
Threshold BBS+ Signatures for

Distributed Anonymous Credential Issuance

Jack Doerner

j@ckdoerner.net

Technion

Yashvanth Kondi

ykondi@cs.au.dk

Aarhus University

Eysa Lee

lee.ey@northeastern.edu

Northeastern University

abhi shelat

abhi@neu.edu

Northeastern University

LaKyah Tyner

tyner.l@northeastern.edu

Northeastern University

April 27, 2023

Abstract

We propose a secure multiparty signing protocol for the BBS+ sig-
nature scheme; in other words, an anonymous credential scheme with
threshold issuance. We prove that due to the structure of the BBS+ signa-
ture, simply verifying the signature produced by an otherwise semi-honest
protocol is sufficient to achieve composable security against a malicious
adversary. Consequently, our protocol is extremely simple and efficient:
it involves a single request from the client (who requires a signature) to
the signing parties, two exchanges of messages among the signing parties,
and finally a response to the client; in some deployment scenarios the con-
crete cost bottleneck may be the client’s local verification of the signature
that it receives. Furthermore, our protocol can be extended to support
the strongest form of blind signing and to serve as a distributed evalua-
tion protocol for the Dodis-Yampolskiy Oblivious VRF. We validate our
efficiency claims by implementing and benchmarking our protocol.



Contents

1 Introduction 1
1.1 Securely Distributing Anonymous Credentials . . . . . . . . . . . 2
1.2 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8
2.1 The BBS+ Signature Scheme . . . . . . . . . . . . . . . . . . . . 9
2.2 Blind Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Universal Composability . . . . . . . . . . . . . . . . . . . . . . . 11

3 Functionalities 12
3.1 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Threshold BBS+ Protocol 17
4.1 t-of-n Threshold Signing . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 A Simple Application: Credential Coalescing . . . . . . . . . . . 23

5 Extensions 23
5.1 Strong Blind Signatures . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Shorter Threshold BBS+ Signatures . . . . . . . . . . . . . . . . 24
5.3 Oblivious Threshold VRF Evaluation . . . . . . . . . . . . . . . . 25
5.4 Proactive Security . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Cost Analysis 25

7 Implementation and Benchmarks 28

8 Proof of Security for t-of-n Signing 33

9 Realizing Key Generation 45



1 Introduction

An anonymous credential allows an issuer to delegate authority to some par-
ticular individual, such that the individual can use the issuer’s delegated au-
thority without revealing their own identity. The notion was originally intro-
duced by Chaum [Cha85], and has been refined by a long line of follow-up
works [CE87, Che96, LRSW99, CL01, CL04, CKL+16, CDHK15]. Anonymous
credentials satisfy two basic security properties: the first is unlinkability, which
guarantees that no verifier can correlate multiple uses of the same credential
(even under arbitrary collusion), and the second is unforgeability, which guar-
antees that no valid credential can be generated without the consent of the
issuer. These properties are essential, but a number of additional properties
have been defined and realized, such as keyed-verifiability [CMZ14, CPZ20] and
delegatability [CL06, BCC+09, CL19].

A common and conceptually simple way to construct an anonymous creden-
tial scheme is to combine a signature scheme with a zero-knowledge proof of
knowledge of a signature satisfying some predicate [CL01, CGSB]. The creden-
tial itself is a signature under the issuer’s public key on a message indicating
what is authorized, and the individual user, who receives the credential, uses
the zero-knowledge proof to authenticate to others without revealing any infor-
mation about the credential other than that it satisfies some predicate. This
basic configuration allows the credential-holder to be anonymous with respect
to the credential validator, but gives no anonymity property with respect to
credential issuance. Anonymity during issuance can be achieved by using blind
signing protocols. Much effort has been put into developing efficient signature
schemes that accommodate efficient zero-knowledge proofs of knowledge, and
efficient blind signing protocols.

Credential issuers as a single point of failure. The weak point in a
traditional anonymous credential system is the issuer, who must hold a secret
signing key for the underlying signature scheme. If the issuer is corrupted and
the secret is leaked to an adversary, then that adversary can produce valid
credentials with any properties it desires. Due to the anonymous nature of
their use, such credentials are inherently difficult to revoke, and due to the
primary use-case of anonymous credentials in governing access and granting
authority, the consequences of such a leak are often extremely high. This risk
can be mitigated by securely distributing the issuance authority across multiple
servers (controlled by one entity, or many) in such a way that many or all of the
issuing servers must be corrupted in order for the adversary to gain the power
of forgery.

When an anonymous credential comprises a signature scheme plus a zero-
knowledge proof of knowledge of a signature, distributing the issuing authority
is as simple as replacing the issuer and its signing function with an ideal func-
tionality that computes the same signing function when queried by the servers
among which issuing authority is to be delegated. If this ideal functionality is
then realized by a threshold signing protocol (with a threshold t) that has se-

1



curity against malicious adversaries under composition, then we can be certain
that the resulting scheme has exactly the same security properties when up to
t− 1 issuers are corrupt as the original one did when the single issuer was hon-
est. Due to the composable nature of the signing protocol, no properties of the
credential need to be re-proven; the signing protocol can simply be dropped into
any existing anonymous credential scheme that uses the same kind of signature.
This, then, is the focus of the present paper: to composably thresholdize the
signature scheme underlying an anonymous credential. Specifically, we choose
the well-known BBS+ signature scheme.

BBS+ Signatures. The BBS+ signature scheme was introduced by Au,
Susilo, and Mu [ASM06] and derives its name from the group signature scheme
of Boneh, Boyen, and Shacham [BBS04], which served as an inspiration. BBS+
allows vectors of messages to be signed at once, and the size of the resulting
signature depends upon the security parameter, but not the number of messages
signed. The scheme also supports efficient zero knowledge proofs of knowledge
of a signature that reveal elements of the message vector selectively; this fea-
ture allows it to serve as a flexible anonymous credential. Beyond this, BBS+
signatures have served as the basis for many other privacy-preserving proto-
cols, such as Direct Anonymous Attestation (DAA) [BL09, CDL16], k-Times
Anonymous Authentication [ASM06], and blacklistable anonymous credentials
[TAKS07]. Of particular note is the Enhanced Privacy ID (EPID) of Brickell
and Li [BL09], which is deployed in Intel’s SGX framework1. There is also
an ongoing effort by the Internet Research Task Force (IRTF) to standardize
BBS+ [LKWL22], which has broad industry support via a consortium known
as the Decentralized Identity Foundation.2

The main difficulty. The BBS+ scheme uses a bilinear pairing to verify a
simple relation in the curve group. The signing operation requires computing
the following group element (stated using additive elliptic curve notation):

A ..=
G1 + s ·H1 +

∑
i∈[`]mi ·Hi+1

x+ e

where x is the secret signing key, and mi is part if the input message, and e
and s are signing nonces. In order to thresholdize BBS+, this equation must
be computed given a secret sharing of x. The main difficulty is that the signing
operation involves computing 1/(x+e): the inverse of a secret value, modulo the
order of the group. This must be done, and then the final signature computed,
with security against a malicious adversary.

1.1 Securely Distributing Anonymous Credentials

We can frame the task of distributed key management for anonymous credentials
as an instance of secure multiparty computation under carefully chosen con-
straints of interaction and statefulness. Our system will involve a fixed number

1See https://api.portal.trustedservices.intel.com/EPID-attestation.
2See https://identity.foundation/

2

https://api.portal.trustedservices.intel.com/EPID-attestation
https://identity.foundation/


of signing servers (i.e. the issuers), who secret-share the key among themselves,
and many clients (who might alias the servers), to whom credentials must be
issued. It is important to note that the clients are transient. That is, they are
not fixed members of the protocol, and are expected to interact only minimally
(and never with one another), expend few computational or network resources,
and keep no state between signing sessions (or, if possible, even within sign-
ing sessions). In addition, unlike personal-scale decentralization (as relevant for
cryptocurrency custody) where one might want to hide the fact that signing is
distributed from outside observers, full transparency is desirable in the setting
of credential-issuance, and so we assume that clients are able to connect to the
issuing servers individually. A client initiates a signing request by sending a
vector of messages to the servers as its input, and the servers run a multiparty
computation among themselves and return an output to the client. We wish to
maximize the throughput of the servers, since they may be issuing credentials
to many clients simultaneously. This goal tends to coincide with minimizing
the latency of the servers’ responses, from the client’s point of view. In order
to achieve it, we are willing to incur client-side computational costs, so long as
the total issuance latency observed by the client remains reasonable concretely.

Ideally, we would like to avoid an elaborate stateful protocol, and instead
limit the interaction of the servers to two exchanges of messages. That is, each
server sends a message to every other server, and then each server replies to the
messages it receives. We refer to this pattern as a round-trip of communication,3

and consider a single round-trip per issued credential to be reasonable, as it is
also the amount of communication required in order to keep track of logistical
information that supports the secure computation; for example it takes one
round-trip interaction to coordinate session IDs, which are important in the
Universal Composability framework [Can01], random oracle prefixes, logs of
issued credentials, and to establish consensus on whether the client should be
issued a credential at all. Our communication model is illustrated in Figure 1.1.

We would also like to avoid the so-called preprocessing model [Bea95] in
which a finite amount of correlated state is produced offline and consumed
online. The preprocessing model creates a risk of state reuse, and requires a
periodic replenishment of the correlated state.

Which secure computation paradigm? The most common techniques for
secure computation fall into a few broad paradigms: constant-round proto-
cols based on Garbled Circuits [Yao86, BMR90, WRK17], arithmetic MPC
systems where round complexity depends on the multiplicative depth of the
circuit [GMW87, DPSZ12, KOS16], and, recently, Pseudorandom-Correlation-
based schemes [BCG+19, BCG+20]. The BBS+ scheme is defined over a large
finite field. The garbled circuit approach incurs substantial overhead for arith-
metic circuits over large fields and so we do not pursue it further. While the
Pseudorandom Correlation paradigm is promising, known constructions are ei-
ther in the preprocessing model [BCG+19] or require non-standard assumptions

3Note that a round-trip as we use it here is distinct from the notion of a round, which
typically refers to a single exchange of messages.

3



Request
Signature

Reconstruct
Signature

Server Message
Exchange 1

Server Message
Exchange 2

Figure 1.1: We consider a client (i.e. user) requesting a signature from a
group of signing servers (i.e. credential issuers). The servers execute a protocol
requiring two exchanges of messages before sending responses to the client. From
these responses the client is able to reconstruct a signature.

or heavy machinery [BCG+20]. The arithmetic MPC approach is known to be
efficient in terms of computation and bandwidth for large fields [KOS16], and in
our setting it does not induce too many rounds of interaction, because the mul-
tiplicative depth of the BBS+ signature algorithm is 1. As with most protocols
in the arithmetic paradigm, ours is based on linear secret sharing.

When using a linear secret sharing scheme, non-linear operations on secret
data are typically expensive to securely compute. In our case, we must invert
a function of the secret key for each signature. Bar-Ilan and Beaver [BB89]
provided an elegant template for solving this problem, which uses only a single
secure multiplication on secret inputs. However, achieving security against a
malicious adversary corrupting the majority of parties is nontrivial.

Lessons From Threshold ECDSA. The ECDSA signing algorithm has a non-
linear structure that is similar in spirit to the BBS+ signing algorithm. In par-
ticular, both algorithms work over similarly-sized elliptic curve groups, and can
trace their non-linearity to an inversion of a secret value. Multiparty ECDSA
signing protocols have recently seen a surge in interest, motivated by key man-
agement concerns similar to those previously outlined. We refer the reader to
Aumasson et al. [AHS20] for a full survey of threshold ECDSA schemes, and we
highlight below the key lessons that can be applied to our problem:

1. Computational resources are the bottleneck. The most sophisticated
machinery required by threshold ECDSA is the secure multiplication for
the inversion protocol [BB89], which is typically instantiated via either Ad-
ditively Homomorphic Encryption (AHE) [CGG+20, CCL+20, LN18], or
Oblivious Transfer (OT) [DKLs18, DKLs19, DOK+20]. The trade-off in
concrete costs between these two approaches is roughly that AHE requires
less bandwidth, whereas OT is computationally lightweight. In our setting,
the secure multiplication protocol is assumed to be run by relatively well-
connected servers (conservatively, with gigabit connections), and so we opt
for the OT-based approach. This decision is supported by the work of Dal-

4



skov et al. [DOK+20] who investigated maximizing throughput in the context
of DNSSEC.

2. Leverage the structure of the problem. Achieving malicious security for
threshold ECDSA requires a multiplication protocol with malicious security,
and also a consistency checking mechanism to ensure the various inputs and
outputs from the multiplier are not altered as the signature is assembled. This
mechanism typically comprises some combination of zero-knowledge proofs,
SPDZ-style MACs [DPSZ12], and equality checks in the ECDSA curve group.
The works of Dalskov et al. [DOK+20] and Smart and Alaoui [SA19] show
how to implement consistency checking for any secure computation within the
‘arithmetic black box’ framework [KOS16] over an elliptic curve. However,
their approach involves considerable computation and bandwidth overhead,
and several rounds of interaction in order to generate and validate SPDZ-
style MACs. On the other hand, Doerner et al. [DKLs18, DKLs19] were
able to avoid the costs of the generic approach by checking a few relations
in the ECDSA curve group, and showed that subverting the checks implied
forging signatures or breaking standard assumptions in the same group. Like
Doerner et al., we avoid the generic approach in this work, and study how
to exploit the structure of the signature itself in order to verify consistency.

With the constraints of the problem and an understanding of potential so-
lutions in place, we are ready to describe our approach.

1.2 Our Techniques

We make use of the single-round-trip OT-based multiplier developed by Do-
erner et al. [DKLs18], as it achieves our desired interaction complexity, induces
low computational burden, and is instantiable from the same qSDH assumption
that BBS+ relies upon. We leave as an open question how one could use the
more recent OT multiplier of Haitner et al. [HMRT22] in this context; their con-
struction realizes a ‘weak’ multiplication functionality that could be sufficient,
although as written their protocol requires three rounds. Their realization of
the fully secure multiplication functionality induces dozens of scalar operations
in an elliptic curve per invocation, which could be a computation bottleneck,
especially when pairing-friendly curves (such as those required for BBS+) are
used.

The signing protocol that we construct from this multiplier requires no ad-
ditional rounds and only minimal additional interaction among the servers.
We prove our protocol secure in the Universal Composability framework of
Canetti [Can01], with respect to a straightforward ideal functionality that sim-
ply executes the BBS+ credential issuer’s algorithm internally when the issuing
servers agree that a signature should be generated. Because the functionality
simply runs the signing scheme, it serves as an intuitive drop-in replacement
for centralized credential issuers. Moreover, the composable security guaran-
tee enables credential requests to come in any order and spawn independent
concurrent instances. We formalize our security notion as Functionality 3.1.

5



Protocol Template. A BBS+ signature consists of a triple (A, e, s), such
that A ∈ G1 is a point on an elliptic curve that supports pairings and e and
s are values from the finite field defined by the order of that curve. When a
client sends a signing request to a set of servers, they engage in a protocol to
generate e and s, and shares Ai of A. These values are then communicated
by the servers individually to the client, who assembles A from the shares and
verifies that (A, e, s) is indeed a valid signature. Though A is a point on an
elliptic curve, each share Ai comprises both a curve point Ri and an element
from the curve-order field ui, and the reconstruction operation for A is defined
to be A ..=

∑
iRi/(

∑
i ui). In order to sample such a sharing of A, the servers

sample a uniform r in the curve-order group, in the form of secret shares ri.
From this they compute secret shares ui of u = r · (x + e). If B is a public
value that both the servers and clients can derive from the messages and s, then
setting Ri = ri · B produces the share Ai = (Ri, ui) of the value A defined as
above. This is essentially a version of the Bar-Ilan and Beaver secure inversion
technique [BB89]. The novelty and difficulty lie in ensuring that no malicious
adversary cheats in this framework.

Verifying Consistency. Assuming that the multiplier is ideally secure (for-
mally, in the FMul2P hybrid model), we show that to achieve security against
a malicious adversary, it suffices for the client to check if the (A, e, s) value is
indeed a valid credential. While it is folklore that the consistency of a multi-
party computation protocol that computes a “self-verifying” object like a digital
signature could be validated simply by checking the signature, proving that no
information is leaked in the event of a malformed signature is subtle. In par-
ticular, these types of folklore arguments often miss the potential for selective
failure attacks in which a cheating adversary can slowly learn about the other
parties’ keys by inducing failures that are correlated with the secrets of the other
parties. Defending against such attacks often requires elaborate zero-knowledge
proof techniques.

In contrast, at a high level, we observe that the shares ri serve as linear
MAC keys, and reconstruction involves implicitly checking the MAC against A,
which is fixed by e, s, and the public key. We show that if a server cheats and
passes this correctness check, then it has effectively forged a signature (but in
this case, the output signature is correct, the protocol does not abort, and the
adversary learns nothing forbidden). We contrast this implicit MAC with the
explicit MAC used by the generic MPC approach [SA19, DOK+20]—computing
an explicit MAC induces a computation and communication overhead factor of
roughly two, and validating and using it to check correctness requires several
extra rounds of interaction.

Conceptually, this allows us to place BBS+ signatures in between Schnorr
and ECDSA in terms of complexity of decentralization. In particular, Schnorr
signatures are known to be straightforward to decentralize even with UC se-
curity [Lin22], requiring only commitments and proofs of knowledge. ECDSA
requires secure multiplication; specifically, it requires multiple products to be
securely computed, and then requires some mechanism to ensure consistency

6



between them. Enforcing consistency involves checking implicit (and possibly
computational) MACs in the curve group [DKLs19], homomorphically evaluat-
ing an encrypted form of the signature scheme [?], or performing zero-knowledge
proofs [?]. Our protocol to decentralize BBS+ interpolates an intermediate
decentralization complexity between ECDSA and Schnorr, as it requires only
a single invocation of secure multiplication and a corresponding information-
theoretic implicit MAC check with no need for additional consistency checks.

Extensions. Okamoto’s signature scheme [Oka06a] can be viewed as a variant
of BBS+, and is therefore thresholdizable via our scheme. As we discuss in
Section 5, our techniques can also be used to distribute the computation of the
Dodis and Yampolskiy Verifiable Random Function [DY05]. In addition, since
the state that our servers are required to maintain comprises additive secret key
shares and base OTs for the OT extension [IKNP03] used by the multiplier,
we can use the proactivization scheme of Kondi et al. [KMOS21] to refresh the
state of the system and defend it against mobile attackers [OY91].

1.3 Prior Works

Dodis and Yampolskiy [DY05] proposed a verifiable random function (VRF)
of the form Fx(e) 7→ e(G1, G2)/(x + e) where the proof of correct evaluation
is of the form π = G1/(x + e). This structure is very similar to the BBS+
signature scheme. Dodis and Yampolskiy themselves proposed that their VRF
could be evaluated via the inversion trick of Bar-Ilan and Beaver [BB89]; our
protocol can be viewed as the minimal way to add malicious security to their
distributed VRF construction. Moreover, our scheme can be extended to make
such a threshold VRF oblivious. We discuss this further in Section 5.

The problem of thresholdizing the BBS+ signature scheme was previously
taken up by Goldfeder, Gennaro, and Ithurburn [GGI19]. That solution, like
ours (and the Dodis-Yampolskiy scheme) begins with the inversion protocol of
Bar-Ilan and Beaver. Our scheme, however, is distinct in several important
regards. That work provides a monolithic proof of standalone security, whereas
we provide a full modular proof of composable security in the UC paradigm. In
particular, our scheme is based upon an ideal multiplication functionality, which
is realizable in two rounds from the same assumption as the BBS+ signature
scheme. Theirs, on the other hand, hardcodes a multiplication strategy based
upon Paillier encryption. This potentially degrades efficiency, because it is
unclear whether their scheme can be adapted to require only a single round-trip
of communication as our does, and because securing Paillier-based multipliers
requires zero-knowledge range proofs that are far more costly than any other
component of the protocol. It also degrades security, because it means that their
protocol relies upon the Strong RSA assumption (which is entirely unrelated to
the underlying signature scheme). Even more troublingly, the multiplication
techniques used in [GGI19] have been shown explicitly to be insecure in the
context of threshold ECDSA signing [MP, TS21]; the impact of this on the
BBS+ protocol is at present unclear. Finally, unlike the [GGI19] scheme, our

7



scheme does not require A to be revealed to the simulator in order to simulate
the protocol when the client is honest. Achieving this requires a somewhat
subtle analysis, but it opens the door to a fully-blind signing extension, and
to applying our protocol to the threshold oblivious VRF problem as previously
mentioned. Due to all of these reasons and the simplicity of our protocol, we are
also able to provide an implementation with concrete benchmarks in Section 7.

An anonymous credential scheme supporting threshold issuance was also
given by Sonnino, Al-Bassam, Bano, Meiklejohn, and Danezis [SAB+19]. This
scheme, Coconut, is primarily based upon the signature scheme of Pointcheval
and Sanders [PS16] (PS signatures), which base their security on an interac-
tive assumption similar but not equivalent to LRSW [LRSW99]. In terms of
credential-showing efficiency, Coconut and our work are in similar in that they
both require proving and verifying a 2-clause non-interactive zero-knowledge
proof of knowledge. A follow-up paper by Rial and Piotrowska [RP22] (RP-
Coconut), however, identifies security problems with the proof sketch of Son-
nino et al. [SAB+19] and provides a patch. In order to prove unforgeability,
RP-Coconut requires increasing the size of the public key to ` elements of G1

plus ` + 1 elements of G2, where ` is the maximal number of elements in any
vector of messages that can be signed. This is nearly double the public key size
of Coconut, which required `+ 1 elements of G2. In comparison, the public key
for our scheme only requires 1 element of G1 and 1 element of G2. Addition-
ally, BBS+ signatures are compatible with all group types, while PS signatures
specifically require type-3 pairings. As Pointcheval and Sanders [PS16] write,
the existence of an efficient isomorphism between G1 and G2 would make their
signature scheme “totally insecure”. Finally, it is worth noting that Rial and Pi-
otrowska provide a sequentially-secure simulation-based proof for RP-Coconut.
Unlike proofs in the UC-model, sequential security makes no guarantees for
concurrent or parallel executions of the protocol.

2 Preliminaries

Notation. We use λ to denote the (computational) security parameter and n
to denote the number of parties. The symbols ≈c and ≈s denote computational
and statistical indistinguishability, respectively, with respect to λ. G1,G2,GT

denote three groups of prime order q, such that |q| = κ, and we represent
operations over these groups additively. By convention, variables representing
group elements are capitalized, and the generators of G1 and G2 are G1 and G2

respectively. Single-letter variables are set in italic font, multi-letter variables
and function names are set in sans-serif, and string literals are set in slab-serif.
Bold variables represent vectors of subscripted elements, so that x = {x1, x2, x3}
in a context where the latter three variables are defined, and we use [n] to
denote the vector of integers {1, . . . , n} and ‖ to denote concatenation. We let
lagrange(J, j, 0) denote party Pj ’s Lagrange coefficient for Shamir-reconstruction
with the parties indexed by J; that is, the coefficient for the one point that it

8



knows on a polynomial, such that the sum over all the parties indexed by J
interpolates the polynomial at location 0.

Bilinear Groups. A bilinear group (or pairing group) is a trio of groups
(G1,G2,GT) with an efficient map (or pairing) operation e : G1×G2 → GT, such
that for any x,∈ Zq and y ∈ Zq, e(x ·G1, y ·G2) = x · y · e(G1, G2). We define
BilinGen to be an efficient algorithm (G1,G2, G1, G2, q) = G ← BilinGen(1λ),
which samples a description G of the group (with λ bits of security). There are
three types of pairings [GPS08]: type-1, in which G1 = G2; type-2, in which
G1 6= G2 and there exists an efficient isomorphism ψ : G2 → G1; and type-3, in
which G1 6= G2 and there does not exist an efficient isomorphism ψ.

2.1 The BBS+ Signature Scheme

The BBS+ signature scheme uses bilinear groups to produce a signature for a
vector of ` messages. Its algorithms are as follows.

Algorithm 2.1. BBS+Gen(G, `)

1. Let (G1,G2, G1, G2, q) ..= G.

2. Sample a vector of `+ 1 random group elements H← G`+1
1 .

3. Uniformly choose secret key x← Z∗q .

4. Calculate X ..= x ·G2.

5. Set sk ..= (H, x) and pk ..= (H, X).

6. Output (sk, pk).

Algorithm 2.2. BBS+Sign(sk,m ∈ Z`q)

1. Parse sk as (H, x).

2. Uniformly sample nonces e← Zq and s← Zq.

3. Compute

A ..=
G1 + s ·H1 +

∑
k∈[`]mk ·Hk+1

x+ e

4. Output signature σ ..= (A, e, s).

Algorithm 2.3. BBS+Verify(pk,m, σ)

1. Parse pk as (H, X) and σ as (A, e, s).

9



2. Check the following:

e(A, X + e ·G2) = e(G1 + s ·H1 +
∑
k∈[`]

mk ·Hk+1, G2)

Output 1 if and only if the equality holds.

Au et al. [ASM06] introduced BBS+ and proved it secure for type-1 and
type-2 pairings, using the original “conference version” of the qSDH assumption
[BB04].

Lemma 2.4 ([ASM06]). The BBS+ signature scheme is existentially unforge-
able against adaptive chosen messages under the conference version of the qSDH
assumption for type-1 and type-2 pairings.

BBS+ was later proved secure without any assumptions about the existence
(or non-existence) of an isomorphism for type-3 pairings by Camenisch et al.
[CDL16], under the updated “journal version” of the qSDH assumption [BB08].

Lemma 2.5 ([CDL16]). The BBS+ signature scheme is existentially unforge-
able against adaptive chosen messages under the journal version of the qSDH
assumption for type-3 pairings.

Note that while the BBS+ signature scheme requires the qSDH assump-
tion to achieve unforgeability, and while oblivious transfer can also be securely
instantiated under the same assumption, our protocols are secure in the OT-
hybrid model, and thus do not require qSDH or any other specific computational
assumption.

Comparison to Okamoto Signatures Okamoto’s signature scheme [Oka06a]
was originally introduced in the context of constructing blind signatures. As
Au et al. [ASM06] observed previously, BBS+ can be viewed as an extension
of Okamoto signatures for signing blocks of messages. Apart from the number
of messages signed, the schemes mainly differ in their proofs of security. The
original conference version of Okamoto’s paper introduced the 2-variable strong
Diffie-Hellman (2SDH) assumption, and proved security under a variant of this
assumption. A later version of the paper [Oka06b] revised the proof to achieve
security under the conference version of qSDH. Both versions of this proof rely
on an isomorphism between the groups. Okamoto signatures are known to be
strongly existentially unforgeable, whereas Au et al. [ASM06] and Camenisch et
al. [CDL16] claim only standard unforgeability for BBS+. Our techniques can
easily be adapted to thresholdize the Okamoto scheme.

2.2 Blind Signatures

A blind signature protocol allows a signer (who holds the secret key) to sign
a message belonging to another party, without learning the contents of the
message. In weakly-blind signing schemes, only the message is hidden, whereas

10



in strongly-blind schemes, the resulting signature is also hidden from the signer,
so that it cannot be used to identify the client later. In this work, we focus
mainly on weak partially-blind signing. This is a variant of weakly-blind signing
in which the message is hidden from the signer, but the signer receives a proof
that the message satisfies some predicate. In this way, an arbitrary signing policy
can be enforced, even though the signer signs blindly. In the threshold context,
we will allow the client (who requests and receives the signature) to prove a
different predicate to each signer. Note that weak partial-blindness implies
weak blindness: the client need only omit the predicate. In section 5.1, we
discuss an extension of our scheme that achieved strong partially-blind signing.

2.3 Universal Composability

We formalize our protocols and prove them secure in the Universal Compos-
ability (UC) framework, using standard UC notation. We refer the reader to
Canetti [Can01] for a full description of the model, and give a brief overview
here.

In the UC framework, the real-world experiment involves n parties
P1, . . . ,Pn that execute a protocol π, an adversary A that can corrupt a subset
of the parties, and an environment Z that is initialized with an advice string
z. All entities are initialized with the security parameter λ and with a random
tape. The environment activates the parties involved in π, chooses their inputs
and receives their outputs, and communicates with the adversary A, who may
may instruct the corrupted parties to deviate from π arbitrarily. In this work,
we consider only static adversaries, who announce their corruptions at the be-
ginning of the experiment. The real-world experiment completes when Z stops
activating parties and outputs a decision bit. Let Realπ,A,Z(λ, z) denote the
random variable representing the output of the experiment.

The ideal-world experiment involves n dummy parties P1, . . . ,Pn, an ideal
functionality F , an ideal-world adversary S (the simulator), and an environ-
ment Z. The dummy parties forward any message received from Z to F and
vice versa. The simulator can corrupt a subset of the dummy parties and in-
teract with F on their behalf; in addition, S can communicate directly with F
according to its specification. The environment and the simulator can interact
throughout the experiment, and the goal of the simulator is to trick the envi-
ronment into believing it is running in the real experiment. The ideal-world
experiment completes when Z stops activating parties and outputs a decision
bit. Let IdealF ,S,Z(λ, z) denote the random variable representing the output
of the experiment.

A protocol π UC-realizes a functionality F if for every probabilistic
polynomial-time (PPT) adversary A there exists a PPT simulator S such that

11



for every PPT “admissible”environment Z,4

{Realπ,A,Z(λ, z)}λ∈N+,z∈{0,1}poly(λ)

≈c {IdealF ,S,Z(λ, z)}λ∈N+,z∈{0,1}poly(λ)

3 Functionalities

We give the ideal functionality that we intend our protocol to realize.

Functionality 3.1. FBBS+(n, t,G, `)
This functionality interacts with n fixed parties denoted by P1, . . . ,Pn, an
a-priori unspecified number of transient clients, all of them denoted by C,
and with an ideal adversary S. Clients may be aliases of any of the parties.
The set of corrupt parties is indexed by P∗. The functionality is also
parameterized by a threshold t ≤ n, a message count `, and the description
of a bilinear group, G. During setup, S may instruct the functionality
to abort. During any signing phase, S may instruct the functionality to
output a “failure” to client instead of a signature. This is similar to an
abort, except that the functionality does not halt, but continues accepting
inputs.

Setup: On receiving (init, sid) from some party Pi for i ∈ [n] where sid is
fresh, send (init-req, sid, i) to S. On receiving (init, sid) from every party
Pi for i ∈ [n], where sid is agreed-upon and fresh, if there exists no record of
the form (key, sid, ∗, ∗) in memory, then sample (sk, pk)← BBS+Gen(G, `),
store (key, sid, sk, pk) in memory, and send (public-key, sid, pk) to S and
to every party Pi for i ∈ [n] as adversarially-delayed private output.

Signing: Upon receiving (sign, sid, sigid,m,J) from C, where m ∈ Z`q,
J ⊆ [n], |J| = t, and sigid is fresh, if a record of the form (key, sid, sk, pk, `)
exists in memory, then send (sig-req, sid, sigid, C,m,J) to every party Pj
for j ∈ J as adversarially-delayed private output.

On receiving (accept, sid, sigid) or (reject, sid, sigid) from some Pj for
j ∈ J, send (accepted, sid, sigid, j) or (rejected, sid, sigid, j) to S, respec-
tively.

On receiving (accept, sid, sigid) from every Pj for j ∈ J, compute
(A, e, s) ← BBS+Sign(sk,m), send (leakage, sid, sigid, e, s) to S and
send (signature, sid, sigid, (A, e, s), pk) to C as adversarially-delayed pri-
vate output. If any Pj instead sends (reject, sid, sigid), then send
(rejected, sid, sigid) to C as adversarially-delayed private output.

4Admissibility is a minimal well-formedness condition that ensures all entities in the ex-
periment are able to run for an appropriate amount of time. Per standard practice, we will
only consider admissible environments, but leave their admissibility implicit.

12



Weak Partially-Blind Signing: Upon receiving
(wb-sign, sid, sigid,m,J) from C, where m ∈ Z`q, J ⊆ [n], |J| = t,
and sigid is fresh, if a record of the form (key, sid, sk, pk, `) exists in mem-
ory, then wait to receive (wb-pred, sid, sigid, j, φj) from C, where φj is the
description of a predicate on m such that φj(m) = 1, and upon receiving
such a message for some j ∈ J, send (wb-sig-req, sid, sigid, C, φj ,J) to
party Pj .

On receiving (wb-pred, sid, sigid, j, φj) from C and either
(accept, sid, sigid) or (reject, sid, sigid) from some Pj for j ∈ J,
send (accepted, sid, sigid, j) or (rejected, sid, sigid, j) to S, respectively.

On receiving (wb-pred, sid, sigid, j, φj) from C and (accept, sid, sigid)
from every Pj for every j ∈ J, compute (A, e, s)← BBS+Sign(sk,m), send
(leakage, sid, sigid, e) to S, and send (signature, sid, sigid, (A, e, s), pk)
to C as adversarially-delayed private output. If any Pj instead sends
(reject, sid, sigid), then send (rejected, sid, sigid) to C as adversarially-
delayed private output.

Note that the weak partially-blind signing interface of the foregoing inter-
face can be converted into a strong partially-blind signing interface simply by
removing the leakage to the adversary. We discuss how to realize such a modified
functionality in Section 5.1.

3.1 Building Blocks

Now we will define the building blocks of our protocol. We begin with our com-
munication model: every pair of parties can communicate via an authenticated
channel, and we also assume the existence of a broadcast channel. Formally, the
protocols are defined in the (FAuth, FBC)-hybrid model (see [Can01, CLOS02]).
We leave this implicit in their descriptions. Since we desire only to achieve se-
curity with abort, our broadcast channel can be realized via the echo-broadcast
technique [GL05]. Specifically, the parties send broadcast messages optimisti-
cally over point-to-point channels, and at the end, every party hashes the entire
transcript of broadcast messages and sends the digest to all other parties. If the
digests do not agree, the parties abort.

Standard functionalities. The parties make use of standard commitment,
zero-knowledge, and committed-zero-knowledge functionalities; FCom, FZK,
FCom-ZK respectively. We specify the commitment and zero knowledge func-
tionalities to work in a broadcast fashion, but they are otherwise similar to the
standard versions [CLOS02]. The parties also use a functionality FZero that
produces secret sharings of zero in a particular group.

Functionality 3.2. FCom [CLOS02]

This functionality interacts with parties P = {P1,P2, . . .}.

13



Commitment: On receiving (commit, sid,P , x) from some party P,
where sid is fresh, store (commitment, sid,P,P , x) in memory and send
(committed, sid,P) to all of the parties identified by P .

Decommitment: On receiving (decommit, sid) from P,
if (commitment, sid,P,P , x) exists in memory, then send
(decommitment, sid, x) to all of the parties identified by P .

Functionality 3.3. FRZK [CLOS02]

This functionality interacts with an a-priori-unspecified number of parties,
designated by P and V = {V1,V2, . . .}. It also has black-box access to the
decider for NP-relation R.

Proof: On receiving (prove, sid,V , x, w) from P, where sid is fresh
and V is a set of party identifiers, check whether R(x,w) = 1, and
send (accepted, sid,P, x) to all of the parties identified by V if so. If
R(x,w) 6= 1, then send (rejected, sid,P, x) to the same set of parties.

Functionality 3.4. FRCom-ZK [CLOS02]

This functionality interacts with a prover P and a set of verifiers V =
{V1,V2, . . .}. It also has black-box access to the decider for NP-relation R.

Commitment: On receiving (commit, sid,V , x, w) from some party P,
where sid is fresh, store (commitment, sid,P,V , x, w) in memory and send
(committed, sid,P) to all of the parties identified by V .

Proof: On receiving (prove, sid) from P, if (commitment, sid,P,V , x, w)
exists in memory, then check whether R(x,w) = 1, and send
(accepted, sid, x) to all of the parties identified by V if so. If R(x,w) 6= 1,
then send (rejected, sid, x) to the same set of parties.

Functionality 3.5. FZero(n,G)

This functionality is parameterized by the party count n and a group G.

Sample: Upon receiving (sample, sid,J) from some party Pi for i ∈ J,
where J ⊆ [n] and sid is fresh, uniformly sample x ← G|J| conditioned
on

∑
i∈J

xi ≡ 0G and send (zero-share, sid, xi) to Pi. Upon receiving

(sample, sid,J) from any other Pj for ∈ J \ {i}, send (zero-share, sid, xj)
to Pj .

FCom and FZero can both be realized via simple folkloric methods. FCom is re-
alized in the Random Oracle model simply by feeding the value to be committed

14



into the random oracle, along with a random salt of twice the length of the secu-
rity parameter, and then transmitting the oracle’s output as the commitment,
and the salt along with the original value as the opening. FZero can be realized
in the following way: each pair of parties commits and decommits a pair of λ-bit
seeds to one another, then sums the pair to form a single shared seed. When
FZero is invoked, each pair of parties evaluates the random oracle on their shared
seed concatenated with the next index in sequence. Each party then computes
a single output share for itself by accumulating the random oracle outputs: it
subtracts oracle outputs for the party pairs in which it is lower-indexed, and
adds oracle outputs for the party pairs in which it is higher-indexed.

The zero-knowledge and committed-zero-knowledge functionalities will be
used with the standard discrete logarithm relation

RDL = {((X,B), x) : X = x ·B}

and in addition, in the context of partially-blind signing, they will be used with
the conjunction of an arbitrary predicate and accumulated-discrete-logarithm

RDL∧φ =
{

((X,B1, . . . , B`), (x1, . . . , x`)) :

X =
∑
i∈`

xi ·Bi ∧ φ(x1, . . . , x`) = 1
}

FRDL
ZK can be realized via the Fischlin [Fis05] or Kondi-shelat [KS22] transforms

applied to the Schnorr protocol [Sch89]. The realization of FRDL∧φ
ZK depends upon

the predicate φ, but in simple cases, such as selectively checking equality with
known values, the cost is no more than that of proving knowledge of ` discrete
logarithms. FCom-ZK can be realized similarly to FZK, but with the addition of
a commitment and decommitment via FCom.

Threshold discrete log key sampling. As specified in section 2.1, the public
key of the BBS+ signature scheme over (G1,G2, G1, G2, q) = G comprises `+ 1
random elements of G1, plus a single element X of G2. To sign a message, only
the discrete logarithm x of X is required; thus to thresholdize the BBS+ scheme,
x must be sampled and stored in threshold-secret-shared form. This is precisely
the same requirement as exists for the secret key in many other threshold signa-
ture schemes, including Schnorr and ECDSA. We use the following functionality
to accomplish it in a modular fashion.

Functionality 3.6. FDLKeyGen(n, t,G)

This functionality is parameterized by the party count n, the threshold t,
and the elliptic curve G = (G, G, q). The adversary S may corrupt up to
t− 1 parties that are indexed by P∗, and if |P∗| ≥ 1, then the adversary S
may instruct the functionality to abort.

15



Key Generation: On receiving (keygen, sid) from some party Pi such
that sid is fresh, send (keygen-req, sid, i) to S. On receiving (keygen, sid)
from all parties, if sid is agreed upon, then

1. Sample x← Zq.

2. Compute X ..= x ·G.

3. Receive (poly-points, sid, {p(i)}i∈P∗) from S.

4. Sample a random polynomial p of degree t− 1 over Zq, consistent with
the values p(i) for i ∈ P∗ that were sent by S, and subject to p(0) = x.

5. For i ∈ [n], compute P (i) ..= p(i) ·G.

6. Send (public-key, sid, X, {P (1), . . . , P (n)}) directly to S.

7. Send (key-pair, sid, X, p(i)) to Pi for i ∈ [n] as adversarially-delayed
private output.

The realization of FDLKeyGen is a well-studied problem. We choose to realize it
using the method of Doerner et al. [DKLs19]. While their protocol is simple and
self contained, they did not prove that it realizes any standalone functionality,
so, for completeness, we do so in Section 9.

Multiplication. The main building block of our protocol is two-party multipli-
cation. Specifically, we require a functionality that enables Alice and Bob, who
have a and b respectively, to learn c and d respectively, such that c+ d = a · b.
This is also sometimes known as Oblivious Linear Evaluation (OLE), and it is
encapsulated by the following functionality.

Functionality 3.7. FMul2P(q)

This functionality interacts with two parties, who we refer to as Alice and
Bob. It is parameterized by a prime q that determines the order of the field
over which multiplications are performed.

Input: On receiving (input, sid,PA, b) from PB (a.k.a. Bob), if b ∈ Zq
and no record of the form (bob-input, sid, ∗, ∗) exists in memory, then
sample c ← Zq uniformly, store (bob-input, sid, b, c) in memory, and send
(ready, sid,PB, c) to PA (a.k.a. Alice).

Multiplication: On receiving (multiply, sid, a) from Alice, if a ∈ Zq and
there exists a message of the form (bob-input, sid, b, c) in memory, and if
(complete, sid) does not exist in memory, then compute d ..= a ·b−c mod q,
send (product, sid, d) to Bob, and store (complete, sid) in memory.

There are many techniques in the literature of multiparty computation for
realizing multiplication functionalities, but for the sake of achieving our desired
efficiency targets, we choose to realize FMul2P(q) via the two-round protocol

16



of Doerner et al. [DKLs18]. Their protocol is based upon Oblivious Transfer
(OT) [EGL85], and can be seen as a malicious extension of the classic semi-
honest distributed multiplication technique of Gilboa [Gil99]. Because their
protocol is OT based, it can be based upon many assumptions, including the
assumption that the computational Diffie-Hellman problem is hard in G1, which
is implied by the qSDH assumption under which BBS+ itself is proven secure.

We note that because the protocol of Doerner et al. uses concretely efficient
OT Extensions instead of plain OT, their protocol performs a one-time setup
and reuses it for many multiplication operations. This implies that it does not
quite realize the above functionality: instead it realizes a slightly more complex
functionality with an initialization phase followed by many reactive subsessions,
each of which performs one multiplication. We elide this detail for the sake
of simplicity; all of our protocols and proofs can be adapted to use the true
functionality of Doerner et al. in the obvious way, and the required initialization
can be performed at the same time as key generation.

4 Threshold BBS+ Protocol

Before we give the formal description of our signing protocol, we give an overview
of its subprotocols. These techniques were also overviewed in Section 1.2.

Key Generation. Before servers can sign messages, they must first run a one-
time setup phase to jointly generate keys. To generate X ∈ G2 along with a
Shamir sharing of its discrete logarithm x (that is, a degree-(t− 1) polynomial
p such that p(0) = x and x · G2 = X), any standard protocol for threshold
discrete-log key generation will do. Here we specify that the parties use an
ideal functionality FDLKeyGen, and we give the Doerner et al. [DKLs19] protocol
for realizing this functionality in section 9. The servers must also generate H,
which can be done using a standard commit-and-release of random G1 elements,
which are then summed. This commit-and-release can be done concurrently with
the invocation of FDLKeyGen so as to not increase round-count. Communication
efficiency efficiency can be improved (and the public key can be compressed) by
using a programmable random oracle to generate H2, . . . ,H`+1 from H1. Oracle
programming can be avoided if H2, . . . ,H`+1 are generated in the same way as
H1.

Signing. The client initiates the signing protocol with t servers by sending the
messages m to be signed, and J ⊆ [n], the identities of the signing parties.

Suppose the set of t signing parties know a secret sharing r of a random value
r, and that they know (uniformly sampled) values s and e. Suppose furthermore
that the signing parties know a secret sharing u of the product u = r · (x+ e).
It is easy to see that signing party Pi can compute

Ri ..= ri ·
(
G1 + s ·H1 +

∑
k∈[`]

mk ·Hk+1

)

17



and that if each party Pi sends s, e, Ri, and ui to the client, then the client can
compute

A ..=

∑
i∈JRi∑
i∈J ui

=
r ·
(
G1 + s ·H1 +

∑
k∈[`]mk ·Hk+1

)
r · (x+ e)

which is a BBS+ signature on m. Notice that the sum
∑
i∈J ui information-

theoretically hides x, and that the sum
∑
i∈JRi reveals exactly what A reveals,

given knowledge of u. The task of the signing parties is thus to generate r, u,
s, and e in only two message-exchanges.

s and e can both be sampled quite simply via commit-and-release coin toss-
ing. The shares r are sampled locally, and then a two round multiplier is used
to compute shares of the pairwise products ri · lagrange(J, j, 0) · p(j) for all
(i, j) ∈ J×J.5 Each party Pi then computes ui as the sum of its shares of these
pairwise products and ri · e. For technical reasons, the inputs to the multipliers
must be rerandomized by adding secret-sharings of 0 to them.6 It is possible
for the parties to sample secret-sharings of 0 noninteractively using well-known
techniques.

Weak Partially-Blind Signing. To achieve weak partial-blindness, the client
does not send m to the signing parties, but instead samples a masking nonce
s0 ← Zq and computes B′ ..= s0 ·H1 +

∑
k∈[`]mk ·Hk+1. The client sends B′ to

the signing parties instead of m, along with a zero-knowledge proof of knowledge
of s0 with respect to B′. This proof is necessary in order to permit the simulator
to extract the client’s mask share s0, but it can also be extended to allow the
client to prove properties of its messages to the signing parties. The signing
parties determine s as usual and construct B ..= G1 + s ·H1 +B′, and when the
client receives the signature, it computes s′ ..= s0 + s, and takes the signature
to be (A, e, s′) instead of (A, e, s). This modification information-theoretically
hides the messages from the signing parties (in the FZK-hybrid model), even if
all of the signing parties are corrupt.

4.1 t-of-n Threshold Signing

Our protocol contains three subprotocols, corresponding to the three phases
of FBBS+. The first generates a public key and Shamir shares of the corre-
sponding secret key. This subprotocol is a derivative of the protocol Doerner et
al. [DKLs18, DKLs19]. Thereafter we give protocols for threshold signing and
for weak partially-blind threshold signing.

5Recall that p is a Shamir secret sharing of x. The set of publicly-calculable Lagrange
coefficients lagrange(J, j, 0) for j ∈ J converts it into a t-party additive sharing. Also note
that when i = j, local multiplication suffices.

6This ensures that if the corrupt parties use incorrect inputs for some or all of the multi-
plication protocol instances, then the offsets induced into the outputs of the honet parties are
independent of those parties secret inputs.

18



Protocol 4.1. πBBS+(n, t,G, `)
This protocol runs among n fixed parties denoted by P1, . . . ,Pn, an a-
priori unspecified number of transient clients, all of them denoted by C.
Clients may be aliases of any of the parties. The parties (and clients)
also have access to the ideal functionalities FCom, FRDL

ZK , FZero(n,Z2
q),

FDLKeyGen(n, t, (G2, G2, q)), and FMul2P(q). The protocol is parameterized
by the threshold t, a message count `, and the description of a bilinear
group, (G1,G2, G1, G2, q) = G. If at any point during this protocol, a
functionality aborts, any party that observes the abort also aborts to the
environment. Clients do not abort, but rather output a failure message
which does not cause the other parties to halt or ignore further instructions
from the environment.

Setup: On receiving (init, sid) from Z, where sid is fresh, each party Pi
for i ∈ [n] performs the following sequence of steps:

1. Pi sends (keygen, sid) to FDLKeyGen(n, t, (G2, G2, q)).

2. Pi samples Di ← G`+1
1 and sends (commit, sid‖Pi, {P1, . . . ,Pn},Di) to

FCom.

3. Upon being notified of all other parties’ commitments, Pi sends
(decommit, sid‖Pi) to FCom.

4. If FDLKeyGen(n, t, (G2, G2, q)) aborts, then Pi aborts.

5. On receiving (key-pair, sid, X, p(i)) from FDLKeyGen(n, t, (G2, G2, q)) and
(decommitment, sid‖Pj ,Dj) from FCom for every j ∈ [n] \ {i}, Pi com-
putes

H ..=

∑
j∈[n]

Dj,k


k∈[`+1]

and then Pi outputs (pub-key, sid, (H, X)) to Z.a

Signing: This phase of the protocol is initiated by the client C when it
receives (sign, sid, sigid,m,J) from Z. Clients may be transient or alias
with the fixed parties. Note J ⊆ [n] and |J| = t.

6. C broadcastsb (sig-req, sid, sigid,m,J) to every Pj for j ∈ J.
On receiving this message, each party Pj for j ∈ J outputs
(sig-req, sid, sigid, C,m,J) to the environment.

7. On receiving (sig-req, sid, sigid,m,J) from some client C and
(reject, sid, sigid) from the environment, Pi sends (rejected, sid, sigid)
to C and to Pj for j ∈ J \ {i}.

19



8. On receiving (rejected, sid, sigid) from some Pj for j ∈ J, Pi
ignores all further instructions related to this sigid. On receiv-
ing (rejected, sid, sigid) from some Pj for j ∈ J, C outputs
(rejected, sid, sigid) to the environment and ignores all further instruc-
tions related to this sigid.

9. On receiving (sig-req, sid, sigid,m,J) from some client C and
(accept, sid, sigid) from the environment, Pi samples (ei, si, ri) ←
Z3
q and sends (sample, sid‖sigid,J) to FZero(n,Z2

q). On receiv-
ing (zero-share, sid‖sigid, (αi, βi)) from FZero(n,Z2

q), Pi computes
xi ..= lagrange(J, i, 0) · p(i), and then Pi sends (commit, sid‖Pi‖sigid,
{Pj}j∈J, (ei, si)) to FCom and (input, sid‖Pi‖Pj‖sigid,Pj , xi + αi) to
FMul2P(q) and (sync, sid, sigid,m) to Pj for every j ∈ J \ {i}.

10. Upon receiving (committed, sid‖Pj‖sigid,Pj) from FCom and
(ready, sid‖Pj‖Pi‖sigid,Pj , ci,j) from FMul2P(q) for every
j ∈ J \ {i}, sends (decommit, sid‖Pj‖sigid) to FCom and
(multiply, sid‖Pj‖Pi‖sigid, ri + βi) to FMul2P(q) for every j ∈ J \ {i}.

11. Upon receiving both (decommitment, sid‖Pj‖sigid, (ej , sj)) from FCom

and (product, sid‖Pi‖Pj‖sigid, di,j) from FMul2P(q) for every j ∈ J\{i},
Pi computes

e ..=
∑
j∈[n]

ej

s ..=
∑
j∈[n]

sj

B ..= G1 + s ·H1 +
∑
k∈[`]

mk ·Hk+1

Ri ..= ri ·B

ui ..= (ri + βi) · (e+ xi + αi) +
∑
j∈J\{i}

(ci,j + di,j)

and sends (accepted, sid, sigid, pk, e, s, Ri, ui) to C, and halts.

12. Upon receiving (accepted, sid, sigid, pk, e, s, Ri, ui) from every Pi for i ∈
J, the client C outputs (failure, sid, sigid) if any two parties disagree
on the values of s, e, or pk. Otherwise, C parses pk as (H, X), computes
B via the same equation as in Step 11, computes

A ..=

∑
i∈J

Ri∑
i∈J

ui

20



and verifies that BBS+Verify(pk,m, (A, e, s)) = 1. If so, then C outputs
(signature, sid, sigid, (A, e, s), pk) to Z, and halts, but if the equality
does not hold, then C outputs (failure, sid, sigid).

Weak Partially-Blind Signing: This phase of the protocol is initiated
by the client C when it receives (wb-sign, sid, sigid,m,J,φ) from Z. Clients
may be transient or alias with the fixed parties. Note J ⊆ [n] and |J| =
|φ| = t.

13. C samples s0 ← Zq, computes

B′ ..= s0 ·H1 +
∑
k∈[`]

mk ·Hk+1

and sends (prove, sid‖sigid, {Pj}, {B′, H1, . . . ,H`+1}, {s0,m1, . . . ,m`})
to FRDL∧φj

ZK for j ∈ J. C also broadcastsb (wb-sig-req, sid, sigid, B′,J)
to every party Pj for j ∈ J. On receiving this message and recieving
(accepted, sid‖sigid, C, {B′, H1, . . . ,H`+1}) from FRDL∧φj

ZK , each party Pj
for j ∈ J outputs (wb-sig-req, sid, sigid, C, φj ,J) to the environment.

14. On receiving (wb-sig-req, sid, sigid,J) from some client C
and (accepted, sid, C, {B′, H1, . . . ,H`+1}) from FRDL∧φi

ZK and
(reject, sid, sigid) from the environment, Pi sends (rejected, sid, sigid)
to C and to Pj for j ∈ J \ {i}.

15. On receiving (rejected, sid, sigid) from some Pj for j ∈ J, Pi
ignores all further instructions related to this sigid. On receiv-
ing (rejected, sid, sigid) from some Pj for j ∈ J, C outputs
(rejected, sid, sigid) to the environment and ignores all further instruc-
tions related to this sigid.

16. On receiving (wb-sig-req, sid, sigid,J) from some client C
and (accepted, sid, C, {B′, H1, . . . ,H`+1}) from FRDL∧φi

ZK and
(accept, sid, sigid) from the environment, each party Pi runs Steps 9 to
11 from the Signing phase, except that B is computed as

B ..= G1 + s ·H1 +B′

As before, each party Pi sends (accepted, sid, sigid, pk, e, s, Ri, ui) to C
before halting.

17. Upon receiving (accepted, sid, sigid, pk, e, s, Ri, ui) from every Pi for i ∈
J, the client C outputs (failure, sid, sigid) if any two parties disagree
on the values of s, e, or pk. Otherwise, C parses pk as (H, X), computes

21



B via the same equation as in Step 16, computes

A ..=

∑
i∈J

Ri∑
i∈J

ui

s′ ..= s0 + s

and verifies that BBS+Verify(pk,m, (A, e, s′)) = 1. If so, then C outputs
(signature, sid, sigid, (A, e, s′), pk) to Z, and halts, but if the equality
does not hold, then C outputs (failure, sid, sigid).

aIn the programmable random oracle model, an optimization is available to reduce
the public key size: the parties sample and store only H1 during steps 2 through 5. When
they require Hi for i 6= 1, in order to provide them as output to the environment, and
in the Signing and Weak Partially-Blind Signing phases, they (locally) calculate
Hi

..= RO(i‖H1), where RO is a random oracle. A more thorough disscussion follows
this protocol description.

bAs we mentioned in section 3.1, our broadcast channel can be realized via the echo-
broadcast technique [GL05], with no loss in security and no significant loss in efficiency.

Theorem 4.2 (Main Security Theorem). Let G = (G1,G2, G1, G2, q) be
the description of a bilinear group. πBBS+(n, t,G, `) statistically UC-realizes
FBBS+(n, t,G, `) in the (FCom,FRDL∧φ

ZK ,FDLKeyGen(n, t, (G2, G2, q)),FZero(n,Z2
q),

FMul2P(q))-hybrid model with selective abort against a malicious adversary that
statically corrupts up to t− 1 fixed parties and any number of transient clients.

Proof is given in Section 8.

Optimizing public key length. As previously mentioned in footnote a of
Protocol 4.1, a programmable random oracle can be used to make the public key
size independent of `: in particular, under the optimization described, the public
key comprises only two group elements: one each from G1 and G2. Note that the
functionality FBBS+ determines the valuesHi for i 6= 1, and it must do so in order
for the signature scheme to remain secure; it follows that the random oracle used
to calculate these values in the protocol must be programmed in the ideal world
by the simulator, with the values the functionality supplies. This optimization
weakens the security theorem, which does not otherwise incorporate a random
oracle. Nevertheless, for the performance analyses in Sections 6 and 7 we assume
this optimization is applied.

Proving selective attributes. Credentials produced by this system can be
used in a selective fashion. Camenisch et al. [CDL16] construct a concretely
efficient proof of the following relation:

RBBS+ =

((µ, I, pk), (m, σ)) :

 ∧
i∈[|I|]

µi = mIi

 ∧ BBS+Verify(pk,m, σ) = 1


which selectively reveals some subset µ (indexed by I) of the messages in a BBS+
signature to a verifier. Using this proof, a credential holder can authenticate to

22



a service that only requires the authority of some subset of the issuers, without
revealing their relationship with the other issuers. Yet because it is a proof over
only a single signature, it is far more efficient (computationally, and in terms
of communication and storage) than the naive solution of proving knowledge of
many independently-signed credentials.

4.2 A Simple Application: Credential Coalescing

As we discussed in Section 1, our scheme can be used to thresholdize any single-
issuer anonymous credential scheme based upon BBS+. Here we discuss a
related application: coalescing of credential from multiple authorities. Suppose
a user is known to multiple credential authorities, and wishes to authenticate to a
service by proving a joint statement about who these authorities believe the user
to be, and what each of them (individually) authorizes the user to do. On the
other hand, the user may not wish to reveal to one authority their relationship
with another authority. Our weak partially-blind signing protocol allows the
user to prove a different predicate privately to each signing server. The user can
request a vector of messages to be signed in a weak-blind fashion, each message
representing one of the issuing authorities’ credentials, and convince each issuing
authority independently that its corresponding message is acceptable simply by
proving equality with some string the issuing authority has fixed. The result is
a single compact credential that coalesces the relationship between the user and
all of the issuing authorities.

It should be noted for properties only subsets of authorities are authorized
to issue, care must be taken to ensure the credentials with these properties are
not issued without consent and involvement of the relevant servers. In practice,
this can be implemented by having parties check this requirement before partic-
ipating in signing (in the clear for regular signing or via an appropriate choice
of predicate in weak paritially-blind signing) or by requiring t = n.

5 Extensions

5.1 Strong Blind Signatures

Our weak partially-blind signing protocol can be modified to achieve strong
blindness, without increasing its round count and with only a modest increase
in other cost metrics. Under this modification is realizes a version of the FBBS+

functionality that has no leakage to S in the blind-signing phase.
Strong blindness requires that the e must also be masked in addition to s

and A. To achieve this, the client samples an additional masking nonce e0 ← Zq
and initiates an instance of FMul2P(q) with every signing party, using e0 as its
input. Each signing party Pi receives ci,0 as output from this multiplier and
compute u′i

..= ui + ci,0. Pi sends u′i to the client in place of ui, and completes
the multiplier instance at the same time, supplying ri as its input. Thus the
client receives d0,i from FMul2P(q) such that ci,0 + d0,i = e0 · ri for every i ∈ J

23



along with Ri and u′i, computes

A′ ..=

∑
i∈J

Ri∑
i∈J

(u′i + d0,i)
and e′ ..= e0 + e

and takes the signature to be (A′, e′, s′) instead of (A, e, s′). This modification
information-theoretically hides the messages and the signature from the signing
parties (in the hybrid model), even if all of the signing parties are corrupt, and
the proof of security we have given in Section 8 extends naturally.

Note that because the multiplication protocol of Doerner et al. [DKLs18]
(with which we propose to realize FMul2P(q)) requires only two messages, the
client can arrange to play the role of Bob, and send the first message along
with the client’s signature request, and then the signing parties can send the
second message along with their outputs. For the sake of computational effi-
ciency, Doerner et al. base their protocol on OT-extension, which requires a
one-time setup protocol to be run before the multiplication protocol begins. In
our context, this would imply additional rounds for any client who has not pre-
viously interacted with the signing parties. Fortunately, it is possible to achieve
two-round chosen-input oblivious transfer without advance setup via endemic
OT [MR19], though at noticeably increased computational cost. Replacing OT
extension with endemic OT in the protocol of Doerner et al. allows us to achieve
fully-blind signing without increasing the round complexity of our protocol.

5.2 Shorter Threshold BBS+ Signatures

The recent work of Tessaro and Zhu [TZ23] proved the security of a shorter
variant of BBS+ that eliminates the nonce s and reduces the public key from
({H1, . . . ,H`+1}, X) to ({H1, . . . ,H`}, X). A short BBS+ signature on mes-
sages m1, . . . ,m` is of the form (A, e) where

A ..=
G1 +

∑
k∈[`]mk ·Hk

x+ e

Our protocol can easily be adjusted to accommodate this shorter BBS+
scheme. For plain signing, the adjustment is direct. For weak partially-blind
signing, the client must sample a masking nonce r0 ← Zq and compute

B′ ..= r0 ·
(
G1 +

∑
k∈[`]

mk ·Hk

)
and adjust the language of FZK as necessary. The signing parties skip the steps
related to s. The client, upon receiving e and shares Ri and ui from the signers,
computes

A ..=

∑
i∈J

Ri

r0 ·
∑
i∈J

ui

24



and takes the signature to be (A, e). Strong partially-blind signing can be
achieved as described in Section 5.1 using pairwise instances of FMul2P(q) among
the client and each of the signing servers.

5.3 Oblivious Threshold VRF Evaluation

Dodis and Yampolskiy [DY05] proposed a verifiable random function (VRF) of
the form Fx(e) 7→ e(G1, G2)/(x+ e) where the proof of correct evaluation is of
the form π = G1/(x+ e). Starting from its strongly-blind form as described in
Section 5.1, our protocol can be lightly modified to serve as a threshold oblivious
evaluation protocol for the DY VRF, which maintains obliviousness even if all
key-holders are corrupt, and achieves a composable security guarantee with a
clean functionality.

Specifically, the client receives e as input from the environment, and then
samples e0, eJ1

. . . , eJt to be a uniform additive secret sharing of e, and commu-
nicates each ei privately to Pi for i ∈ J along with the evaluation request. The
servers use G1 in place of B, and no coin tossing need be done for either s or e.
The resulting protocol realizes a functionality that simply computes the VRF
Fx on the client’s input, much as our unmodified protocol simply computes a
signature on the client’s messages.

5.4 Proactive Security

Ostrovsky and Yung [OY91] conceived of the mobile adversary model, in which
an attacker might corrupt every device throughout the lifetime of the sys-
tem, while never corrupting more than a threshold number at any given time.
Herzberg et al. [HJKY95] devised a method to defend against such an adver-
sary, by attempting to rerandomize the state of the system before the adversary
corrupts a new party. In our constructions, the state of the system is char-
acterized by additive shares of the secret x, and the OT correlations that are
extended for use by the multiplier. This is exactly the same state maintained
by the 2-of-n ECDSA construction of Kondi et al. [KMOS21] and we are able to
apply their technique directly to proactivize our scheme when t = 2. For general
t-of-n proactivization, the parties can simply re-run the setup phase of the OT
extension protocol to create fresh OT correlations, and refresh their shares of
the signing key via the standard technique of jointly sampling Shamir shares of
0 and adding these to the shares with which they started.

6 Cost Analysis

In this section we present a closed-form cost analysis of the bandwidth and
computational costs associated with our protocol given in Protocol 4.1, where
the functionalities are realized as suggested in Section 3.1. We count the total
number bits transmitted per signing server, but with respect to computational
costs, we focus only on the most computationally-expensive elements of our

25



protocol, which are the operations over the bilinear group. In Section 7, we
implement and benchmark our protocol to demonstrate the concrete impact of
these costs. Since the blind signing protocol requires an application-dependent
predicate to be defined, and this predicate heavily influences the cost of the
protocol, we consider only the costs of the non-blind signing protocol.

Building Blocks. We instantiate our multiplication functionality via the mul-
tiplication protocol of Doerner et al. [DKLs18], but to realize the underlying
OT-extension, we use the new SoftSpokenOT protocol [Roy22b] in place of the
KOS protocol they suggested, along with the Endemic OT protocol of Masny
and Rindal [MR19] for the base OTs. We modify SoftspokenOT via the Fiat-
Shamir transform to run in two rounds. The average bandwidth cost (that is
the number of bits transmitted by any single party, on average) for this modified
form of SoftSpokenOT is

ROTeCost(λ, `) 7→
(

3

2
+

1

2kSSOT

)
· (λ2 + λ) +

λ · `
2kSSOT

where ` is the number of OT extensions in the batch [Roy22a]. This cost function
includes a parameter kSSOT which controls the trade-off between bandwidth
and computation cost. For calculating concrete bandwidth numbers, we set
kSSOT = 2, since Roy suggested [Roy22a] this yields a strict improvement over
KOS.

We can write the average bandwidth cost of the Doerner et al. multiplier as
follows:

COTeCost(λ, `, n) 7→ ` · n/2 + ROTeCost(λ, `)

MulCost(λ, κ, s) 7→ COTeCost(λ, 2κ+ 2s, 2κ) + κ · (2κ+ 2s+ 1)/2

where s is the statistical security parameter. For calculating concrete bandwidth
numbers, we let s = 80. This function gives the number of bits transmitted per
party on average. In Table 6.2 we report concrete values for several specific
parameterizations.

The foregoing multiplication strategy requires a one-time setup protocol
comprising λ instances of base OT. The Endemic OT scheme [MR19] that we
choose for base OTs requires a key agreement protocol; using DHKE over an
elliptic curve with elements of size |G1|, the average number of bits transmitted
per party is

MulSetupCost(λ, |G1|) 7→ (2λ · |G1|)

and furthermore it requires 4λ elliptic curve scalar operations per party. This
setup protocol can be run simultaneously with key generation.

Because we use optimistic echo-broadcast to instantiate our broadcast chan-
nel, we consider the cost of a broadcast to be equivalent to sending to all parties
via point-to-point channels. Thus we consider the cost of a (broadcast) com-
mitment to be 2λ bits per destination party, and the cost of a decommitment
to be equal to the size of the committed value times the number of destination
parties. We consider the cost of an instance of FRDL

ZK , where RDL is over G2, to

26



be (2·|G2|+κ)·λ/ log2 λ bits; the overhead relative to the normal cost of a sigma
protocol is due to the Fischlin [Fis05] or Kondi-shelat transform [KS22]. The
cost of FRDL

Com-ZK is the cost of committing and decommitting this same number
of bits.

Our Protocol. We divided our BBS+ protocol into its components for key gen-
eration and signing, and constructed the cost functions for each component from
the above subprotocol costs. We did not calculate the cost of weak partially-
blind signing, since it depends heavily on the predicates that the client proves,
and the protocol used to prove them. Our SetupCost function combines the cost
of key generation, multiplier setup, and fixing shared keys for instantiating FZero

(as discussed in Section 3.1). We assume the random-oracle-based optimization
described in footnote a of Protocol 4.1 is applied, and that all commitments are
coalesced where possible.

SetupCost(n, `, λ, κ, |G1|, |G2|) 7→
(n− 1) · (8λ+ κ+ (2 · |G2|+ κ) · λ/ log2 λ+ |G1|+ MulSetupCost(λ, |G1|))

SignCost(n, t, `, λ, s, κ, |G1|, |G2|) 7→
(t− 1) · (4λ+ 2κ+ 2 ·MulCost(λ, κ, s)) + 3κ+ |G2|+ |G1| · (`+ 2) + t log n

Finally, the client’s signing request involves transmitting t · (` · κ + log n)
bits in total. In terms of computation, each signing server must perform ` + 2
scalar multiplications in G1 in order to create a signature, and the client must
perform `+ 1 scalar multiplications in G1 plus one scalar in G2 and two pairing
operations in order to verify the signature.

The current recommendations [SKSW20] of The Internet Engineering Task
Force (IETF) for “pairing-friendly” elliptic curves are the BLS12 381 and BN462
[Bow17] curves, corresponding to a 128-bit security level, and the BLS48 581
[KIK+17] curve, corresponding to a 256-bit security level. Specifications for
these curves are listed in Table 6.1, and for each curve and its associated security
parameter, we give concrete bandwidth costs, in bits transmitted per party, in
Table 6.2.

Curve κ q |G1| |G2| Security Level

BLS12 381 256 ∼ 2255 384 768 126 [GMT20]

BN462 464 ∼ 2461 464 928 134 [GMT20]

BLS48 581 520 ∼ 2517 584 4672 256

Table 6.1: IETF-Recommended Pairing Curve Specifications: Group order
bit-length (κ), group order (q), and group element sizes for curves BLS12 381,
BN462, and BLS48 581 and their corresponding security levels. Sizes are
rounded up to the nearest even byte.

27



Curve λ Mul Cost Setup Cost Signing Cost Response Size

BLS12 381 128 308576 (n− 1) · 132736 (t− 1) · 618176 1536 + (`+ 2) · 384

BN462 128 821192 (n− 1) · 163159 (t− 1) · 1643820 2320 + (`+ 2) · 464

BLS48 581 256 1128196 (n− 1) · 617808 (t− 1) · 2258456 6232 + (`+ 2) · 584

Table 6.2: Bandwidth Costs in total bits transmitted per party, for t parties
(out of n) who wish to sign a vector of ` messages. Note that we use the
standard computational security parameters with values closest to those of the
chosen curve, and that in all cases, the statistical parameter s = 80. The
Signing Cost is the number of bits sent per signer to the other signers, whereas
the Response Size is the number of bits sent per signer to the client.

7 Implementation and Benchmarks

We implemented and benchmarked our protocol in Rust, using the BLS12 381
curve for both for the signature scheme and for the base OT protocol underlying
the multiplication protocol. Our implementation took roughly 6400 lines of code
including comments and extensive test suites, and it was compiled using rustc

1.62.0-nightly (3f052d8ee).
Our experiment consists of n server processes and a client; when started,

the n server instances establish connections between themselves and then listen
on a network port for requests from a client. The client sends a signing request
to all servers, then waits for the responses, and assembles the signature. We
measure wall-clock time independently for servers and the client, because they
have different workloads. Each configuration of the experiment was run at least
150 times to compute aggregate statistics. As all of our experiments involve
timings from multiple parties, we always report the statistics from the party
that recorded the maximum average time in each protocol execution.

We performed experiments on three network environments: local, LAN, and
WAN. In the local environment, all n server processes and the client were exe-
cuted on the same physical machine. This machine had a 16-Core AMD Ryzen
9 7950X processor (model 97, stepping 2) and 64GB of RAM. Our LAN and
WAN benchmarks used Google Cloud c2d-standard-4 instances, which at the
time had 4 vCPUs partitioned from an AMD EPYC 7B13 processor (model
1, stepping 0) and 16GB of RAM. These instance were running linux kernel
5.10.0. For LAN benchmarks, all instances were colocated in the us-east1-c
zone. For WAN benchmarks, the first 12 server instances were spread among
zones us-east1-*, us-east4-*, us-central1-*, and us-west1-* the next 13
servers were spread across europe-west1-*, europe-west2-*, and europe-
west4-*, and the remaining 7 were again spread across the US zones. In all
cases, the client was located in us-east1-c.

We evaluated Local, LAN and WAN setup and signing operations for the
n-of-n case for n ∈ [2, 32]. These timings closely reflect the performance for any
t-of-n regime where t ∈ [2, 32]. The primary difference between n-of-n and t-of-n

28



is that the identities of the t parties involved in the session must be shared, and
each party must locally multiply their secret share with a Lagrange coefficient.
These steps contribute negligibly to wall-clock time and bandwidth. We believe
that in practice the typical number of issuers will be less than 10, but we provide
extra datapoints to experimentally confirm scaling behavior.

Signing results. Our results for signing are reported in Figure 7.1. In the LAN
setting, when n = 6, the servers incur a wall-clock time from request to response
of 5.1ms, whereas the client experiences 11.3ms of latency from input to output
and signature verification (regardless of n) requires 5.0ms; this means that the
dominant concrete cost for n ≤ 5 in the LAN setting is actually verification
of the signature by the client! No alternative approach can hope to do much
better in this regime, unless it avoids verifying the signature that the protocol
produces.

Our local experiments exhibited slightly slower times than our LAN exper-
iments, especially when n > 16 and there was more than one server process
per core. WAN costs seem to be dominated by network latency. The large gap
between n = 12 and 13 occurs because the 13th server is located in Europe and
incurs trans-Atlantic latencies; the one between n = 5 and 6 is due to adding
a west-coast zone to the experiment. The graph shows that these latencies
overwhelm the compute time. We note the cost of running this protocol is com-
parable to the cost of serving a modern web application, with response times
that are measured in the 100s of milliseconds.

Setup results. Our setup protocol is more costly than our signing protocol,
because it performs the oblivious transfer and extension operations required to
initialize the multiplier protocols. As predicted by the analysis in Section 6,
these operations require more network bandwidth. Measurements are shown in
Figure 7.2.

Overhead of MPC. To measure the “overhead of our MPC”, we also measured
signing and verification operations for the standard BBS+ signature scheme
using the same Rust elliptic curve libraries. These times were collected using
Rust’s built-in test framework, and they are reported in Table 7.3. To help
gauge these results on different machines, we also provide micro-benchmarks
for scalar curve operations of our implementation.

In moving from the single party implementation to the 2-of-2 threshold case,
we see that the overhead of MPC for the signing operation is 3x in the local
and LAN environment, and roughly 70x for the WAN environment, due mostly
to network latencies.

Comparison with Doerner et al.’s Threshold ECDSA [DKLs19]. As
noted in Section 1, our threshold protocol for BBS+ requires fewer operations
than the threshold ECDSA signing protocol of Doerner et al., and yet our
benchmarks appear to be slower than theirs. To explain, we note that their
implementation of ECDSA uses a highly optimized elliptic curve and modular
arithmetic library. For example, by employing a scalar multiplication optimiza-
tion that exploits precomputation, their elliptic-scalar operation requires only

29



2 5 10 15 20 25 32

3
40

100

200

300

400

n parties

m
il

li
se

co
n

d
s

Local Srv Local Cli
LAN Srv LAN Cli
WAN Srv WAN Cli

Figure 7.1: Protocol signing timings for n-out-of-n over Local, LAN and WAN
setups, as expected in a practical deployment for credentials. Error bars depict
standard deviation over 150+ runs. The server time reflects the back-end com-
putation, measured as the max average over the servers from the time a request
is received by a server until a response is sent. The client time reflects the time
from when a request is sent to all servers until a signature on the message has
been reconstructed and verified from the responses.

2 5 10 15 20 25 32

0

10

20

30

n parties

se
co

n
d

s

Local LAN WAN

Figure 7.2: Protocol setup timing for n-out-of-n over Local, LAN and WAN
setups. Error bars depict standard deviation over 150+ runs.

34.2µs versus the 390µs we require for BLS12 381 when measured on the same
platform (i.e., their elliptic curve operations are roughly 11x faster). Our mul-

30



Operation Time

Key Generation 1.994ms ± 5.2µs

Sign 1.185ms ± 4.3µs

Verify 5.008ms ± 31.6µs

G1 scalar multiplication 0.391ms ± 3.6µs

G2 scalar multiplication 1.204ms ± 10.4µs

Table 7.3: BBS+ operations using BLS12 381, as measured by the Rust bench-
mark. The error terms represent standard deviation. Measurements were taken
on the GCP instance used for LAN tests.

tipliers use the slower BLS12 381 curve, although in principle, we could use the
faster secp256k1 curve at the cost of introducing an extra security assumption
in our protocol. Finally, their ECDSA implementation uses hardware SHA256
accelerations for computing 8 hashes at once.

Comparison with Goldfeder, Gennaro, and Ithurburn [GGI19]. Be-
cause no implementation of the Goldfeder, Gennaro, and Ithurburn protocol
is available, we attempt to approximate its signing times. Phase 3 of their
protocol requires invoking a multiplier between every pair of parties; the most
expensive steps in their multiplier requires Alice to encrypt a share, and provide
a zero-knowledge range proof on the ciphertext, Bob to perform a scalar mul-
tiplication and addition on the ciphertext while also providing a zero-knowlege
proof of correctness, and then Alice to decrypt the ciphertext (ignoring commit-
ments, and exponentiations in elliptic curve group). We implemented the basic
encryption operations described above using the libpaillier rust library. One
such multiplier requires 27.6ms ± 44µs of compute time. This step alone costs
9x more than full 2-of-2 server latency in our protocol, and since each server
in their protocol needs to perform 2 of these multipications with every other
server, we expect the computational burden of their protocol to grow quickly
into hundreds of milliseconds as n increases. Moreover, the Paillier operations
just described are not the most expensive component of their protocol: that
distinction belongs to the zero-knowledge proofs, and we expect that if they
were implemented, the total protocol time is likely to be on the order of several
seconds.

Comparison with RP-Coconut [RP22]. We used Nym’s implementa-
tion [Nym22] of the RP-Coconut protocol to compare performance. By using an
interactive security assumption, the RP-Coconut scheme is simpler and does not
require an expensive multiplier operation. However, the protocol does require
each server to perform a pairing operation and the client to perform several
in order to aggregate results, and thus the performance relationships are not
immediately clear.

The RP-Coconut protocol involves three stages that correspond roughly to
our protocol: (a) first, the client must prepare a request for message signing and

31



send this to the servers, (b) the servers must run the sign operation, and (c)
the client must aggregate each of the received messages into a final signature.
Step (a) corresponds almost exactly to the steps we require in our protocol: a
commitment and a proof of knowledge of the committed values to be signed;
thus we do not benchmark it. The RP-Coconut implementation was incapable
of running a full experiment with n servers communicating via a network. In-
stead, we benchmarked a single server running (with each parameterization) in
isolation, and then benchmarked the time required for the client to aggregate.
This means that while the client latency for our protocol includes the server
time, the client time for their protocol excludes it. This favors their protocol
over ours.

2 5 10 15 20 25 32

3
10

40

100

150

n parties

m
il

li
se

co
n

d
s

Local Srv
Local Cli
RP-Coconut Srv
RP-Coconut Cli

Figure 7.4: Protocol running times for n-out-of-n signing 3 messages over
Local network environment for our protocol versus RP-Coconut. Timings for
RP-Coconut were taken by the criterion package, with 100 samples.

As expected, Figure 7.4 shows that RP-Coconut’s server performance re-
mains roughly the same as n increases because each server only performs linear
operations on its secret. While our protocol’s server performance grows faster
than that of RP-Coconut, our protocol’s client performance grows much slower
than theirs. This implies that when the application context requires the signa-
ture to be reconstructed to make progress (e.g., many blockchain settings), our

32



protocol’s overall time to create a signature (client + server) is lower than that
of RP-Coconut.

8 Proof of Security for t-of-n Signing

Theorem 4.2. Let G = (G1,G2, G1, G2, q) be the description of a bilin-
ear group. πBBS+(n, t,G, `) statistically UC-realizes FBBS+(n, t,G, `) in the
(FCom,FRDL∧φ

ZK ,FDLKeyGen(n, t, (G2, G2, q)),FZero(n,Z2
q),FMul2P(q))-hybrid model

with selective abort against a malicious adversary that statically corrupts up
to t− 1 fixed parties and any number of transient clients.

Our proof relies on a few crucial details of the underlying signature scheme
and usage model. In particular, we use the fact that the inversion nonce of the
Bar-Ilan and Beaver protocol can be interpreted as a MAC on the adversary’s
shares of the secret key, which is checked via the reconstruction procedure.

The high-level idea is to abstract away the details of the adversarial behavior
in terms of our “offset” values that the adversary induces on the inputs to the
multipliers in the protocol. Because the adversary’s input relates to xi, ri, Ri,
and ui, we denote the adversary’s offsets that the corrupt parties cumulatively
inject into these values by δx, δr, ∆R, and ∆u respectively. While the structure
of our protocol makes it easy for us to identify these offsets, the difficulty lies in
analyzing how these offsets should be used to simulate the protocol outcome.

We must discriminate between offsets that are malicious and those that are
benign, i.e. those that cancel each other out in the real protocol and do not
cause an abort. We demonstrate how the signature verification algorithm can
be used to check whether the adversary’s cheating offsets cancel one another,
even without knowledge of the correct signature value.

The most subtle aspect of our simulation involves programming a different
(but identically distributed) signature into the view of a corrupt client, relative
to the one sampled by the functionality. This step is necessary in our proof
because the simulator is not able to calculate the offset necessary to program
the functionality’s signature, and would be trivial to detect if the functionality
sent the signature to the servers in addition to the client.

Proof. Formally, we show that for every malicious adversary A that statically
corrupts up to t − 1 parties, there exists a simulator SABBS+ that uses A as a
black box, such that for every environment Z it holds that{

RealπBBS+(n,t,G,`),A,Z(λ, z)
}
λ∈N,n∈N:n>1,t∈[2,n],`∈N:`>0,

G←BilinGen(1λ),z∈{0,1}poly(λ)

≈s

{
IdealF

BBS+
(n,t,G,`),SA

BBS+
(n,t,G,`),Z(λ, z)

}
λ∈N,n∈N:n>1,t∈[2,n],`∈N:`>0,

G←BilinGen(1λ),z∈{0,1}poly(λ)

(1)

We begin by giving a description of SABBS+(n, t,G, `) and proceed via a sequence
of hybrid experiments.

33



Simulator 8.1. SABBS+(n, t,G, `)
This simulator is parameterized by a party count n, a threshold t, a message
count `, and the description of a bilinear group, (G1,G2, G1, G2, q) = G.
It has black-box access to an adversary A for the protocol πBBS+(n, t,G, `),
which statically corrupts up to t − 1 of the fixed parties P1, . . . ,Pn.
SABBS+(n, t,G, `) simulates an instance of the real-world experiment involv-
ing πBBS+(n, t,G, `) to A, and forwards all messages that it receives from
Z to A and vice versa. When A announces which parties it would like to
corrupt, the simulator corrupts the same parties in its own ideal experi-
ment. If A corrupts fewer than t − 1 of the fixed parties in the simulated
experiment, then the simulator arbitrarily chooses n− (t− 1) of the honest

parties, denoted by P∗, and corrupts all other fixed parties in the ideal
world. The simulator simulates honest parties other than those indexed
by P∗ to A by running their protocol code honestly and forwarding any
environment interactions they may produce to Z on their behalf. Thus, in
the simulated experiment, we can let P∗ ..= [n] \P∗.

Setup:

1. On receiving either (keygen, sid) on behalf of FDLKeyGen(n, t,G) or
(commit, sid‖Pi, {P1, . . . ,Pn},Di) on behalf of FCom from Pi for some
i ∈ P∗, send (init, sid) to FBBS+(n, t,G, `) on behalf of Pi.

2. On receiving (keygen, sid) from Pi for some i ∈ P∗ on behalf of
FDLKeyGen(G, n, t), send (keygen-req, sid, i) directly to A on behalf of
FDLKeyGen(n, t,G).

3. On receiving (init-req, sid, j) for some j ∈ P∗ directly from
FBBS+(n, t,G, `), send (keygen-req, sid, j) directly to A on behalf of
FDLKeyGen(n, t,G) and send (committed, sid‖Pj ,Pj) to Pi for every i ∈
P∗ on behalf of FCom.

4. On receiving (public-key, sid, pk) directly from FBBS+(n, t,G, `) and
(keygen, sid) from Pi for every i ∈ P∗ on behalf of FDLKeyGen(G, n, t),

a. Parse (H, X) ..= pk.

b. Wait to receive (poly-points, sid, {p(i)}i∈P∗) directly from A (and
if A has corrupted fewer than t− 1 parties, then sample the missing
values uniformly).

c. For every i ∈ P∗, compute P (i) ..= p(i) ·G2.

d. For every j ∈ P∗, compute

P (j) ..=
X −

∑
i∈P∗ lagrange(P

∗ ∪ {j}, i, 0) · P (i)

lagrange(P∗ ∪ {j}, j, 0)

34



e. Send (public-key, sid, X, {P (1), . . . , P (n)}) directly to A on behalf
of FDLKeyGen(n, t,G).

5. On receiving (public-key, sid, pk) directly from FBBS+(n, t,G, `) and
(commit, sid‖Pi, {P1, . . . ,Pn},Di) from Pi for every i ∈ P∗ on behalf

of FCom, parse (H, X) ..= pk and sample Dj ← Z`+1
q for every j ∈ P∗

subject for every k ∈ [`+ 1] to∑
j∈[n]

Dj,k = Hk

and send (decommitment, sid‖Pj ,Dj) to Pi for every i ∈ P∗ and j ∈ P∗

on behalf of FCom.

6. On being instructed by A on behalf of FDLKeyGen(n, t,G) to release the
output to Pi for some i ∈ P∗, send (key-pair, sid, X, p(i)) to Pi on
behalf of FDLKeyGen(n, t,G)

7. On being instructed by A on behalf of FDLKeyGen(n, t,G) to release the

output to Pj for some j ∈ P∗, and receiving (decommit, sid‖Pi) on behalf
of FCom from Pi for every i ∈ P∗, instruct FBBS+(n, t,G, `) to release the
public key to Pj .

8. On being instructed by A on behalf of FDLKeyGen(n, t,G) to abort, in-
struct FBBS+(n, t,G, `) to abort and ignore all future instructions with
the same sid.

Signing, with an honest Client C:

9. On receiving (sig−req, sid, sigid, C,m,J) from FBBS+(n, t,G, `) on be-
half of Pi for some i ∈ J∗, send (sig−req, sid, sigid,m,J) to Pi on

behalf of C. Let J∗ ..= J ∩P∗ and let J∗ ..= J ∩P∗.

10. When FBBS+(n, t,G, `) attempts to send (sig-req, sid, sigid, C,m,J) to
some honest party, instruct it to release its message immediately.

11. On receiving (rejected, sid, sigid) from some Pi for i ∈ J∗, send
(reject, sid, sigid) to FBBS+(n, t,G, `) on behalf of Pi and ignore future
messages from Pi with this sigid.

12. On receiving (rejected, sid, sigid, j) directly from FBBS+(n, t,G, `), send
(rejected, sid, sigid) to Pi for every i ∈ J∗ on behalf of Pj and ignore
future messages with this sigid.

13. On receiving (sample, sid‖sigid,J) from Pi for i ∈ J∗ on be-
half of FZero(n,Z2

q), sample (αi, βi) ← Z2
q and respond with

(zero-share, sid‖sigid, (αi, βi)) on behalf of FZero(q).

35



14. On receiving (commit, sid‖Pi‖sigid, {Pj}j∈J, (ei, si)) from Pi on behalf
of FCom and (input, sid‖Pi‖Pj‖sigid,Pj , x′i,j) on behalf of FMul2P(q)

from Pi for some i ∈ J∗ for every j ∈ J∗, send (accept, sid, sigid) to
FBBS+(n, t,G, `) on behalf of Pi.

15. On receiving (accepted, sid, sigid, j) directly from FBBS+(n, t,G, `), sam-
ple ci,j ← Zq uniformly and send (committed, sid‖Pj‖sigid,Pj) on behalf
of FCom and (ready, sid‖Pj‖Pi‖sigid,Pj , ci,j) on behalf of FMul2P(q) to
Pi for every i ∈ J∗.

16. On receiving (accepted, sid, sigid, j) directly from FBBS+(n, t,G, `) for
every j ∈ J∗, and receiving (commit, sid‖Pi‖sigid, {Pj}j∈J, (ei, si)) from
Pi on behalf of FCom and (input, sid‖Pi‖Pk‖sigid,Pk, x′i,k) on behalf of

FMul2P(q) from Pi for every i ∈ J∗ and some k ∈ J∗,

• If Pk is not the last honest party for which these conditions hold, then
sample ek ← Zq and sk ← Zq uniformly.

• If Pk is the last honest party for which these conditions hold, then
wait to receive (leakage, sid, sigid, e, s) directly from FBBS+(n, t,G, `),
and then compute

ek ..= e−
∑

j∈J\{k}

ej and sk ..= s−
∑

j∈J\{k}

sj

and then for every i ∈ J∗ sample di,k ← Zq uniformly and send to Pi
(decommitment, sid‖Pk‖sigid, (ek, sk)) on behalf of FCom and (product,
sid‖Pi‖Pk‖sigid, di,k) on behalf of FMul2P(q).

17. On receiving (decommit, sid‖Pi‖sigid) on behalf of FCom and
(multiply, sid‖Pj‖Pi‖sigid, r′i,j) on behalf of FMul2P(q) and
(accepted, sid, sigid, pk, e, s, R′i, u

′
i) on behalf of C from Pi for ev-

ery i ∈ J∗ and j ∈ J∗,

a. Choose h ∈ J∗ arbitrarily then for every j ∈ J∗ compute

δrj
..=
∑
i∈J∗

(r′i,j − r′i,h)

δxj
..=
∑
i∈J∗

(
x′i,j − lagrange(J, i, 0) · p(i)− αi

)
b. Compute B via the same equation as in Step 11 of πBBS+, and then

36



compute

δu ..=
∑
i∈J∗

(
u′i −

(∑
j∈J∗

ci,j + di,j
))

−
(
e+

∑
i∈J∗

(αi + lagrange(J, i, 0) · p(i))
)
·
∑
i∈J∗

r′i,h

∆R ..=
∑
i∈J∗

(
R′i + βi ·B − r′i,h ·B

)
∆A ..=

∆R

δu

c. If only one of δu and ∆R is nonzero, or if both are nonzero and
BBS+Verify(pk,m, (∆A, e, s)) 6= 1, or if there is any j ∈ J∗ such that
δrj 6= 0 or δxj 6= 0, or if there is any disagreement among the corrupt
parties on the values of pk, e, or s, then instruct FBBS+(n, t,G, `) to
output a failure to C. Otherwise, instruct FBBS+(n, t,G, `) to release
its output to C.

Signing, against a corrupt Client C∗:

18. On receiving (sig-req, sid, sigid,m,J) from C∗ on behalf of some honest

party Pj for j ∈ J ∩ P∗, if this is the first honest party on behalf of
whom such a message was received, then send (sign, sid, sigid,m,J) to
FBBS+(n, t,G, `) on behalf of C∗; regardless, instruct FBBS+(n, t,G, `) to
release its message (sig-req, sid, sigid, C,m,J) to Pj . Let J∗ ..= J ∩ P∗

and let J∗ ..= J ∩P∗.

19. On receiving (rejected, sid, sigid) from Pi for i ∈ J∗ on behalf of some

Pj for j ∈ J∗, send (reject, sid, sigid) to FBBS+(n, t,G, `) on behalf of
Pi, and ignore future messages with this sigid from Pi.

20. On receiving (rejected, sid, sigid, j) from FBBS+(n, t,G, `) for some j ∈
J∗, send (rejected, sid, sigid) to C∗ and to Pi for every i ∈ J∗, and
ignore future messages with this sigid.

21. On receiving (sample, sid‖sigid,J) from Pi for i ∈ J∗ on be-
half of FZero(n,Z2

q), sample (αi, βi) ← Z2
q and respond with

(zero-share, sid‖sigid, (αi, βi)) on behalf of FZero(q).

22. On receiving (commit, sid‖Pi‖sigid, {Pj}j∈J, (ei, si)) from Pi on behalf
of FCom and (input, sid‖Pi‖Pj‖sigid,Pj , x′i,j) on behalf of FMul2P(q)

from Pi for some i ∈ J∗ for every j ∈ J∗, send (accept, sid, sigid) to
FBBS+(n, t,G, `) on behalf of Pi.

37



23. On receiving (accepted, sid, sigid, j) directly from FBBS+(n, t,G, `)
for some j ∈ J∗, sample ci,j ← Zq uniformly and
send (committed, sid‖Pj‖sigid,Pj) on behalf of FCom and
(ready, sid‖Pj‖Pi‖sigid,Pj , ci,j) on behalf of FMul2P(q) to Pi for
every i ∈ J∗.

24. On receiving (accepted, sid, sigid, j) directly from FBBS+(n, t,G, `) for
every j ∈ J∗, and receiving (commit, sid‖Pi‖sigid, {Pj}j∈J, (ei, si)) from
Pi on behalf of FCom and (input, sid‖Pi‖Pk‖sigid,Pk, x′i,k) on behalf of

FMul2P(q) from Pi for every i ∈ J∗ and some k ∈ J∗,

• If Pk is not the last honest party for which these conditions hold, then
sample ek ← Zq and sk ← Zq uniformly.

• If Pk is the last honest party for which these conditions hold, then
wait to receive (leakage, sid, sigid, e, s) directly from FBBS+(n, t,G, `),
and then

a. For every j ∈ J∗, compute

δxj
..=
∑
i∈J∗

(lagrange(J, i, 0) · p(i) + αi − x′i,j)

b. Let ê ..= e− δxk .

c. Compute

ek ..= ê−
∑

j∈J\{k}

ej and sk ..= s−
∑

j∈J\{k}

sj

and then for every i ∈ J∗ sample di,k ← Zq uniformly and send to Pi
(decommitment, sid‖Pk‖sigid, (ek, sk)) on behalf of FCom and (product,
sid‖Pi‖Pk‖sigid, di,k) on behalf of FMul2P(q).

25. On receiving (decommit, sid‖Pi‖sigid) on behalf of FCom and
(multiply, sid‖Pk‖Pi‖sigid, r′i,k) on behalf of FMul2P(q) from Pi for every

i ∈ J∗ and some k ∈ J∗,

• If Pk is not the last honest party for which these conditions hold, then
sample Rk ← G1 and ûk ← Zq uniformly.

• If Pk is the last honest party for which these conditions hold, then

a. Compute B via the same equation as in step 11 of πBBS+.

b. For every j ∈ J∗, compute

δrj
..=
∑
i∈J∗

(r′i,k − r′i,j)

38



c. Sample u← Zq uniformly and compute

Rk ..= u ·A−
∑
i∈J∗

(r′i,k − βi) ·B −
∑

j∈J∗\{k}

Rj

d. If there exist some j, j′ ∈ J∗ such that δxj 6= δxj′ or δrj 6= δrj′ then
sample uk ← Zq uniformly.

e. If δxj = δxj′ and δrj = δrj′ for every j, j′ ∈ J∗, then compute

uk ..= u−
∑

j∈J∗\{k}

uj −
∑
i∈J∗

∑
j∈J∗

(ci,j + di,j)

−
(
e+

∑
i∈J∗

(αi + lagrange(J, i, 0) · p(i))
)
·
∑
i∈J∗

r′i,k

and send (accepted, sid, sigid, pk, ê, s, Rk, uk) to C∗ on behalf of Pk.

Weak Partially-Blind Signing, with honest Client C:

26. On receiving (wb-sig-req, sid, sigid, C, φi,J) from FBBS+(n, t,G, `) on
behalf of Pi for some i ∈ J∗, if Pi is the first corrupt party
on behalf of whom such a message has been received, then sam-
ple B′ ← G1 unformly, and broadcast (wb-sig-req, sid, sigid, B′,J)
to the parties indexed by J on behalf of C. Regardless, send
(accepted, sid‖sigid, C, {B′, H1, . . . ,H`+1}) on behalf of FRDL∧φi

ZK to Pi.
Let J∗ ..= J ∩P∗ and let J∗ ..= J ∩P∗.

27. When FBBS+(n, t,G, `) attempts to send (wb-sig-req, sid, sigid, C, φj ,J)
to some honest party Pj , instruct it to release its message immediately.

28. Run steps 11 through 17b of this simulator (from the Signing, with an
honest Client C phase), but compute B ..= G1 +s ·H1 +B′ as specified
in step 16 of πBBS+ (from the Weak Partially-Blind Signing phase).

If e(∆A, X+e·G2) 6= e(B, G2) or there is any j ∈ J∗ such that δrj 6= 0 or
δxj 6= 0 or if there is any disagreement among the corrupt parties on the
values of pk, e, or s, then instruct FBBS+(n, t,G, `) to abort. Otherwise,
instruct FBBS+(n, t,G, `) to release its output to C.

Weak Partially-Blind Signing, against corrupt Client C∗:

29. On receiving (wb-sig-req, sid, sigid, B′,J) from C∗ on behalf of party
Pj and (prove, sid‖sigid, {Pj}, {B′, H1, . . . ,H`+1}, {s0,m1, . . . ,m`}) on

behalf of FRDL∧φj
ZK for some j ∈ J ∩P∗, such that

B′ = s0 ·H1 +
∑
k∈[`]

mk ·Hk+1

39



and such that φj(m) = 1, if Pj is the first honest party for
whom these conditions are met, then send (wb-sign, sid, sigid,m,J)
to FBBS+(n, t,G, `) on behalf of C∗; regardless, send
(wb-pred, sid, sigid, j, φj) to FBBS+(n, t,G, `) on behalf of C∗.

30. Run steps 19 through 25 of this simulator (from the Signing, against
a corrupt Client C∗ phase), but compute sk in step 24c as

sk ..= s− s0 −
∑

i∈J\{k}

si

Let H0 denote the real-world experiment. That is, let

H0
..=
{
RealπBBS+(n,t,G,`),A,Z(λ, z)

}
λ∈N,n∈N:n>1,t∈[2,n],`∈N:`>0,,

G←BilinGen(1λ),z∈{0,1}poly(λ)

Hybrid H1. In H1, we define an initial simulator S that replaces the honest
parties and ideal functionalities inH0 in their interactions with all other entities.
It simulates the honest parties and ideal functionalities by running their code,
but learns any values that the corrupt parties send to functionalities in the
protocol. After A announces which parties it would like to corrupt, S chooses
n − (t − 1) honest parties and treats all others as corrupt, even though they
may not all be under the influence of A. The difference between H1 and H0 is
purely syntactic; H1 = H0.

Hybrid H2. In H2, we alter the code of S when a signature is requested for
an honest client C. Specifically, we add Steps 17a and 17b of SABBS+(n, t,G, `) to

define δxj and δrj for j ∈ J∗ as well as ∆R, δu, and ∆A; we also add an instruction
to output a failure on behalf of C if δxj 6= 0 or δrj 6= 0 for any j ∈ J. There are
four potential values that a corrupt Pi could offset in its interaction with the
honest parties in order to cheat. ri could be used inconsitently in interactions
with two different honest parties: we choose one honest party arbitrarily to
define the “true” value; we use r′i,j to denote the value (masked by βi) used in
interactions with Pj , and capture the cumulative additive offset induced relative
to the true values via δrj . xi could be used inconsistently relative to the value
p(i) supplied by S on behalf of FBBS+; we use x′i,j to denote the value (masked
by αi) used in interactions with Pj and capture the cumulative additive offset
induced relative to

∑
i∈J∗ lagrange(J, i, 0) · p(i) via δxj . Finally, Ri and ui could

be calculated inconsistently relative to the forgoing protocol; the values actually
sent to the client are denoted R′i and u′i and the offsets that the corrupt parties
cumulatively inject into these values are captured by ∆R and δu respectively.

40



If A induces nonzero offsets in H1, then∑
j∈J∗

uj +
∑
i∈J∗

u′i

= r · (x+ e) +
∑
j∈J∗

(
δrj · (lagrange(J, j, 0) · pj + αj) + (rj + βj) · δxj

)
+ δu

and ∑
j∈J∗

Rj +
∑
i∈J∗

R′i =
∑
k∈J

rk ·B + ∆R

where ri for i ∈ J∗ is defined to be the “true” ri value of Pi (i.e. the one used
when interacting with some arbitrarily chosen honest party).

Observe that fixing e and s fixes A, and so A = B/(x + e) if and only if
BBS+Verify(pk,m, (A, e, s)) = 1. Because C computes

A ..=

∑
j∈J∗

Rj +
∑
i∈J∗

R′i∑
j∈J∗

uj +
∑
i∈J∗

u′i

the adversary A avoids a failure on the part of the C in H1 if and only ifδu +
∑
j∈J∗

(
δxj · (rj + βj) + δrj · (lagrange(J, j, 0) · pj + αj)

) ·A = ∆R (2)

Thus, A can distinguish H2 from H1 by setting δxj 6= 0 or δrj 6= 0 for any

j ∈ J∗ and contriving to make the latter equality hold. However, at the time
the adversary must commit to all of its offsets, βj and αj are information-
theoretically hidden from it. They are both uniformly sampled, and so the
adversary’s chance of satisfying equation 2 is at most 1/q. 1/q is also the
statistical difference between H2 and H1.

Hybrid H3. In H3, we again alter the code of S when a signature is requested
for an honest client C. Specifically, we remove the instruction to verify whether
BBS+Verify(pk,m, (A, e, s)) 6= 1 from step 12 in C’s code in πBBS+(n, t,G, `),
and replace it with step 17c of SABBS+(n, t,G, `), which produces a failure on
behalf of C if only one of ∆R and δu is nonzero, or if they are both nonzero and
BBS+Verify(pk,m, (∆A, e, s)) 6= 1.

Observe that fixing e and s fixes A, which C computes as∑
j∈J∗

Rj +
∑
i∈J∗

R′i∑
j∈J∗

uj +
∑
i∈J∗

u′i
= A

41



Rearranging and substituting the definitions of ∆R and δu, this yields

∆R +
∑
j∈J∗

Rj +
∑
i∈J∗

ri ·B

δu +
∑
j∈J∗

uj +
∑
i∈J∗

(ri + βi) ·
(
e+

∑
k∈J∗

(xk + αk)
)

+
∑
i∈J∗

∑
j∈J∗

(ci,j + di,j)
= A

where xi = lagrange(J, i, 0) · p(i) for every i ∈ J∗. If we define Rj and uj to be
the values a corrupt party Pj would compute if it were honest (as specified in
sstep 11 of the protocol), this simplifies to

∆R +
∑
i∈J

Ri

δu +
∑
i∈J

ui
= A =

∑
i∈J

Ri∑
i∈J

ui

where the second equality follows from the fact that we have defined Rj and uj
ideally.

We can finally conclude that BBS+Verify(pk,m, (A, e, s)) = 1 in H2 if and
only if there is some constant γ such that

∆R = γ ·
∑
i∈J

Ri and δu = γ ·
∑
i∈J

ui

and thus that BBS+Verify(pk,m, (A, e, s)) = 1 if and only if either
BBS+Verify(pk,m, (∆A, e, s)) = 1 or both ∆R and δu are zero. The distribution
of H3 is therefore identical to the distribution of H2.

Hybrid H4. In H4, we implement Steps 17a and 17b of SBBS+ when a weak
partially-blind signature is requested for an honest client C, and instruct S to
output a failure on behalf of C if δxj 6= 0 or δrj 6= 0 for any j ∈ J. H4 ≈s H3 by
the same argument that we presented for H2.

Hybrid H5. In H5, we once again alter the code of S when a weak partially-
blind signature is requested by an honest client C. We remove the instruction
verifying whether BBS+Verify(pk,m, (A, e, s′)) = 1 from step 12 in C’s code
in πBBS+(n, t,G, `) and instead use the failure condition specified in step 28 of
SBBS+. Specifically, S now outputs a failure on behalf of C if only one of ∆R and
δu is nonzero, or if they are both nonzero and e(∆A, X+e·G2) 6= e(B, G2). Note
that this is equivalent to verifying the signature (∆A, e, s′). The distribution of
H5 is therefore identical to the distribution of H4 under the same argument as
we presented for H3.

Hybrid H6. In H6, we alter the code of S when a signature is requested for
a corrupt Client C∗ and at least two honest parties participate in the signing
process. Specifically, when such a signing request is made, S calculates δxj and

δrj for j ∈ J∗ as specified in steps 24a and 25b of SBBS+, and if there exist some

j, j′ ∈ J∗ such that δxj 6= δxj′ or δrj 6= δrj′ then S samples uj ← Zq uniformly

42



for j ∈ J∗, rather than calculating these values as the honest parties otherwise
would.

In H5, uj is calculated for every j ∈ J∗ per step 11 of πBBS+ as

uj = (rj + βj) · (e+ xj + αj) +
∑
k∈J\{j}

(cj,k + dj,k)

and by summing over all of the honest parties and substituting the definitions
of cj,k and dj,k and then δxj and δrj this yields∑

j∈J∗
uj =

∑
j∈J∗

(rj + βj) ·
(
e+

∑
k∈J

(xk + αk) + δxj

)
+
∑
j∈J∗

(
δrj +

∑
i∈J∗

(ri + βi)
)
· (xj + αj)−

∑
i∈J∗

∑
j∈J∗

(ci,j + di,j)
(3)

We now make three observations. First, in H5, the individual values uj for

j ∈ J∗ are effectively sampled uniformly subject to equation 3, because each pair
of values (cj,j′ , dj′,j) for j, j′ ∈ J∗ was sampled uniformly subject to satisfying
a fixed relationship. Second, the adversary knows the sums of αj and βj over

j ∈ J∗, but as before, the individual values are uniform (from the adversary’s

perspective) subject to these sums. Third, for any j, j′ ∈ J∗, equation 3 depends

upon βj · δxj +βj′ · δxj +βj′ · (δxj′ − δxj ) and upon αj · δβj +αj′ · δβj +αj′ · (δβj′ − δ
β
j ).

Combining our third observation with our second observation, we find that
if there is any j, j′ ∈ J∗ such that δβj 6= δβj′ or δαj 6= δαj′ , then a uniform offset
is induced into

∑
j∈J∗ uj in H5, relative to the value that would be produced if

the adversary behaved honestly. Combining this fact with our first observation
leads us to the conclusion that if there is any j, j′ ∈ J∗ such that δβj 6= δβj′ or
δαj 6= δαj′ , then the values uj are uniform and independent from the adversary’s
perspective in H5. The same holds in H6, and so we have H6 = H5.

Hybrid H7. In H7, we alter the code of S when a signature is requested for a
corrupt Client C∗. Specifically, we delete the code of the honest parties (retaining
only the uniform sampling of uj under a certain condition that was introduced
in H6), and instead create a signature (A, e, s) ← BBS+Sign(sk,m) using the
secret key sampled on behalf of FDLKeyGen, and then use steps 18 through 25 of
SBBS+ to define δx and calculate the value ê, and the values ej , sj , uj , and Rj
that each Pj for j ∈ J∗ must transmit. Rather than querying FBBS+, however,
S generates a signature locally when appropriate using BBS+Sign.

Consider the case that δrj = δrj′ and δxj = δxj′ for all j, j′ ∈ J∗; in this case, the

uniform sampling of uj for j ∈ J∗ introduced in H6 is not done. Furthermore,
since there is some j for which δrj = 0 by definition, we know that δrj = 0 for

every j ∈ J∗. The δxj values are interchangeable, and so we can choose an

arbitrary h ∈ J∗ and replace all of them with δxh.
If we define Rj and uj to be the values a corrupt party Pj would compute

if the computation were performed honestly (as specified in Step 11 of the

43



protocol), then in H6, the honest parties Pj for j ∈ J∗ computed ej , sj , uj , and
Rj such that ∑

i∈J
Ri∑

i∈J
ui

=
r ·B

r · (x+ e) + δxh ·
∑
j∈J∗(rj + βj)

(4)

In H7, e is replaced by ê in the view of A, which implies that every corrupt
party Pi will (if it acts honestly) compute ui from ê instead of from e via the

equation in step 11 of πBBS+. Taking into account the value of uj for j ∈ J∗

computed by S, this implies that∑
i∈J

ui = u−
∑
i∈J∗

(ri + βi) · δxh = u+ δxh ·
(∑
j∈J∗

rj − r −
∑
i∈J∗

βi

)
and since u is defined by S in H7 such that

A =
B

x+ e
=
r ·B
u

it must hold that u = r · (x+ e). Recall that e = ê+ δxh and that∑
i∈J∗

βi = −
∑
j∈J∗

βj

and so we know that if the adversary were to behave honestly when assembling
the signature, then∑

i∈J
Ri∑

i∈J
ui

=
r ·B

r · (x+ e) + δxh ·
(∑

j∈J∗ rj − r −
∑
i∈J∗ βi

)
=

r ·B
r · (x+ ê) + δxh ·

∑
j∈J∗(rj + βj)

(5)

and by comparing equations 4 and 5 we can conclude that the relative distribu-
tions of ê, uj , and Rj for j ∈ J∗ in H7 are identical to the relative distributions

of e, uj , and Rj for j ∈ J∗ in H6. Since e is uniformly-sampled but information-
theoretically hidden from A in H7, ê in H7 appears identically distributed to e
in H6, and so the two hybrids are identically distributed overall.

Hybrid H8. In H8, we alter the code of S when a weak parially-blind signature
is requested for a corrupt Client C∗ and at least two honest parties participate
in the signing process. Specifically, when such a signing request is made, S
calculates δxj and δrj for j ∈ J∗ as specified in steps 24a and 25b of SBBS+, and if

there exist some j, j′ ∈ J∗ such that δxj 6= δxj′ or δrj 6= δrj′ then S samples uj ← Zq
uniformly for j ∈ J∗, rather than calculating these values as the honest parties
otherwise would. H8 = H7 under the same argument as we presented for H6.

44



Hybrid H9. In H9, we fully implement SBBS+ for weak partially-blind signing
against a corrupt client C. That is, we delete the honest parties code in such a
case, and instead follow steps 29 and 30. Rather than querying FBBS+, however,
S generates a signature locally when appropriate using BBS+Sign. H9 = H8

under the same argument as we presented for H7.

Hybrid H10. In H10, Z communicates with S instead of A, and with dummy
parties Pj for j ∈ P∗ instead of with S. The dummy parties Pj forward their
messages to FBBS+(n, t,G, `), and S emulates the environment to A by forward-
ing all messages that are transmitted along its channel to Z. The remaining
honest protocol code of Pj for j ∈ P∗ is deleted from S.

Instead, when the key generation phase of the protocol is initiated and
the corrupt parties do not cheat, S initiates the key generation phase of
FBBS+(n, t,G, `), receives (H, X) as a consequence, and uses X to compute the
shares P (k) for k ∈ [n] that it distributes on behalf of FDLKeyGen to A. Like-
wise, when a signature (either plain, or weak partially-blind) is requested via
a corrupt client C∗, S does not compute a signature itself, as in H9, but in-
stead requests a signature on behalf of C∗ from FBBS+(n, t,G, `), and uses this
as required to simulate the signing protocol. When a (plain or weak partially-
blind) signature is requested via an honest client C, FBBS+(n, t,G, `) informs S
of the request and leaks e (and s in the plain cases) to enable the protocol to be
simulated, and S simply permits the functionality to release its output to the
dummy C (or instructs it to output a failure), rather than running the code of
C to reconstruct a signature and delivering it to the environment, as in H9.

These changes are purely syntactic, and thus H10 is distributed identically
to H9. Furthermore, it is now the case that S = SABBS+(n, t,G, `) and that

H10 =
{
IdealF

BBS+
(n,t,G,`),SA

BBS+
(n,t,G,`),Z(λ, z)

}
λ∈N,n∈N:n>1,t∈[2,n],`∈N:`>0,

G←BilinGen(1λ),z∈{0,1}poly(λ)

and so by transitivity equation 1 holds.

9 Realizing Key Generation

In this section we describe how to realize the FDLKeyGen functionality that was
given in section 3. We note that the protocol and proof given here are taken
nearly-verbatim from the work of Doerner et al. [DKLs19]. We include them
here in order to show that the protocol realizes our standalone key-sampling
functionality, whereas Doerner et al. included this protocol as part of a larger
protocol realizing a more complex functionality that included ECDSA signing.

These parties begin by using standard techniques for sampling a Shamir
secret sharing of a random value: each party samples a random polynomial and
sends to each other a point on their polynomial. Each party Pi computes the
sum p(i) of their own point on their own polynomial and the points received,
and takes this as their share of the secret key. To generate the public key
corresponding to this secret key, parties perform a commit-and-release of P (i) ..=

45



p(i) · G along with a proof of knowledge of discrete logarithm. Parties can
compute X = P (0) = p(0) · G by interpolating a size t subset of P (i) in the
exponent. Malicious parties may however send malformed P (i), so parties check
that all received P (i) lie on the same degree-(t− 1) polynomial.7

Protocol 9.1. πDLKeyGen(n, t,G)

This protocol is parameterized by the party count n, the threshold t, and
a group G = (G, G, q). It involves the parties P1, . . . ,Pn and the ideal
functionality FRDL

Com-ZK.

Key Generation:

1. On receiving (keygen, sid) from the environment, each party Pi samples
a random degree polynomial pi of degree t− 1.

2. For all pairs of parties Pi and Pj , Pi sends (poly-point, sid, pi(j)) to Pj
(over a private channel) and receives (poly-point, sid, pj(i)) in return.

3. Each party Pi computes

p(i) ..=
∑
j∈[n]

pj(i) and P (i) ..= p(i) ·G

and sends (commit, sid‖Pi, {Pj}[n]\{i}, (P (i), G), p(i)) to FRDL
Com-ZK.

4. Upon being notified of all other parties’ commitments, each party Pi
releases its proof by sending (prove, sid‖Pi) to FRDL

Com-ZK.

5. Each party Pi receives (accepted, sid‖Pj , (P (j), G)) from FRDL
Com-ZK for

each j ∈ [n] \ {i} if Pj ’s proof of knowledge is valid. Pi aborts if it
receives (rejected, sid‖Pj , ∗) instead for any proof, or if there exists an
index y ∈ [n− t−1] such that Jy = [y, y+ t] and Jy+1 = [y+1, y+ t+1]
and ∑

j∈Jy
lagrange(Jy, j, 0) · P (j) 6=

∑
j∈Jy+1

lagrange(Jy+1, j, 0) · P (j)

6. The parties compute the shared public key using any subset J ⊆ [n]
such that |J| = t

X ..=
∑
j∈J

lagrange(J, j, 0) · P (j)

Each party Pi outputs (key-pair, sid, X, p(i)) to the environment.

7There are many ways of implementing this check which do not require interpolating with
all

(n
t

)
possible subsets of size t. For instance, it is sufficient check that subsets that cover [n]

interpolate to the same value, and we use this strategy in the simulator.

46



Theorem 9.2 (Key Generation Security Theorem). Let G = (G1,G2, G1, G2, q)
be the description of a bilinear group. πDLKeyGen(n, t,G) perfectly UC-realizes
FDLKeyGen(n, t,G) in the FRDL

Com-ZK-hybrid model with selective abort against a ma-
licious adversary that statically corrupts up to n− 1 fixed parties.

Proof. Formally, we show that for every group described by G and every ma-
licious adversary A that statically corrupts up to n − 1 parties, there exists a
simulator SADLKeyGen that uses A as a black box, such that for every environment
Z it holds that{

RealπDLKeyGen(n,t,G),A,Z (λ, z)
}
λ∈N,n∈N:n>1,t∈[2,n],z∈{0,1}poly(λ)

=
{
IdealFDLKeyGen(n,t,G),S

A
DLKeyGen(n,t,G),Z

(λ, z)
}
λ∈N,n∈N:n>1,t∈[2,n],z∈{0,1}poly(λ)

Our proof is direct, without any hybrid experiments. The simulator is as
follows:

Simulator 9.3. SADLKeyGen(n, t,G)

This simulator is parameterized by the party count n, the threshold t, and
the elliptic curve G = (G, G, q). The simulator has oracle access to the ad-
versary A, and emulates for it an instance of the protocol πDLKeyGen(n, t,G)
involving the parties P1, . . . ,Pn. The simulator forwards all messages from
its own environment Z to A, and vice versa. When the emulated protocol
instance begins, A announces the identities of up to t− 1 corrupt parties.
Let the indices of these parties be given by P∗ ⊆ [n]. SADLKeyGen(n, t,G)
interacts with the ideal functionality FDLKeyGen(n, t,G) on behalf of every
corrupt party, and in the experiment that it emulates for A, it interacts
with A and the corrupt parties on behalf of every honest party and on
behalf of the ideal oracle FRDL

Com-ZK.

Key Generation:

1. On receiving (keygen-req, sid, j) from FDLKeyGen(n, t,G) such that j ∈
[n] \P∗, sample pj to be a random polynomial of degree t− 1 over Zq,
and send (poly-point, sid, pj(i)) privately to party Pi for i ∈ P∗ on
behalf of Pj .

2. On receiving (poly-point, sid, pi(j)) privately from every Pi for i ∈ P∗

on behalf of Pj for some j ∈ [n] \P∗, and receiving (keygen-req, sid, j)
from FDLKeyGen(n, t,G), send (committed, sid‖Pj ,Pj) to Pi for i ∈ P∗ on
behalf of FRDL

Com-ZK.

3. On completing step 2 for every j ∈ [n] \ P∗, and receiving
(commit, sid‖Pi, {Pj}j∈[n]\{i}, (P (i), G), p(i)) from Pi for every i ∈ P∗

on behalf of FRDL
Com-ZK, compute

p∗(i) ..= p(i)−
∑

j∈[n]\P∗
pj(i)

47



for i ∈ P∗ and
p∗(j) ..=

∑
i∈P∗

pi(j)

The values p∗(i) for all i ∈ [n] define a consistent polynomial of degree
t − 1 if and only if for all y ∈ [n − t − 1] defining Jy = [y, y + t] and
Jy+1 = [y + 1, y + t+ 1],∑

j∈Jy
lagrange(Jy, j, 0) · p∗(j) =

∑
j∈Jy+1

lagrange(Jy+1, j, 0) · p∗(j)

4. If p∗ is a consistent polynomial of degree t − 1, and p(i) · G = P (i) for
every i ∈ P∗, then

a. Send (keygen, sid) to FDLKeyGen(n, t,G) on behalf of Pi for every i ∈
P∗.

b. Send (poly-points, sid, {p(i)}i∈P∗) directly to FDLKeyGen(n, t,G),
and receive receive (public-key, sid, X, {P (1), . . . , P (n)}) directly
from FDLKeyGen(n, t,G) as a consequence.

c. For every j ∈ [n] \P∗, send (accepted, sid‖Pj) to Pi for i ∈ P∗ on
behalf of FRDL

Com-ZK.

d. For all i ∈ P∗, wait to receive (prove, sid‖Pi) from Pi on behalf of
FRDL

Com-ZK, and instruct FDLKeyGen(n, t,G) to release its output to the
honest parties.

5. If p∗ is not a consistent polynomial of degree t− 1, or there exists some
i ∈ P∗ such that p(i) ·G 6= P (i), then

a. For every j ∈ [n] \P∗, compute

P (j) ..=
(
p∗(j) +

∑
k∈[n]\P∗

pk(j)
)
·G

b. For every j ∈ [n]\P∗, send (accepted, sid‖Pj , P (j)) to Pi for i ∈ P∗

on behalf of FRDL
Com-ZK.

c. For all i ∈ P∗, wait to receive (prove, sid‖Pi) from Pi on behalf of
FRDL

Com-ZK, and then instruct FDLKeyGen(n, t,G) to abort.

Following the reception of the corrupted parties’ polynomial points in step 5
of πDLKeyGen, there are two cases in the ideal experiment, defined by the abort
conditions described in step 3 of SADLKeyGen. In the first case, there exists y ∈
[n− t− 1] such that∑

j∈Jy
lagrange(Jy, j, 0) · P (j) 6=

∑
j∈Jy+1

lagrange(Jy+1, j, 0) · P (j)

and the simulation aborts. It is trivially true that πDLKeyGen also aborts in

48



this case, since the honest parties perform exactly the same test in Step 5 of
πDLKeyGen, and because the simulator follows the protocol’s instructions exactly
in this case (sampling the honest parties’ polynomials uniformly, just as they
would), the messages it sends are identically distributed to their counterparts
in the real experiment.

In the second case,∑
j∈Jy

lagrange(Jy, j, 0) · P (j) =
∑

j∈Jy+1

lagrange(Jy+1, j, 0) · P (j) (6)

for all y ∈ [n−t−1], no abort occurs in either the real experiment or the ideal one,
and the views of the corrupted parties are characterized by the values P (j) for
j ∈ [n]\P∗. Note that in both experiments, equation 6 implies that these values
are completely constrained by P (i) for i ∈ P∗ and pk. In the real experiment, we
know thatX is uniform by virtue of containing an additive, uniform contribution
from at least one honest party. In the ideal experiment, FDLKeyGen generates a
uniform X and and uses Lagrange interpolation to reconstruct the appropriate
values of P (j). Thus the experiments are identically distributed.

Acknowledgements

The authors of this work were supported by the NSF under grants 1646671,
1816028, and 2055568, by the ERC under projects NTSC (742754) and SPEC
(803096), by ISF grant 2774/2, and by the Carlsberg Foundation under the
Semper Ardens Research Project CF18-112 (BCM).

References

[AHS20] Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits.
A survey of ECDSA threshold signing. IACR Cryptol. ePrint Arch.,
page 1390, 2020.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-taa.
In Roberto De Prisco and Moti Yung, editors, Proceedings of the
5th Conference on Security and Cryptography for Networks (SCN),
pages 111–125, 2006.

[BB89] J. Bar-Ilan and D. Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In Proceedings
of the 8th Annual ACM Symposium on Principles of Distributed
Computing (PODC), 1989.

[BB04] Dan Boneh and Xavier Boyen. Short signatures without random
oracles. In Christian Cachin and Jan L. Camenisch, editors, Ad-
vances in Cryptology – EUROCRYPT 2004, pages 56–73, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

49



[BB08] Dan Boneh and Xavier Boyen. Short signatures without random
oracles and the sdh assumption in bilinear groups. Journal of Cryp-
tology, 21(2):149–177, 2008.

[BBS04] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group sig-
natures. In Advances in Cryptology – CRYPTO 2004, pages 41–55,
2004.

[BCC+09] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss,
Anna Lysyanskaya, and Hovav Shacham. Randomizable proofs and
delegatable anonymous credentials. In Shai Halevi, editor, Advances
in Cryptology - CRYPTO 2009, pages 108–125, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
and Peter Scholl. Efficient pseudorandom correlation generators:
Silent OT extension and more. pages 489–518, 2019.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl,
and Peter Scholl. Correlated pseudorandom functions from variable-
density LPN. In Sandy Irani, editor, 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC,
USA, November 16-19, 2020, pages 1069–1080. IEEE, 2020.

[Bea95] Donald Beaver. Precomputing oblivious transfer. pages 97–109,
1995.

[BL09] Ernie Brickell and Jiangtao Li. Enhanced privacy id from bilinear
pairing. IACR Cryptol. ePrint Arch., 2009:95, 2009.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round com-
plexity of secure protocols (extended abstract). pages 503–513, 1990.

[Bow17] Sean Bowe. Bls12-381: New zk-snark elliptic curve construction.
2017.

[Can01] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In Proceedings of the 42nd Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 136–145,
2001.

[CCL+20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA.
In Public-Key Cryptography - PKC 2020, 2020.

[CDHK15] Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and
Markulf Kohlweiss. Composable and modular anonymous creden-
tials: Definitions and practical constructions. In Advances in Cryp-
tology – ASIACRYPT 2015, part II, pages 262–288, 2015.

50



[CDL16] Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous
attestation using the strong diffie hellman assumption revisited. In
Trust and Trustworthy Computing - 9th International Conference,
TRUST 2016, pages 1–20. Springer, 2016.

[CE87] David Chaum and Jan-Hendrik Evertse. A secure and privacy-
protecting protocol for transmitting personal information between
organizations. In Proceedings on Advances in Cryptology—CRYPTO
’86, page 118–167, Berlin, Heidelberg, 1987. Springer-Verlag.

[CGG+20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos
Makriyannis, and Udi Peled. UC non-interactive, proactive, thresh-
old ECDSA with identifiable aborts. In CCS ’20. ACM, 2020.

[CGSB] Melissa Chase, Esha Ghosh, Srinath Setty, and Daniel Buch-
ner. Zero-knowledge credentials with deferred revocation
checks. https://github.com/decentralized-identity/

snark-credentials/blob/master/whitepaper.pdf.

[Cha85] David Chaum. Security without identification: Transaction sys-
tems to make big brother obsolete. Communications of the ACM,
28(10):1030–1044, oct 1985.

[Che96] Lidong Chen. Access with pseudonyms. In Ed Dawson and Jovan
Golić, editors, Cryptography: Policy and Algorithms, pages 232–243,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

[CKL+16] Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe
Mikkelsen, Gregory Neven, and Michael Østergaard Pedersen. For-
mal treatment of privacy-enhancing credential systems. In Orr
Dunkelman and Liam Keliher, editors, Selected Areas in Cryptog-
raphy – SAC 2015, pages 3–24, Cham, 2016. Springer International
Publishing.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revo-
cation. In Advances in Cryptology – EUROCRYPT 2001. Springer
Berlin Heidelberg, 2001.

[CL04] Jan Camenisch and Anna Lysyanskaya. Signature schemes and
anonymous credentials from bilinear maps. In Matt Franklin, edi-
tor, Advances in Cryptology – CRYPTO 2004, pages 56–72, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[CL06] Melissa Chase and Anna Lysyanskaya. On signatures of knowledge.
In Cynthia Dwork, editor, Advances in Cryptology - CRYPTO 2006,
pages 78–96, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

51

https://github.com/decentralized-identity/snark-credentials/blob/master/whitepaper.pdf
https://github.com/decentralized-identity/snark-credentials/blob/master/whitepaper.pdf


[CL19] Elizabeth C. Crites and Anna Lysyanskaya. Delegatable anonymous
credentials from mercurial signatures. In Mitsuru Matsui, editor,
Topics in Cryptology – CT-RSA 2019, pages 535–555, Cham, 2019.
Springer International Publishing.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai.
Universally composable two-party and multi-party secure computa-
tion. In Proceedings of the 34th Annual ACM Symposium on Theory
of Computing (STOC), pages 494–503, 2002.

[CMZ14] Melissa Chase, Sarah Meiklejohn, and Greg Zaverucha. Algebraic
macs and keyed-verification anonymous credentials. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS ’14, page 1205–1216, New York, NY, USA,
2014. Association for Computing Machinery.

[CPZ20] Melissa Chase, Trevor Perrin, and Greg Zaverucha. The Signal Pri-
vate Group System and Anonymous Credentials Supporting Efficient
Verifiable Encryption, page 1445–1459. Association for Computing
Machinery, New York, NY, USA, 2020.

[DKLs18] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure
two-party threshold ECDSA from ECDSA assumptions. In Proceed-
ings of the 39th IEEE Symposium on Security and Privacy, (S&P),
pages 980–997, 2018.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Thresh-
old ECDSA from ECDSA assumptions: The multiparty case. In
Proceedings of the 40th IEEE Symposium on Security and Privacy,
(S&P), 2019.

[DOK+20] Anders P. K. Dalskov, Claudio Orlandi, Marcel Keller, Kris
Shrishak, and Haya Shulman. Securing DNSSEC keys via threshold
ECDSA from generic MPC. In ESORICS 2020, 2020.

[DPSZ12] Ivan Damg̊ard, Valerio Pastro, Nigel Smart, and Sarah Zakarias.
Multiparty computation from somewhat homomorphic encryption.
In Proceedings of the 32nd Annual Cryptology Conference on Ad-
vances in Cryptology — CRYPTO 2012 - Volume 7417, page
643–662, Berlin, Heidelberg, 2012. Springer-Verlag.

[DY05] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random
function with short proofs and keys. In Serge Vaudenay, editor,
Public Key Cryptography - PKC 2005, pages 416–431, Berlin, Hei-
delberg, 2005. Springer Berlin Heidelberg.

[EGL85] Shimon Even, Oded Goldreich, and Abraham Lempel. A random-
ized protocol for signing contracts. Commun. ACM, 28(6):637–647,
jun 1985.

52



[Fis05] Marc Fischlin. Communication-efficient non-interactive proofs of
knowledge with online extractors. In Advances in Cryptology –
CRYPTO 2005, pages 152–168, 2005.

[GGI19] Rosario Gennaro, Steven Goldfeder, and Bertrand Ithurburn. Fully
distributed group signatures, 2019.

[Gil99] Niv Gilboa. Two party RSA key generation. In Advances in Cryp-
tology – CRYPTO 1999, pages 116–129, 1999.

[GL05] Shafi Goldwasser and Yehuda Lindell. Secure multi-party compu-
tation without agreement. Journal of Cryptology, 18(3):247–287,
2005.

[GMT20] Aurore Guillevic, Simon Masson, and Emmanuel Thomé. Cocks-
pinch curves of embedding degrees five to eight and optimal ate
pairing computation. Des. Codes Cryptogr., 88(6):1047–1081, 2020.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any
mental game or A completeness theorem for protocols with honest
majority. 1987.

[GPS08] Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart.
Pairings for cryptographers. Discrete Applied Mathematics,
156(16):3113–3121, 2008.

[HJKY95] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung.
Proactive secret sharing or: How to cope with perpetual leakage.
pages 339–352, 1995.

[HMRT22] Iftach Haitner, Nikolaos Makriyannis, Samuel Ranellucci, and Eliad
Tsfadia. Highly efficient ot-based multiplication protocols. EURO-
CRYPT ’22, 2022.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending
oblivious transfers efficiently. 2003.

[KIK+17] Yutaro Kiyomura, Akiko Inoue, Yuto Kawahara, Masaya Yasuda,
Tsuyoshi Takagi, and Tetsutaro Kobayashi. Secure and efficient
pairing at 256-bit security level. In Applied Cryptography and Net-
work Security, pages 59–79, 2017.

[KMOS21] Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer
Shlomovits. Refresh when you wake up: Proactive threshold wallets
with offline devices. In 42nd IEEE Symposium on Security and Pri-
vacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages
608–625. IEEE, 2021.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT:
Faster malicious arithmetic secure computation with oblivious trans-
fer. pages 830–842, 2016.

53



[KS22] Yashvanth Kondi and Abhi Shelat. Improved straight-line extraction
in the random oracle model with applications to signature aggrega-
tion. In Advances in Cryptology – ASIACRYPT 2022, part II, pages
279–309, 2022.

[Lin22] Yehuda Lindell. Simple three-round multiparty schnorr signing with
full simulatability. IACR Cryptol. ePrint Arch., page 374, 2022.

[LKWL22] Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lod-
der. The BBS Signature Scheme. Internet-Draft draft-irtf-cfrg-bbs-
signatures-01, Internet Engineering Task Force, October 2022. Work
in Progress.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with
practical distributed key generation and applications to cryptocur-
rency custody. pages 1837–1854, 2018.

[LRSW99] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In Selected Areas in Cryptography, 1999.

[MP] Nikolaos Makriyannis and Udi Peled. A note on the security
of gg18. https://info.fireblocks.com/hubfs/A_Note_on_the_

Security_of_GG.pdf.

[MR19] Daniel Masny and Peter Rindal. Endemic oblivious transfer. In
Proceedings of the 26th ACM Conference on Computer and Com-
munications Security, (CCS), pages 309–326, 2019.

[Nym22] Nymtech, 2022. https://github.com/nymtech/nym/tree/

develop/common/nymcoconut.

[Oka06a] Tatsuaki Okamoto. Efficient blind and partially blind signatures
without random oracles. In Shai Halevi and Tal Rabin, editors,
Proceedings of the Third Theory of Cryptography Conference, TCC
2006, pages 80–99, Berlin, Heidelberg, 2006. Springer Berlin Heidel-
berg.

[Oka06b] Tatsuaki Okamoto. Efficient blind and partially blind signa-
tures without random oracles. Cryptology ePrint Archive, Report
2006/102, 2006. https://ia.cr/2006/102.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus
attacks (extended abstract). pages 51–59, 1991.

[PS16] David Pointcheval and Olivier Sanders. Short randomizable signa-
tures. In Proceedings of the RSA Conference on Topics in Cryptology
- CT-RSA 2016 - Volume 9610, page 111–126, Berlin, Heidelberg,
2016. Springer-Verlag.

[Roy22a] Lawrence Roy. personal communication, 2022.

54

https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://info.fireblocks.com/hubfs/A_Note_on_the_Security_of_GG.pdf
https://github.com/nymtech/nym/tree/develop/common/nymcoconut
https://github.com/nymtech/nym/tree/develop/common/nymcoconut
https://ia.cr/2006/102


[Roy22b] Lawrence Roy. Softspokenot:communication-computation tradeoffs
in ot extension. In Advances in Cryptology – CRYPTO 2022, 2022.

[RP22] Alfredo Rial and Ania M. Piotrowska. Security analysis of coconut,
an attribute-based credential scheme with threshold issuance. Cryp-
tology ePrint Archive, Paper 2022/011, 2022. https://eprint.

iacr.org/2022/011.

[SA19] Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic
curve based protocol. In Martin Albrecht, editor, IMACC 2019,
2019.

[SAB+19] Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meikle-
john, and George Danezis. Coconut: Threshold issuance selective
disclosure credentials with applications to distributed ledgers. In
26th Annual Network and Distributed System Security Symposium,
NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019.

[Sch89] Claus-Peter Schnorr. Efficient identification and signatures for smart
cards. In Advances in Cryptology – CRYPTO 1989, pages 239–252,
1989.

[SKSW20] Y. Sakemi, T. Kobayashi, T. Saito, and R. Wahby. Pairing-friendly
curves. 2020.

[TAKS07] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith.
Blacklistable anonymous credentials: Blocking misbehaving users
without ttps. In Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, (CCS), page 72–81, 2007.

[TS21] Dmytro Tymokhanov and Omer Shlomovits. Alpha-rays: Key ex-
traction attacks on threshold ecdsa implementations. Cryptology
ePrint Archive, Paper 2021/1621, 2021.

[TZ23] Stefano Tessaro and Chenzhi Zhu. Revisiting bbs signatures. Cryp-
tology ePrint Archive, Paper 2023/275, 2023. https://eprint.

iacr.org/2023/275.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenti-
cated garbling and efficient maliciously secure two-party computa-
tion. pages 21–37, 2017.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (ex-
tended abstract). 1986.

55

https://eprint.iacr.org/2022/011
https://eprint.iacr.org/2022/011
https://eprint.iacr.org/2023/275
https://eprint.iacr.org/2023/275

	Introduction
	Securely Distributing Anonymous Credentials
	Our Techniques
	Prior Works

	Preliminaries
	The BBS+ Signature Scheme
	Blind Signatures
	Universal Composability

	Functionalities
	Building Blocks

	Threshold BBS+ Protocol
	t-of-n Threshold Signing
	A Simple Application: Credential Coalescing

	Extensions
	Strong Blind Signatures
	Shorter Threshold BBS+ Signatures
	Oblivious Threshold VRF Evaluation
	Proactive Security

	Cost Analysis
	Implementation and Benchmarks
	Proof of Security for t-of-n Signing
	Realizing Key Generation

