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Abstract

Proof-carrying data (PCD) is a powerful cryptographic primitive that allows mutually distrustful
parties to perform distributed computation in an efficiently verifiable manner. Known constructions of
PCD are obtained by recursively-composing SNARKs or related primitives. SNARKs with desirable
properties such as transparent setup are constructed in the random oracle model. However, using such
SNARKs to construct PCD requires heuristically instantiating the oracle and using it in a non-black-box
way. [CCS22] constructed SNARKs in the low-degree random oracle model, circumventing this issue,
but instantiating their model in the real world appears difficult.

In this paper, we introduce a new model: the arithmetized random oracle model (AROM). We provide
a plausible standard-model (software-only) instantiation of the AROM, and we construct PCD in the
AROM, given only a standard-model collision-resistant hash function. Furthermore, our PCD construction
is for arbitrary-depth compliance predicates. We obtain our PCD construction by showing how to construct
SNARKs in the AROM for computations that query the oracle, given an accumulation scheme for oracle
queries in the AROM. We then construct such an accumulation scheme for the AROM.

We give an efficient “lazy sampling” algorithm (an emulator) for the ARO up to some error. Our
emulator enables us to prove the security of cryptographic constructs in the AROM and that zkSNARKs
in the ROM also satisfy zero-knowledge in the AROM. The algorithm is non-trivial, and relies on results
in algebraic query complexity and the combinatorial nullstellensatz.
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1 Introduction

Proof-carrying data (PCD) [CT10] is a powerful cryptographic primitive that allows mutually distrustful
parties to perform distributed computation in an efficiently verifiable manner. The notion of PCD generalizes
incrementally-verifiable computation (IVC) [Val08] and has recently found exciting applications in enforcing
language semantics [CTV13], verifiable MapReduce computations [CTV15], image authentication [NT16],
verifiable registries [TFZBT22], blockchains [Mina; BMRS20; CCDW20; KB23], and more.

All known PCD constructions (and practical IVC constructions) are obtained via recursive proof compo-
sition, a general framework for building PCD from simpler primitives such as SNARKs [BCCT13; BCTV14;
COS20] or accumulation schemes [BGH19; BCMS20; BDFG21; BCLMS21; KST22]. While the specific
constructions differ, the high-level idea remains the same: to prove the correctness of t steps of computation
given proof of correctness for t− 1 steps, one proves that “the t-th step is correct and there exists a valid
proof for the first t− 1 steps”.

The statement that “there exists a valid proof” refers to the verifier of the underlying SNARK or
accumulation scheme. As such, the resulting PCD scheme makes non-black-box use of the verifier for
the underlying scheme. This leads to a significant theoretical problem when trying to prove security for
constructions based on recursive composition: almost all known constructions of SNARKs, and all known
constructions of accumulation schemes, are proven secure in the random oracle model (ROM). The random
oracle is an inherently black-box object; in particular, it is believed that there is no “nontrivial” proof system
for statements about the random oracle.

Most prior work in the area [COS20; BCMS20; BCLMS21] avoids this problem using a heuristic step:
they assume that there exists some concrete hash function such that replacing the random oracle with the
hash function yields a secure SNARK or accumulation scheme in the standard model (without oracles), and
then apply recursive composition to this heuristic scheme.

Two prior works [CT10; CCS22] propose a different approach: endow the random oracle with some
additional structure. The PCD construction in [CT10] is in a model where the random oracle additionally
signs its responses using a standard-model signature scheme; the verifier can then check query-answer pairs
by verifying the signature rather than querying the oracle. Trading cryptographic structure for algebraic
structure, [CCS22] construct PCD in the low-degree random oracle model (LDROM), where parties have
access to a random low-degree multivariate polynomial.

Both of these oracle models can be instantiated using hardware tokens. Unfortunately, we do not have
any standard model (i.e., software-only) instantiation of these oracles, even heuristically. This is in contrast
to the (usual) random oracle model, where empirical evidence suggests that “natural” schemes remain secure
provided the oracle is replaced with a suitably “random-looking” hash function [BR93]. Our goal in this
work is to design a new oracle model that simultaneously achieves both desiderata: (a) there exists a PCD
scheme in this model under standard assumptions; and (b) the oracle can be heuristically instantiated.

1.1 Our results

In this work we introduce and study a new oracle model, the arithmetized random oracle model (AROM),
which provides a random oracle and a corresponding “arithmetization” oracle. As in the standard ROM,
the random oracle is an idealized model of some concrete hash function H . The arithmetization oracle is
an idealized model of a certain arithmetization of H , which is a low-degree polynomial PH that can be
efficiently computed from the circuit of H . As such, the AROM has a plausible heuristic instantiation: replace
the random oracle by H and the arithmetization oracle by PH , for a suitable hash function H .
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Our main result is a construction of PCD in the AROM, based on the [CCS22] construction of PCD in
the LDROM. By instantiating the AROM with a suitable hash function, we obtain a candidate “real-world”
construction of PCD. Formally, we prove the following theorem.

Theorem 1 (informal). There exists transparent1 (zero-knowledge) PCD in the AROM (for computations in
the AROM), assuming the existence of collision-resistant hash functions in the standard model.

Our PCD construction is provably secure (in the AROM) for all efficient compliance predicates. This
stands in contrast to all other constructions of PCD (with the exception of [CT10], but including [CCS22]),
whose security proofs are limited to constant-depth recursion. This is because, like [CT10], our PCD
construction preserves the straightline extraction property of the underlying SNARK.2

To prove our main theorem, we develop various tools for analyzing cryptographic constructions in the
AROM. Our key result here is to show that the additional power provided by the AROM does not help the
adversary win any game defined with respect to the random oracle alone.

Theorem 2 (informal). Any construction that is secure in the ROM is secure in the AROM.

An immediate consequence of this theorem is that any construction that is secure in the standard model is
secure in the AROM. In contrast, we do not know whether an analogous statement holds in the LDROM.
We remark that this result is meaningful even outside the present context: it provides evidence that security
in the ROM implies security against a specific type of non-black-box attack, namely, attacks that treat the
arithmetization of the hash function as a black box.
Comparison to other oracle models. As discussed above, both the ROM and the LDROM fall short of
our goal. While the ROM has a well-established heuristic instantiation, it is unlikely to support a PCD
scheme. PCD exists in the LDROM, but we do not know how to instantiate the oracle. The AROM
offers, in some sense, the “best of both worlds”: a provable construction of PCD and a plausible heuristic
instantiation. Moreover, the proposed instantiation of the AROM does not rely on any cryptography beyond
“random-oracle-like” hash functions. As such, there are no barriers to implementing our scheme.
Post-quantum security. Our scheme does not rely on any pre-quantum assumption; it is plausibly post-
quantum secure. Moreover, it is conceivable that the scheme is in fact provably post-quantum secure in the
“quantum-accessible” AROM; we leave this intriguing question to future work.

1.2 Related work

PCD and IVC in the ROM. There is theoretical evidence that, unlike for SNARKs, there is no construction
of PCD and IVC in the ROM (even allowing for additional “mild” cryptographic assumptions like standard-
model CRHs). First, [CL20] shows that the PCP theorem does not hold for various cryptographically relevant
oracle models, such as the ROM and the LDROM. This suggests that succinct proofs for computations
relative to these oracles may be out of reach. Nevertheless, [CCS22] shows that this is not the whole story
by constructing SNARKs for LDROM computations, particularly PCD, from a cryptographic assumption.
Second, [HN23] shows various impossibilities for IVC in the ROM. For example, if a particular type of
commitment scheme exists, then zero-knowledge IVC (without a CRS) does not exist in the ROM. This result
holds even if the IVC construction were to rely on “standard” cryptographic assumptions.3

1The only setup required is a uniform reference string.
2Some other prior PCD constructions are also based on SNARKs with straightline extraction (e.g., [Val08; COS20]). However,

this property is lost after the heuristic step is applied.
3The paper claims that this result holds for constructions that use falsifiable assumptions but does not show this explicitly.

Nonetheless, one can check that the proof does work for “benign” cryptographic assumptions.
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Pseudorandom oracles. [JLLW22] introduce the pseudorandom oracle model (PROM) and apply it
towards obfuscation. Similarly to the AROM, the PROM aims to capture cryptographic schemes that make a
non-black-box use of the random oracle. We outline the PROM and explain how it differs from the AROM.

The PROM is specified relative to a (standard model) pseudorandom function family Fk, and has two
interfaces. The first accepts a key k and outputs a random handle h (and stores (h, k)). The second accepts a
handle h and an input x and outputs Fk(x), where k is the key corresponding to h. By the security of the PRF,
a party holding only h cannot distinguish the latter interface from a random oracle. On the other hand, a party
holding the key k can use the circuit for Fk in a non-black-box way. [JLLW22] constructs ideal obfuscation
from functional encryption in the PROM.

The key difference between the AROM and the PROM is that the PROM “separates” non-black-box and
black-box access to the oracle. Specifically, non-black-box access to the PROM is available only to parties
that know k, whereas random oracle security holds only against parties that do not know k. In the AROM,
there is no such asymmetry: all parties have the same access to the oracle. This is important in the context of
recursive composition (which we study) since completeness requires that both the prover and the verifier
have non-black-box access to the oracle. Still, soundness relies on the security of the random oracle against
the prover. It is an exciting open question to understand whether, despite this apparent barrier, recursive
composition is possible in the PROM.

Augmented random oracles. [Zha22] defines the augmented random oracle model to analyze the resilience
of cryptographic transformations in the ROM against uninstantiability results. While ideas about modeling
non-black-box access to the random oracle (and the abbreviation “AROM”) are common to both the augmented
ROM and the arithmetized ROM, the models are very different both technically and in their applications. We
briefly summarize [Zha22] and then explain how our model differs.

Let ro denote the random oracle, and Π denote some protocol. A cryptographic transformation T usually
comes with a guarantee like “if Π is a secure X, then T ro(Π) is a secure Y”. An uninstantiability result for T
typically shows that there exists some Π such that TH(Π) is insecure for every polynomial-size circuit H .
Known uninstantiability results use some non-black-box technique to provide a “trapdoor” that can be used
with respect to any H but is useless for ro. The augmented ROM captures this paradigm by requiring T ro(Π)
to be secure even if Π has access to an oracle M that provides some functionality permitted by non-black-box
access to H , but with respect to ro. [Zha22] shows that key uninstantiability results for transformations (e.g.,
Fiat–Shamir for arguments [GK03]) lead to insecure protocols in the augmented ROM.

The augmented ROM is a tool for proving a stronger form of security for random oracle transformations.
In particular, no “honest” scheme ever accesses the oracle M ; indeed, the oracle M is chosen adversarially
(and may be trivial). On the other hand, in the arithmetized ROM, honest parties use the non-black-box
access provided by the arithmetization oracle, whose functionality is (mostly) fixed by the model itself.

5



2 Techniques

Recall that our goal in this work is to construct proof-carrying data (PCD). Our approach follows the widely-
used template of recursive proof composition. However, our setting imposes several technical and conceptual
challenges. We begin by outlining a vital issue in proving security for this type of construction, which our
work seeks to address.

Recursive proof composition refers to a set of techniques that enable the construction of PCD (and IVC)
from SNARKs or accumulation schemes. With few notable exceptions (e.g., [Gro16]), all constructions
of SNARKs and accumulation schemes rely on the Fiat–Shamir heuristic, which converts an interactive
public-coin argument system into a non-interactive argument via a cryptographic hash function H . For
all of these SNARK constructions, it is unknown whether this heuristic can be realized from any concrete
(i.e., falsifiable) cryptographic assumption; indeed, there is evidence that this may not be possible [GW11].
However, we can prove these schemes secure in the ROM, treating the hash function H as a truly random
function ro to which the adversary has black-box access.

This leads to a fundamental tension in proving security for the recursive composition of these protocols.
On the one hand, to prove security for the protocol itself, we assume that the adversary treats the hash
function H as a black box. On the other hand, when recursively composing, the honest protocol treats H
in a non-black-box way: specifically, as a concrete polynomial-size circuit. The prior work [CL20; HN23]
discussed in Section 1.2 suggests that non-black-box use of H may be necessary to achieve PCD (and IVC).

2.1 Starting point: the low-degree random oracle model

The work of [CCS22] addresses the aforementioned tension by introducing a new oracle model called the
low-degree random oracle model (LDROM). They then show how to construct PCD via recursive composition
in the LDROM (i.e., using the oracle as a black box).

In the LDROM, all parties have oracle access to a uniformly random low-degree multivariate polynomial
ρ̂ : Fm → F. Restricting ρ̂ to {0, 1}m ⊆ Fm recovers the usual random oracle, and [CCS22] show that rele-
vant security properties of the random oracle continue to hold in the LDROM; in particular, Micali’s SNARK
[Mic00] is secure in the LDROM. Unlike the random oracle, the LDROM admits a query accumulation
scheme: a verifier, with the help of an untrusted accumulation proof, can check the correctness of n queries
to ρ̂ using only O(1) queries to ρ̂. [CCS22] construct such an accumulation scheme and use it to build PCD.

Instantiating the LDROM. [CCS22] observe that the LDROM can be instantiated using a hardware
token that implements the structured PRF of [BGV11]. Of course, schemes involving hardware tokens have
significant drawbacks; finding a plausible “software-only” instantiation would be much preferable. [CCS22]
suggest a natural strategy: given a “random-oracle-like” hash function H , convert it into an arithmetic
circuit gate-by-gate. Such a circuit does define a polynomial with which we could instantiate the LDROM.
Unfortunately, as noted in [CCS22], for widely-used hash functions, the degree of this polynomial will be
large (at least 225). Since the complexity of the verifier in the query accumulation scheme is linear in the
degree of the oracle, the resulting PCD scheme would be prohibitively expensive.

2.2 The arithmetized random oracle model

Given the above difficulty, a natural next step is to consider techniques for reducing the degree of the resulting
arithmetic circuit. Since the degree of an arithmetic circuit grows exponentially in its depth, a natural
approach is to try to reduce the depth of the circuit for H . This can be achieved via the well-known NP

6



reduction from circuit satisfiability to 3-SAT (a depth-two formula). The output of the reduction is a boolean
formula ΦH with the following property: there is an efficiently computable witness function WH such that

ΦH(x, y, z) =

{
1 if H(x) = y and WH(x) = z

0 otherwise
.

Converting ΦH into an arithmetic formula (gate-by-gate) yields a polynomial PH of total degree O(|H|) that
agrees with ΦH on boolean inputs.

PH is not a low-degree extension of H (rather of ΦH ) and so this is not a candidate instantiation of the
LDROM. As we note later, however, the low-degree structure of PH will nonetheless allow us to build a query
accumulation scheme, inspired by that of [CCS22]. Moreover, the statement “H(x) = y” can be verified by
querying PH only, given z as a witness. It is therefore plausible that, following the template developed in the
prior work, we can obtain a secure construction of PCD that makes only black-box use of H and PH .

Of course, given the current state of knowledge, we can only hope to prove that this PCD scheme is
secure in some idealized model. In particular, we would like to model H as a random oracle. It is then
necessary to answer the question: if H is a random oracle, what should PH look like? A central modeling
contribution of our work is to propose an answer to this question.

A new oracle model: the AROM. We refer to our proposed oracle model as the arithmetized random
oracle model (AROM). Before presenting the model, we discuss two key modeling challenges that arise.
Both relate to the fact that the black-box behavior of PH depends in a non-black-box way on H .

• Challenge #1: WH is circuit-dependent. For a concrete circuit H and input x, WH(x) is a vector
representing the assignment to the internal wires of H on input x. This of course depends on the size
and structure of the circuit for H , which is no longer meaningful when H is replaced by a random oracle.
We handle this conservatively, by allowing WH to be adversarial. That is, we require that completeness,
soundness, and zero-knowledge hold regardless of the choice of WH , which we allow to depend on x and
the random oracle, and may even itself be randomized.

There is, however, an important caveat. While we allow our WH to depend on the random oracle, we
must restrict this dependency; otherwise, the adversary could use WH to learn information that it cannot
otherwise obtain (e.g., WH could encode a collision in H). Similarly, if WH is computationally unbounded,
the adversary could use it to break standard-model cryptography. As such, we restrict WH to have an
efficient implementation (in particular, it can only make polynomially-many queries to H).

• Challenge #2: PH is not the unique extension. Even after we have fixed WH (and hence ΦH ), PH has
a huge number of remaining degrees of freedom. This is because it is of individual degree larger than 1, but
its behavior is specified only on boolean inputs. This is a more challenging issue to resolve: letting PH be
chosen adversarially from the set of extensions of ΦH would make the adversary unrealistically powerful
(see Remark 2.1). Instead, we model PH as a uniformly random polynomial of the appropriate degree
whose restriction to the hypercube is ΦH . We propose that this captures the inability of the adversary to
leverage the structure of H (and hence PH ) in breaking security. We leave to future work the question of
whether this modeling choice can be weakened (again see Remark 2.1).

We now give an informal definition of the AROM; for details see Section 4. In the AROM, all parties (honest
and malicious) have access to three oracles (ro,wo, v̂o):

• a random oracle ro : {0, 1}m → {0, 1}λ drawn uniformly at random;
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• a witness oracle wo : {0, 1}m → {0, 1}w that is an arbitrary PPT-computable function (see below);
• an extended verification oracle (arithmetization oracle) v̂o : Fm+λ+w → F that is a random extension of

individual degree d ≥ 2 of the verification oracle vo : {0, 1}m+λ+w → {0, 1} defined as follows:

vo(x, y, z) :=

{
1 if ro(x) = y and wo(x) = z

0 otherwise
.

We discuss each oracle in turn.

• The random oracle ro models the hash function H , as in the standard ROM.

• The witness oracle wo models the witness function WH . It is defined via a polynomial-size oracle circuit B
chosen arbitrarily before the oracle is sampled. On a query x, wo outputs Bro(x, µx) where µx is sampled
uniformly at random (and is not resampled if x is queried again). The inclusion of µx allows our definition
to subsume, e.g., modeling WH as a random oracle. The efficiency requirement is necessary to allow for
efficient simulation of wo (it prevents wo from being used to break standard-model cryptography).

• The verification function vo models the boolean formula ΦH . Indeed, the definition of vo is directly
obtained from the definition of ΦH by replacing H with ro and WH with wo.

• The extended verification oracle v̂o models the polynomial PH . The requirement that d ≥ 2 arises from a
technical concern: as noted in [JKRS09], access to the unique multilinear (d = 1) extension of a function
can be surprisingly powerful. (E.g., an adversary with access to the multilinear extension of vo can
efficiently invert ro, see Remark 2.1.) Requiring d ≥ 2 avoids this issue and is sufficient for our security
proofs. In any case, we want to match the degree of v̂o to that of PH for some concrete hash function H ,
and the degree of PH will be at least 2 in each variable.4

A construction that makes black-box use of H,WH ,ΦH can be analyzed in the AROM as suggested by the
above discussion: replace H with ro, WH with wo, and PH with v̂o (with matching degree bound d).

In Section 2.3 we describe our construction of PCD in the AROM. This construction relies on a “lazy
sampling” procedure for the AROM, a key technical contribution that we describe in Section 2.4.

AROM vs. LDROM. Superficially the AROM and LDROM seem quite similar; indeed, they both aim to
capture some arithmetization of the random oracle. However, there are notable differences between the two
models, even putting aside the differing instantiability considerations. We highlight a few such differences.
• The LDRO is a low-degree extension over a field F of a random function {0, 1}m → F. Hence the security

of the LDRO as a random oracle depends on |F|. The ARO decouples the choice of F from the random
oracle: one may choose the codomain {0, 1}λ of ro independently from the field F over which v̂o is defined.
The security of ro (even in the presence of v̂o) depends only on λ. That said, in both the LDROM and the
AROM, the security of their respective query accumulation schemes depends on |F|.

• The LDRO is a linear code random oracle; i.e., it is sampled at random from a linear space over F. The
ARO is also sampled uniformly from some set, but this set does not form a linear space. This means that
tools developed in [CCS22] for analyzing linear code random oracles do not directly apply. That said,
the ARO does have some linear structure: the oracle v̂o is sampled uniformly from the (affine) space of
low-degree extensions of vo. This fact will be useful for emulating the AROM.

4The degree of a variable in PH is equal to the number of clauses in ΦH in which it appears. Every wire appears in at least two
clauses in ΦH : once as an output and once as an input.
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• The LDRO has security properties (e.g. collision resistance, unconditional SNARKs) even when d = 1
(i.e., it is a random multilinear polynomial). The ARO is not even one-way when d = 1.

Remark 2.1 (choice of extension). We set v̂o to be a random extension of vo of individual degree d ≥ 2. We
explain why setting v̂o to be an arbitrary extension of vo would grant the adversary too much power.

First consider the case when v̂o is the unique multilinear extension of vo (d = 1). Given oracle access to
a multilinear polynomial P over a field F of characteristic different from 2, a single query to P suffices to
efficiently evaluate the sum

∑
x∈{0,1}n P (x) [JKRS09]. We can use this capability and the structure of vo to

invert ro: given a target image y ∈ {0, 1}λ, perform a binary search for a preimage of y by evaluating the
sum

∑
x1,z

v̂o((x0, x1), y, z) for different prefixes x0.
Next consider the higher-degree case: v̂o is an adversarially-chosen extension of vo of degree d ≥ 2.

Given oracle access to a polynomial P of individual degree d, a single query to P suffices to efficiently
evaluate the sum

∑
x∈Hn P (x) where H is a multiplicative subgroup of F with |H| > d [CFS17, Lemma

A.4]. Assume that F has such a subgroup H of size d + 1, and fix two elements a, b ∈ H . Let g : F → F
be the unique linear function with g(a) = 0 and g(b) = 1. Choose v̂o to be the polynomial of minimal
individual degree satisfying: v̂o(x, y, z) = vo(x, y, z) for (x, y, z) ∈ {0, 1}n, and v̂o(w) = 0 for w ∈
g(H)n \ {0, 1}n. Note that v̂o, and hence also v̂o ◦ gn, has individual degree at most |H| − 1 = d,
and

∑
x∈Hn v̂o(g(x1), . . . , g(xn)) =

∑
x∈{0,1}n vo(x1, . . . , xn). We can then use binary search as in the

multilinear case to invert ro.
The above gives some justification for modeling v̂o as a random low-degree extension of vo. Of course,

there are many choices that lie in between adversarial and random. For example, one could set v̂o to be drawn
from an adversarially-chosen distribution with “enough” entropy. It is not clear, however, whether such a
choice would be substantially closer to “reality” than our choice.

2.3 Building PCD secure in the AROM

Prior work [CCS22] shows that to obtain PCD in an oracle model O, it suffices to construct: (i) a SNARK for
NP relative to O; and (ii) an accumulation scheme for O-queries relative to O. Further, the resulting PCD
scheme is zero-knowledge if the SNARK and accumulation scheme also satisfy zero-knowledge. The PCD
construction in the LDROM in [CCS22] follows by establishing these results for the LDROM. Similarly, our
construction of PCD will follow by establishing these results for the AROM.

(i) SNARKs in the AROM. [CCS22] prove that Micali’s SNARK remains (information-theoretically)
secure in the LDROM, via a rewinding argument. In the AROM, we show a much more general theorem.

Theorem 3 (informal). Let p be a predicate that queries ro, and let A be an algorithm querying (ro,wo, v̂o)
that outputs x satisfying pro with probability ε. Then there is an algorithm B, of similar efficiency to A, that
queries ro only and outputs x satisfying pro with probability ε− negl(λ).

Theorem 3 follows directly from our emulator for v̂o, which we discuss further in Section 2.4. It is not
known whether a similar result holds for the LDROM.

As an illustrative example, we can use Theorem 3 to prove that the ARO is collision-resistant. By
applying Theorem 3 to the predicate pro that, given (x, x′) ∈ {0, 1}m × {0, 1}m, checks that x ̸= x′ and
ro(x) = ro(x′), we deduce that the ARO is collision-resistant from the fact that the RO is collision-resistant.

We use Theorem 3 to prove knowledge soundness and zero knowledge of Micali’s SNARK in the AROM.

• Knowledge soundness. We use Theorem 3 to prove that Micali’s SNARK is secure in the AROM, via
a straightline extractor. Informally, since we can cast knowledge soundness of Micali’s SNARK as an
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oracle predicate p, any adversary A that breaks that security property in the AROM can be transformed via
Theorem 3 into an adversary B that breaks it in the ROM. We can then apply the straightline extractor for
Micali’s SNARK to B. Since B invokes A in a straightline manner, the resulting AROM extractor is also
straightline.

• Zero-knowledge. We prove that Micali’s SNARK is zero knowledge in the AROM. Our zero knowledge
simulator that programs the oracle; this is a commonality with the zero knowledge simulators for Micali’s
SNARK in both the ROM and in the LDROM (see [CCS22]). To program the oracle, the simulator relies
on a slightly stronger version of our emulator, which emulates oracle queries conditioned on an input list
of (real) oracle query-answer pairs. Our hybrid argument invokes Theorem 3 and the Micali SNARK’s
zero knowledge property in the ROM. Informally, we move between hybrids in the ROM vs. AROM using
Theorem 3, setting the predicate p to be any distinguisher between hybrids.

(ii) An accumulation scheme for ARO queries. The accumulation scheme for LDRO queries in [CCS22] is
obtained by applying the Fiat–Shamir transformation to the (interactive public-coin) query reduction protocol
of [KR08]. We follow the same template in the case of the ARO. The first observation is that it suffices to
accumulate queries to v̂o only, because a query to ro or wo can be verified via a query to v̂o.5

The [KR08] query reduction protocol itself works for any low-degree polynomial: in particular, for v̂o.
As in [CCS22], the central challenge is showing soundness of the Fiat–Shamir transformation in this setting.
Note that here we cannot appeal to our general theorem above because the verification predicate queries v̂o.

The soundness of our accumulation scheme is captured by a zero-finding game (ZFG). First explicitly
described by [BCMS20], the most basic form of a ZFG challenges the adversary to output a commitment cm
(under a standard-model commitment scheme) to a low-degree polynomial f ̸≡ 0 such that f(ro(cm)) = 0.
Intuitively this is hard because f is fixed by cm before ro(cm) is known, and so the probability that
f(ro(cm)) = 0 cannot be much larger than the probability that f(α) = 0 for a random α ∈ F, which is
negligible for large fields. [CCS22] shows that a more general version of the ZFG holds in the LDROM,
where the ZFG polynomial may depend in a restricted way on the LDRO itself. That is, they show that it is
hard to find a commitment cm to polynomials f, g such that f − ρ̂ ◦ g ̸≡ 0 but (f − ρ̂ ◦ g)(ρ̂(cm)) = 0.

The security of our construction depends on the hardness of a similar problem in the AROM, captured by
the following lemma.

Lemma 1 (informal). It is hard for any polynomial-size adversary with access to the ARO (ro,wo, v̂o) to find a
commitment cm to a pair of low-degree polynomials f, g such that f−v̂o◦g ̸≡ 0 but (f−v̂o◦g)(ro(cm)) = 0.

We prove Lemma 1 by adapting the proof of the ZFG in [CCS22]. The proof relies on a forking lemma in
the LDROM, which in turn relies on the ability to efficiently simulate the oracle in order to sample a forking
transcript. For the AROM, we will rely on the emulator described in Section 2.4. The proof proceeds as
follows. Looking ahead, we note that the emulator answers queries to v̂o using some polynomial P . We show
that the adversary cannot win the ZFG when v̂o is replaced by P . This argument uses the forking lemma with
respect to the emulator, and follows [CCS22], with one difference: this approach does not require a bespoke
forking lemma as in [CCS22], and can be carried out using a general forking lemma [BN06, Lemma 1]. This
general forking lemma is designed for random oracle adversaries, however, as we have already replaced v̂o
with the emulator we can “perfectly emulate” P using the emulator. Further, we can perfectly emulate wo
using the witness circuit B. This allows us to reduce the ZFG adversary to a random oracle adversary and
thus apply the general forking lemma. Then, since the emulator is statistically indistinguishable from v̂o, the
adversary cannot win the original ZFG.

5Recall that ro(x) = y and wo(x) = z if and only if v̂o(x, y, z) = 1.
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Before we describe our emulator, we discuss an important feature of our PCD construction.

Extraction and PCD depth. Almost all constructions of PCD suffer from the “extractor blowup” problem.
To obtain a PCD transcript of depth d, we apply the SNARK extractor to itself d times. If the extractor
corresponding to a size-S adversary is of size Sc, then the final extractor size is sc

d
, where s is the size of the

original PCD adversary. As a result, one obtains meaningful security guarantees when d is a constant.
There is a single construction that does not suffer from this issue: the construction of [CT10]. This is

because their SNARK (in their signed random oracle model) is straightline (or “list”) extractable. Micali’s
SNARK is also straightline extractable in the ROM [Val08]. Of course, after heuristically instantiating the
oracle there is no longer any notion of “straightline”. On the other hand, we can easily show that Micali’s
SNARK is straightline extractable in the AROM. (We do not know how to show this in the LDROM; [CCS22]
instead gives a rewinding extractor for Micali’s SNARK.)

As a result, our PCD construction is secure for arbitrary recursion depth.

2.4 Emulation of the ARO

As discussed in Section 2.3, we aim to construct PCD in the AROM by proving that cryptographic properties
in the ROM, specifically knowledge soundness and zero-knowledge of the Micali SNARK, also hold in the
AROM. To this end, we design an efficient algorithmM that answers queries in a way that is statistically
indistinguishable from answers of the ARO. We refer to such an algorithm as an emulatorM for the AROM.6

Recall that the ARO consists of a tuple of oracles (ro,wo, v̂o). Our emulator M achieves a special
(stronger) type of emulation: given oracle access to some ro and wo,M can efficiently emulate v̂o drawn
from the ARO distribution conditioned on (ro,wo).7 We use this type of emulation to prove Theorem 3.

Lemma 2 (informal). There exists a probabilistic algorithmM such that for every security parameter λ ∈ N,
query bound t ∈ N, and t-query adversary A,∣∣∣∣ Pr

(ro,wo,v̂o)←O(λ)

[
A(ro,wo,v̂o) = 1

]
− Pr

(ro,wo,v̂o)←O(λ)

[
AM(ro,wo)

= 1
]∣∣∣∣ ≤ t

2λ
. (1)

Moreover,M is pass-through with respect to (ro,wo): it answers queries to those oracles by forwarding
them to the corresponding “real” oracle (and recording the answers).

We refer to the absolute difference in Equation 1 as the emulation error. An emulator is perfect if it has
zero emulation error.

Prior oracle emulators. Recall that a random oracle is a function ro chosen uniformly from ({0, 1}m →
{0, 1}λ). It has a well-known perfect (stateless) emulatorMro that “lazily” samples answers: given a list
of query-answer pairs tr ∈ ({0, 1}m × {0, 1}λ)t and a new query x ∈ {0, 1}m, Mro generates a query
answer y ∈ {0, 1}λ, depending on if there exists an entry (x, y′) ∈ tr. If so,Mro returns y := y′ and tr.
Otherwise, Mro uniformly samples y ← {0, 1}λ and returns the sampled answer y and the updated list
tr′ = tr ∪ {(x, y)}. Note that the lists tr and tr′ can be omitted from the input and output ifMro maintains
the list of known query-answer pairs in its state.

The low-degree random oracle [CCS22] also has a perfect emulator, based on succinct constraint detection
for the Reed–Muller code [BCFGRS17].

6Emulators are sometimes known as “lazy samplers” or “simulators”. In this paper we reserve the word simulator to refer to zero
knowledge simulators.

7A further strengthening is the ability to emulate oracle queries conditioned on an input list of (real) oracle query-answer pairs.
We use this additional property to show that Micali’s SNARK maintains zero knowledge in the AROM (see Section 2.3).
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Challenges for the ARO. The low-degree structure of v̂o may suggest that succinct constraint detection
directly yields a construction ofM(ro,wo) with perfect emulation. However, the “sparsity” of vo implies
that the set of all possible v̂o is not a linear space, as we now explain. Recall that for x ∈ {0, 1}m, y ∈
{0, 1}λ, z ∈ {0, 1}w, v̂o(x, y, z) = vo(x, y, z) = 1 if and only if y = ro(x) and z = wo(x), and 0 otherwise.
Hence, if v̂o1, v̂o2 are extended verification oracles, v̂o′ = v̂o1 + v̂o2 may not be an extended verification
oracle because there may exist x, y1, y2, z1, z2 such that v̂o′(x, y1, z1) = v̂o′(x, y2, z2) = 1 and y1 ̸= y2.
Hence, unlike for the LDRO, we cannot directly constructM(ro,wo) from succinct constraint detection.
Our approach. We adopt a novel approach to simulation. First, we design a query-efficient but time-
inefficient perfect emulator for a random low-degree extension f̂ of a given arbitrary function f .8 This almost
suffices for our goal because v̂o is a random low-degree extension of the function vo defined by (ro,wo),
which we can efficiently compute at any point by querying ro and wo. Second, we additionally achieve
time-efficient emulation by leveraging the sparsity of vo, at the cost of a small statistical emulation error.
(1) Time-inefficient emulation of a random low-degree extension. Let f : {0, 1}n → F be a function and
d ∈ N a degree bound. We seek an emulatorMLD such thatMf

LD answers queries in a way that is identically
distributed to a random extension f̂ of f with individual degree at most d.

We fix some notation. For w ∈ {0, 1}n, we denote by δw the unique multilinear polynomial with
δw(w) = 1 and δw(x) = 0 for all x ∈ {0, 1}n \ {w}. For a set S ⊆ Fn, we say that w is S-bad if for every
n-variate polynomial Q of individual degree at most d such that (i) Q(x) = 0 for every x ∈ {0, 1}n \ {w}
and (ii) Q(z) = 0 for every z ∈ S, it holds that Q(w) = 0. For a query-answer list tr ∈ (Fn × F)t, we
denote the query set supp(tr) := {x : (x, y) ∈ tr}.

Intuitively, w is S-bad if f(w) can be deduced from f̂ |S , i.e. given the evaluation table of f everywhere
except at w and partial knowledge about the structure of a low-degree extension f̂ . Note that S-badness is
monotone with respect to S and that if w ∈ S then w is S-bad.

The query-efficient but time-inefficient emulatorMLD works as follows.

Mf
LD(tr, x

∗):

1. Let S := supp(tr) ∪ {x∗}, and W be the set of S-bad points. Set P (X⃗) :=
∑

w∈W f(w) · δw(X⃗).

2. Define g : supp(tr) ∪ {0, 1}n → F by g(x) :=

{
tr(x)− P (x) if x ∈ supp(tr)

0 if x ∈ {0, 1}n
.

3. Sample a random degree-d extension ĝ of g.
4. Return y := ĝ(x) + P (x) and tr′ := tr ∪ {(x∗, y)}.

Observe that g is well-defined since if w ∈ supp(tr) ∩ {0, 1}n then w ∈ W and tr(w) = f(w) by
assumption. Moreover, ĝ+P is a low-degree extension of the function f ′ : {0, 1}n → F given by f ′(w) = 0
for S-good w and f ′(w) = f(w) for S-bad w. That is, f ′ is consistent with f at every point the adversary
“knows”, and is zero elsewhere. ĝ + P is also consistent with all prior queries as recorded in tr. We show
later that this is sufficient to perfectly emulate a random low-degree extension of f .

The query complexity ofMLD is equal to the size of W , i.e., the number of S-bad points. Aaronson
and Wigderson [AW09, Lemma 4.3] proved that, provided d ≥ 2, the number of S-bad points is at most
|S| = |supp(tr)|+ 1. Moreover since S-badness is monotone, queryingMLD t times results in t queries to
f across the whole execution.
(2) Time-efficient emulation from sparsity. There are two sources of time-inefficiency in the emulator
MLD: (i) sampling the polynomial ĝ; (ii) computing the set W . We consider each of these difficulties in turn.

8In contrast, emulating the low-degree random oracle (as in [CCS22]) corresponds to emulating f̂ for a random function f that
the emulator samples itself. This considerably simplifies the task, and in particular enables a time-efficient perfect emulation.
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(i) Sampling ĝ. Since ĝ has an exponentially-large description, we cannot sample it explicitly. Instead, we
might hope to make use of the random multivariate polynomial sampling algorithm of [BCFGRS17],
which achieves the following guarantee.

Lemma 3. There is an efficient probabilistic algorithm LDSample such that for every degree bound
d ∈ N, set S ⊆ Fn, map h : S → F, q ∈ Fn, and α ∈ F,

Pr[LDSample(1d, S, h, x) = α] = Pr[P (x) = α | P |S = h] ,

where P is a uniformly random n-variate polynomial of individual degree at most d.9

We do not know how to use LDSample to sample ĝ directly, since that would require S = supp(tr) ∪
{0, 1}n and so LDSample would run in exponential time. Instead, we use a structural result about
low-degree extensions of the zero function, the combinatorial nullstellensatz [Alo99].

Lemma 4 (informal). If a polynomial P is zero on {0, 1}n, then there exist polynomials (Ri)
n
i=1 such

that

P (X⃗) ≡
n∑

i=1

Xi(Xi − 1)Ri(X⃗) . (2)

Combining Lemma 4 with a linear-algebraic argument, we show that sampling each Ri in Equation 2
uniformly at random subject to constraints implied by P being a low-degree extension of g yields a
uniformly random low-degree extension of g. We can then sample each Ri via LDSample.

(ii) The set W . We do not know of an algorithm that can efficiently compute, given a set S ⊆ Fn, the set of
all S-bad points. As a result, we do not know how to efficiently realizeMLD. Instead we address this
difficulty by leveraging the structure of vo. Specifically, we consider g = vo (and thus n = m+λ+w).

We observe that vo is sparse: it is nonzero only at points (x, y, z) for ro(x) = y and wo(x) = z. If the
adversary has not queried ro at x, then intuitively (since ro(x) is random) it will not be able to find
any y, z such that vo(x, y, z) = 1, even given access to v̂o. In particular, the probability that the set W
contains any (x, y, z) ∈ {0, 1}m+λ+w such that vo(x, y, z) = 1, but ro(x) was not yet queried, should
be negligible. Indeed, we show that this probability is at most |S|/2λ.

Observe that Step 1 of the time-inefficient emulator does nothing if f(w) = 0 for all w ∈ W . It
follows from the above that to achieve simulation accuracy O(|S|/2λ), it suffices to include in W only
points (x, y, z) for which the adversary has already queried ro at x and ro(x) = y,wo(x) = z. Since
we observe the adversary’s queries to ro, this set of points is easy to determine.

To show this formally, we follow an “identical-until-bad-is-set” analysis [BR06].

9If the RHS is not well-defined, LDSample outputs ⊥.
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3 Preliminaries

3.1 Notations

We define [n] := {1, . . . , n}. For a subset S ⊆ [n], we use S̄ to denote the complement of S. We use
F≤d[X1, . . . , Xm] to denote the set of m-variate polynomials of individual degree at most d with coefficients
in F; we write deg(·) to denote the individual degree. For d⃗ = (d1, . . . , dm), we use F≤d⃗[X1, . . . , Xm] to
denote the set of m-variate polynomials such that the variable Xi has individual degree at most di for each
i ∈ [m].

Functions. We use Dom(f) to denote the domain and Cod(f) to denote the codomain of a function f . We
use (X → Y ) to denote the set of all functions {f : X → Y }, and (X ⇀ Y ) to denote the set of all partial
functions {f : X ⇀ Y }. For a linear map Φ, we use ker(Φ) to denote the kernel of Φ and im(Φ) to denote
the image of Φ. We say that a function is total if it is defined for all elements of its domain, and say that it is
not total otherwise.

Low-degree extensions. For n, d ∈ N, S ⊂ Fn and f : S → F we denote the set of extensions of degree at
most d of f to the field F by LDEF,d[f ] :=

{
f̂ ∈ F≤d[X1, . . . , Xn] : f̂(x) = f(x) ∀x ∈ S

}
.

Distributions. For finite set X , we write x← X to denote that x is drawn uniformly at random from X . We
use supp(D) to denote the support of the distribution D. We write U(X) to denote the uniform distribution
over the set X .

Oracle distributions. An oracle distribution O is a distribution over functions θ : X → Y . We define
Dom(O) := X and Cod(O) := Y . A random oracle is an oracle distribution U(m,n) given by θ ←
({0, 1}m → {0, 1}n) for some m,n ∈ N.

Oracle algorithms. For a function θ : X → Y , we write Aθ for an algorithm with oracle access to θ.
Further, for a tuple of functions (θ1, . . . , θν), where ν ∈ N, with θi : Xi → Yi, we write A(θ1,...,θν) for an
algorithm with oracle access to each θi for i ∈ [ν], and AθS for an algorithm with oracle access to a subset
of functions {θi| i ∈ S} where S ⊆ [ν]. Often it is useful to view a tuple of oracles (θ1, . . . , θν) as a single
combined oracle θ such that θ(oid, x) = θoid(x) for all oid ∈ [ν] and x ∈ Dom(θoid).

Oracle transcripts. For F ⊆ (X → Y ), an F -query-answer transcript is a sequence of tuples
tr := ((x1, y1), . . . , (xt, yt)) ∈ (X × Y )t for some t ∈ N, such that there exists f ∈ F where for
all i, f(xi) = yi. We denote the query set supp(tr) := {x : (x, y) ∈ tr}. Note that we can view
tr as a function supp(tr) → F. For an oracle distribution O, we define an O-query-answer transcript
to be a supp(O)-query-answer transcript. For O supported on ν-tuples of oracles, an O-query-answer
transcript is defined with respect to the combined oracle; i.e., tr = ((oid1, x1, y1), . . . , (oidt, xt, yt)) ∈
(
⋃ν

oid=1({oid} ×Dom(θoid)× Cod(θoid)))
t. We also define tr|oid := {(x, y) : (oid, x, y) ∈ tr}.

For an oracle algorithm A and oracle θ, the notation o
tr←− Aθ(z) denotes that Aθ on input z outputs o

and makes the sequence of oracle queries tr.

Indexed relations. An indexed relationR is a set of triples (i,x,w) where i is the index, x is the instance,
and w is the witness; the corresponding indexed language L(R) is the set of index-instance pairs (i,x) for
which there exists a witness w such that (i,x,w) ∈ R. For example, the indexed relation of satisfiable
boolean circuits consists of triples where i is the description of a boolean circuit, x is a partial assignment to
its input wires, and w is an assignment to the remaining wires that makes the circuit output 0.

Oracle relations. For a set of oracle distributions X , we writeRX to denote the set of indexed relations
{Rθ : θ ∈

⋃
O∈X supp(O)}. When considering sets of oracle distributions X for which each O ∈ X is such

that supp(O) contains tuples of oracles (θ1, . . . , θν), for ν ∈ N, with oracle identifiers (oid1, . . . oidν), we
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write R(X ,oid) to denote the set of indexed relations {Rθoid : (θ1, . . . , θν) ∈
⋃
O∈X supp(O)}. We define

R(X ,oid) ∈ NP(X ,oid) if and only if there exists a polynomial-time oracle Turing machine M such that, for
every (θ1, . . . , θν) ∈

⋃
O∈X supp(O),Rθoid = {(i,x,w) : M θoid(i,x,w) = 1}.

Security parameters. We assume for simplicity that all public parameters have a length of at least λ so that
efficient algorithms that receive such parameters can run in time (at least) polynomial in λ.

Adversaries. An adversary (or extractor) is polynomial-size if it can be expressed as a circuit of polynomial
size. We also consider a relaxed definition: an adversary (or extractor) running in (non-uniform) expected
polynomial-time is a Turing machine provided with a polynomial-size non-uniform advice string and access
to an infinite random tape, whose expected running time for all choices of advice is polynomial.

An adversary A with expected running time t and success probability p can be converted into a circuit of
size O(t/ϵ) with success probability p− ϵ as follows: first truncate the execution of A at running time t/ϵ;
then choose as advice the randomness that maximizes the success probability of the truncated A.

For ν ∈ N and a distribution O, whose support contains tuples of oracles (θ1, . . . , θν), we refer to an
adversary with access to (θ1, . . . , θν)← O as an O-adversary.

3.2 Linear algebra and the combinatorial nullstellensatz

Definition 3.1. An affine subspace S of a vector space V is a set a+ S0 = {a+ s0 : s0 ∈ S0} where a ∈ V
and S0 is a subspace of V .

Claim 3.2. Let Φ: V → W be a linear map, and let S be a finite affine subspace of V . If s ∼ U(S) then
Φ(s) ∼ U(Φ(S)).

Proof. Since S is a finite affine subspace of V , there is a vector a ∈ V and a finite subspace S0 ⊆ V such
that S0 := {s− a : s ∈ S}. Fix w ∈ Φ(S) and s′0 ∈ S0 such that Φ(s′0) = w − Φ(a); then

Pr
s←S

[Φ(s) = w] = Pr
s0←S0

[Φ(s0) = w − Φ(a)] = Pr
s0←S0

[s0 ∈ ker(Φ) + s′0]

= | ker(Φ)|/|S0| = 1/|Φ(S0)| = 1/|Φ(S)| .

Lemma 3.3 (Combinatorial nullstellensatz [Alo99]). Let F be an arbitrary field, and let f be a polynomial
in F[X1, . . . , Xn]. Let S1, . . . , Sn be nonempty subsets of F and define gi(xi) =

∏
s∈Si

(xi − s). If f
vanishes over all the common zeros of g1, . . . , gn (that is, if f(s1, . . . , sn) = 0 for all si ∈ Si), then there are
polynomials h1, . . . , hn ∈ F[X1, . . . , Xn] so that deg(hi) ≤ deg(f)− deg(gi) so that

f =
n∑

i=1

higi .

3.3 Non-interactive arguments in oracle models

Given a set of oracle distributions X , a (preprocessing) non-interactive argument relative for an indexed
oracle relationRX is a tuple of algorithms ARG = (G, I,P,V) that works as follows. Below we denote by
θ an oracle (or tuple of oracles) in the set

⋃
O∈X supp(O).

• G(1λ)→ pp. On input a security parameter λ (in unary), the generator G samples public parameters pp.

• Iθ(pp, i) → (ipk, ivk). On input public parameters pp and an index i for the relation R, the indexer I
deterministically computes index-specific proving and verification keys (ipk, ivk).
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• Pθ(ipk,x,w)→ π. On input an index-specific proving key ipk, an instance x, and a corresponding witness
w, the prover P computes a proof π that attests to the claim that (i,x,w) ∈ Rθ.

• Vθ(ivk,x, π) → b. On input an index-specific verification key ivk, an instance x, and a corresponding
proof π, the verifier V computes a bit indicating whether π is a valid proof.

We require ARG to satisfy the following completeness and soundness properties.

• Completeness. For every oracle distribution O ∈ X and adversary A,

Pr


(i,x,w) ∈ Rθ

⇓
Vθ(ivk,x, π) = 1

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(i,x,w)← Aθ(pp)

(ipk, ivk)← Iθ(pp, i)
π ← Pθ(ipk,x,w)

 = 1 .

The above formulation of completeness allows (i,x,w) to depend on the oracle θ and public parameters
pp.

• Soundness. For every oracle distribution O ∈ X and polynomial-size adversary P̃ ,

Pr

 V
θ(ivk,x, π) = 1

∧
(i,x) ̸∈ L(Rθ)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(i,x, π)← P̃θ(pp)

(ipk, ivk)← Iθ(pp, i)

 ≤ negl(λ) .

The above formulation of soundness allows (i,x) to depend on the oracle θ and public parameters pp.
We also consider straightline knowledge soundness properties and zero knowledge for ARG.

Straightline knowledge soundness. ARG has straightline knowledge soundness (with respect to auxiliary
input distribution D) if there exists a deterministic polynomial-time extractor E such that for every oracle
distribution O ∈ X and (non-uniform) polynomial-time adversary P̃ ,

Pr


Vθ(ivk,x, π) = 1

∧
(i,x,w) ̸∈ Rθ

∣∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)
ai← D(pp)

(i,x, π)
tr←− P̃θ(pp, ai)

(ipk, ivk)← Iθ(pp, i)
w← E(pp, i,x, π, tr)


≤ negl(λ) .

Zero knowledge. ARG has statistical zero knowledge if there exists a probabilistic polynomial-time stateful
simulator S such that for every oracle distribution O ∈ X and polynomial-size honest stateful adversary A,
the following distributions are negl(λ)-close in statistical distance:A

θ(π)

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(i,x,w)← Aθ(pp)

(ipk, ivk)← Iθ(pp, i)
π ← Pθ(ipk,x,w)

 and

AS
θ
(π)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← S(1λ)
(i,x,w)

tr←− Aθ(pp)
π ← Sθ(i,x, tr)

 . (3)
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An adversary A is honest if it outputs (i,x,w) ∈ Rθ with probability ≥ 1− negl(λ). Above, the notation
ASθ indicates that the simulator S (with oracle access to θ) answers the oracle queries of A.

Succinctness. In this work, we say that a non-interactive argument system ARG forRX is succinct if there
is a fixed polynomial p such that both the length of the proof and the running time of the argument verifier
are bounded by p(λ, |x|). In this case, we refer to ARG as a SNARG; if ARG also has knowledge soundness,
it is a SNARK.

3.4 Proof-carrying data

A triple of algorithms PCD = (G, I,P,V) is a (preprocessing) proof-carrying data scheme (PCD scheme)
for a class of compliance predicates F relative to a set of oracle distributions X if the properties below hold.

Definition 3.4. A transcript T is a directed acyclic graph where each vertex u ∈ V (T) is labeled by local
data z

(u)
loc and each edge e ∈ E(T) is labeled by a message z(e) ̸= ⊥. The output of a transcript T, denoted

o(T), is z(e) where e = (u, v) is the lexicographically-first edge such that v is a sink.

Definition 3.5. A vertex u ∈ V (T) is Φ-compliant for Φ ∈ F if for all outgoing edges e = (u, v) ∈ E(T)
and for all θ ∈

⋃
O∈X supp(O):

• (base case) if u has no incoming edges, Φθ(z(e), z
(u)
loc ,⊥, . . . ,⊥) = 1;

• (recursive case) if u has incoming edges e1, . . . , em, Φθ(z(e), z
(u)
loc , z

(e1), . . . , z(em)) = 1.
We say that T is Φ-compliant if E(T) is non-empty and all vertices incident to an edge are Φ-compliant.

Completeness. For every oracle distribution O ∈ X and adversary A,

Pr



 Φ ∈ F

∧
(
(∧mi=1zi = ⊥) ∨ (∧mi=1Vθ(ivk, zi, πi) = 1)

)
∧ Φθ(z, zloc, z1, . . . , zm) = 1


⇓

Vθ(ivk, z, π) = 1

∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

(Φ, z, zloc, [zi, πi]
m
i=1)← Aθ(pp)

(ipk, ivk)← Iθ(pp,Φ)
π ← Pθ(ipk, z, zloc, [zi, πi]

m
i=1)

 = 1 .

Straightline knowledge soundness. PCD = (G, I,P,V) has straightline knowledge soundness (with
respect to auxiliary input distribution D) if there exists a deterministic polynomial-time extractor E such that
for every oracle distribution O ∈ X and (non-uniform) polynomial-time adversary P̃,

Pr


Φ ∈ F
∧V(ivk, o, π) = 1

∧
(
T is not Φ-compliant ∨ o(T) ̸= o

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)
ai← D(pp)

(Φ, o, π)
tr←− P̃θ(pp, ai)

(ipk, ivk)← Iθ(pp,Φ)
T← E(pp,Φ, o, π, tr)


≤ negl(λ) .

Zero knowledge. PCD has statistical zero knowledge if there exists a probabilistic polynomial-time stateful
simulator S such that for every oracle distribution O ∈ X and polynomial-size honest (stateful) adversary A,
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the following distributions are negl(λ)-close in statistical distance:A
θ(π)

∣∣∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← G(1λ)
(Φ, z, zloc, [zi, πi]

m
i=1)← Aθ(pp)

(ipk, ivk)← Iθ(pp,Φ)
π ← Pθ(ipk,Φ, z, zloc, [zi, πi]

m
i=1)

 and

ASθ(π)

∣∣∣∣∣∣∣∣
θ ← O(λ)

pp← S(1λ)
(Φ, z, zloc, [zi, πi]

m
i=1)

tr←− Aθ(pp)
π ← Sθ(Φ, z, tr)

 .

An adversary A is honest if its output satisfies the implicant of the completeness condition with proba-
bility ≥ 1 − negl(λ) (i.e., Φ ∈ F, Φθ(z, zloc, z1, . . . , zm) = 1, and either for all i, zi = ⊥, or for all i,
Vθ(ivk, zi, πi) = 1). Above, the notation AS indicates that the simulator S answers oracle queries of A.

Efficiency. The generator G, prover P, indexer I and verifier V run in polynomial time. A proof π has size
poly(λ, |Φ|); in particular, it does not grow with each application of P.

3.5 Accumulation schemes

We recall the definition of an accumulation scheme from [BCMS20], extended to any set of oracle distribu-
tions; then, in Definition 3.6 below, we describe how to specialize that notion to the case of accumulating
oracle queries.

Let Φ:
⋃
O∈X supp(O(∗))× ({0, 1}∗)3 → {0, 1} be a predicate (for clarity we write Φθ(ppΦ, iΦ, q) for

Φ(θ, ppΦ, iΦ, q)). Let H be a probabilistic algorithm with access to θ, which outputs predicate parameters
ppΦ.

An accumulation scheme for (Φ,H) is a tuple of algorithms AS = (G, I,P,V,D) that have access to
the same oracle θ (except for G). These algorithms satisfy completeness and soundness, and optionally also
zero knowledge, as specified below.
Completeness. For every oracle distribution O ∈ X and (unbounded) adversary A,

Pr


∀ j ∈ [ℓ], Dθ(dk, accj) = 1
∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

⇓
Vθ(avk, [qi]

n
i=1, [accj ]

ℓ
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

n
i=1, [accj ]

ℓ
j=1)← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)
(acc, πV)← Pθ(apk, [qi]

n
i=1, [accj ]

ℓ
j=1)

 = 1 .

Note that for ℓ = n = 0, the precondition on the left-hand side holds vacuously; this is required for the
completeness condition to be non-trivial.
Soundness. For every oracle distribution O ∈ X and polynomial-size adversary A,

Pr


Vθ(avk, [qi]

n
i=1, [accj ]

ℓ
j=1, acc, πV) = 1

Dθ(dk, acc) = 1

⇓
∀ j ∈ [ℓ], Dθ(dk, accj) = 1
∀ i ∈ [n], Φθ(ppΦ, iΦ, qi) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)(
iΦ [qi]

n
i=1 [accj ]

ℓ
j=1

acc πV

)
← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)

 ≥ 1− negl(λ) .

Zero knowledge. There exists a polynomial-time stateful simulator S such that for every oracle distribution
O ∈ X and polynomial-size stateful “honest” adversary A (see below), the following distributions are
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(statistically/computationally) indistinguishable:
Aθ(acc)

∣∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← G(1λ)

ppΦ ← Hθ(1λ)
(iΦ, [qi]

n
i=1, [accj ]

ℓ
j=1)← Aθ(pp, ppΦ)

(apk, avk, dk)← Iθ(pp, ppΦ, iΦ)
(acc, πV)← Pθ(apk, [qi]

n
i=1, [accj ]

ℓ
j=1)


and 

Aθ(acc)

∣∣∣∣∣∣∣∣∣∣∣

θ ← O(λ)
pp← S(1λ)

ppΦ ← Hθ(1λ)

(iΦ, [qi]
n
i=1, [accj ]

ℓ
j=1)

tr←− Aθ(pp, ppΦ)

acc← Sθ(ppΦ, iΦ, tr)


.

HereA is honest if it outputs, with probability 1, a tuple (iΦ, [qi]ni=1, [accj ]
ℓ
j=1) such that Φθ(ppΦ, iΦ, qi) = 1

and Dθ(dk, accj) = 1 for every i ∈ [n] and j ∈ [ℓ]. Note that the simulator S is not required to simulate the
accumulation verifier proof πV.

Accumulation scheme for oracle queries. We explain how to specialize the general notion of an accumula-
tion scheme above to the particular case of accumulating queries to a tuple of oracles.

Definition 3.6. Let X be a set of oracle distributions. An accumulation scheme for X -queries is an
accumulation scheme where: (i) the accumulation verifier V does not access the oracle; (ii) H = ⊥ (and
so ppΦ = ⊥); (iii) predicate inputs q are of the form (x, y);10 (iv) the predicate Φ is defined such that
Φθ(ppΦ, iΦ, x, y) = 1 if and only if θ(x) = y (in particular, ppΦ and iΦ are ignored).

3.6 Commitment schemes

Let ν ∈ N and let X be a set of oracle distributions, such that each O ∈ X is a distribution over tuples
of oracles (θ1, . . . , θν). A commitment scheme in X is a tuple CM = (CM.Setup,CM.Commit) with the
following syntax.
• CM.Setup, on input a security parameter 1λ, outputs a commitment key ck.
• CM.Commit, on input a commitment key ck, a message m ∈ {0, 1}∗, and randomness ω, outputs a

commitment cm.
The tuple CM satisfies a binding property and, optionally, a hiding property.

• Binding. For every O ∈ X and efficient adversary A,

Pr

 m0 ̸= m1

∧
CM.Commit(ck,m0;ω0) = CM.Commit(ck,m1;ω1)

∣∣∣∣∣∣
(θ1, . . . , θν)← O(λ)
ck← CM.Setup(1λ)

((m0, ω0), (m1, ω1))← A(θ1,...,θν)(ck)


≤ negl(λ) .

10If X is a set of oracle distributions whose support contains tuples of oracles, then x is assumed to start with the oracle identifier
corresponding to the oracle being queried.
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• Hiding. For every O ∈ X and efficient stateful adversary A that outputs two messages of the same length,
the following distributions are (statistically or computationally) indistinguishable:

D0(λ) :=

(pp, cm, aux)

∣∣∣∣∣∣∣∣∣∣

(θ1, . . . , θν)← O(λ)
ck← CM.Setup(1λ)

(m0,m1, aux)← A(θ1,...,θν)(ck)

ω ← {0, 1}poly(λ)
cm := CM.Commit(ck,m0;ω)



and D1(λ) :=

(pp, cm, aux)

∣∣∣∣∣∣∣∣∣∣

(θ1, . . . , θν)← O(λ)
ck← CM.Setup(1λ)

(m0,m1, aux)← A(θ1,...,θν)(ck)

ω ← {0, 1}poly(λ)
cm := CM.Commit(ck,m1;ω)

 .

Note that in this definition CM does not have access to (θ1, . . . , θν). The above generalizes the notion of a
commitment scheme, which is recovered from the above by setting the oracles to be empty.

Moreover, we say that CM is s-succinct if for every commitment key ck ∈ CM.Setup(1λ), message
m ∈ {0, 1}∗, and randomness ω, it holds that CM.Commit(ck,m;ω) ∈ {0, 1}s(λ).

We have the following simple claim about any binding and hiding commitment scheme.

Claim 3.7. Let CM be a binding and hiding commitment scheme. Then for every message m,

Pr
ω,ω′

[
CM.Commit(ck,m, ω) = CM.Commit(ck,m, ω′)

]
= negl(λ) .

A proof of the above claim appears in Claim 3.4 of [CCS22].

3.7 Constraint detection for low-degree polynomials

Definition 3.8. Let d⃗ = (d1, . . . , dm) ∈ Nm. The low-degree polynomial evaluation code is defined as
follows:

LD[F,m, d⃗] :=
{
c ∈ (Fm → F) : ∃ p ∈ F≤d⃗[X1, . . . , Xm] s.t. ∀x ∈ Fm, c(x) = p(x)

}
.

Further, let F = {Fλ}λ∈N be a family of fields, m : N → N an arity function, and d⃗ : N → Nm a degree
function. We define

LD[F ,m, d⃗] :=
{
LD[Fλ,m(λ), d⃗(λ)]

}
λ∈N

.

We recall the notion of constraints for linear codes.

Definition 3.9. Let C ⊆ (D → F) be a linear code. A subset Q ⊆ D is constrained if there exists a nonzero
z : Q → F such that, for every c ∈ C,

∑
x∈Q z(x)c(x) = 0 (equivalently, if there exists z ̸= 0 ∈ C⊥ with

supp(z) ⊆ Q); we refer to z as a constraint on Q. We say that Q is unconstrained if it is not constrained.
We say that Q ⊆ D determines x ∈ D if x ∈ Q or there exists a constraint z on Q∪{x} such that z(x) ̸= 0.

We recall the definition of a constraint detector [BCFGRS17], which is an algorithm that determines
whether a set of queries Q is constrained and, if so, outputs a constraint.
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Definition 3.10. Let C ⊆ (D → F) be a linear code. An algorithm CD is a constraint detector for C
if, given as input a set Q ⊆ D, outputs: (i) a basis for the space of constraints {z : Q → F : ∀ c ∈
C,
∑

x∈Q z(x)c(x) = 0} on Q if Q is constrained; (ii) ⊥ if Q is unconstrained; A code family {Cλ}λ∈N has
efficient constraint detection if there exists a polynomial-time algorithm CD such that, for every λ ∈ N,
CD(1λ, ·) is a constraint detector for Cλ.

The following theorem is proved in [BCFGRS17]:

Theorem 3.11. The code family LD[F ,m, d⃗] has a constraint detector CD(1λ, ·) that runs in time poly(m(λ), d(λ), log |Fλ|),
where d(λ) := maxi∈[m] d(λ)i. In particular, it has efficient constraint detection.

3.8 Forking lemmas

We state a general forking lemma proved in [BN06].

Lemma 3.12. Fix t, λ ∈ N. Let A be a probabilistic algorithm that on input x, y1, . . . , yt returns a pair
(I, σ), where I ∈ [t] and σ is referred to as a side output. Let IG be a probabilistic algorithm that we call the
input generator. The accepting probability of A, denoted acc, is defined as follows:

acc := Pr

 I ≥ 1

∣∣∣∣∣∣
x← IG

y1, . . . , yt ← U({0, 1}λ)
(I, σ)← A(x, y1, . . . , yt)

 .

The forking algorithm ForkA associated to A is the probabilistic algorithm that takes input x and proceeds
as follows:

(i) Pick coins ρ for A at random.
(ii) Sample y1, . . . , yt ← U({0, 1}λ), and run A(x, y1, . . . , yt; ρ) to obtain (I, σ).

(iii) If I = 0 then return (0, ε, ε).
(iv) Otherwise, sample y′I , . . . , y

′
t ← U({0, 1}λ) and run A(x, y1, . . . , yI−1, y′I , . . . , y′t; ρ) to obtain

(I ′, σ′).
(v) If (I = I ′ and yI ̸= y′I) then return (1, σ, σ′).

(vi) Otherwise return (0, ε, ε).
Let

frk := Pr

[
b = 1

∣∣∣∣ x← IG
(b, σ, σ′)← ForkA(x)

]
.

Then

frk ≥ acc ·
(
acc

t
− 1

2λ

)
,

alternatively,

acc ≤ t

2λ
+
√
t · frk .

3.9 Identical-until-bad

We consider two programs, G and H , which are written in some pseudocode. We say that G and H are
identical-until-bad if they are syntactically identical except for statements that follow the setting of a bad flag
to true. Somewhat more formally, let G and H be programs written in some pseudocode and let bad be a flag
that occurs in both of them. We say that G and H are identical-until-bad if their code is the same except
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possibly places where G has a statement “set the bad flag” followed by some statements SG while H has a
corresponding statement “set the bad flag” followed by some statements SH , different from SG.

We refer the reader to [BR06] for further details and a full formal treatment of the notion of identical-
until-bad, which requires specification of the programming language in question to fully formalize. We stress
that that identical-until-bad is a purely syntactic requirement.

We state the fundamental lemma of game-playing, which is proved in [BR06].

Lemma 3.13. Let G and H be identical-until-bad programs and let A be an adversary. Then∣∣Pr[AG = 1]− Pr[AH = 1]
∣∣ ≤ Pr[AG sets bad] .
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4 Arithmetized random oracle model

We define the arithmetized random oracle model. As a first step, we define the arithmetized random oracle
distribution, which is defined over tuples (ro,wo, v̂o), and explain how the oracles (ro,wo, v̂o) are sampled.

Definition 4.1. Let m ∈ N be an arity parameter, λ ∈ N be a security parameter, r ∈ N be a randomness-size
parameter, w ∈ N be a witness-size parameter, and d ∈ N be a degree parameter. For all oracle circuits
B : {0, 1}m+r → {0, 1}w, we define an arithmetized random oracle distribution ARO[F,m, λ, d,B],11

where F is a finite field and the support of ARO[F,m, λ, d,B] contains triples (ro,wo, v̂o) that are sampled
as follows:

1. Sample the random oracle ro uniformly at random from ({0, 1}m → {0, 1}λ).
2. For every x ∈ {0, 1}m, sample a random string µx ∈ {0, 1}r. Then define the witness oracle

wo : {0, 1}m → {0, 1}w as wo(x) := Bro(x, µx).
3. Define the verification function vo : {0, 1}m+λ+w → {0, 1} as

vo(x, y, z) :=

{
1 if ro(x) = y ∧ wo(x) = z

0 o.w.
.

4. Sample the (extended) verification oracle v̂o : Fm+λ+w → F uniformly at random from the set{
p ∈ F≤d[X1, . . . , Xm+λ+w] : p equals vo on {0, 1}m+λ+w

}
.

5. Output (ro,wo, v̂o).

Next, we define a family of ARO distributions, which is parameterized by a family of finite fields
F = {Fλ}λ∈N and a family of oracle circuits B = {B(·)

λ : {0, 1}m(λ) → {0, 1}w(λ)}λ∈N. Here, B can be
interpreted as the set of all possible adversarial strategies for learning information about the random oracle,
and λ is the security parameter.

Definition 4.2. Let F = {Fλ}λ∈N be a family of fields, m : N → N be an arity function, w : N → N
be a witness-size function, B = {B(·)

λ : {0, 1}m(λ) → {0, 1}w(λ)}λ∈N be a family of oracle circuits, and
d : N→ N be a degree function. We define the arithmetized random oracle family as

ARO[F ,m, d,B] := {ARO[Fλ,m(λ), λ, d(λ), B
(·)
λ ] }λ∈N .

The “arithmetized random oracle” is the set of all ARO distributions for polynomial-sized circuit families B.

Definition 4.3. Let F = {Fλ}λ∈N be a family of fields, m : N→ N be an arity function, w : N→ N be a
witness-size function, and d : N→ N be a degree function. Then, we define a set of arithmetized random
oracle families as

ARO[F ,m, d] := {ARO[F ,m, d,B] : B is a family of poly(λ)-size oracle circuits} ,

where above B = {B(·)
λ : {0, 1}m(λ) → {0, 1}w(λ)}λ∈N.

11Given m ∈ N and the oracle circuit B, the randomness length r and witness size w parameters are determined. Thus r, w do not
appear in the parameterization of ARO.
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5 Stateful emulation of the ARO

We define the notion of a stateful emulator for the ARO, present our stateful emulator construction, and then
prove its correctness. We start by giving a general definition of stateful emulators for distributions over tuples
of oracles, and stating the main result of this section.

Definition 5.1 (Stateful oracle algorithms). For a randomized algorithmM : ((X ⇀ Y )×X)→ Y and
oracle algorithm A, we denote by AM(z) the following procedure:
1. Initialize tr : X ⇀ Y to be undefined everywhere.
2. (Continue to) run A (on input z) until it makes an oracle query x or terminates. If A terminates, then stop

and return A’s output.
3. If A has not terminated, first check if x ∈ supp(tr); if so, then set y := tr(x). Otherwise, compute

y ←M(tr, x) and add the mapping x 7→ y to tr.
4. Answer A’s query with y and go to Step 2.
We refer toM as a stateful oracle algorithm.

Note thatM is not itself stateful, but oracle answers are sampled in a stateful way (i.e., by storing prior
queries and answers in tr).

Definition 5.2. Let O be an oracle distribution supported on tuples of oracles (θ1, . . . , θν) for some ν ∈ N,
let S ⊆ [ν] and let ε : N → [0, 1]. Then, a stateful (O, S)-emulator with error ε is a stateful oracle
algorithmM such that for every t ∈ N and probabilistic t-query adversary A:∣∣∣Pr [Aθ = 1

∣∣∣ θ ← O]− Pr
[
AM

θS̄ = 1
∣∣∣ θ ← O]∣∣∣ ≤ ε(t) .

Moreover, we say thatM is pass-through if it answers queries to θi for any i ∈ S̄ by querying θi and
returning the answer. A stateful O-emulator is a stateful (O, [ν])-emulator.

Prior to stating our main theorem, we first introduce the definition of votr, which is a function encoding
the view of v̂o that is known, given only the ro queries in an ARO query-answer transcript.

Definition 5.3. Let X :=ARO[F ,m, d], let O ∈ X , let (ro,wo, v̂o)← O(λ) and let tr be an O(λ)-query-
answer transcript. We define votr : {0, 1}m+λ+w → {0, 1} as follows:

votr(x, y, z) :=

{
1 if tr|ro(x) = y and wo(x) = z

0 otherwise
.

Now, we state the main theorem of this section.

Theorem 5.4. Let F be a finite field, m ∈ N be an arity parameter, λ ∈ N be a security parameter,
d ∈ N be a degree parameter with d ≥ 2, and B : {0, 1}m+r → {0, 1}w be an oracle circuit. Let
O(λ) := ARO[F,m, λ, d,B]. ThenM(ro,wo)

ARO in Construction 5.11 is a pass-through stateful (O(λ), {v̂o})-
emulator with error t

2λ
. In fact, for every tv̂o ∈ N and probabilistic adversary A that makes at most tv̂o

queries to v̂o,∣∣∣Pr [A(ro,wo,v̂o) = 1
∣∣∣ (ro,wo, v̂o)← O(λ)]− Pr

[
AM

(ro,wo)
ARO = 1

∣∣∣ (ro,wo, v̂o)← O(λ)]∣∣∣ ≤ tv̂o
2λ

.

M(ro,wo)
ARO additionally satisfies the following properties:
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• Output distribution. For every O-query-answer transcript tr, x ∈ {0, 1}m+λ+w and y ∈ F we have that

Pr
(ro,wo,v̂o)←O

[
M(ro,wo)

ARO (tr, (v̂o, x)) = (tr′, y)
]
= Pr [P (x) = y | P ← U (LDEF,d[votr ∪ tr|v̂o])] ,

where tr′ := tr ∪ {(v̂o, x, y)} and votr is defined as in Definition 5.3.

• Efficiency. M(ro,wo)
ARO runs in time poly(m,λ,w, d, t, log |F|). For each oracle queryM(ro,wo)

ARO emulates,
M(ro,wo)

ARO makes at most 1 oracle query.

We often write εARO(t, λ) :=
t
2λ

to refer to the above error. We will abuse notation and refer to such an
emulator as a pass-through stateful (ARO, v̂o)-emulator. Throughout this section, we assume without loss of
generality that any adversary that queries ro on input x also queries wo with x. The proof thatM(ro,wo)

ARO has
emulation error at most t

2λ
proceeds via a sequence of hybrids.

The remainder of this section is broken up as follows.

• In Section 5.1, we construct an inefficient perfect emulatorMLD for low-degree extensions of any function
defined over the boolean hypercube.

• In Section 5.2, we construct an efficient pass-through stateful (ARO, v̂o)-emulatorM(ro,wo)
ARO .

• In Section 5.3 we prove Theorem 5.4. In order to do so, we use MLD to obtain an inefficient perfect
emulator for the ARO,M(ro,wo)

ARO∗ , and prove it is statistically close toM(ro,wo)
ARO .

• In Section 5.4, we give efficient implementations of certain subroutines used byM(ro,wo)
ARO .

5.1 Inefficient stateful emulator for low-degree extensions

We describe a stateful emulator algorithm for low-degree extensions and prove that the emulation is perfect.
Our analysis uses tools from algebraic query complexity; specifically the proof of [AW09, Lemma 4.5]
inspired the “shift” polynomial used in our analysis.

Lemma 5.5. Let n, d ∈ N with d ≥ 2. LetMLD be the stateful oracle algorithm in Construction 5.9. Then
for every f : {0, 1}n → F and adversary A:

Pr
[
Af̂ = 1

∣∣∣ f̂ ← U (LDEF,d[f ])
]
= Pr

[
AM

f
LD = 1

]
;

i.e.,Mf
LD is a stateful U (LDEF,d[f ])-emulator.

Before giving our construction of a stateful emulator for low-degree extensions, we define some notions
required for its description.

Definition 5.6. Let f : {0, 1}n → F and let tr ∈ (Fn × F)t be an LDEF,d[f ]-query-answer transcript. Then
we define (f ∪ tr) : {0, 1}n ∪ supp(tr)→ F by

(f ∪ tr)(x) :=

{
f(x) if x ∈ {0, 1}n

tr(x) otherwise
.

Definition 5.7. Given a point w ∈ {0, 1}n and a query set X ∈ (Fn)t, let Qw,X be the set containing
polynomials Qw,X ∈ F≤2[X1, . . . , Xn] such that: (i) Qw,X(w) = 1; (ii) Qw,X(x) = 0 for every x ∈ {0, 1}n
such that x ̸= w; and (iii) Qw,X(x) = 0 if x ∈ X.
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Definition 5.8. Given a query set X ∈ (Fn)t, define the set

BADX := {w ∈ {0, 1}n | Qw,X is empty} .

Construction 5.9. For a given f : {0, 1}n → {0, 1}, the emulatorMf
LD takes input (n, d, tr, x) and

works as follows.
1. Set P (X⃗) :=

∑
b∈BADsupp(tr)∪{x}

f(b) · δb(X⃗).
2. Define trs := {(x, y − P (x)) : (x, y) ∈ tr}.
3. Sample Ẑ ← LDEF,d[Z ∪ trs], where Z : {0, 1}n → {0, 1} is the zero function.
4. Output y := Ẑ(x) + P (x).

Before proving Lemma 5.5, we first prove a useful claim.

Claim 5.10. Let Z : {0, 1}n → {0, 1} be the zero function and let h : {0, 1}n → F be arbitrary. Let trẐ , trĥ ∈
(Fn × F)t be a LDEF,d[Z]-query-answer transcript and a LDEF,d[h]-query-answer transcript respectively,
such that supp(trẐ) = supp(trĥ). Let Ẑ ← U

(
LDEF,d[Z ∪ trẐ ]

)
, and let ĥ ∈ LDEF,d[h∪ trĥ]. Then Ẑ + ĥ

is distributed as U
(
LDEF,d[h ∪ trẐ+ĥ]

)
, where trẐ+ĥ := {(x, yẐ + yĥ) : (x, yẐ) ∈ trẐ , (x, yĥ) ∈ trĥ}.

Proof. Consider the bijective affine map Tĥ on F≤d[X1, . . . , Xn] defined by Tĥ(Ẑ) := Ẑ + ĥ. We show that
Tĥ(LDEF,d[Z∪trẐ ]) = LDEF,d[h∪trẐ+ĥ]. For any x ∈ supp(trẐ) we have that (Ẑ+ĥ)(x) = yẐ+yĥ, where
(x, yẐ) ∈ trẐ and (x, yĥ) ∈ trĥ. Thus, for (x, yẐ+ĥ) ∈ trẐ+ĥ, we have (Ẑ + ĥ)(x) = y. Further, for any
x ∈ {0, 1}n, (Ẑ+ ĥ)(x) = ĥ(x) = h(x). Hence, for any Ẑ ∈ LDEF,d[Z∪trẐ ], Tĥ(Ẑ) ∈ LDEF,d[h∪trẐ+ĥ].

As Z is uniformly random in LDEF,d[Z ∪ trẐ ] and Tĥ is a bijection between LDEF,d[Z ∪ trẐ ] and
LDEF,d[h ∪ trẐ+ĥ], we have that Tĥ(Ẑ) = Ẑ + ĥ is uniformly random in LDEF,d[h ∪ trẐ+ĥ].

Proof of Lemma 5.5. We show that for all LDEF,d[f ]-query-answer transcripts, tr = [(xi, yi)]
t
i=1 ∈ (Fn×F)t,

x ∈ Fn and y ∈ F, we have that

Pr
[
f̂(x) = y

∣∣∣ f̂ ← U (LDEF,d[f ∪ tr])
]
= Pr

[
Mf

LD(tr, x) = y
]

. (4)

We will obtain Eq. 4 in three steps.
1. We show that the set LDEF,d[Z ∪ trs] is non-empty provided that LDEF,d[f ∪ tr] is non-empty, which

ensures that Step 3 of Construction 5.9 does not fail.
2. Note that the output of MLD is determined by the polynomial M(X⃗) := Ẑ(X⃗) + P (X⃗), which is

computed in Step 4 of Construction 5.9. We show that M(X⃗) is distributed like U (LDEF,d[g ∪ tr]), for a
function g : {0, 1}n → F defined below.

3. We demonstrate that evaluations of polynomials distributed like U (LDEF,d[g ∪ tr]) are perfectly indistin-
guishable from evaluations of polynomials distributed like U (LDEF,d[f ∪ tr]).

Step 1. We show that LDEF,d[Z ∪ trs] is non-empty if LDEF,d[f ∪ tr] is non-empty. As in Step 1 of
Construction 5.9, let P (X⃗) :=

∑
b∈BADsupp(tr)∪{x}

f(b) · δb(X⃗). Then we have that f̂(X⃗) − P (X⃗) ∈
LDEF,d[h ∪ trs], where h : {0, 1}n → F is defined by

h(x) =

{
0 if x ∈ BADsupp(tr)∪{x}

f(x) otherwise
,
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and trs is as defined in Step 2 of Construction 5.9. By definition of BADsupp(tr)∪{x}, for each w ∈
{0, 1}n \ BADsupp(tr)∪{x}, the set Qw,supp(tr)∪{x} is non-empty; for each w, choose an arbitrary element
Qw ∈ BADsupp(tr)∪{x}. Let S1(X⃗) :=

∑
w∈{0,1}n\BADsupp(tr)∪{x}

f(w) · Qw(X⃗). It is easily verified
that S1 has the following properties: (i) S1(x) = 0 for all x ∈ supp(tr); (ii) S1(w) = f(w) for all
w ∈ {0, 1}n \ BADsupp(tr)∪{x}, and (iii) S1(b) = 0 for all b ∈ BADsupp(tr)∪{x}. Thus, the polynomial
f̂(X⃗)− P (X⃗)− S1(X⃗) ∈ LDEF,d[Z ∪ trs], as desired.
Step 2. Define

g(x) =

{
f(x) if x ∈ BADsupp(tr)∪{x}

0 otherwise.

We show that the distribution of M(X⃗) is U (LDEF,d[g ∪ tr]).
By definition, P (X⃗) ∈ LDEF,1[g ∪ trP ], where trP is defined by trP = {(x, P (x)) : x ∈ supp(tr)}.

Thus, by Claim 5.10, as M(X⃗) = Ẑ(X⃗) + P (X⃗) and Ẑ(X⃗) ← LDEF,d[Z ∪ trs], we have that M(X⃗) ←
LDEF,d[g ∪ trs+P ]. However, trs+P = tr, so M(X⃗) is distributed like U (LDEF,d[g ∪ tr]).

In particular,

Pr
[
Mf

LD(tr, x) = y
]
= Pr [ĝ(x) = y | ĝ ← U (LDEF,d[g ∪ tr])] .

Step 3. Consider another “shift” polynomial S2(X⃗) =
∑

w∈{0,1}n\BADsupp(tr)∪{x}
(f(w) − g(w))Qw(X⃗).

S2 has the property that if ĝ ∈ LDEF,d[g ∪ tr], then ĝ + S2 ∈ LDEF,d[f ∪ tr]. Further, S2(x) = 0. Hence the
map ĝ → ĝ + S2 is a bijection between the sets{

f̂ ∈ LDEF,d[f ∪ tr] : f̂(x) = y
}

and
{ĝ ∈ LDEF,d[g ∪ tr] : ĝ(x) = y} .

Thus, we have that

Pr
[
f̂(x) = y

∣∣∣ f̂ ← U (LDEF,d[f ∪ tr])
]
= Pr [ĝ(x) = y | ĝ ← U (LDEF,d[g ∪ tr])] ,

which yields the result.

5.2 Stateful emulator for the ARO

We present the stateful emulator algorithm for the ARO.
For the purpose of making an identical-until-bad argument (see Section 3.9) in our analysis, we include

the setting of a bad flag in this construction. This is not required for the emulator to function.

Construction 5.11. We define a pass-through stateful (ARO[F,m, λ, d,B], {v̂o})-emulator as follows:

• QueryM(ro,wo)
ARO with parameters (F,m, λ, w, d) and with input (tr, (oid, x)).

– If oid = ro, output y := ro(x).
– If oid = wo, output y := wo(x).
– If oid = v̂o:
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1. Compute the set V := {(x, y, z) : (x, y) ∈ tr|ro ∧ (x, z) ∈ tr|wo}.
2. Set P (X⃗) :=

∑
b∈V δb(X⃗).

3. If the set B := {b ∈ BADsupp(tr|v̂o)∪{x} \ V : vo(b) ̸= 0} is non-empty, set the bad flag.
4. For each x ∈ supp(tr|v̂o), compute P (x) and set trs := {(x, y − P (x)) : (x, y) ∈ tr|v̂o}.
5. Sample Ẑ ← LDEF,d[Z ∪ trs], where Z : {0, 1}m+λ+w → {0, 1} is the zero function.
6. Output y := Ẑ(x) + P (x).

Remark 5.12. We obtain an efficient implementation of Construction 5.11 by using the ZSampleF,m+λ+w,d

algorithm (Construction 5.20) in Step 5 and Step 6.

5.3 Proof of Theorem 5.4

It is clear that the answers to ro and wo queries are indistinguishable. Hence, we focus on proving the
indistinguishability of answers to v̂o queries.

We use a hybrid argument with the following hybrids.

• H0: A queries (ro,wo, v̂o).
• H1: A queries (ro,wo,Mvo

LD), the emulator described in Construction 5.9.
• H2: A queriesM(ro,wo)

ARO∗ , the emulator described in Construction 5.13, below.

• H3: A queriesM(ro,wo)
ARO , the emulator described in Construction 5.11.

For every O-query-answer transcript tr, let tr<ℓ denote the queries in tr up to and excluding the ℓ-th
query, i.e. tr<ℓ := [(oidi, xi, yi)]

ℓ−1
i=1 .

Construction 5.13. We specify an inefficient hybrid stateful emulator for the ARO, which runs based
on the stateful emulator for random low-degree extension (Construction 5.9).

• QueryM(ro,wo)
ARO∗ with parameters (F,m, λ, w, d) and with input (tr, (oid, x)).

– If oid = ro, output y := ro(x).
– If oid = wo, output y := wo(x).
– If oid = v̂o:

1. Compute the set V := {(x, y, z) : (x, y) ∈ tr|ro ∧ (x, z) ∈ tr|wo}.
2. Set P (X⃗) :=

∑
b∈V δb(X⃗).

3. If the set B := {b ∈ BADsupp(tr|v̂o)∪{x} \ V : vo(b) ̸= 0} is non-empty, set the bad flag and
update:

P (X⃗) := P (X⃗) +
∑
b∈B

vo(b) · δb(X⃗).

4. For each x ∈ supp(tr|v̂o), compute P (x) and set trs := {(x, y − P (x)) : (x, y) ∈ tr|v̂o}.
5. Sample Ẑ ← LDEF,d[Z ∪ trs], where Z : {0, 1}m+λ+w → {0, 1} is the zero function.
6. Output y := Ẑ(x) + P (x).

H0 vs. H1. H0 and H1 are perfectly indistinguishable by Lemma 5.5.
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H1 vs. H2. We show that H1 and H2 are perfectly indistinguishable. We do this by showing that for all
O-query-answer transcripts tr, x ∈ Fm and y ∈ F we have

Pr [Mvo
LD(tr|v̂o, x) = y] = Pr

[
M(ro,wo)

ARO∗ (tr, x) = y
]

.

In both experiments y is sampled as Ẑ(x)+P (x) where Ẑ ← LDEF,d[Z∪trs], but where P is constructed
differently in each experiment. We show that P is in fact the same polynomial in both experiments, from
which the claim follows. In Construction 5.13, we have P (X⃗) :=

∑
b∈V δb(X⃗) +

∑
b∈B vo(b)δb(X⃗). But

vo(b) = 1 for all b ∈ V . Thus P (X⃗) =
∑

b∈B∪V vo(b)δb =
∑

b∈BADsupp(tr|v̂o)∪{x}
vo(b)δb(X⃗), which is

precisely how P (X⃗) is constructed byMvo
LD. (Note that tr inMvo

LD is an LDEF,d[vo]-query-answer transcript.)
H2 vs. H3. We show that t-query adversary A distinguishes between H2 and H3 with probability ε ≤ t

2λ
.

We do this by showing thatM(ro,wo)
ARO∗ andM(ro,wo)

ARO are identical-until-bad (Section 3.9). Then we argue that
the probability that the bad flag is set in either construction is at most tv̂o

2λ
, where tv̂o ≤ t is the total number

of queries made to the verification oracle.

Claim 5.14. M(ro,wo)
ARO∗ andM(ro,wo)

ARO are identical-until-bad.

Proof. M(ro,wo)
ARO∗ andM(ro,wo)

ARO are syntactically identical until the bad flag is set.

SinceM(ro,wo)
ARO∗ andM(ro,wo)

ARO are identical-until-bad, the fundamental lemma of game playing (Lemma 3.13)
states that ∣∣∣Pr [AM(ro,wo)

ARO = 1
]
− Pr

[
AM

(ro,wo)
ARO∗ = 1

]∣∣∣
≤ Pr

[
the bad flag is raised byM(ro,wo)

ARO

]
.

Next we bound the probability that the bad flag is raised within t queries. First observe that the bad flag
is only ever raised when oid = v̂o.

Let Ei be the event that the bad flag is raised on the i-th query to the verification oracle, and let Bi

be the set defined in Step 3 of Construction 5.13, on the i-th query. Further, define BAD1 := B1 and
BADi := Bi \Bi−1 for i ∈ {2, . . . tv̂o}. Then by a union bound over the points in BADi we have

Pr[Ei] ≤
∑

(xb,yb,zb)∈BADi

Pr [ro(xb) = yb | (ro, xb, ro(xb)) /∈ tr<i]

≤ |BADi|
2λ

,

where we use the fact that for every b := (xb, yb, zb) ∈ BADi, we have that

Pr [ro(xb) = yb | (ro, xb) /∈ supp(tr<i)] =
1

2λ
.

To conclude, we upper bound A’s overall advantage over tv̂o queries to v̂o.

Pr

 ⋃
i∈[tv̂o]

Ei

 =
∑

s1,...,stv̂o∈N
Pr

 ⋃
i∈[tv̂o]

Ei

∣∣∣∣∣∣ |BADj | = sj ∀j ∈ [tv̂o]

Pr [|BADj | = sj ∀j ∈ [tv̂o]]

29



=
∑

s1,...,stv̂o∈N∑
k∈[tv̂o]

sk≤tv̂o

Pr

 ⋃
i∈[tv̂o]

Ei

∣∣∣∣∣∣ |BADj | = sj ∀j ∈ [tv̂o]

Pr [|BADj | = sj ∀j ∈ [tv̂o]]

≤
∑

s1,...,stv̂o∈N∑
k∈[tv̂o]

sk≤tv̂o

∑
i∈[tv̂o]

Pr [Ei | |BADj | = sj ∀j ∈ [tv̂o]]

Pr [|BADj | = sj ∀j ∈ [tv̂o]]

≤
∑

s1,...,stv̂o∈N∑
k∈[tv̂o]

sk≤tv̂o

∑
i∈[tv̂o]

si
2λ

Pr [|BADj | = sj ∀j ∈ [tv̂o]] ≤
tv̂o
2λ

.

The equality in the second line follows from [AW09, Lemma 4.3], which states that
∑

i∈[tv̂o] |BADi| =
|BADsupp(tr|v̂o)| ≤ tv̂o.

Output distribution. Finally, we show that for every O-query-answer transcript tr, x ∈ {0, 1}m+λ+w and
y ∈ F we have that

Pr [P (x) = y | P ← U (LDEF,d[votr ∪ tr|v̂o])] = Pr
(ro,wo,v̂o)←O

[
M(ro,wo)

ARO (tr, (v̂o, x)) = (tr′, y)
]

.

The output of Construction 5.11 is determined by the polynomial M(X⃗) := Ẑ(X⃗) + P (X⃗). We show
that the distribution of M(X⃗) is U(LDEF,d[votr ∪ tr|v̂o]).

By definition, P (X⃗) ∈ LDEF,1[votr ∪ trP ], where trP := {(x, P (x) : x ∈ supp(tr)}. Also, Ẑ(X⃗) ←
LDEF,d[Z ∪ trs], where trs := {(x, y − P (x)) : (x, y) ∈ tr}. Thus by Claim 5.10, M(X⃗)← LDEF,d[votr ∪
trP+S ]. But trP+S = tr, which yields the result.

Efficiency. RunningM(ro,wo)
ARO∗ requires computing P (X⃗) at all of the points in the set supp(tr|v̂o) which

takes time O(t) and running ZSampleF,d which takes time poly(m,λ,w, d, log(|F|), t) by Lemma 5.21.

Thus M(ro,wo)
ARO runs in time poly(m,λ,w, d, log(|F|), t). Finally, M(ro,wo)

ARO makes at most one query to
(ro,wo) for every query it receives, so its query complexity is O(t).

5.4 Efficiently implementing Construction 5.11

We describe the subroutines used to efficiently implement the ARO stateful emulator in Construction 5.11.

5.4.1 Efficiently sampling a random low-degree polynomial

We describe LDSampleF,m,⃗d
, a stateful oracle that samples evaluations of a random low-degree polynomial

in F≤d⃗[X1, . . . , Xm].

Lemma 5.15. Let F be a field, let m, t ∈ N, d⃗ ∈ Nm and let LDSampleF,m,⃗d
be the algorithm described in

Construction 5.16. Then for all tr ∈ (Fm × F)t, for which LDEF,⃗d[tr] ̸= ∅, and for all x ∈ Fm, y ∈ F:

Pr
[
LDSampleF,m,⃗d

(tr, x) = (tr′, y)
]
= Pr

[
P (x) = y

∣∣∣ P (X⃗)← LDEF,⃗d[tr]
]

,

where tr′ := tr ∪ {(x, y)}. Moreover, LDSampleF,m,⃗d
runs in time poly(m, d, log |F|, t), where t = |tr|.

30



Construction 5.16. Given a constraint detector CDF,m,⃗d
for LD[F,m, d⃗] (Definition 3.10) the algorithm

LDSampleF,m,⃗d
operates as follows.

• Evaluate polynomial: LDSampleF,m,⃗d
(tr, x)→ y.

1. Run CDF,m,⃗d
(supp(tr) ∪ {x}):

(a) If CDF,m,⃗d
outputs a constraint z for which z(x) ̸= 0, compute y such that (x, y) that is

consistent with z; i.e., y := − 1
z(x)

∑
(x′,y′)∈tr z(x

′)y′.
(b) If CDF,m,⃗d

outputs ⊥ or a basis z1, . . . , zk where z(x) = 0 for all i ∈ [k], sample y ← F.
2. Output y.

Proof of Lemma 5.15. Follows from Lemma 4.3 of [BCFGRS17].

Proof. This algorithm appears in appendix B of [BCFGRS17], and its correctness and efficiency are argued
in Lemma 4.3 of [BCGRS17].

5.4.2 Efficiently sampling a RLDE of the boolean zero function

We first give an inefficient subroutine (Construction 5.18) that samples evaluations of a uniformly random low-
degree extension of the boolean zero function conditioned on a set of preprogrammed points in Lemma 5.17
and prove its correctness. Subsequently, in Construction 5.20 we give an efficient stateful algorithm that
realizes Lemma 5.17 in polynomial time, based on succinct constraint detection.

Throughout the following, given an arity m ∈ N and a degree parameter d ≥ 2 ∈ N we denote
d⃗i := (d, . . . , d− 2, . . . , d) ∈ Nm to be the vector which takes the value d− 2 at its i-th entry, and the value
d everywhere else.

Lemma 5.17. Let F be a field, let m, d, t ∈ N, let ZSampleF,m,d be the algorithm described in Construc-
tion 5.18 and let Z : {0, 1}m → {0, 1} denote the zero function. Then for all tr ∈ (Fm × F)t which agree
with Z and are such that LDEF,d[Z ∪ tr] ̸= ∅, and for all x ∈ Fm, y ∈ F:

Pr
[
ZSampleF,m,⃗d

(tr, x) = (tr′, y)
]
= Pr

[
P (x) = y

∣∣∣ P (X⃗)← LDEF,⃗d[Z ∪ tr]
]

,

where tr′ := tr ∪ {(x, y)}.

Construction 5.18. ZSampleF,m,d(tr, x
∗).

1. Define the set

Str :=
{
(tr1, . . . , trm) ∈ (supp(tr)→ F)m : ∀i ∈ [m], LDEF,d⃗i [tri] ̸= ∅

∧ ∀(x, y) ∈ tr,
m∑
i=1

xi(xi − 1)tri(x) = y
}

.

2. Sample (tr1, . . . , trm)← U(Str).
3. For each i ∈ [m] sample Ri(X⃗)← LDEF,d⃗i [tri].
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4. Output y :=
∑m

i=1 x
∗
i (x
∗
i − 1)Ri(x

∗).

We will require the following simple, but useful claim.

Claim 5.19. Let F be a field, m ∈ N, d⃗ := (d1, . . . , dm) ∈ Nm and S ⊆ Fm. Let f : S → F and g : S → F
be such that LDEF,⃗d[f ] and LDEF,⃗d[g] are non-empty. Then |LDEF,⃗d[f ]| = |LDEF,⃗d[g]|.

Proof. Fix some f̂ ∈ LDEF,⃗d[f ], ĝ ∈ LDEF,⃗d[g]. Let T (P ) := P − f̂ + ĝ, and observe that T is a bijection
between LDEF,⃗d[f ] and LDEF,⃗d[g].

Proof of Lemma 5.17. Denote D0 := U(LDEF,d[Z ∪ tr]). Define

DZ :=

{
(R1(X⃗), . . . , Rm(X⃗))

∣∣∣∣∣ (tr1, . . . , trm)← U(Str)

Ri(X⃗)← LDEF,d⃗i [tri] ∀i ∈ [m]

}
.

Observe that the distribution of polynomials sampled by Step 3 of ZSampleF,m,d(tr) is DZ .
Let Φ(R1(X⃗), . . . , Rm(X⃗)) :=

∑m
i=1Xi(Xi − 1)Ri. We introduce a hybrid distribution, as follows

Rtr :=
{
R⃗ ∈

m∏
i=1

F≤d⃗i [X1, . . . , Xm] : (Φ(R⃗))(x) = y ∀ (x, y) ∈ tr
}

,

and define the hybrid DCN to be the uniform distribution over the set Rtr.
The proof proceeds in two steps: first we show that DZ is identical to DCN . Second, we use the

combinatorial nullstellensatz [Alo99] to show that if R⃗ ∼ U(Rtr) then Φ(R⃗) ∼ U(LDEF,d[Z ∪ tr]).

DZ vs. DCN : The distribution DCN is defined as the uniform distribution over Rtr so Pr[R⃗← DCN ] =
1
|Rtr| . We show that Pr[R⃗← DZ ] =

1
|Rtr| .

The set Str partitions Rtr into a disjoint union of sets, each of the same cardinality. In particular, for
t⃗r ∈ Str denote

Tt⃗r :=
{
(R1(X⃗), . . . , Rm(X⃗)) : Ri(X⃗) ∈ LDEF,d⃗i [tri] ∀i ∈ [m]

}
,

then we have that ⋃
t⃗r∈Str

Tt⃗r = supp(DZ) = Rtr .

Observe that for t⃗r ̸= t⃗r′, Tt⃗r ∩ Tt⃗r′ = ∅. Moreover, by definition of Str, LDEF,d⃗i [tri] ̸= ∅ for each i ∈ [m],

so by Claim 5.19, every Tt⃗r is of the same cardinality for any t⃗r ∈ Str. Thus |Tt⃗r| =
|Rtr|
|Str| for all t⃗r ∈ Str.

Let r⃗ ∈ Rtr, let R⃗ ← DZ , and let t⃗r∗r⃗ ∈ Str be uniquely defined to be such that r⃗ ∈ Tt⃗r∗
r⃗
. For each

t⃗r ∈ Str, let Et⃗r be the event that R⃗ ∈ Tt⃗r. Note that by definition of DZ , Pr[Et⃗r] =
1
|Str| for all t⃗r ∈ Str.

Conditioning on Et⃗r, we have

Pr
[
R⃗ = r⃗

]
=
∑
t⃗r∈Str

Pr
[
R⃗ = r⃗

∣∣∣ Et⃗r

]
Pr [Et⃗r]

= Pr
[
R⃗ = r⃗

∣∣∣ Et⃗r∗
r⃗

]
Pr
[
Et⃗r∗

r⃗

]
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=
1

|Tt⃗r∗
r⃗
||Str|

=
1

|Rtr|
,

where the second and third equalities follow from the fact that Pr
[
R⃗ = r⃗

∣∣∣ Et⃗r

]
= 1
|Tt⃗r|

if t⃗r = t⃗r∗r⃗ and is 0
otherwise.
DCN vs. D0. We show that Φ(R⃗) for R← DCN is distributed as D0 = U(LDEF,d[Z ∪ tr]).

Note that Φ is a linear map, and Rtr is an affine space, so by Claim 3.2, if R⃗ ∼ DCN then Φ(R⃗) ∼
U(Φ(Rtr)). It remains to show that Φ(Rtr) = LDEF,d[Z ∪ tr]. First, we show that Φ(Rtr) ⊆ LDEF,d[Z ∪ tr]:
fix R⃗ ∈ Rtr; then since im(Φ) ⊆ LDEF,d[Z] and (Φ(R⃗))(x) = y ∀ (x, y) ∈ tr, Φ(R⃗) ∈ LDEF,d[Z ∪ tr].

Finally we show that LDEF,d[Z∪tr] ⊆ Φ(Rtr), which completes the proof. Fix some Ẑ ∈ LDEF,d[Z∪tr].
Since LDEF,d[Z ∪ tr] ⊆ LDEF,d[Z], by Lemma 3.3, there exist polynomials R1, . . . , Rm where Ri ∈
F≤d⃗i [X1, . . . , Xm] such that Ẑ = Φ(R1, . . . , Rm). Then for all (x, y) ∈ tr, Φ(R1, . . . , Rm)(x) = Ẑ(x) =
y. Hence R⃗ ∈ Rtr, and so Ẑ ∈ Φ(Rtr).

Construction 5.20. Given a constraint detector CDF,m,⃗d
for LD[F,m, d⃗] (Definition 3.10), we efficiently

implement ZSampleF,m,d as a stateful oracle for d ≥ 2 as follows:

• Evaluate polynomial: ZSampleF,m,d(tr, x
∗)→ y.

1. If tr = ∅:
(a) For each i ∈ [m], set tri := ∅.

2. If tr ̸= ∅:
(a) For each i ∈ [m], run CDF,m,d⃗i

(supp(tr)) to obtain constraints zi,j for j ∈ [k].
(b) Using Gaussian elimination, solve the following linear system of constraints∑

x∈supp(tr)

zi,j(x)tri(x) = 0 ∀j ∈ [k], ∀i ∈ [m] ,

m∑
i=1

xi(1− xi)tri(x) = y ∀(x, y) ∈ tr ,

for the variables tri(x), to obtain a description of the solution space Str ⊆ Fm×|supp(tr)| of
vectors satisfying the constraints.

(c) Sample (tr1, . . . , trm)← Str uniformly.

3. For each i ∈ [m], sample yi ← LDSampleF,m,d⃗i
(tri, x

∗).
4. Output y :=

∑m
i=1 x

∗
i (x
∗
i − 1)yi.

Lemma 5.21. The outputs of Construction 5.18 and Construction 5.20 are identical. Moreover, Construc-
tion 5.20 runs in time poly(m, d, log |F|, t), where t = |tr|.

Proof. Correctness. By definition, for each i ∈ [m], CDF,m,d⃗i
(supp(tr)) will output a basis zi,j for the

space of constraints {z : Fm → F : ∀ p ∈ F≤d⃗i [X1, . . . , Xm],
∑

x∈supp(tr) z(x)p(x) = 0} on supp(tr).

33



Therefore for any given i ∈ [m], we have that tri satisfies∑
x∈supp(tr)

zi,j(x)tri(x) = 0 ∀j ∈ [k] ,

if and only if LDEF,d⃗i [tri] ̸= ∅. Therefore, the query-answer transcripts which are sampled in Step 2c of
Construction 5.20 are distributed identically to those sampled in Step 2 of Construction 5.18. By Lemma 5.15
for each i ∈ [m] we have that

Pr
[
LDSampleF,m,⃗d

(tri, x) = (tr′i, y)
]
= Pr

[
Ri(x) = y

∣∣∣ Ri(X⃗)← LDEF,⃗d[tri]
]

,

meaning that the output distribution of Construction 5.20 is identical to Construction 5.18.

Efficiency. Running ZSampleF,m,d requires running CDF,m,d⃗i
m times, which requires poly(m, d, log(|F|))

time. It further requires using Gaussian elimination to solve a system of at most mt equations for mt
unknowns, which requires time O(m3t3). Finally, it requires running LDSampleF,m,d⃗i

which also requires
time poly(m, d, log(|F|)), by Lemma 5.15. Thus ZSampleF,m,d runs in time poly(m, d, log(|F|), t).
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6 From ROM to AROM security

We prove that security properties in the ROM also hold in the AROM.

• In Section 6.1 we prove that the witness oracle in the AROM can be emulated.
• In Section 6.2 we show that any pass-through stateful (ARO, v̂o)-emulator can be transformed into a

pass-through stateful (ARO, {wo, v̂o})-emulator that only accesses ro, while preserving the emulation
error. This is done using the witness oracle emulator from Section 6.1.

• In Section 6.3 we build on the above result to prove that security in the ROM implies security in the AROM.
• In Section 6.4 we prove that commitment schemes in the ROM remain secure in the AROM.

6.1 Emulating access to the witness oracle

We transform any adversary that queries the witness oracle wo of the ARO to an adversary that does not query
wo. In Section 6.3 we use this result to prove Theorem 6.5.

Lemma 6.1. Let O := ARO[F,m, λ, d,B], where F is a finite field, the parameters m,λ, d ∈ N, and
B : {0, 1}m+r → {0, 1}w is an oracle circuit. Define the distribution O′ := {(ro,wo) : (ro,wo, v̂o)← O}.
The algorithmW[B] (Construction 6.2) is a pass-through stateful (O′, {wo})-emulator with zero error. W
answers each query in time O(|B|).

Construction 6.2. DefineW[B] as follows:

• W ro[B](tr, oid, x)→ y.
1. If oid = ro, return oid(x).
2. If tr(x) ̸= ⊥, return tr(x).
3. Otherwise, sample uniform µ← {0, 1}r and set y := Bro(x, µ). Output y.

6.2 Stateful emulator for the ARO w.r.t. the random oracle

As a consequence of Lemma 6.1, there exists an emulator for the ARO that only accesses the random oracle.

Lemma 6.3. Let O := ARO[F,m, λ, d,B], where F is a finite field, m,λ, d ∈ N respectively are arity,
security, and degree parameters, and B : {0, 1}m+r → {0, 1}w is a tB-query oracle circuit. LetM(ro,wo)

ARO be
a pass-through stateful (O, {v̂o})-emulator with error εARO(t, λ). Then, there exists a pass-through stateful
(O, {wo, v̂o})-emulatorMro

ARO with error εARO(t, λ).
Further, ifM(ro,wo)

ARO makes tM oracle queries and runs in time TM for emulating a single query, then for
emulating t queries,Mro

ARO has a runtime of t · (TM + tM ·O(|B|)) and a query complexity of t · tM · tB .

Proof. Define the emulator Mro
ARO :=M(ro,W[B])

ARO , i.e. Mro
ARO works exactly like M(ro,wo)

ARO except that
wo-queries are answered usingW[B] (Construction 6.2). We show that for any t-query adversary A,∣∣∣Pr [A(ro,wo,v̂o) = 1

∣∣∣ (ro,wo, v̂o)← O(λ)
]
− Pr

[
AMro

ARO = 1
∣∣ (ro,wo, v̂o)← O(λ)

]∣∣∣ ≤ εARO(t, λ) .

By Lemma 6.1, in which the adversary A is the composed adversary AM
(·)
ARO , we have

Pr
[
AM

(ro,wo)
ARO = 1

∣∣∣ (ro,wo, v̂o)← O(λ)
]
= Pr

[
AMro

ARO = 1
∣∣ (ro,wo, v̂o)← O(λ)

]
. (5)
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SinceM(ro,wo)
ARO is a pass-through stateful (O, {v̂o})-emulator, by Definition 5.2, we have∣∣∣Pr [A(ro,wo,v̂o) = 1

∣∣∣ (ro,wo, v̂o)← O
]
− Pr

[
AM

(ro,wo)
ARO = 1

∣∣∣ (ro,wo, v̂o)← O(λ)
]∣∣∣ ≤ εARO(t, λ) .

(6)
Substituting the probability on the right side of Equation 6 with Equation 5 yields the claim.
Finally, we consider the efficiency ofMro

ARO. Let tM, TM respectively denote the number of queries
and runtime ofM(ro,wo)

ARO for emulating a single query. Then,Mro
ARO has a runtime of TM + tM · O(|B|)

per emulated query, sinceW[B] answers each query in time O(|B|) (Lemma 6.1). Hence the runtime for
emulating t queries is t · (TM + tM ·O(|B|)). Moreover, if a single execution of B makes tB queries to ro,
thenMro

ARO makes t · tM · tB oracle queries when emulating t queries.

Corollary 6.4. There exists an efficient pass-through stateful (O, {wo, v̂o})-emulator with error t
2λ

and a
query complexity of t · tB .

Proof. This is a consequence using theM(ro,wo)
ARO of Theorem 5.4 in Lemma 6.3.

6.3 Security in the ROM is preserved in the AROM

We prove that security properties in the ROM are preserved in the AROM; this is a straightforward application
of Corollary 6.4.

Theorem 6.5. Let O := ARO[F,m, λ, d,B], where F is a finite field, m,λ, d ∈ N respectively are arity,
security, and degree parameters, and B : {0, 1}m+r → {0, 1}w is a tB-query polynomial-size oracle circuit.
There exists a polynomial-size circuit C such that for all tA-query adversaries A and all tp-query ro-oracle
predicates p where

Pr

[
pro(x) = 1

∣∣∣∣ (ro,wo, v̂o)← O
x← A(ro,wo,v̂o)

]
≥ δ , (7)

we have

Pr

[
pro(x) = 1

∣∣∣∣ ro← U(m,λ)

x← C(ro,A)
]
≥ δ − tA + tp

2λ
.

C makes at most tA · tB queries to ro and accesses A in a straightline fashion.

Proof. LetMro
ARO be the pass-through stateful (O, {wo, v̂o})-emulator guranteed by Corollary 6.4. Define

the adversary C(ro,A) := AMro
ARO . Note that C(ro,A) runs A in a straightline fashion and answers A’s oracle

queries usingMro
ARO; the efficiency of C is straightforward. Define the algorithm Ā(ro,wo,v̂o), which runs

x← A(ro,wo,v̂o) and outputs pro(x); the query complexity of Ā is tA + tp. The theorem follows immediately
from the definition of pass-through stateful emulator (Definition 5.2) applied to Ā.

6.4 Commitment schemes in the AROM

A corollary of Theorem 6.5 is that any commitment scheme secure in the ROM is also secure in the AROM.
The weaker statement that any commitment scheme in the standard model is secure in the AROM also holds,
since any standard-model commitment scheme is secure in the ROM. (Because any adversary in the ROM
that breaks the commitment scheme can also break it in the standard model by simulating the random oracle.)
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Lemma 6.6. Denote X := ARO[F ,m, d], in which F = {Fλ}λ∈N is a family of fields, m : N→ N be an
arity function and d : N → N be a degree function. If CM is a binding (resp. hiding) commitment scheme
in the ROM with binding error εbind(λ) (resp. hiding error εhide(λ)), then CM is a commitment scheme in
X with binding error εbind(λ) + εARO(t, λ) (resp. hiding error εhide(λ) + εARO(t, λ)), in which t is the
adversary’s query bound.

Proof. Let O ∈ X and λ ∈ N. Let δ be the binding error of a commitment scheme CM in the AROM.
Suppose A is a t-query efficient adversary such that

Pr

 m0 ̸= m1

∧
CM.Commit(ck,m0;ω0) = CM.Commit(ck,m1;ω1)

∣∣∣∣∣∣
(ro,wo, v̂o)← O(λ)
ck← CM.Setup(1λ)

((m0, ω0), (m1, ω1))← A(ro,wo,v̂o)(ck)

 > δ .

By Theorem 6.5, there exists an adversary C so that

Pr

 m0 ̸= m1

∧
CM.Commit(ck,m0;ω0) = CM.Commit(ck,m1;ω1)

∣∣∣∣∣∣
ro← U(m(λ), λ)

ck← CM.Setup(1λ)

((m0, ω0), (m1, ω1))← C(ro,A)(ck)


≥ δ − εARO(t, λ) .

By CM’s binding property in the ROM, we have that δ−εARO(t, λ) ≤ εbind(λ), so δ ≤ εbind(λ)+εARO(t, λ).
Note that when εARO(t, λ) is the error from Theorem 5.4, we get δ ≤ negl(λ) since CM is binding in the
ROM; hence CM is binding in the AROM. A similar argument shows that CM is hiding in the AROM.
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7 Zero-finding game in the AROM

We state and prove our lemma for zero-finding games in the AROM.

Lemma 7.1. Let X := ARO[F ,m, d], let ℓ ∈ N be a degree bound, and let CM be a commitment scheme
that has binding error εCM(λ) (and is not necessarily hiding). For every efficient probabilistic t-query oracle
algorithm A that outputs tuples of the form (f ∈ F≤dℓ(m+λ+w)[X], g ∈ (F≤ℓ[X])m+λ+w, ω) and every
O ∈ X , the following holds:

Pr

 f(X) ̸≡ v̂o(g(X))
∧ f(β) = v̂o(g(β))

∣∣∣∣∣∣∣∣∣∣
(ro,wo, v̂o)← O(λ)
ck← CM.Setup(1λ)

(f, g, ω)← A(ro,wo,v̂o)(ck)
cm := CM.Commit(ck, (g, f);ω)

β ∈ {0, 1}λ := ro(cm)


≤ O

(√
t ·
(
dℓ(m+ λ+ w)

|F|
+ εCM(λ)

))
+ εARO(t+ dℓ(m+ λ+ w), λ) .

Above, εARO(t+ dℓ(m+ λ+ w), λ) is the emulation error of a stateful emulator for the ARO.

7.1 Partial oracles

We introduce partial oracles for the stateful emulator for the ARO, which extend an ARO-query-answer
transcript to include evaluations which are determined by the structure of the emulator. First, we define a
partial oracle for v̂o queries as follows.

Definition 7.2. Let X :=ARO[F ,m, d], let O ∈ X , and let tr be an O-query-answer transcript. We define
the partial function trv̂o : {0, 1}m+λ+w ⇀ F to be:

trv̂o(x) :=

{
y if P (x) = y for all P ∈ LDEF,d[votr ∪ tr|v̂o]
⊥ otherwise

.

Second, we relate trv̂o to the output distribution ofM(ro,wo)
ARO for v̂o queries.

Claim 7.3. Let X := ARO[F ,m, d]. For every O ∈ X , every O-query-answer transcript tr, every
x ∈ Fm+λ+w and every y ∈ F, we have that

Pr
P←LDEF,d[votr∪tr|v̂o]

[P (x) = y] =


1
|F| if trv̂o(x) = ⊥
1 if trv̂o(x) = y

0 otherwise

.

Proof. Let x ∈ Fm+λ+w. The cases when trv̂o(x) ̸= ⊥ are clear, and so we consider the case when trv̂o(x) =
⊥. Let FIXED =

{
x ∈ Fm+λ+w

∣∣ trv̂o(x) ̸= ⊥}. In this case, there exist P1, P2 ∈ supp(LDEF,d[votr ∪
tr|v̂o]) such that P1(x

′) = P2(x
′) for every x′ ∈ FIXED, but P1(x) ̸= P2(x). Since supp(LDEF,d[votr ∪

tr|v̂o]) is an affine space, there exists P ∗ = P1 − P2 ∈ LDEF,d[Z ∪ tr0], where Z : {0, 1}m → {0, 1} is
the zero function and tr0 := {(x, 0) : x ∈ supp(tr)}, such that P ∗(x′) = 0 for every x ∈ FIXED and
P ∗(x) ̸= 0. Thus, we can sample from the conditional distribution in the claim by uniformly sampling
P ′′ ∈ supp(LDEF,d[votr ∪ tr|v̂o]) such that P ′′(x′) = trv̂o(x

′) for every x′ ∈ FIXED, uniformly sampling
α ∈ F, and returning P ′′ + αP ∗ ∈ supp(LDEF,d[votr ∪ tr|v̂o]). The claim follows since P ′′(x) + αP ∗(x) is
uniformly random in F.
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7.2 Proof of Lemma 7.1

We will prove Lemma 7.1 by first introducing an emulated hybrid world, in which the adversary plays the
zero-finding game against the emulator, which we show is statistically close to the zero-finding game in the
lemma statement. We then invoke a forking lemma (Lemma 3.12) to obtain a lower bound on the probability
that a forking adversary wins both forks in this hybrid world. Finally, we invoke Schwartz–Zippel and the
binding property of CM to obtain an upper bound on the same quantity, and combine the two bounds to
obtain the result.
Emulated hybrid world. Let O ∈ X and let A be an adversary that wins the zero-finding game above
with probability δ. LetM(ro,wo)

ARO be a pass-through stateful (O, {v̂o})-emulator with error εARO(t, λ), as
constructed in Theorem 5.4. Then A wins the following game, which we refer to as the emulated zero finding
game, with probability at least δ − εARO(t+ dℓ(m+ λ+ w), λ):

Pr


f(X) ̸≡ P (g(X))
∧ f(β) = P (g(β))

∣∣∣∣∣∣∣∣∣∣∣∣∣

(ro,wo, v̂o)← O(λ)
ck← CM.Setup(1λ)

(f, g, ω)
tr←− AM

(ro,wo)
ARO (ck)

P ← LDEF,d[votr ∪ tr|v̂o]
cm := CM.Commit(ck, (g, f);ω)

β ∈ {0, 1}λ := ro(cm)


≥ δ − εARO(t+ dℓ(m+ λ+ w), λ) ,

To see this, consider the following. First, an efficient adversary can compute v̂o(g(X)) with dℓ(m+λ+w)

queries to v̂o. Second, by Theorem 5.4, provided it is only receiving queries to v̂o,M(ro,wo)
ARO answers each

query by freshly sampling P ← LDEF,d[votr ∪ tr|v̂o] and outputting P (x). This is equivalent to sampling
P ← LDEF,d[votr ∪ tr|v̂o] once and then outputting P (x), as is done in the above experiment.

Thus if the above inequality were not true, an efficient distinguishing adversary can use the zero-finding
game to distinguish between the ARO and the emulator, contradicting Theorem 5.4.
Lower bound on winning probability for forked executions. We conclude the proof via the general
forking lemma (Lemma 3.12).

We define a forking predicate p that, on input (x := cm, o := (ck, f, g, ω), tr), checks the following
conditions:
Condition 1. cm = CM.Commit(ck, (f, g);ω);
Condition 2. either trv̂o ◦ g : F→ F is not total or f(X) ̸≡ trv̂o(g(X)); and
Condition 3. f(β) = trv̂o(g(β)), where β := tr|ro(cm).

Consider the following (forking lemma) adversary B, which we introduce in order to invoke Lemma 3.12.

BA,p(ck, y1, . . . , yt; r):
1. Run o := (ck, f, g, ω)← A using r as its random tape and simulating its oracle queries as follows:

(a) answer the i-th fresh ro-query with yi.
(b) answer wo-queries using Construction 6.2, and simulating its ro queries as above;
(c) answer v̂o-queries usingM(ro,wo)

ARO , simulating its ro,wo queries as above.
Let tr be the query-answer transcript in this simulation.

2. Compute cm← CM.Commit(ck, o).
3. If p(cm, o, tr) = 0, output (0,⊥). Otherwise, define FP(tr, cm) to be the index of the query A made to

ro at cm and output (FP(tr, cm), (cm, o, tr)).

Recall from the assumption that A wins the zero-finding game with probability δ, which implies that A
wins the emulated zero-finding game with probability δ − εARO(t+ dℓ(m+ λ+ w), λ). We show that B is
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accepting (i.e. outputs (i, ·) such that i ≥ 1) with probability at least δ − εARO(t+ dℓ(m+ λ+w), λ)− 1
|F| .

B is accepting when the output of A satisfies p.
First, any A winning the emulated zero-finding game directly satisfies Condition 1.
Second, we show that whenever A wins the emulated zero-finding game, then Condition 2 is satisfied.

We argue this via the contrapositive: if f(X) ≡ trv̂o(g(X)), then A does not win the emulated zero-finding
game. For any input (x, y, z) ∈ Fm+λ+w, if trv̂o(x, y, z) is defined, then it is equal to P (x, y, z) by definition.
Thus if f(X) ≡ trv̂o(g(X)), trv̂o must be defined over the image of g, so f(X) ≡ P (g(X)); henceA cannot
win the emulated zero-finding game by definition.

Third, we argue that the probability that A wins the emulated zero-finding game but fails to satisfy
Condition 3 is at most 1

|F| . There are two cases: either trv̂o(g(β)) is defined, or not. If trv̂o(g(β)) is defined
then trv̂o(g(β)) = P (g(β)), and if A wins the emulated zero-finding game then P (g(β)) = f(β); hence
Condition 3 is satisfied in this case. If trv̂o(g(β)) = ⊥, then the probability that A wins the emulated
zero-finding game is 1

|F| , by Claim 7.3, since it must guess the value of P (g(β)).
Thus, B accepts with probability at least δ − εARO(t + dℓ(m + λ + w), λ) − 1

|F| . We deduce via
Lemma 3.12 that

δ − εARO(t+ dℓ(m+ λ+ w), λ)− 1

|F|
≤ t

2λ
+
√
t · µ ,

where

µ := Pr

[
b = 1

∣∣∣∣ ck← CM.Setup(1λ)
(b, (cm, o, tr), (cm′, o′, tr′))← ForkBA,p(ck)

]
.

We argue that cm = cm′ in ForkBA,p(ck)’s output. Note that if b = 1, then we have FP(tr, cm) =
FP(tr′, cm′). Let i := FP(tr, cm). Then by the definition of the forking algorithm, we have that tr<i = tr′<i

(recall that the notation tr<ℓ refers to the query-answer pairs in tr up to and excluding the ℓ-th query). The
i-th query made by A only depends on its internal randomness r and tr<i. Since these are the same in both
executions, A’s i-th query must be the same in both executions. Thus, we have

µ = Pr

[
b = 1

∣∣∣∣ ck← CM.Setup(1λ)
(b, (cm, o, tr), (cm, o′, tr′))← ForkBA,p(ck)

]
.

Upper bound on winning probability for forked executions. To conclude the proof, we upper bound µ.
We can write µ as

µ = Pr

 cm ̸= ⊥
∧ p(cm, o, tr) = 1
∧ p(cm, o′, tr′) = 1

∣∣∣∣∣∣ ck← CM.Setup(1λ)
(b, (cm, o, tr), (cm, o′, tr′))← ForkBA,p(ck)

 . (8)

This is because if b = 1, then Step 3 of the forking adversary B implies that cm ̸= ⊥ and p(cm, o, tr) =
1 = p(cm, o′, tr′).

Denote by E1 the event on the left of Equation 8. By the law of total probability, we have

Pr[E1] = Pr[E1 ∧ (o = o′)] + Pr[E1 ∧ (o ̸= o′)] .
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We compute the value of Pr[E1∧(o ̸= o′)]. By the definition of p, if E1 holds then CM.Commit(ck, o) =
cm = CM.Commit(ck, o′). However, by the binding property of the commitment scheme CM, the probability
that this happens and o ̸= o′ occurs is at most εCM(λ).

Let E2 := E1 ∧ (o = o′). From the above, it holds that

µ− εCM(λ) ≤ Pr[E2] . (9)

Let i := FP(tr, cm), and let tr|i−1 denote the truncation of tr to the first i − 1 queries. Define E3 as the
event that tr|i−1v̂o ◦ g is total. By the law of total probability, we have

Pr[E2] = Pr[E2 ∧ E3] + Pr[E2 ∧ E3] . (10)

We show that E2 ∧ E3 occurs with low probability. Define the point β′ := tr′|ro(cm′).

Claim 7.4. The probability that E2 occurs and tr|i−1v̂o ◦ g is not total is at most (dℓ(m+ λ+ w) + 1)/|F|.

Proof. Since P ∈ supp(LDEF,d[votr ∪ tr|v̂o]), we have deg(P ◦ g) ≤ d · ℓ. Hence, if tr|i−1v̂o ◦ g is not total,
then there are at most d · ℓ points x ∈ F such that tr|i−1v̂o(g(x)) ̸= ⊥.

Since tr|i−1 contains only queries before the i-th query cm, we have (tr|i−1)|ro(cm) = ⊥. Hence
β′ is uniformly random conditioned on tr|i−1. Thus Pr[tr|i−1v̂o(g(β′)) ̸= ⊥] ≤

dℓ(m+λ+w)
|F| . Finally, if

tr|i−1v̂o(g(β′)) = ⊥ then Pr[tr|i−1v̂o(g(β′)) = f(β′)] ≤ 1
|F| , as f and tr′ are independent conditioned on

tr|i−1.

Combining Equations 9 and 10 and Claim 7.4, we get µ−(dℓ(m+λ+w)+1)/|F|−εCM(λ) ≤ Pr[E2∧E3].
In the event that E2 ∧ E3, it holds that tr|i−1v̂o ◦ g ̸≡ f , but tr|i−1v̂o(g(β′)) = f(β′). Since β′ is drawn
independently of tr|i−1, g, and f , this equality holds with probability at most (dℓ(m+ λ+ w))/|F|.

Rearranging, we conclude that

µ ≤ 2dℓ(m+ λ+ w) + 1

|F|
+ εCM(λ) .

Since δ − εARO(t+ dℓ(m+ λ+ w), λ)− 1
|F| ≤

t
2λ

+
√
t · µ, we deduce that

δ ≤

√
t ·
(
2dℓ(m+ λ+ w) + 1

|F|
+ εCM(λ)

)
+

1

|F|
+ εARO(t+ dℓ(m+ λ+ w), λ) +

t

2λ
,

which implies the statement.
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8 Accumulation scheme

We construct an accumulation scheme for ARO queries. See Definition 3.6 for the definition of an accumula-
tion scheme for oracle queries.

Theorem 8.1. Let F = {Fλ}λ∈N be a family of fields, m : N → N an arity function, and d : N → N a
degree function. Let CM = (CM.Setup,CM.Commit) be a standard-model commitment scheme that is
hiding, m-succinct (see Section 3.6), and binding with error εCM(λ). Then, AS described in Construction 8.2
is a zero-knowledge accumulation scheme for ARO[F ,m, d]-queries with the following properties.

• Soundness error. When accumulating n queries and ℓ old accumulators, the soundness error is

O

(√
t · d(λ) · (n+ ℓ) · (m(λ) + λ+ w(λ))

|Fλ|
+ εCM(λ) + εARO(t, λ)

)

against any t-query adversary, in which εARO(t, λ) is the error for the pass-through stateful (ARO[F,m, λ, d,B], {v̂o})-
emulator for ARO queries from Theorem 5.4.

• Accumulator size. The accumulator contains 2 v̂o query-answer pairs (i.e., 2(m(λ) + λ+ w(λ) + 1) field
elements).

• Decider efficiency. The decider consists of checking 2 v̂o query-answer pairs.

8.1 Construction

We assume a global ordering of the field F, so that F = {b1, . . . , b|F|}. For every O ∈ ARO[F ,m, d], we
define w := w(λ) to be the size of the output of Bλ, that is, the witness size function.

Construction 8.2. Denote X := ARO[F ,m, d]. The accumulation scheme AS = (G, I,P,V,D) for
X -queries is specified below. An accumulator acc is a tuple (((x1, y1, z1), γ1), ((x2, y2, z2), γ2)) where
each ((xi, yi, zi), γi) is a v̂o query-answer pair in Fm+λ+w × F. Note that a predicate input q is a triple
(oid, x, y) ∈ Xoid×Dom(oid)×Cod(oid), where Xoid = {ro,wo, v̂o}, is the set of possible oracle identifiers
for X by abuse of notation. 12

• G(1λ): Sample a commitment key ck← CM.Setup(1λ), and output the public parameters pp := ck.

• I(ro,wo,v̂o)(pp = ck): Output (apk, avk, dk) := (ck, ck, 1λ).

• P(ro,wo,v̂o)(apk = ck, [qi]
n
i=1, [accj ]

ℓ
j=1):

1. Sample a v̂o query (xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1)← Fm+λ+w, and set ζn+2ℓ+1 := v̂o(xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1).
2. Transform the predicate inputs [qi]ni=1 = [(oidk, xk, yk)]

n
k=1 into the corresponding v̂o query-answer

pairs q̂i as follows. For every i ∈ [n]:
(a) If qi = (ro, xi, yi), then set ai := wo(xi) and q̂i := ((xi, yi, ai), 1).
(b) If qi = (wo, xi, zi), then set ai := ro(xi) and q̂i := ((xi, ai, zi), 1).
(c) If qi = (v̂o, (xi, yi, zi), ζi), then set ai := ⊥ and q̂i := ((xi, yi, zi), ζi).

3. Let Q = [((xk, yk, zk), ζk)]
n+2ℓ+1
k=1 be the concatenation of the transformed predicate inputs [q̂i]ni=1, old

accumulators [accj ]
ℓ
j=1, and the v̂o query-answer pair ((xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1), ζn+2ℓ+1) from

Step 1.
12Earlier we defined oracle identifiers as integers, while here we use the names of the oracles.
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4. Compute the polynomial g ∈ (F[X])m+λ+w of degree less than n+2ℓ+1 that interpolates the v̂o queries
in Q over the fixed domain {bk}n+2ℓ+1

k=1 (i.e., such that g(bk) = (xk, yk, zk) for every k ∈ [n+ 2ℓ+ 1]).
Note that g is a vector of m+ λ+ w univariate polynomials from F to F, where the i-th polynomial
operates on coordinate i ∈ [m+ λ+ w].

5. Compute the polynomial f ∈ F[X] such that f(X) ≡ v̂o(g(X)).13

6. Sample commitment randomness ω and then compute the commitment

cm := CM.Commit(ck, ((x1, . . . , xn+2ℓ+1), f);ω) ∈ {0, 1}m .

7. Compute β0 := ro(cm) ∈ {0, 1}λ and β1 := wo(cm) ∈ {0, 1}w; β0 is the Fiat–Shamir challenge.14

Interpret β0 as an element of F. If β0 ∈ {b1, . . . , bn+2ℓ+1}, go to Step 6; except if this has happened λ
times, in which case we proceed.

8. Compute (x, y, z) := g(β0).
9. Output the new accumulator acc and accumulation proof πV defined as follows:

acc :=
(
((cm, β0, β1), 1), ((x, y, z), f(β0))

)
,

πV :=
(
((xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1), ζn+2ℓ+1), (a1, . . . , an), f, ω

)
.

• V
(
avk = ck, [qi]

n
i=1, [accj ]

ℓ
j=1, acc =

(
((cm, β0, β1), 1), ((x, y, z), γ)

)
,

πV =
(
((xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1), ζn+2ℓ+1), (a1, . . . , an), f, ω

))
:

1. Compute the list Q = [((xk, yk, zk), ζk)]
n+2ℓ+1
k=1 and the polynomial g from [qi]

n
i=1, [accj ]ℓj=1, and

((xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1), ζn+2ℓ+1) as P does, apart from the following: rather than sampling the
(n+ 2ℓ+ 1)-th entry of Q, use the v̂o query-answer pair received in πV; and rather than querying ro
and wo to transform the input predicate [qi]

n
i=1, use (a1, . . . , an) received in πV.

2. Check that:
– cm = CM.Commit(ck, ((x1, . . . , xn+2ℓ+1), f);ω);
– (x, y, z) = g(β0); and
– γ = f(β0).

3. For every k ∈ [n+ 2ℓ+ 1], check that f(bk) = ζk.

• D(ro,wo,v̂o)
(
dk = 1λ, acc =

(
((x1, y1, z1), 1), ((x2, y2, z2), γ)

))
:

1. Check that v̂o(x1, y1, z1) = 1 and v̂o(x2, y2, z2) = γ.

In the next subsections, we prove Theorem 8.1 by analyzing the completeness, soundness, zero knowledge,
and efficiency of the construction.

8.2 Completeness

The accumulation prover P receives as input a list of predicate inputs [qi]ni=1 and a list of old accumulators
[accj ]

ℓ
j=1. Suppose that Φ(ro,wo,v̂o)(qi) = 1 for every i ∈ [n] and D(ro,wo,v̂o)(accj) = 1 for every j ∈ [ℓ].

Completeness requires showing that P(ro,wo,v̂o) outputs a new accumulator acc and accumulation proof πV
that satisfy the following two conditions.

13Note that the degree of f is less than (m+ λ+ w) · d · (n+ 2ℓ+ 1), and so f can be computed by interpolation by evaluating
the expression v̂o(g(X)) at (m+ λ+ w) · d · (n+ 2ℓ+ 1) points (which involves a corresponding number of queries to v̂o).

14While β1 is not used for Fiat–Shamir, the β1 value is needed for completeness.
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• Condition 1: V(avk, [accj ]ℓj=1, acc, [qi]
n
i=1, πV) = 1.

By the construction of V, this holds if the accumulator acc =
(
((cm, β0, β1), 1), ((x, y, z), γ)

)
and the

accumulation proof πV =
(
((xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1), ζn+2ℓ+1), (a1, . . . , an), f, ω

)
are such that (i)

cm = CM.Commit(ck, ((x1, . . . , xn+2ℓ+1), f);ω); (ii) (x, y, z) = g(β0) (where V computes g exactly as
P does); (iii) γ = f(β0); and (iv) f(bk) = ζk for every k ∈ [n+ 2ℓ+ 1]. Condition i is satisfied because
V computes cm using the same inputs and commmitment key (since apk = avk = ck) as P(ro,wo,v̂o).
Conditions ii and iii are satisfied directly. For Condition iv: g(bk) = (xk, yk, zk) for all k ∈ [n+ 2ℓ+ 1]
by the definition of g. Thus, we have v̂o(g(bk)) = v̂o(xk, yk, zk) for every k ∈ [n + 2ℓ + 1]. Since we
defined f := v̂o ◦ g, we get that f(bk) = ζk for every k ∈ [n+ 2ℓ+ 1].

• Condition 2: D(ro,wo,v̂o)(acc) = 1.

This occurs when both elements in acc are valid query-answer pairs for v̂o. In the first pair, the honest
P(ro,wo,v̂o) sets β0 = ro(cm) and β1 = wo(cm), which means v̂o(cm, β0, β1) = 1 by the definition of v̂o.
For the second pair, the honest prover outputs ((x, y, z), f(β0)), where g(β0) = (x, y, z). This satisfies
v̂o(g(β0)) = f(β0) because f ≡ v̂o ◦ g.

8.3 Soundness

Since AS is an accumulation scheme for ARO[F ,m, d]-queries, we show that the probability below is
bounded from above by the expression in the theorem statement:

Pr


V(avk, [qi]

n
i=1, [accj ]

ℓ
j=1, acc, πV) = 1

D(ro,wo,v̂o)(dk, acc) = 1

∧
∃ j ∈ [ℓ], D(ro,wo,v̂o)(dk, accj) = 0 ∨
∃ i ∈ [n], Φ(ro,wo,v̂o)(qi) = 0

∣∣∣∣∣∣∣∣∣∣∣

(ro,wo, v̂o)← O
pp← G(1λ)(

[qi]
n
i=1 [accj ]

ℓ
j=1

acc πV

)
← A(ro,wo,v̂o)(pp)

(apk, avk, dk)← I(ro,wo,v̂o)(pp)

 . (11)

Since iΦ = ⊥ and ppΦ = ⊥ in oracle query accumulation schemes, we omit them from the above equation.
In the above equation, let acc =

(
((cm, β0, β1), 1), ((x, y, z), γ)

)
and πV =

(
((xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1), ζn+2ℓ+1),

(a1, . . . , an), f, ω
)
. We argue that the event in the left side of Equation 11, which we denote by E, is equiva-

lent to the condition “f(X) ̸≡ v̂o(g(X)) and f(β0) = v̂o(g(β0))”.

• First, we show that f(β0) = v̂o(g(β0)). Note that

– D(ro,wo,v̂o)(dk, acc) = 1 implies that v̂o(x, y, z) = γ; and
– V(avk, [qi]

n
i=1, [accj ]

ℓ
j=1, acc, πV) = 1 implies that (x, y, z) = g(β0) and γ = f(β0).

Then substitution gives v̂o(g(β0)) = f(β0).

• Second, we show that f(X) ̸≡ v̂o(g(X)). Consider the expression

∃ j ∈ [ℓ], D(ro,wo,v̂o)(dk, accj) = 0 ∨ ∃ i ∈ [n], Φ(ro,wo,v̂o)(ppΦ, iΦ, qi) = 0 .

This means there is a query-answer pair ((xk∗ , yk∗ , zk∗), ζk∗) ∈ Q such that v̂o(xk∗ , yk∗ , zk∗) ̸= ζk∗ , for
some k∗ ∈ [n + 2ℓ + 1]. By g’s definition, we have (xk, yk, zk) = g(bk) for every k ∈ [n + 2ℓ + 1],
so v̂o(g(bk∗)) ̸= ζk∗ . Also since V(avk, [qi]

n
i=1, [accj ]

ℓ
j=1, acc, πV) = 1, we have f(bk) = ζk for every

k ∈ [n+ 2ℓ+ 1]. Hence, we get f(bk∗) ̸= v̂o(g(bk∗)), and thus conclude that f(X) ̸≡ v̂o(g(X)).
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Next, we wish to invoke our oracle zero-finding game lemma (Lemma 7.1) to bound the probability in
Equation 11. We apply Lemma 7.1 with respect to the commitment scheme CM′ obtained by modifying CM
as follows:

CM′.Commit(ck, (g, f);ω) := CM.Commit(ck, ((g(b1), . . . , g(bn+2ℓ+1)), f);ω) .

Note that CM′ is binding to g since g has degree less than n + 2ℓ. Further, since CM has binding error
εCM(λ) in the standard model (and hence also in the ROM15), Lemma 6.6 states that CM has binding error
εCM(λ) + εARO(t, λ) in the AROM.

The winning event in the zero-finding game is that

cm = CM′.Commit(ck, (g, f);ω) = CM.Commit(ck, ((x1, . . . , xn+2ℓ+1) , f);ω) ,

f(X) ̸≡ v̂o(g(X)), and f(β0) = v̂o(g(β0)) for β0 := ro(cm). Since V(avk, [qi]ni=1, [accj ]
ℓ
j=1, acc, πV) = 1,

we get that cm = CM.Commit(ck, ((x1, . . . , xn+2ℓ+1), f);ω). Also note that deg(g) ≤ n + 2ℓ. Thus, by
applying our oracle zero-finding game lemma, the probability that f(X) ̸≡ v̂o(g(X)) and f(β0) = v̂o(g(β0))
is at most√

t ·
(
2d(n+ 2ℓ)(m+ λ+ w) + 1

|F|

)
+ εCM(λ) + εARO(t, λ) +

1

|F|
+ εARO(t, λ) +

t

2λ
.

Since the event E is equivalent to f(X) ̸≡ v̂o(g(X)) and f(β0) = v̂o(g(β0)), the above probability is
an upper bound on the probability in Equation 11, as desired.

8.4 Zero knowledge

We describe a zero-knowledge simulator S that has access to (ro,wo, v̂o) and simulates: (i) the scheme’s public
parameters pp; and (ii) the distribution of P’s accumulator acc without access to P’s inputs (the predicate
inputs [qi]ni=1 and old accumulators [accj ]ℓj=1). Then we show that if the commitment CM is statistically
(resp. computationally) hiding, then the simulated joint distribution ((ro,wo, v̂o), pp, acc) is statistically
(resp. computationally) indistinguishable from ((ro,wo, v̂o), pp, acc) produced in the real protocol.

• Parameter generation: S(1λ)→ pp.

1. Sample ck← CM.Setup(1λ).
2. Output pp := ck (and store ck in the internal state).

• Proving: S(ro,wo,v̂o)(ppΦ = ⊥, iΦ = ⊥)→ acc.

1. Sample commitment randomness ω and compute a commitment cm :=CM.Commit(ck, ((0, . . . , 0), f ′);ω)
where f ′ ∈ F[X] is the zero polynomial (appropriately padded).

2. Query ro and wo to compute β0 := ro(cm) and β1 := wo(cm). If β0 ∈ {b1, . . . , bn+2ℓ}, resample ω and
recompute cm until this is not the case. Abort if we resample more than κ := λ/(log |F| − log(n+ 2ℓ))
times.16

3. Sample a random v̂o query (x, y, z)← Fm+λ+w.
4. Query the oracle v̂o to compute γ := v̂o(x, y, z).

15Otherwise, we can construct a standard-model adversary for CM via running the adversary for CM in the ROM and answering
ro-queries using a “lazily sampled” evaluation table for ro.

16If the field F is of superpolynomial size (and n, ℓ are polynomially bounded) then resampling is not necessary.
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5. Output the accumulator acc :=
(
((cm, β0, β1), 1), ((x, y, z), γ)

)
.

Observe that the probability that the simulator aborts in Step 2 is at most negl(λ). By Claim 3.7, with all but
negligible probability, all of the sampled cm are distinct; hence the probability that ro(cm) ∈ {b1, . . . , bn+2ℓ}
for all sampled cm is at most

(
n+2ℓ
|F|
)κ

+ negl(λ) = negl(λ).
We argue that ((ro,wo, v̂o), pp, acc) above is indistinguishable from that produced by the accumulation

prover. Since S does not program the oracle, we fix an oracle (ro,wo, v̂o)← O, then argue that pp and acc
output by S are distributed correctly, given (ro,wo, v̂o).

First, the real and simulated pp have the same distribution: they are both commitment keys ck ←
CM.Setup(1λ).

Next, we show that the real and simulated acc =
(
((cm, β0, β1), 1), ((x, y, z), γ)

)
are indistinguishable.

It suffices to argue the indistinguishability of cm and (x, y, z) (between the real protocol and the simulation),
because β0 = ro(cm), β1 = wo(cm) and γ = v̂o(x, y, z) in both the real protocol and the simulation.

• cm: Since CM is (statistically/computationally) hiding, cm is (statistically/computationally) indistinguish-
able from a commitment to any other message of the same length. This is true even if the adversary is given
many independent commitments to the same message. Note that apart from the choice of message, the
prover and simulator sample cm in the same way.

• (x, y, z): Since β0 ̸∈ {b1, . . . , bn+2ℓ} (else the simulator aborts), in the real protocol, as in the simulation,
g(β0) is uniformly random in Fm+λ+w. This follows from a standard algebraic fact stated below.

Fact 8.3. Let t ∈ N and let b1, . . . , bN+1 ∈ F be distinct field elements, and let x1, . . . , xN ∈ Ft. Sample
xN+1 ← Ft uniformly and construct g to be the (unique) interpolation of the points (b1, x1), . . . , (bN+1, xN+1) ∈
F× Ft of minimal degree. Then for any point β ← F \ {b1, . . . , bN}, g(β) is uniformly random in Ft.

8.5 Efficiency

We discuss the efficiency of Construction 8.2.

• Generator. Efficiency follows from the efficiency of CM.Setup, which takes poly(λ) time.

• Indexer. This takes poly(λ) time.

• Accumulation prover. Running P(ro,wo,v̂o) involves making at most n queries (where each query is either to
ro or wo), computing the polynomial g via polynomial interpolation, committing to (f, g), and computing
the polynomial f via evaluating g at (((m + λ + w) · d) − 1) · (n + 2ℓ + 1) query points,17 making
(m+ λ+ w) · d · (n+ 2ℓ+ 1) queries to ro, then interpolating. These operations can be accomplished in
polynomial time in λ.

• Accumulator size. Consider the first query-answer pair ((cm, ro(cm),wo(cm)), 1) in acc. Since the
commitment scheme CM has commitment size m, we know that cm ∈ {0, 1}m ⊆ Fm. Then, the
query-answer pair ((cm, ro(cm),wo(cm)), 1) is in Fm+λ+w × F. The second query-answer pair in acc is
((x, y, z), f(β0)), which is in Fm+λ+w × F due to the domain of v̂o and the definition of f .

• Accumulation proof size. The accumulation proof πV includes (i) a v̂o query-answer pair ((xn+2ℓ+1, yn+2ℓ+1, zn+2ℓ+1),
ζn+2ℓ+1), which can be represented with m+ λ+ w + 1 elements of F; (ii) advice values (a1, . . . , an),
which can be represented with≤ n ·max{λ,w} elements of F; (iii) a single-variate polynomial f of degree

17This assumes that we reuse the g query-answer pairs (bi, (xi, yi, zi)) from the prover’s Step 4.
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at most (m+ λ+w) · d · (n+ 2ℓ+ 1), which can be represented with (m+ λ+w) · d · (n+ 2ℓ+ 1) + 1
elements of F; and (iv) commitment randomness ω, which is a bitstring of poly(λ) length.

• Accumulation verifier. The accumulation verifier V computes the polynomial g via interpolation, the com-
mitment CM.Commit(ck, ((x1, . . . , xn+2ℓ+1), f);ω), a single evaluation of g, and n+ 2ℓ+ 2 evaluations
of f . Note that V makes no oracle queries.

• Decider. D(ro,wo,v̂o) makes 2 queries to v̂o.
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9 PCD in the AROM

We describe how to combine our results to construct PCD in the AROM, proving our main theorem.

9.1 SNARKs in the AROM

We argue that a (zk)SNARK in the ROM is also a (zk)SNARK (where honest parties only query the random
oracle) in the AROM. In Lemma 9.1 we prove that straightline knowledge soundness is preserved in the
AROM. Afterwards, in Lemma 9.2 we prove that zero knowledge of a SNARK in the ROM is preserved in
the AROM.

9.1.1 Knowledge soundness

Lemma 9.1. Let F = {Fλ}λ∈N be a family of fields, m : N → N an arity function, d : N → N a degree
function such that d(λ) ≥ 2 for a security parameter λ ∈ N, and X := ARO[F ,m, d].

Let ARG = (G, I,P,V) be a SNARK in the ROM for a relationR, where the random oracle has arity
≤ m(λ). Suppose ARG has straightline knowledge extraction error κ(λ, t), in which t ∈ N.

Then, ARG is a SNARK relative to X for R (unconditionally) with straightline knowledge extraction
error at most κ(λ, t · poly(λ)) + t+poly(λ,|x|)

2λ
, where t is the number of queries made by the adversary in the

AROM and |x| is the size of an instance in L(R).

Proof. Let ARG = (G, I,P,V) be a SNARK in the ROM forR with straightline knowledge extraction error
κ(λ, t). We argue that ARG, with access to O ∈ ARO[F ,m, d], has straightline knowledge extraction error
at most κ(λ,O(t2) · poly(λ)) + t

2λ
.

By the definition of straightline knowledge soundness for ARG, there exists a knowledge extractor E such
that for every malicious prover P̃:

Pr


V ro(ivk,x, π) = 1

∧
(i,x,w) ̸∈ R

∣∣∣∣∣∣∣∣∣∣∣∣∣

ro← U(m(λ), λ)
pp← G(1λ)
ai← D(pp)

(i,x, π)
tr←− P̃ ro(pp, ai)

(ipk, ivk)← Iro(pp, i)
w← E(pp, i,x, π, tr)


≤ κ(λ, tP̃) , (12)

in which tP̃ = |tr|.
Define a predicate pro(x) corresponding to the game that P̃ attempts to win in Equation 12:

1. Parse x as (pp, i,x, π, tr).
2. Run (ipk, ivk)← Iro(pp, i).
3. Run E(pp, i,x, π, tr|ro), in which tr|ro denotes tr restricted to ro queries.
4. Output 1 if V ro(ivk,x, π) = 1 and (i,x,w) ̸∈ R. Otherwise, output 0.

Let tp denote the query complexity of pro. By the succinctness of ARG (Section 3.3) and the efficiency of I,
we have tp = poly(λ, |x|).
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Next, let P̃ARO be any t-query malicious prover in the AROM. For some δ ∈ [0, 1), we have

Pr

 pro(pp, i,x, π, tr) = 1

∣∣∣∣∣∣∣∣
(ro,wo, v̂o)← O

pp← G(1λ)
ai← D(pp)

(i,x, π)
tr←− P̃(ro,wo,v̂o)

ARO (pp, ai)

 > δ . (13)

Note that the probability in Equation 13 is equivalent to the straightline knowledge soundness property for
ARG in the AROM.

Now, we invoke Theorem 6.5 and the knowledge soundness property of ARG to upper bound δ. De-
fine an adversary A(ro,wo,v̂o) that runs the right side of Equation 13, excluding the first line, and outputs
(pp, i,x, π, tr). Note that A(ro,wo,v̂o) makes tA = t oracle queries because only P̃ARO makes oracle queries.
By Theorem 6.5, there exists an adversary C, with access to ro and straightline access to A, so that

Pr

[
pro(x) = 1

∣∣∣∣ ro← U(m(λ), λ)

x← C(ro,A)
]
≥ δ − εARO(t+ tp, λ) ,

in which εARO(t+ tp, λ) is the emulation error of a pass-through stateful (O, {wo, v̂o})-emulatorMro
ARO.

Specifically, C(ro,A) :=AMro
ARO , and C(ro,A) makes at most t · tM queries, in which tM denotes the per-query

query complexity ofMro
ARO.

Observe that both A and C run pp ← G(1λ) and ai ← D(pp), then differ afterwards; interpret the
differing code in C as a malicious prover P̃ ro (which is in the ROM). Then, Equation 12 implies κ(λ, t ·tM) ≥
δ − εARO(t+ tp, λ). Rearranging gives

δ ≤ κ(λ, t · tM) + εARO(t+ tp, λ) . (14)

By Theorem 5.4, there exists a pass-through stateful (O, {v̂o})-emulator with query complexity O(1)
and with emulation error εARO(t + tp, λ) =

t+tp
2λ

. Thus by Lemma 6.3, Mro
ARO makes tM := O(tB) =

poly(λ) oracle queries per emulated query, where the equality is due to the definition of ARO[F ,m, d]
(Definition 4.3). Plugging these values into Equation 14 yields the desired result.

9.1.2 Zero-knowledge

We show that zero-knowledge SNARKs in the ROM remain zero-knowledge in the AROM.

Lemma 9.2. Let F = {Fλ}λ∈N be a family of fields, m : N→ N an arity function, and d : N→ N a degree
function such that d(λ) ≥ 2 for a security parameter λ ∈ N.

Let ARG = (G, I,P,V) be a zero-knowledge SNARK in the ROM for a relation R, where the random
oracle has arity ≤ m(λ), with zero-knowledge simulation error at most εZK(λ). Then, ARG is a SNARK
relative to X :=ARO[F ,m, d] forR with zero-knowledge simulation error at most εZK(λ) + t

2λ−1 , where
t is the number of oracle queries made by a stateful adversary in the AROM.

Proof. Let ARG = (G, I,P,V) be a zero-knowledge SNARK in the ROM. We argue that ARG maintains
zero-knowledge in the AROM; for O = ARO[F,m, λ, d,B] ∈ X , we show that there exists an efficient
simulator S(ro,wo,v̂o)ARO such that for all stateful honest t-query adversaries A, the following distributions are
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εZK(λ) + 2 · εARO(t, λ)-close, where εARO(t, λ) is the O-emulation error:

DARO :=

A
(ro,wo,v̂o)(π)

∣∣∣∣∣∣∣∣∣∣
(ro,wo, v̂o)← O(λ)

pp← G(1λ)
(i,x,w)← A(ro,wo,v̂o)(pp)

(ipk, ivk)← Iro(pp, i)
π ← P ro(ipk,x,w)


and DZK :=

A
S(ro,wo,v̂o)ARO (π)

∣∣∣∣∣∣∣∣∣
(ro,wo, v̂o)← O(λ)
pp← S(ro,wo,v̂o)ARO (1λ)

(i,x,w)
tr←− A(ro,wo,v̂o)(pp)

π ← S(ro,wo,v̂o)ARO (i,x, tr)

 .

We may assume without loss of generality that the second stage of A outputs a single bit. Note that in DARO,
the indexer I and prover P only access ro because we want to argue that ARG, which is defined in the ROM,
remains zero-knowledge in the AROM. Further, since A is honest, we have (i,x,w) ∈ R in both DARO and
DZK.

Let S be the zero-knowledge simulator for ARG. Further, let Mro
ARO be a pass-through stateful

(O, {wo, v̂o})-emulator with error εARO(t, λ), which exists due to Lemma 6.3. Define the (stateful) zero-
knowledge simulator S(ro,wo,v̂o)ARO for ARG in the AROM as follows:

• Parameter generation: S(ro,wo,v̂o)ARO (1λ)→ pp.

1. Output pp← S(1λ).

• Proving: S(ro,wo,v̂o)ARO (i,x, tr)→ π.

1. Run π ← Sro(i,x, tr|ro), in which tr|ro denotes the restriction of tr to ro query-answer pairs.
2. Output π.

• Query responses: S(ro,wo,v̂o)ARO (tri, (oid, x))→ y.

1. Run (tri+1, y) ← MS
ro(tri|ro)

ARO (tri, (oid, x)). Note that Sro simulates responses to the ro queries of
MARO, conditioned on tri|ro, which is tri restricted to ro queries.

2. Output y.

Note that S(ro,wo,v̂o)ARO never queries wo or v̂o, so below we write SroARO := S(ro,wo,v̂o)ARO . Below, we write
AMro

ARO(tr) to mean that A has query access to an emulatorMro
ARO(tr) that is initialized with tr; if A makes

more than one query, then subsequent runs of the emulator are initialized with a transcript containing all
query-answer pairs that A has seen.

Next, we use a hybrid argument to argue the indistinguishability of DARO and DZK.
The hybrids are as follows. Below, we use blue text to denote changes from the previous hybrid (i.e. blue

text in hybrid Hybi+1 are the changes from hybrid Hybi. Further, we write tr to denote the O-query-answer
transcript of A.

• H0: A’s view is defined as in DARO.

DARO :=

A
(ro,wo,v̂o)(π)

∣∣∣∣∣∣∣∣∣∣
(ro,wo, v̂o)← O(λ)

pp← G(1λ)
(i,x,w)← A(ro,wo,v̂o)(pp)

(ipk, ivk)← Iro(pp, i)
π ← P ro(ipk,x,w)

 .
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• H1: A’s view is defined as in DARO, except that A(ro,wo,v̂o) is replaced by AMro
ARO(⊥). That is, the

distribution is:

D1 :=

A
Mro

ARO(tr)(π)

∣∣∣∣∣∣∣∣∣∣

ro← U(m(λ), λ)
pp← G(1λ)

(i,x,w)
tr←− AMro

ARO(⊥)(pp)
(ipk, ivk)← Iro(pp, i)

π ← P ro(ipk,x,w)

 .

• H2: A’s view is defined as:

D2 :=

AM
Sro(tr|ro)
ARO (tr)(π)

∣∣∣∣∣∣∣∣
ro← U(m(λ), λ)

pp← S(1λ)
(i,x,w)

tr←− AMro
ARO(⊥)(pp)

π ← Sro(i,x, tr|ro)

 ,

in which Sro is the zero-knowledge simulator for ARG. Observe that tr|ro is the query-answer transcript of
the composed adversary AMro

ARO(⊥).
• H3: A’s view is:

D3 :=

AS
ro
ARO(tr)(π)

∣∣∣∣∣∣∣∣
ro← U(m(λ), λ)
pp← SARO(1

λ)

(i,x,w)
tr←− AMro

ARO(⊥)(pp)
π ← SroARO(i,x, tr)

 .

• H4: A’s view is defined as in DZK running with SroARO.

DZK :=

AS
ro
ARO(tr)(π)

∣∣∣∣∣∣∣∣
(ro,wo, v̂o)← O(λ)

pp← SARO(1
λ)

(i,x,w)
tr←− A(ro,wo,v̂o)(pp)

π ← SroARO(i,x, tr)

 .

Next, we bound the statistical distance between the hybrids.

H0 vs. H1. We argue that H0 and H1 have distance at most εARO(t, λ). Given (ro,wo, v̂o)← O(λ), define
a stateful adversary AThm, as follows:

1. Run pp← G(1λ).
2. Run (i,x,w)← A(ro,wo,v̂o).
3. Run (ipk, ivk)← Iro(pp, i).
4. Run π ← P ro(ipk,x,w).
5. Output b← A(ro,wo,v̂o)(π).

Observe that A(ro,wo,v̂o)
Thm is exactly DARO and AM

ro
ARO

Thm is exactly D1. Hence the statistical distance
between H0 and H1 is at most∣∣∣ Pr [A(ro,wo,v̂o)

Thm = 1
∣∣∣ (ro,wo, v̂o)← O(λ)

]
− Pr

[
AM

ro
ARO

Thm = 1
∣∣∣ ro← U(m,λ)

]∣∣∣ . (15)

Invoking Corollary 6.4, Equation 15 is upper bounded by εARO(t, λ).
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H1 vs. H2. We argue that H1 and H2 have statistical distance at most εZK(λ). Observe that the composed
adversary AMro

ARO(⊥) only queries ro.
Next, we argue that, in H1, AMro

ARO(⊥)(pp) is honest, i.e. outputs (i,x,w) ∈ R with probability
≥ 1−negl(λ). SinceA(ro,wo,v̂o)(pp) is honest, it outputs x = (i,x,w) ∈ Rwith probability δ ≥ 1−negl(λ).
Next, we invoke Theorem 6.5, with a predicate p(x) checking that x ∈ R, on A(ro,wo,v̂o)(pp) to get the
transformed adversary C(ro,A) := AMro

ARO(⊥)(pp); the output x of AMro
ARO(⊥)(pp) satisfies x ∈ R with

probability ≥ δ − εARO(t, λ) ≥ (1− negl(λ))− εARO(t, λ). Setting the emulation error εARO(t, λ) :=
t
2λ

,
as computed in Theorem 5.4, implies that C(ro,A) outputs a valid x ∈ R with probability ≥ 1− negl(λ).

Thus, we can invoke ARG’s zero-knowledge property with respect to AMro
ARO(⊥); given the zero-

knowledge simulator Sro for ARG, we can syntactically update distribution D1 to (a) replace P ro with
Sro; and (b) after π is produced, have Sro(tr|ro) answer the composed adversary’s ro queries. This updated
distribution is exactly the distribution D2 in H2, which proves the claim.

H2 vs. H3. H2 is obtained from H3 by expanding the definition of SroARO, so the two hybrids are identical.

H3 vs. H4. The difference between the hybrids is that, in H4, A accesses the real (ro,wo, v̂o) when
outputting (i,x,w) versus, in H3, A accesses the emulatorMro

ARO(⊥). We bound the statistical distance
between H3 and H4.

Given (ro,wo, v̂o)← O(λ), define a stateful adversary AThm that does the following:

1. Run pp← SroARO(1
λ).

2. Run (i,x,w)
tr←− A(ro,wo,v̂o)(pp).

3. Run π ← SroARO(i,x, tr).
4. Output b← ASroARO(tr)(π).

Observe that A(ro,wo,v̂o)
Thm is exactly DZK and AM

ro
ARO

Thm is exactly D3. Hence the statistical distance between H3

and H4 is at most∣∣∣ Pr [A(ro,wo,v̂o)
Thm = 1

∣∣∣ (ro,wo, v̂o)← O(λ)
]
− Pr

[
AM

ro
ARO(⊥)

Thm = 1
∣∣∣ ro← U(m,λ)

]∣∣∣ . (16)

By Corollary 6.4, Equation 16 is upper bounded by εARO(t, λ).

Overall bound. By the triangle inequality, we conclude that the statistical distance between H0 and H4

is at most εZK(λ) + 2 · εARO(t, λ). Further, setting the emulation error εARO(t, λ) :=
t
2λ

, as computed in
Theorem 5.4, yields the statement.

As a consequence of Lemmas 9.1 and 9.2, the Micali SNARK [Mic00] is secure in the AROM.

Corollary 9.3. Let F = {Fλ}λ∈N be a family of fields, m : N → N be an arity function, d : N → N be a
degree function, and λ ∈ N be the security parameter.

If m(λ) ≥ 2λ and d(λ) ≥ 2, then the Micali SNARK [Mic00], instantiated with a (holographic) PCP that
is honest-verifier zero knowledge and has knowledge soundness, is a zero-knowledge SNARK with straightline
knowledge extraction relative to ARO[F ,m, d].

The requirement m(λ) ≥ 2λ comes from the Micali SNARK construction, which uses the random oracle
ro to compute the Merkle tree. Thus, setting m(λ) ≥ 2λ ensures that ro can parse inputs containing two ro
outputs.
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9.2 PCD from SNARKs in the AROM

Theorem 9.4 (formal restatement of Theorem 1). Let F = {Fλ}λ∈N be a family of fields, m : N→ N an
arity function, and d : N→ N a degree function such that d(λ) ≥ 2, m(λ) ≥ 2λ, and |Fλ| = λω(1).

There exists a zero-knowledge PCD scheme relative to ARO[F ,m, d] (see Definition 4.2) for polynomial-
time compliance predicates (of unbounded depth) with access to the sampled oracle, assuming the existence
of (standard-model) collision-resistant hash functions.

Proof. We recall a lemma from [CCS22] on SNARKs for oracle computations, with the following minor
strengthening: if the given SNARK ARGin has straightline knowledge extraction, then so does the resulting
SNARK ARGout. This is straightforward from the construction of the extractor for ARGout in [CCS22].

Lemma 9.5 ([CCS22, Lemma 8.2]). Let O be an oracle distribution. Suppose that we are given:
(i) a SNARK ARGin in the O-oracle model for an (oracle-free) relationR; and

(ii) an accumulation scheme AS = (G, I,P,V,D) for O-queries (in particular, V makes no oracle query).
Then we can construct a SNARK ARGout relative to O forRO.

Moreover: (i) if ARGin is zero-knowledge and AS is zero-knowledge, then ARGout is zero-knowledge;
and (ii) if ARGin has straightline knowledge extraction then ARGout has straightline knowledge extraction.

We invoke Lemma 9.5 with O ∈ ARO[F ,m, d], in which ARGin is the Micali SNARK run in the
AROM (Corollary 9.3) and AS is the accumulation scheme for AROM queries from Theorem 8.1. This gives
a SNARK ARGout in the AROM for AROM computations.

At this point, we could invoke [CCS22, Theorem 9.2] to obtain PCD for constant-depth compliance
predicates. However, since ARGout has straightline knowledge extraction, we can obtain a stronger result:
PCD for arbitrary-depth compliance predicates.

Given the output of a (cheating) prover P̃, the PCD knowledge extractor receives P̃’s oracle transcript
tr, applies ARGout’s straightline knowledge extractor to get the witness w, then reconstructs a transcript of
the computation based on w. Since ARGout’s extractor is straightline, each extraction step has incurs an
additive cost. It follows that we obtain PCD in the AROM for all arbitrary-depth polynomial-time compliance
predicates. We omit further details about the knowledge extractor as this essentially follows from [CT10]; the
main difference is that the SNARK in [CT10] satisfies a stronger knowledge extraction property called “list
extraction”. However, our notion of straightline extraction suffices for the [CT10] analysis.
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