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Abstract—The increased popularity of Machine Learning as
a Service (MLaaS) makes the privacy of user data and net-
work weights a critical concern. Using Torus FHE (TFHE) [1]
offers a solution for privacy-preserving computation in a cloud
environment by allowing computation directly over encrypted
data. However, software TFHE implementations of cyphertext-
cyphertext multiplication needed when both input data and
weights are encrypted are either lacking or are too slow. This
paper proposes a new way to improve the performance of such
multiplication by applying carry save addition. Its theoretical
speedup is proportional to the bit width of the plaintext integer
operands. This also speeds up multi-operand summation.

A speedup of 15x is obtained for 16-bit multiplication on a
64-core processor, when compared to previous results. Multipli-
cation also becomes more than twice as fast on a GPU if our
approach is utilized. This leads to much faster dot product and
convolution computations, which combine multiplications and a
multi-operand sum. A 45x speedup is achieved for a 16-bit, 32-
element dot product and a ∼30x speedup for a convolution with
a 32x32 filter size.

Index Terms—Fully Homomorphic Encryption, Torus FHE,
Gate Bootstrapping, CPU Parallelism, Carry Save Addition

I. INTRODUCTION

Homomorphic Encryption (HE) allows operations to be per-
formed directly on encrypted data. A number of HE schemes
have been developed. They vary in the type of operations
supported (integer, boolean, real), the complexity of theoretical
problems they are based on (LWE, ring LWE, etc), and
whether they are leveled or fully HE. The most used schemes
include BFV [2] and BGV [3] for integer arithmetic, CKKS [4]
for real arithmetic, and TFHE [1], GSW [5] and FHEW [6] for
boolean arithmetic. There are multiple library implementations
of these schemes, like Microsoft SEAL [7], IBM HELib [8]
OpenFHE [9] or TFHE-specific only implementations, like
TFHE [10] or Concrete [11].

Leveled HE schemes allow only a fixed number of oper-
ations to be performed, after which point a ciphertext may
become undecryptable. An operation called bootstrapping was
introduced in [12] to allow a computation to continue without
limitations. However, bootstrapping is a very time consuming
operation compared to FHE arithmetic operations (which are
already very expensive).

FHEW and TFHE introduced an inexpensive bootstrapping
operation, which TFHE applies after every boolean operation

it supports. This makes it a very attractive scheme compared
to others that require occasional but very expensive bootstrap-
ping.

At the level of integer operations, the fact that TFHE
only implements boolean operations is quite detrimental to
performance. This is because a B-bit integer addition and mul-
tiplication are very sequential operations when implemented
using boolean gates in software. An addition, for instance,
computes and propagates carry through all the bit positions
sequentially, thus requiring O(B) gate delays. Fast carry-
lookahead schemes used in hardware implementations are not
effective in software due to the growth in the number of gates
to evaluate. Similarly, fast hardware array multipliers cannot
be effectively implemented in software as this would require
massive parallelism. For instance, just forming all of the partial
products to be summed at once would require B2 TFHE AND
operations. A software implementation of the multiply thus
typically uses a shift-and-add algorithm resulting in O(B2)
gate delays.

This paper shows how to exploit parallelism to improve the
performance of integer operations over TFHE. The parallelism
is created by performing a carry-save addition (CSA) in
the case of

∑K−1
0 operators. The CSA version used only

propagates the carry by one bit position, which makes a B-bit
CSA fully parallel in the number of bits. Integer multiplication,
when computed as P =

∑B−1
i=0 (A × ci × 2i) for A × C,

where ci is a bit of C, can thus exploit this type of parallelism.
The proposed approach can be utilized for neural network

inference computations in the cloud. An ML system may
require that both the input data and the weights are encrypted
to preserve the privacy of both a user and a neural network
provider. This work thus targets integer arithmetic operations
where both operands are encrypted, a case that is either not
currently supported or is inefficient.

Overall, this paper makes the following contributions:
1) It uses parallel carry-save addition to speed up integer

multiplication
2) It speeds up a summation of multiple operands using

carry-save addition and applies this in the context of dot
product and convolutional neural network computations

3) It explores ways to parallelize operations and discusses
ways to map them to the multiple cores available



4) It demonstrates significant speedups (45x and 30x for the
dot product and the CNN computations, respectively) for
16-bit operands on a 64-core processor.

II. TFHE

The TFHE library [1] uses a binary representation on a torus
of real numbers considered modulo 1, T = R/Z, where the
plaintext space is represented by [-1/2, 1/2], with the binary
values 0 and 1 represented as −1/8 and 1/8. The supported
homomorphic operations are logical gates (NOT, AND, OR,
XOR, etc). Each gate evaluation involves a bootstrapping
operation.

A ciphertext in the TFHE domain is represented by a pair
(a, b) with a a vector of length n, concatenated together with
a torus element b, such that b = a · s+ e, where s is a vector
of length n and e is a small error term called noise, being
sampled from a Gaussian distribution.

The main advantages of the TFHE library are fast boot-
strapping, lower polynomial and coefficient sizes, but at the
expense of constant bootstrapping.

An example of gate evaluation is shown below.

NOT (a) =∼ a

AND(a, b) = a+ b− 1/8 ≷ 0

OR(a, b) = a+ b+ 1/8 ≷ 0

XOR(a, b) = 2(a+ b) + 1/4 ≷ 0

The purpose of the bootstrapping is to evaluate the corre-
sponding condition, and to further reset the resulting message
either as a fresh encryption of 0 or 1, with low noise level.
Note that, for bootstrapping to work, the operands a and b
must be fresh ciphertexts.

The NOT gate comes as a free gate in TFHE, since no
bootstrapping is involved. Another useful gate in the TFHE
world is the possibility of evaluating multiplexers, i.e. a MUX
gate, which allows the switching of one of the two inputs based
on a selector. The MUX gate introduces additional versatility
to the FHE world which would be hard to implement using
other more traditional schemes.

For 128-bit security, TFHE uses a LWE polynomial size of
630, a RLWE polynomial size of N=1024, where each integer
coefficient is considered modulo q=232.

TFHE uses the notion of lookup tables to bootstrap a
ciphertext. The bootstrapping operation will obtain the desired
element from an unknown (encrypted) position p in the lookup
table as a result of bootstrapping. The gate bootstrapping in
TFHE is used to evaluate binary gates, but can be generalized
as a general function evaluation only by changing the lookup
table to be evaluated.

A new(er) library called Concrete [11] was built on top of
the TFHE library. Both libraries use the same basic concepts,
but the Concrete library replaces gate bootstrapping with
functional bootstrapping. For this paper we use the TFHE
library available at [10].

III. INTEGER ARITHMETIC ON TOP OF TFHE

Integer arithmetic is supported by default in schemes like
BGV. However, these schemes employ expensive ciphertext
maintenance operations, like modulus switching or bootstrap-
ping, as measures of noise control.

After a fixed number of multiplications, bootstrapping has
to be performed in order to ensure the accuracy of the results.
This incurs a high overhead, in particular while trying to
evaluate a large number of multiplications over the ciphertext
domain.

Integer arithmetic can also be built on top of binary FHE
schemes, such as GSW or TFHE. This will clearly increase
the time required to perform integer ciphertext operations.
However, the TFHE scheme offers a performance advantage
due to inexpensive bootstrapping, smaller polynomial size,
and 32-bit polynomial coefficients. All of these may lead to
improved performance when compared with the BGV scheme
where several expensive bootstrapping operations may be
needed.

Our approach can be used without any modification for
fixed-point arithmetic. Fixed-point values can be used as
weights for different AI or ML purposes, and in our case,
their usage will not incur any additional performance overhead
compared to using integer values.

IV. INTEGER MULTIPLICATION

The goal of this paper is to increase the CPU-level paral-
lelism of operations built on top of the TFHE scheme. Our
focus is on ciphertext-ciphertext operations, and in particular,
on multiplication.

We assume an operation on two n-bit integers, a and b, with
their binary representation expressed as a = [a0, a1, .., an−1],
b = [b0, b1, .., bn−1].

The TFHE library provides us with boolean operations,
which can be used to implement an (single-bit) add function-
ality. This, in turn, allows an n-bit add function to be built.
Such software adder can then be utilized to perform integer
multiplication. Next, we consider approaches to do this.

A standard approach to implement multiplication of integers
using binary representation is to use a naive schoolbook
algorithm. This is a shift-add algorithm. It forms a partial
product by multiplying a bit bi of the multiplier with every
bit aj of the multiplicand. The partial product is then added
to the final result.

The major drawback of this algorithm is that the addition
operation has to be performed sequentially because of the carry
propagation.

[13] proposed an approach to speed up multiplication that
used to the sequential addition in the TFHE context by in-
troducing limited parallelization. It formed partial products in
parallel and then added them using a sum reduction operation
(in OpenMP [14]). The addition operation performed within
reduction still used the sequential carry propagation. As shown
in Sec. V, this approach has a rather limited speedup.

The idea behind carry-save addition is to compute a Sum
and a Carry-out for each bit position without propagating the



Carry-out to the adjacent bit position. Therefore, it is not
producing the correct sum for each bit position, but it produces
the Sum and Carry-out bits in each position independently
(i.e. it is fully parallel). In fact, the carry is propagated one bit
position at a time as Sumi is computed using the Carry-outi−1.

Carry-save addition cannot therefore speed up the addition
operation, but it can speed up repeated additions or a sum-
mation, possibly requiring a final add with carry propagation.
This is exactly the case in the multiply operation.

Each addition step produces the final value for the least
significant bit, which is shifted into the result array. An n-
bit result is computed after n such addition steps and does
not require further carry propagation. A 2n-bit result would
require the carry to be propagated over the n high-order bit
positions.

The above approach seems to have been first described in
[15], per reference in [16]. It exposes just the right amount
of parallelism for our target system. The Wallace or Dadda
multipliers [16], [17] expose even more parallelism, generating
all partial products at once and using a tree of carry-save
adders. However, this requires many more gates (and thus
cores) to be evaluated. This work assumes a rather limited
number of cores per processor (64 or fewer) and, for common
plaintext operand sizes of 8- to 32-bits, is unable to utilize the
Wallace or Dadda multiplier tree parallelism.

Even though hardware CSA has been proposed, its applica-
tion in the TFHE context is new and a parallel implementation
to achieve speedup is non-trivial.

Fig. 1. Two iterations of carry save adder

The i−th step of our multiplication computes and stores in
parallel the result of multiplication of ai and bj , j = 0...n−1.
Next, ”result” is computed in parallel (over j), followed by the
parallel computation of ”carry”.

In other words, when computing the result as ai⊕bj⊕c, the
carry is not generated in the current iteration, but is used as
generated by the ”carry” step of the previous iteration. In this
way, both the ”result” and the ”carry” steps are fully parallel,
having dependencies just on the last stage of multiplication
with bit ai−1.

Suppose that we want to perform the addition of bit r, rep-
resenting one of the accumulator bits, with bit p, representing
the product of two bits.

The ”result” step will compute (in parallel for all bits):

rnew = r ⊕ p⊕ cprev (1)

The ”carry” step will compute (in parallel for all bits) the
new carry to be used at the new iteration, as:

cout = r ∧ p+ p ∧ cprev + r ∧ cprev (2)

Figure 1 represents visually two consecutive steps of the
carry save multiplication. The carry is computed in the current
step, but its addition to the final result is postponed up until
the next step.

There are several optimizations one can employ for this
implementation. For example, one can reuse a gate from the
previous result computation when calculating the next carry.

This approach uses 5 (software) TFHE gates for computing
the carry, and we can also save an additional gate (and the
respective involved bootstrapping) by using the fact that one
of the gates was previously computed at the result step. It was
observed that memory constraints allow storing the result from
the first computation such that it can be reused in the partial
carry computation.

For this purpose, one can rewrite the carry expression as
the following equivalent expression:

cout = ((r ⊕ p) ∧ cprev) ∨ (r ∧ p) (3)

We observe that the operation ai ⊕ bi is already computed
during the next result computation, which is done in parallel
right before the parallel computation of the carry, so the partial
xor can be stored into the memory and reused.

Bootstrapping still consumes a lot of time in each TFHE
gate evaluation. One can reduce the number of bootstrappings
per 1-bit CSA by using ternary gates.

A. CSA + Ternary gates

[18] introduced ternary gates to the TFHE scheme, in
particular an XOR3 and a 2OF3 gate. [19] revisits the idea
and applies it to integer addition over TFHE. The purpose of
these additional gates was to perform the computation of a
full adder while reducing the number of bootstrappings.

An XOR3(a,b,c) gate is defined as the XOR of the three
inputs, and a 2OF3 gate outputs 1 if and only if at least two
out of the three inputs are set to 1.

For example, computing a new sum requires 2 bootstrap-
pings using 2 XOR gates, but requires just 1 bootstrapping
using the XOR3 gate. Similarly, computing the new carry
requires 3 bootstappings using binary gates, but only 1 when
using the 2OF3 gate.

The implementation of the new ternary gates is as follows:

XOR3(a, b, c) = −2(a+ b+ c) ≷ 0 (4)
2OF3(a, b, c) = (a+ b+ c) ≷ 0 (5)

In this way, the number of bootstrappings needed when
evaluating a full adder is reduced from 5 to 2, considerably
improving the performance of the scheme. However, as noted
in [19], the ternary gates require larger parameters to allow the
evaluation of the combined gate without exceeding the level
of noise permitted for decryption. The default parameter set of



TFHE, which allows 128 bit security, satisfies the requirements
and can be used in our scenario.

In summary, we combine the use of ternary gates and carry
save multiplication.

V. PERFORMANCE EVALUATION

This section presents the performance results of our scheme
and compares them with the results in [13]. The code available
in [20] was used. It also shows the additional speedup from
using ternary gates [19]. The performance was evaluated on a
system with two sockets, with the AMD EPYC 7742 processor
with 64 cores running at 2.25 Ghz and NUMA memory [21].
All results on the AMD system are on a single socket.

The original TFHE library with 128 bit security [1] was
used. It was modified to incorporate ternary gates [19], [22].
A carry-save adder was implemented using either the original
TFHE two-input gates or ternary gates. In the latter case, the
sum and carry incur a one-gate delay.

A multiply for two n-bit numbers produces a 2n-bit result.
However, it is not always needed in a program performing n-
bit computation. One can ignore the upper n bits of the 2n-bit
result and just use the lower n bits. The n-bit result is obtained
in this case with only carry-save adds.

A. Integer multiplication

Let us begin with integer multiplication performed as a
sequence of carry-save adds and shifts. Each step produces one
bit of the product. It was evaluated by a varying the number of
threads used and compared with [13]. Note that the algorithm
in [13] cannot profitably utilize more than 4 to 8 threads for the
operand sizes used as it only performs a reduction in parallel.

Table I shows the multiply execution times on the AMD
processor. These are n-bit results only, i.e. they do not require
a full add at the end. The best execution time in each row
is shown in boldface. The table also shows the best speedup
obtained for each case over the [13] results (re-executed on the
AMD processor). A 10.63x speedup is achieved over results in
[13] for 8-bit multiplication with both CSA and ternary gates.
The speedup is 14.76 for 16-bit operands. It then drops to 8.77
for 32-bit operands. This is in part due to our multiplication
utilizing all 64 cores, which increases communication costs
between tiles.

These results can also be compared to the fully sequential
execution, e.g. executing our CSA code on one thread. The
parallel CSA+ternary approach obtains a speedup of 10.3x,
19.8x and 15.8x, respectively, for 8-, 16- and 32-bit multiply.
Parallel CSA speedups are approximately one-half of the
CSA+ternary.

Thread distribution across the system cores plays an impor-
tant role with respect to the performance of the multiplication.
The results shown set the affinity of the OpenMP context to
scatter, meaning that the threads are distributed evenly across
the system.

Sequential timing for the addition as implemented in [13]
but on the AMD architecture, is as following: 0.67s, 1.36s and
2.89s for 8, 16 and 32-bits, respectively.

The many-core CPU results for multiplication are also
compared to the best previous known GPU results as presented
in [13], which are for a non-Karatsuba implementation of
the multiplier. We ported the original GPU code to our more
modern GPU system and compared it to our ”CSA+ternary”
CPU approach. Ours is 3.41 and 2.03 times faster for 16-
bit and 32-bit multiplication, respectively. Of course, our
”CSA+ternary” can also be applied on a GPU to improve
performance. We demonstrate this by modifying the GPU
implementation from [13].

Table II shows the execution times of the ”CSA+ternary”
multiplier on GPU. The GPU system in both cases was
NVIDIA TITAN X (Pascal), with 12GB of memory. The
TFHE library ported on GPU by [20] was used unmodified
for the ”GPU [13]” version. The modified library added
support for ternary gates and the ”CSA+ternary” algorithm
was implemented on top of it. This resulted in a speedup of
2.15, 2.74, and 2.92x for 8-, 16-, and 32-bit multiplication,
respectively. These results are still slower than our CPU results
for 8- and 16-bit multiply, but faster for the 32b multiply by
30%. Several optimizations can still be applied for the GPU,
at the level of TFHE gate implementation, but this is outside
of the scope of the paper.

Furthermore, many important computations which combine
multiplications and a multi-operand sum can benefit from the
carry-save approach. The efficacy of the proposed optimiza-
tions is evaluated next for two algorithms, the dot product and
the Convolutional Neural Network (CNN) inference convolu-
tion kernel.

B. Dot Product

The dot product of two n-element vectors a and b, is defined
as c = c + ai ∗ bi, with i = 0...n − 1, where ai and bi are
B-bit integers representing the i-th element of the vectors.

The sequential time can be estimated as Tseq = n ∗Tmul +
(n − 1) ∗ Tadd, where Tmul and Tadd are the multiplication
and addition times for B-bit integers.

Our approach uses CSA with the ternary gates and consists
of B CSA additions using B threads. In addition to this, the
n− 1 additions within the dot product can now be performed
as CSAs and combined with the multiplication CSAs. Thus,
all the additions required in the dot product are now performed
as CSAs, assuming that only the B-bit result is required.

The dot product performance for 16- and 32-bit operands
and vector sizes of 16, 32 and 64 are shown in Table III.
The sequential times are based on Tmul of the sequential
CSA multiplication time. Because of the naive multiplication
version computing a 2n-bit result, the sequential carry save
version (without ternary gates) is a more fair comparison in
terms of speedups. However, when compared to the naive
version, a ∼70x speedup is obtained for the 16-bit, 32 element
dot product

The CSA’ version performs the addition step together with
the CSA multiplier but uses only one group. The ∥ CSA
version uses 4 thread groups at the outer level, in which each
group uses 16 threads, for a total of 64 threads.



TABLE I
TIMING (SEC) FOR INTEGER MULTIPLICATION ON AMD EPYC, W/O FINAL FA

Threads Seq 2 4 8 16 32 64 Speedup
8 bits

[13] 12.75 7.33 6.70 12.42 - - - 1x
CSA 6.54 2.92 2.11 1.27 1.30 1.28 1.27 5.27x

CSA+ternary 3.45 1.52 1.00 0.63 0.64 0.64 0.63 10.63x
16 bits

[13] 46.99 30.35 20.82 27.94 - - 1x
CSA 27.93 13.6 8.27 4.64 2.70 2.91 2.85 7.71x

CSA+ternary 14.00 7.82 3.97 2.42 1.41 1.45 1.42 14.76x
32 bits

[13] 189.39 121.60 71.21 62.66 192.73 - - 1x
CSA 113.46 60.16 32.03 22.48 22.15 17.73 16.68 3.75x

CSA+ternary 56.95 29.76 16.17 11.86 9.82 8.45 7.14 8.77x

TABLE II
TIMING (SEC) FOR INTEGER MULTIPLICATION ON GPU

Bit length GPU [2] CSA+ternary Speedup
8 bit 1.64 0.76 2.15x
16 bit 4.81 1.75 2.74x
32 bit 14.53 4.97 2.92x

The speedups of the CSA’ and ∥ CSA approaches with
respect to the purely sequential one are presented in Table
IV. The CSA’ version obtains a speedup of ∼17x for the 16-
element dot product, for both 16 and 32-bit operands, and ∼
13x for 64 elements.

Parallelizing the 64-element dot product on top of the CSA’
version obtains a speedup of 3.13x for 16-bit elements, and
one of 3.33x for 32-bit elements. We attribute the difference
to the final sequential add which has to be performed in the
parallel version, as well as to the hardware structure of the
system, which makes the multiplication time slightly higher
than the parallel one. We observe increasing speedups with the
increase in vector length for the ∥ CSA approach compared
to the CSA’ version.

Compared to a purely sequential approach, we obtain a
speedup of 45.36x for 32-element, 16-bit dot product and
48.82x for 16-element, 32-bit dot product.

C. CNN Evaluation

Convolutional neural networks (CNNs) are used in Deep
Learning, especially for image processing. The kernels de-
termine a weighted sum of the input feature values. The
convolution layers consume most of the inference time.

The kernel is used as a sliding window on top of the
actual feature map. For each particular case, the corresponding
elements from the feature map and from the kernel are
multiplied together and summed up to form one output result.
We consider the case where the input has Q feature maps,
and there will be R output feature maps obtained. Each of the
feature maps, and the convolution kernel are two-dimensional
inputs.

A typical convolution code is shown in Algorithm 1. The
first two loops iterate over each input/output feature map. The

Algorithm 1 Convolution - Version 1
Input: X - 3D input, W - convolution kernel
Output: Z- 3D result of the convolution

1: for r = 0 to R {output feature map} do
2: for q = 0 to Q {input feature map} do
3: for m = 0 to M {row in feature map} do
4: for n = 0 to N {col in feature map} do
5: for k = 0 to K{row in conv. kernel} do
6: for l = 0 to L {col in conv. kernel} do
7: Z[r][m][n]+=W[r][q][k][l]*X[q][m+k][n+l]
8: end for
9: end for

10: end for
11: end for
12: end for
13: end for
14: return Z

next two loops iterate over the feature map, while the last two
go over the convolution kernel dimensions.

This implementation is referred to as ”Version 1”. Note
that the actual computation involves a product between kernel
values and feature map values, which are added into the final
result. All the multiplications are accumulated into the same
result, which makes the computation similar to our dot product
approach.

We also propose a different version of the algorithm,
referred to as a ”Version 2”. It is obtained by interchanging
the 2 innermost loops with the 2 middle loops. In this way,
while the correctness is satisfied, we accumulate into different
elements of the output. This implementation greatly increases
the parallelism of the algorithm.

Only the two innermost for loops were timed for each
version because the rest of the computation is sequential and
follows the same memory access and computation pattern.

A sequential version of the two innermost loops executes
in Tseq = M ∗ N ∗ Tmul + M ∗ N ∗ Tadd, where Tmul and
Tadd are the average multiplication and addition times for n-bit
integers, and M and N are the number of rows and columns
in the feature map.



TABLE III
TIMING (SEC) FOR DOT PRODUCT

Vector 16 bit 32 bit
Length Seq CSA’ ∥ CSA Seq CSA’ ∥ CSA

16 467.28 25.36 11.22 1858.71 109.44 38.07
32 935.92 61.16 20.63 3720.31 316.68 103.28
64 1873.20 148.01 47.14 7443.51 570.28 170.99

TABLE IV
SPEEDUP FOR DOT PRODUCT WRT SEQUENTIAL

Vector 16 bit 32 bit
Length CSA’ ∥ CSA CSA’ ∥ CSA

16 18.42x 41.64x 16.97x 48.82x
32 15.30x 45.36x 11.74x 36.02x
64 12.65x 39.73x 13.05x 43.53x

TABLE V
TIMING (SEC) FOR CNN EVALUATION - VERSION 1

Kernel 16 bit
Size Seq CSA ∥ CSA Speedup
5x5 732.25 93.79 24.34 30.08x
7x7 1435.21 198.74 40.61 35.34x

The same approach as the described above for the dot
product is used here. We parallelize the innermost loop,
splitting the computation in line 8 into g groups, each group
computing N/g elements. The accumulation into the result is
in this way fully parallel.

The Version 1 ”∥ CSA” implementation employed g parallel
groups at the outer loop level. The inner for loop is completely
replaced by a CSA accumulation of L elements. As in the case
of the dot product, another sequential addition step over the
partial results is required at the end of the computation.

The Version 2 ”∥ CSA” implementation can be fully par-
allel, where each basic operation is a CSA multiplication and
accumulation of the final result, performed in one go. No other
final adder step is required.

Utilizing t = 16 threads inside the multiply and g = 4
groups at the outer level yields the best results for the
architecture used with 16-bit operands.

The results for the CNN kernel are shown in Table V,
while Table VI presents the Version 2 implementation. The
sequential time was computed in the same way as in the Dot
Product case. The CSA version used CSA multipliers instead
of the regular ones. The ∥ CSA approach is similar to the dot
product one, when using 4 thread groups at the outer level,
and 16 threads for each CSA multiplier.

Version 1 obtains a speedup of 30.08x and 25.34x for 5x5

TABLE VI
TIMING (SEC) FOR CNN EVALUATION - VERSION 2

Filter 16 bit
Size Seq CSA ∥ CSA Speedup

16x16 7498.24 1030.92 211.72 35.41x
32x32 29992.96 4113.68 982.65 30.52x

and 7x7 kernels, respectively. Version 2 obtains a 35.41x and
30.52x speedup for 16x16 and 32x32 filter size, respectively.

We got similar speedups for the two versions. However,
Version 1 operates on kernel sizes, which are typically small,
but in case of Version 2 the parallelism can be explored up to
the size of the input. The goal of this paper was to optimize
single node performance, but the ideas can be extended to
multi-node systems (e.g. using MPI) for further significant
speedup, in particular when utilizing Version 2.

VI. PRIOR WORK

Several approaches to build integer arithmetic on top of the
TFHE scheme have been investigated.

Google Transpiler: The work in [23] describes a transpiler
from high level C++ (integer operations) to C++ code written
with the use of the TFHE library (binary gates). They use
Google’s XLS Boolean Circuit Optimizer to perform opti-
mizations of the circuit before being translated to TFHE
gates. However, this operation does not fully generalize to the
particularities of FHE.

Other external libraries/compilers for optimizing TFHE
boolean circuits: The work in [24], [25] describes a general
optimizer for TFHE code. The input program has to be either
written already with the use of the TFHE library primitives or
by using a different high-level domain specific language.

Parallel CPU or GPU implementations: [13] describes
the use of parallelism on CPU to improve integer addition
and multiplication on top of the TFHE scheme. Out of tried
approaches, the best speedup on CPU was obtained when using
an OpenMP reduction, which uses global shared memory to
store partial results at each multiplication iteration. The CPU-
based multiplication obtains a ∼ 2.5x speedup with respect
to the sequential approach. The paper also describes a GPU
implementation. We also mention a few other GPU imple-
mentations of the TFHE scheme, together with the integer
arithmetic implementation, such as [26] or [27].

Ternary gates: The work in [18], [19] speeds up TFHE
integer arithmetic by introducing ternary or 3-input gates.
The main advantage of this is the reduction in the number
of required bootstrapping operations, which dominate the
evaluation time of a gate. For instance, an XOR of three inputs
normally requires two 2-input (regular) XOR gates, that each
performs a bootstrapping. A 3-input XOR performs a boot-
strapping once. The paper also introduces other optimizations,
but with a focus to plaintext-ciphertext multiplication. Our
work focuses on ciphertext-ciphertext multiplication.
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VII. CONCLUSION

This paper showed how to speedup TFHE gate bootstrap-
ping by utilizing parallelism. It also showed how to signifi-
cantly increase the parallelism in integer multiplication using
the Carry Save Addition. Significant performance improve-
ment on many-core processors was achieved in both cases.
Furthermore, applications with summation operations, such
as dot products and convolutional neural networks, gained
additional performance because summations can also utilize
the Carry Save Addition. The exploitation of parallelism
required significant program analysis, modification, and tuning
to achieve good performance. Careful attention to thread
affinity, nested parallelism, NUMA control (where applicable),
etc was also required. Your mileage will vary depending on
processor and compiler used. Future work will include better
understanding of the nested parallelism issues and achieving
further speedup by utilizing both parallel integer operations
and parallel bootstrapping.
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