
Post-Quantum Public-Key Authenticated
Searchable Encryption with Forward

Security: General Construction,
and Applications

Shiyuan Xu1(B), Yibo Cao2, Xue Chen1,3(B), Yanmin Zhao1,
and Siu-Ming Yiu1(B)

1 Department of Computer Science, The University of Hong Kong,
Pok Fu Lam, Hong Kong

{syxu2,ymzhao,smyiu}@cs.hku.hk
2 School of Cyberspace Security, Beijing University of Posts

and Telecommunications, Beijing, China
3 Department of Computing, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong
xue-serena.chen@connect.polyu.hk

Abstract. Public-key encryption with keyword search (PEKS) was first
proposed by Boneh et al. (EUROCRYPT 2004), achieving the ability to
search for ciphertext files. Nevertheless, it is vulnerable to inside keyword
guessing attacks (IKGA). Public-key authenticated encryption with key-
word search (PAEKS), introduced by Huang et al. (Inf. Sci. 2017), on
the other hand, is secure against IKGA. Nonetheless, it is susceptible to
quantum computing attacks. Liu et al. and Cheng et al. addressed this
problem by reducing to the lattice hardness (AsiaCCS 2022, ESORICS
2022). Furthermore, several scholars pointed out that the threat of secret
key exposure delegates a severe and realistic concern, potentially lead-
ing to privacy disclosure (EUROCRYPT 2003, Compt. J. 2022). As a
result, research focusing on mitigating key exposure and resisting quan-
tum attacks for the PAEKS primitive is far-reaching.

In this work, we present the first generic construction and instantia-
tion of forward-secure PAEKS primitive based on lattice hardness with-
out trusted authorities, mitigating the secret key exposure while ensuring
quantum-safe properties. We extend the scheme of Liu et al. (AsiaCCS
2022), and formalize a novel post-quantum PAEKS construction, namely
FS-PAEKS. To begin with, we introduce the binary tree structure to rep-
resent the time periods, along with a lattice basis extension algorithm,
and SamplePre algorithm to obtain the post-quantum one-way secret key
evolution, allowing users to update their secret keys periodically. Further-
more, our scheme is proven to be IND-CKA and IND-IKGA secure in a
quantum setting. In addition, we also compare the security of our primi-
tive in terms of computational complexity and communication overhead
with other top-tier schemes. Ultimately, we demonstrate two potential
applications of FS-PAEKS.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
C. Ge and M. Yung (Eds.): Inscrypt 2023, LNCS 14526, pp. 274–298, 2024.
https://doi.org/10.1007/978-981-97-0942-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-97-0942-7_14&domain=pdf
https://doi.org/10.1007/978-981-97-0942-7_14

Post-Quantum Public-Key Authenticated Searchable Encryption 275

Keywords: Public-key authenticated encryption with keyword
search · Lattice · Forward security · Multi-ciphertext
indistinguishability · Trapdoor privacy · Generic construction

1 Introduction

Traditional PEKS primitive contains three entities, that is, data owner, data
user, and cloud server [1]. PEKS scheme realizes that encrypted data can easily
be retrieved by the specific user through a specific trapdoor, which not only
protects the data privacy but also realizes the searchability [2]. A fundamental
security criterion for PEKS is to against the chosen keyword attacks (CKA)
[3]. Nevertheless, Byun et al. formalized the notation of trapdoor privacy (TP)
for the PEKS scheme since if it only considers the CKA, the protocol may
be threatened by the inside keyword guessing attacks (IKGA) [4]. To circum-
vent this problem, Huang et al. initialized a novel variant of PEKS, namely,
public-key authenticated encryption with keyword search (PAEKS), combining
the message authentication technique into a ciphertext generation algorithm [5].
In this way, the trapdoor can merely be valid to the authenticated ciphertext
for a specific sender. Numerous scholars commenced their research works on the
PAEKS primitive due to its high security [6–11].

However, the above-mentioned PAEKS protocols are totally on the basis
of the discrete logarithm assumption, which is vulnerable to quantum comput-
ing attacks. Liu et al. constructed a lattice-based PAEKS primitive that offers
both CKA and IKGA security while also being resistant to quantum computing
attacks [12]. Unfortunately, the security of ciphertext may be compromised if the
secret key of a receiver is leaked due to inadequate storage or malicious actions
by adversaries. To address this issue, several scholars introduced the notation
of forward security in digital signatures [13–15], which was later adapted by
Canetti et al. for use in a forward secure public key encryption scheme [16]. This
protocol periodically updates the secret key, therefore even if it is compromised
in one period, the security of other periods remains intact.

1.1 Motivation

As inappropriate storage of secret keys may lead to their compromise by mali-
cious attackers [17,18], it is essential to update them within a certain period to
ensure forward security. Zhang et al. formalized the FS-PEKS scheme, achieving
forward security, nevertheless, one disadvantage of this scheme is that a mali-
cious attacker may acquire the keyword from the trapdoor [19]. In contrast,
Jiang et al. presented a forward secure scheme for PAEKS, without considering
quantum computing attacks [20]. Among that, their constructions still need a
trusted authority to calculate secret keys, which will result in additional storage
overhead.

Huang et al. subsequently presented a PAEKS primitive, which was reduced
to be secure under the discrete logarithm assumption [5]. However, with the

276 S. Xu et al.

advancement of quantum computers, Shor generalized a quantum algorithm,
demonstrating the feasibility of solving classical cryptographic primitives in
probabilistic polynomial times [21,22]. Consequently, classical PAEKS schemes
are now vulnerable. Hence, several scholars transformed the traditional PAEKS
primitive into the quantum-resistant PAEKS protocol and formalized the generic
constructions based on lattice hardness [12,23]. Nevertheless, their schemes con-
tain flaws due to the secret key leakage problem.

Therefore, the aforementioned issues motivate the following question:

Can we construct and instantiate a generic post-quantum forward-secure
PAEKS satisfied CI, TP, MCI security without trusted settings to mitigate the

secret key leakage problem?

1.2 Our Contributions

We resolve the above question affirmatively and summarize our contributions as
follows.

– We generalize the first PAEKS with forward security instantiation in lattice
without trusted authorities, mitigating the secret key exposure while enjoying
quantum safety. Our primitive extends Liu et al.’s scheme [12], and proposes a
novel post-quantum forward secure PAEKS construction, namely FS-PAEKS.
In addition, we formalize the CI, TP, and MCI security of the proposed FS-
PAEKS primitive.

– The proposed FS-PAEKS scheme enjoys quantum-safe forward security. We
introduce a binary tree structure to update the receiver’s secret key with
different time periods. It ensures that exposing the secret key corresponding to
a specific time period does not enable an adversary to “crack” the primitive for
any previous time period due to its one-way nature. Additionally, we further
employ the minimal cover set to achieve secret key updating periodically
for the receiver based on the key evolution mechanism. Finally, we utilize
the lattice basis extension technique to maintain quantum-safe for updating
secret keys.

– The proposed FS-PAEKS scheme can be proven secure in strong security
models. Firstly, the initial phase does not need a trusted setup assumption
and the ciphertext can only be obtained by a valid sender. In this way, the
trapdoor is valid from a receiver, which avoids adversaries adaptively access-
ing oracles to obtain the ciphertext for any keyword. Consequently, we intro-
duce a pseudo-random smooth projective hash function to achieve the above
property and forward-secure trapdoor privacy under IND-IKGA. In addition,
our scheme has also proven to be IND-CKA and IND-Multi-CKA secure in a
quantum setting.

– Eventually, we give a security properties comparison with the other eight
PEKS and PAEKS primitives. Besides, we compare with Behnia et al.’s
scheme [24], Zhang et al.’s scheme [19], and Liu et al.’s scheme [12] in terms
of computational complexity and communication overhead theoretically.

Post-Quantum Public-Key Authenticated Searchable Encryption 277

1.3 Overview of Technique

Technical Roadmap. Informally speaking, constructing a forward-secure
PAEKS primitive in the context of the lattice is a combination of PEKS, public
key encryption, smooth projective hash functions (SPHF), binary tree structure,
and lattice basis extension algorithm. More concretely, we begin by revisiting the
post-quantum PAEKS primitive as the basic structure [12]. Next, we employ the
SPHF technique to transform the primitive into IND-CCA secure. We then take
advantage of the hierarchical structure of the binary tree to represent time peri-
ods and utilize node(t) to represent the smallest minimal cover set for secret
key update periodically, following the approach outlined in Cash et al. [25]. To
the best of our knowledge, it is the most efficient mechanism to realize key
updates and it serves as a stepping stone toward our goal. Finally, we introduce
the ExtBasis and SamplePre algorithms to facilitate the post-quantum one-way
secret key evolution.

Smooth Projective Hash Functions. Smooth projective hash functions, ini-
tially proposed by Cramer et al. [26], are utilized to transform one encryption
primitive from IND-CPA to IND-CCA. Moreover, numerous scholars extended
the SPHF tool to realize password-authenticated key exchange protocols [27–
32]. We use a variant kind of SPHF, say “word-independent” SPHF, proposed
by Katz et al. [33] for primitive construction. Generally speaking, the “word-
independent” SPHF scheme includes five algorithms defined for the NP language
L over a domain X .

We define a language family (LParal,Trapl
) indexed by the language param-

eter Paral and language trapdoor Trapl. Besides, we consider an NP lan-
guage family (L̃Paral

) with witness relation K̃Paral
, s.t. L̃Paral

:= {χ ∈
XParal

|∃ω, K̃Paral
(χ, ω) = 1} ⊆ LParal,Trapl

⊆ XParal
, where XParal

is a fam-
ily of sets. In addition, the membership in XParal

and K̃Paral
can be checked

in polynomial time with Paral, and LParal,Trapl
can be checked in polynomial

time with Paral, T rapl. We describe the approximate “word-independent” SPHF
scheme below.

– Setup(λ): Given a security parameter λ, this PPT algorithm outputs a lan-
guage parameter Paral.

– KeyGenHash(Paral): Given Paral, this PPT algorithm outputs outputs hk as
the hashing key.

– KeyGenProj(hk, Paral): Given hk and Paral, this PPT algorithm outputs out-
puts the projection key pk.

– Hash(hk, Paral, χ): Given hk, Paral and a word χ ∈ XParal
, this deterministic

algorithm outputs Hash ∈ {0, 1}δ as a hash value, where δ ∈ N.
– ProjHash(pk, Paral, χ, ω): Given pk, Paral, χ ∈ L̃Paral

and a witness ω, this
deterministic algorithm outputs ProjHash ∈ {0, 1}δ as a projected hash value,
where δ ∈ N.

Informally speaking, an approximate “word-independent” SPHF protocol sat-
isfies two attributes:

278 S. Xu et al.

(1) ε-approximate correctness: Given a word χ ∈ L̃Paral
, and the corre-

sponding witness ω, the SPHF scheme is ε-approximate correct when:
Pr[HD(Hash(hk, Paral, χ),ProjHash(pk, Paral, χ, ω)) > ε · δ] ≈ 0, where
HD(a, b) means the hamming distance between two elements a and b.

(2) Pseudo-randomness: For some δ ∈ N, if a word χ ∈ L̃Paral
, its hash value

Hash is indistinguishable from a random element in {0, 1}δ; Otherwise, Hash
is statistically indistinguishable from a random element chosen in {0, 1}δ.

Binary Tree for Representing Time Periods. We use binary tree encryp-
tion primitive for enrolling time periods [16]. Informally, we define numerous
time periods t ∈ {0, 1, · · · , 2d − 1}, where d is the depth of the binary from the
root node to the deepest leaf. In this paper, the time period t will be described in
binary expression t = (t1t2 · · · td). For example, if the depth is four and the last
leaf can be described as t = (1111). On each time period, it only has one path
from the root node to the current leaf node and we define Θ(i) = (θ(1)θ(2) · · · θ(i)),
i ∈ [1, d] as the path, where θ(i) = 0 if the i-th level node is the left leaf and
θ(i) = 1 if the i-th level node is the right leaf. We also define node(t) to represent
the smallest minimal cover set containing one ancestor of all leaves on the time
period t and after the time period t, say including {t, t + 1, · · · , 2d − 1}.

For simple understanding, we give an example in Fig. 1, describing a d = 4
binary tree with 16 time periods in total. In this figure, we show the meaning of
node(t) as: node(0000) = {root}, node(0001) = {0001, 001, 01, 1}, node(0010) =
{001, 01, 1}, node(0011) = {0011, 01, 1}, node(0100) = {01, 1}, node (0101) =
{0101, 011, 1}, node(0110) = {011, 1}, node(0111) = {0111, 1}, node(1000) =
{1}, node(1001) = {1001, 101, 11}, node(1010) = {101, 11}, node(1011) =
{1011, 11}, node(1100) = {11}, node(1101) = {1101, 111}, node(1110) =
{111}, node(1111) = {1111}.

root

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 111100010000

000 001 010 011 100 101 110 111

00 01 10 11

0 1 Level 1

Level 2

Level 3

Level 4

Fig. 1. Binary tree of depth d = 4 with binary expression time period (node).

Post-Quantum Public-Key Authenticated Searchable Encryption 279

Lattice Basis Extension. We use the lattice basis extension algorithm to con-
struct a secret key one-way evolutionary mechanism (See Lemma 5 in Sect. 2.3).
More concretely, we discretize the time period to 2d segments, where d means
the total depth of a binary tree. The matrix MR is the public key for receiver
and the matrix SΘ(i) is the trapdoor, where Θ(i) := (θ1, θ2, · · · , θj , θj+1, · · · , θi).
Consequently, the updated trapdoor can be calculated by any ancestor’s trap-
door, and root node is the trapdoor of the original ancestor.

We first define FΘ(i) := [MR ‖ A
(θ1)
1 ‖ A

(θ2)
2 ‖ · · · ‖ A

(θi)
i] as the correspond-

ing matrix of Θ(i). For any depth j < i, where j, i ∈ [1, d], given the trapdoor
SΘ(j) on time j, we have: SΘ(i) ← ExtBasis(FΘ(i) ,SΘ(j)). After that, we specify
the secret key update process as below.

skR(t) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)),

where Θ(i) ∈ node(t) as the receiver’s secret key on time t. Each node has
the corresponding secret key in a binary tree. Receiver will update skR(t) to
skR(t + 1) through processing

skR(t + 1) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)),where Θ(i) ∈ node(t + 1).

1.4 Related Works

Lattice-Based PAEKS. Boneh et al. constructed the concept of PEKS in
2004 [1]. Zhang et al. argued that its security model for keyword privacy is not
complete and then defined a new security model [34]. However, the basic PEKS
primitive cannot resist the IKGA since an inside adversary may deduce the key-
word from a specific trapdoor. Huang et al. formalized a PAEKS protocol to
solve this problem by combining keyword authentication with PEKS [5]. Nev-
ertheless, Liu et al. and Cheng et al. introduced lattice-based PAEKS primitive
to achieve quantum resistance [12,35]. Many researchers utilized the PAEKS
scheme to preserve privacy for the Internet of Things [9,36,37].

Forward Security. Forward security (FS) in the public-key cryptosystem was
initialized by [16]. Zeng et al. introduced the FS notation into the PEKS scheme
for cloud computing [38]. Zhang et al. formalized the first lattice-based FS-PEKS
primitive [19]. After that, Yang et al. extended the FS-PEKS and constructed
a lattice-based FS identity-based encryption with PEKS, namely, FS-IBEKS
[39]. Recently, Jiang et al. presented a forward secure public-key authenticated
encryption with conjunctive keyword search [20], but without considering the
quantum attacks.

1.5 Outline

The rest of this paper is structured as follows. Section 2 covers the preliminary
knowledge. In Sect. 3, we present the syntax of forward-secure PAEKS primitive
and its security models. The generic construction will be elaborated in Sect. 4,

280 S. Xu et al.

while the security analysis will be specified in Sect. 5. In Sect. 6, we give the
lattice-based instantiation. The parameters setting with correctness and theo-
retical comparison are illustrated in Sects. 7 and 8, respectively. Section 9 shows
two applications of FS-PAEKS. Finally, we conclude this paper in Sect. 10.

2 Preliminaries

2.1 Public-Key Encryption with Keyword Search Scheme

Public-key encryption with keyword search (abbr. PEKS) was initially proposed
by Boneh et al. [1]. A standard PEKS scheme consists of four algorithms:

– (pkPEKS, skPEKS) ← KeyGen(λ): Given a security parameter λ, this
probabilistic-polynomial time (PPT) algorithm outputs pkPEKS and skPEKS
as a public key and secret key, respectively.

– ctPEKS,kw ← PEKS(pkPEKS, kw): After inputting a public key pkPEKS and a
keyword kw, this PPT algorithm will output a ciphertext ctPEKS,kw.

– TrapPEKS,kw′ ← Trapdoor(skPEKS, kw′): Given a secret key skPEKS and a key-
word kw′, this PPT algorithm outputs a trapdoor TrapPEKS,kw′ .

– (1 or 0) ← Test(ctPEKS,kw,TrapPEKS,kw′): After input a ciphertext ctPEKS,kw

and a trapdoor TrapPEKS,kw′ , this deterministic algorithm outputs 1 if kw =
kw′; Otherwise, it outputs 0.

Security Models. A secure PEKS scheme must satisfy the following properties:

(1) Correctness: Given a security parameter λ, any valid public-secret key
pairs (pkPEKS, skPEKS), any keywords kw, kw′, any ciphertexts generated by
PEKS(pkPEKS, kw), and any trapdoors generated by Trapdoor(skPEKS, kw′),
the PEKS scheme is correct if it satisfies:

If kw = kw’, Pr[Test(ct,Trap) = 1] ≈ 1; and if kw �= kw’, Pr[Test(ct,Trap) = 0] ≈ 1.

(2) Ciphertext Indistinguiability: If it does not exist an adversary A can obtain
any keyword information of the challenge ciphertext ctPEKS,kw, this PEKS
scheme has ciphertext indistinguishability against chosen keyword attacks
(IND-CKA).

2.2 Labelled Public-Key Encryption Scheme

Labelled public-key encryption (abbr. Labelled PKE) is one of the variants of
public-key encryption [40]. We employ the Labelled PKE scheme for our con-
struction and refer to it as PKE for brevity. A standard PKE scheme consists of
three algorithms:

– (pkPKE, skPKE) ← KeyExt(λ): Given a security parameter λ, this PPT algo-
rithm outputs pkPKE and skPKE as the public key and secret key for encryption
and decryption, respectively.

Post-Quantum Public-Key Authenticated Searchable Encryption 281

– ctPKE ← Encrypt(pkPKE, label, ptPKE, ρ): Given a public key pkPKE, a label
label, a plaintext ptPKE, and a randomness ρ, this PPT algorithm outputs
the ciphertext ctPKE.

– (ptPKE or ⊥) ← Decrypt(skPKE, label, ctPKE): Given a secret key skPKE, a label
label, a ciphertext ctPKE and a randomness ρ, this deterministic algorithm
outputs the plaintext (ptPKE or ⊥).

Security Models. A secure PKE scheme must satisfy the following security prop-
erties:

(1) Correctness: Given a security parameter λ, a public key and secret key gen-
erated by (pkPKE, skPKE) ← KeyExt(λ), a label label, a randomness ρ, a
ciphertext generated by ctPKE ← Encrypt (pkPKE, label, ptPKE, ρ), the PKE
scheme is correct if Pr[Decrypt(skPKE, label, ctPKE) = ptPKE] ≈ 1.

(2) IND-CPA/IND-CCA security: A secure PKE protocol satisfies the indistin-
guishability against chosen-plaintext attacks (IND-CPA) if it does not exist
an adversary A can obtain any information of a challenge plaintext ptPKE.
In addition, it realizes indistinguishability against chosen-ciphertext attacks
(IND-CCA) if A is permitted to access the decryption query for any cipher-
text ctPKE excepting for querying the challenge ciphertext.

2.3 Basic Knowledge of Lattice and Trapdoors

Definition 1 (Lattice). [41] Suppose that b1,b2, · · · ,bn ∈ R
m are n linearly

independent vectors. The m-dimensional lattice Λ is generated by a set of linear
combinations, denoted as Λ = Λ(B) = {x1 · b1 + x2 · b2 + · · · + xn · bn|xi ∈ Z},
where B = {b1,b2, · · · ,bn} ∈ R

m×n is the basis of Λ.

Definition 2 (q-ary Lattices). [42] Given n,m, q ∈ Z, and A ∈ Z
n×m
q ,

we define the following q-ary Lattices and a coset: Λq(A) := {e ∈ Z
m|∃s ∈

Z
n
q ,A�s = e mod q}, Λ⊥

q (A) := {e ∈ Z
m|Ae = 0 mod q}, and Λq(Au) := {e ∈

Z
m|Ae = u mod q}.

Definition 3 (Gaussian Distribution). Given one positive parameter σ ∈
R

+, one center c ∈ Z
m and any x ∈ Z

m, we define Dσ,c = ρσ,c(x)

ρσ,c(Λ)
for ∀x ∈ Λ

as the Discrete Gaussian Distribution over Λ with a center c, where ρσ,c(x) =

exp(−π ‖x−c‖2

σ2) and ρσ,c(Λ) = Σx∈Λρσ,c(x). Specially, we say Dσ,0 abbreviated as
Dσ when c = 0.

Definition 4. [43] We define Ψα as the probability distribution over Zq for the
random variable
qx� by selecting x ∈ R from the normal distribution with mean
0 and the standard deviation α√

2π
.

Lemma 1 (TrapGen(n,m, q)). [44] Taking n,m, q ∈ Z as input, this PPT
algorithm returns A ∈ Z

n×m
q and TA ∈ Z

m×m
q , where TA is a basis of

Λ⊥
q (A) s.t. {A : (A,TA) ← TrapGen(n,m, q)} is statistically close to {A :

A $← Z
n×m
q }. In this way, we say TA is a trapdoor of A.

282 S. Xu et al.

Lemma 2 (SamplePre(A,TA,u, σ)). [45] Given a matrix A ∈ Z
n×m
q and

its trapdoor TA ∈ Z
m×m
q , a vector u ∈ Z

n
q , and the parameter σ ≤ ‖T̃A‖ ·

ω(
√

log(m)), where m ≥ 2n�log q�, this PPT algorithm publishes a sample e ∈
Z

m
q statistically distributed in DΛu

q (A),σ s.t. Ae = u mod q.

Lemma 3 (NewBasisDel(A,R,TA, σ)). [43] Taking a parameter σ ∈ R,
a matrix A ∈ Z

n×m
q , a Zq-invertible matrix R sampled from the distribution

Dm×m, and trapdoor TA as input, this PPT algorithm will output a short lattice
basis TB of Λ⊥

q (B), where B = AR−1.

Lemma 4 (SampleLeft(A,M,TA,u, σ)). [46] After input a matrix A ∈
Z

n×m
q and its corresponding trapdoor TA ∈ Z

m×m
q , a matrix M ∈ Z

n×m1
q , a

vector u ∈ Z
n
q , and a parameter σ ≤ ‖T̃A‖ · ω(

√
log(m + m1)), this PPT algo-

rithm will output a sample t ∈ Z
m+m1 from the distribution statistically close to

DΛu
q ([A|M]),σ s.t. [A|M] · t = u mod q.

Lemma 5 (ExtBasis(A′′,S)). [25] For an input matrix A ∈ Z
n×m
q , a basis

S ∈ Z
m×m
q of Λ⊥(A), and a matrix A′ ∈ Z

n×m′
q , this deterministic algorithm

outputs a basis S′′ of Λ⊥(A′′) ⊆ Z
m×m′′
q s.t. ‖S̃‖ = ‖S̃′′‖, and A′′ = A||A′,

m′′ = m + m′.

3 Syntax and Security Models of FS-PAEKS

This sector presents syntax and security models of FS-PAEKS. Our scheme
prohibits the use of a token to search for ciphertexts generated after the time
period in which the token was generated.

3.1 Syntax of FS-PAEKS Scheme

We formalize the syntax of FS-PAEKS primitive (including seven algorithms),
Π = (Setup,KeyGenS , KeyGenR,KeyUpdate,FS-PAEKS,Trapdoor,Test).

– pp ← Setup(λ, d): Given a security parameter λ and a depth d, this algorithm
returns a public parameter pp.

– (pkS , skS) ← KeyGenS(pp): Given a public parameter pp, this algorithm pub-
lishes a public-secret key pair for a sender (pkS , skS).

– (pkR, skR) ← KeyGenR(pp): Given a public parameter pp, this algorithm out-
puts a public-secret key pair for a receiver (pkR, skR).

– skR(t + 1) ← KeyUpdate(pp, pkR, skR, t, d): Given a public parameter pp, a
public key of a receiver pkR, a secret key of a sender skR(t) at time period t,
and the depth of binary tree d as input, this algorithm outputs a new secret
key of the sender skR(t + 1) at time period t + 1. Moreover, the former secret
key of the receiver skR(t) has been deleted.

Post-Quantum Public-Key Authenticated Searchable Encryption 283

– ct ← FS-PAEKS(pp, pkS , skS , pkR, kw, t, d): Given a public parameter pp, a
public key pkS and a secret key skS of a sender, a public key pkR, any keyword
kw at time period t, and the depth of binary tree d, this algorithm returns a
ciphertext ct of kw with time t as output.

– Trap ← Trapdoor(pp, pkS , pkR, skR(t), kw′): Given a public parameter pp, a
public key of a sender pkS , a public key and a secret key of a receiver skR

with time t, and a keyword kw′, this algorithm outputs a trapdoor Trap of
kw′.

– (1 or 0) ← Test(pp, ct,Trap): Given a public parameter pp, a ciphertext ct
and a trapdoor Trap, this algorithm returns 1 if the ct and Trap is related
to a same keyword, that is, kw = kw′ holds; Otherwise, it returns 0.

3.2 Security Models

The security criteria are that any probabilistic polynomial-time (PPT) adversary
cannot obtain any keyword information from the ciphertext [1] and any (inside)
PPT attacker cannot acquire any keyword information from the trapdoor [4,47].
We define ciphertext indistinguishability (CI) of forward-secure PAEKS under
indistinguishability against chosen keywords attack (IND-CKA), the trapdoor
privacy of forward-secure PAEKS under indistinguishability against inside key-
word guessing attack (IND-IKGA), and the multi-ciphertext indistinguishability
(MCI) of forward-secure PAEKS under indistinguishability against chosen multi-
keywords attack (IND-Multi-CKA).

IND-CKA Game of Forward-Secure PAEKS

– Setup: After input a security parameter λ, the challenger C calls the Setup
algorithm to obtain the public parameter pp. After that, C processes the
KeyGenS and KeyGenR algorithms to compute the sender’s and receiver’s
public-secret key pair (pkS , skS) and (pkR, skR). Ultimately, C sends pp, pkS

and pkR to the adversary A and keeps the initial secret key skR secret.
– Query 1: In this query, A is permitted to adaptively access three oracles in

polynomial times.
• KeyUpdate Oracle OKU : If the time period t < T − 1, C will update

the time period from t to t+1. If the time period t = T −1, which means
the current period is the last period, C will return an empty string skT .

• Ciphertext Oracle OC : A requires that the time period t is larger than
the target time period t∗ selected by an adversary. Given any keyword
kw, C calls FS-PAEKS(pp, pkS , skS , pkR, kw, t, d) algorithm to obtain the
ciphertext ct at time period t and returns it to A.

• Trapdoor Oracle OT : A requires that the time period t is larger
than the target time period t∗. Given any keyword kw, C calls
the Trapdoor(pp, pkS , pkR, skR(t), kw′) algorithm to obtain the trapdoor
Trap in time period t and transmits it to A. When A accesses OKU , A
is forbidden to issue OT for the past time periods.

284 S. Xu et al.

– Challenge: In time period t∗, which has not been queried the OT , A selects
two challenge keywords kw∗

0 and kw∗
1 and sends them to C. This phase restricts

that A never accesses the three oracles (OKU ,OC and OT) for the challenge
keywords kw∗

0 and kw∗
1 . After that, C selects a bit b ∈ {0, 1} at random

and calls FS-PAEKS(pp, pkS , skS , pkR, kw∗
b , t∗, d) algorithm to calculate the

challenge ciphertext ct∗. Finally, C sends ct∗ to A.
– Query 2: A has the ability to continue those queries as similar as Query 1

with a limitation that A is not allowed to query the challenge keywords
(kw∗

0 , kw∗
1).

– Guess: After finished the above phases, A will output a guess bit b′ ∈ {0, 1}.
Therefore, we say that A wins the game if and only if b = b′.

We hereby define the advantage of A wins the above game as
AdvIND-CKA

A (λ) := |Pr[b = b′] − 1
2 |.

Definition 5 (IND-CKA secure of FS-PAEKS). We say that an FS-
PAEKS scheme satisfies forward-secure ciphertext indistinguishability (CI)
under IND-CKA, if for any PPT adversary A, the advantage AdvIND-CKA

A (λ)
is negligible.

IND-IKGA Game of Forward Secure PAEKS

– Setup: This process is the same as the IND-CKA Game.
– Query 1: In this query, A is permitted to adaptively access three oracles

(OKU ,OC and OT , are same as the IND-CKA Game) in some polynomial
times.

– Challenge: In time period t∗, which has not been queried the OT , A selects
two challenge keywords kw∗

0 and kw∗
1 and transmits them to C. This phase

restricts that A never accesses the three oracles (OKU ,OC and OT) for the
challenge keywords kw∗

0 and kw∗
1 . After that, C selects a bit b ∈ {0, 1} at

random and calls Trapdoor(pp, pkS , pkR, skR(t′), kw′
b) algorithm to calculate

the challenge trapdoor Trap∗. Finally, C sends Trap∗ to A.
– Query 2: A has the ability to continue those queries as similar as Query 1

with the limitation that A is not allowed to query the challenge keywords
(kw∗

0 , kw∗
1).

– Guess: After finished the above phases, A publishes a guess bit b′ ∈ {0, 1}.
Thus, we say that A wins the game if and only if b = b′.

We define the advantage of A wins the above game as AdvIND−IKGA
A (λ) :=

|Pr[b = b′] − 1
2 |.

Definition 6 (IND-IKGA secure of FS-PAEKS). We say that an FS-
PAEKS scheme satisfies forward-secure trapdoor privacy (TP) under IND-
IKGA, if for any PPT adversary A, the advantage AdvIND−IKGA

A (λ) is neg-
ligible.

Post-Quantum Public-Key Authenticated Searchable Encryption 285

IND-Multi-CKA Game of Forward Secure PAEKS

– Setup: This process is the same as the IND-CKA Game.
– Query 1: In this query, A is permitted to adaptively access three oracles

(OKU ,OC and OT , same as the IND-CKA Game) in some polynomial
times.

– Challenge: Given two tuples of challenge keywords (kw∗
0,1, · · · , kw∗

0,n),
C firstly selects a tuple (kw∗

0,i, kw∗
1,i) for some i s.t. kw∗

0,i �=
kw∗

1,i. After that, C selects a bit b ∈ {0, 1} randomly and calls
FS-PAEKS(pp, pkS , skS , pkR, kw∗

b , t∗, d) algorithm to calculate the challenge
ciphertext ct∗. Moreover, C selects n − 1 ciphertexts from the output space
of FS-PAEKS algorithm, namely as, (ct1, ct2, · · · , cti−1, cti+1, cti+2, · · · , ctn).

– Query 2: A can continue the queries as in the Query 1 with the restriction
that A is not allowed to query the challenge keywords kw∗

i,j , where i ∈ {0, 1}
and j ∈ {1, 2, · · · , n}.

– Guess: After finished the above phases, A outputs a guess bit b′ ∈ {0, 1} and
C uses it as its output. We say that A wins the game if and only if b = b′.

Definition 7 (IND-Multi-CKA secure of FS-PAEKS). We say that an
FS-PAEKS scheme satisfies forward-secure multi-ciphertext under IND-Multi-
CKA, if it satisfies CI under IND-CKA and it is a probabilistic algorithm.

4 Our Proposed Construction

In this part, we illustrate the first generic construction of post-quantum FS-
PAEKS based on the prototype of PEKS primitive, labelled PKE scheme,
SPHF protocol, and binary tree architecture. Specifically, we define KSPEKS

as the keyword space and a standard PEKS scheme includes four algorithms
(PEKS.KeyGen, PEKS.PEKS, PEKS.Trapdoor,PEKS.Test). Moreover, we define
PKSPKE and PSPKE as the public key and plaintext space, respectively. Finally,
we utilize a binary tree structure and the smallest minimal cover set to realize a
secret key update for a receiver and we also employ ExtBasis algorithm to fulfill
one-way secret key evolution.

A labelled PKE scheme consists of three algorithms (PKE.KeyGen, PKE.
Encrypt, PKE.Decrypt). A SPHF protocol incorporates four algorithms
(SPHF.KeyGenHash,SPHF.KeyGenProjHash,SPHF.Hash, SPHF.ProjHash). We first
define the language of ciphertext as (Paral, T rapl) = (pkPKE, skPKE), where
pkPKE ∈ PKSPKE, L̃ := {(label, ctPKE,mPKE)|∃ρ, ctPKE ← Encrypt(pkPKE, label,
mPKE, ρ)}, and L := {(label, ctPKE,mPKE)|Decrypt(skPKE, label, ctPKE) = mPKE}.
Besides, we also define the witness relation K̃((label, ctPKE,mPKE), ρ) = 1 if and
only if we have ctPKE ← Encrypt(pkPKE, label,mPKE, ρ)}.

– Setup(λ, d): Given a security parameter λ and a depth d, this algorithm pro-
cesses:

• Calculates (pkPKE, skPKE) ← PKE.KeyExt(λ).

• Selects a plaintext mPKE
$← PKSPKE and a label label $← {0, 1}∗ randomly.

286 S. Xu et al.

• Selects two hash functions:

H1 : PKSPKE × PSPKE × {0, 1}∗ → PKSPKE; H2 : KSPEKS × {0, 1}∗ → KSPEKS.

• Selects 2d matrices from Z
n×m
q as Matrices.

• Outputs pp := (λ,mpk, pkPKE,mPKE, label,H1,H2,Matrices) as a public
parameter.

– KeyGenS(pp): Given a public parameter pp, this algorithm processes these
operations:

• Calculates hS ← SPHF.KeyGenHash(mpk) and pS ← SPHF.KeyGenProj(hS,
mpk).

• Calculates ctPKE,S ← PKE.Encrypt(mpk, label,mPKE, ρS), where ρS is a
randomly selected witness s.t. K̃((label, ctPKE,S ,mPKE), ρS) = 1.

• Outputs pkS := (pS , ctPKE,S) and skS := (hS , ρS) as the public key and
secret key of a sender, respectively.

– KeyGenR(pp): Given a public parameter pp, this algorithm processes the fol-
lowing operations:

• Calculates hR ← SPHF.KeyGenHash(mpk) and pR ← SPHF.KeyGenProj
(hR,mpk).

• Calculates ctPKE,R ← PKE.Encrypt(mpk, label,mPKE, ρR), where ρR is a
randomly selected witness s.t. K̃((label, ctPKE,R,mPKE), ρR) = 1.

• Calculates (pkPEKS, skPEKS) ← PEKS.KeyGen(λ).
• Outputs pkR := (pR, ctPKE,R, pkPEKS) and skR := (hR, ρR, skPEKS) as the

public key and secret key of the receiver, respectively.
– KeyUpdate(pp, pkR, skR, t, d): Given a public parameter pp, a public key pkR

and a secret key skR of the initial receiver, a time period t, and a depth d,
this algorithm processes as below:

• Defines FΘ(i) as the corresponding matrix of Θ(i).
• For any j < i where j, i ∈ [1, d], calculates SΘ(i) ← ExtBasis(FΘ(i) ,SΘ(j)),

where SΘ(j) is the trapdoor on time period j.
• Defines skR(t) := (skR,SΘ(i)), where Θ(i) ∈ node(t).
• Defines and outputs skR(t + 1) := (skR,SΘ(i)), where Θ(i) ∈ node(t + 1).

– FS-PAEKS(pp, pkS , skS , pkR, kw, t, d): Given a public parameter pp, a public
key pkS and a secret key skS of a sender, a public key pkR of a receiver, a
keyword kw ∈ KSFS-PAEKS the time period t, and the depth d, this algorithm
processes the following operations:

• Calculates HashS ← SPHF.Hash(hS ,mpk, (ctPKE,R,mPKE)).
• Calculates ProjHashS ← SPHF.ProjHash(pR,mpk, (ctPKE,S ,mPKE), ρS).
• Calculates kwS ← H2(kw,HashS ⊕ ProjHashS)
• Calculates and outputs ct ← PEKS.PEKS(pkPEKS, kwS).

– Trapdoor(pp, pkS , pkR, skR(t), kw′): Given a public parameter pp, a public key
pkS of a sender, a public key pkR and a secret key skR(t) of a receiver, a
keyword kw′ ∈ KSFS-PAEKS, this algorithm processes the following operations:

• Calculates HashR ← SPHF.Hash(hR,mpk, (ctPKE,S ,mPKE)).
• Calculates ProjHashR ← SPHF.ProjHash(pR,mpk, (ctPKE,R,mPKE), ρR).
• Calculates kw′

R ← H2(kw′,HashR ⊕ ProjHashR).

Post-Quantum Public-Key Authenticated Searchable Encryption 287

• Calculates Trap1 ← PEKS.Trapdoor(skPEKS, kw′
R), Trap2 ← SamplePre

(SΘ(t) ,H3(kw′), σ3).
• Defines and outputs Trap := (Trap1,Trap2).

– Test(pp, ct,Trap): Given a public parameter pp, a ciphertext ct, and a trap-
door Trap, this algorithm outputs PEKS.Test(ct,Trap).

5 Security Analysis

This section illustrates that the proposed FS-PAEKS construction satisfies CI
under IND-CKA, TP under IND-IKGA, and MCI under IND-Multi-CKA. We
specify the proofs of two theorems and give the analysis of a corollary.

Theorem 1. The proposed FS-PAEKS scheme satisfies CI under IND-CKA if
the SPHF protocol satisfies pseudo-randomness and the hash function H2 is a
random oracle.

Proof. We finished the security analysis through four games as below.
̂Game 0: We simulate a real security game for the adversary A and define

Adv
̂Game 0

A (λ) := ε. A has the ability to perform three oracle queries and the
challenger C will reply to the following responses after receiving some keyword
kw from A.

– OKU : If the time period t < T − 1, C updates skR(t + 1) ←
KeyUpdate(pp, pkR, skR, t, d) and returns skR(t + 1) to A. If the time period
t = T − 1, C returns an empty string skT to A.

– OC : Given a keyword kw, C calculates ct ← FS-PAEKS(pp, pkS , skS , pkR,
kw, t, d) and returns ct to A.

– OT : Given a keyword kw, C calculates Trap ← Trapdoor(pp, pkS , pkR,
skR(t), kw′) and returns Trap to A.

̂Game 1: This game is identical to ̂Game 0, except changing the calcula-
tion method of ct∗ in the Challenge query. To be more specific, C selects
HashS

$← OSHashS
randomly (OSHashS

is the output space of HashS) instead
of calculating HashS ← SPHF.Hash(hS ,mpk, (ctPKE,R,mPKE)). For the view of
A, ̂Game 1 and ̂Game 0 are statistically indistinguishable due to the fact
that the output of HashS satisfies pseudo-randomness. Hence, we acquire:
|Adv

̂Game 1
A (λ) − Adv

̂Game 0
A (λ)| ≤ negl(λ).

̂Game 2: This game is identical to ̂Game 1, except changing one more time
of the calculation method for ct∗ in the Challenge query. In detail, A sends
kw∗

0 and kw∗
1 to C, C then selects a bit b ∈ {0, 1} randomly and samples

kwS
$← KSPEKS randomly (KSPEKS is the keyword space of PEKS(pkPEKS, kw)

algorithm), instead of calculating kwS ← H2(kwb,HashS ⊕ ProjHashS). In this
way, the output of H2(kwb,HashS ⊕ ProjHashS) is random since HashS is ran-
domly selected and H2 is also a random oracle. Accordingly, in A’s view,

288 S. Xu et al.

̂Game 2 and ̂Game 1 are statistically indistinguishable. Thus, we can say:
|Adv

̂Game 2
A (λ) − Adv

̂Game 1
A (λ)| ≤ negl(λ).

̂Game 3: Till now, the keyword is generated by kwS
$← KSPEKS at random, the

challenge ciphertext ct∗ = ctPEKS,kw is obtained from PEKS.PEKS(pkPEKS, kwS)

and kwS
$← KSPEKS. Therefore, ct∗ does not divulge any information regarding

to the challenge keywords (kw∗
0 , kw∗

1). As for A, the only way to acquire the
keyword is by guessing absolutely. Consequently, we obtain: |Adv

̂Game 3
A (λ)| = 0.

Theorem 2. The proposed FS-PAEKS scheme satisfies TP under IND-IKGA if
the SPHF protocol satisfies pseudo-randomness and the hash function H2 is a
random oracle.

Proof. We finished the security analysis through four games as below.
̂Game 0: We simulate a real security game for the adversary A and define

Adv
̂Game 0

A (λ) := ε. A has the ability to perform three oracle queries and the
challenger C will reply to the responses (same as the proof of the former theorem)
after receiving some keyword kw from A.

̂Game 1: This game is identical to ̂Game 0, except changing the calcula-
tion method of Trap∗ in the Challenge query. To be more specific, C selects
HashR

$← OSHashR
randomly (OSHashR

is the output space of HashR) instead
of calculating HashR ← SPHF.Hash(hR,mpk, (ctPKE,S ,mPKE)). For A, ̂Game 1
and ̂Game 0 are statistically indistinguishable due to the fact that the out-
put of HashR satisfies pseudo-randomness. Hence, we acquire: |Adv

̂Game 1
A (λ) −

Adv
̂Game 0

A (λ)| ≤ negl(λ).
̂Game 2: This game is identical to ̂Game 1, except changing one more time of

the calculation method for Trap∗ in the Challenge query. In detail, A sends
kw∗

0 and kw∗
1 to C, C then selects a bit b ∈ {0, 1} and samples kw′

R
$← KSPEKS

randomly, instead of calculating kw′
R ← H2(kw′

b,HashR ⊕ ProjHashR). In
this way, the output of H2(kw′

b,HashR ⊕ ProjHashR) is random since HashR

is randomly selected and H2 is a random oracle. Accordingly, in A’s view,
̂Game 2 and ̂Game 1 are statistically indistinguishable. Thus, we can say:

|Adv
̂Game 2

A (λ) − Adv
̂Game 1

A (λ)| ≤ negl(λ).
̂Game 3: Till now, the keyword is generated by kw′

R
$← KSPEKS at ran-

dom, the challenge trapdoor Trap∗ = (Trap1
∗,Trap2

∗) is generated from
Trapdoor(pp, pkS , pkR, skR(t), kw′). Therefore, Trap∗ does not divulge any infor-
mation regarding to the challenge keywords (kw∗

0 , kw∗
1). As for A, the only

way to acquire the keyword is by guessing absolutely. Consequently, we obtain:
|Adv

̂Game 3
A (λ)| = 0.

Corollary 1. The proposed FS-PAEKS scheme satisfies MCI under IND-
Multi-CKA if it satisfies CI under IND-CKA and the PEKS.PEKS algorithm in
our FS-PAEKS algorithm is probabilistic.

Post-Quantum Public-Key Authenticated Searchable Encryption 289

Analysis. Our FS-PAEKS algorithm involves PEKS.PEKS algorithm. To the
best of our knowledge, the existing PEKS.PEKS algorithm satisfies probabilistic
[1,24]. Thus, our FS-PAEKS scheme is also probabilistic. In addition, we have
proved that our scheme satisfies CI under IND-CKA. Consequently, the proposed
FS-PAEKS scheme satisfies MCI under IND-Multi-CKA.

6 Lattice-Based Instantiation of FS-PAEKS

In this section, we construct the first post-quantum PAEKS with forward secu-
rity instantiation based on the lattice hardness, namely FS-PAEKS, including
seven algorithms.

– Setup(λ, d): Given a security parameter λ, the depth d of a binary tree, sys-
tem parameters q, n,m, σ1, σ2, α, σ3, T , where q is a prime, σ1, σ2 and σ3

are preimage sample parameters, α is a gaussian distribution parameter and
T = 2d is the total number of time periods, this algorithm executes the fol-
lowing operations.

• Calls κ, ρ, � ← poly(n) and selects m = m1m2 · · · mκ
$← {0, 1}κ randomly.

• Selects matrices A
(0)
1 , A

(1)
1 , A

(0)
2 , A

(1)
2 , · · · , A

(0)
d , A

(1)
d ∈ Z

n×m
q .

• Calls TrapGen(n,m, q) algorithm to generate a matrix A0 and the basis
TA0 of Λ⊥(A0).

• Sets A0 as a public key of PKE and TA0 as a secret key of PKE.

• Selects an element u
$← U randomly as the label of PKE.

• Selects three Hash functions

H1 : Z

n×m ×{0, 1}κ ×U → Z

n×m
q ;H2 : {1, −1}� ×{0, 1}κ → {1, −1}�

;H3 : {1, −1}� → Z

n
q .

• Selects an Injective function H4 : R → Z
n×n
q .

• Calculates the master public key of PKE: A ← H1(TA0 ,m, u) ∈ Z
n×m
q .

• Ultimately, this algorithm returns a public parameter as pp := (λ, q, n,

m, σ1, σ2, σ3, κ, ρ, �,TA0 , A
(0)
1 , A

(1)
1 , A

(0)
2 , A

(1)
2 , · · · , A

(0)
d , A

(1)
d ,A,m, u,H1,

H2,H3,H4).
– KeyGenS(pp): Taking a public parameter pp as input, this algorithm will exe-

cute the following steps to generate the public key and secret key of the
sender.

• Sets gadget matrix G := In ⊗ g�, g� = [1, 2, · · · , 2k], k = �logq� − 1.

• Defines and calculates Alabel = A+
[

0
GH4(u)

]
= A+

[
0

(In ⊗ g�)H4(u)

]
.

• Selects a matrix hS
$← Dm

Z,s at random, and calculates the matrix pS =
Alabel · hS ∈ Z

n
q .

• For i = 1, 2, · · · , κ, selects vectors si
$← Zq and vectors eS,i

$← Dm
Z,t

randomly s.t. ‖eS,i‖ ≤ 2t
√

m and then calculates cS,i = A�
label · si + eS,i +

mi[0, 0, · · · , 0, � q
2�]� mod q.

290 S. Xu et al.

• Outputs pkS := (pS , {cS,1}, {cS,2}, · · · , {cS,κ}) and skS :=
(hS , {s1}, {s2}, · · · , {sκ})as a public key and a secret key of a sender,
respectively.

– KeyGenR(pp): Taking a public parameter pp as input, it executes the following
steps to compute the initial public key and initial secret key for a receiver.

• Calls TrapGen(n,m, q) algorithm to generate a matrix MR and the basis
SR of Λ⊥(MR).

• For i = 1, 2, · · · , �, selects matrices MR,i
$← Z

n×m
q randomly.

• Selects a matrix CR
$← Z

n×m
q and a vector rR

$← Z
n
q at random.

• Sets gadget matrix G := In ⊗ g�, g� = [1, 2, · · · , 2k], k = �logq� − 1.

• Defines and calculates Alabel = A+
[

0
GH4(u)

]
= A+

[
0

(In ⊗ g�)H4(u)

]
.

• Selects a matrix hR
$← Dm

Z,s at random, and calculates the matrix pR =
Alabel · hR ∈ Z

n
q .

• For i = 1, 2, · · · , κ, selects vectors ri
$← Zq and vectors eR,i

$← Dm
Z,t

randomly s.t. ‖eR,i‖ ≤ 2t
√

m and then calculates cR,i = A�
label · ri +

eR,i + mi[0, 0, · · · , 0, � q
2�]� mod q.

• Outputs pkR := (pR, {cR,1}, {cR,2}, · · · , {cR,κ},MR,MR,1,MR,2, · · · ,
MR,�,CR, rR) and skR := (hR, {r1}, {r2}, · · · , {rκ}) as the initial (root
node) public key and secret key of the receiver, respectively.

– KeyUpdate(pp, pkR, skR, t, d): Given a public parameter pp, time t, initial pub-
lic key pkR, and initial secret key skR, this algorithm processes the following
steps.

• Defines t := (t1t2 · · · ti), where t means the binary representation of time
and i ∈ [1, d], ti ∈ {0, 1}, d is the depth of the binary tree.

• Defines Θ(i) := (θ1, θ2, · · · , θi) ∈ node(t), where i ∈ [1, d], θi ∈ {0, 1} as
the path from the root to the current node.

• Defines FΘ(i) := [MR ‖ A
(θ1)
1 ‖ A

(θ2)
2 ‖ · · · ‖ A

(θi)
i] as the corresponding

matrix of Θ(i). For example, F0100 = [MR ‖ A0
1 ‖ A1

2 ‖ A0
3 ‖ A0

4], F101 =
[MR ‖ A1

1 ‖ A0
2 ‖ A1

3].
• For any j < i, where j, i ∈ [1, d], given the trapdoor SΘ(j) on

time j, calls ExtBasis(FΘ(i) ,SΘ(j)) to generate SΘ(i) , where Θ(i) :=
(θ1, θ2, · · · , θj , θj+1, · · · , θi). Thus, the updated trapdoor can be calcu-
lated by its any ancestor’s trapdoor.

• Define skR(t) := (hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)), where Θ(i) ∈
node(t) as the receiver’s secret key on time t. Each node has the cor-
responding secret key in a binary tree.

• Receiver updates skR(t) to skR(t + 1) through calculating skR(t + 1) :=
(hR, {rR,1}, {rR,2}, · · · , {rR,κ},SΘ(i)), where Θ(i) ∈ node(t+1). We show
an example here, supposing that receiver updates skR(1010) to skR(1011).
Given skR(1010) = (hR, {rR,1}, {rR,2}, · · · , {rR,κ},S101,S11), the
updated secret key is skR(1011) = (hR, {rR,1}, {rR,2}, · · · , {rR,κ},
S1011,S11).

Post-Quantum Public-Key Authenticated Searchable Encryption 291

– FS-PAEKS(pp, pkS , skS , pkR, kw, t, d): Given a public parameter pp, the
sender’s public key and secret key pkS , skS , the receiver’s public key pkR,
a keyword kw ∈ {1,−1}�, the time period t, and the depth of the binary tree
d, this algorithm executes the following procedures.

• For i = 1, 2, · · · , κ, calculates

hS,i ←
2(c�
R,i · hS(modq))

q
�, pS,i ←
2(s�

i · pR(modq))
q

�.

• Defines yS,i = hS,i · pS,i, and yS = yS,1yS,2 · · · yS,κ ∈ {0, 1}κ.
• Defines and calculates dkS = dkS,1dkS,2 · · · dkS,� ← H2(kw,yS) ∈

{1,−1}�.

• Defines and calculates Mdk = CR +
∑�

i=1 dkS,iMR,i.

• Calculates Fdk = [MR ‖ Mdk] = [MR ‖ CR +
∑�

i=1 dkS,iMR,i].
• Defines Ft := [MR ‖ At1

1 ‖ At2
2 ‖ · · · ‖ Atd

d].
• For j = 1, 2, · · · , ρ, processes the following operations as below:

* Selects bj
$← {0, 1} and sj

$← Z
n
q randomly;

* For i = 1, 2, · · · , �, selects Rij

$← {1,−1} (d+3)m
2 × (d+3)m

2 ;
* Defines and calculates R̄j =

∑�
i=1 dkS,iRij

∈ {−�,−� +

1, · · · , �} (d+3)m
2 × (d+3)m

2 ;

* Selects xj ← Ψα ∈ Zq and yj ← Ψ
(d+3)m

2
α ∈ Z

(d+3)m
2

q as noise vectors;

* Calculates zj ← R̄�
j yj ∈ Z

(d+3)m
2

q , and c0j
= (r�

R + H3(kw)�)sj +
xj + bj
 q

2� ∈ Zq.

* Calculates c1j
= (Fdk ‖ Ft)�sj +

[
yj

zj

]
∈ Z

(d+3)m
q .

• Outputs a forward-secure searchable ciphertext ct := ({c0j
, c1j

, bj}ρ
j=1).

– Trapdoor(pp, pkS , pkR, skR(t), kw′): After input a public parameter pp, the
public key of the sender pkS , the public key of the receiver pkR, the secret
key of the receiver skR(t) with time t and a keyword kw′ ∈ {1,−1}�, this
algorithm will process the following steps.

• For i = 1, 2, · · · , κ, calculates

hR,i ←
2(c�
S,i · hR(modq))

q
�, pR,i ←
2(s�

R,i · pS(modq))
q

�.

• Defines yR,i = hR,i · pR,i, and yR = yR,1yR,2 · · · yR,κ ∈ {0, 1}κ.
• Defines and calculates dkR = dkR,1dkR,2 · · · dkR,� ← H2(kw′,yR).
• Defines and calculates Mdk = CR +

∑�
i=1 dkR,iMR,i.

• Invokes SampleLeft(MR,Mdk,SR, rR, σ2) algorithm to generate Trap1 ∈
Z
2m
q .

• If skR(t) includes the basis SΘ(t) , this algorithm will continue the remain-
der procedures;
If skR(t) does not include the basis SΘ(t) , this algorithm will call
ExtBasis(FΘ(t) ,SΘ(i)) to generate it and then continue the remainder pro-
cedures.

292 S. Xu et al.

• Invokes SamplePre(SΘ(t) ,H3(kw′), σ3) algorithm to generate Trap2 ∈
Z
(d+1)m
q .

• Outputs Trap := (Trap1,Trap2).
– Test(pp, ct,Trap):

• For j = 1, 2, · · · , ρ, calculates vj = c0j
−

(
Trap1

Trap2

)�
c1j

.

• Checks whether it satisfies
vj −
 q
2��: If it holds, sets vj = 1; Otherwise,

sets vj = 0.
• This algorithm outputs 1 if and only if for ∀j = 1, 2, · · · , ρ, it satisfies vj =

bj , which implies the Test(pp, ct,Trap) algorithm succeeds; Otherwise, it
outputs 0, which implies the Test(pp, ct,Trap) algorithm fails.

7 Parameters and Correctness

7.1 Parameters Setting

1. m ≥ 6n log q to make TrapGen(n,m, q) algorithm process properly.
2. s ≥ ηε(Λ⊥(Alabel)) for some ε = negl(n) and t = σ1

√
m · (

√
log n) to make

KeyGenS(pp) and KeyGenR(pp) run properly.
3. σ1 = 2

√
n and q > 2

√
n

α to make the lattice reduction algorithm is correct.
4. σ2 > � · m · ω(

√
log n) to let SampleLeft(A,M,TA,u, σ) algorithm execute

properly.
5. m ≥ 2n�log q�, σ3 ≥‖ B̃ ‖ ·ω(

√
log n) to let SamplePre(A,TA,u, σ) algorithm

operate properly.
6. (d+3)m

2 is an integer to make FS-PAEKS(pp, pkS , skS , pkR, kw, t, d) algorithm
work properly.

7. q > σ1m
3
2 ω(

√
log n) to make first error term is bounded legitimately and yS =

yR.
8. α < [σ2�mω(

√
log n)]−1, q = Ω(σ2m

3
2) to make second error term is bounded

legitimately.

7.2 Correctness

Theorem 3. We initially consider the condition mentioned by Lemma 6.1 in
reference [48] and ε = negl(n) is negligible. That is, if the keywords hold
kw = kw′ and the first error term (r�

R,i · hS,i and e�
S,i · hR,i) is less than ε·q

8
with overwhelming probability, then we obtain the equality dkS = dkR.

Proof. For i = 1, 2, · · · , κ, calculates:

hS,i = � 2(r�
i · Alabel) · hS(modq)

q
+

2r�
R,i · hS(modq)

q
�

︸ ︷︷ ︸

first error term

= � 2((r�
i · Alabel) · hS(modq))

q
� = pR,i;

hR,i = � 2(s�
i · Alabel) · hR(modq)

q
+

2r�
S,i · hR(modq)

q
�

︸ ︷︷ ︸

first error term

= � 2((r�
i · Alabel) · hR(modq))

q
� = pS,i.

Post-Quantum Public-Key Authenticated Searchable Encryption 293

For i = 1, 2, · · · , κ, we have the following equalities: yS,i = hS,i · pS,i =
pR,i · pS,i = pS,i · pR,i = hR,i · pR,i = yR,i. Therefore, we can say that yS =
yR. In addition, because of kw = kw′, we obtain that dkS = H2(kw,yS) =
H2(kw′,yS) = H2(kw′,yR) = dkR.

Theorem 4. If the second error term (xj −
(
Trap1

Trap2

)�[
yj

zj

]
) has been bounded

by ((q · σ2 · � · m · α · ω(
√

log m) + O(�σ2m
3
2)) ≤ q

5), then the Test(pp, ct,Trap)
algorithm outputs 1, and bj is correct.

Proof.

vj = c0j −
(
Trap1

Trap2

)�
c1j = (r�

R +H3(kw)�)sj + xj + bj� q
2

� −
(
Trap1

Trap2

)�
c1j

= r�
Rsj + xj + bj� q

2
� +H3(kw)�sj −

(
Trap1

Trap2

)�
[(Fdk ‖ Ft)

�sj +

[
yj

zj

]
]

= r�
Rsj + xj + bj� q

2
� +H3(kw)�sj − (Trap1Fdk +Trap2Ft)sj −

(
Trap1

Trap2

)�[
yj

zj

]

= bj� q
2

� + xj −
(
Trap1

Trap2

)�[
yj

zj

]
︸ ︷︷ ︸

second error term

Therefore, as mentioned in Lemma 22 of reference [46], for j = 1, 2, · · · , ρ, if
the given keywords are absolutely identical, we can conclude that vj = bj .

8 Theoretical Comparison

We cryptanalyze and compare eight PEKS and PAEKS schemes with regards to
six security properties in Table 1. Then, we compare the computational complex-
ity and communication overhead with several post-quantum PEKS and PAEKS
primitives in Tables 2 and 3.

Table 1. Security properties comparison with other existing PEKS and PAEKS
schemes

Schemes FS CI MCI TP PQ WTA

Boneh et al. [1] × � � × × �
Huang et al. [5] × × × × × �
Behnia et al. [24] × � � × � �
Zhang et al. [49] × � � × � ×
Zhang et al. [19] � � � × � �
Liu et al. [12] × � � � � �
Emura [50] × � � � � �
Cheng et al. [35] × � � � � �
Our scheme � � � � � �
Notes. PQ: Post-quantum. WTA: Without
trusted authority.

294 S. Xu et al.

As for Table 2, the abbreviations are multiplication (TMul), hash function
(THF), SampleLeft (TSL), SamplePre(TSP), and BasisDel(TBD) algorithms. With
regard to Table 3, we analyze the communication overhead in terms of ciphertext
size and trapdoor size. d is the depth of a binary tree, � is the length of a keyword
kw, ρ, κ are related to the security parameter.

9 Potential Applications of FS-PAEKS

(1) Combining with Electronic Medical Records (EMRs). Numerous
scholars have utilized PEKS primitive for doctors (data receiver) to search
EMRs and protect the privacy of patients (data sender) [20,51,52]. However,
a malicious attacker may recover the keyword kw from the previous search
trapdoor Trap through keyword guessing attacks. Besides, if secret keys
have been compromised, sensitive medical data may be disclosed. Compared
with the existing schemes, our FS-PAEKS protocol completely avoids those
problems and provides better security.

(2) Combining with Industrial Internet of Things (IIoTs). The PAKES
protocol has been employed to safeguard the privacy of IIoTs while simulta-
neously achieving CI and TP security [37]. However, they failed to account
for the potential risks of quantum computing attacks and the likelihood of
secret key leakage during communication. Our FS-PAEKS primitive offers
enhanced security features such as quantum resistance and elimination of
secret key leakage. Besides, we realize MCI security, which addressed a pre-
viously unresolved issue of their work.

Table 2. Computational complexity comparison

Schemes Ciphertext Generation Trapdoor Generation Test Generation

Behnia et al. [24] ρ(m2 + 2nm + n + � + 1)TMul �TMul + TSL 2ρmTMul

Zhang et al. [19] THF + (ρn + nm2 + ρ)TMul + TSP
THF + nm2TMul

+TBD + TSP

THF + (�m + nm)TM

Liu et al. [12]
THF + (κ(m + n + 1)

+ρ(m2 + 2nm + n + � + 1))TMul

THF + (κ(m + n + 1)

+�)TMul + TSL

2ρmTM

Our scheme

(ρ + 1)THF + (κ(m + n + 1)

+ρ((d+3)2m2

4
+ (d + 3)nm

+2n + � + 1))TMul

2THF + (κ(m + n + 1)

+�)TMul + TSL + TSP

(d + 3)ρmTM

Table 3. Communication overhead comparison

Schemes Ciphertext Size Trapdoor Size

Behnia et al. [24] κ(|q| + 2m|q| + 1) 2m|q|
Zhang et al. [19] (� + m� + m)|q| m|q|
Liu et al. [12] ρ(|q| + 2m|q| + 1) 2m|q|
Our scheme ρ(|q| + (d + 3)m|q| + 1) (d + 3)m|q|

Post-Quantum Public-Key Authenticated Searchable Encryption 295

10 Conclusion

In this paper, we generalize the first post-quantum public-key authenticated
searchable encryption with forward security primitive, namely FS-PAEKS. The
proposed scheme addresses the challenge of secret key exposure while enjoy-
ing quantum-safe security without trusted authorities. Technically speaking, we
introduce the binary tree structure, the minimal cover set, and ExtBasis and
SamplePre algorithms to achieve the post-quantum one-way secret key evolution.
Moreover, we analyze it satisfies IND-CKA, IND-IKGA, and IND-Multi-CKA
in a quantum setting. Besides, we also elaborate on the theoretical comparisons.
Ultimately, we show two applications for FS-PAEKS to illustrate its feasibil-
ity. We hereby address an open problem of how to construct a post-quantum
FS-PAEKS scheme without random oracle models.

Acknowledgements. Xue Chen interned as a Summer Research Assistant at
HKU. This work is partially supported by HKU-SCF FinTech Academy, Shenzhen-
Hong Kong-Macao Science and Technology Plan Project (Category C Project:
SGDX20210823103537030), and Theme-based Research Scheme of RGC, Hong Kong
(T35-710/20-R).

References

1. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 30

2. Gang, X., et al.: A searchable encryption scheme based on lattice for log systems
in blockchain. Comput. Mater. Continua 72(3), 5429–5441 (2022)

3. Gang, X., et al.: PPSEB: a postquantum public-key searchable encryption scheme
on blockchain for e-healthcare scenarios. Secur. Commun. Netw. 2022, 13 (2022)

4. Byun, J.W., Rhee, H.S., Park, H.-A., Lee, D.H.: Off-line keyword guessing attacks
on recent keyword search schemes over encrypted data. In: Jonker, W., Petković,
M. (eds.) SDM 2006. LNCS, vol. 4165, pp. 75–83. Springer, Heidelberg (2006).
https://doi.org/10.1007/11844662 6

5. Huang, Q., Li, H.: An efficient public-key searchable encryption scheme secure
against inside keyword guessing attacks. Inf. Sci. 403, 1–14 (2017)

6. Baodong Qin, Yu., Chen, Q.H., Liu, X., Zheng, D.: Public-key authenticated
encryption with keyword search revisited: security model and constructions. Inf.
Sci. 516, 515–528 (2020)

7. Noroozi, M., Eslami, Z.: Public key authenticated encryption with keyword search:
revisited. IET Inf. Secur. 13(4), 336–342 (2019)

8. Qin, B., Cui, H., Zheng, X., Zheng, D.: Improved security model for public-key
authenticated encryption with keyword search. In: Huang, Q., Yu, Yu. (eds.)
ProvSec 2021. LNCS, vol. 13059, pp. 19–38. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-90402-9 2

9. Yang, L., Li, J.: Lightweight public key authenticated encryption with keyword
search against adaptively-chosen-targets adversaries for mobile devices. IEEE
Trans. Mob. Comput. 21(12), 4397–4409 (2021)

https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/11844662_6
https://doi.org/10.1007/978-3-030-90402-9_2
https://doi.org/10.1007/978-3-030-90402-9_2

296 S. Xu et al.

10. Pan, X., Li, F.: Public-key authenticated encryption with keyword search achieving
both multi-ciphertext and multi-trapdoor indistinguishability. J. Syst. Architect.
115, 102075 (2021)

11. Huang, Q., Huang, P., Li, H., Huang, J., Lin, H.: A more efficient public-key
authenticated encryption scheme with keyword search. J. Syst. Architect. 137,
102839 (2023)

12. Liu, Z.-Y., Tseng, Y.-F., Tso, R., Mambo, M., Chen, Y.-C.: Public-key authen-
ticated encryption with keyword search: cryptanalysis, enhanced security, and
quantum-resistant instantiation. In: Proceedings of the 2022 ACM on Asia Con-
ference on Computer and Communications Security, pp. 423–436 (2022)

13. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

14. Cao, Y., Shiyuan, X., Chen, X., He, Y., Jiang, S.: A forward-secure and efficient
authentication protocol through lattice-based group signature in vanets scenarios.
Comput. Netw. 214, 109149 (2022)

15. Chen, X., Xu, S., He, Y., Cui, Y., He, J., Gao, S.: LFS-AS: lightweight forward
secure aggregate signature for e-health scenarios. In: ICC 2022-IEEE International
Conference on Communications, pp. 1239–1244. IEEE (2022)

16. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
J. Cryptol. 20, 265–294 (2007)

17. Chen, X., Shiyuan, X., Cao, Y., He, Y., Xiao, K.: AQRS: anti-quantum ring sig-
nature scheme for secure epidemic control with blockchain. Comput. Netw. 224,
109595 (2023)

18. Xu, S., Chen, X., Kong, W., Cao, Y., He, Y., Xiao, K.: An efficient blockchain-
based privacy-preserving authentication scheme in VANET. In: 2023 IEEE 97th
Vehicular Technology Conference (VTC2023-Spring), pp. 1–6. IEEE (2023)

19. Zhang, X., Chunxiang, X., Wang, H., Zhang, Y., Wang, S.: FS-PEKS: lattice-
based forward secure public-key encryption with keyword search for cloud-assisted
industrial Internet of Things. IEEE Trans. Dependable Secure Comput. 18(3),
1019–1032 (2021)

20. Zhe, J., Kai, Z., Liangliang, W., Jianting, N.: Forward secure public-key authen-
ticated encryption with conjunctive keyword search. Comput. J. 66, 2265–2278
(2022)

21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

22. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE (1994)

23. Liu, Z.-Y., Tseng, Y.-F., Tso, R., Mambo, M., Chen, Y.-C.: Public-key authen-
ticated encryption with keyword search: a generic construction and its quantum-
resistant instantiation. Comput. J. 65(10), 2828–2844 (2022)

24. Behnia, R., Ozmen, M.O., Yavuz, A.A.: Lattice-based public key searchable encryp-
tion from experimental perspectives. IEEE Trans. Depend. Secure Comput. 17(6),
1269–1282 (2020)

25. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25, 601–639 (2012)

26. Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46035-7 4

https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/3-540-46035-7_4

Post-Quantum Public-Key Authenticated Searchable Encryption 297

27. Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based
authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009.
LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10366-7 37

28. Canetti, R., Dachman-Soled, D., Vaikuntanathan, V., Wee, H.: Efficient password
authenticated key exchange via oblivious transfer. In: Fischlin, M., Buchmann, J.,
Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 449–466. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30057-8 27

29. Abdalla, M., Benhamouda, F., MacKenzie, P.: Security of the j-pake password-
authenticated key exchange protocol. In: 2015 IEEE Symposium on Security and
Privacy, pp. 571–587. IEEE (2015)

30. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EURO-
CRYPT 2018. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-78372-7 15

31. Erwig, A., Hesse, J., Orlt, M., Riahi, S.: Fuzzy asymmetric password-authenticated
key exchange. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol.
12492, pp. 761–784. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
64834-3 26

32. Abdalla, M., Eisenhofer, T., Kiltz, E., Kunzweiler, S., Riepel, D.: Password-
authenticated key exchange from group actions. In: Dodis, Y., Shrimpton, T. (eds.)
Advances in Cryptology-CRYPTO 2022: 42nd Annual International Cryptology
Conference, CRYPTO 2022, Santa Barbara, CA, USA, 15–18 August 2022, Pro-
ceedings, Part II, pp. 699–728. Springer, Cham (2022). https://doi.org/10.1007/
978-3-031-15979-4 24

33. Katz, J., Vaikuntanathan, V.: Round-optimal password-based authenticated key
exchange. J. Cryptol. 26, 714–743 (2013)

34. Zhang, R., Imai, H.: Generic combination of public key encryption with keyword
search and public key encryption. In: Bao, F., Ling, S., Okamoto, T., Wang, H.,
Xing, C. (eds.) CANS 2007. LNCS, vol. 4856, pp. 159–174. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-76969-9 11

35. Cheng, L., Meng, F.: Public key authenticated encryption with keyword search
from LWE. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) Computer
Security – ESORICS 2022. ESORICS 2022. Lecture Notes in Computer Science,
vol. 13554, pp. 303–324. Springer, 2022. https://doi.org/10.1007/978-3-031-17140-
6 15

36. Yao, L., et al.: Scalable CCA-secure public-key authenticated encryption with key-
word search from ideal lattices in cloud computing. Inf. Sci. 624, 777–795 (2023)

37. Pu, L., Lin, C., Chen, B., He, D.: User-friendly public-key authenticated encryption
with keyword search for industrial internet of things. IEEE Internet of Things J.
10, 13544–13555 (2023)

38. Zeng, M., Qian, H., Chen, J., Zhang, K.: Forward secure public key encryption
with keyword search for outsourced cloud storage. IEEE Trans. Cloud Comput.
10(1), 426–438 (2019)

39. Yang, X., Chen, X., Huang, J., Li, H., Huang, Q.: FS-IBEKS: forward secure
identity-based encryption with keyword search from lattice. Comput. Stand. Inter-
faces 86, 103732 (2023)

40. Abdalla, M., Benhamouda, F., Pointcheval, D.: Public-key encryption indistin-
guishable under plaintext-checkable attacks. IET Inf. Secur. 10(6), 288–303 (2016)

https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-642-30057-8_27
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-319-78372-7_15
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-030-64834-3_26
https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-031-15979-4_24
https://doi.org/10.1007/978-3-540-76969-9_11
https://doi.org/10.1007/978-3-031-17140-6_15
https://doi.org/10.1007/978-3-031-17140-6_15

298 S. Xu et al.

41. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108
(1996)

42. Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 5

43. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and
shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol.
6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14623-7 6

44. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

45. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, pp. 197–206 (2008)

46. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

47. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable
public-key encryption scheme with a designated tester. J. Syst. Software 83(5),
763–771 (2010)

48. Li, Z., Wang, D.: Achieving one-round password-based authenticated key exchange
over lattices. IEEE Trans. Serv. Comput. 15(1), 308–321 (2019)

49. Zhang, X., Tang, Y., Wang, H., Chunxiang, X., Miao, Y., Cheng, H.: Lattice-based
proxy-oriented identity-based encryption with keyword search for cloud storage.
Inf. Sci. 494, 193–207 (2019)

50. Emura, K.: Generic construction of public-key authenticated encryption with key-
word search revisited: stronger security and efficient construction. In: Proceedings
of the 9th ACM on ASIA Public-Key Cryptography Workshop, pp. 39–49 (2022)

51. Xu, G., et al.: AAQ-PEKS: an attribute-based anti-quantum public-key encryption
scheme with keyword search for e-healthcare scenarios. Cryptology ePrint Archive
(2023)

52. Li, H., Huang, Q., Huang, J., Susilo, W.: Public-key authenticated encryption with
keyword search supporting constant trapdoor generation and fast search. IEEE
Trans. Inf. Forensics Secur. 18, 396–410 (2022)

https://doi.org/10.1007/978-3-642-14623-7_5
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-13190-5_28

	Post-Quantum Public-Key Authenticated Searchable Encryption with Forward Security: General Construction, and Applications
	1 Introduction
	1.1 Motivation
	1.2 Our Contributions
	1.3 Overview of Technique
	1.4 Related Works
	1.5 Outline

	2 Preliminaries
	2.1 Public-Key Encryption with Keyword Search Scheme
	2.2 Labelled Public-Key Encryption Scheme
	2.3 Basic Knowledge of Lattice and Trapdoors

	3 Syntax and Security Models of FS-PAEKS
	3.1 Syntax of FS-PAEKS Scheme
	3.2 Security Models

	4 Our Proposed Construction
	5 Security Analysis
	6 Lattice-Based Instantiation of FS-PAEKS
	7 Parameters and Correctness
	7.1 Parameters Setting
	7.2 Correctness

	8 Theoretical Comparison
	9 Potential Applications of FS-PAEKS
	10 Conclusion
	References

