
Pushing the Limit of Vectorized Polynomial
Multiplications for NTRU Prime

Vincent Hwang

Max Planck Institute for Security and Privacy, Bochum, Germany
vincentvbh7@gmail.com

Abstract. We conduct a systematic examination of vector arithmetic
for polynomial multiplications in software. Vector instruction sets and
extensions typically specify a fixed number of registers, each holding a
power-of-two number of bits, and support a wide variety of vector arith-
metic on registers. Programmers then try to align mathematical compu-
tations with the vector arithmetic supported by the designated instruc-
tion set or extension. We delve into the intricacies of this process for
polynomial multiplications. In particular, we introduce “vectorization-
friendliness” and “permutation-friendliness”, and review “Toeplitz matrix-
vector product” to systematically identify suitable mappings from homo-
morphisms to vectorized implementations.
To illustrate how the formalization works, we detail the vectorization of
polynomial multiplication in Z4591[x]

/〈
x761 − x− 1

〉
used in the param-

eter set sntrup761 of the NTRU Prime key encapsulation mechanism.
For practical evaluation, we implement vectorized polynomial multipliers
for the ring Z4591[x]

/〈
Φ17

(
x96

)〉
with AVX2 and Neon. We benchmark

our AVX2 implementation on Haswell and Skylake and our Neon imple-
mentation on Cortex-A72 and the “Firestorm” core of Apple M1 Pro.
Our AVX2-optimized implementation is 1.99−2.16 times faster than the
state-of-the-art AVX2-optimized implementation by [Bernstein, Brum-
ley, Chen, and Tuveri, USENIX Security 2022] on Haswell and Skylake,
and our Neon-optimized implementation is 1.29−1.36 times faster than
the state-of-the-art Neon-optimized implementation by [Hwang, Liu, and
Yang, ACNS 2024] on Cortex-A72 and Apple M1 Pro.
For the overall scheme with AVX2, we reduce the batch key generation
cycles (amortized with batch size 32) by 7.9%−12.0%, encapsulation
cycles by 7.1%−10.3%, and decapsulation cycles by 10.7%−13.3% on
Haswell and Skylake. For the overall performance with Neon, we reduce
the encapsulation cycles by 3.0%− 6.6% and decapsulation cycles by
12.8%−15.1% on Cortex-A72 and Apple M1 Pro.

Keywords: Vectorization · Polynomial Multiplication · Fast Fourier Transform
· NTRU Prime

1 Introduction

At PQCrypto 2016, the National Institute of Standards and Technology called
for post-quantum cryptography to replace existing public-key cryptography due

2 Vincent Hwang

to the discovery of polynomial time quantum algorithms solving integer factor-
ization and discrete logarithm [23]. Among the candidates, lattice-based cryp-
tosystems are the most popular due to their balanced key sizes, ciphertext size,
signature size, and performance cycles. In many lattice-based cryptosystems,
polynomial multiplication is one of the dominating operations for the perfor-
mance cycles. While constructing cryptosystems, cryptographers choose between
various polynomial rings to balance between performance cycles and various se-
curity notions. This paper aims to improve public understanding of the inter-
actions between the uses of vector arithmetic and the algebraic aspects of the
polynomial rings.

Vector instruction sets and extensions typically specify a fixed number of
vector registers, each holding power-of-two number of bits, and support a variety
of vector arithmetic operating on these registers. Programmers then try to map
the mathematical computations to strings of vector arithmetic supported by
the target instruction set or extension. We thoroughly investigate this process
for polynomial multiplications in lattice-based cryptosystems. There are two
questions we wish to answer in this paper:

1. Why homomorphisms defined on polynomial rings with power-of-two-multiple
number of coefficients are frequently assumed to admit efficient vectorization
processes?

2. Which homomorphisms are suitable for vectorization?

We answer the first question as follows. In a vector instruction set or ex-
tension, there are usually component-wise addition, subtraction, multiplication
and variants. We formalize the notion vectorization-friendliness and explain
why homomorphisms resulting in small-dimensional power-of-two size polyno-
mial multiplications can be suitably mapped to component-wise arithmetic. Af-
ter decomposing a large problem into several small problems, we divide vec-
tor instruction sets and extensions into two groups by the presence of vector-
by-scalar multiplication instructions. An instruction is called vector-by-scalar
multiplication instruction if it multiplies all the components of a vector by a
scalar and returns a vector of elements. If there are vector-by-scalar multiplica-
tion instructions, we explain that if the remaing polynomial multiplications are
Toeplitz matrix-vector products, then vectorization-friendliness suffices to
justify suitable vectorization of the overall transformation. On the other hand,
if there are no vector-by-scalar multiplication instructions, we formalize the no-
tion permutation-friendliness and relate it to the power-of-two nature of the
number of subproblems.

For the second question, an evident example is the radix-2 Cooley–Tukey fast
Fourier transformation (FFT). Recent work [5] showed that radix-2 Schönhage’s
and Nussbaumer’s FFTs, built upon the power-of-two cyclotomic polynomial
moduli, are convenient ones when radix-2 Cooley–Tukey FFT cannot be de-
fined over the native coefficient ring. However, Schönhage’s and Nussbaumer’s
FFTs double the number of coefficients for each application, eventually lead-
ing to more small-dimensional polynomial multiplications than the traditional

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 3

Cooley–Tukey FFT. More recently, [14] proposed Rader’s FFT for large Fermat-
prime-size transformation and radix-2 Bruun’s FFT for the small-dimensional
transformation and removed the growth of the number of coefficients under the
vectorization context. The downside is that the Fermat-prime-size transforma-
tion from Rader’s FFT does not nicely align with the power-of-two nature of
vectorization. We identify that truncated Rader’s FFT over Fermat-prime-size
cyclotomic polynomial moduli, previously used for computing the norm of an
abelian extension with prime conductor [3, Section 4.8], is a suitable one for
vectorization due to the power-of-two nature of the transformation size.

Contributions. We summarize our contributions as follows.

– We formalize vectorization-friendliness capturing the nature of component-
wise arithmetic supported by a vector instruction set or extension.

– If there are vector-by-scalar multiplication instructions, we explain that
vectorization-friendly transformations resulting in small-dimensional Toeplitz
matrix-vector products are suitable for vectorization.

– On the other hand, if there are no vector-by-scalar multiplication instruc-
tions, we formalize permutation-friendliness capturing the power-of-two na-
ture of the number of subproblems.

– We implement our polynomial multipliers in AVX2 and Armv8.0-A Neon
for the ring Z4591[x]

/〈
Φ17

(
x96

)〉
implementing polynomial multiplications

in the NTRU Prime parameter set sntrup761.
– For the polynomial multiplication, our AVX2 implementation outperforms

the state-of-the-art AVX2-optimized implementation from [5] by 1.99× on
Haswell and 2.16× on Skylake, and our Neon implementation outperforms
the state-of-the-art Neon-optimized implementation from [14] by 1.29× on
Cortex-A72 and 1.36× on Apple M1 Pro.

– For the overall scheme, we integrate our AVX2 implementation into the
package libsntrup761 provided by [5] for the batch key generation and
the package supercop for encapsulation and decapsulation. We reduce the
amortized cycles of batch key generation (with batch size 32) by 7.9%−12.0%,
encapsulation cycles by 7.1%−10.3%, and decapsulation cycles by 10.7%−
13.3% on Haswell and Skylake. As for our Neon implementation, we integrate
our Neon code into the artifact provided by [14]. Our Neon implementation
reduces encapsulation cycles by 3.0%−6.6% and decapsulation cycles by
12.8%−15.1% on Cortex-A72 and Apple M1 Pro.

Related works. There is a long list of works related to vectorization and its
challenges. The most relevant one is SPIRAL by [13]. They had attempted to
formalize the vectorization of FFTs for code generation. However, SPIRAL falls
short to cover transformations used in this paper and we believe this paper will
give more insights on extending SPIRAL. Regarding polynomial multiplications
for NTRU Prime, [1, 2, 4] discussed polynomial multiplications when one of the
operands has coefficients drawn from {0,±1}, [1] discussed the generic polyno-
mial multiplication with fairly limited support of vectorization, [5,14] discussed

4 Vincent Hwang

the generic polynomial multiplication with high-dimensional vectorization sup-
port.

Code. Our source code is publicaly avaiable at
https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime_truncation

under CC0 license.

Structure of this paper. This paper is structured as follows. Section 2 goes
through the preliminaries. Section 3 formalizes the vectorization process, Sec-
tion 4 gives a walkthough on vectorizing polynomial multiplications for sntrup.
Finally, Section 5 shows the performance with AVX2 on Haswell and Skylake,
and with Neon on Cortex-A72 and Apple M1 Pro.

2 Preliminaries

2.1 Streamlined NTRU Prime

NTRU Prime [4] is an alternate candidate of key encapsulation mechanism
(KEM) in the 3rd round of NIST Post-Quantum Cryptography (PQC) Stan-
dardization and is currently used in OpenSSH 9.0 hybrid sntrup761x25519-

sha512 key exchange by default1. NTRU prime KEM [4] operates over the
polynomial rings Zq[x]/⟨xp − x− 1⟩ and Z3[x]/⟨xp − x− 1⟩ for primes p and
q such that Zq[x]/⟨xp − x− 1⟩ ∼= Fqp . There are two cryptosystems built upon
Zq[x]/⟨xp − x− 1⟩ and Z3[x]/⟨xp − x− 1⟩ – Streamlined NTRU Prime (sntrup)
and NTRU LPRime (ntrulpr). This paper focuses on polynomial multiplica-
tions in sntrup761 with (p, q) = (761, 4591) and the implementations can be
straightforwardly ported into ntrulpr761. See [4] for more details of the scheme.
In the following, we list all the polynomial multiplications and inversions required
for sntrup.

Key generation: We need one inversion in Zq[x]/⟨xp − x− 1⟩ and one inversion
with invertibility check in Z3[x]/⟨xp − x− 1⟩ for the secret key, and one
polynomial multiplication in Zq[x]/⟨xp − x− 1⟩ for the public key.

Encapsulation: We need one polynomial multiplication in Zq[x]/⟨xp − x− 1⟩
for encryption.

Decapsulation: We need one polynomial multiplication in Zq[x]/⟨xp − x− 1⟩
for encryption, and one polynomial multiplication in Zq[x]/⟨xp − x− 1⟩ and
one polynomial multiplication in Z3[x]/⟨xp − x− 1⟩ for decryption.

We focuses on polynomial multiplications and inversions in Zq[x]/⟨xp − x− 1⟩ .
We call a polynomial multiplication “big-by-small” if one of the operands is
drawn from {0,±1} and “big-by-big” otherwise. Our polynomial multipliers tar-
get big-by-big ones and also covers the big-by-small ones by definition. For en-
capsulation and decapsulation, we only need big-by-small polynomial multipli-

1 https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2.

https://github.com/vector-polymul-ntru-ntrup/NTRU_Prime_truncation
https://marc.info/?l=openssh-unix-dev&m=164939371201404&w=2

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 5

cations. For the key generation, we only need big-by-small polynomial multipli-
cation outside the inversion. As for the inversion, the requirement of polynomial
multiplications heavily depends on the choice of approach. We simply focus on
the divstep approach avoiding any polynomial multiplications and leave the in-
corporation of jumpdivstep [7] as future work.

To see why big-by-big polynomial multiplications are important, we review
Montgomery’s trick for batch inversion used in batch key generation [5]. Let’s say
we want to invert polynomials a0, . . . ,an−1 in Zq[x]/⟨xp − x− 1⟩ . Instead of in-
verting each of them one at a time, we first compute a0,a0a1, . . . ,

∏
i=0,...,n−1 ai

with n− 1 polynomial multiplications, and invert
∏

i=0,...,n−1 ai. We now com-

pute
(∏

i=0,...,n−1 ai

)−1

,
(∏

i=0,...,n−2 ai

)−1

, . . . ,a−1
0 with n − 1 polynomial

multiplications. Finally, we iterate over j = 1, . . . , n−1 and compute the inverses

as a−1
j =

(∏
i=0,...,j ai

)−1 (∏
i=0,...,j−1 ai

)
. In sntrup, since all polynomials to

be inverted have coefficients in {0,±1}, we need 2n− 2 big-by-small polynomial
multiplications, n− 1 big-by-big polynomial multiplications, and one inversion.

2.2 Basics of Algebra

We first go through some basic notations and definitions of algebraic structures
for this paper. Readers familiar with modules and associative algebras are free
to skip this section and treat this section as a reference. We assume that readers
are all familiar with monoids, groups, rings, and modules and refer to standard
algebra books [9,16,17] for reference. In this paper, all rings are commutative and
unital. Below we go through a short introduction of free modules and associative
algebras over a commutative ring R.

Modules. The central idea of this paper revolves around free-module homo-
morphisms and their tensor products. A module is a generalization of a vector
space where the underlying ground field is relaxed to a ring. We only consider
a special kind of modulues – free modulues of finite ranks. In other words, all
modulues in this paper are of the form Rn for a ring R and a positive integer
n, and all elements can be written as a finite sum of the form

∑
i riei where ei

is the element with ith element one and zero elsewhere for all i. Given two free
modules Rn and Rm, we define the tensor product of Rn and Rm as the free
module consisting of all the elements of the form

∑
i ai⊗bi. where ai ∈ Rn and

bi ∈ Rm up to certain equivalences.

Suppose we have module homomorphisms f : Rn → Rn and g : Rm → Rm.
We define the tensor product f ⊗ g : Rn ⊗Rm → Rn ⊗Rm of f and g as

x⊗ y 7→ f(x)⊗ g(y).

Recall that module homomorphism between modules of finite ranks can be writ-
ten as matrix multiplications if we specify the bases. Suppose we have bases
{ei} ⊂ Rn and {ẽj} ⊂ Rm. Then, {ei ⊗ ẽj} is a basis of Rn⊗Rm. One can show

6 Vincent Hwang

that the matrix form of f ⊗ g with the basis {ei ⊗ ẽj} is the same as the tensor
product of the matrix forms of f with {ei} and g with {ẽj}.

By unfolding the definition of a tensor product, we have

∀f0, f1 : Rn → Rn,∀g0, g1 : Rm → Rm, (f0 ◦ f1)⊗(g0 ◦ g1) = (f0 ⊗ g0)◦(f1 ⊗ g1)

where ◦ is the function composition. An example that we will frequently en-
counter in this paper is the case g0 = g1 = idm, the identity map of Rm.
Suppose we have a factorization for f : Rn → Rn with f = f0 ◦ f1, then we also
have

f ⊗ idm = (f0 ◦ f1)⊗ (idm ◦ idm) = (f0 ⊗ idm) ◦ (f1 ⊗ idm) .

In general, if f factors into f0 ◦ · · · ◦ fd−1, then f ⊗ idm = (f0 ⊗ idm) ◦ · · · ◦
(fd−1 ⊗ idm).

Associative algebras. For an R-module M , if we adjoin a ring structure
to M by introducing a binary associative operator with an identity compati-
ble with 1R to the underlying additive group M , we call M an associative
R-algebra. For simplicity, we call an associative R-algebra an R-algebra or
an algebra when the context is clear. For a degree-n polynomial g ∈ R[x],
the quotient ring R[x]/⟨g⟩ is an R-algebra since (i) R[x]/⟨g⟩ is a ring and (ii)

R[x]/⟨g⟩ = Rn as R-modules by specifying xi =

0, . . . , 0︸ ︷︷ ︸
i

, 1, 0, . . . , 0︸ ︷︷ ︸
n−1−i

. Sup-

pose g = g (xv) for a positive integer v, we have R[x]/⟨g(xv)⟩ ∼= R[y]/⟨g(y)⟩
where R := R[x]/⟨xv − y⟩ . The crucial point is to interpret an R-algebra homo-
morphism fR for R[y]/⟨g(y)⟩ as an R-algebra homomorphism for R[x]/⟨g(xv)⟩ .
We claim that fR⊗ idv is the desired R-algebra homomorphism. Similarly, if we
have a factorization of an R-algebra homomorphism f = f0 ◦f1 for R[y]/⟨g(y)⟩ ,
we have a composition of R-algebra homomorphisms f0 ⊗ idv and f1 ⊗ idv for
R[x]/⟨g(xv)⟩ .

2.3 Vector arithmetic

We go through the vector instruction set/extension covered in this paper.

AVX2. Advanced vector extension 2 (AVX2) is a vector extension to the x86
instruction architecture. In AVX2, there are 16 ymm registers each holding 256
bits of data. In this paper, we only consider 16-bit arithmetic and regard each
vectors as packed 16-bit elements. Furthermore, we also have several permuta-
tion instructions with two data operands. Frequently, a series of permutation
instructions are used for implementing a certain kind of permutation matrices.

Armv8.0-A Neon. The instruction set architecture Armv8.0-A comes with
the vector extension Neon. In Neon, there are 32 vector registers (v0 to v31)
each holding 128 bits of data. In addition to vector-by-vector multiplication

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 7

instructions, we have vector-by-scalar multiplications multiplying a vector of
elements by a scalar. Similar to AVX2, there is a wide variaty of permutation
instructions. One of the convenient ones is ext: we concatenate two 128-bit
vector registers and extract a certain contiguous 16-byte data from the 32-byte
data. This allows us to implement cyclic shifts of tuples in a convenient way.

2.4 Cooley–Tukey FFT

Let n =
∏

j nj , and ij runs over 0, . . . , nj − 1 for each j. The Cooley–Tukey

FFT [12] computes R[x]/⟨xn − ζn⟩ ∼=
∏

i0,...,ih−1
R[x]

/〈
x− ζω

∑
l il

∏
j<l nj

n

〉
in

a layer-by-layer fashion where ωn is a principal n-th root of unity2. The simplest

case is the isomorphism R[x]
/〈

x2h − 1
〉

∼=
∏

i0,...,ih−1
R[x]

/〈
x− ω

∑
l il2

l

2h

〉
.

However, we will encounter various transformations built upon non-power-of-
two Cooley–Tukey FFTs.

2.5 Good–Thomas FFT

Good–Thomas FFT is an alternative FFT built upon the coprime factors of the
transformation size n. We explain the idea briefly with the smallest case n = 6.
Consider the cyclic transformation F6 : R[x]

/〈
x6 − 1

〉
→

∏
i R[x]

/〈
x− ωi

6

〉
, If

we perform pre- and post-permutation for the 1st and the 4th element (we start
with 0), and define ω3 := ω4

6 , ω2 := ω3
6 , we have P(14)F6P(14) =

(
F2 ⊗ I3

) (
I2 ⊗ F3

)
where F2 and F3 are cyclic transformation of sizes 2 and 3, respectively. Com-
paring to Cooley–Tukey FFT, we save two multiplications by ω6 and ω2

6 .

2.6 Truncated Rader’s FFT and its Inverse

Let p be an odd prime, and I = {0, . . . , p− 1} , I∗ = {1, . . . , p− 1} be index
sets. Rader’s FFT [22] computes the map R[x]/⟨xp − 1⟩ ∼=

∏
i∈I R[x]

/〈
x− ωi

p

〉
with a size-λ(p) cyclic convolution where λ is the Carmichael’s lambda function.
Due to the page limit, we refer to [22] for the original version and jump into the
truncated version introduced by [3].

Let Φp be the p-th cyclotomic polynomial. Since p is a prime, we have
Φp(x) =

∑
i∈I xi and Φp(x)|(xp − 1). A natural question is to build an effi-

cient transformation for R[x]/⟨Φp(x)⟩ from the Rader’s FFT for R[x]/⟨xp − 1⟩ .
We start with isomorphism

∑
i∈I∗ ai−1x

i−1 7→
(
âj =

∑
i∈I∗ ai−1ω

(i−1)j
p

)
j∈I∗

:

R[x]/⟨Φp(x)⟩ →
∏

j∈I∗ R[x]
/〈

x− ωj
p

〉
, and reindex with i 7→ − logg i and

j 7→ logg j. We have

âglogg j =
∑
i∈I∗

ai−1ω
(i−1)j
p = ω−j

p

∑
− logg i∈Zλ(p)

aglogg i−1ω
glogg i+logg j

p

2 ∀j = 1, . . . , n− 1,
∑n−1

i=0 ωij
n = 0.

8 Vincent Hwang

and find that
(
ωk
p âgk

)
k∈Zλ(p)

is the convolution of
(
ag−k−1

)
k∈Zλ(p)

and
(
ωgk

p

)
k∈Zλ(p)

.

This is called the truncated Rader’s FFT. Below is an illustration for p = 5

and g = 2: P(23)

ω5 ω2

5 ω3
5 ω4

5

ω2
5 ω4

5 ω5 ω3
5

ω3
5 ω5 ω4

5 ω2
5

ω4
5 ω3

5 ω2
5 ω5

P(312) =

ω20

5 ω23

5 ω22

5 ω21

5

ω21

5 ω20

5 ω23

5 ω22

5

ω22

5 ω21

5 ω20

5 ω23

5

ω23

5 ω22

5 ω21

5 ω20

5

 . For the inverse,

[3, Section 4.8.2] showed how to implement it with a size-λ(p) cyclic convolution.

They found that convoluting with 1
p

(
ω−g−k

p − 1
)
k∈Zλ(p)

results in the desired

inversion. We illustrate below for p = 5 and g = 2:
ω20

5 ω23

5 ω22

5 ω21

5

ω21

5 ω20

5 ω23

5 ω22

5

ω22

5 ω21

5 ω20

5 ω23

5

ω23

5 ω22

5 ω21

5 ω20

5

ω−2−0

5 − 1

ω−2−1

5 − 1

ω−2−2

5 − 1

ω−2−3

5 − 1

 =

5
0
0
0

 .

In summary, we implement η−1 by mapping (âgk)k∈Zλ(p)
to

(
ωk
p âgk

)
k∈Zλ(p)

and convoluting with
(
ω−g−k

p − 1
)
k∈Zλ(p)

. Scaling by 1
p is postponed to the end.

See [3, Sections 4.12.3 and 4.12.4] for a generalization to arbitrary p.

2.7 Bruun’s FFT

Let q be a prime with q ≡ 3 mod 4 and q + 1 = r2w for an odd r. Bruun’s FFT

allows us to split Zq[x]
/〈

x2w + 1
〉
into

∏
i

Zq [x]
⟨x2±αix−1⟩ . See [8] for a proof. For

q = 4591, we can split Zq[x]
/〈

x16 + 1
〉
into size-2 polynomial rings with moduli

of the form x2±αix−1 since 4591+1 = 287 ·24. In this paper, we are interested
in the case Zq[x]

/〈
x16 + 1

〉 ∼=
∏

Zq[x]
/〈

x8 ±
√
2x4 + 1

〉
. See [14, Section 3.3]

for its implementation.
Bruun’s FFT was originally proposed with C as the coefficient ring. See [10]

for the power-of-two case and [20] for the even case.

2.8 Twisting

Let R be a ring, ζ ∈ R be an invertible element, n be an integer, and ξ ∈ R be an
element. We have the isomorphism R[x]/⟨xn − ξζn⟩ ∼= R[y]/⟨yn − ξ⟩ by sending
x to ζy. This is called twisting. Obviously, twisting amounts to multiplying all
the coefficients by certain constants and its transformation matrix is a diagonal
matrix. In the literature, twising is commonly specialized to ξ = 1, but we need
the cases ξ = ±1 in this paper.

2.9 Karatsuba

Karatsuba [18] computes the product (a0 + a1x)(b0 + b1x) by evaluating at the
point set {0, 1,∞}. We compute (a0 + a1x)(b0 + b1x) = a0b0 + (a0b1 + a1b0)x+

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 9

a1b1x
2 with three multiplications a0b0, a1b1, and (a0+a1)(b0+ b1) by observing

a0b1 + a1b0 = (a0 + a1)(b0 + b1)− a0b0 − a1b1.

3 Formalization of Vectorization

We formalize “vectorization-friendliness” and “permutation-friendliness”, and
review the role of Toeplitz matrix-vector products in vectorization. While com-
puting with vector instructions, we choose algebra homomorphisms f and g
such that f is vectorization-friendly and g is permutation-friendly or amounts
to computing Toeplitz matrices when there are vector-by-scalar multiplication
instructions. Their composition g ◦ f then admits suitable mapping to vector
arithmetic.

Section 3.1 formalizes vectorization-friendliness capturing the power-of-two
nature of vector registers, Section 3.2 formalizes permutation-friendliness captur-
ing the permutation nature, and Section 3.3 reviews small-dimensional Toeplitz
matrix-vector products.

3.1 Vectorization–Friendliness

Conceptually, we call an algebra homomorphism vectorization-friendly if we can
factor it into module homomorphisms with matrix forms of certain kinds of
block diagonal matrices or tensor products with Iv as the right operand. We
first identify a set of matrices that can be implemented efficiently with vector
instructions straightforwardly. Let v′ be a multiple of v. We define BlockDiag

as the set of all block diagonal matrices with each block a v′ × v′ matrix of the
following form:

1. Diagonal matrix: a matrix with non-diagonal entries all zeros.

2. Cyclic/negacyclic shift matrix: a matrix implementing (ai) 7→
(
a(i+c) mod v′

)
(cyclic) or (ai) 7→

(
(−1)Ji+c≥v′Ka(i+c) mod v′

)
(negacyclic) for a non-negative

integer c.

Diagonal matrices are suitable for vectorization since we can load v coefficients,
multiply them by v constants, and store them back to memory with vector
instructions. For cyclic/negacyclic shift matrices, we discuss how to implement
them for the following vector instruction sets:

– Armv7/8-A Neon: For cyclic shifts, we use the instruction ext extracting
consecutive elements from a pair of vector registers. We negate one of the
registers before applying ext for negacyclic shifts [14].

– AVX2: For cyclic shifts, we perform unaligned loads, shuffle the last vector
register, and store the vectors to memory. Again, the last vector register is
negated for negacyclic shifts [5].

10 Vincent Hwang

Let f be an algebra monomorphism, and Mf be the matrix form of f . We
call f vectorization-friendly if

Mf =
∏
i

(Mfi ⊗ Iv)Sfi

for some Mfi and Sfi ∈ BlockDiag. The tensor product Mfi ⊗ Iv ensures that
each v-chunk is regarded as a whole while applying Mfi ⊗ Iv. Additionally, f
is vectorization-friendly if and only if f−1 is vectorization-friendly, so we only
need to discuss the vectorization-friendliness of a monomorphism and its inverse
follows immediately.

3.2 Permutation–Friendliness

We introduce the notion “permutation-friendliness”. Conceptually, permutation-
friendliness stands for vectorization-friendliness after applying a special type of
permutation — interleaving. Again, let v′ be a multiple of v. We define the
transposition matrix Tv′2 as the v′2 × v′2 matrix permuting the elements as if
transposing a v′ × v′ matrix. Now we are ready to specify the set Interleave
of interleaving matrices. We call a matrix M interleaving matrix with step v′ if
it takes the form

M = (π′ ⊗ Iv′) (Im ⊗ Tv′2) (π ⊗ Iv′)

for a positive integer m and permutation matrices π, π′ permuting mv′ elements.
The set Interleave consists of interleaving matrices of all possible steps and is
closed under inversion.

We call an algebra monomorphism g permutation-friendly if we can factor
its matrix form M ′

g as

M ′
g =

∏
i

SgiMgi

for Sgi ∈ Interleave and vectorization-friendly Mgi ’s. Immediately, we know
that g is permutation-friendly if and only if g−1 is permutation-friendly.

3.3 Toeplitz Matrix–Vector Product (Small Dimensional)

We go through an alternative for permutation friendliness when there are vector-
by-scalar multiplication instructions. Suppose we have a vectorization-friendly
monomorphism resulting several small-dimensional power-of-two-size cyclic/ne-
gacyclic convolutions. By the definition of vectorization-friendliness, a cyclic/ne-
gacyclic convolution can be phrased as applying a v′ × v′ Toeplitz matrix to a
vector for a v-multiple v′. We call a matrix M Toeplitz if Mi,j = Mi+1,j+1

for all possible i, j. Generally, one can write a polynomial multiplication mod-
ulo xv′ − ζ as an application of a Toeplitz matrix constructed from one of the
operands [6,15,19]. Recently, [11] decomposed the application of a v′×v′ Toeplitz
matrix as a sum of column-to-scalar multiplications and implemented each with
a vector-by-scalar multiplication instruction.

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 11

4 Vectorized Polynomial Multipliers

This section describes our polynomial multiplications for Z4591[x]
/〈

x761 − x− 1
〉
.

A standard approach is to multiply in Z4591[x]/⟨g⟩ with deg(g) > 2 · 760 fol-
lowed by polynomial reduction modulo x761 − x− 1. We propose to multiply in
Z4591[x]

/〈
Φ17

(
x96

)〉
where deg

(
Φ17

(
x96

))
= 1536 > 2 · 760. For simplicity, we

assume R = F4591 in this section.

There are two steps for deciding isomorphisms admitting suitable mapping
to vector arithmetic. The first step is to find an isomorphism honoring our intu-
ition of the memory layout – we choose an isomorphism dividing a large prob-
lem into several subproblems of sizes multiples of v (the number of elements
contained in a vector register). Section 4.1 describes our isomorphisms resulting
several size-16 subproblems. The second step is to decide isomorphisms comput-
ing the remaining task. Section 4.2.1 discusses a permutation-friendly approach
and Section 4.2.2 discusses our Toeplitz matrix-vector product approach. Fi-
nally, we go through a detailed comparisons to existing works with emphases on
vectorization-friendliness and permutation-friendliness in Section 4.3.

4.1 The Vectorization-Friendly Phase

We first go through the implementation of

R[x]

⟨Φ17 (x96)⟩
∼=

(∏ R[x]

⟨x16 ± 1⟩

)48

.

Since the resulting polynomial rings have size 16, our transformation is evidently
vectorization-friendly. We detail below the contruction and its vectorization-
friendliness.

4.1.1 Truncated Rader’s FFT

Let η0 : R16 → R16 be the module map implementing the permutation and
cyclic convolution parts of the truncated size-17 Rader’s FFT. R[x]/⟨Φ17(x)⟩ ∼=∏15

i=0 R[x]
/〈

x− ωi+1
17

〉
is implemented as mul0◦η0 where mul0 := (ai)i=0,...,15 7→(

ω
−(i+1)
17 ai

)
i=0,...,15

. We tensor the composition mul0 ◦ η0 by I96 to implement

R[x]
/〈

Φ17

(
x96

)〉 ∼=
∏15

i=0 R[x]
/〈

x96 − ωi+1
17

〉
. We then twist all the rings to the

cyclic ones via the product map twist0 :=
∏15

i=0

(
x 7→ ω

14(i+1)
17 x

)
3. To sum up,

we implement R[x]
/〈

Φ17

(
x96

)〉 ∼=
(
R[x]

/〈
x96 − 1

〉)16
as

twist0 ◦ ((mul0 ◦ η0)⊗ I96)

which is obviously vectorization friendly.

3 Notice that ω17 = ω1344
17 =

(
ω14
17

)96
.

12 Vincent Hwang

R[x]
/〈

Φ17

(
x96

)〉
· · ·
192

twist0 ◦ ((mul0 ◦ η0)⊗ I96)

R[x]
/〈

x96 − 1
〉

· · ·
12

· · ·

R[x]
/〈

x96 − 1
〉

· · ·
12

16

I16 ⊗ (twist1 ◦ (η1 ⊗ I16))∏
R[x]

/〈
x16 ± 1

〉
· · ·
4

· · ·

∏
R[x]

/〈
x16 ± 1

〉
· · ·
4

48

Fig. 1: Overview of the correspondence between algebraic maps and 128-bit vec-
tor register view in Neon. Each rectangles holds 128

16 = 8 coefficients and is loaded
to a vector register. Similar justification of vectorization-friendliness holds if we
move to 256-bit vector registers in AVX2.

4.1.2 Good–Thomas FFT

Next, we turn the ring R[x]
/〈

x96 − 1
〉
into

(∏
R[x]

/〈
x16 ± 1

〉)3
by applying

Good–Thomas FFT and twisting. Let η1 be the map implementing the Good–
Thomas FFT of dimension 3 × 2, and twist1 twisting the product ring into(∏

R[x]
/〈

x16 ± 1
〉)3

. Then, twist1 ◦ (η1 ⊗ I16) implements R[x]
/〈

x96 − 1
〉 ∼=(∏

R[x]
/〈

x16 ± 1
〉)3

. Since there are 16 copies of R[x]
/〈

x96 − 1
〉
, we have

I16 ⊗ (twist1 ◦ (η1 ⊗ I16)) = (I16 ⊗ twist1) ◦ (I16 ⊗ η1 ⊗ I16)

as the overall transformation. Obviously, this is vectorization friendly.

For a more illustrative explanation of how polynomials are mapped to 128-bit
registers, we outline the workflow in Figure 1 where each rectangles represents
a 128-bit register. Note that similar justification holds for 256-bit registers since
we are right-tensoring by I16.

4.2 Small-Dimensional Cyclic/Negacyclic Convolutions

This section goes through our approaches multiplying in
(∏

R[x]
/〈

x16 ± 1
〉)48

.
We propose two approaches: a permutation-friendly approach for AVX2 and a
Toeplitz matrix-vector product approach for Neon.

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 13

4.2.1 A Permutation-Friendly Approach

∏
R[x]

/〈
x16 ± 1

〉
2

· · ·

∏
R[x]

/〈
x16 ± 1

〉
2

16

EvenOdd32 ⊗ I16(
R[x]

/〈
x16 − 1

〉)16
· · ·
16

(
R[x]

/〈
x16 + 1

〉)16
· · ·
16

I2 ⊗ T256([
x0

] R[x]

⟨x16−1⟩

)16

...
...([

x15
] R[x]

⟨x16−1⟩

)16

([
x0

] R[x]

⟨x16+1⟩

)16

...
...([

x15
] R[x]

⟨x16+1⟩

)16

Fig. 2: Overview of permutations implementing permutation-friendliness for our

AVX2 implementation defined on
(
R[x]

/〈
x16 ± 1

〉)16
. Same idea applies to(

R[x]
/〈

x16 ± 1
〉)48

since 48 = 3 · 16. Each rectangles represents a 16-tuple
mapped to a 256-bit vector register in AVX2.

We first go through the permutation-friendly approach used in our AVX2 im-
plementation. Since the goal is to interleave 16 polynomial rings with the same

shape of computation, we show how to map the multiplication in
(∏

R[x]
/〈

x16 ± 1
〉)16

to vector arithmetic. We perform an even-odd permutation over 16-tuples result-

ing
(
R[x]

/〈
x16 − 1

〉)16×(
R[x]

/〈
x16 + 1

〉)16
followed by two copies of T256. This

gives us the map
(I2 ⊗ T256) (EvenOdd32 ⊗ I16)

where EvenOdd32 moves the even indices to the first half and the odd indices to
the second half. See Figure 2 for an illustration. The overall interleaving matrix

for
(∏ R[x]

⟨x16±1⟩

)48

can be written as:

(I6 ⊗ T256) (I3 ⊗ EvenOdd32 ⊗ I16)

which is permutation-friendly. Finally, we apply Cooley–Tukey to R[x]
/〈

x16 − 1
〉 ∼=∏

R[x]
/〈

x8 ± 1
〉

and Bruun to R[x]
/〈

x16 + 1
〉 ∼= R[x]

/〈
x8 ±

√
2x4 + 1

〉
fol-

lowed by Karatsuba defined over vector registers.

14 Vincent Hwang

4.2.2 Toeplitz Matrix-Vector Products

Recall that one can phrases polynomial multiplications in R[x]
/〈

xv′ ± 1
〉

as

Toeplitz matrix-vector products for v′ a multiple of v (cf. Section 3.3). We de-

scribe an alternative approach for multiplying in
(∏

R[x]
/〈

x16 ± 1
〉)48

with
Neon. Since each vector registers in Neon holds eight coefficients, we first split
R[x]

/〈
x16 − 1

〉
into

∏
R[x]

/〈
x8 ± 1

〉
, and apply Toeplitz matrix-vector mul-

tiplications in R[x]
/〈

x8 ± 1
〉
and R[x]

/〈
x16 − 1

〉
. The implementations follow

analogously from [11].

4.3 Comparisons to Prior Implementations

We compare our vectorized implementations to prior FFT works operating over
R = Z4591. Table 1 summarizes the vectorization- and permutation-friendliness
of existing polynomial multipliers overR. Table 2 summarizes existing vectorization-
friendly approaches with AVX2 and Neon, Table 3 summarizes existing permutation-
friendly approaches with AVX2, and Table 4 summarizes existing permutation-
friendly and Toeplitz matrix-vector product approaches with Neon.

[1] [5] [14] This work

ISA/extension Armv7E-M AVX2 Neon Neon/AVX2

halfword
2 16 8 8 / 16

in a vector register

Domain R[x]

⟨x1530−1⟩
R[x]〈

x2048−1

x512+1

〉 R[x]

⟨x1632−1⟩
R[x]

⟨Φ17(x96)⟩

FFT
Rader, Schönhage, Rader, truncated Rader,
CT Nussbaumer GT GT

Vectorization-friendly v = 2 (Yes) v = 64 (Yes) v = 32 (Yes) v = 32 (Yes)

Permutation-friendly v = 1 (No) v = 32 (Yes) v = 4 (No) v = 16 (Yes)

Table 1: Summary of maximum possible v justifying vectorization- and
permutation-friendliness of existing polynomial multipliers over Z4591 for
Z4591[x]

/〈
x761 − x− 1

〉
. CT stands for Cooley–Tukey FFT and GT stands for

Good–Thomas FFT. If the maximum possible v of a transformation is greater or
equal to the number of halfwords in a vector register, then the FFT transforma-
tion is vectorization-friendly/permutation-friendly for the given ISA/extension.

Comparison(s) to R[x]
/〈

x1530 − 1
〉
from [1]. The earliest FFT work over R

was implemented by [1]. Since 4591 is a prime, one can only define Cooley–Tukey
FFTs of sizes factors of 4591−1 = 2 ·32 ·5 ·17. They computed the isomorphsims
R[x]

/〈
x1530 − 1

〉 ∼=
∏

i R[x]
/〈

x90 − ωi
17

〉 ∼=
∏

i R[x]
/〈

x10 − ωi
102

〉
with size-17

Rader’s and Cooley–Tukey FFTs. Since 2 is the only power-of-two factor of

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 15

[5] [14] This work

ISA/extension AVX2 Neon Neon/AVX2

Domain R[x]〈
x2048−1

x512+1

〉 R[x]

⟨x1632−1⟩
R[x]

⟨Φ17(x96)⟩
FFT Schönhage Rader-17 + GT truncated Rader-17 + GT

Image

(
R[x]

⟨x64+1⟩

)48 ∏
i

R[x]

⟨x16−ωi
102⟩

(∏ R[x]

⟨x16±1⟩

)48

Table 2: Summary of vectorization-friendly approaches.

1530, their isomorphisms are not vectorization-friendly if there are more than
two elements in a vector register.

Comparison(s) to R[x]
/〈

x2048−1
x512+1

〉
from [5]. We compare our AVX2 im-

plementation to the state-of-the-art AVX2 work by [5]. In [5], they made a
first attempt to deliver a large-dimensional power-of-two-sized FFT polyno-
mial multiplier in AVX2 based on Schönhage’s and Nussbaumer’s FFTs. Since
(x2048 − 1)/(x512 + 1) is a factor of x2048 − 1, they applied the Schönhage’s
FFT in a similar way for R[x]

/〈
x2048 − 1

〉
, leading to polynomial multiplica-

tions in R[x]
/〈

x64 + 1
〉
. They then applied Nussbaumer’s FFT to all the 48

copies of R[x]
/〈

x64 + 1
〉
. One can show that power-of-two Schönhage’s FFT is

vectorization-friendly and Nussbaumer’s FFT is permutation-friendly, and the
overall computation is suitable for vectorization. As for polynomial multiplica-
tions in R[z]

/〈
z8 + 1

〉
, they applied recursive Karatsuba. The downside of their

approach is the number of subproblems. Since each applications of Schönhage’s
and Nussbaumer’s FFTs doubles the number of coefficients, there are eventu-
ally 1536·4

8 = 768 polynomial multiplications in the ring R[z]
/〈

z8 + 1
〉
. In our

transformation for AVX2, we only need 48 ·4 = 192 size-8 polynomial multiplica-
tions. This is the main reason why our AVX2 implementation outperforms [5]’s
implementation.

Comparison(s) to R[x]
/〈

x1632 − 1
〉

from [14]. Finally, we compare our
Neon implementation to the state-of-the-art Neon work by [14]. They applied a
3-dimensional Good–Thomas FFT to R[x]

/〈
x1632 − 1

〉
buit upon the coprime

factorization 1632
16 = 2 · 3 · 17 and Rader’s FFT for the size-17 transformation,

resulting in R[x]
/〈

x16 − ωi
102

〉
up to a suitable permutation. Since 102 · 16 =

1632 is not a multiple of 64 (there are 8 elements in each vector register and 64 =
82), the follow up computation can’t be permutation-friendly. They then applied
radix-2 Cooley–Tukey and Bruun’s FFT to

∏
i<96 R[x]

/〈
x16 − ωi

102

〉
. For the

remaining part
∏

i≥96 R[x]
/〈

x16 − ωi
102

〉
, they interleaved the polynomials with

don’t-cares and applied näıve computation. Our transformation removes this
part.

16 Vincent Hwang

[5] This work

Domain

(
R[x]

⟨x64+1⟩

)48 (∏ R[x]

⟨x16±1⟩

)48

FFT Nussbaumer CT + Bruun

Image

(
R[z]

⟨z8+1⟩

)768 (∏ R[x]

⟨x8±1⟩ ×
∏ R[x]

⟨x8±
√
2x4+1⟩

)48

Follow up polymul. Recursive K K

Multiplication instruction Vector-by-vector Vector-by-vector

Table 3: Summary of permutation-friendly approaches with AVX2. K stands for
Karatsuba.

[14] This work

Domain
∏

i
R[x]

⟨x16−ωi
102⟩

(∏ R[x]

⟨x16±1⟩

)48

FFT CT + Bruun CT

Image

∏
i<48

(∏ R[x]

⟨x8±ωi
51⟩

)
× (∏ R[x]

⟨x8±1⟩ × R[x]

⟨x16+1⟩

)48∏
i<48

(∏ R[x]

⟨x8±
√
2ω64i

51 x4+ω128i
51 ⟩

)
×
∏

i>=96
R[x]

⟨x16−ωi
102⟩

Follow up polymul. Näıve (size-8) + K (size-16) Toeplitz

Multiplication instruction Vector-by-vector Vector-by-scalar

Table 4: Summary of permutation-friendly and Toeplitz matrix-vector product
approaches multiplying small-dimensional polynomials in Neon.

5 Results

5.1 Benchmarking Environment

Intel processors with AVX2. We benchmark our AVX2 implementation
on a single core of an Intel(R) Core(TM) i7-4770K (Haswell) processor with
frequency 3.5 GHz, and Intel(R) Xeon(R) CPU E3-1275 v5 (Skylake) with fre-
quency 3.6 GHz. For benchmarking polynomial multiplications, we compile with
GCC 10.4.0 on Haswell and GCC 11.3.0 on Skylake using the optimization flag -

O3. For the batch key generation, we reuse the libsntrup761-20210608 package
from [5]. For the encapsulation and decapsulation, we benchmark with the bench-
marking framework SUPERCOP, version supercop-20230530. TurboBoost and
hyperthreading are disabled throughout the entire benchmarking.

Armv8.0+-A Neon. We benchmark our Neon implementation on a Rasp-
berry Pi 4 Model B and Apple M1 Pro. Raspberry Pi 4 comes with the quad-core

Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime 17

(Cortex-A72) Broadcom BCM2711 chipset and runs at 1.5GHz. Apple M1 Pro
is a system-on-chip featuring eight high-performance cores “Firestorms” running
at 3.2 GHz and two energy-efficient cores “Icestorm” running at 2.0 GHz. We
compile our code with GCC version 12.3.0 with -O3 on Cortex-A72, and GCC
version 13.2.0 with -O3 on Firestorm.

5.2 Performance of Polynomial Multiplication

We provide the performance cycles of functions mulcore and polymul in Table 5.
mulcore computes the product in Z4591[x] with potential scaling by a predefined
constant, and polymul additionally reduces the product modulo x761−x−1 and
mitigates the potential scaling. Our AVX2-optimized mulcore outperforms the
state-of-the-art AVX2 implementation from [5] by factors of 1.90× and 2.05×
on Haswell and Skylake, and polymul outperforms the state-of-the-art AVX2
implementation by factors of 1.99× and 2.16× on Haswell and Skylake. As for
our Neon-optimized mulcore and polymul, they outperform the state-of-the-art
Neon implementation from [14] by factors of 1.25× and 1.29× on Cortex-A72,
and 1.25× and 1.36× on Appl1 M1 Pro.

Table 5: Performance cycles of polynomial multiplications over Z4591 for
sntrup761.

AVX2

[5]∗ This work [5]∗ This work

Haswell Skylake

mulcore (Z4591[x]) 23 460 12 336 20 070 9 778

polymul

(
Z4591[x]

⟨x761−x−1⟩

)
25 356 12 760 21 364 9 876

Neon

[14] This work [14]∗ This work

Cortex-A72 Apple M1 Pro

mulcore (Z4591[x]) 37 475 29 909 8 120 6 508

polymul

(
Z4591[x]

⟨x761−x−1⟩

)
39 788 30 912 9 091 6 697

∗ Our own benchmarks.

5.3 Performance of Scheme

Finally, we compare the overall performance of sntrup761, and summarize them
in Table 6.

18 Vincent Hwang

AVX2 code package(s). For the AVX2-optimized implementation, we inte-
grate our code into the package libsntrup761 with version 20210608 provided
by [5], and report the the amortized cost of batch key generation with batch size
32. Additionally, we also integrate our code into the package supercop with ver-
sion 20230530, and report the performance of encapsulation and decapsulation
after contacting the authors of [5] for reproducing the numbers in their work.

Neon code package(s). For the Neon-optimized implementation, We inte-
grate our code into the artifact provided by [14].

Overall performance with AVX2. For the batch key generation with batch
size 32, we reduce the amortized cost by 12.0% on Haswell and 7.9% on Skylake.
For encapsulation, we reduce the cost by 7.1% on Haswell and 10.3% on Skylake.
For decapsulation, we reduce the cost by 10.7% on Haswell and 13.3% on Skylake.

Overall performance with Neon. For the encapsulation, we reduce the
cycles by 6.6% on Cortex-A72 and 3.0% on Apple M1 Pro, and for the decap-
sulation, we reduce the cycles by 15.1% on Cortex-A72 and 12.8% on Apple M1
Pro.

Table 6: Overall performance of our AVX2 implementation on Haswell and Sky-
lake and our Neon implementation on Cortex-A72 and Apple M1.

AVX2

Haswell Skylake

[5]∗∗ This work [5]∗∗ This work

Batch key generation 154 552 136 003 129 159 118 939

SUPERCOP This work SUPERCOP This work

Encapsulation 47 464 44 108 40 653 36 486

Decapsulation 56 064 50 080 47 387 41 070

Neon

Cortex-A72 Apple M1 Pro

[14]∗∗ This work [14]∗∗ This work

Key generation 6 574 055 6 539 849 1 813 947 1 806 741

Encapsulation 150 054 140 107 64 924 62 959

Decapsulation 159 286 135 184 43 778 38 196

∗∗ Our own benchmarks.

References

[1] Alkim, E., Cheng, D.Y.L., Chung, C.M.M., Evkan, H., Huang, L.W.L.,
Hwang, V., Li, C.L.T., Niederhagen, R., Shih, C.J., Wälde, J., Yang, B.Y.:
Polynomial Multiplication in NTRU Prime Comparison of Optimization
Strategies on Cortex-M4. IACR Transactions on Cryptographic Hardware
and Embedded Systems 2021(1), 217–238 (2021), https://tches.iacr.
org/index.php/TCHES/article/view/8733 3, 14

[2] Alkim, E., Hwang, V., Yang, B.Y.: Multi-Parameter Support with NTTs
for NTRU and NTRU Prime on Cortex-M4. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems 2022(4), 349–371 (2022) 3

[3] Bernstein, D.J.: Fast norm computation in smooth-degree abelian num-
ber fields. Cryptology ePrint Archive, Paper 2022/980 (2022), https:

//eprint.iacr.org/2022/980 3, 7, 8
[4] Bernstein, D.J., Brumley, B.B., Chen, M.S., Chuengsatiansup, C., Lange,

T., Marotzke, A., Peng, B.Y., Tuveri, N., van Vredendaal, C., Yang, B.Y.:
NTRU Prime. Submission to the NIST Post-Quantum Cryptography Stan-
dardization Project [21] (2020), https://ntruprime.cr.yp.to/ 3, 4

[5] Bernstein, D.J., Brumley, B.B., Chen, M.S., Tuveri, N.: OpenSSLNTRU:
Faster post-quantum TLS key exchange. In: 31st USENIX Security Sympo-
sium (USENIX Security 22). pp. 845–862 (2022) 2, 3, 5, 9, 14, 15, 16, 17,
18

[6] Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed
high-security signatures. Journal of cryptographic engineering 2(2), 77–89
(2012) 10

[7] Bernstein, D.J., Yang, B.Y.: Fast constant-time gcd computation and mod-
ular inversion. IACR Transactions on Cryptographic Hardware and Embed-
ded Systems 2019(3), 340–398 (2019), https://tches.iacr.org/index.
php/TCHES/article/view/8298 5

[8] Blake, I.F., Gao, S., Mullin, R.C.: Explicit Factorization of x2k + 1 over Fp

with Prime p ≡ 3 mod 4. Applicable Algebra in Engineering, Communica-
tion and Computing 4(2), 89–94 (1993) 8

[9] Bourbaki, N.: Algebra I. Springer (1989) 5
[10] Bruun, G.: z-transform DFT Filters and FFT’s. IEEE Transactions on

Acoustics, Speech, and Signal Processing 26(1), 56–63 (1978) 8
[11] Chen, H.T., Chung, Y.H., Hwang, V., Yang, B.Y.: Algorithmic Views

of Vectorized Polynomial Multipliers – NTRU. In: Chattopadhyay, A.,
Bhasin, S., Picek, S., Rebeiro, C. (eds.) Progress in Cryptology – IN-
DOCRYPT 2023. pp. 177–196. Springer Nature Switzerland (2024), https:
//link.springer.com/chapter/10.1007/978-3-031-56235-8_9 10, 14

[12] Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation 19(90), 297–301
(1965) 7

https://tches.iacr.org/index.php/TCHES/article/view/8733
https://tches.iacr.org/index.php/TCHES/article/view/8733
https://eprint.iacr.org/2022/980
https://eprint.iacr.org/2022/980
https://ntruprime.cr.yp.to/
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://link.springer.com/chapter/10.1007/978-3-031-56235-8_9
https://link.springer.com/chapter/10.1007/978-3-031-56235-8_9

20 Vincent Hwang

[13] Franchetti, F., Low, T.M., Popovici, D.T., Veras, R.M., Spampinato, D.G.,
Johnson, J.R., Püschel, M., Hoe, J.C., Moura, J.M.: Spiral: Extreme per-
formance portability. Proceedings of the IEEE 106(11), 1935–1968 (2018),
https://ieeexplore.ieee.org/document/8510983 3

[14] Hwang, V., Liu, C.T., Yang, B.Y.: Algorithmic Views of Vectorized
Polynomial Multipliers – NTRU Prime. In: Pöpper, C., Batina, L.
(eds.) Applied Cryptography and Network Security. pp. 24–46. Springer
Nature Switzerland (2024), https://link.springer.com/chapter/10.

1007/978-3-031-54773-7_2 3, 8, 9, 14, 15, 16, 17, 18
[15] Hwang, V.B.: Case Studies on Implementing Number–Theoretic Trans-

forms with Armv7-M, Armv7E-M, and Armv8-A. Master’s thesis, National
Taiwan University (2022), https://github.com/vincentvbh/NTTs_with_
Armv7-M_Armv7E-M_Armv8-A 10

[16] Jacobson, N.: Basic Algebra I. Courier Corporation (2012) 5
[17] Jacobson, N.: Basic Algebra II. Courier Corporation (2012) 5
[18] Karatsuba, A.A., Ofman, Y.P.: Multiplication of many-digital numbers by

automatic computers. In: Doklady Akademii Nauk. vol. 145(2), pp. 293–294
(1962) 8

[19] Írem Keskinkurt Paksoy, Cenk, M.: Faster NTRU on ARM Cortex-M4 with
TMVP-based multiplication. IEEE Transactions on Circuits and Systems
I: Regular Papers 69(10), 4083–4092 (2022), https://ieeexplore.ieee.
org/document/9835023 10

[20] Murakami, H.: Real-valued fast discrete Fourier transform and cyclic convo-
lution algorithms of highly composite even length. In: 1996 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing Conference
Proceedings. vol. 3, pp. 1311–1314 (1996) 8

[21] NIST, the US National Institute of Standards and Technology: Post-
quantum cryptography standardization project. https://csrc.nist.gov/
Projects/post-quantum-cryptography 19

[22] Rader, C.M.: Discrete fourier transforms when the number of data samples
is prime. Proceedings of the IEEE 56(6), 1107–1108 (1968) 7

[23] Shor, P.W.: Algorithms for quantum computation: discrete logarithms and
factoring. In: Proceedings 35th annual symposium on foundations of com-
puter science. pp. 124–134. IEEE (1994) 2

https://ieeexplore.ieee.org/document/8510983
https://link.springer.com/chapter/10.1007/978-3-031-54773-7_2
https://link.springer.com/chapter/10.1007/978-3-031-54773-7_2
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://ieeexplore.ieee.org/document/9835023
https://ieeexplore.ieee.org/document/9835023
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography

	Pushing the Limit of Vectorized Polynomial Multiplications for NTRU Prime
	Introduction
	Preliminaries
	Streamlined NTRU Prime
	Basics of Algebra
	Vector arithmetic
	Cooley–Tukey FFT
	Good–Thomas FFT
	Truncated Rader's FFT and its Inverse
	Bruun's FFT
	Twisting
	Karatsuba

	Formalization of Vectorization
	Vectorization–Friendliness
	Permutation–Friendliness
	Toeplitz Matrix–Vector Product (Small Dimensional)

	Vectorized Polynomial Multipliers
	The Vectorization-Friendly Phase
	Truncated Rader's FFT
	Good–Thomas FFT

	Small-Dimensional Cyclic/Negacyclic Convolutions
	A Permutation-Friendly Approach
	Toeplitz Matrix-Vector Products

	Comparisons to Prior Implementations

	Results
	Benchmarking Environment
	Performance of Polynomial Multiplication
	Performance of Scheme

	References

