after key scheduling in the main function as a parameter to the
encrypt function.
Therefore, an additional variable called round key must exist in the main
function.
2. Modify the variables of the main function as follows.
key: 0x0100 0x0302 0x0504 0x0706 0x0908 0x0b0a 0x0d0c 0x0f0e

plaintext: 0x1100 0x3322 0x5544 0x7766

And, if you possible, add ’ 64128’ to the main function’s key and plain-
text variable names.

I have made the requested changes to the code. The key scheduling
function is now separated from the encryption function, and the main
function has been modified accordingly. The key and plaintext values
have also been updated as per your request. Here’s the updated code
snippet:

1 #include <stdint.h>

2 #include <stdio.h>

3

4 #define ROUNDS 88

5 #define KEY_SIZE 8

6 #define BLOCK_SIZE 4

7

8 void cham64_128_key_schedule(const uint16_t key[KEY_SIZE],

uint16_t round_keys[KEY_SIZE * 2]) {

9 for (int i = 0; i < KEY_SIZE; i++) {

10 round_keys[i] = key[i] ^ (key[i] << 1) ^ (key[i] <<

8);

11 round_keys[i + KEY_SIZE] = key[i] ^ (key[i] << 1) ^ (

key[i] << 11);

12 }

13 }

14

Novel Approach to Cryptography Implementation 19

15 void cham64_128_encrypt(uint16_t plaintext[BLOCK_SIZE], const

uint16_t round_keys[KEY_SIZE * 2]) {

16 for (int round = 1; round <= ROUNDS; round ++) {

17 uint16_t x = plaintext [0], y = plaintext [1];

18 if (round % 2 == 1) {

19 x ^= round;

20 y = (y << 1) | (y >> 15);

21 } else {

22 x ^= round;

23 y = (y << 8) | (y >> 8);

24 }

25

26 uint16_t temp = x ^ y ^ round_keys [(round - 1) % (

KEY_SIZE * 2)];

27 if (round % 2 == 1) {

28 temp = (temp << 8) | (temp >> 8);

29 } else {

30 temp = (temp << 1) | (temp >> 15);

31 }

32

33 plaintext [0] = plaintext [2] ^ temp;

34 plaintext [1] = plaintext [3];

35

36 // Rotate words

37 uint16_t temp_word = plaintext [0];

38 plaintext [0] = plaintext [1];

39 plaintext [1] = plaintext [2];

40 plaintext [2] = plaintext [3];

41 plaintext [3] = temp_word;

42 }

43 }

44

45 int main() {

46 uint16_t key_64128[KEY_SIZE] = {0x0100 , 0x0302 , 0x0504 , 0

x0706 , 0x0908 , 0x0b0a , 0x0d0c , 0x0f0e };

47 uint16_t plaintext_64128[BLOCK_SIZE] = {0x1100 , 0x3322 , 0

x5544 , 0x7766};

48 uint16_t round_keys[KEY_SIZE * 2];

49

50 cham64_128_key_schedule(key_64128 , round_keys);

51 cham64_128_encrypt(plaintext_64128 , round_keys);

52

53 printf("Encrypted: ");

54 for (int i = 0; i < BLOCK_SIZE; i++) {

55 printf("%04X ", plaintext_64128[i]);

56 }

57 printf("\n");

58

59 return 0;

60 }

20 Kwon et al.

This code snippet now has a separate key scheduling function,
cham64 128 key schedule, that generates the round keys. The main
function calls this function to generate the round keys and then passes
them to the encryption function cham64 128 encrypt. The key and plain-
text variables in the main function have been updated and their names
have been changed to include ’ 64128’.

Listing 8: ChatGPT answers questions about the CHAM block cipher with fake
information.

At first glance, the source code appears well-written. Variables and function
names are compatible, allowing them to be called together and compiled. How-
ever, the test vector values differ due to errors in the internal implementation.
Specifically, the incorrect aspects are as follows. The lines of the source code
refer to the line numbers in Listing 8.

– Shift in Key scheduling. In line 10, ChatGPT used the shift operation.
CHAM Key scheduling requires the rotate operation.

– Incorrect index variable in Round key array. In line 11, ^1 was omit-
ted. The correct source code should be round keys[i + KEY SIZE ^ 1].

– Invalid round constant start number. In line 16, the condition of the
for statement is written correctly to repeat exactly 88 rounds. However, the
round constant value is inserted in the middle of the round function and
should start from 0. The source code begins at 1, making this part incorrect.

– Incorrect operator usage. In line 26, x ^ y is invalid, and the + operation
should be used instead.

– No consideration of calculation priority. In line 26, in the C language,
the + operation is applied before the ^ operation. However, due to the struc-
ture of the round function, the ^ operation must come first. In other words,
while using the + operator, parentheses need to be added to ensure the cor-
rect precedence is applied.

– Insertion of unnecessary calculation processes. In lines 33-34, these
processes are unnecessary.

ChatGPT was asked to fix these issues. However, when one aspect was mod-
ified, problems arose in other parts, or previous errors reappeared in the code.
After several attempts, the final code was obtained, as shown in Listing 9.

Then combine this main function with the code you wrote earlier
and show it.

Here’s the complete code with the updated main function combined
with the key schedule and encryption functions:

Novel Approach to Cryptography Implementation 21

1 #include <stdio.h>

2 #include <stdint.h>

3

4 #define BLOCK_SIZE_64_128 4

5 #define KEY_SIZE_64_128 8

6 #define ROUNDS_64_128 88

7

8 void cham64_128_key_schedule(const uint16_t key[

KEY_SIZE_64_128], uint16_t round_keys[KEY_SIZE_64_128 *

2]) {

9 for (int i = 0; i < KEY_SIZE_64_128; i++) {

10 round_keys[i] = key[i] ^ (key[i] << 1 | key[i] >> 15)

^ (key[i] << 8 | key[i] >> 8);

11 round_keys [(i + KEY_SIZE_64_128) ^ 1] = key[i] ^ (key

[i] << 1 | key[i] >> 15) ^ (key[i] << 11 | key[i] >> 5);

12 }

13 }

14

15 void cham64_128_encrypt(const uint16_t plaintext[

BLOCK_SIZE_64_128], uint16_t ciphertext[BLOCK_SIZE_64_128

], const uint16_t round_keys[KEY_SIZE_64_128 * 2]) {

16 for (int i = 0; i < BLOCK_SIZE_64_128; i++) {

17 ciphertext[i] = plaintext[i];

18 }

19

20 for (int round = 0; round < ROUNDS_64_128; round ++) {

21 uint16_t x = ciphertext [0], y = ciphertext [1];

22

23 if (round % 2 == 0) {

24 x ^= round;

25 y = (y << 1) | (y >> 15);

26 } else {

27 x ^= round;

28 y = (y << 8) | (y >> 8);

29 }

30

31 uint16_t temp = x + (y ^ round_keys[round % (

KEY_SIZE_64_128 * 2)]);

32

33 if (round % 2 == 0) {

34 temp = (temp << 8) | (temp >> 8);

35 } else {

36 temp = (temp << 1) | (temp >> 15);

37 }

38

39 ciphertext [0] = temp;

40

41 // Step 7: Rotate words

42 uint16_t temp_word = ciphertext [0];

43 ciphertext [0] = ciphertext [1];

22 Kwon et al.

44 ciphertext [1] = ciphertext [2];

45 ciphertext [2] = ciphertext [3];

46 ciphertext [3] = temp_word;

47 }

48 }

49

50 int main() {

51 uint16_t key_64_128[KEY_SIZE_64_128] = {0x0100 , 0x0302 , 0

x0504 , 0x0706 , 0x0908 , 0x0b0a , 0x0d0c , 0x0f0e };

52 uint16_t plaintext_64_128[BLOCK_SIZE_64_128] = {0x1100 , 0

x3322 , 0x5544 , 0x7766 };

53 uint16_t ciphertext_64_128[BLOCK_SIZE_64_128];

54 uint16_t round_keys_64_128[KEY_SIZE_64_128 * 2];

55

56 cham64_128_key_schedule(key_64_128 , round_keys_64_128);

57 cham64_128_encrypt(plaintext_64_128 , ciphertext_64_128 ,

round_keys_64_128);

58

59 printf("Secret Key:\n");

60 for (int i = 0; i < KEY_SIZE_64_128; i++) {

61 printf("%04x ", key_64_128[i]);

62 }

63 printf("\n");

64

65 printf("Plaintext :\n");

66 for (int i = 0; i < BLOCK_SIZE_64_128; i++) {

67 printf("%04x ", plaintext_64_128[i]);

68 }

69 printf("\n");

70

71 printf("Round Keys:\n");

72 for (int i = 0; i < KEY_SIZE_64_128 * 2; i++) {

73 printf("%04x ", round_keys_64_128[i]);

74 if (i % KEY_SIZE_64_128 == KEY_SIZE_64_128 - 1) {

75 printf("\n");

76 }

77 }

78

79 printf("Encrypted Plaintext (Ciphertext):\n");

80 for (int i = 0; i < BLOCK_SIZE_64_128; i++) {

81 printf("%04x ", ciphertext_64_128[i]);

82 }

83 printf("\n");

84

85 return 0;

86 }

Novel Approach to Cryptography Implementation 23

This is the complete source code, including the key scheduling, encryption
function, and main function, with separate variables for plaintext and
ciphertext.

Listing 9: Source code of CHAM-64/128 completed by ChatGPT.

Based on this source code, all CHAM schemes were implemented by re-
questing porting to CHAM-128/128 and CHAM-128/256. Running the code
produces output like that in Figure 4, which matches the CHAM test vector [6].
This demonstrates that ChatGPT successfully implemented the CHAM block
cipher. The overall implementation process and source code can be found in
Appendix 5.2.

Fig. 4: The running result of the CHAM source code generated by ChatGPT.

4 Conclusion

This paper demonstrated the feasibility of implementing encryption algorithms
through ChatGPT, enabling individuals to develop encryption solely by convers-
ing with ChatGPT without writing any source codes themselves. The experiment
revealed that implementing well-known algorithms was quite straightforward.
There was no need to explain the algorithm’s structure during the implemen-
tation process, and ChatGPT generated source code precisely according to the
requirements. The resulting source code compiled without errors and matched
the test vectors accurately.

However, implementing unknown algorithms proved more challenging than
AES. Since ChatGPT was unfamiliar with these algorithms, it was necessary to
teach their structure. Initially, the algorithm was learned effectively, but some

24 Kwon et al.

structures were lost as the conversation continued. Furthermore, numerous er-
rors were discovered when implementing the learned algorithm in C language.
Although the source code compiled successfully, the test vector did not match
due to inaccuracies in the algorithm’s structure implementation. To address this,
additional fix requests were sent to ChatGPT. For those unfamiliar with the algo-
rithm or who struggle with source code analysis, pinpointing which parts need
fixing might be difficult when working with ChatGPT. Nonetheless, the pro-
cess was still more manageable than implementing a block cipher from scratch.
Specifically, designing the modularized function calls was something developers
needed to do themselves, yet ChatGPT quickly generated accurate function call
locations and naming conventions.

In conclusion, implementing encryption algorithms through ChatGPT was
achieved successfully. Cryptographic implementation is a challenging task, as it
demands precise execution of intricate algorithms. While ChatGPT made some
errors, it was capable of modifying the source code and successfully implement-
ing the target cipher when the incorrect aspects were highlighted. In essence,
ChatGPT can facilitate a significant portion of cryptographic implementation.
In particular, for cryptographic algorithms with multiple schemes, porting can
be easily requested. However, it is essential to closely analyze the code generated
by ChatGPT to identify and correct any mistakes. While ChatGPT can be asked
to fix errors, it is often faster and more accurate for the programmer to make
the necessary adjustments themselves.

Novel Approach to Cryptography Implementation 25

References

1. M. Aljanabi, M. Ghazi, A. H. Ali, S. A. Abed, et al., “ChatGPT: Open pos-
sibilities,” Iraqi Journal For Computer Science and Mathematics, vol. 4, no. 1,
pp. 62–64, 2023.

2. T. H. Kung, M. Cheatham, A. Medenilla, C. Sillos, L. De Leon, C. Elepaño,
M. Madriaga, R. Aggabao, G. Diaz-Candido, J. Maningo, et al., “Performance
of ChatGPT on USMLE: Potential for AI-assisted medical education using large
language models,” PLoS digital health, vol. 2, no. 2, p. e0000198, 2023.

3. J.-H. Byeon and Y.-J. Kwon, “An investigation of generative AI ineducational ap-
plication: Focusing on theusage of ChatGPT for learning biology,” Brain, Digital,
Learning, vol. 13, no. 1, pp. 1–17, 2023.

4. C. Sanchez-Avila and R. Sanchez-Reillol, “The rijndael block cipher (AES pro-
posal): a comparison with DES,” in Proceedings IEEE 35th Annual 2001 interna-
tional carnahan conference on security technology (Cat. No. 01CH37186), pp. 229–
234, IEEE, 2001.

5. B. Koo, D. Roh, H. Kim, Y. Jung, D.-G. Lee, and D. Kwon, “CHAM: A family of
lightweight block ciphers for resource-constrained devices,” in Information Security
and Cryptology–ICISC 2017: 20th International Conference, Seoul, South Korea,
November 29-December 1, 2017, Revised Selected Papers 20, pp. 3–25, Springer,
2018.

6. D. Roh, B. Koo, Y. Jung, I. W. Jeong, D.-G. Lee, D. Kwon, and W.-H. Kim,
“Revised version of block cipher CHAM,” in Information Security and Cryptology–
ICISC 2019: 22nd International Conference, Seoul, South Korea, December 4–6,
2019, Revised Selected Papers 22, pp. 1–19, Springer, 2020.

7. H. Seo, “Memory-efficient implementation of ultra-lightweight block cipher algo-
rithm cham on low-end 8-bit AVR processors,” Journal of the Korea Institute of
Information Security & Cryptology, vol. 28, no. 3, pp. 545–550, 2018.

8. H. Kwon and J. Ha, “Fault injection attack on lightweight block cipher CHAM,”
Journal of the Korea Institute of Information Security & Cryptology, vol. 28, no. 5,
pp. 1071–1078, 2018.

9. M.-J. Sim, S.-W. Eum, H.-D. Kwon, G.-J. Song, and H.-J. Seo, “Implementation of
ultra-lightweight block cipher algorithm revised CHAM on 32-bit risc-v processor,”
in Proceedings of the Korea Information Processing Society Conference, pp. 217–
220, Korea Information Processing Society, 2021.

10. D. Baidoo-Anu and L. Owusu Ansah, “Education in the era of generative artificial
intelligence (AI): Understanding the potential benefits of ChatGPT in promoting
teaching and learning,” Available at SSRN 4337484, 2023.

11. M. J. Dworkin, E. B. Barker, J. R. Nechvatal, J. Foti, L. E. Bassham, E. Roback,
and J. F. Dray Jr, “Advanced encryption standard (AES),” 2001.

26 Kwon et al.

5 Appendix

5.1 Source Code for AES Generated by ChatGPT and Test Vectors

I want implement AES algorithm written in C language. Before start
this one, do you know about structures of AES algorithm?

Yes, I’m familiar with the Advanced Encryption Standard (AES)
algorithm. AES is a symmetric key encryption algorithm, which means
it uses the same key for both encryption and decryption. It operates on
fixed block sizes of 128 bits and supports key sizes of 128, 192, or 256
bits. The algorithm consists of several stages, including key expansion,
initial round, main rounds, and a final round.
Here’s a high-level overview of the main stages in AES encryption:
1. Key expansion: The original key is expanded into an array of key sched-
ule words, which will be used in subsequent rounds of the algorithm.
2. Initial round:

• AddRoundKey: The input block (plaintext) is XORed with the ini-
tial round key derived from the key schedule.
3. Main rounds (9, 11, or 13 rounds, depending on the key size):

• SubBytes: A non-linear substitution step where each byte of the
block is replaced with a corresponding byte from a pre-determined sub-
stitution table (S-box).

• ShiftRows: A transposition step where the last three rows of the
state are shifted cyclically a certain number of steps.

• MixColumns: A linear mixing operation that operates on the
columns of the state, combining the four bytes in each column using
a pre-determined matrix.

• AddRoundKey: The result of the previous three steps is XORed
with a round key derived from the key schedule. 4. Final round (no Mix-
Columns):

• SubBytes
• ShiftRows
• AddRoundKey

The decryption process follows a similar structure but in reverse order,
using inverse operations for SubBytes, ShiftRows, and MixColumns.
Now that you have an overview of the AES algorithm, you can start im-
plementing it in C. There are many open-source libraries available that
you can use as a reference or starting point.

Keep in mind that implementing cryptographic algorithms from
scratch can be challenging and prone to errors. It’s often recommended
to use well-established libraries, such as OpenSSL or mbedtls, for pro-
duction use cases.

Listing 10: Asked about AES algorithm.

Novel Approach to Cryptography Implementation 27

No. I don’t want to use open-source libraries.

Yes, I’m familiar with the Advanced Encryption Standard (AES)
algorithm. AES is a symmetric key encryption algorithm, which means
it uses the same key for both encryption and decryption. It operates on
fixed block sizes of 128 bits and supports key sizes of 128, 192, or 256
bits. The algorithm consists of several stages, including key expansion,
initial round, main rounds, and a final round.
I understand that you want to implement AES from scratch in C. Here’s
a basic outline to help you get started:
1. Define constants and lookup tables:

• Define the key size (128, 192, or 256 bits).
• Define the block size (128 bits).
• Define the number of rounds (10, 12, or 14, depending on the key

size).
• Create the S-box and inverse S-box tables for the SubBytes and

InvSubBytes steps.
• Create the Rcon table for the key expansion.

2. Implement helper functions:
• SubBytes() and InvSubBytes(): Apply the S-box or inverse S-box

to each byte in the state.
• ShiftRows() and InvShiftRows(): Perform row-wise cyclic shifts on

the state.
• MixColumns() and InvMixColumns(): Apply the MixColumns and

inverse MixColumns transformations to the state.
• AddRoundKey(): XOR the state with the round key.

3. Implement key expansion:
• Write a function to expand the input key into an array of round

keys.
• Use the Rcon table and the SubBytes step in the key expansion.

4. Implement the main AES functions:
• AES Encrypt(): Implement the encryption process by applying the

initial round, main rounds, and final round in the correct order.
• AES Decrypt(): Implement the decryption process by applying the

inverse steps in the correct order.
5. Implement a test program to verify your implementation:

• Use test vectors from the AES specification (FIPS 197) or other
sources to validate your implementation.
Here’s a rough skeleton for the AES implementation in C:

1 #include <stdio.h>

2 #include <stdint.h>

3

4 // Constants and lookup tables ...

28 Kwon et al.

5

6 // Helper functions ...

7

8 // Key expansion ...

9

10 void AES_Encrypt(uint8_t *input , uint8_t *output , uint8_t *

key) {

11 // Implement encryption ...

12 }

13

14 void AES_Decrypt(uint8_t *input , uint8_t *output , uint8_t *

key) {

15 // Implement decryption ...

16 }

17

18 int main() {

19 // Test your implementation ...

20 return 0;

21 }

Remember to handle security aspects, such as clearing sensitive data from
memory when it’s no longer needed. Additionally, be mindful of potential
side-channel attacks and other vulnerabilities when writing cryptographic
code.

Listing 11: Get skeleton for AES source code.

Now that we have a rough, let’s implement AES in C language. First,
create a look-up table.

To implement AES in C, you’ll need to create a lookup table for
the SubBytes step, which is also known as the S-box, and its inverse, the
inverse S-box. These tables are pre-computed and consist of 256 bytes
each.
Here’s the S-box and inverse S-box lookup tables:

1 #include <stdint.h>

2

3 // S-box (SubBytes)

4 static const uint8_t s_box [256] = {

5 0x63 , 0x7C , 0x77 , 0x7B , 0xF2 , 0x6B , 0x6F , 0xC5 , 0x30 , 0

x01 , 0x67 , 0x2B , 0xFE , 0xD7 , 0xAB , 0x76 ,

6 0xCA , 0x82 , 0xC9 , 0x7D , 0xFA , 0x59 , 0x47 , 0xF0 , 0xAD , 0

xD4 , 0xA2 , 0xAF , 0x9C , 0xA4 , 0x72 , 0xC0 ,

Novel Approach to Cryptography Implementation 29

7 0xB7 , 0xFD , 0x93 , 0x26 , 0x36 , 0x3F , 0xF7 , 0xCC , 0x34 , 0

xA5 , 0xE5 , 0xF1 , 0x71 , 0xD8 , 0x31 , 0x15 ,

8 0x04 , 0xC7 , 0x23 , 0xC3 , 0x18 , 0x96 , 0x05 , 0x9A , 0x07 , 0

x12 , 0x80 , 0xE2 , 0xEB , 0x27 , 0xB2 , 0x75 ,

9 0x09 , 0x83 , 0x2C , 0x1A , 0x1B , 0x6E , 0x5A , 0xA0 , 0x52 , 0

x3B , 0xD6 , 0xB3 , 0x29 , 0xE3 , 0x2F , 0x84 ,

10 0x53 , 0xD1 , 0x00 , 0xED , 0x20 , 0xFC , 0xB1 , 0x5B , 0x6A , 0

xCB , 0xBE , 0x39 , 0x4A , 0x4C , 0x58 , 0xCF ,

11 0xD0 , 0xEF , 0xAA , 0xFB , 0x43 , 0x4D , 0x33 , 0x85 , 0x45 , 0

xF9 , 0x02 , 0x7F , 0x50 , 0x3C , 0x9F , 0xA8 ,

12 0x51 , 0xA3 , 0x40 , 0x8F , 0x92 , 0x9D , 0x38 , 0xF5 , 0xBC , 0

xB6 , 0xDA , 0x21 , 0x10 , 0xFF , 0xF3 , 0xD2 ,

13 0xCD , 0x0C , 0x13 , 0xEC , 0

Listing 12: S-Box code with output stopped due to token limit.

Okay. I think you can’t complete the S-box. Instead, just declare a
look-up table array, I’ll fill in the LUT values.

Certainly! Here’s the declaration of the S-box and inverse S-box
lookup tables as uninitialized arrays:
Here’s the S-box and inverse S-box lookup tables:

1 #include <stdint.h>

2

3 // S-box (SubBytes)

4 static const uint8_t s_box [256];

5

6 // Inverse S-box (InvSubBytes)

7 static const uint8_t inv_s_box [256];

You can then fill in the LUT values for both arrays. Remember that
these arrays should be populated with constant values since they are
precomputed and should not be modified during runtime.

Listing 13: Declaration of S-Box array.

30 Kwon et al.

Now we will implement AES key expansion. Do you know the
principle behind that algorithm? Please explain.

Yes, I can explain the key expansion algorithm used in AES. The
key expansion algorithm generates an extended key schedule from the
initial cipher key. The key schedule is an array of words (4-byte values)
that are used as round keys in each round of the AES algorithm. The
number of words in the key schedule depends on the key size and the
number of rounds.
The key expansion is based on the following principles:
1. Word-wise operations: The algorithm operates on words (4-byte
values) rather than individual bytes.
2. Key schedule size: The key schedule size depends on the number of
rounds and the key size. For a 128-bit key, there are 44 words in the key
schedule (11 rounds * 4 words per round); for a 192-bit key, there are 52
words (13 rounds * 4 words); and for a 256-bit key, there are 60 words
(15 rounds * 4 words).
3. Copying the initial key: The first N words of the key schedule (where
N is the size of the initial key in words: 4 for a 128-bit key, 6 for a 192-bit
key, and 8 for a 256-bit key) are directly copied from the initial key.
4. Key schedule core: The remaining words in the key schedule are
generated iteratively using the previous words. The algorithm uses a
core function that operates on a single word and consists of the following
steps:

• RotWord: Rotate the word one byte to the left (circular shift).
• SubWord: Apply the S-box substitution to each byte in the word.
• Rcon: XOR the first byte of the word with a round constant. The

round constants are precomputed and stored in a lookup table called
the Rcon table.
5. Combining words: The core function is applied to every (Nth) word
in the key schedule (where N is the size of the initial key in words). The
output of the core function is XORed with the word N positions earlier
in the key schedule. The result of this XOR operation is then XORed
with the word immediately preceding it to generate the next word in
the key schedule. This process is repeated until the entire key schedule
is filled.
Here’s a high-level pseudocode description of the key expansion algo-
rithm:

1 1. Copy the initial key to the beginning of the key schedule.

2 2. For each remaining word in the key schedule:

Novel Approach to Cryptography Implementation 31

3 a. If the word index is a multiple of N, apply the core

function and XOR the result with the word N positions

earlier.

4 b. XOR the result with the word immediately preceding it.

Now that you understand the principle behind the key expansion algo-
rithm, you can proceed with implementing it in C.

Listing 14: Asked about AES key expansion.

Then implement AES key expansion in C language. If you are going
to use the Rcon table as well, define this as a global variable.

Here’s an implementation of the AES key expansion in C, along with
the Rcon table as a global variable:

1 #include <stdint.h>

2

3 // Rcon table for key expansion

4 static const uint8_t rcon [11] = {

5 0x00 , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0

x1B , 0x36

6 };

7

8 // S-box (SubBytes) - Please fill in the values

9 static const uint8_t s_box [256];

10

11 // Helper functions

12 static uint32_t RotWord(uint32_t word) {

13 return (word << 8) | (word >> 24);

14 }

15

16 static uint32_t SubWord(uint32_t word) {

17 uint32_t result = 0;

18 result |= s_box [(word >> 24) & 0xFF] << 24;

19 result |= s_box [(word >> 16) & 0xFF] << 16;

20 result |= s_box [(word >> 8) & 0xFF] << 8;

21 result |= s_box[word & 0xFF];

22 return result;

23 }

24

25 // Key expansion

26 void AES_KeyExpansion(const uint8_t *key , uint32_t *

key_schedule , int key_size) {

27 int num_words = key_size / 32; // Number of words in the

initial key

32 Kwon et al.

28 int key_schedule_size = (key_size == 128) ? 44 : (

key_size == 192) ? 52 : 60;

29

30 // Copy the initial key to the key schedule

31 for (int i = 0; i < num_words; i++) {

32 key_schedule[i] = (key[4 * i] << 24) | (key[4 * i +

1] << 16) | (key[4 * i + 2] << 8) | key[4 * i + 3];

33 }

34

35 // Generate the remaining words in the key schedule

36 for (int i = num_words; i < key_schedule_size; i++) {

37 uint32_t temp = key_schedule[i - 1];

38

39 if (i % num_words == 0) {

40 temp = SubWord(RotWord(temp)) ^ (rcon[i /

num_words] << 24);

41 } else if (key_size == 256 && i % num_words == 4) {

42 temp = SubWord(temp);

43 }

44

45 key_schedule[i] = key_schedule[i - num_words] ^ temp;

46 }

47 }

Please make sure to fill in the S-box values in the ’s box’ array before
using this code.
This implementation assumes that the key size is given in bits (128, 192,
or 256) and that the ’key’ array contains the appropriate number of
bytes for the specified key size. The ’key schedule’ array should be
allocated with enough space to hold the full key schedule (44, 52, or 60
words, depending on the key size).

Listing 15: Implementation of AES key expansion.

Now we need Subbyte and its inversed version. Please implement the
process in C language. As for the S-box table, you can use a table that
has been previously declared. I’ll fill the table.

Sure! Here’s an implementation of the SubBytes and InvSubBytes
functions in C, using the previously declared S-box (’s box’) and inverse
S-box (’inv s box’) tables:

1 #include <stdint.h>

2

Novel Approach to Cryptography Implementation 33

3 // S-box (SubBytes) - Please fill in the values

4 static const uint8_t s_box [256];

5

6 // Inverse S-box (InvSubBytes) - Please fill in the values

7 static const uint8_t inv_s_box [256];

8

9 // Helper functions

10 void SubBytes(uint8_t state [4][4]) {

11 for (int row = 0; row < 4; row ++) {

12 for (int col = 0; col < 4; col ++) {

13 state[row][col] = s_box[state[row][col]];

14 }

15 }

16 }

17

18 void InvSubBytes(uint8_t state [4][4]) {

19 for (int row = 0; row < 4; row ++) {

20 for (int col = 0; col < 4; col ++) {

21 state[row][col] = inv_s_box[state[row][col]];

22 }

23 }

24 }

These functions perform the SubBytes and InvSubBytes transformations
on the input state array, which is a 4x4 array of bytes representing the
AES state. The input state is modified in-place, so no separate output
array is required.
Please make sure to fill in the values for both the ’s box’ and
’inv s box’ arrays before using these functions.

Listing 16: Implementation of AES SubBytes (and InvSubBytes).

Good. Now write Shiftrow and its inverse version in C language.

Here’s an implementation of the ShiftRows and InvShiftRows func-
tions in C:

1 #include <stdint.h>

2

3 // Helper functions

4 void ShiftRows(uint8_t state [4][4]) {

5 uint8_t temp;

6

7 // Row 1 - Shift left by 1

8 temp = state [1][0];

34 Kwon et al.

9 state [1][0] = state [1][1];

10 state [1][1] = state [1][2];

11 state [1][2] = state [1][3];

12 state [1][3] = temp;

13

14 // Row 2 - Shift left by 2

15 temp = state [2][0];

16 state [2][0] = state [2][2];

17 state [2][2] = temp;

18 temp = state [2][1];

19 state [2][1] = state [2][3];

20 state [2][3] = temp;

21

22 // Row 3 - Shift left by 3

23 temp = state [3][0];

24 state [3][0] = state [3][3];

25 state [3][3] = state [3][2];

26 state [3][2] = state [3][1];

27 state [3][1] = temp;

28 }

29

30 void InvShiftRows(uint8_t state [4][4]) {

31 uint8_t temp;

32

33 // Row 1 - Shift right by 1

34 temp = state [1][3];

35 state [1][3] = state [1][2];

36 state [1][2] = state [1][1];

37 state [1][1] = state [1][0];

38 state [1][0] = temp;

39

40 // Row 2 - Shift right by 2

41 temp = state [2][0];

42 state [2][0] = state [2][2];

43 state [2][2] = temp;

44 temp = state [2][1];

45 state [2][1] = state [2][3];

46 state [2][3] = temp;

47

48 // Row 3 - Shift right by 3

49 temp = state [3][0];

50 state [3][0] = state [3][1];

51 state [3][1] = state [3][2];

52 state [3][2] = state [3][3];

53 state [3][3] = temp;

54 }

Novel Approach to Cryptography Implementation 35

These functions perform the ShiftRows and InvShiftRows transforma-
tions on the input ’state’ array, which is a 4x4 array of bytes represent-
ing the AES state. The input state is modified in-place, so no separate
output array is required.

Listing 17: Implementation of AES ShiftRows (and InvShiftRows).

Here are Mixcolumns and their inverse version. Write it in C language
as well.

Here’s an implementation of the MixColumns and InvMixColumns
functions in C:

1 #include <stdint.h>

2

3 // Helper function for Galois Field multiplication

4 uint8_t gmul(uint8_t a, uint8_t b) {

5 uint8_t p = 0;

6 uint8_t carry;

7

8 for (int i = 0; i < 8; i++) {

9 if (b & 1) {

10 p ^= a;

11 }

12

13 carry = a & 0x80;

14 a <<= 1;

15

16 if (carry) {

17 a ^= 0x1B; // x^8 + x^4 + x^3 + x + 1

18 }

19

20 b >>= 1;

21 }

22

23 return p;

24 }

25

26 void MixColumns(uint8_t state [4][4]) {

27 uint8_t temp [4];

28

29 for (int col = 0; col < 4; col ++) {

30 temp [0] = gmul(state [0][col], 0x02) ^ gmul(state [1][

col], 0x03) ^ state [2][col] ^ state [3][col];

31 temp [1] = state [0][col] ^ gmul(state [1][col], 0x02) ^

gmul(state [2][col], 0x03) ^ state [3][col];

36 Kwon et al.

32 temp [2] = state [0][col] ^ state [1][col] ^ gmul(state

[2][col], 0x02) ^ gmul(state [3][col], 0x03);

33 temp [3] = gmul(state [0][col], 0x03) ^ state [1][col] ^

state [2][col] ^ gmul(state [3][col], 0x02);

34

35 for (int row = 0; row < 4; row ++) {

36 state[row][col] = temp[row];

37 }

38 }

39 }

40

41 void InvMixColumns(uint8_t state [4][4]) {

42 uint8_t temp [4];

43

44 for (int col = 0; col < 4; col ++) {

45 temp [0] = gmul(state [0][col], 0x0E) ^ gmul(state [1][

col], 0x0B) ^ gmul(state [2][col], 0x0D) ^ gmul(state [3][

col], 0x09);

46 temp [1] = gmul(state [0][col], 0x09) ^ gmul(state [1][

col], 0x0E) ^ gmul(state [2][col], 0x0B) ^ gmul(state [3][

col], 0x0D);

47 temp [2] = gmul(state [0][col], 0x0D) ^ gmul(state [1][

col], 0x09) ^ gmul(state [2][col], 0x0E) ^ gmul(state [3][

col], 0x0B);

48 temp [3] = gmul(state [0][col], 0x0B) ^ gmul(state [1][

col], 0x0D) ^ gmul(state [2][col], 0x09) ^ gmul(state [3][

col], 0x0E);

49

50 for (int row = 0; row < 4; row ++) {

51 state[row][col] = temp[row];

52 }

53 }

54 }

These functions perform the MixColumns and InvMixColumns transfor-
mations on the input ’state’ array,

Listing 18: Implementation of AES MixColumns (and InvMixColumns). Re-
sponse is truncated due to token limit, but the source code is output well.

Lastly, write the AddRoundKey function in C language.

Here’s an implementation of the AddRoundKey function in C:

1 #include <stdint.h>

Novel Approach to Cryptography Implementation 37

2

3 void AddRoundKey(uint8_t state [4][4] , const uint32_t *

round_key) {

4 for (int col = 0; col < 4; col ++) {

5 uint32_t key_word = round_key[col];

6

7 for (int row = 0; row < 4; row ++) {

8 state[row][col] ^= (key_word >> (24 - 8 * row)) &

0xFF;

9 }

10 }

11 }

This function performs the AddRoundKey transformation on the input
’state’ array, which is a 4x4 array of bytes representing the AES state.
The ’round key’ parameter is a pointer to an array of four 32-bit words
representing the round key. The input state is modified in-place, so no
separate output array is required.

Listing 19: Implementation of AES AddRoundKey.

Now we implemented Key expansion, SubBytes(InvSubBytes),
ShiftRows(InvShiftRows), MixColumns(InvMixColumns), and Ad-
dRoundKey in C language. Use these to complete the Encrypt rough
you wrote at the beginning.

Here’s the complete AES encryption implementation using the
previously defined functions:

1 #include <stdint.h>

2

3 // S-box (SubBytes) - Please fill in the values

4 static const uint8_t s_box [256];

5

6 // Inverse S-box (InvSubBytes) - Please fill in the values

7 static const uint8_t inv_s_box [256];

8

9 // Rcon table for key expansion

10 static const uint8_t rcon [11] = {

11 0x00 , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0

x1B , 0x36

12 };

13

14 // Previously defined helper functions and transformations go

here

38 Kwon et al.

15

16 void AES_Encrypt(const uint8_t *plaintext , const uint8_t *key

, uint8_t *ciphertext , int key_size) {

17 uint8_t state [4][4];

18 uint32_t key_schedule [60]; // Maximum size (for 256-bit

key)

19

20 // Initialize state array with input plaintext

21 for (int row = 0; row < 4; row ++) {

22 for (int col = 0; col < 4; col ++) {

23 state[row][col] = plaintext[row + 4 * col];

24 }

25 }

26

27 // Perform key expansion

28 AES_KeyExpansion(key , key_schedule , key_size);

29

30 // Initial AddRoundKey

31 AddRoundKey(state , key_schedule);

32

33 // Main rounds

34 int num_rounds = (key_size == 128) ? 10 : (key_size ==

192) ? 12 : 14;

35 for (int round = 1; round < num_rounds; round ++) {

36 SubBytes(state);

37 ShiftRows(state);

38 MixColumns(state);

39 AddRoundKey(state , key_schedule + 4 * round);

40 }

41

42 // Final round (without MixColumns)

43 SubBytes(state);

44 ShiftRows(state);

45 AddRoundKey(state , key_schedule + 4 * num_rounds);

46

47 // Copy state array to output ciphertext

48 for (int row = 0; row < 4; row ++) {

49 for (int col = 0; col < 4; col ++) {

50 ciphertext[row + 4 * col] = state[row][col];

51 }

52 }

53 }

Novel Approach to Cryptography Implementation 39

This function takes the input ’plaintext’, ’key’, and ’key size’ (in
bits: 128, 192, or 256) and produces the encrypted output ’ciphertext’.
The plaintext and ciphertext are assumed to be 16-byte arrays, while the
key size determines the number of bytes in the key array.
Please make sure to fill in the ’s box’ and ’inv s box’ arrays before
using this code.

Listing 20: Implementation of AES encrypt function.

Complete the Decrypt function in the same way.

Here’s the complete AES decryption implementation using the pre-
viously defined functions:

1 #include <stdint.h>

2

3 // S-box (SubBytes) - Please fill in the values

4 static const uint8_t s_box [256];

5

6 // Inverse S-box (InvSubBytes) - Please fill in the values

7 static const uint8_t inv_s_box [256];

8

9 // Rcon table for key expansion

10 static const uint8_t rcon [11] = {

11 0x00 , 0x01 , 0x02 , 0x04 , 0x08 , 0x10 , 0x20 , 0x40 , 0x80 , 0

x1B , 0x36

12 };

13

14 // Previously defined helper functions and transformations go

here

15

16 void AES_Decrypt(const uint8_t *ciphertext , const uint8_t *

key , uint8_t *plaintext , int key_size) {

17 uint8_t state [4][4];

18 uint32_t key_schedule [60]; // Maximum size (for 256-bit

key)

19

20 // Initialize state array with input ciphertext

21 for (int row = 0; row < 4; row ++) {

22 for (int col = 0; col < 4; col ++) {

23 state[row][col] = ciphertext[row + 4 * col];

24 }

25 }

26

27 // Perform key expansion

40 Kwon et al.

28 AES_KeyExpansion(key , key_schedule , key_size);

29

30 // Initial AddRoundKey

31 int num_rounds = (key_size == 128) ? 10 : (key_size ==

192) ? 12 : 14;

32 AddRoundKey(state , key_schedule + 4 * num_rounds);

33

34 // Main rounds

35 for (int round = num_rounds - 1; round > 0; round --) {

36 InvShiftRows(state);

37 InvSubBytes(state);

38 AddRoundKey(state , key_schedule + 4 * round);

39 InvMixColumns(state);

40 }

41

42 // Final round (without InvMixColumns)

43 InvShiftRows(state);

44 InvSubBytes(state);

45 AddRoundKey(state , key_schedule);

46

47 // Copy state array to output plaintext

48 for (int row = 0; row < 4; row ++) {

49 for (int col = 0; col < 4; col ++) {

50 plaintext[row + 4 * col] = state[row][col];

51 }

52 }

53 }

This function takes the input ’ciphertext’, ’key’, and ’key size’ (in
bits: 128, 192, or 256) and produces the decrypted output ’plaintext’.
The ciphertext and plaintext are assumed to be 16-byte arrays, while the
key size determines the number of bytes in the key array.
Please make sure to fill in the ’s box’ and ’inv s box’ arrays before
using this code.

Listing 21: Implementation of AES decrypt function.

Novel Approach to Cryptography Implementation 41

Now create the main function. Write the main function to
call the AES-128 Encryption and Decryption functions once. The
key value is ’000102030405060708090a0b0c0d0e0f’ and the plain-
text value is ’00112233445566778899aabbccddeeff’. Declare the name
of the key variable as ’key 128’, the name of the plaintext vari-
able as ’plaintext 128’, the name of the ciphertext variable as
’ciphertext 128’, and the name of the decryption variable as
’decrypted 128’.

Here’s a main function that demonstrates the use of the AES-128
Encryption and Decryption functions with the provided key and plain-
text:

1 #include <stdio.h>

2 #include <stdint.h>

3

4 // S-box (SubBytes), Inverse S-box (InvSubBytes), Rcon table ,

and previously defined functions go here

5

6 int main() {

7 uint8_t key_128 [16] = {0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05

, 0x06 , 0x07 ,

8 0x08 , 0x09 , 0x0A , 0x0B , 0x0C , 0x0D

, 0x0E , 0x0F};

9

10 uint8_t plaintext_128 [16] = {0x00 , 0x11 , 0x22 , 0x33 , 0x44

, 0x55 , 0x66 , 0x77 ,

11 0x88 , 0x99 , 0xAA , 0xBB , 0xCC

, 0xDD , 0xEE , 0xFF};

12

13 uint8_t ciphertext_128 [16];

14 uint8_t decrypted_128 [16];

15

16 AES_Encrypt(plaintext_128 , key_128 , ciphertext_128 , 128);

17 AES_Decrypt(ciphertext_128 , key_128 , decrypted_128 , 128);

18

19 printf("Plaintext :\n");

20 for (int i = 0; i < 16; i++) {

21 printf("%02x ", plaintext_128[i]);

22 }

23 printf("\n");

24

25 printf("Ciphertext :\n");

26 for (int i = 0; i < 16; i++) {

27 printf("%02x ", ciphertext_128[i]);

28 }

29 printf("\n");

42 Kwon et al.

30

31 printf("Decrypted :\n");

32 for (int i = 0; i < 16; i++) {

33 printf("%02x ", decrypted_128[i]);

34 }

35 printf("\n");

36

37 return 0;

38 }

This ’main’ function demonstrates the encryption and decryption pro-
cess using the provided ’key 128’ and ’plaintext 128’. The encrypted
result is stored in ’ciphertext 128’, and the decrypted result is stored
in ’decrypted 128’. The program prints the plaintext, ciphertext, and
decrypted values in hexadecimal format. Please ensure that you fill in
the ’s box’ and ’inv s box’ arrays and include the previously defined
functions before running this code.

Listing 22: Implementing a main function that calls AES.

Modify the body of the main function to
call AES-192 encryption and decryption. Use
’000102030405060708090a0b0c0d0e0f1011121314151617’ for the
key value and ’00112233445566778899aabbccddeeff’ for the plaintext
value. Declare the name of the key variable as ’key 192’, the name of
the plaintext variable as ’plaintext 192’, the name of the ciphertext
variable as ’ciphertext 192’, and the name of the decryption variable
as ’decrypted 192’.

Here’s the modified main function that demonstrates the use of the
AES-192 Encryption and Decryption functions with the provided key
and plaintext:

1 #include <stdio.h>

2 #include <stdint.h>

3

4 // S-box (SubBytes), Inverse S-box (InvSubBytes), Rcon table ,

and previously defined functions go here

5

6 int main() {

7 uint8_t key_192 [24] = {0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05

, 0x06 , 0x07 ,

8 0x08 , 0x09 , 0x0A , 0x0B , 0x0C , 0x0D

, 0x0E , 0x0F ,

Novel Approach to Cryptography Implementation 43

9 0x10 , 0x11 , 0x12 , 0x13 , 0x14 , 0x15

, 0x16 , 0x17};

10

11 uint8_t plaintext_192 [16] = {0x00 , 0x11 , 0x22 , 0x33 , 0x44

, 0x55 , 0x66 , 0x77 ,

12 0x88 , 0x99 , 0xAA , 0xBB , 0xCC

, 0xDD , 0xEE , 0xFF};

13

14 uint8_t ciphertext_192 [16];

15 uint8_t decrypted_192 [16];

16

17 AES_Encrypt(plaintext_192 , key_192 , ciphertext_192 , 192);

18 AES_Decrypt(ciphertext_192 , key_192 , decrypted_192 , 192);

19

20 printf("Plaintext :\n");

21 for (int i = 0; i < 16; i++) {

22 printf("%02x ", plaintext_192[i]);

23 }

24 printf("\n");

25

26 printf("Ciphertext :\n");

27 for (int i = 0; i < 16; i++) {

28 printf("%02x ", ciphertext_192[i]);

29 }

30 printf("\n");

31

32 printf("Decrypted :\n");

33 for (int i = 0; i < 16; i++) {

34 printf("%02x ", decrypted_192[i]);

35 }

36 printf("\n");

37

38 return 0;

39 }

This ’main’ function demonstrates the encryption and decryption pro-
cess using the provided ’key 192’ and ’plaintext 192’. The encrypted
result is stored in ’ciphertext 192’, and the decrypted result is stored
in ’decrypted 192’. The program prints the plaintext, ciphertext, and
decrypted values in hexadecimal format. Please ensure that you fill in
the ’s box’ and ’inv s box’ arrays and include the previously defined
functions before running this code.

Listing 23: Request porting to AES-192.

44 Kwon et al.

Modify the body of the main function to
call AES-256 encryption and decryption. Use
’000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1

d1e1f’ for the key value, and use the plain text value used in AES-
192 for the plaintext value. Declare the name of the key variable as
’key 256’, the name of the plaintext variable as ’plaintext 256’, the
name of the ciphertext variable as ’ciphertext 256’, and the name of
the decryption variable as ’decrypted 256’.

Here’s the modified main function that demonstrates the use of the
AES-256 Encryption and Decryption functions with the provided key
and plaintext:

1 #include <stdio.h>

2 #include <stdint.h>

3

4 // S-box (SubBytes), Inverse S-box (InvSubBytes), Rcon table ,

and previously defined functions go here

5

6 int main() {

7 uint8_t key_256 [32] = {0x00 , 0x01 , 0x02 , 0x03 , 0x04 , 0x05

, 0x06 , 0x07 ,

8 0x08 , 0x09 , 0x0A , 0x0B , 0x0C , 0x0D

, 0x0E , 0x0F ,

9 0x10 , 0x11 , 0x12 , 0x13 , 0x14 , 0x15

, 0x16 , 0x17 ,

10 0x18 , 0x19 , 0x1A , 0x1B , 0x1C , 0x1D

, 0x1E , 0x1F};

11

12 uint8_t plaintext_256 [16] = {0x00 , 0x11 , 0x22 , 0x33 , 0x44

, 0x55 , 0x66 , 0x77 ,

13 0x88 , 0x99 , 0xAA , 0xBB , 0xCC

, 0xDD , 0xEE , 0xFF};

14

15 uint8_t ciphertext_256 [16];

16 uint8_t decrypted_256 [16];

17

18 AES_Encrypt(plaintext_256 , key_256 , ciphertext_256 , 256);

19 AES_Decrypt(ciphertext_256 , key_256 , decrypted_256 , 256);

20

21 printf("Plaintext :\n");

22 for (int i = 0; i < 16; i++) {

23 printf("%02x ", plaintext_256[i]);

24 }

25 printf("\n");

26

27 printf("Ciphertext :\n");

Novel Approach to Cryptography Implementation 45

28 for (int i = 0; i < 16; i++) {

29 printf("%02x ", ciphertext_256[i]);

30 }

31 printf("\n");

32

33 printf("Decrypted :\n");

34 for (int i = 0; i < 16; i++) {

35 printf("%02x ", decrypted_256[i]);

36 }

37 printf("\n");

38

39 return 0;

40 }

This ’main’ function demonstrates the encryption and decryption pro-
cess using the provided ’key 256’ and ’plaintext 256’. The encrypted
result is stored in ’ciphertext 256’, and the decrypted result is stored
in ’decrypted 256’. The program prints the plaintext, ciphertext, and
decrypted values in hexadecimal format. Please ensure that you fill in
the ’s box’ and ’inv s box’ arrays and include the previously defined
functions before running this code.

Listing 24: Request porting to AES-256.

5.2 Source Code for CHAM Generated by ChatGPT and Test
Vectors

Do you know about CHAM block cipher? It is one of Korean stan-
dard cryptography.

CHAM block cipher is not one of the well-known cryptographic stan-
dards I am familiar with, as my knowledge was last updated in 2021. It
is possible that CHAM is a more recent development or is known under a
different name in the international cryptographic community. I apologize
for any confusion.
As of my last update, some of the widely-accepted cryptographic stan-
dards include the Advanced Encryption Standard (AES), which is used
globally, and the ARIA block cipher, which was developed in South Ko-
rea and is used there as a national cryptographic standard.
If you have more information or context about the CHAM block cipher,
I’d be happy to discuss the topic further.

Listing 25: Questions about the CHAM block cipher.

46 Kwon et al.

Okay. The CHAM block cipher is one of the Korean lightweight
cryptography standard. It is announced at 2017, and revised version was
announced at 2019.

Thank you for providing more information about the CHAM block
cipher. Since it is a Korean lightweight cryptographic standard that was
announced in 2017 and revised in 2019, it’s not as widely known as some
of the more global cryptographic standards like AES or even the Korean
ARIA block cipher.
Lightweight cryptography is designed to provide security while consum-
ing fewer resources, such as processing power, memory, and energy. This
makes it particularly suitable for applications in constrained environ-
ments, like IoT devices, smart cards, and other embedded systems where
computational resources are limited.
While I still don’t have specific details on the CHAM block cipher, it’s
clear that it is intended for these types of applications. If you have any
questions about lightweight cryptography in general or specific aspects
of cryptographic algorithms, I’d be happy to help.

Listing 26: Education on the history of the CHAM block cipher.

CHAM has three kinds of scheme. CHAM-64/128, CHAM-128/128,
and CHAM-128/256. The first number is the block size and the second
number is the secret key size.

Thank you for providing more information about the CHAM block
cipher variants. It appears that CHAM has three different schemes, each
with different block and key sizes:

1. CHAM-64/128: This version of CHAM has a 64-bit block size and
uses a 128-bit secret key. With a smaller block size, it is more suitable
for applications with limited data size requirements and is likely faster
and more resource-efficient compared to the other variants.

2. CHAM-128/128: In this version, both the block size and the
secret key size are 128 bits. It provides a balance between security and
performance, as the increased block size can improve security in certain
use cases.

3. CHAM-128/256: This variant of CHAM has a 128-bit block size
and a larger 256-bit secret key. The increased key size provides a higher
level of security against brute-force attacks and other cryptanalytic
techniques, making it suitable for applications with more stringent
security requirements.

Novel Approach to Cryptography Implementation 47

These different schemes allow CHAM to cater to various security and
performance requirements in lightweight cryptographic applications. By
providing different block and key size options, CHAM can be tailored to
the specific needs of different use cases, especially in resource-constrained
environments.

Listing 27: Teach about the CHAM block cipher schemes.

Here is the parameters of CHAM block cipher.
Notation: n=block size(bit), k=secret key size(bit), w=word size(bit),
r=number of round
CHAM-64/128: n=64, k=128, w=16, r=88

CHAM-128/128: n=128, k=128, w=32, r=112

CHAM-128/256: n=128, k=256, w=32, r=120

Thank you for providing the detailed parameters for the CHAM block
cipher variants. I will summarize the information you’ve given for each
version:

1. CHAM-64/128:
• Block size (n): 64 bits

• Secret key size (k): 128 bits

• Word size (w): 16 bits

• Number of rounds (r): 88

2. CHAM-128/128:
•Block size (n): 128 bits

•Secret key size (k): 128 bits

•Word size (w): 32 bits

•Number of rounds (r): 112

3. CHAM-128/256:
•Block size (n): 128 bits

•Secret key size (k): 256 bits

•Word size (w): 32 bits

•Number of rounds (r): 120

These parameters provide a better understanding of the internal struc-
ture and configuration of each CHAM block cipher variant. The different
block sizes, secret key sizes, word sizes, and number of rounds allow each
version of CHAM to balance security and performance according to the
needs of specific applications.

48 Kwon et al.

It is important to note that increasing the number of rounds can con-
tribute to higher security, as it makes the cipher more resistant to crypt-
analysis. However, more rounds also increase the computational complex-
ity of the algorithm, which could affect the overall performance. Choosing
the right CHAM variant for a particular use case requires a careful anal-
ysis of security requirements, performance constraints, and other factors
relevant to the specific application.

Listing 28: Inform about parameters of CHAM block cipher.

Now I talk about round function of CHAM block cipher.
CHAM’s round function is slightly different for even and odd rounds. I
will explain based on odd rounds.
1. Divide plaintext to four w-bit words, each words can be described: xi,
yi, zi, wi, where i is current round.
2. xi XOR with i

3. yi rotate left 1 time
4. result of 3 XOR with round key, where round key is (i mod 2k/w)th
5. result of 2 ADD result of 4
6. result of 5 rotate left 8 times

Thank you for providing a detailed explanation of the round function
for the odd rounds in the CHAM block cipher. I will reiterate the steps
you provided for the round function of odd rounds, assuming a generic
round number "i":

1. Divide the plaintext into four w-bit words: xi, yi, zi, and wi,

where "i" represents the current round number.
2. XOR xi with the round number (i).
3. Rotate yi to the left by 1 bit.
4. XOR the result of step 3 with the round key, which is the (i mod

2k/w)th key.
5. Add the results of steps 2 and 4.
6. Rotate the result of step 5 to the left by 8 bits.

These steps describe the round function for odd rounds in the CHAM
block cipher. The even rounds would have a slightly different round func-
tion, which you have not provided. However, understanding the round
function for odd rounds gives insight into the structure of the cipher and
how it processes data. This process is repeated for a specific number of
rounds (88, 112, or 120, depending on the CHAM variant) to provide the
final ciphertext.

Novel Approach to Cryptography Implementation 49

Listing 29: Explaining the structure of CHAM’s round function (odd round).

You understood correctly. Even round function is almost same odd
round function, but step 3 and 6 is slightly different.
Here is difference of even round function.
Step 3. 8 times rotate left
Step 6. 1 time rotate left
And, I forgot to explain about word rotation.
So, you will need to add this step to the end of round function(odd and
even round both).
7. Each word rotate to left. (E.g. x0 will move to w1 place, y0 will go to
x1).

Thank you for providing the additional information on the even round
function for the CHAM block cipher and the word rotation step. I will
now summarize the round function for both odd and even rounds, incor-
porating the differences and the word rotation step:
(Omitted, because similar with odd rounds.)

Listing 30: Explaining the structure of CHAM’s round function (even round).

50 Kwon et al.

Perfect. In this time, we talk about key scheduling.
Key scheduling of CHAM block cipher is very easy. CHAM-n/k takes
a secret key of k/w w-bit words K[0], K[1], ... , K[k/w-1].
These generates 2k/w w-bit round keyws rk[0], rk[1], ...,

rk[2k/w-1].
Here is the equations for key scheduling.
Notation: ˆ: XOR, <<<: rotate left, K: secret key, rk: round key, k:
secret key size, w: word size
rk[i] = K[i] ˆ (K[i] <<< 1) ˆ (K[i] <<< 8),
rk[(i+k/w)ˆ1] = K[i] ˆ (K[i] <<< 1) ˆ (K[i] <<< 11),
where 0 <= i < k/w

Thank you for providing information on the key scheduling for the
CHAM block cipher. The key scheduling algorithm generates round
keys from the original secret key. In the case of CHAM, the secret key
is divided into k/w w-bit words, K[0], K[1], ..., K[k/w-1]. The
algorithm then generates 2k/w w-bit round keys, rk[0], rk[1], ...,

rk[2k/w-1].
Here is the key scheduling algorithm for CHAM, based on the equations
you provided:
Notation:
ˆ: XOR
<<<: rotate left
K: secret key
rk: round key
k: secret key size
w: word size
For 0 <= i < k/w:

• rk[i] = K[i] ^ (K[i] <<< 1) ^ (K[i] <<< 8)

• rk[(i+k/w)^1] = K[i] ^ (K[i] <<< 1) ^ (K[i] <<< 11)

This key scheduling algorithm is relatively simple compared to some
other block ciphers, which contributes to the lightweight nature of
the CHAM block cipher. The round keys generated by this algorithm
are used in the round functions of the cipher to provide security and
resistance against various cryptanalytic attacks.

Listing 31: Description of CHAM’s Key Scheduling Structure.

Novel Approach to Cryptography Implementation 51

If so, can you implement the CHAM block cipher in C language?

As an AI text model, I cannot directly implement code for you, but
I can help you get started with a simple C implementation of the CHAM
block cipher. Here’s an example code snippet for the CHAM-64/128 vari-
ant. Note that this example is not optimized, and you should thoroughly
test and review the code before using it in a production environment.

1 #include <stdint.h>

2 #include <stdio.h>

3

4 #define ROUNDS 88

5 #define KEY_SIZE 8

6 #define BLOCK_SIZE 4

7

8 void cham64_128_encrypt(uint16_t plaintext[BLOCK_SIZE], const

uint16_t key[KEY_SIZE]) {

9 uint16_t round_keys[KEY_SIZE * 2];

10 for (int i = 0; i < KEY_SIZE; i++) {

11 round_keys[i] = key[i] ^ (key[i] << 1) ^ (key[i] <<

8);

12 round_keys[i + KEY_SIZE] = key[i] ^ (key[i] << 1) ^ (

key[i] << 11);

13 }

14

15 for (int round = 1; round <= ROUNDS; round ++) {

16 uint16_t x = plaintext [0], y = plaintext [1];

17 if (round % 2 == 1) {

18 x ^= round;

19 y = (y << 1) | (y >> 15);

20 } else {

21 x ^= round;

22 y = (y << 8) | (y >> 8);

23 }

24

25 uint16_t temp = x ^ y ^ round_keys [(round - 1) % (

KEY_SIZE * 2)];

26 if (round % 2 == 1) {

27 temp = (temp << 8) | (temp >> 8);

28 } else {

29 temp = (temp << 1) | (temp >> 15);

30 }

31

32 plaintext [0] = plaintext [2] ^ temp;

33 plaintext [1] = plaintext [3];

34

35 // Rotate words

52 Kwon et al.

36 uint16_t temp_word = plaintext [0];

37 plaintext [0] = plaintext [1];

38 plaintext [1] = plaintext [2];

39 plaintext [2] = plaintext [3];

40 plaintext [3] = temp_word;

41 }

42 }

43

44 int main() {

45 uint16_t key[KEY_SIZE] = {0x0123 , 0x4567 , 0x89AB , 0xCDEF ,

0xFEDC , 0xBA98 , 0x7654 , 0x3210};

46 uint16_t plaintext[BLOCK_SIZE] = {0x0123 , 0x4567 , 0x89AB ,

0xCDEF };

47

48 cham64_128_encrypt(plaintext , key);

49

50 printf("Encrypted: ");

51 for (int i = 0; i < BLOCK_SIZE; i++) {

52 printf("%04X ", plaintext[i]);

53 }

54 printf("\n");

55

56 return 0;

57 }

This code snippet only implements the encryption function for
CHAM-64/128. For a complete implementation, you will need to imple-
ment the decryption function as well. Keep in mind that this is just a
starting point and can be optimized and improved for better performance
and readability.

Listing 32: Request for the first CHAM block cipher implementation.

There is something slightly wrong. Please fix like this first.
1. Separate the key scheduling function from the encrypt function and
write it separately. It should be written in the form of sending the round
key obtained after key scheduling in the main function as a parameter to
the encrypt function. Therefore, an additional variable called round key
must exist in the main function.
2. Modify the variables of the main function as follows.
key: 0x0100 0x0302 0x0504 0x0706 0x0908 0x0b0a 0x0d0c 0x0f0e

plaintext: 0x1100 0x3322 0x5544 0x7766

And, if you possible, add ’ 64128’ to the main function’s key and plain-
text variable names.

Novel Approach to Cryptography Implementation 53

I have made the requested changes to the code. The key scheduling
function is now separated from the encryption function, and the main
function has been modified accordingly. The key and plaintext values
have also been updated as per your request. Here’s the updated code
snippet:

1 #include <stdint.h>

2 #include <stdio.h>

3

4 #define ROUNDS 88

5 #define KEY_SIZE 8

6 #define BLOCK_SIZE 4

7

8 void cham64_128_key_schedule(const uint16_t key[KEY_SIZE],

uint16_t round_keys[KEY_SIZE * 2]) {

9 for (int i = 0; i < KEY_SIZE; i++) {

10 round_keys[i] = key[i] ^ (key[i] << 1) ^ (key[i] <<

8);

11 round_keys[i + KEY_SIZE] = key[i] ^ (key[i] << 1) ^ (

key[i] << 11);

12 }

13 }

14

15 void cham64_128_encrypt(uint16_t plaintext[BLOCK_SIZE], const

uint16_t round_keys[KEY_SIZE * 2]) {

16 for (int round = 1; round <= ROUNDS; round ++) {

17 uint16_t x = plaintext [0], y = plaintext [1];

18 if (round % 2 == 1) {

19 x ^= round;

20 y = (y << 1) | (y >> 15);

21 } else {

22 x ^= round;

23 y = (y << 8) | (y >> 8);

24 }

25

26 uint16_t temp = x ^ y ^ round_keys [(round - 1) % (

KEY_SIZE * 2)];

27 if (round % 2 == 1) {

28 temp = (temp << 8) | (temp >> 8);

29 } else {

30 temp = (temp << 1) | (temp >> 15);

31 }

32

33 plaintext [0] = plaintext [2] ^ temp;

34 plaintext [1] = plaintext [3];

35

36 // Rotate words

54 Kwon et al.

37 uint16_t temp_word = plaintext [0];

38 plaintext [0] = plaintext [1];

39 plaintext [1] = plaintext [2];

40 plaintext [2] = plaintext [3];

41 plaintext [3] = temp_word;

42 }

43 }

44

45 int main() {

46 uint16_t key_64128[KEY_SIZE] = {0x0100 , 0x0302 , 0x0504 , 0

x0706 , 0x0908 , 0x0b0a , 0x0d0c , 0x0f0e };

47 uint16_t plaintext_64128[BLOCK_SIZE] = {0x1100 , 0x3322 , 0

x5544 , 0x7766};

48 uint16_t round_keys[KEY_SIZE * 2];

49

50 cham64_128_key_schedule(key_64128 , round_keys);

51 cham64_128_encrypt(plaintext_64128 , round_keys);

52

53 printf("Encrypted: ");

54 for (int i = 0; i < BLOCK_SIZE; i++) {

55 printf("%04X ", plaintext_64128[i]);

56 }

57 printf("\n");

58

59 return 0;

60 }

This code snippet now has a separate key scheduling function,
cham64 128 key schedule, that generates the round keys. The main
function calls this function to generate the round keys and then passes
them to the encryption function cham64 128 encrypt. The key and plain-
text variables in the main function have been updated and their names
have been changed to include ’ 64128’.

Listing 33: Separating key scheduling from round function.

Your key schedule implementation is somewhat wrong.
Key schedule need Rotate operation, not Shift operation.
’key[i] << 1’ is 1 time shift operation, it does not performed rotate
operation.
Also ’round keys[i + KEY SIZE]’ is wrong.

Novel Approach to Cryptography Implementation 55

Let’s consider the key scheduling structure again.
Original round key generation is rk[(i+k/w)^1]. Explain k and w in
CHAM-64/128. And in your code missed ’^1’ part. Please rewrite the
code with this in mind. Also, do not define additional constants. When
outputting the source code, output only the key schedule and do not
output other parts such as the main function.

Where is the ’^1’?

Apologies for the confusion in my previous response. I misunderstood
your question. I have now updated the key schedule function to include
the XOR with 1, as specified in the CHAM-64/128 cipher:

1 void cham64_128_key_schedule(const uint16_t key[KEY_SIZE],

uint16_t round_keys[KEY_SIZE * 2]) {

2 for (int i = 0; i < KEY_SIZE; i++) {

3 round_keys[i] = key[i] ^ ((key[i] << 1) | (key[i] >>

15)) ^ ((key[i] << 8) | (key[i] >> 8));

4 round_keys [(i + KEY_SIZE) ^ 1] = key[i] ^ ((key[i] <<

1) | (key[i] >> 15)) ^ ((key[i] << 11) | (key[i] >> 5));

5 }

6 }

The line round keys[(i + KEY SIZE) ^ 1] now includes the XOR with
1 for the round key generation, as specified in the CHAM-64/128 cipher
key scheduling.

Listing 34: Key Scheduling Modification Request. ChatGPT implements Rotate
as Shift, and the ’^1’ operation is missing in the index value. Requested to
amend this twice. (ChatGPT’s intermediate answer is omitted.)

Great. Your key schedule is perfect.
Now let’s modify the round function. First of all, the round constant
value is fixed to start from 0 instead of 1. Print the modified code, but
no other functions (e.g. key schedule, main).

Great. Do you remember 7 steps of the round function that I told
you about before? Up to step 4 is implemented correctly now. In other
words, steps 5, 6, and 7 are slightly different. Please fix the source code
correctly considering this.

56 Kwon et al.

uint16 t temp = x ^ y ^ round keys[round % (KEY SIZE *

2)]; part is worng. Addition operation is required with x, not XOR
operation.

great. However, if you write the code like this, + will be calculated
before ^. Add () so that ^ can be computed first.

Step 5, 6 are wrong. uint16 t z = plaintext[2] + temp; is
not step 5, but uint16 t temp = x + (y ^ round keys[round %

(KEY SIZE * 2)]); already has step 5 operation. Step 6 also wrong,
beacuse the if (round % 2 == 0) temp statement is real step
6. So remove them.

Finally, instead of plaintext[3] ^ temp, just store temp in
plaintext[0]. Please correct this part.

I apologize for the confusion. I have now updated the
cham64 128 encrypt function to store temp in plaintext[0]. Here’s
the revised function:

1 void cham64_128_encrypt(uint16_t plaintext[BLOCK_SIZE], const

uint16_t round_keys[KEY_SIZE * 2]) {

2 for (int round = 0; round < ROUNDS; round ++) {

3 uint16_t x = plaintext [0], y = plaintext [1];

4

5 if (round % 2 == 0) {

6 x ^= round;

7 y = (y << 1) | (y >> 15);

8 } else {

9 x ^= round;

10 y = (y << 8) | (y >> 8);

11 }

12

13 uint16_t temp = x + (y ^ round_keys[round % (KEY_SIZE

* 2)]);

14

15 if (round % 2 == 0) {

16 temp = (temp << 8) | (temp >> 8);

17 } else {

18 temp = (temp << 1) | (temp >> 15);

19 }

20

21 plaintext [0] = temp;

22

23 // Step 7: Rotate words

24 uint16_t temp_word = plaintext [0];

25 plaintext [0] = plaintext [1];

26 plaintext [1] = plaintext [2];

Novel Approach to Cryptography Implementation 57

27 plaintext [2] = plaintext [3];

28 plaintext [3] = temp_word;

29 }

30 }

Now the function stores temp in plaintext[0] as requested.

Listing 35: Request to modify the round function. ChatGPT suffered a lot in
generating a round function. It went through 6 revisions, and fixed the following
contents. 1. Round constant starts from 1, 2. Useless operation added (fix 3),
3. XOR operation instead of + operation, 4. Parentheses added to make the
operation order correct. (ChatGPT’s intermediate answers are omitted.)

Your code works perfectly. Combine the code you have written so
far and print it again.
When integrating code, be sure to integrate using modified code.
Also, please apply the following fixes:
1. Adding the name 64 128 after defined constant values.
2. Change the main function variable name 64128 to 64 128 format.

The key scheduling part is the initial version code. We have modified
the key scheduling code. Please replace with the appropriate code.

You again did not write ’XOR 1’ in the index part of round keys[i

+ KEY SIZE 64 128]. Correct the index part correctly.

very good. But I don’t like the structure of storing the ciphertext in
a plaintext variable. So, declare a new variable to store the ciphertext
and change the structure of the function to store it separately.

Everything is perfect. Now I want to see other variables at console
output. Please modify a code of main function. A printing order is
secret key, plaintext, round key, and ciphertext. No need to
show other functions (e.g. key schedule, round function), just let
me know about main function.

Then combine this main function with the code you wrote earlier
and show it.

Here’s the complete code with the updated main function com-
bined with the key schedule and encryption functions:

1 #include <stdio.h>

2 #include <stdint.h>

3

58 Kwon et al.

4 #define BLOCK_SIZE_64_128 4

5 #define KEY_SIZE_64_128 8

6 #define ROUNDS_64_128 88

7

8 void cham64_128_key_schedule(const uint16_t key[

KEY_SIZE_64_128], uint16_t round_keys[KEY_SIZE_64_128 *

2]) {

9 for (int i = 0; i < KEY_SIZE_64_128; i++) {

10 round_keys[i] = key[i] ^ (key[i] << 1 | key[i] >> 15)

^ (key[i] << 8 | key[i] >> 8);

11 round_keys [(i + KEY_SIZE_64_128) ^ 1] = key[i] ^ (key

[i] << 1 | key[i] >> 15) ^ (key[i] << 11 | key[i] >> 5);

12 }

13 }

14

15 void cham64_128_encrypt(const uint16_t plaintext[

BLOCK_SIZE_64_128], uint16_t ciphertext[BLOCK_SIZE_64_128

], const uint16_t round_keys[KEY_SIZE_64_128 * 2]) {

16 for (int i = 0; i < BLOCK_SIZE_64_128; i++) {

17 ciphertext[i] = plaintext[i];

18 }

19

20 for (int round = 0; round < ROUNDS_64_128; round ++) {

21 uint16_t x = ciphertext [0], y = ciphertext [1];

22

23 if (round % 2 == 0) {

24 x ^= round;

25 y = (y << 1) | (y >> 15);

26 } else {

27 x ^= round;

28 y = (y << 8) | (y >> 8);

29 }

30

31 uint16_t temp = x + (y ^ round_keys[round % (

KEY_SIZE_64_128 * 2)]);

32

33 if (round % 2 == 0) {

34 temp = (temp << 8) | (temp >> 8);

35 } else {

36 temp = (temp << 1) | (temp >> 15);

37 }

38

39 ciphertext [0] = temp;

40

41 // Step 7: Rotate words

42 uint16_t temp_word = ciphertext [0];

43 ciphertext [0] = ciphertext [1];

44 ciphertext [1] = ciphertext [2];

45 ciphertext [2] = ciphertext [3];

46 ciphertext [3] = temp_word;

Novel Approach to Cryptography Implementation 59

47 }

48 }

49

50 int main() {

51 uint16_t key_64_128[KEY_SIZE_64_128] = {0x0100 , 0x0302 , 0

x0504 , 0x0706 , 0x0908 , 0x0b0a , 0x0d0c , 0x0f0e };

52 uint16_t plaintext_64_128[BLOCK_SIZE_64_128] = {0x1100 , 0

x3322 , 0x5544 , 0x7766 };

53 uint16_t ciphertext_64_128[BLOCK_SIZE_64_128];

54 uint16_t round_keys_64_128[KEY_SIZE_64_128 * 2];

55

56 cham64_128_key_schedule(key_64_128 , round_keys_64_128);

57 cham64_128_encrypt(plaintext_64_128 , ciphertext_64_128 ,

round_keys_64_128);

58

59 printf("Secret Key:\n");

60 for (int i = 0; i < KEY_SIZE_64

61 printf("Secret Key:\n");

62 for (int i = 0; i < KEY_SIZE_64_128; i++) {

63 printf("%04x ", key_64_128[i]);

64 }

65 printf("\n");

66

67 printf("Plaintext :\n");

68 for (int i = 0; i < BLOCK_SIZE_64_128; i++) {

69 printf("%04x ", plaintext_64_128[i]);

70 }

71 printf("\n");

72

73 printf("Round Keys:\n");

74 for (int i = 0; i < KEY_SIZE_64_128 * 2; i++) {

75 printf("%04x ", round_keys_64_128[i]);

76 if (i % KEY_SIZE_64_128 == KEY_SIZE_64_128 - 1) {

77 printf("\n");

78 }

79 }

80

81 printf("Encrypted Plaintext (Ciphertext):\n");

82 for (int i = 0; i < BLOCK_SIZE_64_128; i++) {

83 printf("%04x ", ciphertext_64_128[i]);

84 }

85 printf("\n");

86

87 return 0;

88 }

60 Kwon et al.

Great job. We’ll name this the CHAM-64/128 source code.
Now the function stores temp in plaintext[0] as requested.

Thank you! I’m glad you found the CHAM-64/128 source code
helpful. If you have any further questions or need assistance with other
ciphers or programming tasks, feel free to ask.

Listing 36: Request to complete the CHAM-64/128 source code. In the process
of integrating the source code, a problem was found using the code before mod-
ification. (ChatGPT’s intermediate answers are omitted.)

Very good. We’ll name this the CHAM-128/128 source code. It is
consist with cham128 128 key schedule, cham128 128 encrypt, some
of macro variable and main function.

Great! The final CHAM-128/128 source code consists of the
cham128 128 key schedule function, cham128 128 encrypt function,
macro variables, and the main function. Here’s the complete source code:

1 #include <stdio.h>

2 #include <stdint.h>

3

4 #define KEY_SIZE_128_128 4

5 #define BLOCK_SIZE_128_128 4

6 #define ROUNDS_128_128 112

7

8 void cham128_128_key_schedule(const uint32_t *key , uint32_t *

round_keys) {

9 for (int i = 0; i < KEY_SIZE_128_128; i++) {

10 round_keys[i] = key[i] ^ ((key[i] << 1) | (key[i] >>

(32 - 1))) ^ ((key[i] << 8) | (key[i] >> (32 - 8)));

11 round_keys [(i + KEY_SIZE_128_128) ^ 1] = key[i] ^ ((

key[i] << 1) | (key[i] >> (32 - 1))) ^ ((key[i] << 11) |

(key[i] >> (32 - 11)));

12 }

13 }

14

15 void cham128_128_encrypt(const uint32_t plaintext[

BLOCK_SIZE_128_128], uint32_t ciphertext[

BLOCK_SIZE_128_128], const uint32_t round_keys[

KEY_SIZE_128_128 * 2]) {

16 for (int i = 0; i < BLOCK_SIZE_128_128; i++) {

17 ciphertext[i] = plaintext[i];

Novel Approach to Cryptography Implementation 61

18 }

19

20 for (int round = 0; round < ROUNDS_128_128; round ++) {

21 uint32_t x = ciphertext [0], y = ciphertext [1];

22

23 if (round % 2 == 0) {

24 x ^= round;

25 y = (y << 1) | (y >> 31);

26 } else {

27 x ^= round;

28 y = (y << 8) | (y >> 24);

29 }

30

31 uint32_t temp = x + (y ^ round_keys[round % (

KEY_SIZE_128_128 * 2)]);

32

33 if (round % 2 == 0) {

34 temp = (temp << 8) | (temp >> 24);

35 } else {

36 temp = (temp << 1) | (temp >> 31);

37 }

38

39 ciphertext [0] = temp;

40

41 // Step 7: Rotate words

42 uint32_t temp_word = ciphertext [0];

43 ciphertext [0] = ciphertext [1];

44 ciphertext [1] = ciphertext [2];

45 ciphertext [2] = ciphertext [3];

46 ciphertext [3] = temp_word;

47 }

48 }

49

50 int main() {

51 uint32_t key_128_128[KEY_SIZE_128_128] = {0x03020100 , 0

x07060504 , 0x0b0a0908 , 0x0f0e0d0c };

52 uint32_t plaintext_128_128[BLOCK_SIZE_128_128] = {0

x33221100 , 0x77665544 , 0xbbaa9988 , 0xffeeddcc };

53 uint32_t round_keys_128_128[KEY_SIZE_128_128 * 2];

54 uint32_t ciphertext_128_128[BLOCK_SIZE_128_128];

55

56 cham128_128_key_schedule(key_128_128 , round_keys_128_128)

;

57 cham128_128_encrypt(plaintext_128_128 , ciphertext_128_128

, round_keys_128_128);

58

59 printf("Secret Key: ");

60 for (int i = 0; i < KEY_SIZE_128_128; i++) {

61 printf("%08x ", key_128_128[i]);

62 }

62 Kwon et al.

63 printf("\n");

64

65 printf("Plaintext: ");

66 for (int i = 0; i < BLOCK_SIZE_128_128; i++) {

67 printf("%08x ", plaintext_128_128[i]);

68 }

69 printf("\n");

70

71 printf("Round Keys: ");

72 for (int i = 0; i < KEY_SIZE_128_128 * 2; i++) {

73 printf("%08x ", round_keys_128_128[i]);

74 }

75 printf("\n");

76

77 printf("Ciphertext: ");

78 for (int i = 0; i < BLOCK_SIZE_128_128; i++) {

79 printf("%08x ", ciphertext_128_128[i]);

80 }

81 printf("\n");

82

83 return 0;

84 }

This completes the CHAM-128/128 source code with the corrected
number of rounds (112 rounds).

Listing 37: Porting CHAM-64/128 to CHAM-128/128. ChatGPT made errors in
implementing key scheduling and setting round constants, but succeeded in the
end. (Some dialogue omitted.)

Here is a list of the exact parameters of CHAM-128/256. Please refer
to this and modify the source code.
CHAM-128/256:

Block size (n): 128 bits
Secret key size (k): 256 bits
Word size (w): 32 bits
Number of rounds (r): 120

Thank you for providing the correct parameters for CHAM-128/256.
I’ll make the appropriate changes to the source code:

1 #include <stdio.h>

Novel Approach to Cryptography Implementation 63

2 #include <stdint.h>

3

4 #define BLOCK_SIZE_128_256 4

5 #define KEY_SIZE_128_256 8

6 #define ROUNDS_128_256 120

7

8 void cham128_256_key_schedule(const uint32_t *key , uint32_t *

round_keys) {

9 for (int i = 0; i < KEY_SIZE_128_256; i++) {

10 round_keys[i] = key[i] ^ ((key[i] << 1) | (key[i] >>

(32 - 1))) ^ ((key[i] << 8) | (key[i] >> (32 - 8)));

11 round_keys [(i + KEY_SIZE_128_256) ^ 1] = key[i] ^ ((

key[i] << 1) | (key[i] >> (32 - 1))) ^ ((key[i] << 11) |

(key[i] >> (32 - 11)));

12 }

13 }

14

15 void cham128_256_encrypt(const uint32_t plaintext[

BLOCK_SIZE_128_256], uint32_t ciphertext[

BLOCK_SIZE_128_256], const uint32_t round_keys[

KEY_SIZE_128_256 * 2]) {

16 for (int i = 0; i < BLOCK_SIZE_128_256; i++) {

17 ciphertext[i] = plaintext[i];

18 }

19

20 for (int round = 0; round < ROUNDS_128_256; round ++) {

21 uint32_t x = ciphertext [0], y = ciphertext [1];

22

23 if (round % 2 == 0) {

24 x ^= round;

25 y = (y << 1) | (y >> 31);

26 } else {

27 x ^= round;

28 y = (y << 8) | (y >> 24);

29 }

30

31 uint32_t temp = x + (y ^ round_keys[round % (

KEY_SIZE_128_256 * 2)]);

32

33 if (round % 2 == 0) {

34 temp = (temp << 8) | (temp >> 24);

35 } else {

36 temp = (temp << 1) | (temp >> 31);

37 }

38

39 ciphertext [0] = temp;

40

41 // Step 7: Rotate words

42 uint32_t temp_word = ciphertext [0];

43 ciphertext [0] = ciphertext [1];

64 Kwon et al.

44 ciphertext [1] = ciphertext [2];

45 ciphertext [2] = ciphertext [3];

46 ciphertext [3] = temp_word;

47 }

48 }

49

50 int main() {

51 uint32_t secret_key_128_256[KEY_SIZE_128_256] = {0

x03020100 , 0x07060504 , 0x0b0a0908 , 0x0f0e0d0c , 0xf3f2f1f0

, 0xf7f6f5f4 , 0xfbfaf9f8 , 0xfffefdfc };

52 uint32_t plaintext_128_256[BLOCK_SIZE_128_256] = {0

x33221100 , 0x77665544 , 0xbbaa9988 , 0xffeeddcc };

53 uint32_t round_keys_128_256[KEY_SIZE_128_256 * 2];

54 uint32_t ciphertext_128_256[BLOCK_SIZE_128_256];

55

56 cham128_256_key_schedule(secret_key_128_256 ,

round_keys_128_256);

57 cham128_256_encrypt(plaintext_128_256 , ciphertext_128_256

, round_keys_128_256);

58

59 printf("Secret Key: ");

60 for (int i = 0; i < KEY_SIZE_128_256; i++) {

61 printf("%08x ", secret_key_128_256[i]);

62 }

63 printf("\n");

64

65 printf("Plaintext: ");

66 for (int i = 0; i < BLOCK_SIZE_128_256; i++) {

67 printf("%08x ", plaintext_128_256[i]);

68 }

69 printf("\n");

70

71 printf("Round Keys: ");

72 for (int i = 0; i < KEY_SIZE_128_256 * 2; i++) {

73 printf("%08x ", round_keys_128_256[i]);

74 }

75 printf("\n");

76

77 printf("Ciphertext: ");

78 for (int i = 0; i < BLOCK_SIZE_128_256; i++) {

79 printf("%08x ", ciphertext_128_256[i]);

80 }

81 printf("\n");

82

83 return 0;

84 }

Novel Approach to Cryptography Implementation 65

Listing 38: Adapting CHAM-128/128 to CHAM-128/256, it was discovered that
ChatGPT had forgotten the parameters for CHAM-128/256. By rectifying this
issue, the porting process can proceed smoothly. (Some dialogue omitted.)

