
DORAM revisited: Maliciously secure
RAM-MPC with logarithmic overhead

Brett Falk, Daniel Noble, Rafail Ostrovsky, Matan Shtepel, and Jacob Zhang

{fbrett@cis.upenn.edu, dgnoble@seas.upenn.edu}, University of Pennsylvania
{rafail@cs.ucla.edu, matan.shtepel@ucla.edu, jacobzhang@g.ucla.edu},

UCLA

Abstract. Distributed Oblivious Random Access Memory (DORAM)
is a secure multiparty protocol that allows a group of participants hold-
ing a secret-shared array to read and write to secret-shared locations
within the array. The efficiency of a DORAM protocol is measured by
the amount of communication and computation required per read/write
query into the array. DORAM protocols are a necessary ingredient for
executing Secure Multiparty Computation (MPC) in the RAM model.
Although DORAM has been widely studied, all existing DORAM pro-
tocols have focused on the setting where the DORAM servers are semi-
honest. Generic techniques for upgrading a semi-honest DORAM proto-
col to the malicious model typically increase the asymptotic communi-
cation complexity of the DORAM scheme.
In this work, we present a 3-party DORAM protocol which requires
O((κ+D) logN) communication and computation per query, for a database
of size N with D-bit values, where κ is the security parameter. Our hid-
den constants in a big-O nation are small. We show that our protocol is
UC-secure in the presence of a malicious, static adversary. This matches
the communication and computation complexity of the best semi-honest
DORAM protocols, and is the first malicious DORAM protocol with this
complexity.

1 Introduction

In this work, we develop the first Distributed Oblivious RAM (DORAM) proto-
col secure against malicious adversaries while matching the communication and
computation costs of the best-known semi-honest constructions.

Poly-logarithmic overhead Oblivious RAM (ORAM) [Ost90, Ost92, GO96]
was developed to allow a client to access a database held by an untrusted server,
while hiding the client’s access pattern from the server itself with poly-log over-
head. In this work, we focus on Distributed Oblivious RAM, which allows a group
of servers to access a secret-shared array at a secret-shared index. The secret-
shared index can be conceptualized as coming either from an external client or
as the output of a previous secure computation done by the servers.

The efficiency of an ORAM protocol is usually measured by the (amortized)
number of bits of communication required to process a single query. If privacy

were not an issue, in order to retrieve a single D-bit entry from a table of
size N , the client would need to send a log(N)-bit index, and receive a D-
bit value, so the communication would be log(N) + D. In order to make the
queries oblivious, it is known that a multiplicative communication overhead of
Ω(log(N)) is required [GO96, LN18]. That is, the optimal communication in
the traditional, passive-server ORAM setting is Ω((D+ logN) logN). 1 Several
ORAM protocols have achieved this “optimal” communication complexity (in
slightly different settings). [LO13] achieved logarithmic amortized overhead in
the two-server setting (Figure 1b), OptORAMa achieved amortized logarithmic
overhead in the single-server setting [AKL+20] (Figure 1a) with constant in
front big-O notation > 2228. The constant was later reduced to 9405 in [DO20])
and de-amortized in [AKLS21]. However, despite all these improvements, these
works are of only theoretical interest, due to large constants. In Section 3.4 we
discuss why none of these semi-honest constructions can be naïvely compiled
to a maliciously secure DORAM without asymptotic blowup. When a DORAM
can store N , D-bit elements with security parameter is κ, we prove the following
theorem:

Theorem 1 (Malicious DORAM, Informal). If Pseudo-Random Functions
exists with O(κ+ l) circuit size (where l is the number of input bits and κ is the
computational security parameter), then there exists a (3,1)-malicious DORAM
scheme (see Definition 1) with O((κ+D) logN) {communication,computation}
complexity between the servers per each query.

The best DORAMs in the semi-honest model have either O((κ+D) log(N))
[LO13] [FNO22] or O((log2(N)+D) log(N)) [WCS15] communication complex-
ity per query. Which of these is better depends on the parameter choices. If D is
large (Ω(log2(N)+κ)) they are equally good. If D is small, [LO13] [FNO22] are
better when log(N) = ω(

√
κ) and [WCS15] is better otherwise. Thus, our server-

to-server communication overhead of O((κ+D) log(N)) matches the best com-
munication and computation complexity of one of the best DORAM protocols
in the semi-honest model [FNO22, LO13], achieving security against malicious
adversaries with no asymptotic increase in communication costs.

As we discuss below, one of the main motivations for studying DORAM is
in service of building efficient, secure multiparty computation (MPC) protocols
in the RAM model of computation.

1.1 MPC in the RAM model

Secure Multiparty Computation (MPC) protocols enable a set of mutually dis-
trusting parties, P1, ..., Pn, with private data x1, ..., xn to compute an agreed-
upon (probabilistic) polynomial-time function, f , in such a way that each player

1 Most ORAM works assume D = Ω(logN), so O((D + logN) logN) = O(D logN)
which is described as a logarithmic “overhead” or a logarithmic “blowup” over O(D)
communication needed to make a query in the insecure setting.

2

Client Server

(a) Client-server
ORAM

Client

S1

S2

(b) Multi-server
ORAM

Client

S1

S2

S3

(c) DORAM

Fig. 1: Abstract view of different ORAM “flavors” in the client-server model. In
client-server ORAM the client and the server communicate over many rounds.
In multiserver ORAM the client communicates with each server individually over
many rounds. In DORAM, the client communicates a secret shared query to the
servers, the DORAM servers communicate amongst themself for several rounds,
and respond to the client. The client’s work is the lowest in the DORAM setting.

learns the output, f(x1, ..., xn), but no additional information about the other
participants’ inputs [Yao82, Yao86, GMW87, CCD88].

The majority of MPC protocols work in the circuit model of computation
[Vol99], where the functionality, f , is represented as a circuit (either a boolean
circuit, or an arithmetic circuit over a finite field F). Computing in the circuit
model has been advantageous for MPC protocols because circuits are naturally
oblivious, i.e., the sequence of operations needed to compute f is independent of
the private inputs x1, . . . , xn. This reduces the problem of securely computing
an arbitrary function, f , to the problem of securely computing a small set of
universal gates (e.g. AND and XOR).

Although the circuit model of computation is convenient for MPC, many com-
mon functionalities cannot be represented by compact circuits, which means they
cannot be computed efficiently under MPC. A simple database lookup highlights
the inefficiency of the circuit model. Consider the function R(i, y1, . . . , yN) = yi,
which outputs the ith element in a list or the function W (i, Y, y1, . . . , yN) which
produces no output but sets yi = Y . These functionalities can run in constant
time in the RAM-model of computation, but in the circuit model, both R and
W have circuit complexity O(N).

In contrast to circuit-based MPC protocols, RAM-MPC framework [OS97]
provides a method of securely computing functions specified in the RAM model
of computation. Efficiency is often a barrier to the deployment of MPC protocols
in practice, and compilation from RAM model into circuits hurts the efficiency

3

of programs which use random access. Thus, RAM-MPC is a critical step in
making general-purpose MPC protocols that are efficient enough for practical
applications.

1.2 Building RAM-MPC

One method for building RAM-MPC is to use a generic (circuit-model) MPC
protocol to simulate the client for a client-server ORAM protocol [OS97]. For the
purpose of running ORAM clients under MPC, various “MPC friendly” ORAM
protocols have been developed. For example, [SCSL11, GGH+13, WCS15, SVDS+13]
developed circuit ORAM, an ORAM maintaining the stringent one-trusted-
client one-untrusted-server security model of traditional ORAM while decreas-
ing the circuit-complexity of the client. Another example of such efforts, are
multi-server ORAM protocols where the trusted client’s data is shared and ac-
cessed across multiple servers. Assuming some fraction of the servers are honest
[OS97, GKK+12, GKW18, KM19] these works shift some of the communication
burden to servers. These multi-server ORAMs can also be adapted to the MPC
context by simulating the client using (circuit-based) MPC, allowing the MPC
participants to play the role of the additional ORAM servers. Some of these
protocols have been implemented [GKK+12, LO13, ZWR+16, WHC+14, Ds17].

A recent direction in the search for MPC-friendly ORAMs is Distributed
ORAM (DORAM). In a DORAM protocol, both the index i and the database
y1, . . . , yN are secret shared among a number of servers. The goal of the pro-
tocol is to obtain a secret-sharing of yi at minimal communication between
the servers while not exposing any information about i or y1, . . . , yN . DORAM
has been widely studied in the semi-honest model [LO13, GHL+14, FJKW15,
ZWR+16, Ds17, JW18, BKKO20, FNO22, JZLR22, VHG22]. These works have
taken several interesting approaches, emphasizing different parameters, and of-
ten presenting implementations [ZWR+16, Ds17, VHG22, JZLR22].

In this paper, we study DORAM in the malicious model. In particular, we
provide the first DORAM protocol that provides security against malicious ad-
versaries while matching the asymptotics of the best-known semi-honest construc-
tion. We use the generic transformation to compile our DORAM into RAM-
MPC, giving RAM-MPC which is secure against malicious adversaries at the
cost of asymptotic cost of the best known semi-honest construction.

2 Notation, Conventions, and Definitions

Notation. We denote the 3 parties P1, P2, P3 and F2l the finite field of 2l ele-
ments. For the bulk of our symbolic definitions, see Table 1.
DORAM. We use N to denote the total number of elements in the DORAM.
Each element stored in the DORAM is a pair (X,Y), where X is the “virtual
address” of the D-bit payload, Y . Thus a query will be a secret-shared index, X,
and the response will be a secret-sharing of the corresponding payload, Y . We
assume that only X’s in the range [N] are queried. We let κ be our computational

4

Symbol Definition
N The (maximum) number of elements storable by the ORAM data structure
D The size (in bits) of each element
κ The security parameter κ = ω(logN)

JxK A secret sharing of the value x

[x](i,j) A two-party (additive) sharing of x between participants i and j

[x](i,j,k) A three-party (additive) sharing of x between participants i, j and k.
JxKPi Pi’s share of x.
x(i) An individual component of an (additive) share.
Pi Participant i in the DORAM protocol

x
?
= y Boolean expression evaluating to 1 if x equals y, else 0

(b?x : y) Expression which evaluates to x if b, else evaluates to y

x[i : j] For x = x0 . . . xn−1 = x ∈ Fn we let x[i : j] = xi . . . xj

C An arithmetic or boolean circuit
x ∈R S x

U←− (S) where U(S) is the uniform distribution on S.
⊥ Reserved null value

Table 1: Notation

Functionality FDORAM

FDORAM.Init(JY K): Given a secret-shared N element array, s.t for all i ∈ [N],
Yi ∈ {0, 1}D, store Y internally. No output.
FDORAM.ReadAndWrite(JXK, JYnewK): Given a secret-shared address X ∈ [N]
and secret shared Write/Null:

1. Output JYXK to the players.
2. If Ynew ̸= ⊥, update YX = Ynew.

Fig. 2: FDORAM: The DORAM functionality

5

security parameter. Since we want to achieve failures with probability negligible
in the input size, N , we must have κ = ω(logN). We use σ denote our statistical
security parameter.
DOMap. A DOMap is a DORAM protocol where the index set, X, need not
be 1, . . . , N , but can instead be arbitrary bit strings.

In this work, we define security using the Universal Composability (UC)
framework [Can01], which allows us to formally define DORAM.

Definition 1 (DORAM). A protocol, Π, is said to be a UC maliciously-secure
(n, t)-Distributed ORAM protocol if for all N,D, κ ∈ Z+, Π UC-realizes the
DORAM functionality (Figure 2).

Secret Sharing. Our protocol makes heavy use of (3,1) replicated secret sharing
(also known as CNF sharing [CDI05]).

Definition 2 (replicated secret sharing). Let x, x(0), x(1), x(2) ∈ F s.t x(0)+
x(1) + x(2) = x. we say that P0, P1, P2 hold a replicated secret sharing of x if Pi

hold all x(j) s.t j ̸= i.

We use JxK to denote a replicated secret sharing of the value x held jointly by
by P0, P1, P2. Explicitly, this means that for Pi, JxK = {x(j)}j ̸=i. Let [z](i,j)

denote an additive sharing of z held by parties Pi and Pj . Concretely, [z](i,j)
denotes a two-party XOR sharing of the value z between participants i and j,
so participant i holds a share z(i) where z(i) + z(j) = z. Let [z](i,j,k) denote an
XOR secret sharing between parties i, j, k. For a list X ∈ Fn, we let X(j)

i denote
the share of the value Xi held by player j.

3 Prior Work

3.1 Client-Server ORAM

ORAM protocols was originally introduced to allow a single client with O(1)
memory slots each of size O(D) for D > logN to store an array of O(N)
elements on a single, untrusted server [Gol87, Ost90, Ost92, GO96]. Follow-
up works aimed at reducing the communication complexity between the client
and the server. Single server ORAM must incur at least logarithmic overhead
[GO96, LN18]. A long line of research has culminated in ORAM protocols that
achieve these bounds. In particular, [AKL+20] achieves amortized overhead of
O(logN), but the big-O notation hides at least 2228 constant, which was later
reduced to 9405 [DO20]. The work of [AKL+20] was later de-amortized to
achieve (logarithmic) overhead in the worst-case [AKLS21], following the de-
amortization technique of [OS97]. Although these protocols are asymptotically
optimal, the hidden constants are still too large for practical applications [DO20].

In the original ORAM model, the single server was considered to be passive,
meaning it could read and write to locations specified by the client, but could
not perform computation of its own. In Active ORAM protocols, the server is

6

allowed to perform computation of its own, and the ORAM lower bounds can
be circumvented (for sufficiently large blocks) and it is possible to achieve con-
stant query overhead using single-server PIR machinery [KO97, OS97, AKST14,
DvDF+16, FNR+15, RFK+14]. Indeed, if one only considered asymptotic com-
munication complexity, the client could encrypt its query a fully-homomorphic
encryption protocol and the active server could run a linear-sized selection cir-
cuit to retrieve a single, encrypted response. This clearly has low communication
complexity but unacceptable computation complexity for the server.

3.2 Multi-server ORAM

A relaxation of the ORAM model is the notion of multi-server ORAMs [LO13,
GKW18, KM19]. Inspired by multi-server PIR protocol [OS97], in a multi-server
ORAM protocol, there is a single client, and multiple (non-colluding) servers.
As shown by [LO13], adding a second (non-colluding) server can increase effi-
ciency – [LO13] achieved logarithmic overhead (in the two server setting) years
before a protocol with comparable asymptotic efficiency was found in the single-
server setting [AKL+20]. The two-server scheme still maintains much better
concrete efficiency than the best known single-server ORAM (despite having
similar asymptotic costs).

Having multiple servers also allows other techniques where servers don’t just
store client’s data but compute on these data. For example as Function Secret-
Sharing (FSS) [GI14, BGI15] can be used to support PIR techniques in order
to reduce the client-server communication at the cost of increasing server-side
computation. Several (D)ORAM protocols have been built using FSS [Ds17,
KM19, VHG22], but these all require O(N) server side computation, limiting
their scalability.

3.3 DORAM

Unlike the original ORAM model, and the variants discussed above, in the Dis-
tributed Oblivious RAM (DORAM) model there is no client at all2. Instead, all
information is secret-shared between the DORAM servers. Thus a DORAM pro-
tocol allows a group of servers to access a secret-shared array at a secret-shared
index.

This leaves the question of how to build DORAM. As oberved in [OS97],
any ORAM protocol that requires a trusted client can be compiled into a DO-
RAM protocol by executing the client’s code within a generic MPC framework.
The problem with this approach is that the client may not be “MPC-friendly,”
meaning that simulating the client under MPC would result in efficiency loss.
One possible avenue towards creating efficient DORAM is to build ORAM pro-
tocols whose clients have the low circuit complexity and compile them into DO-
RAM protocols using generic MPC. Circuit ORAM [WCS15] and Path ORAM
2 The client may be conceptualized secret sharing the query between the servers, but

she does not participate in the retrieval protocol

7

Protocol Communication Adversary
2PC-GC Circuit ORAM [WCS15] O

(
κ log3 N + κD logN

)
Semi-Honest

2PC Sqrt-ORAM [ZWR+16] O
(
κD

√
N log3 N

)
Semi-Honest

2PC FLORAM [Ds17] O
(√

κDN logN
)

Semi-Honest
2PC ORAM [HV20] O

(√
κDN logN

)
Semi-Honest

BGW (3PC) Circuit ORAM [WCS15] O
(
log3 N +D logN

)
Semi-Honest

BGW (3PC) 2-server hierarchical [LO13] O ((κ+D) logN) Semi-Honest
3PC ORAM [FJKW15] O

(
κσ log3 N + σD logN

)
Semi-Honest

3PC ORAM [JW18] O
(
κ log3 N +D logN

)
Semi-Honest

3PC ORAM [BKKO20] O
(
D
√
N
)

Semi-Honest
DuORAM [VHG22] O (κ ·D · logN) Semi-Honest
[FNO22] O ((κ+D) logN) Semi-Honest
Our protocol O ((κ+D) logN) Malicious

Table 2: Complexity of DORAM protocols. N denotes the number of records, κ is
a cryptographic security parameter, σ is a statistical security parameter, and D
is the record size. Note that communication always lower bounds computation,
as communicating is considered a “computational step.”

[SVDS+13] took this approach. As shown in Table 2, compiling Circuit ORAM
into a DORAM yields a DORAM protocol with O

(
log3 N +D logN

)
bits of

communication per query.
Instead of compiling a client-server ORAM into a DORAM, an alternative

approach is to build a DORAM directly. To date, several DORAM protocols
have been developed [KS14, WHC+14, FJKW15, Ds17, JW18, HV20, BKKO20,
FNO22, VHG22, JZLR22]. Among these DORAM protocols, [LO13, FNO22]
is the most efficient, with logarithmic overhead in both communication and
computation. Nevertheless, asymptotic complexity is not everything and [KS14,
FJKW15, Ds17, JW18, WHC+14, VHG22] have all been implemented, and are
reasonably efficient in practice. We stress that all of these protocols are only
secure against semi-honest adversaries.

3.4 Limitations of the generic ORAM to DORAM transformation

The majority of ORAM and DORAM constructions have focused on the semi-
honest model, where the server (or servers) observe the client’s queries but do not
tamper with any of the data stored by the client. In the passive model, where the
ORAM server is simply a memory array where the client can store and retrieve
data, [GO96] developed methods to authenticate data and compile an ORAM
protocol designed for semi-honest servers into one designed for malicious servers.
The [GO96] transformation breaks down, however, when the ORAM server is
active.

8

One possible technique for building DORAM protocols secure against mali-
cious adversaries, is to execute a single-server ORAM protocol using a malicious
secure MPC framework. We can generically transform any semi-honest client-
server ORAM, into a malicious-DORAM by simulating both the ORAM client
and the ORAM server using an MPC protocol that provides security against
malicious adversaries. To measure the efficiency of this transformation, we need
to measure the efficiency of both the ORAM client and the ORAM server.

Remark 1 (Converting OptORAMa to a DORAM). Consider trying to trans-
form OptORAMa (which has an O(logN) communication overhead in the client-
server setting) into a malicious-secure DORAM. Since the hidden constants are
enormous [DO20], it will obviously be inefficient in practice, but would it be
asymptotically efficient?

As it turns out, OptORAMa loses its asymptotic optimality when compiled
into a DORAM. The main reason is that the OptORAMa client is assumed
to perform operations on w-bit “words” in O(1) time (Where w = O(logN)).
This allows them to perform SIMD operations on N bits in O(N/w) time by
bit packing (e.g. [AKL+20][Theorem 4.5]). Simulating the client under MPC,
transmitting a w-bit word requires (at least) w-bits of communication. So the
packing techniques crucially used in [AKL+20] do not yield the necessary a w-
fold speedup under MPC. Another difference in the model is how PRFs are
evaluated. In the client-server setting, OptORAMa assumes that a PRF can be
computed in constant time. This makes sense in the client-server setting where
the PRF can be implemented with a hardware circuit (e.g. AES-NI). When
simulating the client under MPC, however, the PRF calls need to be simulated
under MPC, and this requires at least an additional O(κ) communication.

Thus simulating OptORAMa (or follow-up works like [AKLS21, MV23]) un-
der a malicious MPC protocol would not yield a DORAM with O((κ+D) logN)
communication complexity.

Remark 2 (Converting [LO13] to a DORAM). The 2-server ORAM protocol of
[LO13] achieves logarithmic overhead, and the [LO13] client is reasonably effi-
cient. Essentially, the [LO13] client makes O(logN) PRF calls for each ORAM
query. This means that the [LO13] client could be run under MPC with a com-
munication complexity of O((κ+D) logN). The issue is that the [LO13] servers
are active – they generate permutations and shuffle data. This means that run-
ning the [LO13] servers under an MPC would require verifying consistency of
permutations, which would introduce additional work.

Remark 3 (Converting [FNO22] to a Maliciously-secure DORAM). The 3-server
DORAM of [FNO22] achieves security against one semi-honest device with com-
munication cost O((κ + D) log(N)). However it is not easily convertible to a
malicious protocol. In particular, [FNO22] heavily depends on Bloom Filters to
implement a Distributed Oblivious Set. These Bloom Filters are secret-shared
between 2 parties, so have no protection against a party providing incorrect
shares.

9

Thus, for these generic conversions (running an efficient ORAM under malicious-
secure MPC) it is not clear how to build a malicious-secure DORAM with
O((κ+D) logN) communication per access.

Our protocol builds on the (3,1)-DORAM of [FNO22], which has logarithmic
overhead in the semi-honest setting. Our protocol achieves the same computa-
tional and communication complexity but is secure against malicious adver-
saries.

3.5 Concurrent Work

In concurrent and independent work [IKH+23] also construct DORAMs in the
(3,1) setting. They construct one DORAM secure against a semi-honest adver-
sary and another secure against a malicious adversary. Both constructions have
O(logN) communication and computation overhead in the setting where the
payload size, D, is large enough (D = Ω(logN) in the semi-honest setting and
D = ω(log2 N) in the malicious setting).

To compare our protocol to [IKH+23], we consider the concrete communi-
cation and computation complexity of our protocols in terms of N = poly(λ),
the number of elements stored in the DORAM; D, the number of bits of each
payload; and κ = ω(logN), the computational security parameter. Both of
[IKH+23]’s constructions have complexities O((κ+D) logN), which is the same
complexity as our maliciously secure construction. We remark that our construc-
tion works for any payload size, D, while [IKH+23]’s malicious construction
achieves this complexity only for sufficiently large payloads (D = ω(log2 N)).
Additionally, there are two issues with both of [IKH+23]’s constructions:

– Cuckoo hashing failures: One problem, as noted in several previous ORAM
works is that “small” cuckoo hash tables have a non-negligible probability
of build failure. Thus, most hierarchical ORAM constructions take steps to
avoid using cuckoo hash tables in the smaller levels of the hierarchy. Ac-
cording to [IKH+23][Section 5], Ichikawa et al use the hierarchical solution
with a top level of size 2σ where σ = ⌈logN⌉ is the size of the cuckoo hash
table stash they reinsert after every level rebuild. Yet, as [Nob21][Theorem
13, Corollary 3] shows, a cuckoo table with n = Θ(logN) elements stashing
s = Θ(logN) < n elements cannot achieve negligible build-failure proba-
bility in N , giving queries to the DORAM of [IKH+23] noticeable failure
probability.3 The failure probability of cuckoo hash tables is not addressed
in [IKH+23].
One approach to resolving this problem would be to increase the size of the
top (i.e., smallest) level of the hierarchy to ω(logN), but this approach has
challenges. A standard hierarchical top level (such as the one used in [FNO22,
IKH+23]) cannot be instantiated with size ω(logN), or the complexity of
querying the (D)ORAM increases above O((κ + D) logN). This issue has

3 The cited Theorem is stated for 2-table cuckoo hashing constructions, but it easily
extends to any constant number of tables.

10

been observed in works such as [AKL+20], but as far as we know, their “small
cuckoo replacements” do not apply in the distributed setting as [AKL+20]
uses “packing” tricks (see Remark 1). The only fix we know in the distributed
setting is QuietCache (Section 7), a distributed, oblivious, cache protocol
which can be instantiated with ω(logN) elements without worsening the
complexity of the protocol – one of the main contributions of this work.

– Complexity of evaluating a PRF: [IKH+23] rely on securely evaluating
a PRF inside MPC (which is also the case in our paper), but the cost of
implementing this PRF seems to be underestimated in [IKH+23]. Specifi-
cally, [IKH+23][Section 3] assumes a secret-shared input, secret-shared out-
put PRF, FPRF , of communication and computation complexity O(l), where
the input is in Z2l .4 In their protocol (e.g. [IKH+23][Algorithm 3]), the PRF
is evaluated on the secret shares of DORAM addresses (elements of Z2⌈log N⌉)
and secret-shares of keys of unspecified size. Throughout the paper [IKH+23]
(e.g. see Lemma 4.3) the cost of calling FPRF is assumed to be O(logN). Yet,
observe that for computational indistinguishability of PRF to hold against
and poly-time adversary, a PRF key must be at least κ = ω(logN) bits, or
else a polynomial time adversary could break PRF by brute force by enu-
merating all possible keys. Thus, the circuit must be at least of size O(l+κ)
just to read in the input. This was pointed out by [FNO22][Appendix B]
and is assumed in our work. Since [IKH+23] evaluate the PRF Ω(logN)
times on each query to the DORAM, and send Ω(n) D-sized blocks at ev-
ery level of rebuild [IKH+23][Algorithm 3, Step 10], the communication and
computation complexity of both their semi-honest and malicious protocol is
Ω((κ + D) logN). This means that computational complexity of [IKH+23]
is not lower than [FNO22], as stated in the [IKH+23] paper.

4 Technical Overview

In this work, we construct a 3-player 1-malicious distributed ORAM (DORAM)
with logarithmic amortized-per-query overhead. To our knowledge, this is the
first DORAM protocol proven to be secure against malicious adversaries. Our
construction has an amortized-per-query computational and communication com-
plexity of O((κ+D) logN), where κ is our computational security parameter, D
is the number of bits in each data block, and N is the total number of elements
stored in the DORAM. This is identical to best DORAMs in the semi-honest
setting ([LO13, FNO22]). We remark that we can also de-amortize our con-
structions using standard machinery and without substantially increasing the
overhead.

Our protocol is based on the Hierarchical solution [Ost90]. While this tech-
nique has primarily been applied in many client-server ORAMs [GMOT12,
KLO12, LO13, PPRY18, AKLS21], we, like several other works [KM19, FNO22],

4 This functionality is implemented by taking a standard PRF circuit and evaluating
it under MPC.

11

apply it to DORAMs. Before understanding our protocol, it is important to un-
derstand the Hierarchical solution in general.

The Hierarchical Solution in Client-Server ORAM: A client-server
ORAM must ensure that the physical access pattern on the server is (compu-
tationally) independent of the client’s queries, regardless of the query sequence.
Let us first consider a slightly weaker primitive: a protocol in which the access
pattern on the server is (computationally) independent of the client’s queries
provided each item is queried at most once. This primitive is called an Oblivious
Hash Table (OHTable) and is much easier to instantiate. Most common hash
tables become oblivious when the hash functions themselves are pseudorandom.
If the hash table can also be constructed on the server in a way that leaks no
information about the contents, or their relation to any later queries, then a full
OHTable protocol has been achieved.

An OHTable may seem significantly weaker that an ORAM, but in fact an
ORAM of size N can be constructed using only Θ(log(N)) OHTable through a
recursive construction known as the “hierarchical solution”, first introduced in
[Ost90]. Assume we have access to a sub-ORAM of capacity N/2. The protocol
then stores all N elements in a single OHTable, and each time an item is accessed,
the item is cached in the sub-ORAM. When an item is queried, the sub-ORAM
is queried first. If the item is not in the sub-ORAM, it has not been queried in
the OHTable, so it can be queried in the OHTable and this will not be a repeated
query into the OHTable. On the other hand, if the item is in the sub-ORAM,
we must still query the OHTable, but in this case, we query random locations in
the OHTable (independent of the client’s query). This ensures that if the client
makes at most N/2 queries, no element is ever queried twice in the OHTable,
and the security of the OHTable is preserved. When the sub-ORAM becomes
full, its contents can be extracted, as well as the contents of the OHTable, and
the OHTable can be rebuilt, with new secret keys for the PRF/hash functions. If
the sub-ORAM is implemented recursively, this results in Θ(log(N)) OHTables,
and a small base-case. Typically we conceptualize the OHTables as arranged
vertically in a “hierarchy” of levels of geometrically increasing size, labeled from
Level 0, the base-case, also called the cache, to the largest level of size N . The
cache could be of constant size, though it is often of size Θ(log(N)) and in our
work is larger (of size Θ(κ) = ω(logN)). Since the cache is very small it can be
implemented using a somewhat more inefficient “ORAM.”

Remark 4 (OMaps). Actually, the recursive construction requires the sub-ORAMs
to be slightly more versatile than an ORAM. Notice that the sub-ORAM has ca-
pacity N/2 but may be required to store elements from the index space [N]. The
ORAM definition requires the size of the ORAM to be the same size as the index
space. To implement the recursive hierarchical construction, the sub-ORAMs re-
ally need to implement an Oblivious Map (OMAP). An OMap is essentially just
an ORAM for storing key-value pairs instead of index-value pairs. The OMap
functionality is defined formally in Figure 3. Note that most existing ORAM
protocols actually instantiate the slightly stronger OMap functionality.

12

The Hierarchical Solution for DORAMs: Distributed ORAMs can also
be built using the Hierarchical solution using the same technique. Distributed
Oblivious Hash Tables (DOHTables) are multi-party protocols that implement
a dictionary data structure, subject to the fact that no adversarially-controlled
subset of parties can learn anything about the query pattern from their views
of the protocol, provided each item is queried at most once. Like before, we can
cache responses of queries to a large DOHTable in a sub-DORAM and query
the sub-DORAM first. If the item is not found in the sub-DORAM, the item
is queried at the the DOHTable; if it is found, the parties execute a protocol
that is indistinguishable from a real, unique query to the DOHTable. By recur-
sively implementing the sub-DORAMs using this technique, a DORAM can be
constructed using Θ(log(N)) DOHTables.

Overview of Our Solution: One approach to building DORAM is to take
an existing ORAM and simulate the client inside of a secure computation (e.g.
[WCS15]). We depart from this approach, noting that DORAM actually al-
lows for many efficiency improvements that would not be possible in a classic
client-server ORAM. While DORAM has no trusted client, it does have multiple
non-colluding servers which perform local computation and can communicate
between each other. In particular, we examine the (3,1)-setting, that is there are
3 servers and at most one corruption. This allows us to do many things more
efficiently than in the client-server ORAM setting.
1. Efficient Shuffles: In the (3,1) setting, similar to [LWZ11] we can secret-
share a list between 2 parties. These parties can then shuffle the list using a
permutation known to them but not the third party. If this process is repeated 3
times, with parties taking turns to be the uninvolved party, the final permutation
will be unknown to all parties. This allows us to shuffle n items of size D with
Θ(nD) communication and small constants.

While this protocol is simple, its significance can be appreciated when com-
pared to the difficulty of shuffling in the classical ORAM setting. In that setting,
shuffling n items requires Θ(n log(n)D) communication with huge constants, or
Θ(n log2(n)D) communication with small constants. A core insight of recent
ORAM protocols [PPRY18, AKLS21] is that full shuffles can be avoided by re-
using randomness and using oblivious tight compaction instead of shuffles. This
brings the cost down to Θ(nD) but the constants are still impractically large
[DO20].
2. Efficient multi-select: In the (3, 1) setting, it is possible to evaluate circuits
of AND-depth 1 with communication equal to that of a single AND gate. Using
this, we can construct an efficient multi-select protocol. That is, given n secret-
shared items of size D, we can efficient select the kth item for any secret-shared
k ∈ [n] with only Θ(n + D) communication. (See Section 7 for more details.)
To the best of our knowledge, efficient multi-selects have not been used to build
DORAMs prior to our work.
3. Separating Builders from Holders: In the classical ORAM setting, the
server can see the access patterns during both builds and queries to an OHTable.
This creates a problem: for efficiency the possible locations in which an item

13

may be stored are revealed during a query. To ensure security, the build must
obliviously move each item to its correct location. In the (3, 1) setting we can
instead have a single party, the builder, learn the locations in which items in
the table may be stored. This allows the builder to locally and non-obliviously
calculate the allocation of items to locations. After this, the table is secret-shared
between the other 2 parties, called the holders. During a query, the holders (but
not the builder) learn the locations in which the queried item may be stored and
return their shares of the items in these locations. Since the adversary controls
at most one party, it can either learn the physical locations of stored items
(from the builder) or the potential physical locations of queried items (from a
holder) but not both, preventing it from learning information about whether the
queried items were stored in the table. (Our actual protocol, in fact allows the
builder to construct a useful data-structure for set queries entirely by itself, and
secret-share this to the holders. This is then used to build a DOHTable.)

However, in the malicious setting it is difficult to take advantage of these
techniques, especially the technique of separating builders from holders. If the
builder is malicious, how can we ensure that they build data structures correctly?
Naturally, zero knowledge proofs allow the builder to prove any claim, but how
can it do so efficiently? Furthermore, after we secret-share the data-structure
between two holders, how can we guarantee that they provide the correct shares
during reconstruction? (We can use a (3,1) replicated secret sharing (section 2)
to detect modification of shares when all three parties are involved, but this will
not work with only 2 parties.) Similarly, the multi-select and shuffle protocols
described above are only secure against semi-honest adversaries.

Core contributions: In this paper, we show how to take advantage of the
existence of multiple non-colluding servers even when one of these parties is
malicious. The primary techniques are as follows:

– Proving in zero-knowledge a distributed statement that builder
built data structures correctly: We present a method by which it can
be efficiently verified that the builder has built and secret shared their data
structure correctly to the two holders without revealing any information to
the holders. Our method is linear in the data-structure size and has small
constants.

– Designing QuietCache and restructuring the DORAM hierarchy:
We present a more efficient distributed, oblivious, maliciously-secure cache
protocol, QuietCache (Section 7), which serves as a top level of our DORAM
hierarchy. Querying the standard cache used in the literature when it stores
n elements costs O((n+D) logN) communication/computation. For works
targeting the best-known complexity of O((κ+D) logN), this has restricted
the size of the cache to O(logN). Since Cuckoo Hash Tables with a Stash of
(CHTwS) of Θ(logN) elements have non-negligible failure probability and,
generally speaking, all efficient-to-query OHTables are based on CHTwS,
previous constructions had to design a different type of OHTable for small
levels (e.g. [LO13, FNO22]). Unfortunately, we find that a small size mali-
ciously secure OHTables are difficult to construct. To resolve this, we design

14

QuietCache, which costs O(n logN + D) communication and computation
to query. This allows us to have a large cache (of size Θ(κ) = ω(logN)),
thus completely avoiding the need for small OHTables.

– Mixing Boolean and F2l secret-sharings: Our solutions to the above
require a combination of large-field arithmetic (for MACs and polynomial
equality checks) and bit-wise operations (for equality tests and PRFs). We
therefore require efficient methods of converting between these two types of
secret-sharing: by using the field F2l we can actually convert between these
two types of sharing for free.

In addition, we design an expanded, versatile Arithmetic Black Box (section
6), and prove it UC-secure against a (3, 1) malicious adversary. This greatly
simplifies our later protocol descriptions and proofs.

5 Cuckoo Hashing, Stashes and the Alibi Technique

Functionality FOMap

FOMap.Init(JXK, JY K, w, n, N): Store (Xi, Yi) in a dictionary for all 1 ≤ i ≤ w,
where len(X) = len(Y) = w.
FOMap.Query(JxK, res): If x is stored in the dictionary, store the corresponding
value, y, as JresK.
If x is not stored in the dictionary, store ⊥ as JresK.
FOMap.Add(JxK, JyK): Store (x, y) in the dictionary (writing over an old value if
need be).
FOMap.Extract(res): Create array Z consisting of the key-value pairs from the
dictionary, i.e. Zi = (Xi, Yi) for some (Xi, Yi) stored in the dictionary. Pad Z to
length n with (⊥,⊥). Shuffle Z randomly and store it as JresK.

Fig. 3: OMap Functionality

Cuckoo Hashing is a core technique in our protocol, as well as many other
Hierarchical ORAMs and DORAMs [PR10, GMOT12, LO13, KM19, PPRY18,
AKL+20, FNO22]. Using Cuckoo Hashing in (D)ORAMs correctly requires un-
derstanding some subtle technicalities. In this section we explain Cuckoo Hashing
and describe an efficient method for using Cuckoo Hashing in (D)ORAMs that
avoids leaking information about the access pattern.

Cuckoo Hashing [PR01] is a form of multiple choice hashing. It has multiple
variants, we use the following common, simple variant.5 Let n be the number
of elements we wish to store, where each element has a unique identifier chosen
5 Some variants have more than 2 hash tables (though usually the number is still

constant). Others allow each location to have capacity more than 1 (though again,

15

from {0, 1}S and a data value chosen from {0, 1}D. We will have 2 tables, T0 and
T1, each of capacity c, where c is the smallest power of 2 larger than (1+ ϵ)n for
some fixed, and fairly small, constant ϵ. (Empirical evidence shows that ϵ = 0.2
suffices for typical parameter ranges [PSSZ15].) Tables T0 and T1 are associated
with hash functions h0 and h1 respectively, where hi : {0, 1} → [c]. An item
with indicator (x, y) ∈ {0, 1}S × {0, 1}D will either be stored in location h0(x)
in T0 or h1(x) in T1. A builder, given the n items, can determine a satisfying
allocation of items to locations (if one exists) in Θ(n) operations.

Cuckoo Hashing has the appealing property that each item can only be stored
in a small constant number of locations (in our case 2). However, there is a non-
negligible probability that no satisfying assignment exists. For a simple example,
observe that 3 (out of n) items may be mapped to the same two locations with
non-negligible probability. For a cuckoo hash table storing n elements in a ta-
ble of size Θ(n), the probability of failure is Θ(1n) (see [DK12] for the explicit
constant.) For many applications, a build failure is inconsequential, as you can
simply try again with new hash functions. However, in security-oriented appli-
cations, this failure can leak information about the access pattern. This is not
because the build failure event by itself leaks information: if the hash functions
are secret and appear random the event is independent of the input sets. Rather,
by guaranteeing that the table was built correctly, an adversary can learn infor-
mation during queries. For instance, if 3 distinct queried items access the same 2
locations it is evident that one of the queried items was not stored in the table.

In order to reduce the probability of build failure, it is common to add an
additional stash, of size s, which can the items that cannot be stored in the
main table [KMW09]. This reduces the failure probability to O(n−(s+1)) for
constant s [KMW09] and O

((
O(s)
n

)s)
[Nob21] for super-constant s. By picking

s = Θ(log(N)), for any n = ω(log(N)) the failure probability then becomes
negligible in N .6

The stashing variant allowed Cuckoo Hashing to be applied to Hierarchical
ORAMs [GMOT12, KLO12]. Recall that in Hierarchical ORAM, we implement
an OMap using an OHTable of size N and a (recursively implemented) OMap
of capacity N/2. It was suggested that, rather than having an OHTable that
can store all N elements, it was possible to use Cuckoo Hashing with a Stash
to implement a pseudo-OHTable that could efficiently store N − s elements
(the non-stash elements) and refuse to store s elements (the stash). These stash
elements could then be stored in the sub-OMap. This reduced the number of

this is usually constant.). Alternatively, some use multiple hash functions within a
single table (with size at least 2(1+ϵ)n. For an excellent survey of variants of Cuckoo
Hashing and open problems relating to these, see [Mit09].

6 Setting s = Θ(log(n)) makes the failure probability negligible in n, but this is not
suitable for Hierarchical (D)ORAMs, where table sizes may be polylogarithmic in
the (D)ORAM size.

16

queries to the sub-OMap before it became full by a small constant, but allowed
Hierarchical ORAMs to finally take advantage of Cuckoo Hashing.7

One catch is that the choice of rejected elements is not independent of
the structure of the pseudo-OHTable. In particular, recall that in Hierarchical
ORAM, if the item is found in the sub-ORAM, the item will not be queried in
the OHTable, but random locations will be accessed instead. Falk et al. [FNO21]
observed that this causes the memory locations accessed for queries to stashed
items to be resampled during a query, whereas non-stash items are accessed in
their original hash locations. Furthermore, this causes the access pattern when
querying all items in an OMap to be distinguishable from an access pattern to
items exclusively not in the OMap. This can be solved by tagging items with an
“Alibi” bit for that level of the recursion to indicate that, although the item has
been found in the sub-OMap, it must still be queried to the OHTable.

Our DORAM uses Cuckoo Hashing with a Stash and the Alibi technique.
This means that our OHTables are not true full dictionary implementations as
they refuse to store s of the items given to them. Also we choose to always
reinsert a full s items. This effectively means that we always store s items in the
stash even if some of these items could have been stored in the main tables.

6 The Arithmetic Black Box (ABB) Model

Initially, MPC was used solely as a method of Secure Function Evaluation (SFE),
that is it was used to perform once-off evaluations of stateless functionalities.
However, today many use cases require MPC to implement a reactive function-
ality, that is, a functionality can retain a state between executions. In order to
facilitate the development of protocols for reactive functionalities, Damgård and
Nielsen introduced the Arithmetic Black Box (ABB) model for secure computa-
tion [DN03]. In their words, an “ABB can be thought of a secure general-purpose
computer.” The ABB is a reactive functionality that retains state between execu-
tions. Parties can input private values to the ABB, assigning it a public handle.
The parties may instruct the ABB to perform basic operations on the values it
holds. The parties specify the inputs to the operation using their public handles,
and also specify a public handle for the result which will also be stored in the
ABB. Lastly, the parties may instruct the ABB to output a result, either to a
single party, or to all parties. In the case of a malicious adversary, the secret-
sharing scheme must protect against an adversary inputting incorrect shares,
either by successfully reconstructing secrets even if some shares are corrupted,
or by aborting the protocol if corrupted shares are detected. The ABB model
greatly simplifies descriptions and proofs of complex MPC-based protocols.

In the ABB-model, the inputs and outputs of functionalities are often only
values stored in the ABB. In the UC model, the environment may call the func-
tionality/protocol in arbitrary ways, and may later do arbitrary things with
the ABB-stored inputs and outputs, including revealing them. The only security
7 The cache-the-stash solution [KLO12] was originally described in terms of levels

rather than recursive calls to a sub-OMap, but the effect is the same.

17

guarantee that the protocols (can) provide is that they are indistinguishable from
the functionality (or more specifically, an adversary interacting with the proto-
col is indistinguishable from a simulator interacting with the functionality). This
necessitates that any local variables stored in the ABB by the protocol (i.e. not
inputs or outputs), cannot be accessed by the environment, as the functionality
does not have any such local variables.

Some of our sub-protocols will have conditions on how the environment can
call them. For instance, our OHTables only allow each item to be queried at
most once.8 We will explicitly state any such conditions on how the environ-
ment can call such sub-protocols and prove that they are indistinguishable from
desired functionalities under these conditions. Observe that this means that the
sub-protocol is not actually a UC-secure implementation of the functionality as
the protocol cannot be called in an arbitrary way by the environment. Neverthe-
less, when such a sub-protocol is used to implement a functionality in a larger
protocol, the larger protocol ensures that its calls to the functionality satisfy
the required conditions. This means that the sub-protocol is “shielded” from the
environment by the larger protocol: the sub-protocol is a local object9 in the
larger protocol, and so cannot be called in arbitrary ways by the environment.
Therefore, the sub-protocol will be indistinguishable from its functionality in this
setting. Furthermore, the larger protocol may be accessed by the environment
in arbitrary ways and be a UC secure implementation of its functionality.

We present FABB, which we UC-realize in the malicious model in Figure 4.
We divide our ABB into four functionalities FABB1, FABB2, FABB3 and FABB4,
where FABBi is implemented in the FABB(i−1)-hybrid model. In future sections
we refer to all these functionalities under the single functionality FABB.

6.1 FABB1: Our base MPCs

We base our ABB on the (3,1) replicated-secret sharing, maliciously UC-secure
protocols of [FLNW17] and [CGH+18].10 This ensures that they maintain their
security when composed generally with other protocols. Using [FLNW17] and
[CGH+18] we can preform bit-efficient-operations (e.g. equality tests) and algebraic-
efficient-operations (e.g. multiset polynomial check) on secret-shared values, re-
spectively. To transition between “bit secret sharing” and “field secret sharing” for
free, our protocol uses (3,1) replicated secret sharing (sometimes called CNF shar-
ing c.f. [CDI05]) over F2 and F2l . As standard in BGW-style MPCs, additions and
randomness generation gates are free, but unlike in most protocols input, output,
8 We actually implement something weaker: a Distributed Oblivious Partial Hash

Table, which rejects a few items, and has a further condition that rejected items
must be queried with the same probability as un-rejected items.

9 That is, it is a local variable with associated functions as conceptualized in object-
oriented programming.

10 The fact that [FLNW17] is UC-secure is stated in the ePrint version: https://
eprint.iacr.org/2016/944.pdf, p35. The UC-security of [CGH+18] comes from
instantiating their base protocol using [LN17], which is UC-secure, c.f. https://
eprint.iacr.org/2017/816.pdf, p21.

18

https://eprint.iacr.org/2016/944.pdf
https://eprint.iacr.org/2016/944.pdf
https://eprint.iacr.org/2017/816.pdf
https://eprint.iacr.org/2017/816.pdf

Functionality FABB

Inputs and outputs are in F2l for various l ∈ Z. All functionalities allow the
adversary to abort the protocol, seeing their outputs first if applicable. We denote
communication/computation costs in green.

FABB1: Basic ABB Functionalities

Input(x, pId, varName): Receive x from party pId and store it as JvarNameK
O(|x|).
RandomElement(l, outName): Sample x ∈R F2l and store x in JoutNameK
O(l).
OR(JxK, JyK, outName): For x, y ∈ F2, compute z = x∨y. Store z in JoutNameK
O(1).
Add(JxK, JyK, outName): Compute z = x+y and store z in JoutNameK O(|x|).
Mult(JxK, JyK, outName): Compute z = x∗y and store z in JoutNameK O(|x|).
Output(JzK, to, localVarName): Receive JzK from at least one Pi for i ̸= to.
Send z to to, who store it in the local variable localV arName O(|x|).

FABB2: Circuit-based Operations

Equal(JxK, JyK, outName): If x
?
= y set z to 1, otherwise to 0. Store z in

JoutNameK O(|x|).
IfThenElse(JbK, JxK, JyK, outName): If b ?

= 1, set z to x, otherwise set z to y.
Store z in JoutNameK O(|x|).
CreateMAC(JxK, outName): Create a “tag,” τ , on the data X, and store t in
JoutNameK O(|x| + κ).
CheckMAC(JxK, JτK, outName): Check whether the tag, τ is a valid tag on
the message, x, and store the (boolean) result in JoutNameK O(|x| + κ).
PRFEval(JxK, JkK, outName): Compute z = PRFk(x), a pseudorandom
function on input x over key k ∈ F2κ and store z in JoutNameK O(|x| + κ).

FABB3: Sharing to and from a 2-sharing

ReplicatedTo2Sharing(JxK, i, j, varNamei,j): Given a handle, varName,
known to (distinct) Pi and Pj , store x as [varName](i,j) O(|x|).
2SharingToReplicated([xi,j](i,j), varName): Given a handle, xi,j , known to
(distinct) Pi and Pj , for a variable stored in [x](i,j) and a public handle, varName,
store xi,j in JvarNameK O(|x|).

FABB4: Specialized Functionalities

ObliviousShuffle(JXK, outName): Let X = X0, . . . , Xn−1. Sample a ran-
dom (secret) permutation π ∈R Sn and store Jπ(X)K = Jπ(X0)K, . . . , Jπ(Xl)K
in JoutNameK O(

∑n−1
i=0 (|Xi|+ κ)). This naturally allows multiple arrays of the

same length to be shuffled using the same secret shuffle, by combining elements at
the same index from different arrays, shuffling, then separating the elements into
their original arrays. We denote this by ObliviousShuffle having multiple inputs
and outputs.
SilentDotProduct(JXK, JY K, JMK, outName): X = X0, . . . , Xn−1,
Y = Y0, . . . , Yn−1. Mi = αYi for all 0 ≤ i ≤ n− 1. Compute z =

∑n−1
i=0 XiYi and

store z in JoutNameK O(|Xi| + |Yi| + κ).

Fig. 4: Arithmetic Black Box functionality.

19

and multiplication gates cost O(number of input bits+ number of output bits),
that is constant overhead over cleartext evaluation. 11 These functionalities im-
plemented by [FLNW17] and [CGH+18] make up for FABB1(Figure 4).

We briefly review the properties of F2l , which play a central part in our proto-
col. Let x, y ∈ F2l . Recall that, in bits, x can be represented as x0 · · ·xl−1 where
xl−1 is the highest order bit, and similarly, y can be represented as y0 · · · yl−1

where yi, xi ∈ F2. Field addition in F2l is thus equivalent to bit-wise XOR, i.e.,

x+ y = (x0 ⊕ y0) · · · (xl−1 ⊕ yl−1) = x⊕ y

Thus, secret sharing over F2l allows us to transition between bit and field secret
sharing “for free” using bit-slicing. Let x, y ∈ F2l be additive secret shares of
z ∈ F2l . That is, x+ y = x⊕ y = z. This implies that xi ⊕ yi = zi. Thus, if x is
held by P0 and y by P1, to get a secret sharing of z[i : j] ∈ F2j−i , P0 holds x[i : j]
and P1 holds y[i : j]. This, of course, requires no communication. In the special
case where i = j−1, we have transitioned to bit secret-sharing. Furthermore, the
same truncation tricks work over replicated secret sharing: to obtain Jx[i : j]K, Pk

can simply hold (x(k)[i : j], x(k+1)[i : j]). Additionally, we can let JzK = JX||Y K
by bitwise appending the shares of Y to the corresponding shares of X. This
allows us to swap back from a Boolean sharing to an Arithmetic sharing with
only local operations. For notational simplicity, this “casting” of data-types is
usually implicit. In particular, if operations occur on fields of different sizes, F2l ,
F2l′ where l > l′, the item from the smaller field is implicitly first cast to the
large field by prefixing it with zeros.

6.2 FABB2: Simple circuits

Recall the the Universal Composition Theorem [Can01]:

Theorem 2 (The Universal Composition Theorem (as in [Tof07])). Let
F and G be two ideal functionalities, and let π UC-realise F in the G-hybrid
model. Moreover, let ρ UC-realize G. Then the composed protocol, πρ/G, UC-
realises F .

Let π implement functionality F using only calls to FABB1, and with no
calls to the FABB1.Output. Then the Universal Composition theorem implies
that trivial simulator running the exact same code as the adversary exists. This
simulator works because both the real and ideal executions are composed only
of oracle calls, and hence are indistinguishable to any environment Z. Therefore,
the Universal Composition Theorem implies the following:
11 We only to evaluate MPC multiplication over F2l for l > κ and F2. Assuming that

κ > 4σ (which is reasonable as in practice κ ∈ {128, 256}, σ ∈ {40, 80}) where σ
is our computational security parameter, the constant overhead over F2l is only 2
[CGH+18][Page 3]. The overhead over F2 depends on the number of AND gates, G,
we will evaluate throughout the protocol. For G = 220, σ = 2−40 we have that the
constant overhead is 3 [FLNW17][Corollary 5.4]. This is reasonable, as for N > 215

just instantiating the DORAM would involve evaluating over 220 gates.

20

Corollary 1. Let ΠABB1 UC-realize FABB1. Let π implement functionality F
using only calls to FBasicABB, and with no calls to the FABB1.Output. Then
πΠABB1/FABB1 UC-realizes F .

Via the corollary above, we instantiate all the functionalities in FABB2 (as
done by, for example [DFK+06, Lau15]). Equal and IfThenElse are evaluated
via standard (folklore) circuits. CreateMACx evaluates JτK = JαK · JxK, where
α ∈ 2σ is a fixed secret random MAC key. See appendix A for a more detailed
discussion. CheckMAC securely evaluates JτK ?

= JαK · JxK and stores the result.
Before MACing, items are first mapped to F2σ (or a larger extension field) if they
are not already in this field. PRFEval is instantiated via the LowMC cipher12
[ARS+15].

Analysis in [FNO22][Appendix B] shows that the the LowMC circuit for
evaluating κ-bit security LowMC on l bits has size O(κ+l). Note that evaluating
a secure PRF inside of a secure computation is a more challenging task than the
well-studied primitive of an Oblivious PRF (OPRF), in which the inputs and
outputs are private, rather than secret-shared [CHL22].

6.3 FABB3: 2 party functionalities

Our (3,1) DORAM construction will crucially rely on the ability of 2 parties to
store secret-shared data between them. This will allow them to access data using
handles that are known to them, but unknown to the third party. For instance,
an array of items may be secret-shared between 2 parties. A protocol can reveal
to these 2 parties an index of this array to access. They can access this item
and convert the secret to an item stored in the ABB (i.e., stored a replicated
CNF sharing), without the third party ever learning which index in the array
was accessed.

However, this creates a challenge. A malicious party may tamper with their
shares. In the case of CNF sharing, the redundancy in the secret-sharing allows
this tampering to be detected. For non-replicated secret sharing schemes, we
detect such tampering by using MACs. That is, the 2 parties hold an XOR
secret-sharing of both the secret and of the MAC. While an adversary can cause
an additive error to both the reconstructed secret and the reconstructed MAC,
since it does not know the MAC key, it will not be able to cause the protocol to
reconstruct an incorrect value, except with negligible probability.

Since this technique is ubiquitous in the literature, we move the protocol
ΠABB3 implementing FABB3 to Figure 11 in Appendix B. In Appendix B we
also give a full proof to the following theorem:

12 The security of LowMC has been adapted into the Picnic signature scheme
[CDG+17], a 3rd round candidate in the NIST post-quantum digital signature con-
test [NIS21]. Additionally, LowMC has received several thorough cryptanalysis at-
tempts [LIM20, BBVY21, DLMW15] motivated by an ongoing Microsoft-funded
challenge, https://lowmcchallenge.github.io/

21

https://lowmcchallenge.github.io/

Theorem 3. Against a static malicious adversary controlling at most one party,
Protocol ΠABB3 (Figure 11) statistically UC-realizes functionality FABB3 with
abort in the FABB1,FABB2-hybrid model.

6.4 FABB4: specialized functionalities

In this section, we show how to securely implement the ObliviousShuffle and the
SilentDotProduct of FABB4.

Oblivious Shuffle. We present an adaptation of [LWZ11] to the malicious-
adversary setting which is particularly convenient to prove in the FABB1,FABB2,
FABB3-hybrid model. The protocol begins by resharing an array of items stored
in the ABB to P1 and P2. That is the parties call [Y 1,2

i](1,2) =
ReplicatedTo2Sharing(JXiK, 1, 2) for all i ∈ [n]. P1 then sends P2 a random per-
mutation, π. P1 and P2 then re-insert the items to the ABB, shuffled according to
this permutation13. That is, they call JZiK = 2SharingToReplicated([Y 1,2

π(i)]
(1,2))

for i ∈ [n]. JZK now contains the same items as JXK, but permuted according
to a permutation unknown to P3. The above protocol is repeated with the roles
of (P1, P2) being taken by (P2, P3) and then by (P3, P1), the final array will
be permuted according to a random permutation unknown to any of the par-
ties. Due the MACs implicitly added by ReplicatedTo2Sharing and checked by
2SharingToReplicated the functionality costs O(n(κ+ |Xi|)) communication and
computation.

Since the functionality is randomized, we need to show that the combined
distributions of the adversary’s view and the protocol’s output are indistinguish-
able from the distribution of a simulator’s view and the functionality’s output.
The protocol and the functionality both result in the array stored by the ABB
being randomly permuted according to a permutation unknown to the adversary.
(While this permutation is known to the 2 honest parties, this does not assist a
distinguisher Z who only has access to the adversary/simulator.) Furthermore,
this distribution is independent of the adversary’s/simulator’s actions. Therefore
it suffices to show that we can simulate the adversary. A simple simulator exists
for this protocol: S generates a random permutation and sends it to A (as the
honest party would). S then outputs the same result as A.

SilentDotProduct: Using the silent-multiplication property of (3,1)-CNF
shares (a.k.a. replicated secret shares) and MACs to build a secure “silent” dot
product between JXK = JX1K, ...JXnK and JY K = JY1K, . . . , JYnK for O((|Xi| +
|Yi|)κ) communication and computation. Since similar tricks have previously
appeared in the literature (e.g. [CDI05, BIKO12]) we reserve the full explanation
to the Appendix C.

13 For improved efficiency, the permutation could instead be generated by a PRG, where
the seed is known by P1 and P2, but not P3. This would yield a computationally-
secure shuffle.

22

6.5 Additional remarks

In this section we present three important remarks about the nature of our ABB
which impact the rest of our presentation, future work, and the security of our
protocol.

Remark 5 (Notational note). For notational clarity, we use standard assignment
notation to show a new variable being stored in the ABB, dropping its name
from the function call. For example, we will replace FABB.PRFEval(JxK, JkK, Q)
with JQK = FABB.PRFEval(JxK, JkK). Occasionally, we use infix notation to call a
functionality, for instance, replacing FABB.Mult(JxK, JyK, z) with JzK = JxK ∗ JyK.
Also, we occasionally place constants in the secret-sharing notation (e.g. JtrueK),
in which case, the constant is first implicitly input as a secret variable.

Remark 6 (Security up to an adversarial abort). Our ABB is secure up to up
to an adversarial abort14, and thus our DORAM function also achieves security
with abort. We believe this relaxation is appropriate with respect to the DORAM
functionality because the input and output of the DORAM functionality are
secret shared and reveal no information. Thus, by selecting to not give output
to a subset of the honest players, an adversary does not gain an information
advantage over the honest players, who will abort the protocol immediately after
not receiving output. Moreover, the adversary cannot abort in response to the
access-pattern, input, etc, preventing output delivery upon some (meaningful)
event. Additionally, it is sometimes the case (Figure 6) that the functionalities
allow the adversary to choose its secret share of the output (while not allowing it
to choose the output). This is of course not a violation to any meaningful notion
of security.

7 QuietCache: Maliciously-secure Oblivious Cache
Construction

In this section, we design a novel, distributed, oblivious, “cache” protocol which
we will use to instantiate the topmost level of our hierarchy.

Unlike the OHTables at all other levels of the hierarchy, the cache must allow
items to be queried more than once, since there is no smaller level to which an
item may be moved. Furthermore, it should allow new items to be added without
requiring an expensive rebuild process. We formalize the functionality that the
cache must satisfy as Functionality FOMap, (Figure 3).

In similar works, the cache is often instantiated by executing a linear-scan un-
der MPC [FNO22] with append complexity O(1) and query complexity O((D+
logN)c) where c is the number of elements in the cache.

There is a fundamental tension here regarding the size of the cache. Since
every (D)ORAM query accesses the cache, performing a linear scan of the cache
adds Ω((D+ logN)c) to the (D)ORAM query complexity. When c = Ω(logN),

14 See e.g. [IKK+11][Definition 2.1]

23

Protocol ΠQuietCache

Hybrids: The protocol is defined in the FABB-hybrid model.
ΠQuietCache.Init(JXK, JY K, w, n,N):

1. Store arrays JXK and JY K.
2. Initialize counter t to w.
3. Initialize MACs for all elements. For i ∈ [w]: JMiK = FABB.CreateMAC(JYiK)

ΠQuietCache.Store(JxK, JyK):

1. Increment t.
2. Set JXtK = JxK, JYtK = JyK.
3. Create MAC for new value: JMtK = FABB.CreateMAC(JyK)

ΠQuietCache.Query(JXK, outName):

1. First create a t-bit indicator array, JbK which shows the index of the copy of
JxK that was most recently stored (or the all-zero vector if JxK has never been
stored).
(a) For i = t, . . . , 1

i. JisMatchiK = FABB.Equal(JXiK, JXK)
ii. JisBeforeMatchiK = JisBeforeMatchi+1K ∨ JisMatchi+1K (Except that

JisBeforeMatchtK = 0)
iii. JbiK = JisMatchiK ∧ (¬JisBeforeMatchiK)

2. Then efficiently select the item based on this indicator array using
FABB.SilentDotProduct:
(a) JyK = FABB.SilentDotProduct((JbiKD)ti=1, JYiKti=1, JMiKti=1)
(b) Return JyK.

ΠQuietCache.Extract():

1. For every index, x, set all but the latest copy of (x, y) to (⊥,⊥). For i =
1, . . . , t:
(a) JX̂Ki = JXKi, JŶ Ki = JY Ki
(b) For i < j ≤ t :

i. JbijK = FABB.Equal(JXiK, JXjK)
ii. (JX̂iK, JŶiK) = FABB.IfThenElse(JbijK, (J⊥K, J⊥K), (JX̂iK, JŶiK))

2. Shuffle items and return the result:
(a) JX̂K, JŶ K = FABB.ObliviousShuffle(JX̂K, JŶ K)
(b) Return JX̂K, JŶ K.

Fig. 5: ΠQuietCache: Protocol for the cache (implementation of smallest FOMap).

24

querying the cache becomes the bottleneck for the entire (D)ORAM protocol,
so most (D)ORAM protocols set c = O(1). Unfortunately, there are multiple
problems with a small cache. First, the “cache-the-stash” technique requires a
cache of at least size Ω(log(N)). Second, small cuckoo hash tables always have
a non-negligible probability of build failure [Nob21], and when the cache (L0)
is small, so are the smaller levels in the hierarchy (L1, L2,) For this reason,
many hierarchical (D)ORAM protocols (e.g. [LO13]) are forced to use different
types of tables for the smaller levels of the (D)ORAM hierarchy.

We resolve this tension by designing a novel, distributed, oblivious cache
protocol ΠQuietCache that allows us to increase c to c = κ = ω(logN), while
still maintaining efficient access to the cache. Notably, our protocol requires
O(max{D,κ}) communication to store a new item and O(D+ n logN) commu-
nication to query an item. This will mean that our smallest OHTables will be of
size Ω(κ) = ω(log(N)), allowing them to instantiate cuckoo hash tables with a
stash with at most negligible build failure negligible in N , as required.

Our protocol, ΠQuietCache works as follows. The protocol maintains an array
of all items that have been added (either during initialization or later), with
items that were added later appearing later in the array. When a new item is
added, ΠQuietCache does not attempt to delete the old item, but merely places
the new item at the end of the array to indicate it is newer. Authentication tags
are also added to values each time an item is inserted, which will later allow for
efficient queries. To query, we perform a linear scan of the indices, but not the
values. We create a bit-array that is 1 in the location of the array where the
index was most recently added (if any) and 0 elsewhere. Since the values are all
authenticated, we can use our bit-array to very efficiently access the correct value
using FABB.SilentDotProduct (Figure 4). In the honest-majority 3-party setting,
this is very efficient and has essentially the same cost as a single multiplication.
Leveraging the silent dot product is the key trick which enables ΠQuietCache’s
efficiency. Finally, when items need to be extracted we need to delete old copies
of items. We do this using a brute-force check under MPC.

We now show that ΠQuietCache implements FOMap securely.

Proposition 1. Against a static malicious adversary controlling at most one
party out of three, Protocol ΠQuietCache (Figure 5) UC-realizes functionality
FQuietCache (Figure 5) with abort in the FABB-hybrid model.

Proof. For the correctness of ΠQuietCache.Query, note that while ΠQuietCache.Store
does not delete old index-value pairs when a new copy of the index is stored,
it places the new item at the end of the array. This effectively overwrites the
old value, since ΠQuietCache.Query always uses the last-occurring version of the
item.

For the correctness of ΠQuietCache.Extract, note that every item (and only
items) inserted (either during Init or Add) will be stored somewhere in the
array, and that the most recently inserted value will occur latest. If there is
a later occurrence of an item, the protocol replaces the first occurrence with
(J⊥K, J⊥K). Therefore, the list JX̂K, JŶ K will contain all stored indices with their
most-recently stored value. It will have a number of items equal to the total

25

number of insertions (including overwrites). Finally, the output is shuffled before
being returned as required.

Since ΠQuietCache only makes calls to FABB and is correct, security follows
directly from Corollary 1.

In Appendix F.1 we prove that:

Proposition 2. The communication and computational complexity of ΠQuietCache.Init,
ΠQuietCache.Store, ΠQuietCache.Query, ΠQuietCache.Extract is Θ(κw), O(max{D,κ}),
O(D + n logN), O(n2 logN + nD), respectively.

8 Maliciously-secure Oblivious Set Construction

At a high level, our DORAM has a hierarchy of Oblivious Hash Tables (OHTa-
bles), one in each level. It was observed by [MZ14] that once it is known whether
an item is in a given level, it is much easier to access it obliviously. We therefore
adopt the approach of [FNO22] to first have a protocol exclusively to securely
determine whether the item exists at a given level. We call such a protocol a
Distributed Oblivious Set or OSet and we implement (a variant of) this function-
ality in this section. In the next section (Section 9) we use this as a sub-protocol
to build (a variant of) an OHTable.

At a high level, ΠOSet obtains efficiency by separating the players into the
roles of “builder” and “holders” [LO13, FNO22]. The Builder constructs a data
structure locally, which is secret-shared between two Holders. The Builder can
learn information about where data is stored in the data structure during a build,
while the Holders can learn the locations that queried items may be located
during queries. If an adversary can only corrupt a single party it therefore is
unable to use this information to learn whether queried items are stored in the
table.

There are two major challenges with this approach. The first is achieving
privacy. The Builder must somehow build the data structures based on knowl-
edge of the locations of items, without learning any information about the items
themselves. The second is ensuring correctness. In the malicious setting, there
must be a method to verify that the Builder constructed data structures cor-
rectly. If the Builder were to place an item in the incorrect location, the protocol
would not find the item during queries.

We address the privacy challenge by storing PRFs of the items rather than
the items themselves. We evaluate the PRF inside of the ABB, so only the
PRF output is revealed to the Builder. The security of the PRF guarantees that
no information about the items themselves is leaked by their outputs. It also
guarantees that collisions occur with negligible probability, so an item will be in
the set only if its PRF is in the set of PRF evaluations, except with negligible
probability.

We address the correctness challenge by the protocol proving, in zero-knowledge,
that the data structure which the Builder constructed and shared is a valid
Cuckoo Hash Table of the underlying data. First, we must prove that the set of

26

Functionality FOSet

FOSet.Build(JXK, n, N , stash): X is an array of n distinct items, each chosen
from [N], which is stored in the ABB. Set s = log(N). It is assumed that n = ω(s).

1. Let S be an arbitrary bit array of length n, with s ones and n− s zeros.
2. Store S in JstashK in the ABB.

FOSet.Query(JxK, res):

1. If x ∈ {Xi}i∈[n]\S , then set z = 1, otherwise set z = 0. That is, set z to 1 iff
x is one of the n− s elements that are stored.

2. Store z in JresK in the ABB.

Protocol ΠOSet

Hybrids: FABB,FZKPOfValidCHT.
ΠOSet.Build(JXK, n, N , stash):

1. Set public parameters for the Cuckoo Hash Table. Table size c = 2⌊log2(3n)⌋,
stash size s = logN , and hash functions

h0(x)
def
= 0 || x[0 : log(c)− 1] (1)

h1(x)
def
= 1 || x[log(c) : 2 log(c)− 1] (2)

2. Generate a secret-shared PRF key: JkK = FABB.RandomEl(κ).
3. Evaluate the SISO-PRF on inputs: JQiK = FABB.PRF(JXiK, JkK) for i ∈ [n].
4. Reveal PRF evaluations to P0: Q = FABB.Reveal(JQK, {0})
5. P0 locally builds a CHTwS of the PRF evaluations CHT ∪ Stash =
{CHT, (i1, . . . , is)} = BuildCHTwS(Q̂, h0, h1) (protocol, of complexity O(n),
defined in Appendix D).

6. Define the vector S ∈ {0, 1}n, and set Si = 1 if i ∈ {i1, . . . , is}.
7. P0 secret shares the CHT and the stash bit-array:

(a) JCHTK = FABB.Input(CHT, 0).
(b) JstashK = FABB.Input(S, 0).

8. Verify that there are s stash elements, and remove these:
(a) JQ̂K, JŜK = FABB.ObliviousShuffle(JQK, JSK)
(b) For all i ∈ [n], Ŝi = FABB.Output(JŜiK)
(c) If there are exactly s values in Ŝi set to 1 continue, else abort.
(d) JQ̃K = {JQ̂iK}Ŝi=0.

9. Verify that P0 built and shared a valid CHT on the non-stash elements:
(a) JbK = FZKPOfValidCHT.Verify(JQ̃K, JCHTK, c, h0, h1, log(N))
(b) b = FABB.Reveal(JbK). Abort if not b.

10. Secret-share the CHT to P1 and P2:
[CHT](1,2) = FABB.ReplicatedTo2Sharing(JCHTK, {1, 2}).

ΠOSet.Query(JxK, res):

1. JqK = FABB.PRFEval(JxK, JkK).
2. q = FABB.Reveal(JqK, {1, 2})
3. P1 and P2 access the locations in the CHT which may store q and re-share

their contents without revealing the locations to P0:

JQ∗
bK = FABB.2SharingToReplicated([CHT[hb(q)]]

(1,2)) for b ∈ {0, 1}

4. JresK = FABB.Equal(JqK, JQ∗
0K) ∨ FABB.Equal(JqK, JQ∗

1K)

Fig. 6: FOSetand ΠOSet: Functionality and Protocol for a Distributed Oblivious
Partial Set

27

Functionality FZKPOfValidCHT

FZKPOfValidCHT.Verify(JXK, JCHTK, c, h0, h1, ℓ, varName):
X is an array of length n of unique elements from {0, 1}ℓ, stored in the ABB.
CHT is an array of length 2c of elements from {0, 1}ℓ

⋃
{⊥}, stored in the ABB.

h0, h1 : 2ℓ → {0, . . . , c− 1} are two public hash functions.
If CHT stores X and 2c− n copies of ⊥ the CHT stores exactly the correct set.
If for every CHTi ̸= ⊥, h0(CHTi) = i or h1(CHT1) = i+ c, the stored items are
in the correct positions. If either condition is false, set z = 0, otherwise set z = 1.
Store z in the ABB under handle varName.

Protocol ΠZKPOfValidCHT

ΠZKPOfValidCHT.Verify(JXK, JCHT K, c, h0, h1, S, varName):

1. Check CHT holds correct set using Multi-Set Polynomial Check.
(a) Append 2c− n copies of J⊥K to array JXK.
(b) Represent JXK and JCHT K as items from GF (2l), where l = max{S +

1, σ+log(2c)}. Specifically, represent ⊥ as 0ℓ and add the prefix 1||Oℓ−S−1

to all real elements.
(c) Pick a random evaluation point for the polynomial:

JwK = FABB.RandomElement(κ)
(d) Using FABB.Mult and FABB.Add, securely evaluate the polynomial for

the input elements (with copies of ⊥):

JuK =
∏

JaK∈JXK

(JaK− JwK)

(e) Likewise evaluate the polynomial for the contents of the CHT:

JvK =
∏

JbK∈JCHT K

(JbK− JwK)

(f) Check that the evaluations are the same:
Jcheck1K = FABB.Equal(JuK, JvK)

2. Verify CHT locations are either empty (⊥) or are real items in a valid position.
(a) For all i ∈ {0, . . . , 2c− 1}

i. JemptyiK = FABB.Equal(CHTi,⊥)
ii. Jeq0,iK = FABB.Equal(i, h0(CHTi))
iii. Jeq1,iK = FABB.Equal(i, h1(CHTi))
iv. Using FABB.OR securely evaluate

JbiK = JemptyiK ∨ Jeq0,iK ∨ Jeq1,iK

(b) Using FABB.AND evaluate

Jcheck2K =
∧

i∈{0,...,2c−1}

JbiK

.
3. Set JvarNameK = FABB.OR(check1, check2)

Fig. 7: FZKPOfValidCHT and ΠZKPOfValidCHT: Functionality and Protocol for
verifying in zero knowledge the correctness of a Cuckoo Hash Table.

28

items in the table is equal to the set of items that should be there. We prove
this using a multi-set polynomial equality test. Second, we must prove that each
item is in a correct location. This is done by evaluating the hash functions on
each item in the table ensuring that the table location matches one of these hash
functions. While we will describe our verification protocol in terms of general
hash functions, in our case, since the item is itself the output of a PRF, it ac-
tually suffices for our “hash functions” to simply be bit-truncations of the items.
This is very efficient: the bit-truncation itself requires no communication, after
which we can evaluate a standard circuit for an equality test.

Note that we verify the first property using polynomials over large fields
whereas we verify the second property using bitwise operations. We can do this
efficiently due to the fact that we represent data in the field F2ℓ , which is also a
valid Boolean sharing (i.e., over Fℓ

2) (see Section 6.1). This allows us to “convert”
between these sharings for free. We therefore cast the data as a field for efficient
polynomial evaluation, while casting it as a Boolean array for efficient bit-wise
equality testing.

One final challenge in constructing our OSet is handling the stash. As men-
tioned in section 5, we will use Cuckoo Hashing with a Stash in order to ensure
that the build failure probability is negligible. However, for efficiency, the stashed
items will not be part of the OSet (or OHTable), but will instead be inserted
into a sub-DOMap. As such, we will not implement a full Oblivious Set storing
all n items, but a Distributed Oblivious Partial-Set storing n− s of the n items,
and rejecting the s items in the stash. However, allowing the stash to leave the
protocol/functionality is risky. If information about which queries correspond to
stashed items is leaked, this breaks the obliviousness of queries. For instance, the
locations of stashed elements necessary collide with elements that were stored in
the OSet. This means that if a Holder is corrupted and the environment knows
some queries that correspond to stashed elements, it can conclude that any other
query that accesses the same locations is more likely to have been a member of
the set. This coin has another side to it: if the environment can influence the
probability of a stashed item being queried compared to a stored item it can
likewise cause the accesses to be dependent. (This is exploited for instance by
the Alibi attack (section 5) where stash items are never queried, which leaks
information about whether the other queried items were in the set.) Our OSet
functionality will therefore have the limitation that no information about the
stash leaves the ABB outside the protocol, and the calls to build do not depend
on which items were stashed (even conditioned on ABB-revealed values) to avoid
leaking information inside the protocol.

Our OSet also has the limitation that it is only secure if queries are never
repeated. Furthermore, we will need to limit the number of queries to the OSet
data structure. We will later show that the uses of our OSet by the larger protocol
obey all these restrictions. These restrictions are formalized in the following
conditions:

Condition 1 (No Repeats) For all x, Query(JxK, res) is called at most once.

29

Condition 2 (Limited Queries) Query is called at most n times.

Condition 3 (ABB-Stash Independence) Let stash1, stash2 be two differ-
ent possible values of stash. The distribution of all outputs of the ABB by the
environment when stash = stash1 must be computationally indistinguishable
from the distribution when stash = stash2.

Condition 4 (Query-Stash Independence) Let stash be the output of the
Build. If x = Xi for any i ∈ [n], the probability that Query(x, res) occurs/oc-
curred, conditioned on any values revealed by FABB either before or after, is
computationally indistinguishable from independent of stashi.

Our OSet functionality and protocol are presented in Figure 6. This makes
use of our functionality for verifying, in zero-knowledge, that the Builder (P0)
correctly constructed the Cuckoo Hash table (on the non-stash elements). This
functionality, and the protocol that implements it, are presented in Figure 7. We
now prove that these protocols correctly implement the desired functionalities.

Proposition 3. Protocol ΠZKPOfValidCHT statistically UC-securely implements
FZKPOfValidCHT in the FABB-hybrid model.

Proof. Note that this protocol makes no assumptions about the parties or the
adversary setting, as all operations are exclusively within the ABB. It inherits
whichever security the ABB is implemented with. Implementing with our ABB
from Figure 4 yields a 3-party protocol with statistical UC-security with abort
against a malicious adversary statically corrupting one party. Also, note that
this protocol and functionality provide no guarantees that CHT was chosen
uniformly at random from the set of valid CHTs for X, only that it was one such
valid CHT.

By Corollary 1, since ΠZKPOfValidCHT does not reveal any values, it suffices
to prove that the output stored in the ABB is correct (except with negligible
probability).

Let f(x) = ΠJaK∈JXK(JaK−x)−ΠJbK∈JCHT K(JbK−x). If JXK and JCHT K con-
tain the same multiset, then f(x) will be the zero polynomial. Otherwise, it will
be a non-zero polynomial of degree at most 2c. In this case, by the Schwartz-
Zippel Lemma, the probability that f(x) evaluates to 0 on a point chosen ran-
domly from GF (2ℓ) is at most 2c

2ℓ
, which is at most 2−σ. Note that u = v if

and only if f(w) = 0, where w was chosen randomly from GF (2ℓ). Therefore
check1 = 1 if and only if JXK = JCHT K, except with negligible probability.

Now we examine the part of the ΠZKPOfValidCHT that verifies that items are
in the correct locations. If check1 = 1, every item in X is in the table (except
with negligible probability). Assuming this is true, if every item is stored in a
correct location, check2 will evaluate to 1, otherwise it will evaluate to 0. (If
check1 = 0, then it does not matter what check2 evaluates to as varName will
be set to 0.) Therefore varName will be set to 1 if, and only if, all items in X
are stored in CHT at a correct location.

We now prove that ΠOSet realizes FOSet subject to our conditions:

30

Proposition 4. Against a static malicious adversary controlling at most one
party out of three and an environment satisfying Conditions 1, 2, 3 and 4 Protocol
ΠOSet (Figure 6) statistically (with failure probability negligible in N) realizes
functionality FOSet (Figure 6) with abort in the FABB,FZKPOfValidCHT-hybrid
model.

Proof. We will have one simulator S0, when A corrupts P0, and a second simu-
lator S1, when A corrupts P1 or P2.

S0 will work as follows. During the build, S0 will pick n random values from
GF (2κ). S0 will provide these as the Q values to a local copy of A. If A generates
an invalid Cuckoo Hash Table, or if A aborts, then S0 aborts. Otherwise S0

calls FOSet.Build(JXK, n,N, stash), which will generate some S and store S in
JstashK in the ABB. During queries, S0 simply executes FOSet.Query(JxK, res).
Throughout, S0 responds to any messages from the environment in the same
way its local copy of A would.

The environment attempts to distinguish A acting as P0 interacting with
ΠOSet and S0 interacting with FOSet. Firstly, we show that during an execu-
tion, the probability that the environment can distinguish them is negligible (in
N). Since the PRF key is always kept inside the ABB, the sequence of evalua-
tions of the PRF on the items in X is computationally indistinguishable from
a sequence of n κ-bit values. As such, A’s behavior in the real setting (when
given PRF outputs) will be the same as A’s behavior in the simulation, except
with a probability corresponding to A’s ability to distinguish random values
from distinct PRF outputs, which is negligible. In particular, the difference in
the probabilities of A aborting in the real setting and the simulation is negli-
gible. Furthermore, the difference in the probabilities of A building an invalid
Cuckoo Hash Table or sending an invalid S will also be negligible. Both of these
events result in the protocol aborting and are the only actions A can take to
cause an abort (apart from aborting directly itself). Therefore the differences in
the probabilities of abort are negligible. Furthermore, since the PRF outputs are
computationally indistinguishable from random, the copy of A run by S0 (whose
messages S0 forwards to the environment) will have outputs indistinguishable
from A in the real execution. Thus, the environment cannot distinguish A from
S0.

Note that an honest P0 may also fail to build a valid Cuckoo Hash Table
since there is an inherent probability of failure when building a Cuckoo Hash
Table with a stash. Since the stash is of size log(N) and n = ω(log(N)), this
probability is negligible [Nob21]. We do not actually need this fact here as S0

can simulate A even if A behaves honestly. However, it is necessary for the non-
degeneracy requirement: that is if all parties are honest the protocol should not
abort except with negligible probability.

Now we consider what may occur after the Build has finished executing. The
value JstashK in both cases must be a bit array of length n with s ones. Note,
however, that the stash generated by FOSet in the simulation may not be the
same (or from the same distribution) as the one generated by the copy of A run
by S0. (S0 knows the stash A generated, but has no knowledge or control over

31

JstashK as it is generated by the functionality.) However, this discrepancy will
never be noticed. Condition 3 guarantees that any outputs from the ABB by
the environment executing other protocols will not leak any information about
JstashK. As such, even if A were to provide its stashed items to the environment,
there is nothing the environment can do to learn about whether these items were
used as the real stash or not. Finally, A receives no information during a Query,
so S0 can trivially simulate A during Queries.

For S1, simulating the Build is trivial. Since P1 and P2 receive no outputs
during the Build, S1 will simply do whatever A would do. During a Query, S1

generates a fresh random κ-bit value and inputs this to A as q. It then responds
as A would.

The PRF key is stored in the ABB and the PRF is evaluated inside of a
computation, so the output of a single PRF evaluation is indistinguishable from a
random value. Furthermore, since the same item is never queried more than once
(Condition 1), the PRF outputs will all be distinct (pseudo)random values. In
order to demonstrate their independence though, we need Condition 4. Condition
4 implies two things. Firstly, the environment cannot insert some bias either
increasing, or reducing the probability that stash items are queried. Preventing
biasing is not sufficient. For instance, if it is later revealed that a queried item
was in the stash this would be essentially the same as the adversary having
caused a stashed item to be queried. Therefore Condition 4 also implies that
any revealed value will not leak information about whether queried items were
stashed. Note that conditioning based on whether a stash item was (or wasn’t)
queried, either due to biasing or leakage causes the PRF outputs to not be fully
independent, as stash items have PRFs that result in more collisions with other
items in the table. Since the environment cannot influence, or learn, whether
stashed items are queried, the outputs of Query on items that were in X will be
computationally indistinguishable.

The environment can, however, choose to influence whether to query items
in X or items that were not in X. This can create a problem. The hashes of
the PRF outputs may correspond to a choice of locations which is incompatible
with the items all being stored in the table (i.e. the stash size would be greater
than s if these items were all stored). If the environment queries only items in
the table, this can never happen in the real execution because it is known that
the table was built correctly. It may, though, happen in the simulation as a
new sequence of n random values are chosen. However, since there are at most n
queries (Condition 2), the probability of this occurring is at most the probability
of a build failure in a Cuckoo Hash Table of n items with a stash of size s, which
is negligible in N [Nob21].

Therefore, the behavior of A in the simulated setting will be computationally
indistinguishable from that of A in the real setting. Thus, the environment will be
unable to distinguish S1 interacting with FOSet from A interacting with ΠOSet.

In Appendix F.2 we prove that:

Proposition 5. ΠOSet.Build has complexity O(n(κ+D)) and ΠOSet.Query has
complexity O(κ).

32

9 Maliciously-secure Oblivious Hash Table Construction

In the previous section, we presented a Distributed Oblivious Set protocol.
We now show how to use this to build a Distributed Oblivious Hash Table
(OHTable): that is a protocol for securely mapping indices to values provided
each item is only queried once. In short, this will be achieved by first using the
OSet to check whether the item is in the domain of the Hash Table. If so, the
item will be accessed in the ABB based on a public tag (which is a PRF eval-
uation of the index). If not, a pre-inserted dummy item will be accessed based
on its public tag (which is a PRF evaluation of a counter). The real items and
pre-inserted dummies are shuffled prior to the tags being revealed, hiding which
items are real.

The OHTable’s Query function will also provide a way to do a no-op query
that is indistinguishable from a real query. This will be critical in ensuring the
no-repeats condition is satisfied: when the DORAM is queried multiple times for
an item, it will query the item in the OHTable the first time and henceforth will
ask the OHTable to perform a no-op query. Additionally, our OHTable supports
an Extract functionality which returns (in the ABB) an array of the items which
were not queried (padded to length n with copies of (⊥,⊥)).

Since the OHTable uses our OSet construction which generates a stash, our
OHTable will also generate a stash. The stash elements will be not be stored
in the table; they will be rejected and returned by the Build functionality. Like
the OSet, our OHTable will only be secure if stashed items are queried with
probability equal to items stored in the set.

Like our OSet protocol, our OHTable protocol has a limit on the number of
times Query is executed. It has an additional Extract function which must be
called after all calls to Query have been executed.

Our protocol is subject to similar conditions as that of our OSet protocol, but
with some modifications. While OSet did not allow repeated queries, OHTable
does not allow repeated queries of real items, but does allow repeated queries of
the null-value ⊥, which is used for the no-op queries. Like in the OSet protocol
we need to limit to n queries. We also need independence from the stash, both for
values revealed by the ABB by the environment and for queries to the OHTable.
However in this case, the stash consists of an array of both indices and values.
In addition, we have a condition that the Extract function will only be called
after the queries have been depleted. We formally state our conditions below:

Condition 5 (No Repeats of Real Items) For all x ∈ [N], Query(JxK, res)
is called at most once. (Query(J⊥K, res) may be called many times.)

Condition 6 (Limited Queries) Query is called n− s times.

Condition 7 (ABB-Stash Independence) Let (stashX1, stashY1), (stashX2, stashY2)
be two different possible values of (Xstash, Y stash). The distribution of all outputs
of the ABB by the environment when (Xstash, Y stash) = (Xstash

1 , Y stash
1) must be

computationally indistinguishable from the distribution when (Xstash, Y stash) =
(Xstash

2 , Y stash
2).

33

Functionality FOHTable

Build((JXK,JY K, n, N , Xstash, Y stash):
X is an array of n distinct elements from [N]. Y is an array of n elements of
length D bits. Let s = log(N). An arbitrary array of s distinct items from X, and
their corresponding values from Y are stored in the ABB under handles Xstash

and Y stash respectively.
Query(JxK, res):
x ∈ [N]∪ {⊥}. If ∃j ∈ [n];x = Xj and x /∈ Xstash, set z = JYjK. Else, set z = J⊥K.
Store z in the ABB under handle res.
Extract(res):
For all i ∈ [n] such that Xi /∈ Xstash and Query(Xi, res) was never called store
(Xi, Yi) in an array Z. Pad Z to length n − s with copies of (⊥,⊥). Randomly
shuffle Z. Store Z in the ABB under handle res.

Protocol ΠOHTable

Hybrids: FABB, FOSet.
Build(JXK, JY K, n N , Xstash, Y stash):

1. Build OSet from the indices. Create arrays of the stashed indices and values:
(a) JSK = FOSet.Build(JXK, n)
(b) JS̃K, JX̃K, JỸ K = FABB.ObliviousShuffle(JSK, JXK, JY K)
(c) S̃ = FABB.Output(JS̃K)
(d) JXstashK, JY stashK = (JX̃iK, JỸiK)S̃i=1

2. Tag items with PRF evaluations of the indices under a new PRF key:
(a) JkK = FABB.RandomElement(κ)
(b) JQK = {FABB .PRFEval(JXiK, JkK)}i∈[n],S̃i=0

(c) For i ∈ [n− s], let JQn−s+iK = FABB.PRFEval(JN + iK, JkK), JXn−s+iK =
J⊥K and JYn−s+iK = J⊥K

3. Build data structure allowing items to be accessed based on their tags:
(a) JQ̂K, JX̂K, JŶ K = FABB.ObliviousShuffle(JQK, JXK, JY K)
(b) For i ∈ [2n− 2s], set Q̂i = FABB.Output(Q̂i)
(c) Store (Q̂i, i)i∈[2n−2s] in a local dictionary.

4. Initialize local query counter: t = 0

Query(JxK, res):

1. Locally increment counter: t = t+ 1.
2. Query x to the OSet or, if x = ⊥, query a counter (not in [N]) to the OSet.

(a) JxOSetK = FABB.IfThenElse(JxK ?
= J⊥K, JN + tK)

(b) JinK = FOSet.Query(JxOSetK)
3. If the item was found in the OSet, access the item’s value using its tag,

otherwise access a pre-inserted dummy:
(a) JxusedK = FABB .IfThenElse(JinK, JxK, JN + tK)
(b) JqK = FABB .PRFEval(JxusedK, JkK)
(c) q = FABB .Output(JqK)
(d) Find i such that q = Q̂i.
(e) Set JresK = JŶiK

4. Delete the accessed item: Delete JŶiK from JŶ K, JX̂iK from JX̂K and JQ̂iK from
JQ̂K.

Extract(res):

1. Shuffle the remaining items of JX̂K and JŶ K and return them:
(a) JX̄K, JȲ K = FABB.ObliviousShuffle(JX̂K, JŶ K).
(b) Store JX̄K, JȲ K in JresK.

Fig. 8: FOHTable and ΠOHTable: Functionality and Protocol for Distributed Obliv-
ious Partial Hash-Table

34

Condition 8 (Query-Stash Independence) Let (Xstash, Y stash) be the out-
put of Build. If x = Xi for any i ∈ [n], the probability that Query(x, res) is called
at any time, conditioned on any values revealed by the ABB either before or after,
is computationally indistinguishable from independent of whether x ∈ Xstash.

Condition 9 (Extract at End) The function Extract will only be called at
most once, and only after n− s calls to Query.

We present our OHTable protocol (ΠOHTable) and functionality (FOHTable)
in Figure 8. We now prove its security. Firstly, we need to demonstrate that if
ΠOHTable is accessed consistently with its conditions, it will also access FOSet in
a manner that is consistent with its conditions. Formally:

Proposition 6. Assuming an environment that follows Conditions 5, 6, 7, 8
and 9 when accessing ΠOHTable, Conditions 1, 2, 3 and 4 will also be satisfied
in calls to FOSet.

Proof. Firstly, we observe that satisfying Condition 6 implies Condition 2 is
satisfied. FOSet can only be queried if ΠOHTable is queried. Since there are at
most n queries to ΠOHTable (Condition 6) there will be at most n queries to
FOSet, satisfying Condition 2.

ΠOHTable can only be queried on distinct real values, but may be queried
multiple times on the input ⊥ (Condition 5). In such a case, this is identified,
and a distinct item from {N + 1, . . . , N + n} is queried to FOSet. Note that
this set is disjoint from the possible real values of x, which are in {1, . . . , N}.
Therefore, the queries to FOSet.Query will be distinct, satisfying Condition 1 of
FOSet.

We now wish to show that if Conditions 7 and 8 are satisfied, Conditions 3
and 4 will also be satisfied.

First we need to show that no values output by ΠOHTable itself undermine
Condition 3. During the build, the value S̃ is revealed. This is a random permu-
tation of S, which from the correctness of ΠOHTable is a bit array consisting of
s ones. Therefore, the revealed S̃ will be a random bit array with s ones. This
leaks no information about S itself as it was already known that S has s ones.
The build also reveals the values Q̂. These are secure evaluations of a PRF under
an unknown key, where the key has never been queried on these inputs before.
Therefore these values will be computationally indistinguishable from random,
and in particular will not leak any information about whether the inputs were
in the stash. Thus, Condition 3 remains satisfied.

During Query, the value q is revealed. By the correctness of FOSet, this
value is equal to PRFEval(x, k) only if x ∈ X and x /∈ Xstash. Otherwise it
is PRFEval(N + t, k). Since the set Q̂ contains exactly the PRF evaluations
of the non-stash indices and the PRF evaluations of N + 1, . . . , N + n we are
guaranteed that q will be in the original set Q̂. (Here we use Condition 6, so
1 ≤ t ≤ n.) Furthermore, since t is incremented during each query, and non-null
values are never re-queried (Condition 5), this will be a value of q that has never
been revealed before, so (X̂i, Ŷi, Q̂i) will not have been deleted. Lastly, due to

35

the randomness of the shuffle of tagged items in the Build, the value i such that
q = Q̂i will be a random value from [2n − s] that has not yet been deleted.
Therefore, the Query reveals no information about whether inputs were in the
stash of FOSet and Condition 3 remains satisfied.

Before continuing, we need two basic correctness facts. First, observe that
the input set, X, to FOSet.Build is exactly the same as the input indices, X, in
FOSet.Build. Second, note that for all Xi ∈ X, Xi ∈ Xstash in FOHTable.Build
exactly when Si = 1. By Condition 8, during ΠOHTable.Query, for every x ∈ X,
the probability that x is the input to Query is (computationally indistinguishable
from) independent of whether x ∈ Xstash. Therefore when FOSet.Query is called,
the probability that x = Xi is also (computationally indistinguishable from)
independent of Si. Therefore 4 remains satisfied.

During the extract, no values are revealed.
We now need to prove that outside ΠOHTable, the environment cannot do

anything to break Conditions 3 or 4 without breaking Conditions 7 or 8. First,
note that S is shuffled immediately after being output by FOSet.Build and is
never used in its unshuffled form. The only information flow from S is into the
choice of stashX. However, no information about stashX may be revealed by
the environment (Condition 7). Therefore, no information may be leaked about
stash outside of ΠOHTable showing that Condition 3 is always satisfied.

ΠOHTable.Query, given an input x, queries this exact same value to FOSet.Query,
except when x = ⊥. Clearly, when x = ⊥, x /∈ X, so for all x ∈ X, the query
is passed on the FOSet. Our conditions are not concerned with the case x /∈ X.
If x = Xi ∈ X we have from Condition 8 that the event of choosing x was
(computationally indistinguishable from) independent of the choice of Xstash

(conditioned on all values revealed by FABB outside of the protocol whether
before or after). However, the only information flow from stash is to Xstash, so
this event must also be independent of the choice of stash, and Condition 4 is
also always satisfied.

Proposition 7. Assuming an environment that follows Conditions 5, 6, 7, 8
and 9 ΠOHTable is a secure implementation of FOHTable with abort in the FABB,FOSet-
hybrid model in the 3-party setting against one static malicious adversary, where
FOSet is subject to Conditions 1, 2, 3 and 4.

Proof. Our simulator is simple. During a build it generates a random bit-string
S̃ of length n consisting of s ones. It provides this to its local copy of A (and
likewise for all other values it generates). It then generates 2n−2s values chosen
uniformly at random from {0, 1}κ and outputs these as Q̂. During a query it
selects a random value from Q̂ that has not yet been selected and outputs it
as q. The simulator calls the functionality on the same inputs and aborts if
A aborts.

Since S̃ is known to have s ones and is shuffled before being revealed, it is
from the same distribution as the value generated by the simulator. The values
Q̂ are the result of PRF evaluations on an unknown key, so to a computationally-
bounded A will be indistinguishable from random κ-bit values except with neg-
ligible probability. Lastly, the values of q revealed in the query are guaranteed to

36

be some new value from Q̂. (See proof of Proposition 6 for more details.) As to
which value it is, this is completely randomized by the Oblivious Shuffle of the
tagged items during the build. Therefore, q will be chosen uniformly at random
from the unaccessed values in Q̂, exactly the same as in the simulation. There-
fore our simulator will provide its copy of A with values that are from either
identical, or computationally indistinguishable from, the distributions generated
by a real execution. Therefore, A will behave identically in both executions ex-
cept with negligible probability. Since the simulator responds as A would, the
environment will not be able to distinguish the two executions.

Finally, in Appendix F.3 we show that:

Proposition 8. ΠOHTable.Build has complexity O(n(κ+D)) and ΠOHTable.Query
has complexity O(κ) and ΠOHTable.Extract has complexity O(nD).

10 Maliciously-secure Oblivious Map Construction

As noted above, Oblivious Hash Tables (Section 9) have multiple limitations
(formalized by Conditions 5-9). In particular, it does not allow real items to be
queried multiple times and has very particular restrictions about how the stash is
used by the environment. In this section, we present an Oblivious Map (OMap)
construction that removes these limitations.

We will use the hierarchical solution, but with a twist. We will define our
OMap recursively15. An OMap will consist of an Oblivious Hash Table and a
smaller OMap of roughly half the capacity. This implicitly creates a hierarchy of
OHTables, with the levels corresponding to levels of the recursion. Viewing the
hierarchical solution in terms of recursion will make it much simpler to present
our protocols and prove them secure. We will evidently need a base case: we use
ΠQuietCache for this as ΠQuietCache already implements OMap (although with
an unscalable efficiency). Our OMap will have a limitation that it can only be
queried a certain number of times. Our final ORAM will be able to remove this
limitation by taking advantage of the fact that its capacity is equal to the size
of the index space. Our condition on the order that OMap should be accessed is
formally stated below.

Condition 10 (OMap Call Pattern) Firstly Init(JXK, JY K, n) is called, where
len(JXK) = len(JY K) = w ≤ log(N) < κ

4
Then there are at most n− w calls to Query(JxK) each followed immediately by
a call to Add(JxK, JyK) (for the same x and some value of y other than ⊥).
Finally, there is a call to Extract.

In more detail, an OMap of capacity n will contain two data objects: an
OHTable with capacity roughly n

2 and a smaller sub-OMap of capacity roughly
n
2 . We first store items in the sub-OMap, until it becomes full. When this hap-
pens, we extract the contents of the sub-OMap and build an OHTable from
15 Recall that we need to recuse on OMaps rather than ORAMs. See Remark 4)

37

Protocol ΠOMap

ΠOMap.Init(JXK, JY K, w, n, N):

1. Initialize counter for the number of stored items (including overwrites): t = w
2. Create a sub-OMap. Store the initial values in this sub-OMap. (Alibi bits are

not needed here, as there is no OHTable yet.)
(a) s = log(N)
(b) FOMap.Init(JXK, JY K, w, n

2
+ s

2
, N)

ΠOMap.Query(JxK):

1. If t < n
2
+ s

2
: This means the OHTable has not yet been built. Only query the

sub-OMap and pass on the value:
(a) Return FOMap.Query(JxK)

2. Else: The OHTable has been built. First query the sub-OMap. If the item is
not found, search for it in the OHTable and return the result. If the item was
found but has an Alibi bit of 1 it was stashed from the OHTable, so must
also be searched for in the OHTable. Otherwise, perform a no-op query on
the OHTable:
(a) JyK = FOMap.Query(JxK)
(b) JbAlibiK = Jy[−1]K
(c) JbfoundK = FABB.Equal(JyK, J⊥K)
(d) JxqueryK = FABB.IfThenElse(JbAlibiK ∪ (¬JbfoundK), J0K||JxK, J⊥K)
(e) JytableK = FOHTable.Query(JxqueryK)
(f) JymapK = Jy[1 : −1]K (Drop the Alibi bit for this level.)
(g) JyretK = FABB.IfThenElse(JbfoundK, JymapK, JytableK)
(h) Return JyretK

ΠOMap.Add(JxK, JyK):

1. If t ≥ n
2
+ s

2
(the OHTable has been built, so the Alibi bit must be appended

to show this is not a stashed item):
(a) JyK = JyK||J0K

2. FOMap.Add(JxK, JyK)
3. t = t+ 1
4. If t = n

2
+ s

2
: The sub-OMap is full. It must be extracted and built into the

OHTable. The sub-OMap may contain empty items due to overwrites, these
are assigned an index from a disjoint space so they can be inputs to the build:
(a) (JXK, JY K) = FOMap.Extract()
(b) For i ∈ [n

2
+ s

2
]:

i. JX̂iK = FABB.IfThenElse(JXiK
?
= J⊥K, J1K||JiK, J0K||JXiK)

(c) (JstashXK, JstashY K) = FOHTable.Build(JX̂K, JY K, n
2
+ s

2
, 2N)

(d) Set the Alibi bits to 1 for stashed items:
i. For i ∈ [s] JstashYiK = JstashYiK||J1K

(e) If an item was empty before it was put in the table, make it empty again:
For i ∈ [s]

i. JstashXiK = FABB.IfThenElse(JstashXi[1]K, J⊥K, JstashXi[2 :]K
(f) FOMap.Init(JstashXK, JstashY K, s, n

2
+ s

2
, N)

ΠOMap.Extract():

1. Extract contents from the OMap and the OHTable. Combine and shuffle them,
then return the result (which may include empty items):
(a) JXmapK, JY mapK = FOMap.Extract()
(b) JXtableK, JY tableK = FOHTable.Extract()
(c) If an item was empty before it was put in the table, make it empty again.

For i ∈ [n
2
− s

2
]:

i. JXtable
i K = FABB.IfThenElse(JXtable

i K[1], J⊥K, JXtable
i [2 :]K

(d) JXK = JXmapK||JXtableK, JY K = JY mapK||JY tableK
(e) JX̂K, JŶ K = FABB.ObliviousShuffle(JXK, JY K)
(f) Return JX̂K, JŶ K

Fig. 9: Recursive OMap protocol

38

its contents. We then initialize a new sub-OMap, in which we store new items.
To avoid querying an item to the OHTable more than once, we first query the
sub-OMap. If the item has already been queried, it will have been re-added (see
Condition 10) and therefore placed in the sub-OMap. If it is found in the sub-
OMap we therefore do a no-op query to the OHTable. Extract will be called
exactly when the sub-OMap becomes full again, and the contents of both the
OHTable and sub-OMap will be extracted and returned.

Things are complicated slightly by the fact that because of the “cache-the-
stash” technique, our OHTable for storing n elements, actually stores only n− s
elements, and returns a stash of s items which is intended to be “cached.” To
handle this, we increase the capacity of the both the sub-OMap and the OHTable
by s

2 , thus both have a size of n
2 +

s
2 . Note that since the OHTable caches s items,

it will only hold n
2−

s
2 real items. This means that each recursive call to the OMap

causes the size to be reduced by slightly less than half; nevertheless as s is very
small relative to n (s = Θ(log(N)) = o(κ) and κ is the size of the base level), the
total recursive depth will still be Θ(log(N)). Additionally, since stashed items
need to be queried in the OHTable with probability equal to stored items, the
OMap will tag stashed items with an Alibi bit (c.f. Appendix E) before placing
them in the sub-OMap. This will slightly increase the size of payloads at smaller
levels of the recursion, but will not affect asymptotic performance.

Our protocol ΠOMap, as well as the functionality FOMap that it implements,
are presented in detail in Figures 9 and 3 respectively. We next prove the security
of ΠOMap with respect to FOMap. Note that since ΠOMap reveals no values from
the ABB, this security proof is not particular to our 3-party honest-majority
setting. Rather, it applies in any setting given a FABB,FOHTable,FOMap-hybrid
setting, where FOHTable is subject to at most Conditions 5, 6, 7, 8 and 9, and
FOMap is of a smaller capacity and subject to at most Condition 10.

Since ΠOMap does not reveal any values from the ABB, to prove its security
we need only prove two things (see Corollary 1): that the outputs (to the ABB)
are correct and that the conditions on the functionalities it uses are upheld. We
prove these below.

Proposition 9. Assuming that ΠOMap[n,N] is called according to Condition
10, it is a correct implementation of FOMap[n,N] in the FABB,FOHTable,FOMap[

n
2+

s
2 , N]-hybrid model.

Proof. As Init and Add do not return any values, we only need to show that the
values returned by Query and Extract are correct. The protocol maintains an
invariant that before and after every pair of Query, Add calls, each index which
has ever been inserted (either through Init or Add) is stored in exactly one place
in either FOMap or FOHTable and is stored with its most recent value. By “stored”
we mean two things: if queried to this functionality it would be found and that
if extract were called the item would be returned. Initially this is true as all
items from Init are placed in the sub-OMap. By the correctness of FOMap, the
associated values would be returned by a query and the full dictionary (with no
old values) returned by an extract call. Initially, calls to query/add will simply

39

be passed directly to FOMap. Since FOMap implements a dictionary, it will always
return the most recent version of a value that was written, and furthermore when
extracted will contain the contents of the dictionary. When t reaches n

2 + s
2 , the

contents of FOMap will be extracted and built into FOHTable. This will contain all
indices ever added to ΠOMap (including via initialization) with their most recent
values. However, the stash items will not be stored in FOHTable, but will be used
to initialize a new FOMap. Still the invariant holds: each item used for the build
will either be located in FOHTable or FOMap. Henceforth, when an item is queried
it may be found either in FOMap or FOHTable. If found in FOMap it will not be
removed from FOMap by Query, but the subsequent call to Add will overwrite
the old value in FOMap with the updated value. If found in FOHTable, the query
effectively deletes the item from the OHTable, as extract returns only unqueried
items and the item is not allowed to be requeried to FOHTable. The item, with
its new value, is then written to FOMap, so the invariant is maintained.

Since the invariant holds before every call to Query, if the item exists in the
dictionary, it will either be found (with its most recent value) in FOMap or will be
found (with its most recent value) in FOHTable. The most recent value will then
be returned. If the item does not exist in the dictionary, it was never added to
FOMap, so will not be in FOMap or FOHTable and ⊥ will be returned as required.
Therefore Query returns correct values.

Since the invariant holds after every call to Add, it will hold before the
call to Extract. This means every item that was stored that was every added
(including through initialization) will either be in the result of FOMap.Extract
or the result of FOHTable.Extract and will appear with its most recent value.
Therefore JXK, JY K will contain the full up-to-date dictionary.

As for empty items, the extract of FOMap will, apart from the real values,
only contain copies of (⊥,⊥). FOHTable.Extract may contain some additional
non-real items. This is because when the first FOMap is extracted, it may con-
tain empty items, and these are given 1-prefixed indices before being passed to
FOHTable.Build. FOHTable.Extract will return all of these items (they will not
have been queried because their indices are 1-prefixed). ΠOMap.Extract handles
this by setting the indexes of these will be set back to ⊥ during the extract (the
values will still be ⊥ as they were ⊥ during the build). Therefore, apart from
the contents of the dictionary, all other items will be copies of (⊥,⊥). The total
number of items returned by FOMap.Extract will be n

2 + s
2 . The total number of

items returned by FOHTable.Extract will be n
2 +

s
2−s = n

2 −
s
2 . Therefore the total

number of items returned by Extract will be n as required. Finally, the items
are shuffled before being returned, so will be in an arbitrary order. Therefore
ΠOMap.Extract will return a correct value (chosen from a correct distribution).

Now we prove that the necessary conditions hold on the sub-functionalities.

Proposition 10. Assuming that ΠOMap is called according to Condition 10, it
calls sub-functionality FOHTable according to Conditions 5, 2, 7, 8 and 9.

Proof. Firstly, we observe the pattern of calls to FOHTable. It is first built during
the call to ΠOMap.Add when t = n

2 +
s
2 . It is built from the extracted contents of

40

FOMap which contains exactly n
2 +

s
2 items. (Some of these may have been empty,

but if so they are given unique indices.) Therefore FOHTable may be queried at
most n

2 + s
2 times. Since Extract is called when t = n, there will in fact be

only n
2 − s

2 calls to FOHTable, so Condition 6 is satisfied. Following these queries
FOHTable is extracted and never used again, satisfying Condition 9.

Next we show there are no repeated queries to FOHTable, except for no-op
queries. If a real item, x, is queried once to FOHTable, this query will necessarily
be followed by a call of ΠOMap.Add(JxK, JyK) for some value of y. Therefore, x
shall be stored in the sub-OMap. Furthermore, the Alibi bit will be set to 0. If x
is queried again, it will be found in the sub-OMap, so bfound will be 1. The Alibi
bit will still be 0, so bAlibi will be 0. Therefore, ⊥ will be queried instead of JxK.
Thus, there are no repeated queries of real items, and Condition 5 is satisfied.

Finally, we show the stash conditions are upheld. No values are revealed from
the ABB in this protocol. FOMap is a local object, so the environment cannot
access it directly to learn information about the stashed items. Therefore the
only way information about the stash could leak is by values that are returned
by ΠOMap, either in Query or Extract. But the value returned by Query is pre-
determined: it is the value that was last written to the queried index. (This will
be proven later when we show correctness.) The contents of Extract are also pre-
determined: they are the contents of the dictionary padded with (⊥,⊥). Their
order is re-randomized by the final shuffle, so leaks no information about which
items were stashed. Therefore, it is impossible for any ABB-revealed value to
reveal information about the contents of the stash, satisfying Condition 7.

Lastly, we need to show that the query pattern does not depend on whether
an item was stashed. This is simple, if Query(x) is called after FOHTable has been
built, x is always queried to FOHTable the first time (and, as already shown ⊥
queried any subsequent times). If x was in the stash, this is ensured by the fact
that x was placed in FOMap with an Alibi bit set to 1. It will be found in the
sub-OMap and, due to its Alibi bit, still queried in FOHTable. If x was not in the
stash, and has not been queried since FOHTable was built, it cannot be stored
in the sub-OMap. Therefore it will not be found, bfound will be 0 and x will be
queried in FOHTable. Therefore Condition 8 will be satisfied.

Proposition 11. Assuming that ΠOMap[n,N] is called according to Condition
10, it calls sub-functionality FOMap[

n
2 + s

2 , N] according to Conditions 10.

Proof. ΠOMap calls the full cycle of calls of FOMap twice, so we check that
Condition 10 holds in both cycles.

In the first cycle, ΠOMap initializes FOMap with exactly the same inputs that
ΠOMap was initialized with. Therefore, if w < κ

4 holds in ΠOMap, it will also
hold in FOMap. Following this, there are n

2 + s
2 − w repetitions of ΠOSet.Query

followed by ΠOSet.Add, using the same index. Thus there will be n
2 + s

2 − w
alternating calls to FOMap.Query and FOMap.Add. Recall that the capacity of
FOMap is n

2 +
s
2 , so at this point, FOMap has to be extracted. This is exactly what

occurs: ΠOHTable’s counter t has reached n
2 + s

2 so the sub-OMap is extracted
and its contents built into the OHTable. Thus, in the first cycle, Condition 10 is
satisfied on FOMap.

41

In the second cycle, FOMap is initialized with the contents of the stash. This
is of size s = log(N) which can be presumed to be smaller than κ/4 since
κ = ω(log(N)). Again, since Condition 10 holds on ΠOHTable calls to Query
are alternated with calls to Add using the same index. Extract will occur in
ΠOHTable after a total of at most n − w calls to Query and Add in ΠOHTable.
Since there were n

2 + s
2 −w of these alternating calls in the first cycle, the total

number of these alternating calls to FOMap in the second cycle will be at most
n
2 − s

2 ≤ n
2 + s

2 − w. These are followed by ΠOMap, and therefore FOMap, being
extracted. Therefore, Condition 10 is satisfied in the sub-OMap FOMap.

Combining these shows that ΠOMap is a secure implementation of FOMap
subject to the necessary conditions.

Proposition 12. Assuming an environment that follows Condition 10 and that
n ≥ κ = ω(log(N)), ΠOMap[n,N] is a secure implementation of FOMap[n,N]

in the FABB,FOHTable,FOMap[
n
2 + log(N)

2 , N]-hybrid setting, where FOHTable is
subject to Conditions 5, 6, 7, 8 and 9, and FOMap occurs as a single instance of
FOMap[

n
2 + log(N)

2 , N] and is subject to Condition 10.

Proof. The protocol satisfies all conditions on FOHTable (Proposition 10) and
FOMap (Proposition 11). There are no conditions on FABB. The protocol is also
correct with regard to the functionality (Proposition 9. Therefore, since ΠOMap
doesn’t reveal any values, by Corollary 1, given the above (conditioned) hybrids,
as long as Condition 10 is satisfied, ΠOMap is a secure implementation of FOMap.

Proposition 13. If ΠOMap is implemented with its functionalities instantiated
in the following ways:

– FOMap implemented recursively with ΠOMap for all n ≥ κ and with ΠQuietCache
once n < κ.

– FOHTable implemented using ΠOHTable, which in turn implements FOSet us-
ing ΠOSet

– FABB is implemented as described in Section 6

the resulting protocol will have the following costs:

– Init : Θ(κw)
– Query: Θ(log(N)(κ+D)
– Add and Extract (combined, amortized over n accesses): Θ(log(N)(κ+D))

Proof. The initialization cost will be passed on all the way to the base case,
where it will have cost Θ(κw) (Proposition 2).

For Query, let us first look at the cost ignoring the recursion. The cost of
the two IfThenElse statements are log(N) and D respectively and the cost of
FOHTable.Query is Θ(κ) (Proposition 17). These dominate all other costs.

Now, there are O(log(N)) levels of the recursion, since n
2 + s

2 < ϵn for some
constant ϵ < 1 when n ≥ κ = ω(log(N)). The recursive calls may have slightly
larger values due to the appended Alibi bits, but since there is only one bit added

42

per layer of recursion, the size of the values will be at most D + Θ(log(N)).
Finally, the cost of the base level is Θ(κ + D) (Proposition 2). Therefore, the
total cost of all recursive levels is Θ(log(N)(D + log(N) + κ) + (κ + D)) =
Θ(log(N)(κ+D)).

For Add and Extract, we compute the total amortized combined cost of these
throughout the data structure.

At the base level, the cost of Add is cheap, only Θ(κ). However the cost of
extracting is expensive as this is when deleting old copies occurs. Given that the
base level is of capacity Θ(κ), the cost of extracting will be Θ(κ2 log(N) + κD)
(Proposition 2). Amortized over Θ(κ) accesses, this is Θ(κ log(N)+D) per access.

At the recursive OMap levels, the cost of Add in most cases is basically free:
an Alibi bit is added (which requires no communication) and the call is passed
onto the sub-OMap. However, Add will result in a rebuild when t = n

2 + s
2 . We

skip over the cost of FOMap.Extract here, it will be included in the amortized cost
of Extracts in the level below. The other costs are dominated by FOHTable.Build,
which costs Θ(n(κ+D)). (There is also the cost of FOMap.Init, but this is only
Θ(wκ) = o(nκ).) Amortized over n accesses, this cost is Θ(κ+D).

Now we compute the amortized cost of Extract on the recursive OMap lev-
els. Note that there will be exactly one instance of FOMap at each level of the
recursion at the start and end of each call to Add in the top level. If some OMap
becomes full during an Add, it will be extracted during the Add, but will be
re-initialized by the end of the Add. Therefore, if we compute the amortized
cost of Extract in a recursive OMap during its lifetime, ignoring recursive calls,
and multiply this by the depth of recursive calls, we obtain the amortized cost
of extract over all levels. The cost of extracting (ignoring the recursive call) is
one call to ΠOHTable.Extract at a cost of Θ(nD), resetting of empty elements
add a cost of Θ(n log(N)) and an oblivious shuffle at a cost of Θ(nD) leading
to a total cost of Θ(nD). Amortized per access this is Θ(D). Since there are
Θ(log(N)) levels of the recursion, the amortized access over all recursive OMaps
is Θ(log(N)D).

Combining this to the cost of the base-level, the combined amortized cost
of Add and Extract over all levels is Θ(κ log(N) + D + κ + D + log(N)D) =
Θ((κ+D) logN).

11 Maliciously-secure DORAM

Our recursive OMap protocols has handled most of the limitations of our other
protocols. However, it still has one limitation: it can only be called a certain
number of times before the contents must be extracted.

Note that this is an inherent challenge to defining OMaps. In OMaps the
index space may be much larger than the capacity of the OMap. This can be
useful, our recursive solution is only possible with OMaps because smaller levels
must use the same index space but have smaller capacities. However, this also
means that if new items are constantly added, eventually the capacity will be-
come depleted. This leads to a dilemma. One option is that the OMap can only

43

handle a certain number of calls to Add. This is the choice used by ΠOMap and
is reflected in the limit to the calls to Query/Add in Condition 10. The other
option is to have a bound on the number of distinct items that may be stored
in the underlying dictionary.

In an ORAM, however, the capacity is equal to the index space. That is every
possible index stores some value.

We implement such a DORAM. It uses FOMap, implemented by ΠOMap, to
store items once they are queried. It is essentially a wrapper around FOMap.
It stores all N items using Add. The OMap is of capacity 2N to allow for N
additional queries. When the OMap is extracted it will necessarily contain N
items with indices 1, . . . , N and N empty indices, in a shuffled order. The indices
can safely be revealed, empty values deleted, and the non-empty values re-built
into a new FOMap. The protocol is formally presented in Figure 10 below.

Protocol ΠDORAM

ΠDORAM.Init(JY K, N):

1. Initialize an OMap with capacity twice that of the DORAM. This will allow
it to store N items and support a further N queries before being rebuilt. It
is not initialized with any items:
(a) FOMap.Init(JK, JK, 0, 2N,N)

2. Store all of the items. (For technical reasons we need to query them each
first.) For i ∈ [N]:
(a) FOMap.Query(JiK)
(b) FOMap.Add(JiK, JYiK)

3. Set counter t = 0

ΠDORAM.ReadAndWrite(JxK, JynewK):

1. JynewK = FOMap.Query(JxK)
2. FOMap.Add(JxK, JynewK)
3. t = t+ 1
4. If t = N , a rebuild must occur:

(a) JXK, JY K = FOMap.Extract()
(b) For i ∈ [2N]: Xi = FABB.Output(JXiK).
(c) The list X will contain the items in [N] exactly once and N copies of ⊥.
(d) Delete the ⊥ items.
(e) Sort remaining items according to the indices.
(f) Let JŶ K be the values so sorted.
(g) Call ΠDORAM.Init(JŶ K)

Fig. 10: ΠDORAM, the DORAM protocol

We prove the security below.

44

Theorem 4. ΠDORAM is a UC-secure implementation of FDORAM when FOMap
is instantiated with ΠOMap, ΠOHTable, ΠOSet, ΠQuietCache (for the smallest re-
cursion of FOMap of size (κ/2, κ]) and the ABB of section 6; specifically it is
secure with abort against one static malicious adversary.

Proof. The fact that FOMap is called consistently with Condition 10 is visible
by inspection.

The only values revealed by the protocol are the opened indexes. Since FOMap
was given all N values during initialization, and since FOMap is of capacity 2N ,
by the definition of FOMap.Extract, X will contain all N indices (paired with
their most recent values) and N copies of ⊥, in a random order. Revealing N
is therefore easily simulatable: the simulator generates N copies of ⊥ and the
indices 1, . . . , N in a random order.

Correctness follows from the correctness of FOMap.
Since FOMap is secure when implemented with the mentioned protocols, Con-

dition 10 is satisfied, the protocol is correct and all outputs of ΠDORAM are
simulatable, ΠDORAM is a UC-secure implementation of FDORAM given these
instantiations.

Adding the wrapper only creates a minor overhead relative to ΠOMap. This
is proven formally below.

Theorem 5. If ΠDORAM is instantiated with ΠOMap, ΠOHTable, ΠOSet, ΠQuietCache
(for the smallest recursion of FOMap of size (κ/2, κ]) and the ABB of section 6;
specifically it has amortized cost per read/write of Θ(log(N)(κ+D))

Proof. When FOMap is initialized, there are N calls to Query and Add at total
cost Θ(log(N)(κ+D)N). Initialization happens every N accesses, so the amor-
tized cost of it is Θ(log(N)(κ+D) per ReadAndWrite. Ignoring the cost of re-
initialization, the costs of a ReadAndWrite involve one Query (cost Θ(log(N)(κ+
D))) and one Add. There is also an Extract every N accesses. The combined
amortized cost of Add and Extract is Θ(log(N)(κ+D)). These costs dominate
other steps of the protocol.

Therefore, the amortized cost per ReadAndWrite is Θ(log(N)(κ+D)

Remark 7 (Deamortization). As described, our DORAM protocol has amor-
tized query complexity of O((κ+D) logN). Our protocol (like most hierarchical
(D)ORAMs) can be deamortized using Ostrovsky and Shoup’s pipelining tech-
nique [OS97], yielding a protocol with O((κ + D) logN) communication in the
worst case.

Acknowledgments

Supported in part by DARPA under Cooperative Agreement HR0011-20-2-0025,
the Algorand Centers of Excellence programme managed by Algorand Founda-
tion, NSF grants CNS-2001096 and CCF-2220450, US-Israel BSF grant 2015782,
Amazon Faculty Award, Cisco Research Award and Sunday Group. Any views,

45

opinions, findings, conclusions or recommendations contained herein are those
of the author(s) and should not be interpreted as necessarily representing the
official policies, either expressed or implied, of DARPA, the Department of De-
fense, the Algorand Foundation, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for governmental purposes not
withstanding any copyright annotation therein.

46

References

AKL+20. Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Pe-
serico, and Elaine Shi. OptORAMa: Optimal oblivious RAM. In EURO-
CRYPT, 2020.

AKLS21. Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, and Elaine Shi. Oblivious
RAM with worst-case logarithmic overhead. In CRYPTO, pages 610–640.
Springer, 2021.

AKST14. Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam.
Verifiable oblivious storage. In PKC, 2014.

ARS+15. Martin R Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In EURO-
CRYPT, pages 430–454. Springer, 2015.

BBVY21. Subhadeep Banik, Khashayar Barooti, Serge Vaudenay, and Hailun Yan.
New attacks on LowMC instances with a single plaintext/ciphertext pair.
Cryptology ePrint Archive, Paper 2021/1345, 2021. https://eprint.
iacr.org/2021/1345.

BGI15. Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In
EUROCRYPT, 2015.

BIKO12. Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conver-
sion and private information retrieval. In 2012 IEEE 27th Conference on
Computational Complexity, pages 258–268. IEEE, 2012.

BKKO20. Paul Bunn, Jonathan Katz, Eyal Kushilevitz, and Rafail Ostrovsky. Effi-
cient 3-party distributed ORAM. In SCN, 2020.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In Proceedings 42nd IEEE Symposium on Foundations
of Computer Science, pages 136–145. IEEE, 2001.

CCD88. David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty Uncondi-
tionally Secure Protocols. In STOC, 1988.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebas-
tian Ramacher, Christian Rechberger, Daniel Slamanig, and Greg Za-
verucha. Post-quantum zero-knowledge and signatures from symmetric-
key primitives. Cryptology ePrint Archive, Paper 2017/279, 2017. https:
//eprint.iacr.org/2017/279.

CDI05. Ronald Cramer, Ivan Damgård, and Yuval Ishai. Share conversion, pseudo-
random secret-sharing and applications to secure computation. In Theory
of Cryptography: Second Theory of Cryptography Conference, TCC 2005,
Cambridge, MA, USA, February 10-12, 2005. Proceedings 2, pages 342–
362. Springer, 2005.

CFP13. Ronald Cramer, Serge Fehr, and Carles Padró. Algebraic manipulation
detection codes. Science China Mathematics, 56:1349–1358, 2013.

CGH+18. Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,
Yehuda Lindell, and Ariel Nof. Fast large-scale honest-majority MPC
for malicious adversaries. In Annual International Cryptology Conference,
pages 34–64. Springer, 2018.

CHL22. Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious pseu-
dorandom functions. In 2022 IEEE 7th European Symposium on Security
and Privacy (EuroS&P), pages 625–646. IEEE, 2022.

DFK+06. Ivan Damgård, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas
Toft. Unconditionally secure constant-rounds multi-party computation for

47

https://eprint.iacr.org/2021/1345
https://eprint.iacr.org/2021/1345
https://eprint.iacr.org/2017/279
https://eprint.iacr.org/2017/279

equality, comparison, bits and exponentiation. In Theory of Cryptogra-
phy: Third Theory of Cryptography Conference, TCC 2006, New York, NY,
USA, March 4-7, 2006. Proceedings 3, pages 285–304. Springer, 2006.

DK12. Michael Drmota and Reinhard Kutzelnigg. A precise analysis of cuckoo
hashing. ACM Transactions on Algorithms (TALG), 8(2):1–36, 2012.

DLMW15. Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Optimized inter-
polation attacks on LowMC. Cryptology ePrint Archive, Paper 2015/418,
2015. https://eprint.iacr.org/2015/418.

DN03. Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient
multiparty computation from threshold homomorphic encryption. In Ad-
vances in Cryptology-CRYPTO 2003: 23rd Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 17-21, 2003. Pro-
ceedings 23, pages 247–264. Springer, 2003.

DO20. Sam Dittmer and Rafail Ostrovsky. Oblivious tight compaction in o(n)
time with smaller constant. In SCN, pages 253–274. Springer, 2020.

DPSZ12. Ivan Damgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Ad-
vances in Cryptology–CRYPTO 2012: 32nd Annual Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, pages 643–662.
Springer, 2012.

Ds17. Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In
CCS, 2017.

DvDF+16. Srinivas Devadas, Marten van Dijk, Christopher Fletcher, Ling Ren, Elaine
Shi, and Daniel Wichs. Onion ORAM: A constant bandwidth blowup
oblivious RAM. In TCC, 2016.

FJKW15. Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. Three-
party ORAM for secure computation. In ASIACRYPT, 2015.

FLNW17. Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. High-
throughput secure three-party computation for malicious adversaries and
an honest majority. In EUROCRYPT, pages 225–255. Springer, 2017.

FNO21. Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Alibi: A flaw
in cuckoo-hashing based hierarchical ORAM schemes and a solution. In
EUROCRYPT, pages 338–369. Springer, 2021.

FNO22. Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. 3-party dis-
tributed ORAM from oblivious set membership. In International Confer-
ence on Security and Cryptography for Networks, pages 437–461. Springer,
2022.

FNR+15. Christopher W Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and
Emil Stefanov. Bucket ORAM: Single online roundtrip, constant band-
width oblivious RAM. IACR ePrint 2015/1065, 2015.

GGH+13. Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana
Raykova, and Daniel Wichs. Optimizing oram and using it efficiently for
secure computation. In International Symposium on Privacy Enhancing
Technologies Symposium, pages 1–18. Springer, 2013.

GHL+14. Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova,
and Daniel Wichs. Garbled RAM revisited. In EUROCRYPT, 2014.

GI14. Niv Gilboa and Yuval Ishai. Distributed point functions and their appli-
cations. In EUROCRYPT, 2014.

GKK+12. S Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal
Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure two-party compu-
tation in sublinear (amortized) time. In CCS, 2012.

48

https://eprint.iacr.org/2015/418

GKW18. S Dov Gordon, Jonathan Katz, and Xiao Wang. Simple and efficient two-
server ORAM. In ASIACRYPT, 2018.

GMOT12. Michael T Goodrich, Michael Mitzenmacher, Olga Ohrimenko, and
Roberto Tamassia. Privacy-preserving group data access via stateless obliv-
ious RAM simulation. In SODA, 2012.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game. In STOC, 1987.

GO96. Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious RAMs. JACM, 43(3), 1996.

Gol87. Oded Goldreich. Towards a theory of software protection and simulation
by oblivious rams. In Alfred V. Aho, editor, Proceedings of the 19th Annual
ACM Symposium on Theory of Computing, 1987, New York, New York,
USA, pages 182–194. ACM, 1987.

HV20. Ariel Hamlin and Mayank Varia. Two-server distributed ORAM with sub-
linear computation and constant rounds. IACR ePrint 2020/1547, 2020.

IKH+23. Atsunori Ichikawa, Ilan Komargodski, Koki Hamada, Ryo Kikuchi, and Dai
Ikarashi. 3-party secure computation for RAMs: Optimal and concretely
efficient. Cryptology ePrint Archive, Paper 2023/516, 2023. https://
eprint.iacr.org/2023/516.

IKK+11. Yuval Ishai, Jonathan Katz, Eyal Kushilevitz, Yehuda Lindell, and Erez
Petrank. On achieving the “best of both worlds” in secure multiparty com-
putation. SIAM journal on computing, 40(1):122–141, 2011.

JW18. Stanislaw Jarecki and Boyang Wei. 3PC ORAM with low latency, low
bandwidth, and fast batch retrieval. In ACNS, 2018.

JZLR22. Keyu Ji, Bingsheng Zhang, Tianpei Lu, and Kui Ren. Multi-party private
function evaluation for RAM. Cryptology ePrint Archive, Paper 2022/939,
2022. https://eprint.iacr.org/2022/939.

KLO12. Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. On the (in) security of
hash-based oblivious RAM and a new balancing scheme. In SODA, 2012.

KM19. Eyal Kushilevitz and Tamer Mour. Sub-logarithmic distributed oblivious
RAM with small block size. In PKC, 2019.

KMW09. Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More robust hash-
ing: Cuckoo hashing with a stash. SIAM Journal on Computing, 2009.

KO97. Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SIN-
GLE database, computationally-private information retrieval. In 38th An-
nual Symposium on Foundations of Computer Science, FOCS ’97, Miami
Beach, Florida, USA, October 19-22, 1997, pages 364–373. IEEE Computer
Society, 1997.

KS14. Marcel Keller and Peter Scholl. Efficient, oblivious data structures for
MPC. In International Conference on the Theory and Application of Cryp-
tology and Information Security, pages 506–525. Springer, 2014.

Lau15. Peeter Laud. Parallel oblivious array access for secure multiparty compu-
tation and privacy-preserving minimum spanning trees. Proc. Priv. En-
hancing Technol., 2015(2):188–205, 2015.

LIM20. Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of full LowMC
and LowMC-M with algebraic techniques. Cryptology ePrint Archive, Pa-
per 2020/1034, 2020. https://eprint.iacr.org/2020/1034.

LN17. Yehuda Lindell and Ariel Nof. A framework for constructing fast MPC
over arithmetic circuits with malicious adversaries and an honest-majority.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 259–276, 2017.

49

https://eprint.iacr.org/2023/516
https://eprint.iacr.org/2023/516
https://eprint.iacr.org/2022/939
https://eprint.iacr.org/2020/1034

LN18. Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an oblivious
RAM lower bound! In CRYPTO, 2018.

LO13. Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-
party computation. In TCC, 2013.

LWZ11. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-efficient oblivious
database manipulation. In Xuejia Lai, Jianying Zhou, and Hui Li, editors,
Information Security, pages 262–277, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.

Mit09. Michael Mitzenmacher. Some open questions related to cuckoo hashing. In
ESA, 2009.

MV23. Surya Mathialagan and Neekon Vafa. MacORAMa: Optimal oblivious
RAM with integrity. Cryptology ePrint Archive, Paper 2023/083, 2023.
https://eprint.iacr.org/2023/083.

MZ14. John C Mitchell and Joe Zimmerman. Data-oblivious data structures. In
STACS. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2014.

NIS21. NIST. Post-quantum cryptography PQC: Round 3 submissions.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions,
2021.

Nob21. Daniel Noble. Explicit, closed-form, general bounds for cuckoo hashing
with a stash. IACR ePrint 2021/447, 2021.

OS97. Rafail Ostrovsky and Victor Shoup. Private information storage. In STOC,
volume 97, 1997.

Ost90. Rafail Ostrovsky. Efficient computation on oblivious RAMs. In STOC,
1990.

Ost92. Rafail Ostrovsky. Software Protection and Simulation On Oblivious RAMs.
PhD thesis, Massachusetts Institute of Technology, 1992.

PPRY18. Sarvar Patel, Giuseppe Persiano, Mariana Raykova, and Kevin Yeo.
PanORAMa: Oblivious RAM with logarithmic overhead. In FOCS, 2018.

PR01. Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In ESA, 2001.
PR10. Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In

CRYPTO, 2010.
PSSZ15. Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phas-

ing: Private set intersection using permutation-based hashing. In 24th
{USENIX} Security Symposium ({USENIX} Security 15), pages 515–530,
2015.

RFK+14. Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine
Shi, Marten van Dijk, and Srinivas Devadas. Ring ORAM: Closing the
gap between small and large client storage oblivious RAM. IACR ePrint
2014/997, 2014.

SCSL11. Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious
RAM with O((logN)3) worst-case cost. In ASIACRYPT, 2011.

SVDS+13. Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely
simple oblivious RAM protocol. In CCS, 2013.

Tof07. Tomas Toft. Primitives and applications for multi-party computation. Un-
published doctoral dissertation, University of Aarhus, Denmark, 2007.

VHG22. Adithya Vadapalli, Ryan Henry, and Ian Goldberg. Duoram: A bandwidth-
efficient distributed ORAM for 2- and 3-party computation. Cryptology
ePrint Archive, Paper 2022/1747, 2022. https://eprint.iacr.org/2022/
1747.

50

https://eprint.iacr.org/2023/083
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2022/1747
https://eprint.iacr.org/2022/1747

Vol99. Heribert Vollmer. Introduction to circuit complexity: a uniform approach.
Springer Science & Business Media, 1999.

WCS15. Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness
of the Goldreich-Ostrovsky lower bound. In CCS, 2015.

WHC+14. Xiao Shaun Wang, Yan Huang, T-H Hubert Chan, abhi shelat, and Elaine
Shi. SCORAM: oblivious RAM for secure computation. In CCS, 2014.

Yao82. Andrew Yao. Protocols for secure computations (extended abstract). In
FOCS, 1982.

Yao86. Andrew Yao. How to generate and exchange secrets. In FOCS, 1986.
Yeo22. Kevin Yeo. Cuckoo hashing in cryptography: Optimal parameters, robust-

ness and applications. Cryptology ePrint Archive, 2022.
ZWR+16. Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner,

David Evans, and Jonathan Katz. Revisiting square-root ORAM: efficient
random access in multi-party computation. In S & P, 2016.

A Authentication tags

Our construction uses authentication tags to detect adversarial tampering. As
in SPDZ [DPSZ12], we use a simple information theoretic tag that we call a
“MAC.” In fact, the scheme is an Algebraic Manipulation Detection (AMD)
code – specifically the AMD code in [CFP13][Example 5.3].

During setup, the participants generate a random secret shared “key,” α,

Jα · xK def
= CreateMAC(JxK) (3)

Lemma 1. When α, x ∈ F2σ , the probability that a single (non-colluding) par-
ticipant can create a valid message-tag pair is at most 2−σ.

Proof. The argument is a basic application of the AMD code framework from
[CFP13].

Suppose the (uniformly) random key, α is secret-shared, as well as t message-
tag pairs {JxiK, Jα · xiK}ti=1, as well as a target JxK, Jα · xK.

The key observation is that the adversary (who only controls one partici-
pant) can only make additive changes to JxK and Jα · xK. In this case, Let δx be
the additive error A introduces to the secret, and δM be the additive error A
introduces to the MAC. The MAC will be viewed as correct provided:

(x+ δx)α = M + δM

But xα = M , so this simplifies to:

δxα = δM

If F2l is a field, for α chosen uniformly at random from F2σ , as long as y ̸= 0, yα
is uniformly distributed over F2σ . Since A has introduced some error, δx ̸= 0, so
δxα is uniformly distributed over F2σ . The probability that δxα = δM is therefore

1
|F2σ | = 2−σ, which is negligible in σ, our statistical security parameter.

51

Protocol ΠABB3

Hybrids: Operates in the FABB1, FABB2-hybrid model.
ReplicatedTo2Sharing(JxK, i, j, varNamei,j):

1. Compute a MAC of the secret: JMK = CreateMAC(JxK).
2. Generate two masks: JrxK = RandomElement(σ), JrM K =

RandomElement(σ).
3. Reveal the masks to Pi as its shares: xi = Output(rx, i), Mi = Output(rM , i).
4. Generate masked values: JmxK = Add(JxK, JrxK), JmM K = Add(JMK, JrM K).
5. Reveal the masked items to Pj as its shares: xj = Output(mx, j), Mj =

Output(mM , j).
6. Pi and Pj associate handle varNamei,j with the shares (xi,Mi) and (xj ,Mj)

respectively.

2SharingToReplicated([xi,j](i,j), varName):

1. Let (xi,Mi) be Pi’s shares associated with xi,j and let (xj ,Mj) be Pj ’s shares.
2. Input all variables: JxaK = Input(xi, i), JMaK = Input(Mi, i), JxbK =

Input(xj , j), JMbK = Input(Mj , j).
3. Reconstruct the secret and MAC inside the ABB: JvarNameK = Add(xa, xb),

JMK = Add(Ma,Mb).
4. Verify the MAC: JzK = CheckMAC(x,M), y = Output(JzK, {1, 2, 3}).

If y == 0 (i.e. the MAC is incorrect), all players abort.

Fig. 11: Two-Sharing functionality.

52

B Proofs and protocols for UC-realizing FABB3 in the
malicious model

Theorem 6. Against a static malicious adversary controlling at most one party,
Protocol ΠABB3 (Figure 11) statistically UC-realizes functionality FABB3 with
abort in the FABB1,FABB2-hybrid model.

Proof. We show that a simulator interacting with the functionality will be indis-
tinguishable from an adversary interacting with the protocol. Our simulator, S,
will work as follows. S will run a copy of A, which it will access in a black-box,
non-rewinding manner. Let Pi be the corrupted party. If Pi is one of the recipi-
ents of ReplicatedTo2Sharing, the simulator generates random xi,Mi from F2σ ,
and gives these to A. Upon a call to 2SharingToReplicated, the simulator calls
A and checks whether it returns the secret-share and MAC-share that it was
given for this handle. If it does, then S lets FABB3 continue and store the secret
using the new handle in the ABB. If A has modified either the secret-share or
the MAC-share, then S commands FABB3 to abort.

The view of A during ReplicatedTo2Sharing is completely identical in both
executions. In both cases it receives two values chosen uniformly at random
from F2σ . If A provides correct secret shares to 2SharingToReplicated, then the
correct value will be reconstructed, the MAC will be correct, and the real and
ideal executions will be identical.

If A provides incorrect secret shares to ReplicatedTo2Sharing, then the ideal
execution will always abort. If A provides incorrect secret shares, the real execu-
tion will abort if the secret-MAC pair is inconsistent. Lemma 1 shows that the
probability that an adversary create MAC that verifies on a modified message is
at most 2−σ (where the shares are over F2σ , which is negligible in the statisti-
cal security parameter σ. Therefore, except with negligible probability, the real
execution will also abort if A provides incorrect shares.

Therefore, the behavior of the S interacting with FABB3 is indistinguishable
from that of A interacting with ΠABB3, except with negligible probability.

C Full implementation of FABB4.SilentDotProduct

SilentDotProduct: Another useful property of replicated secret-shares (RSS)
is 2-ary silent multiplication. Let x and y be RSS-shared, such that Pi holds
(x(i), x(i+1)) and (y(i), y(i+1)), where x(1)+x(2)+x(3) = x and y(1)+y(2)+y(3) =
y. Note that, by the distributive property xy = (x(1)y(1) + x(2)y(1) + x(1)y(2)) +
(x(2)y(2) + x(3)y(2) + x(2)y(3)) + (x(3)y(3) + x(1)y(3) + x(3)y(1)). Furthermore,
observe that Pi can compute x(i)y(i) + x(i+1)y(i) + x(i)y(i+1) using only local
operations. Thus, using only local operations, the players can obtain an additive
sharing of the product, that is Pi holds some z(i) such that z(1) + z(2) + z(3) =
z = xy. Moreover, by computing the an additive sharing of Zi = XiYi and
summing the shares, the players can silently compute the dot product (with
additive error) of two replicated secret shared vectors JXK = JX1K, . . . , JXnK

53

and JY K = JY1K, . . . , JYnK. To go back to replicated secret sharing, each party
inputs their shares into the ABB. Summing the player’s shares inside the ABB,
the parties obtain JZK. This protocol preserves privacy (the parties receive no
new information), but a malicious party can hold an incorrect additive share,
allowing it to introduce arbitrary additive error to the result. Thus, we call the
above protocol DotProductWithError(JXK, JY K).

Assuming that each JYiK is MACed by JMiK (which can be reused across many
executions) under a secret key JαK it is not too difficult to make the above proto-
col maliciously secure. A protocol to implement FABB.SilentDotProduct(JXK, JY K, JMK)
works as follows:

1. Set JzK = DotProductWithError(JXK, JY K).
2. Set JmK = DotProductWithError(JXK, JMK).
3. Compute JbK = CheckMAC(JzK, JmK).
4. Output JbK to all parties. If it is 0, abort, else, output JzK.

The proof of security is similar to that of the 2-sharing protocols (Ap-
pendix B), so we just provide a proof sketch. S runs A (who receives no outputs
on this protocol) to determine the errors δz and δm that A would insert into the
first and second calls to DotProductWithError respectively. If either of these
is non-zero, S aborts. If (z + δz)α = m + δm, then S will cause an abort, but
the protocol will not abort. However, this only occurs if δzα = δm, which since
δz ̸= 0 and α is chosen at random from F2σ occurs with negligible probabil-
ity. Therefore, the real and ideal executions are identical except with negligible
probability.

D Instantiating BuildCHTwS

Cuckoo Hash tables are well-studied, and there are several different methods
for efficiently building Cuckoo Hash Tables [Yeo22][Appendix C] in O(n) time.
Our protocol could work with any of them, so in this section, we lay out the
semantics of the BuildCHTwS algorithm, but do not prescribe a specific procedure
for building the cuckoo hash table. We do, however, require the cuckoo build
algorithm will always output a stash of size s,

Since all of our cuckoo hash builds occur locally (i.e., not under MPC), there
are no constraints on which build procedure is used.

The BuildCHTwS algorithm takes a set of indices as well as two hash functions
h0, h1.

CHT ∪ Stash = {CHT, (i1, . . . , is)} = BuildCHTwS(Q̂, h0, h1) (4)

E The Alibi method for “caching the stash”

At a high level “Alibi” [FNO21] shows that a naive “cache the stash” technique
popular in the literature leaks information about the access pattern. In their

54

BuildCHTwS

1. Parse Q as n key-value pairs, ((X1, Y1), . . . , (Xn, Yn)).
2. Parse hb as a hash function hb : {0, 1}∗ → [c].
3. Build the Cuckoo Hash Table as in [Yeo22][Appendix C]
4. Return the table(s) CHT, as well as the set of “stashed” indices i1, . . . , is

where ij ∈ [n], and CHT is a cuckoo hash table containing all elements {Xi}
for i ∈ [n] \ {i1, . . . , is}.

Fig. 12: Building a Cuckoo Hash Table with a Stash

paper, [FNO21] offer an alternative “cache the stash” technique which effectively
“simulates” the no-caching (D)ORAM access-pattern. [FNO21]’s technique which
appends numLevels bits of information, ei, in each payload Yi. Note this does not
mean we need to make the assumption that D ≥ logN . In fact, we do not rely
on that assumption anywhere in the paper to obtain our asymptotics.

Leveraging this information, [FNO21] shows a “just-in-time” protocol for sim-
ulating the no-caching access pattern.

The Alibi technique works as follows: For all j ∈ [N], the alibi bit vector,
ej , is initially set to 0numLevels = 0Θ(logN) First, if (JxK, JyK) could not fit in
the OHTable at level i and was reinserted into the linear level, we let their
corresponding e[i] = 1. Then, if (JxK, JyK) is found at Lj , and k > j where
k = max({i : e[i] = 1} ∪ {0}), continue querying Lj+1, . . . Lk as if (JxK, JyK) has
not been found, and query Lk+1, . . . , LnumLevels if (JxK, JyK) was not found in Lk.
Intuitively, this simulates the query pattern we would make if our (D)ORAM
did not reinsert elements. Resetting the mark, if (JxK, JyK) was queried by the
DORAM, when we put (JxK, JyK) back in the linear level, we, let e = 0numLevels

since now (JxK, JyK) are where they “should” be. Of course, we do each of the
above boolean operation using our FABB(Section 6), which is efficient due to
our GF (2l) representation. These ideas are presented and proved formally in
[FNO21].

Concretely, for a given element (JxK, JyK) we reserve the last numLevels bits
of y for e, letting JeK = Jy[D − numLevels + 1 : D]K. Below we present our
instantiation of Alibi, and the rest of the DORAM protocol.

F Proofs about the costs of protocols

We give straightforward proofs about the cost of our protocols in this section.

F.1 Cost of ΠQuietCache

Proof (Proposition 2). We tally the communication for each subprotocol:

1. ΠQuietCache.Init: no communication.

55

2. ΠQuietCache.Store: FABB.CreateMAC for an element of size D costs O(max{D,κ}).
3. ΠQuietCache.Query: The FindOne(t) circuit has computes t equality tests (on

log(N)-bit elements), t AND gates, and t OR gates. Thus, for t = O(n) eval-
uating the FindOne(t) circuit requires O(n logN) communication. Addition-
ally, we pay O(max{D,κ}) for FABB.CheckMAC and O(D) for FABB.Input.
Thus the total communication is O(D + n logN).

4. ΠQuietCache.Extract: We call FABB.Equal O(n2) times, each time on Θ(logN)
bits, which requires a total of O(n2 logN) communication. The O(n2) FABB.ORcalls
we make cost a constant number of bits each. The O(n) calls to FABB.IfThenElse,
we make each cost O(n logN). Thus the calls to FABB.Equal dominate the
and the complexity of ΠQuietCache.Extract is O(n2 logN).

Since all operations involve storing and retrieving elements or doing computa-
tions under MPC, the asymptotic computational complexity of each sub-protocol
is the same as its communication complexity.

F.2 Propositions and proofs about the complexity of ΠOSet

We present propositions and proofs concerning the communication and compu-
tation complexity of ΠOSet.

Proposition 14. ΠOSet.Build runs at communication and computation cost of
O(n(κ+D)).

Proof. Let us tally the cost of every step. Step 1 is free, step 2 costs O(n(κ +
logN)), step 3 costs O(n(κ +D + logN)), step 4 costs O(κn). Step 5 is silent,
but costs the builder O(n) (See Appendix D). Step 6 costs O(logN log n), steps
7,8,9,10 cost O(nκ), step 11 costs 1, and step 12 is free. Since κ = ω(logN) Our
tally is O(n(κ+D)) communication and computation.

Note that since we rebuild a level of n elements every O(n) queries, the amortized
build complexity per query is O(κ+D) ≤ O((κ+D) logN), as deisred.

Proposition 15. ΠOSet.Query runs at communication and computation cost of
O(κ).

Proof. Step 1 costs O(κ+ logN), step 2,3,4 cost O(κ) step 5 costs 1 and step 6
costs O(κ).

Note that since we query O(logN) levels per query we have that the amortized
cost per query of querying Osets across all levels is O(κ logN)

F.3 Propositions and proofs about the costs of ΠOHTable

We analyze the communicaitonal and computational complexity of ΠOHTable
with the following propositions:

Proposition 16. ΠOHTable.Build has complexity O(n(κ+D)).

56

Proof. Step 1 has complexity O(n(κ+D)), step 2 has complexity 0, step 3,4 have
complexity O(nκ) since numDummies = O(n), step 5 has complexity O(n(κ +
D)), step 6 has complexity O(nκ), and step 7 is free.

Proposition 17. ΠOHTable.Query has complexity O(κ).

Proof. Step 1 is free, step 2 costs κ, step costs O(logN), step 4,5 costs O(κ),
step 6,7 are free.

Proposition 18. ΠOHTable.Extract has complexity O(n)

Proof. Communication is free and computation is at most O(n), depending on
the underlying data structure representation.

F.4 Propositions and proofs about the costs of ΠDORAM

Before we can prove our main theorem, we must determine that ΠDORAM realizes
FDORAM efficiently. Thus let us analyze the complexity of ΠDORAM:

Proposition 19. The complexity of ΠDORAM.Init is O(Nκ)

Proof. Step 1 is silent has computational complexity O(N), step 2 costs O(Nκ)
by Proposition 16, step 3 is free.

Proposition 20. The complexity of ΠDORAM.ReadAndWrite not including calls
to ΠDORAM.Rebuild (step 8) is O((κ+D) logN)

Proof. Steps 1 and 2 costs 0. By Proposition 2 step 3 costs O(κ logN +D). By
Proposition 17 and our instantiation of FABB.Equal and FABB.IfThenElse, step
4 costs O(κ+D) per iteration for an total of ((κ+D) logN) over all iterations.
Step 5 costs D while steps 6 and 7 free. As stated in the proposition, we ignore
the cost of step 8.

We can consider the complexity of calling ΠDORAM.Rebuild on the t’th query,
but is much cleaner to leverage the well-known hierarchical solution fact that a
level of m elements is built every O(m) queries to prove the following proposition:

Proposition 21. The amortized cost per query of calling ΠDORAM.Rebuild in
step 8 of ΠDORAM.ReadAndWrite is O(κ logN).

Proof. Step 1,2,3 are free. Assume that we are rebuilding Lℓ for ℓ < numLevels
where |Lℓ| = m. Then, step 4a costs O(m logN) and step 4b costs O(mκ).
Now assume that ℓ = numLevels where |Lℓ| = m = O(N). Then step 5a costs
O(m(logN+D)), step 5b costs O(m logN) and step 5c costs O(mκ). Steps 6,7,8,
and 9 are free regardless of ℓ. Thus by the standard fact “level of m elements is
built every O(m) queries,” we have our result.

57

	DORAM revisited: Maliciously secure RAM-MPC with logarithmic overhead

