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Abstract. The estimation of the computational complexity of hard
problems is essential for determining secure parameters for cryptographic
systems. To date, those estimations are often performed in an ad-hoc
manner. This led to a scattered landscape of available estimation scripts,
with multiple scripts for the same problem with varying outputs. Overall,
this complicates the task of reaching consensus on the hardness of crypto-
graphic problems. Furthermore, for designers it makes it difficult to gather
precise information on the concrete difficulty of the underlying problems.
Especially in the light of the still ongoing NIST PQC standardization
effort and the upcoming call for post-quantum secure digital signature
schemes there is a pressing need for a reliable point of access for concrete
security estimates.
In this work we present the first open-source software li-
brary entirely dedicated to cryptographic hardness estimation, the
CryptographicEstimators library. In contrast to most previous estima-
tors, this library follows a modern object-oriented software architecture,
which provides a wide variety of features. Overall the design is optimized
to ease extending existing estimators by new algorithms and makes it
simple to integrate completely new estimators.
In this work we further specify the algorithmic cost model underlying
the estimators. In order to provide a starting point for the project, we
gathered and integrated estimators for six different hardness assumptions,
including the syndrome decoding problem, the multivariate quadratic
problem, the code equivalence problem, the permuted kernel problem
and different flavors thereof. In our effort of gathering those estimation
scripts, we also normalized those estimates to fit into the cost model and
to measure the same unit operations.

Keywords: computational hardness · parameter selection · hardness assump-
tions · open source software · estimators

1 Introduction

Due to the shift from classical security towards post-quantum secure systems
in recent years, there is a wide diversity among used hardness assumptions for
cryptographic primitives. Especially, the NIST PQC effort for standardization of
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post-quantum secure cryptographic schemes has led to an unprecedented range of
security foundations being taken into consideration. Further, the variety of this
list is expected to grow with the upcoming NIST PQC call for digital signatures.

In order to select suitable parameters that guarantee certain levels of security,
all these schemes require an estimation of the computational complexity to solve
the underlying hard problem. Therefore, cryptographic hardness estimators are
essential for designing secure cryptographic systems by providing this concrete
measure of computational complexity. Over the last years, many successful
estimator projects have been established for different problems, such as the
learning with errors (LWE) estimator [1] (now evolved into the lattice estimator1)
or the syndrome decoding (SD) estimator [34]. Those are examples of two of the
most sophisticated and developed estimator projects, and yet they are mostly
collections of routines implementing algorithm’s complexity formulas. A fact that
adds a burden to maintaining and collaboratively advancing these estimators.
The recently designed multivariate quadratic (MQ) estimator [11] does a first
step towards following modern software-design principles by being based on an
object-oriented design.

The reason for not following a well-designed software architecture is that
most of these estimators are ad-hoc projects. They serve as a proof of concept
for a corresponding publication, rather than being designed as a collaboratively
maintained project. There exist many more estimators of smaller scale and
for many problems there exist multiple different estimation scripts, producing
more or less varying hardness estimates. This scattered project landscape and
dependencies between estimators make it challenging for designers to gather
information on the true complexity and to reach a consensus on the computational
hardness of a problem. An issue that can lead to incorrect or incomplete hardness
estimates and in turn insecure systems.

The only estimator, which has found adaptation as a collaborative community
project so far is the LWE estimator. An estimator project that has shown which
impact such an adaptation can have on the understanding and the consensus-
building of the computational hardness of a problem.

In this work, we introduce the first open-source library dedicated entirely
to cryptographic hardness estimation, the CryptographicEstimators library.
Inspired by the recent MQ estimator, the CryptographicEstimators library
follows a modern object-oriented class design that makes it easy to extend existing
estimators or to integrate new ones.

The main goal of this library is to consolidate existing estimators, become
established as a collaborative community project and, hence, be the basis for
newly designed estimators. We provide a platform for professional exchange and
the technical tools for collaboratively advancing the estimators. This ultimately
contributes to the overall goal of reaching a consensus as community on the indi-
vidual hardness of each problem. Additionally, to foster its widespread adoption

1 Available at https://github.com/malb/lattice-estimator
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by designers, we provide a full graphical user interface that allows access to the
estimators via a web application.2

In order to provide a starting point and an initial codebase for the project,
we gathered and integrated a total of six existing, previously mostly scattered,
estimators into the CryptographicEstimators library.

Our contribution The main technical contribution of this work is the accom-
panying open-source CryptographicEstimators library, available on GitHub3.
The main objective of the manuscript is to set the necessary basis to establish the
CryptographicEstimators library as collaborative project. Therefore, we give a
definition of the algorithmic cost model and the estimation methodology that the
included estimators follow. Further, we describe the general software architecture
of the library and its functionalities on a high level. Eventually, we give an
overview of the included estimators, such as a definition of the corresponding
hardness assumptions and the algorithms covered. Note that this work is not
intended as a guide for users4 or a technical whitepaper, which will be released
separately in short time.

The main contributions of the CryptographicEstimators library can be
summarized as follows.

Accessibility. The CryptographicEstimators library provides an essential tool
for cryptographic system design. They serve as a single point of access for
designers to obtain reliable estimates on the hardness of chosen parameters. For
an even wider adaptation, a fully automated graphical user interface, accessible
via a web application, is provided.

Dependencies. Dependencies between the hardness of problems can be modelled
ideally in the CryptographicEstimators library. Already in the initial state,
some included estimators use other estimators to obtain computational estimates
for certain subroutines.

Consensus. Even if not all estimators’ initial states should reflect the consensus
of the whole community, the collaborative nature of the project provides an ideal
platform for consensus-building. Furthermore, the CryptographicEstimators
library encourages open discussions and welcomes contributions from the wider
community, which leads to further refined estimates and improved reliability.

Collaboration. The CryptographicEstimators library is the first project
launched intentionally as a collaborative estimator project. The impact that
such a community driven project can have on the understanding of the hardness
of a computational problem is witnessed by the LWE (now lattice) estimator.
2 Web application accessible at https://estimators.crypto.tii.ae
3 Library source code accessible at https://github.com/Crypto-TII/

CryptographicEstimators
4 User guide accessible at https://github.com/Crypto-TII/

CryptographicEstimators/blob/develop/User_Guide.ipynb
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Software Design. The library is build according to modern software-design
principles. It follows a sophisticated object-oriented architecture and is fully
modular. All basic functionalities are provided by the base (or parent) classes
making the integration of new estimators and the extension of existing ones
especially simple.

As a second main contribution we consolidate and integrate esti-
mators for six different cryptographic hardness assumptions into the
CryptographicEstimators library. This includes estimators for the multivariate
quadratic (MQ) problem [11], the linear equivalence (LE) problem [7,15], the per-
mutation equivalence (PE) problem [15], the permuted kernel (PK) problem [56],
the binary syndrome decoding (SD) problem [34, 36] and the syndrome decoding
problem over larger fields [15,52]. We selected these problems, as many recent
constructions base their security on exactly those problems [6, 16–18,20,40]. In
particular, those are all signature constructions of which some are likely to be
submitted to the upcoming NIST call for post-quantum secure digital signature
schemes. Therefore, the CryptographicEstimators library comes timely in sup-
porting the secure parameter selection process of this standardisation effort. In
case of multiple available estimation scripts for the same algorithm, we integrated
the one that found the larger adoption throughout the community.

In this context we normalize all complexity estimations to the same unit oper-
ations to make the estimations of different algorithms comparable. This, together
with slight corrections and performance improvements we integrate, requires a
few adaptations to the existing estimation scripts. We document all these changes
and additionally provide test scripts in the CryptographicEstimators library
that show how to perform the conversion to obtain the exact numbers from the
online available scripts, up to a negligible tolerance.

In total, the initial library contains six different estimators which together
provide computational estimates for the time and memory complexity of thirty-
two different algorithms.

Outline In Section 2 we describe the algorithmic cost model and the methodology
for measuring time and memory complexity used by all integrated estimators,
including a discussion about memory access costs. In Section 3 we outline the
technical design architecture of the CryptographicEstimators library, which
includes an overview of the class design as well as the main features provided by
the library. Finally, in Section 4 we discuss the different hardness assumptions
currently covered by the CryptographicEstimators library, including a short
overview of included algorithms and necessary problem specific characteristics.

2 Cryptographic Hardness Estimation

The estimation of the hardness of a given cryptographic problem requires to
estimate the time and memory complexity of different algorithms. In the context
of the CryptographicEstimators library, all estimations are performed in the

4



Random Access Machine (RAM) model of computation, which is the established
model for cryptographic hardness estimation. The reasons for this widespread
adaptation are diverse, but main factors making the model attractive are its
simplicity and its flexibility. It allows to directly map human readable descriptions
of algorithmic procedures into a cost model and is independent of precise hardware
implementations.

Further, the model omits the cost of memory access. In particular, the RAM
model assigns only a single unit of time complexity to any memory access. While
this makes the model even simpler to use, it is not accurately modeling real-world
behavior. In practice, memory access, especially if memory usage is high, can
be quite costly. We therefore discuss in Section 2.3 how to account for memory
access costs in the RAM model. But first we specify more precisely how the time
and memory complexity for each algorithm are computed.

2.1 Measuring Time and Memory Complexities

For every specific problem P, we define an elementary operation op and a basic
element el, as a common unit to measure the time complexity and memory
complexity among all algorithms solving P. For example, in the particular case
of the MQ problem over the finite field Fq (see Definition 4.2), the operation op
is defined as the multiplication of two elements in Fq, and the object el is one
element in Fq.

Given an instance of P and an algorithm X solving it, we define the time
complexity of X as the number of times the elementary operation op (or an
equivalent one5) has to be executed by X to solve the input instance. The memory
complexity is given by the maximum number of elements el that has to be stored
at the same time during the execution of X .

Adhering to this standard methodology ensures comparability of all algorithms
solving P. In order to allow for comparison of the hardness among different
problems, each problem P defines how to translate a basic operation op into bit
operations, i.e., how many bit operations correspond to one op operation, and
how many bits are needed to store one basic element el.

2.2 Accuracy of the Complexity Estimate

In order to make the complexity estimations of different algorithms solving a
specific problem or more generally the hardness estimations of different problems
comparable, we specify to which degree of accuracy executed operations are
counted towards the estimate.

Generally, we differentiate two modes of estimation accuracy, which we label
Estimate and TildeO . Estimations obtained in the TildeO mode are based on an
asymptotic approximation of the running time that might disregard polyloga-
rithmic factors in the main term. Precisely, if the running time can be expressed
asymptotically as Õ (T (n)), n being the problem dimension, then the output
5 For example, in RAM model a memory access forms an equivalent operation.
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value is simply obtained by plugging in the concrete dimension n into T (n). We
integrate this mode for further investigation and comparison purposes, but the
standard mode of operation is the Estimate mode.

The Estimate mode is defined to provide the most precise cost estimate,
according to the current state-of the-art. Therefore all constant and polynomial
factors necessary to solve the problem have to be taken into account. If not
specified otherwise, we refer with estimates always to the Estimate mode.

2.3 Modelling Memory Access Costs

The RAM model can be easily adapted to account for memory access costs.
Instead of counting only one unit of time complexity per memory access we
define a memory access cost c. Therefore one memory access is equivalent to c
executions of op. Practice has shown, that the value of c = f(M) is usually a
function in the total memory consumption M that grows in M . This means if
only a small amount of memory is consumed by the algorithm, individual accesses
are cheap, otherwise they are more costly. A behavior that is related to physical
distances traveled depending on the memory size.

This introduces additional dependencies between the time complexity T and
the memory complexity M of an algorithm that complicates the optimization
of its running time. Therefore, usually, an upper bound on the time complexity
including the memory access cost is obtained by assuming the worst case of
T memory accesses all performed on a memory of size M , leading to a total
algorithmic cost of TM = T · f(M). However, usually the memory accesses are
only a fraction of the whole time complexity and not all of them are performed on
a memory of size M . In order to compensate for this overestimation, the function
f is sometimes chosen to underestimate the real-world behavior of memory access
costs.

Generally, using this methodology for including memory access costs in the
algorithmic cost model should be customized for each problem or more precisely
each algorithm. It depends heavily on the ratio between the time complexity
and the performed memory accesses, as well as on the memory usage over time,
which function f leads to the most accurate estimates.

3 Technical Design and Functionalities of the Library

In contrast to previous ad-hoc estimator projects, the CryptographicEstimators
library follows a pre-designed software architecture, which is designed to provide
a base infrastructure for the hardness estimation of computational problems. In
this framework, main functionalities and common attributes are provided by
default to newly added estimators and algorithms. This design makes it especially
easy to maintain and extend existing estimators as well as integrate new ones at
minimal overhead. In this section we describe the main technical design, i.e., the
class architecture, as well as the main features the library offers to users as well
as to contributors on a high level. This section does not aim at a full technical
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description of how features are realized, but outlines the general concept of the
estimation framework.

3.1 Base Classes

The main design of the CryptographicEstimators library splits into three
general base classes: The problem, the algorithm and the estimator classes. An
overview of this structure is given in Figure 1. The base classes are abstract, which
means they just provide a blueprint in form of basic attributes and functionalities.
Each specific problem, estimator or algorithm is then implemented inheriting
from the corresponding base class. Meaning it automatically follows the given
blueprints by including all its functionalities and attributes by default.

The main principal of the design is that each algorithm as well as each
estimator holds an object of the problem they are estimating. In addition the
estimator holds an object of each algorithm that is applicable to the corresponding
problem instance. Once called, the estimator can then gather the information
on the complexity estimation based on the problem and algorithm objects it
contains.

Base problem class. The base problem class contains the common attributes and
methods amongst all cryptographic problems, such as a list of problem parameters
and an amount of existing solutions. Classes for specific problems like the SD
problem (see Definition 4.1) or the MQ problem (see Definition 4.2) are inherited
from the base problem class. Those classes then implement all problem specific
attributes and functionalities. Problem objects are used to describe concrete
problem instances. Additionally the base problem class defines abstract functions
to convert elementary operations as well as the memory unit to bit complexities,
which then have to be implemented by every specific problem class. Further,
the base class defines a memory bound parameter, which defines the maximum
amount of memory, in the unit measured or in bits, available when solving the
problem.

Base algorithm class. Each algorithm solving a specific problem is inheriting
from the base algorithm class. The base algorithm class implements abstract
methods to compute the time and memory complexities of an algorithm. Again,
the concrete instantiations of those functions must be provided by each concrete
algorithm. Further, the base class implements the functionality of automatically
searching for an optimal parameter set of the algorithm that minimizes the time
complexity, while ensuring all given constraints. We refer to this parameter set as
the optimal parameters. If the time or memory complexity is requested it triggers
the search for these optimal parameters and then returns the time and memory
complexities for those optimal parameters. There are various additional attributes
and functionalities provided by the algorithm base class. This includes a way
to specify optimization parameters considered by the automatic optimization
routine, accessing the optimal parameters, triggering their search, resetting the
configuration and specifying optimization ranges.
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Base estimator class. An estimator of a problem P is mainly (1) A set of
algorithm objects for solving P, and (2) a set of functionalities to facilitate the
manipulation, configuration and visualization of all included algorithms and
their estimations. Again, for each problem, an estimator is created using the
same blueprint as the base estimator, i.e. by inheriting from the same base class.
However, in contrast to the specific problem or algorithm classes, no further
routine needs to be implemented. The existence of this problem specific estimator
class is more a technical necessity.

Fig. 1: UML diagram of CryptographicEstimators class design

3.2 Features of the Library

In the following, we highlight some of the main features the
CryptographicEstimators library provides to users and to contributors.

Usage Features of the Estimators Let us start with features concerning the
usage of the library.

General functionalities of the estimator. When an estimator object is created
over an instance of a problem P, it automatically builds the algorithm objects
of all algorithms applicable for the concrete problem instance P. The estimator
provides individual access to these algorithms and the possibility to configure
them. In addition, the estimator allows to set a configuration to all algorithms
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simultaneously. Once estimates are computed, i.e., the optimization of the running
time of applicable algorithms have been performed, they are stored within the
objects for further investigation. Therefore, if requested again, the estimates
do not have to be recomputed. However, on demand, a recomputation can be
triggered. The estimator provides functionalities to visualize and compare the
computed estimates. It implements features for selective access, as retrieving the
fastest algorithm for solving P or its time complexity. Additionally, it allows
access to all internal states of the algorithms after their optimization for further
investigation.

Customization of the Estimation. The estimator class provides several customiza-
tion features that affect how estimates are calculated.

– Restricting algorithm parameters: There are several means to customize the
parameter optimization of an algorithm. It is possible to set custom ranges
for all or certain parameters considered in the running time minimization.
Parameters can also be fixed to certain values. Besides allowing to explore
the algorithm’s complexity under certain parameter constraints, this feature
can also accelerate the optimization process.

– Excluding algorithms: Algorithms can also be completely excluded from the
estimation, which can further accelerate computations.

– Specifying memory access cost: The estimation can be performed under the
consideration of memory access cost. Therefore, an individual memory access
cost function (see Section 2.3) can be provided or one of the preset models
can be chosen.6 Finally, the memory access cost is not only added to the
final result, but taken into account while optimizing the parameters for
time-complexity minimization.

– Choosing bit complexities: Following the description from Section 2.1, the
estimates can be provided in terms of the elementary operations specified for
the problem or their translation to the corresponding amount of bit operations.
In case bit complexities are selected, memory is analogously provided in bits
of memory rather than unit elements. The standard output of the estimator
is always using bit complexities.

– Limiting the memory complexity: The estimator allows to provide a memory
upper bound in bits or unit elements. This memory upper bound is then
strictly enforced in the parameter optimization.

– Setting the complexity type: The estimator can be configured to either use
the Estimate or the TildeO type for estimation accuracy (see Section 2.2). If
not specified, the default mode of operation is Estimate .

– Including quantum complexity: The estimator allows to include quantum
estimations in the output. So far, none of the integrated algorithms provides
a function to estimate its quantum complexity. However, the feature is
available for easy extension.

6 The preset models include square-root, cube-root or logarithmic memory access
cost functions.
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Graphical user interface The CryptographicEstimators library provides a fully
graphical user interface accessible via a web application. In this application, a
user can estimate the hardness of any cryptographic problem available in the
CryptographicEstimators library and download the results as a LATEX table.
In addition, to ease reproducibility of estimates it allows to export and import
the configuration used to obtain a specific estimation.

Development Features of the Estimators. Besides following a modular
software architecture, the CryptographicEstimators library provides various
additional features that ease extension and maintenance of included estimators
as well as the integration of new ones.

Adding new algorithms. The base classes of the library provide the functionality of
automatic parameter management and optimization. Therefore a new algorithm
can be included by only specifying the names and ranges of its optimization
parameters and a corresponding time and memory complexity function depending
on those parameters. The minimization of the running time is then automatically
performed in the given ranges considering all given constraints, such as a memory
limit. The base classes keep track of found parameters by default. After providing
those basic functions the algorithm is automatically included in future runs of
the estimator.

Integrating new estimators. The library facilitates the integration of new esti-
mators. It provides a script to generate the minimal code necessary to include
a new estimator. This generated code includes for example a concrete problem
and algorithm class with the necessary inheritance structure. After executing
the script, only the problem specific parameters need to be specified and then
algorithms can be added to this new estimator.

Extending the GUI. The GUI generation is fully automatized. Therefore for each
estimator there exist an entry in a GUI configuration file specifying which input
fields should be displayed, what kind of GUI element to assign, e.g. a text field,
and to which internal configuration parameter those inputs are mapped. From
this configuration file the GUI is then generated. Again, the library provides a
script to generate a basic entry for an new estimator in this configuration file
containing the common input fields. This entry needs then only to be extended
by the problem specific parameters.

Customizing the Optimization. In case the automatic optimization over the
given parameter ranges should not yield the desired performance, we implement
various measures to allow developers to easily speed up the optimization. This
includes specifying parameter dependencies, defining early abort criteria for
the time complexity computation or providing completely custom optimization
procedures.
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4 Covered Estimators

In this section we outline the six different estimators which together form the
initial state of the library. For each estimator we define the corresponding hardness
assumption and give a brief overview or classification of the included algorithms.
For the full details on the respective algorithms we refer the reader to the relevant
literature. Further, we detail the elementary operation and memory unit used
in the estimation and provide a profile summarizing the current state of the
estimator. Additionally, for each estimator we outline the cause of deviations
from the original scripts, if any, such as slight corrections and normalization to
the elementary operations. Note that for all estimators we include test scripts
that verify them against the original scripts, precisely detailing how to perform
the conversion.

Note that for every problem we assume the existence of at least one solution,
which is typical for the cryptographic setting.

4.1 Syndrome Decoding Problem

Most code-based schemes, so as all schemes currently in the 4th round of the
NIST standardisation process, build their computational hardness upon the
decoding of random linear codes. A linear code C is a k-dimensional sub-space
of Fn

q . One usually describes C via a parity check matrix H ∈ F(n−k)×n
q , i.e.,

C = {c ∈ Fn
2 | Hc = 0}. Further, let x = c + e be an erroneous code word with

e of small known hamming weight ω. Then s = Hx = He is defined as the
syndrome. Thus, decoding x to c is equivalent to recovering the error vector
e with weight ω from given syndrome s. More formally, we give the following
definition.

Definition 4.1 (Syndrome Decoding Problem (SDP)). Given a parity
check matrix H ∈ F(n−k)×n

q of a linear code C of length n and dimension k, a
syndrome s ∈ Fn−k

q and a target weight ω ∈ N. The Syndrome Decoding Problem
asks to find an error vector e ∈ Fn

q with He = s and wt(e) = ω.

Our library provides two estimators for the SDP, one for the specific case of the
binary field, i.e., the case of q = 2 and one for general q. We make this distinction
as there are several algorithms specifically tailored to the binary case, not directly
applicable for q > 2.

Independent of the choice of q, the currently best known strategy to tackle
general instances of the SDP is Information Set Decoding (ISD) introduced by
Prange [54] and its subsequent improvements. Let us briefly sketch this general
technique, first for the the binary case after which we outline differences to the
case of arbitrary q.

ISD via Prange. Let P ∈ Fn×n
2 be a permutation Matrix. Then HP is still a

valid problem instance with solution P−1e. Now assume that P−1e = (e1, e2) =
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(e1, 0) ∈ Fn−k
2 × Fk

2 , i.e., the whole weight of e distributes onto e1 via the permu-
tation. Then by applying Gaussian Elimination to H modelled as multiplication
with an invertible matrix Q ∈ F(n−k)×(n−k)

2 , the following equation holds

QHe = (In−kH1)(e1, e2) = e1 = Qs (1)

In other words, if the error positions are located only in the first n−k coordinates
of the error vector P−1e, we are able to identify this case, by testing if wt(Qs) =
wt(e1) = wt(e) = ω. From here, one recovers e efficiently as P(e1, 0). In order to
find a permutation distributing the weight in such a way, random permutations
are tested, where the expected amount of permutations until success is(

n
ω

)(
n−k

ω

) .

For each such permutation the algorithm computes the weight of Qs until it is
equal to ω.

Advanced ISD procedures. The dominating factor of the running time of Prange’s
algorithm is the amount of permutations needed until success. In order to decrease
this amount of permutations all modern ISD algorithms allow for some weight p
being located in the last k coordinates of P−1e, i.e., e2 ̸= 0. Therefore Equation (1)
changes to

QHe = (In−kH1)(e1, e2) = e1 + H1e2 = Qs.

The algorithms then use different strategies to enumerate e2 and report success
when they find an e2 which satisfies wt(Qs + H1e2) = wt(e1) = ω − p, returning
e = P(e1, e2). The amount of permutations needed until success now improves to(

n
ω

)(
n−k
ω−p

)(
k
p

) ,

while each iteration comes at a higher cost, now also involving the enumeration
procedure. The early variant by Lee-Brickell [47] simply iterates over all choices
for e2, while later improvements like Stern or Dumer use meet-in-the-middle
strategies [32,60].

Binary Syndrome Decoding For the binary case, most recent improvements
use for enumeration of the weight-p vector e2 a binary search-tree based approach,
i.e., a multi-level meet-in-the-middle. In order to further improve the enumeration
they combine the search-tree with the representation technique [9,49] and nearest-
neighbor search [23, 24, 33, 50]. The practical complexity of those algorithms has
been studied multiple times [2, 13,34–36,42].

Esser and Bellini give a comprehensive study of all major ISD improve-
ments, with several practical tweaks [34] and also provide an open-source es-
timator tool [10]. We integrated all algorithms from their estimator into the
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CryptographicEstimators library. Following the work of Esser-Bellini, we count
as elementary operations Fn

2 vector additions. Therefore, a conversion to bit com-
plexities (in terms of time and memory) is obtained by multiplication with n.
Further we integrated a recent memory improvement by Esser-Zweydinger [36]
as a separated algorithm, yielding a total of ten different algorithms used for esti-
mating the hardness of the binary syndrome decoding problem. In the following
we summarize the current estimator profile:

Binary Syndrome Decoding Estimator
Name SDEstimator
Parameters (n, k, w): length, dimension, weight
Elementary operation (op) Fn

2 vector addition
Memory unit (el) vector in Fn

2
Bit complexity factor time n
Bit complexity factor memory n
No. of algorithms 10
Available modes Estimate and TildeO

Table 1: Profile of the binary SDP estimator

In addition to the always available Estimate mode, the binary syndrome de-
coding estimator offers the possibility of computing estimates in the TildeO mode.
Essentially, this means it can be used to compute the asymptotic workfactors7 of
most of the included algorithms. In [34] this functionality was provided via an
accompanying C-library which complicates the library set-up. Therefore, we got
rid of this dependency by providing the functionality of this C-library via pure
python. We perform the necessary numerical optimization via the scipy python
library, following the example of [22].

Deviations from online available scripts. The estimates for the binary SDP in
CryptographicEstimators match the online available scripts from [34,36]. Only
the case of memory access costs in combination with bit complexities has slight
deviations. This is because [34] computed the memory access costs always based
on the number of unit elements el that have to be stored, while we use the number
of bits in that case.

Decoding over Fq Many recent works base their security directly or indirectly
on the hardness of the non-binary syndrome decoding problem [5, 6, 19, 40].
Therefore, the CryptographicEstimators library also includes an estimator for
the hardness of the SDP over fields Fq, where q > 2. The algorithms in those
cases are essentially adaptations of rather simple ISD algorithms from the binary
7 The running time of ISD algorithms for ω = cωn can be written as T = 2cT ·n,

where cω and cT are constants. The constant cT is usually referred to as workfactor.
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setting. Namely the most basic algorithm by Prange and the improvements made
by Lee-Brickell and Stern.

Since the change of the base field does not change the expected number
of permutations, Prange’s algorithm applies without changes. Contrary, the
complexity of enumeration based improvements like Lee-Brickell and Stern depend
on the field size and therefore change. In the case of Stern, we integrated an
existing estimator by Peters, who established the complexity of the procedure
for non-binary fields in [52]. For Lee-Brickell we integrate an estimation routine
from Beullens [15] with a small correction.

In contrast to the Syndrome Decoding Estimator over F2 we count as elemen-
tary operations additions over Fq, which follows the estimator by Peters. The
reasoning for not considering multiplications is that the field size is usually quite
small and multiplications can be implemented via lookup-tables. The estimator of
the Syndrome Decoding Problem of Fq is summarized with the following profile:

Syndrome Decoding Estimator over Fq

Name SDFqEstimator
Parameters (n, k, w, q): length, dimension, weight, field size
Elementary operation (op) Fq addition
Memory unit (el) Fq element
Bit complexity factor time log2 q
Bit complexity factor memory log2 q
No. of algorithms 3
Available modes Estimate

Table 2: Profile of the SDP estimator for non-binary fields

Deviations from online available scripts. We implement a slight correction of the
LeeBrickell script using a factor of

(
k
p

)
rather than kp in its running time. As the

optimal p is usually found as 2, this results in a one bit improved complexity
estimate. Also the normalization to Fq additions as elementary operation causes
a necessary scaling of the estimates from [15] by a factor of n.

4.2 Multivariate Quadratic Problem
Let Fq denote a finite field with q elements, and let Fq[x1, x2, . . . , xn] denote
the set of all polynomials with variables x1, x2, . . . , xn and coefficients in Fq. A
quadratic polynomial in Fq[x1, x2, . . . , xn] is a polynomial of the form∑

1≤i<j≤n

ai,jxixj +
n∑

i=1
bixi + c,

where ai,j , bi, c ∈ Fq. The MQ problem is defined as the problem of finding a
common preimage to a set of multivariate quadratic equations over a finite field.
Formally,
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Definition 4.2 (Multivariate Quadratic Problem (MQP)). Given a set
of m quadratic polynomials f1, f2, . . . , fm ∈ Fq[x1, x2, . . . , xn] and elements
b1, b2, . . . , bm ∈ Fq. The MQ problem asks to find (a1, a2, . . . , an) ∈ Fn

q such
that

f1(a1, a2, . . . , an) − b1 = · · · = fn(a1, a2, . . . , an) − bn = 0.

An instance of the MQ problem is said to be underdefined when m < n, square
when m = n, and overdefined when n < m.

We are interested in estimating the complexity of random instances of the MQ
problem, i.e., those where the fi are randomly chosen from all possible quadratic
polynomials. For random instances, the most efficient MQ algorithms can be
roughly classified as pure enumeration algorithms, e.g., fast exhaustive search [25]
and algorithms that primarily consist of algebraic operations on the input set of
polynomials, as for example the XL algorithm [28]. In the following we outline
some general strategies and classifications of those algorithms. For details on
the respective algorithms we refer the reader to the corresponding publications
or [11] for an overview.

Underdefined instances. There are algorithms that are only applicable to under-
defined instances. For instance the algorithm by Kipnis, Patarin and Goubin [45]
is effective if m << n. In addition, these instances can be efficiently transformed
into square ones by either fixing n − m variables or by applying the Thomae-Wolf
strategy [61].

Algorithms specialized for F2. Some algorithms solve the MQ problem in the
specific case that the underlying field is binary. For instance, Dinur’s algorithms
[30,31], Björklund et al.’s algorithm [21], and the Booleansolve algorithm [3].

Gröbner basis algorithm. Gröbner basis algorithms work by finding a Gröb-
ner basis, in the lexicographical monomial order, of the ideal generated by the
polynomials fi − bi. For square and overdefined problems, a solution can be
efficiently derived from such a basis. Some of these algorithms are Buchberger’s
algorithm [29], F4 [37], and F5 [38].

Hybrid algorithms. The hybrid algorithms involve an exhaustive search of some
of the coordinates of the solution vector followed by one algebraic approach such
as XL, F5, etc. Some of these algorithms are Crossbred [44], hybrid-F5 [14],
FXL [27] and BooleanSolve [3].

We integrate the estimations of a recently proposed estimator for the MQ
problem8 by Bellini, Makarim, Sanna, and Verbel [11].

Following that work, we define as elementary operation the multiplication over
Fq, while the memory complexity is measured in the number of stored elements
8 The code is accessible at https://github.com/Crypto-TII/multivariate_

quadratic_estimator
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Multivariate Quadratic Estimator
Name MQEstimator
Parameters (n, m, q): No. of variables, No. of equations, field size
Elementary operation (op) Fq multiplication
Memory unit (el) Fq element
Bit complexity factor time (log2 q)θ, where θ ≥ 0
Bit complexity factor memory log2 q
No. of algorithms 12
Available modes Estimate and TildeO

Table 3: Profile of the MQP estimator

of Fq. We assume that storing one Fq element requires log2 q bits of memory
and that one multiplication in Fq can be executed in (log2 q)θ binary operations.
Here θ ≥ 0 is an input to the estimator. A summary of the MQ module of the
CryptographicEstimators library is given in Table 3.

Deviations from online available scripts. The time estimates match those of [11]
for all reasonable parameters. We introduced some performance optimizations,
which might lead to insignificant deviations for very small input parameters.
We modified the memory estimates so that it is always at least the amount of
memory needed to store the input polynomials. This modification might lead to
deviations in the memory estimates in some corner cases.

4.3 Code Equivalence Problem

Two codes C, C′ are said to be equivalent, if there exists an isometry mapping
one code into the other. In this work, we only cover the more established code
equivalence problem in the Hamming metric, while recent works also initiated
the study of rank-metric equivalences [26,55].

This means, in our case, an isometry is a map which preserves the Hamming
weight. Commonly, there are two flavours of the problem, the linear equivalence
problem (LEP) and the permutation equivalence problem (PEP). In the case of
PEP the isometry is a permutation, while in the case of LEP it is a monomial
transformation.9

The codes are usually represented via their generator matrices G, G′ ∈ Fk×n
q .

Now, if G′ = GQ for some permutation (or monomial) matrix Q, checking if both
codes are equivalent would be trivial by comparing columns of G and G′, as they
would be (scaled) permutations of each other. Therefore, to harden the problem,
a change of basis is applied, such that G′ = SGQ for an invertible matrix
S ∈ Fk×k

q . Recovering S and Q from given G, G′ is known as the permutation
(or linear, when Q is a monomial permutation) equivalence problem.

9 A monomial transformation is a permutation with additional scaling factors.
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Permutation Equivalence. In the case of the permutation equivalence problem
the matrix Q in the equivalence is a permutation matrix. Let us formally define
the problem.

Definition 4.3 (Permutation Equivalence Problem (PEP)). Let G, G′ ∈
Fk×n

q be generator matrices of linear codes of dimension k and length n. The
Permutation Equivalence Problem asks, given G, G′, to find an invertible S ∈
Fk×k

q and a permutation matrix P ∈ Fn×n
q such that G′ = SGP.

Generally, PEP is known to be not NP-complete unless the polynomial
hierarchy collapses [53]. Further, random instances of the problem are solvable in
polynomial time due to an attack by Sendrier called Support Splitting Algorithm
[58]. However, still there is a large set of easy to construct instances for which no
efficient algorithms are known.

Support Splitting Algorithm (SSA). This algorithm introduces the concept of
a signature of a code, which is invariant under permutations, i.e., the codes
C, C′ associated with the generator matrices G, G′ have the same signature.
The algorithm then punctures both codes in random coordinates, i.e., removes
columns from their generator matrices, and checks if the codes still have the same
signature, which gives information on the permutation. However, the computation
of the proposed signature is exponential in the hull of the given codes. The hull
of a linear code is the intersection with its dual, i.e., all those codewords that
are in G and G⊥. For random codes it is known that the hull has constant
dimension with high probability [57], making the SSA an efficient algorithm for
random instances. Therefore, specific codes, namely (weakly) self-dual codes,
with maximal hull dimension h = min(k, n − k) are used for cryptographic
constructions. The complexity of the SSA can be stated as

TSSA = O(n3 + n2qh ln(n)),

Fq operations. For more details on the algorithm the reader is referred to [58].
For trivial hull dimension, i.e., h = 0, the SSA is not applicable. But still,

there is an efficient strategy to solve the problem via a reduction to the weighted
graph isomorphism problem [4]. However, since this case is rather uninteresting
for cryptographic applications we do not cover it in the estimator.

Therefore, besides the usual code-parameters the estimator allows for an
additional parameter h as an input, specifying the hull dimension. If not provided,
maximal hull dimension is assumed.

Low-Weight Codeword-Based Algorithms. The most efficient strategy for solving
PEP for codes with large hull is based on finding low-weight codewords. From
a sufficiently large list of low-weight codewords L ⊂ C and the corresponding
permuted set L′ = LP ⊂ C′ the permutation can be recovered in time linear in
|L| = |L′| [15, 48]. However, the algorithms running time is dominated by the
creation of the lists L, L′, i.e., by finding those low-weight codewords. The two
algorithms that fall into this category are by Leon [48] and more recently by
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Beullens [15]. They differentiate in the weight w of the codewords searched for and
the amount of weight-w codewords needed for success, detailed explanations of
both algorithms and their complexity can be found in [7,15]. We incorporate the
estimation scripts10 derived in [15] into our estimator. Note that we exchanged the
estimate for finding a single weight-w code word with a call to our SDFqEstimator
module.

We normalize estimation scripts to the elementary operation of Fq additions
and choose as memory unit Fq elements. We summarize the profile of the current
PEP estimator in Table 4.

Permutation Equivalence Estimator
Name PEEstimator
Parameters (n, k, q, h): length, dimension, field size, hull-dimension
Elementary operation (op) Fq addition
Memory unit (el) Fq element
Bit complexity factor time log2 q
Bit complexity factor memory log2 q
No. of algorithms 3
Available modes Estimate

Table 4: Profile of the PEP estimator.

Deviations from online available scripts. In comparison to the online available
scripts, there are slight deviations when using the CryptographicEstimators
library. This is mostly due to the consideration of more advanced algorithms
for finding low-weight code words, the correction of the Lee-Brickell procedure
mentioned in Section 4.1 and the normalization to Fq operations.

Linear Equivalence. The linear equivalence problem differs from the permuta-
tion equivalence problem by allowing for monomial transformations. We give a
formal definition in the following.

Definition 4.4 (Linear Equivalence Problem). Let G, G′ ∈ Fk×n
q be genera-

tor matrices of linear codes of dimension k and length n. The Linear Equivalence
Problem asks, given G, G′, to find an invertible S ∈ Fk×k

q and a monomial matrix
Q ∈ Fn×n

q such that G′ = SGQ.

Support Splitting Algorithm. The Support Splitting Algorithm can be adapted
to linear equivalences. However, this adaptation has to be applied to the closure
of the code [59]. The closure of an Fq linear code is known to be always weakly
self-dual, i.e., h = min(n − k, k), as long as q > 4. Therefore, to avoid this line of
10 The code is accessible at https://github.com/WardBeullens/LESS_Attack.
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attacks, all known constructions [6,19] restrict to q ≥ 5 in the case of LEP, which
we adopt in CryptographicEstimators. Therefore, no additional parameter h
is required in case of LEP.

Low-Weight Codeword-Based Algorithms. The remaining algorithms for solv-
ing linear equivalences are adaptations of Leon’s and Beullens’ algorithm for
permutation equivalences and a recent improvement made by Barenghi, Biasse,
Persichetti and Santini (BBPS) [7]. More precisely, Leon’s algorithm can be
applied without any changes.

In the case of Beullens algorithm instead of finding weight-w codewords, the
algorithm instead searches for 2-dimensional subcodes with support size w. For
finding these subcodes, Beullens adapts an early information set decoding algo-
rithm by Lee-Brickell. The more recent BBPS algorithm restricts the algorithm
to subcodes of special structure; that is subcodes of support size w formed by
two codewords of weight w′. This allows to find weight-w′ codewords via more
advanced ISD techniques like the Fq variant of Stern, given by Peters [52].

We integrated the script computing the complexity of Beullens’ algorithm11

for LEP [15] and the BBPS algorithm12 given in [7] with some adaptations into
our estimator. The adaptations include for example exchanging the estimation
for finding weight-w′ codewords (needed by the BBPS algorithm) by a call to
the SDFqEstimator module of the CryptographicEstimators library.

As in the case of PEP, for LEP we use additions in Fq as elementary operations
and Fq elements as memory unit. The state of the estimator for LEP is summarized
in Table 5.

Linear Equivalence Estimator
Name LEEstimator
Parameters (n, k, q): length, dimension, field size
Elementary operation (op) Fq addition
Memory unit (el) Fq element
Bit complexity factor time log2 q
Bit complexity factor memory log2 q
No. of algorithms 3
Available modes Estimate

Table 5: Profile of the LEP estimator

Deviations from online available scripts. In the case of the estimation of Beullens’
algorithm, admissible parameters are found via a small scale experiment. The
variance of this experiment can lead to slight deviations in the found optimal
parameters and, hence, also in the complexities. However, those deviations already
11 The code is accessible at https://github.com/WardBeullens/LESS_Attack/
12 The code is accessible at https://github.com/paolo-santini/LESS_project/.
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occur in Beullens’ original script. For the estimation of the BBPS algorithm we
use a slight approximation for the coupon collector, that is, we approximate the
number of times to sample L distinct elements from a list of size N as L log L.
This leads to slight deviations for some corner cases. Further deviations might
be caused by consideration of different algorithms for the SDP subroutine and
normalization to Fq additions.

4.4 Subcode Equivalence Problem and Permuted Kernel Problem

The subcode equivalence problem (SEP) is a problem closely related to PEP.
However, in contrast to PEP, SEP was introduced and proven NP-complete
in [12]. Because of the short time since its introduction in 2017, SEP has not
been the foundation of many primitives yet. However, recently a connection
between SEP and the permuted kernel problem (PKP), which is also proven to
be NP-complete and the basis of many cryptographic constructions [18,20,39],
was observed [56].

More precisely, SEP and PKP are equivalent problems, in the sense that
PKP is the dual formulation of SEP. However, usually, when PKP is used in
cryptographic constructions very specific instances are considered. This made
the relation between PKP and SEP less obvious. For the sake of completeness
we define the problem in its general version.

Definition 4.5 (Permuted Kernel Problem). Let A ∈ Fm×n
q and V ∈ Fℓ×n

q .
The Permuted Kernel Problem asks, given A, V, to find a permutation P ∈ Fn×n

q

such that A(VP)⊤ = 0.

The specific PKP instances used in cryptographic constructions are one-
dimensional instances, which refers to the case of ℓ = 1, i.e., the case where V is
a vector.

On the other hand, the SEP is very similar to PEP with the main difference
that the two given codes have different dimensions and the task is to determine
a subcode of the larger one, to which the smaller one is permutation equivalent.
More formally we give the following definition.

Definition 4.6 (Subcode Equivalence Problem). Let G ∈ Fk×n
q be a genera-

tor matrix of a linear code of dimension k and length n and G′ ∈ Fk′×n
q generator

matrix of a linear code of dimension k′ < k. The Subcode Equivalence Problem
asks, given G, G′, to find a full rank matrix S ∈ Fk′×k

q and a permutation matrix
P ∈ Fn×n

q such that G′ = SGP.

PKP is usually not formulated in a coding perspective. But to see the relation
between PKP and SEP consider A of the PKP to be the parity-check matrix of
a code C of dimension k = n − m and length n. Now finding a permutation, such
that VP lies in the right Kernel of A means finding a permutation such that the
rows of VP are codewords in C. Now, let GC be the generator matrix of C, then
the permutation P solves the subcode equivalence problem defined by G = GC ,
G′ = V, if ℓ < n − m. For ℓ > n − m the role of G and G′ are reversed, while
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for ℓ = n − m PKP (and the corresponding SEP instance) are equivalent to PEP.
A formal proof of these equivalence relations is given in [56, Proposition 4].

In turn, any algorithm solving the above formulation of PKP can be used
to solve the SEP with parameters k = max(n − m, ℓ) and k′ = min(n − m, ℓ).
Therefore, keeping this equivalence in mind, the CryptographicEstimators
library only offer the general formulation of PKP, omitting a separate problem
instantiation for SEP.

Algorithms for solving the PKP are mostly of combinatorial nature. Therefore,
assume without loss of generality that A = (Im | A′) is in systematic form. Now
the algorithms consider only a sub-instance, namely the last u rows of A, i.e.,
Au = (Iu | A′

u) ∈ Fu×(n−m+u)
q (omitting the zero columns in front). The

algorithms then search for selections of n − m + u columns of V that lie in the
right kernel of Au, by enumerating possible selections.13 That means they solve
the PKP with respect to the subinstance Au. In a final step, the algorithms
check if such a sub-solution can be extended to a full permutation that solves
the original PKP instance.

Initial combinatorial algorithms were proposed by Georgiades [41] and several
follwing works [8,43,51]. Koussa, Macario-Rat and Patarin [46] redefined those
approaches with small modifications which is now known as the KMP algorithm.
Recently, Santini, Baldi and Chiaraluce [56] gave an improved algorithm that
exchanges how the matrix Au is generated. Essentially, the algorithm searches
for a u-dimensional subcode of A with small support size w < n − m + u, note
that for the KMP we have w = n − m + u. To accomplish this subcode search,
they use the adaptation of the Lee-Brickell ISD used by Beullens in the context
of his LEP algorithm (compare to Section 4.3).

The recent treatment by Santini et al. [56] also provides estimation scripts
for the KMP algorithm as well as their improvement, which we incorporated
into CryptographicEstimators. However, the concrete complexity estimates
provided, similar to all previous estimates in the literature, is not very consistent,
by assigning the same cost to different unit operations. Precisely [56] specifies
"Coherently with all the PKP literature, we measure the running time [...] as the
number of matrix-matrix multiplications and list operations.".

In order to obtain a rough estimate, in form of a lower bound, on the involved
Fq additions we assign to each "matrix-matrix multiplication or list operation" by
default a cost of n−m. This means that, in the estimation, we multiply the amount
of these operations by the factor of n − m. The library allows to customize this
scaling factor. For matrix-matrix multiplications this underestimates the effort,
while for list elements in the case of ℓ = 1 this slightly overestimates the effort
by a factor of about 2. For larger ℓ, the effort is in both cases underestimated.

We summarize the current profile of the PKP estimator in Table 6.

Deviations from online available scripts. The estimations in the
CryptographicEstimators library match the original scripts. Deviations

13 More recent algorithms use a meet-in-the-middle strategy.
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Permuted Kernel Estimator
Name PKEstimator
Parameters (n, m, q, ℓ): columns, rows, field size, dimension
Elementary operation (op) Fq addition
Memory unit (el) Fq element
Bit complexity factor time log2 q
Bit complexity factor memory log2 q
No. of algorithms 3
Available modes Estimate

Table 6: Profile of the PKP estimator

are only due to normalization and consideration of a wider range of different ISD
algorithms in the optimization.

References

1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. Journal of Mathematical Cryptology 9(3), 169–203 (2015)

2. Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., Santini, P.: A finite regime
analysis of information set decoding algorithms. Algorithms 12(10), 209 (2019)

3. Bardet, M., Faugère, J.C., Salvy, B., Spaenlehauer, P.J.: On the complexity of
solving quadratic Boolean systems. Journal of Complexity 29(1), 53–75 (2013).
https://doi.org/https://doi.org/10.1016/j.jco.2012.07.001

4. Bardet, M., Otmani, A., Saeed-Taha, M.: Permutation code equivalence is not
harder than graph isomorphism when hulls are trivial. In: 2019 IEEE International
Symposium on Information Theory (ISIT). pp. 2464–2468. IEEE (2019)

5. Barenghi, A., Biasse, J.F., Ngo, T., Persichetti, E., Santini, P.: Advanced signa-
ture functionalities from the code equivalence problem. International Journal of
Computer Mathematics: Computer Systems Theory 7(2), 112–128 (2022)

6. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: LESS-FM: Fine-tuning signa-
tures from the code equivalence problem. In: Cheon, J.H., Tillich, J.P. (eds.) Post-
Quantum Cryptography - 12th International Workshop, PQCrypto 2021. pp. 23–43.
Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-81293-5_2

7. Barenghi, A., Biasse, J.F., Persichetti, E., Santini, P.: On the computational
hardness of the code equivalence problem in cryptography. Cryptology ePrint
Archive, Report 2022/967 (2022), https://eprint.iacr.org/2022/967

8. Baritaud, T., Campana, M., Chauvaud, P., Gilbert, H.: On the security of the
permuted kernel identification scheme. In: Brickell, E.F. (ed.) Advances in Cryp-
tology - CRYPTO ’92, 12th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 16-20, 1992, Proceedings. Lecture Notes in Com-
puter Science, vol. 740, pp. 305–311. Springer (1992). https://doi.org/10.1007/
3-540-48071-4_21, https://doi.org/10.1007/3-540-48071-4_21

9. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes
in 2n/20: How 1 + 1 = 0 improves information set decoding. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer,
Heidelberg (Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_31

22

https://doi.org/https://doi.org/10.1016/j.jco.2012.07.001
https://doi.org/10.1007/978-3-030-81293-5_2
https://eprint.iacr.org/2022/967
https://doi.org/10.1007/3-540-48071-4_21
https://doi.org/10.1007/3-540-48071-4_21
https://doi.org/10.1007/3-540-48071-4_21
https://doi.org/10.1007/978-3-642-29011-4_31


10. Bellini, E., Esser, A.: Syndrome decoding estimator (2021), https://github.com/
Crypto-TII/syndrome_decoding_estimator

11. Bellini, E., Makarim, R.H., Sanna, C., Verbel, J.A.: An estimator for the hard-
ness of the MQ problem. pp. 323–347. LNCS (2022). https://doi.org/10.1007/
978-3-031-17433-9_14

12. Berger, T.P., Gueye, C.T., Klamti, J.B.: A np-complete problem in coding theory
with application to code based cryptography. In: Hajji, S.E., Nitaj, A., Souidi,
E.M. (eds.) Codes, Cryptology and Information Security - Second International
Conference, C2SI 2017, Rabat, Morocco, April 10-12, 2017, Proceedings - In Honor of
Claude Carlet. Lecture Notes in Computer Science, vol. 10194, pp. 230–237. Springer
(2017). https://doi.org/10.1007/978-3-319-55589-8_15, https://doi.org/10.
1007/978-3-319-55589-8_15

13. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece
cryptosystem. In: Buchmann, J., Ding, J. (eds.) Post-quantum cryptography, second
international workshop, PQCRYPTO 2008. pp. 31–46. Springer, Heidelberg (Oct
2008). https://doi.org/10.1007/978-3-540-88403-3_3

14. Bettale, L., Faugère, J., Perret, L.: Hybrid approach for solving multivariate systems
over finite fields. J. Mathematical Cryptology 3(3), 177–197 (2009)

15. Beullens, W.: Not enough LESS: An improved algorithm for solving code equivalence
problems over Fq. In: Dunkelman, O., Jr., M.J.J., O’Flynn, C. (eds.) SAC 2020.
LNCS, vol. 12804, pp. 387–403. Springer, Heidelberg (Oct 2020). https://doi.
org/10.1007/978-3-030-81652-0_15

16. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and Fishy signature schemes.
In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part III. LNCS, vol.
12107, pp. 183–211. Springer, Heidelberg (May 2020). https://doi.org/10.1007/
978-3-030-45727-3_7

17. Beullens, W.: MAYO: Practical post-quantum signatures from oil-and-vinegar
maps. In: AlTawy, R., Hülsing, A. (eds.) SAC 2021. LNCS, vol. 13203, pp.
355–376. Springer, Heidelberg (Sep / Oct 2022). https://doi.org/10.1007/
978-3-030-99277-4_17

18. Beullens, W., Faugère, J.C., Koussa, E., Macario-Rat, G., Patarin, J., Perret,
L.: PKP-based signature scheme. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) IN-
DOCRYPT 2019. LNCS, vol. 11898, pp. 3–22. Springer, Heidelberg (Dec 2019).
https://doi.org/10.1007/978-3-030-35423-7_1

19. Biasse, J.F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: Code-based
signatures without syndromes. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT
20. LNCS, vol. 12174, pp. 45–65. Springer, Heidelberg (Jul 2020). https://doi.
org/10.1007/978-3-030-51938-4_3

20. Bidoux, L., Gaborit, P.: Shorter signatures from proofs of knowledge for the sd,
mq, PKP and RSD problems. CoRR abs/2204.02915 (2022). https://doi.org/
10.48550/arXiv.2204.02915, https://doi.org/10.48550/arXiv.2204.02915

21. Björklund, A., Kaski, P., Williams, R.: Solving systems of polynomial equations
over GF(2) by a parity-counting self-reduction. In: Baier, C., Chatzigiannakis, I.,
Flocchini, P., Leonardi, S. (eds.) International Colloquium on Automata, Languages
and Programming – ICALP 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik
(2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.26

22. Bonnetain, X., Bricout, R., Schrottenloher, A., Shen, Y.: Improved classical
and quantum algorithms for subset-sum. In: Moriai, S., Wang, H. (eds.) ASI-
ACRYPT 2020, Part II. LNCS, vol. 12492, pp. 633–666. Springer, Heidelberg (Dec
2020). https://doi.org/10.1007/978-3-030-64834-3_22

23

https://github.com/Crypto-TII/syndrome_decoding_estimator
https://github.com/Crypto-TII/syndrome_decoding_estimator
https://doi.org/10.1007/978-3-031-17433-9_14
https://doi.org/10.1007/978-3-031-17433-9_14
https://doi.org/10.1007/978-3-319-55589-8_15
https://doi.org/10.1007/978-3-319-55589-8_15
https://doi.org/10.1007/978-3-319-55589-8_15
https://doi.org/10.1007/978-3-540-88403-3_3
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-45727-3_7
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-99277-4_17
https://doi.org/10.1007/978-3-030-35423-7_1
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.48550/arXiv.2204.02915
https://doi.org/10.48550/arXiv.2204.02915
https://doi.org/10.48550/arXiv.2204.02915
https://doi.org/10.4230/LIPIcs.ICALP.2019.26
https://doi.org/10.1007/978-3-030-64834-3_22


23. Both, L., May, A.: Optimizing bjmm with nearest neighbors: full decoding in 22/21n
and mceliece security. In: WCC workshop on coding and cryptography. vol. 214
(2017)

24. Both, L., May, A.: Decoding linear codes with high error rate and its impact for
LPN security. In: Lange, T., Steinwandt, R. (eds.) Post-Quantum Cryptography
- 9th International Conference, PQCrypto 2018. pp. 25–46. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-319-79063-3_2

25. Bouillaguet, C., Chen, H., Cheng, C., Chou, T., Niederhagen, R., Shamir, A.,
Yang, B.: Fast exhaustive search for polynomial systems in F2. In: Cryptographic
Hardware and Embedded Systems, CHES 2010. pp. 203–218 (2010)

26. Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,
Samardjiska, S., Trimoska, M.: Take your MEDS: Digital signatures from matrix
code equivalence. Cryptology ePrint Archive, Report 2022/1559 (2022), https:
//eprint.iacr.org/2022/1559

27. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. EUROCRYPT 2000,
LNCS 1807, 392–407 (2000)

28. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (May
2000). https://doi.org/10.1007/3-540-45539-6_27

29. Cox, D., Little, J., O’Shea, D.: Ideals, varieties, and algorithms. an introduction
to computational algebraic geometry and commutative algebra (2007), https:
//link.springer.com/book/10.1007/978-0-387-35651-8

30. Dinur, I.: Cryptanalytic applications of the polynomial method for solving mul-
tivariate equation systems over GF(2). In: Canteaut, A., Standaert, F. (eds.)
Advances in Cryptology - EUROCRYPT 2021. pp. 374–403. Springer (2021).
https://doi.org/10.1007/978-3-030-77870-5_14

31. Dinur, I.: Improved algorithms for solving polynomial systems over GF(2) by mul-
tiple parity-counting. In: ACM-SIAM Symposium on Discrete Algorithms (SODA).
pp. 2550–2564 (2021). https://doi.org/10.1137/1.9781611976465.151

32. Dumer, I.: On minimum distance decoding of linear codes. In: Proc. 5th Joint
Soviet-Swedish Int. Workshop Inform. Theory. pp. 50–52 (1991)

33. Esser, A.: Revisiting nearest-neighbor-based information set decoding. Cryptology
ePrint Archive, Report 2022/1328 (2022), https://eprint.iacr.org/2022/1328

34. Esser, A., Bellini, E.: Syndrome decoding estimator. In: PKC 2022, Part I. pp.
112–141. LNCS, Springer, Heidelberg (May 2022). https://doi.org/10.1007/
978-3-030-97121-2_5

35. Esser, A., May, A., Zweydinger, F.: McEliece needs a break - solving McEliece-1284
and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S. (eds.)
EUROCRYPT 2022, Part III. LNCS, vol. 13277, pp. 433–457. Springer, Heidelberg
(May / Jun 2022). https://doi.org/10.1007/978-3-031-07082-2_16

36. Esser, A., Zweydinger, F.: New time-memory trade-offs for subset sum – improving
ISD in theory and practice. Cryptology ePrint Archive, Report 2022/1329 (2022),
https://eprint.iacr.org/2022/1329

37. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139(1), 61–88 (1999)

38. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of the 2002 International Symposium
on Symbolic and Algebraic Computation. p. 75–83. ISSAC ’02, Association for
Computing Machinery, New York, NY, USA (2002)

24

https://doi.org/10.1007/978-3-319-79063-3_2
https://eprint.iacr.org/2022/1559
https://eprint.iacr.org/2022/1559
https://doi.org/10.1007/3-540-45539-6_27
https://link.springer.com/book/10.1007/978-0-387-35651-8
https://link.springer.com/book/10.1007/978-0-387-35651-8
https://doi.org/10.1007/978-3-030-77870-5_14
https://doi.org/10.1137/1.9781611976465.151
https://eprint.iacr.org/2022/1328
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-030-97121-2_5
https://doi.org/10.1007/978-3-031-07082-2_16
https://eprint.iacr.org/2022/1329


39. Feneuil, T.: Building MPCitH-based signatures from MQ, MinRank, rank SD and
PKP. IACR Cryptol. ePrint Arch. p. 1512 (2022), https://eprint.iacr.org/
2022/1512

40. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signatures
from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022,
Part II. LNCS, vol. 13508, pp. 541–572. Springer, Heidelberg (Aug 2022). https:
//doi.org/10.1007/978-3-031-15979-4_19

41. Georgiades, J.: Some remarks on the security of the identification scheme based on
permuted kernels. J. Cryptol. 5(2), 133–137 (1992). https://doi.org/10.1007/
BF00193565, https://doi.org/10.1007/BF00193565

42. Hamdaoui, Y., Sendrier, N.: A non asymptotic analysis of information set decoding.
Cryptology ePrint Archive, Report 2013/162 (2013), https://eprint.iacr.org/
2013/162

43. Jaulmes, É., Joux, A.: Cryptanalysis of PKP: A new approach. In: Kim, K.
(ed.) Public Key Cryptography, 4th International Workshop on Practice and
Theory in Public Key Cryptography, PKC 2001, Cheju Island, Korea, Febru-
ary 13-15, 2001, Proceedings. Lecture Notes in Computer Science, vol. 1992, pp.
165–172. Springer (2001). https://doi.org/10.1007/3-540-44586-2_12, https:
//doi.org/10.1007/3-540-44586-2_12

44. Joux, A., Vitse, V.: A crossbred algorithm for solving boolean polynomial systems.
In: Kaczorowski, J., Pieprzyk, J., Pomykała, J. (eds.) Number-Theoretic Methods
in Cryptology. pp. 3–21. Springer International Publishing, Cham (2018)

45. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (May 1999). https://doi.org/10.1007/3-540-48910-X_15

46. Koussa, E., Macario-Rat, G., Patarin, J.: On the complexity of the permuted kernel
problem. Cryptology ePrint Archive, Report 2019/412 (2019), https://eprint.
iacr.org/2019/412

47. Lee, P.J., Brickell, E.F.: An observation on the security of mceliece’s public-key
cryptosystem. In: Workshop on the Theory and Application of of Cryptographic
Techniques. pp. 275–280. Springer (1988)

48. Leon, J.: Computing automorphism groups of error-correcting codes. IEEE Trans-
actions on Information Theory 28(3), 496–511 (1982)

49. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
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