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Abstract

This paper presents the first decentralized multi-authority attribute-based inner product functional encryption
(MA-ABIPFE) schemes supporting vectors of a priori unbounded lengths. The notion of AB-IPFE, introduced by Ab-
dalla et al. [ASIACRYPT 2020], combines the access control functionality of attribute-based encryption (ABE) with the
possibility of evaluating linear functions on encrypted data. A decentralized MA-ABIPFE defined by Agrawal et al. [TCC
2021] essentially enhances the ABE component of AB-IPFE to the decentralized multi-authority setting where several au-
thorities can independently issue user keys involving attributes under their control. In MA-ABIPFE for unbounded vectors
(MA-ABUIPFE), encryptors can encrypt vectors of arbitrary length under access policies of their choice whereas authori-
ties can issue secret keys to users involving attributes under their control and vectors of arbitrary lengths. Decryption works
in the same way as for MA-ABIPFE provided the lengths of the vectors within the ciphertext and secret keys match.

We present two MA-ABUIPFE schemes supporting access policies realizable by linear secret sharing schemes (LSSS),
in the significantly faster prime-order bilinear groups under decisional assumptions based on the target groups which are
known to be weaker compared to their counterparts based in the source groups. The proposed schemes demonstrate differ-
ent trade-offs between versatility and underlying assumptions. The first scheme allows each authority to control a bounded
number of attributes and is proven secure under the well-studied decisional bilinear Diffie-Hellman (DBDH) assumption.
On the other hand, the second scheme allows authorities to control exponentially many attributes, that is, supports large
attribute universe, and is proven secure under a non-interactive q-type variant of the DBDH assumption called L-DBDH,
similar to what was used in prior large-universe multi-authority ABE (MA-ABE) construction.

When compared with the only known MA-ABIPFE scheme due to Agrawal et al. [TCC 2021], our schemes offer
significantly higher efficiency while offering greater flexibility and security under weaker assumptions at the same time.
Moreover, unlike Agrawal et al., our schemes can support the appearance of the same attributes within an access policy
arbitrarily many times. Since efficiency and practicality are the prime focus of this work, we prove the security of our
constructions in the random oracle model against static adversaries similar to prior works on MA-ABE with similar moti-
vations and assumptions. On the technical side, we extend the unbounded IPFE techniques of Dufour-Sans and Pointcheval
[ACNS 2019] to the context of MA-ABUIPFE by introducing a novel hash-decomposition technique.

*This is the full version of an extended abstract that appears in the proceedings of PKC 2023.
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1 Introduction
Functional encryption (FE), introduced by Boneh, Sahai and Waters [BSW11] and O’Neill [O’N10]
is an advanced form of public key encryption (PKE) designed for computing on encrypted data
while maintaining its confidentiality beyond the computed results. FE delivers cryptographic so-
lutions to a wide variety of privacy-enhancing technologies from enabling finer access control
to outsourcing computations on sensitive data to the cloud. Starting with the work of Abdalla et
al. [ABCP15], a long sequence of works [ABCP16, ALS16, DDM16, ABKW19, Tom19] studied
FE schemes for the class of linear functions, also known as inner product FE (IPFE). In IPFE, the
ciphertexts and functional secret keys are associated with vectors x and y respectively while a de-
crypter only learns the inner product x ·y and nothing else about x. Although the functionality is
simple, IPFE has found a great amount of applications in both theory, for example, designing more
expressive FE schemes for quadratic [JLS19, Gay20] and general functions [JLMS19, JLS21] and
in practice, for example, performing statistical studies on encrypted data, evaluating polynomials,
computing conjunctions and disjunctions [ABCP15], or calculating hamming weights in biometric
authentications [LKK+18,ZR18], constructing trace and revoke schemes [ABP+17]. However, any
IPFE system suffers from an inherent leakage of data due to it’s linear functionality. In fact, releas-
ing a set of secret keys for vectors forming a basis of the underlying vector space would result in
a complete break of the system since it enables the recovery of the master secret key of the IPFE
system and hence uncover all the encrypted data in the system.

One natural way to control such leakage of data in IPFE is to combine it with attribute-based
encryption (ABE), that is, to additionally associate access policies/attributes within the cipher-
texts/secret keys (or the other way around) in the same spirit as attribute-based encryption (ABE)
such that the eligibility for computing on the encrypted data requires a prior validation of the
attributes by the policy. Such access control mechanism in IPFE was introduced by Abdalla et
al. [ACGU20] where they termed this upgraded notion as attribute-based IPFE (AB-IPFE). The
notion of AB-IPFE [ACGU20, AGT21a, PD21] has been mostly explored in the setting where a
single authority is responsible for managing all the attributes in the system and issuing secret keys
to users. This not only is a limitation from the point of view of trust, but also it is problematic
for practical applications. In fact, in reality, different attributes are governed by different authori-
ties, for example, academic degrees are handled by universities, medical attributes are managed by
hospitals while driving licenses are controlled by transportation or automobile agencies.

Multi Authority AB-IPFE: Inspired by the notion of multi-authority ABE (MA-ABE) [LW11,
RW15, OT20, DKW21a, DKW21b, DKW22, WWW22] which deals with the decentralization of
attribute management in the context of ABE, Agrawal et al. [AGT21b] initiated the study of multi-
authority AB-IPFE (MA-ABIPFE) which enhances the ABE segment of AB-IPFE to the multi-
authority setting. That is, just like MA-ABE, in MA-ABIPFE individual authorities are allowed to
generate their own master key pairs and provide secret keys for attributes only under their control
without interacting with the other authorities. A user learns x ·y by decrypting a ciphertext gen-
erated with respect to a policy P and a vector x using various secret keys associated to a vector
y and the different attributes it possesses that are obtained from the authorities controlling those
attributes. Some potential practical application of MA-ABIPFE could be computing average salary
of employees in an organization possessing a driving license and holding a Ph.D, statistics deter-
mining mental health of students of different departments in a university, etc.

Despite its countless potential applications, so far the only candidate MA-ABIPFE scheme, is
due to Agrawal et al. [AGT21b] which supports access policies realizable by linear secret sharing
schemes (LSSS) and is designed in a composite-order group and the security is based on variants of
the subgroup decision assumptions which are source group assumptions, that is, assumptions made
about the source groups of the underlying bilinear pairing. It is a well-known fact that composite-
order bilinear groups are very expensive both in terms of computation and communication/storage.

3



This is reflected in the MA-ABIPFE of [AGT21b], especially the decryption takes an unacceptable
time of around five days (as shown in Table 1.2) when run using reasonable parameters, which
clearly makes the scheme impractical. In order to address this efficiency bottleneck, a possible way
to avoid this heavy efficiency bottleneck is to look for a construction in the prime-order bilinear
groups which are way better in terms of the above parameters compared to their composite-order
counterparts [Fre10, Lew12, Gui13].

Another significant drawback of the MA-ABIPFE is that the vector lengths are fixed and the
number of authorities or attributes are bounded in the setup. Consequently, the system must provi-
sion for a vector length bound that captures all possible plaintext vectors that would be encrypted
during the lifetime of the system. Further, the size of ciphertexts and the encryption time, however
small the length of the plaintext vector x is, scale with the worst-case vector length bound. Also,
in the [AGT21b] construction, each authority can control at most a bounded number of attributes.
This could be a bottleneck in certain applications, for instance, a university may introduce a new
academic degree program over time which would require its potential to freely expand the attribute
list under its control. Moreover, in the MA-ABIPFE system of [AGT21b], new authorities/attributes
could not join beyond the upper limit set in the setup. This is clearly a disadvantage for several
applications from the point of view of sustainability since it is often impossible to visualize all
possible attributes/authorities that can ever come into existence at the time of setting up the system.
For instance, new universities may be included in the survey of analyzing mental health of their
students, which amplifies the number of authorities/attributes as well as the length of data. Addi-
tionally, the MA-ABIPFE scheme of [AGT21b] suffer from the so-called “one-use” restriction, that
is, an attribute can appear within an access policy at most a bounded number of times, which clearly
limits the class of access policies and negatively impacts efficiency. Lastly, in order to gain confi-
dence in a new cryptographic primitive such as MA-ABIPFE, it is always important to have more
and more candidates for that primitive under qualitatively weaker computational assumptions. We
thus consider the following open problem:
Open Problem: Is it possible to construct efficient MA-ABIPFE schemes for any expressive class
of policies, e.g., LSSS, and avoiding the one-use restriction in prime-order bilinear groups under
any (possibly qualitatively weaker) computational assumption such that an arbitrary number of
authorities (possibly having an unbounded number of attributes under their control) can join at any
point of time and an unbounded length data can be processed?

Our Results

In this paper, we answer the above open problem affirmatively. More precisely, we start by formulat-
ing the notion of (decentralized) multi-authority attribute-based unbounded IPFE (MA-ABUIPFE)
which has all the features discussed above, namely, (a) several independent authorities can control
different attributes in the system, (b) authorities can join the system at any time and there is no up-
per bound on the number of authorities that can ever exist in the system, and (c) unbounded length
message and key vectors can be processed, that is, each authority can generate their public and
master secret keys without fixing the length of vectors that can be processed with their keys. Next,
we construct MA-ABUIPFE supporting LSSS access structures in the significantly faster prime-
order bilinear group setting under computational assumptions based in the target group which are
known to be qualitatively weaker compared to those based in the source group [BSW13,DKW21b].
The efficiency improvements achieved by our scheme as compared to the only known MA-ABIPFE
scheme [AGT21b] is quite significant (see Tables 1.1 and 1.2 for a concrete comparison of the
schemes). On a more positive note, we are able to overcome the “one-use restriction”, that is, sup-
port the appearance of attributes within access policies arbitrarily many times.

We present two MA-ABUIPFE schemes with varying trade-offs between versatility and under-
lying assumptions.
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– Small-Universe MA-ABUIPFE Scheme: We construct an MA-ABUIPFE scheme where an
authority is allowed to control a single (or a bounded number of) attribute(s), but the number
of authorities that could be added to the system is still arbitrary. The construction is proven
secure under the decisional bilinear Diffie-Hellman (DBDH) assumption [BF01, SP19] which
is a very well-studied computational assumption based in the target groups. Note that the DBDH
assumption underlies the security of classical ABE schemes [SW05, GPSW06, Wat11] and has
recently been shown to realize MA-ABE [DKW21b]. Our MA-ABUIPFE scheme demonstrates
that it is possible to base the security of an even richer functionality on DBDH as well.

– Large-Universe MA-ABUIPFE Scheme: We further upgrade our small-universe MA-ABUIPFE
scheme to support large attribute universe, that is, where each authority can control exponen-
tially many attributes. We present the security of this construction under a parameterized version
of the DBDH assumption which we call the L-DBDH assumption. We justify the validity of this
new computational assumption in the generic bilinear group model [Sho97, BBG05] as is done
for nearly if not all bilinear group-based computational assumptions used today. Note that, so
far, there is no known MA-ABE or even ABE schemes supporting large universe in the liter-
ature that is proven secure without parameterized assumption. The efficiency of the proposed
large-universe scheme is well comparable to the small-universe one. Thus, our large-universe
MA-ABUIPFE (LMA-ABUIPFE) scheme addresses several efficiency and practicality issues to-
wards deploying this primitive in practice.

Since our focus on this paper is on efficiency and practicality, we content with proving the se-
curity of our schemes in the static model where the adversary has to declare all its ciphertext, secret
key, and authority corruption queries upfront following prior work on MA-ABE with similar mo-
tivations [RW15]. However, we would like to mention that while we could not prove our schemes
secure against selective adversaries under DBDH or similar target-group-based assumptions, that
is, adversaries who must send the challenge ciphertext and authority corruption queries upfront but
are allowed to make user secret key queries adaptively afterwards, as considered in [AGT21b], we
could not identify any vulnerability in our proposed schemes against such adversaries. Also, just
like prior MA-ABE schemes proven secure under standard computational assumptions, we make
use of the random oracle model3.

In order to design our small-universe MA-ABUIPFE, we build on the techniques used in the
MA-ABE construction from DBDH by [DKW21b] and the unbounded IPFE construction from
DBDH by [SP19]. However, as explained in Section 2 below, a straightforward combination of
those techniques does not work. We devise a novel hash-decomposition technique to decompose
the evaluation of the hash values, used as randomizers for tying together the different secret keys
for the same user, between the encryption and key generation/decryption algorithms and also for
handling satisfying and non-satisfying secret key queries of the adversary during the security proof
differently. (Please see Section 2 for more details on the hash-decomposition technique.)

Along the way to our small universe MA-ABUIPFE scheme, we also present a single authority
ABUIPFE for LSSS access policies in prime-order bilinear groups under the DBDH assumption.
Prior to this work, there was no known AB-IPFE scheme even for bounded length vectors that was
proven secure under a target group assumption. Thus, the proposed ABUIPFE expands the portfolio
of computational assumptions on which this useful primitive can be based on and thereby increasing
the confidence in the existence of this primitive in turn. Further, our construction also demonstrates
that despite of being a more expressive functionality, MA-ABIPFE is still possible under the same
assumption as ABE or MA-ABE. In fact, our AB-IPFE is the first target-group assumption-based
FE scheme that goes beyond the “all-or-nothing” paradigm.

3 Very recently, Waters, Wee, and Wu [WWW22] presented a lattice-based MA-ABE scheme that does not make use of random
oracles. However, the scheme relies on a recently introduced complexity assumption called evasive LWE [Wee22] which is a
strong knowledge type assumption and is not yet cryptanalyzed in detail.
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Table 1.1. Efficiency Comparison of [AGT21b] and Our Scheme with 128-bit Security

Scheme
Group order

length (in bits)

|PKt|/

|PKθ|

|SKGID,t,u|

T(t) = θ
|CT| Encrypt Time Decrypt Time

Agrawal

et al. [AGT21b]
3072 6054n 3072

(n+ `+

2n`)3072

(n+ n`)EN,T+

(`+ n`)EN,S

(`+ 1)PN + (n+ n`2)EN,T

+(`+ n`2)EN,S

MA-ABUIPFE

(Section 5)
128

|PKt| =

128smax

128
[n+ `smax(n

+1)]128

(n+ n`)Eq,T + [`smax(n

+2)− `(n+ 1)]Eq,S

+(2`n(smax − 1))Pq

[`+ n(smax − 1)]

(Pq + Eq,T ) + nEq,S

LMA-ABUIPFE

(Section 6)
128

|PKθ| =

128smax

128(smax + 1)
[n+ `smax(n

+2)]128

(n+ n`)Eq,T + [`smax(n

+3)− `(n+ 1)]Eq,S

+(2`n(smax − 1))Pq

[`+ n(smax − 1)]

(Pq + Eq,T ) + `smaxPq + nEq,S

The notations from Table 1.1 are described below:
– |PKt|/|PKθ|: size of the public key associated to the attribute t or authority θ
– |SKGID,t,u|: size of the secret key associated to the tuple (GID, t,u)
– |CT|: size of the ciphertext
– n: length of vectors; `, smax: number of rows and columns in LSSS matrix respectively
– EN,S ,Eq,S : exponentiation time in composite and prime order source groups respectively
– EN,T ,Eq,T : exponentiation time in composite and prime order target groups respectively
– PN ,Pq: time to compute a pairing in composite and prime order groups respectively

Table 1.2. Concrete Efficiency Comparison for 128-bit Security, n = 200, ` = 50, smax = 30.

Scheme |PKθ| |CT| Encrypt Time Decrypt Time

Agrawal et al. [AGT21b] ≈ 147.8 KB ≈ 7.42 MB ≈ 143.7 mins. ≈ 4.9 days

MA-ABUIPFE (Section 5) ≈ 0.48 KB ≈ 4.83 MB ≈ 86.7 mins. ≈ 11.03 mins.

LMA-ABUIPFE (Section 6) ≈ 0.48 KB ≈ 4.85 MB ≈ 86.8 mins. ≈ 11.15 mins.

Advantages of Our Schemes Over Agrawal et al. [AGT21b] Beyond Unboundedness: Our
MA-ABUIPFE schemes have notable advantages in terms of versatility and performance over the
MA-ABIPFE of [AGT21b], named as AGT-FE hereafter beyond the unboundedness property that
we achieve in this work. Firstly, the composite-order group-based AGT-FE is significantly slower
than our prime-order constructions [Fre10, Gui13] because of the inherent efficiency gains offered
by prime-order bilinear groups. Especially, the size of group elements of a composite-order group
GN is much larger than that of a prime-order group Gq for the same security level: 3072-bit length
of GN compared to 128-bit length of Gq for the 128-bit security level. Moreover, one pairing op-
eration is more than 250 times slower in GN compared to its prime-order counterpart. A concrete
comparison of efficiency is depicted in Tables 1.1 and 1.2. As we can see, at 128-bit security level,
while AGT-FE takes nearly 5 days, our scheme only takes several minutes. We also bring down
the ciphertext size by around 40%. Thus our constructions mark a significant progress towards the
practical deployment of this primitive. Secondly, the security of AGT-FE is based on source-group-
assumptions, precisely, various types of subgroup decision assumptions, which are known to be
qualitatively stronger than the target-group-based assumptions [BSW13] such as the DBDH as-
sumption considered in this work. The existing transformations from composite-order group-based
systems to analogous prime-order group-based systems [Fre10, Lew12, CGKW18] that could be
applied to AGT-FE, technically replaces the subgroup structures by some vector space structures.
Consequently, it incurs additional overheads and potential loss in the efficiency to the resulting
prime-order system. Further, the translated scheme would still depend on source group assump-
tions, e.g. the k-linear or its variants.
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Thus, our MA-ABUIPFE exhibits a substantial boost with respect to the performance and at the
same time it is secure under a weaker assumption. Furthermore, we extend our MA-ABUIPFE to
the large universe setting which has the flexibility to include an unbounded number of attributes
under different authorities to the system at any point of time.

Static Security: Our Motivation: The static security may not be the dream security model for
MA-ABUIPFE. However, in this work, our main motivation is on performance and versatility.
Moreover, as we already mentioned above, we could not find any vulnerability of our schemes
against stronger adversaries, e.g., selective adversaries as considered in [AGT21b], even though we
could not prove it based on the computational assumptions we considered in this paper. Schemes
with greater performance and weaker provable security have often found to suit better in practi-
cal deployments. Further, weaker security notions have often been a major stepping stone to ob-
tain more advanced security, e.g., adaptive security, for the same primitive. Please note that many
primitives like ABE [SW05, GPSW06, Wat11], MA-ABE [RW15, DKW21a, DKW21b, WWW22],
IPFE [ABCP15], and MC-IPFE [CSG+18, ABG19], were first built only with selective/static se-
curity before being upgraded to adaptive security [ALS16, DKW22, NPP22] based on the same
assumptions. Moreover, from a sustainability point of view, it is always important to have a port-
folio of candidates for a primitive under various computational assumptions so that if one of the
assumptions gets broken, candidates under a different assumption can be deployed. Another mo-
tivation for designing a DBDH or related assumption-based scheme is to innovate new techniques
that could possibly be translated to the LWE setting, as has previously been done for other FE
primitives, e.g., [BF01, ABB10, DKW21a, DKW21b].

Paper Organization: The paper is organized as follows. We provide technical overview of our
small and large universe MA-ABUIPFE schemes in Section 2. Important notations, computational
assumptions and definitions are given in Section 3. We formalize the notion of small and large
universe MA-ABUIPFEs for LSSS in Section 4. In Section 5, we present the construction of small
universe MA-ABUIPFE and formally discuss its correctness and security analysis. Next, our LMA-
ABUIPFE scheme is described in Section 6 along with its correctness and the security analysis. The
small universe single authority ABUIPFE scheme along with its correctness and security analysis is
presented in Appendix A. Lastly, we justify the generic security of our newly introduced L-DBDH
assumption in Appendix B.

2 Technical Overview

In this technical overview, we focus on discussing the high level technical details of constructing
small universe MA-ABUIPFE since this is where most of our technical ideas lie. For extending it
to large universe setting, we depend on the technique of Rouselakis and Waters [RW15] which we
discuss later in this section. Since our goal is to construct the schemes under target-group-based
assumptions, we start with the only existing UIPFE scheme of [SP19] whose security relies on the
DBDH assumption. In fact, their UIPFE is designed from the selectively secure (bounded) IPFE of
Abdalla et al. [ABCP15] using a hash and pairing mechanism.

2.1 Constructing the Small Universe MA-ABUIPFE

In this overview, we denote by q a prime number and by [[x]]i an element in a group Gi for i ∈
{1, 2, T}. At a high level, given a public key [[α]]1, the encryption algorithm of [SP19] amplifies
entropy by pairing the public key with the outputs of a hash function applied on the indices of the
message vectors. More precisely, the ciphertext and secret keys in the [SP19] UIPFE (DP-UIPFE)
takes the following forms.
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CTv : C0 = [[r]]1, {Ci = [[vi]]T · e([[α]]1, r[[H(i)]]2)}i∈Iv ; r ← Zq
SKu : −α

∏
j∈Iu H(j)uj

where Iu, Iv ⊂ N are the index sets of u,v respectively, the hash function H maps the indices to
elements in G2 and (q,G1,G2,GT , e) is a prime-order bilinear group. If the index sets are equal,
i.e. Iu = Iv = I then one can use the key vector u to extract [[u ·v]]T from the product

∏
j∈I C

uj
j

and a single pairing e(C0,SKu). As a natural first step, we seek to utilize the DP-UIPFE to upgrade
an existing MA-ABE to a small universe MA-ABUIPFE scheme.

As the aim is to rely on the target-group-based assumption, we consider the DBDH-based
MA-ABE of Datta, Komargodski and Waters (DKW-MA-ABE) [DKW21b] for this upgrade. As
a simpler first step, we investigate the primitive in the bounded and small universe setting, that
is, the number of authorities and vector lengths are bounded and each authority controls a single
attribute.

2.1.1 The First Step: A Bounded MA-ABIPFE Scheme
Let us start by adding the functionality of IPFE on top of DKW-MA-ABE. For each authority
t, the public key and master secret key in the DKW-MA-ABE construction are given by PKt =
([[αt]]T , [[yt,2]]1, . . . , [[yt,smax ]]1) and MSKt = (αt, yt,2, . . . , yt,smax) where smax is a bound on the max-
imum number of columns in the LSSS access structure and αt, yt,2, . . . , yt,smax ← Zq. In order to
construct an MA-ABIPFE scheme from the DKW-MA-ABE, we convert the components of MSKt
from scalars to vectors whose lengths are fixed according to the vector length bound of the system.
All the other components are similarly upgraded to either vectors or matrices of fixed dimensions.
In particular, the resulting MA-ABIPFE derived from DKW-MA-ABE can be described in the fol-
lowing way where P = (M = (Mi,j)`×smax , ρ : [`] → AU) is the LSSS access policy associated
with the ciphertexts, AU is the set of all authorities, andMi denotes the i-th row of M.

PKt : ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax ]]1)

MSKt : (αt,yt,2, . . . ,yt,smax)

CTv,P :
C0 = [[v + z]]T , C1,i = [[MiB + riαρ(i)]]T ,
C2,i = [[ri]]1, C3,i,j = [[Mi,jxj + riyρ(i),j]]1 ∀i ∈ [`], j ∈ [2, smax]

SKGID,t,u : [[αt ·u]]2 ·
smax∏
j=2

H(GID ‖ u ‖ j)yt,j ·u

where z ← Znq , ri ← Zq and n represents the length of u,v. Further, B ∈ Zsmax×n
q and {xj ←

Znq }j∈[2,smax] are the secret shares of z and 0 respectively. Recall that the decryption algorithm of
MA-ABIPFE requires a set of secret keys {SKGID,t,u}t∈S for the same user identifier GID and an
authorized subset S of attributes featuring in the LSSS access policy associated with the ciphertext
in order to decrypt it. Given such a collection of keys , the decryption algorithm gets rid of the
masking term from C0 · u by computing

[[u · z]]T =
∏
i∈I

[
C1,i ·u ·∏smax

j=2 e (H(GID ‖ u ‖ j), C3,i,j ·u)

e
(
SKGID,ρ(i),u, C2,i

) ]wi
(2.1)

where I represents the rows of M associated to S. Note that the Equation (2.1) holds as the
decryption algorithm can efficiently find a coefficients {wi ∈ Zq}i∈I satisfying (1, 0, . . . , 0) =∑

i∈I wiMi whenever the attributes linked to the rows in I satisfies the policy (M, ρ).
The role of the public hash function H is to tie together a set of independently generated secret

keys under the same user identifier GID while decrypting. In the security proof, H is treated as
a random oracle to ensure that a fresh randomness is produced for each user identity GID that
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links together the different secret keys generated for it and it is infeasible for an adversary to mix
and match secret keys generated with respect to different global identifiers even if the attributes
associated with those secret keys satisfy the access policy associated with the ciphertext.

In fact, the above bounded MA-ABIPFE scheme can be proven secure in the static model under
the DBDH assumption. Let us now proceed to transform the bounded scheme into an unbounded
one using the idea of DP-UIPFE sketched above. Unfortunately, a straightforward approach does
not work. In particular, we face a few difficulties while incorporating the hash and pairing mecha-
nism of [SP19] with the DKW-MA-ABE as we describe below.

2.1.2 Challenges in Expanding Authority Keys on the Fly and Our Approach
The foremost problem arises in vectorizing the components of the authority master secret keys
MSKt. This is because there being no upper bound on the length of vectors, we cannot simply use
random vectors of predetermined sizes in the vectorization process. Rather, we must provision for
generating the components of the vectors on the fly as needed during encryption/key generation.
Similar to the idea of [SP19], we use hash functions modeled as random oracles in order to resolve
this issue. More precisely,we proceed as follows: An authority t generates the public/master secret
keys as (PKt = ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax ]]1),MSKt = (αt, yt,2, . . . , yt,smax)) without knowing the
vector lengths where α, yt,2, . . . , yt,smx are still scalars. To maintain the simplicity of this overview,
we assume that the vectors u = (uk)k∈Iu and v = (vk)k∈Iv are both associated with the index set
Iu = Iv = I = [n] which is unknown to the authority setup. Then the scalar αt could be vectorized
using a hash function H1 as follows.

during encryption : C1,i = [[MiB + ϑi]]T

where [[ϑi,k]]T = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ k ‖ I))

during key generation : αt ·u =
n∏
k=1

H1(t ‖ k ‖ I)αt·uk

The next step is to vectorize the authority master secret key components yt,j according to the
vector lengths. One may hope to apply [SP19] idea to extend yt,j to the same length of the vectors
on the fly in a similar way. To see whether it works, let us assume that the hash function H used
in the key generation in the above bounded MA-ABIPFE additionally takes an index position and
an index set as inputs. That is, let us do the following modification for the key generation of the
bounded MA-ABIPFE scheme

H(GID ‖ u ‖ j)yt,j ·u −→
n∏
k=1

H(GID ‖ u ‖ j ‖ k ‖ I)yt,j ·uk

Thus, using this idea, it is possible to expand yt,j to a vector yt,j of the same length as the key
vector u and eventually enabling an authority to compute the term H(GID ‖ u ‖ j ‖ k ‖ I)yt,j ·u
while generating keys for an unbounded length vector. Note that, the hash value H(GID ‖u ‖ j ‖ k ‖ I)
has GID and u as inputs. Therefore, this would call for the following modification in the ciphertext
computation.

C3,i,j = [[Mi,jxj + ςi,j]]T

where [[ςi,j,k]]T = e(ri[[yρ(i),j]]1,H( GID ‖ u ‖ j ‖ k ‖ I))

However, such a vector [[yt,j]]1 is not known or rather the k-th element e([[yt,j]]1,
H(GID ‖ u ‖ j ‖ k ‖ I)) can not be computed during encryption. The main reason is that the
global identity GID and the vector u are available when an authority generates a secret key, but the
encryption algorithm is oblivious of which GID or u will be used to decrypt the ciphertext. In fact,
it is natural that the same ciphertext would be decrypted by several users with different GID and
u vectors. Hence, a simple hash and pairing technique similar to DP-UIPFE is not sufficient for a
data owner to encrypt unbounded length vectors.
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At this point, we devise a correlated “hash-decomposition” mechanism which enables us to
compute the value of a hash function by combining the outputs of several hash functions applied on
different segments of the input to the original hash function. More precisely, our idea is to define
the hash value H(GID ‖ u ‖ j ‖ k ‖ I) by grouping two independently generated hash values as

H(GID ‖ u ‖ j ‖ k ‖ I) = H2(j ‖ k ‖ I) · H3(GID ‖ u ‖ j ‖ k) (2.2)

where H2 and H3 are two new public hash functions generated during global setup. Now, we observe
that the first hash value H2(j ‖ k ‖ I) in the product can be computed without knowing GID,
which in turn enable the encryptor to expand an authority public key component [[yt,j]]1 into a
vector [[y

(2)
t,j ]]T as [[y

(2)
t,j,k]]T = e([[yt,j]]1,H2(j ‖ k ‖ I)). Similarly, an authority expands the master

secret key component yt,j into vectors [[y
(2)
t,j ]]2 and [[y

(3)
t,j ]]2 as [[y

(2)
t,j,k]]2 = H2(j ‖ k ‖ I))yt,j and

[[y
(3)
t,j,k]]2 = H3(GID ‖ u ‖ j ‖ k)yt,j respectively while generating a secret key for a vector u.

However, at this point, it is not immediate how would the vector [[y
(2)
t,j ]]T be useful for the encryption

algorithm.
Next, we carefully look into the decryption equation of the bounded MA-ABIPFE scheme de-

scribed above (Equation (2.1)) and try to adapt it for the MA-ABUIPFE setting with the modifica-
tions we did so far. We note that the pairing operation in the numerator can be rearranged with the
hash function H replaced by H2 as

e (H2(j ‖ k ‖ I), C3,i,j ·u) = e(H2(j ‖ k ‖ I), (Mi,jxj + riyρ(i),j) · u)

= e(H2(j ‖ k ‖ I),Mi,jxj · u) · [[riy(2)
ρ(i),j · u]]T

Since u is not available during encryption, we only compute the above term without multiplying
by u and represent it as a single element

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy(2)ρ(i),j,k]]T .

Therefore, the hash-decomposition mechanism allows the encryptor to simulate the first part of the
hash value H(GID ‖ u ‖ j ‖ k ‖ I) from Equation (2.2) using the hash function H2. The second part
of the hash value still remains to be handled. For this, we generate an additional layer of secret share
of zero by sampling f2, . . . , fsmax ∈ Zq and introduce the encodings C4,i,j = [[Mi,jfj + riyρ(i),j]]1
for all i ∈ [`], j ∈ [2, smax] within the ciphertext. At the time of decryption, C4,i,j will be paired
with the term H3(GID ‖ u ‖ j ‖ k)uk . Thus, combining C3,i,j,k and C4,i,j via the hash-decomposition
mechanism we are able to distribute the execution of the pairing operation from (Equation (2.1))
among the encryption and decryption algorithms as follows:

e (H(GID ‖ u ‖ j), C3,i,j ·u)
as in MA-ABIPFE

decryption (ref: Equation (2.1))

−→
n∏
k=1

C3,i,j,k · uk · e(C4,i,j,H3(GID ‖ u ‖ j ‖ k)uk)
new decryption

strategy for MA-ABUIPFE

= C
(3,4)
i,j (u) (say)

Equipped with these concepts, we state our final MA-ABUIPFE scheme below by assuming Iu =
Iv = I = [n].
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PKt : ([[αt]]T , [[yt,2]]1, . . . , [[yt,smax ]]1)

MSKt : (αt, yt,2, . . . , yt,smax)

CTv,P :

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy(2)ρ(i),j,k]]T ,

C4,i,j = [[Mi,jfj + riyρ(i),j]]1, ∀i ∈ [`], j ∈ [2, smax], k ∈ [n]

SKGID,t,u :
n∏
k=1

H1(t ‖ k ‖ I)αt·uk ·
smax∏
j=2

n∏
k=1

([[y
(2)
t,j,k]]2 · [[y

(3)
t,j,k]]2)

uk

The componentsϑi, y
(2)
t,j,k, y

(3)
t,j,k are defined as above. The decryption follows by canceling the mask-

ing term from C0 · u using a similar computation like in Equation (2.1) executed as

[[u · z]]T =
∏
i∈I

[
C1,i ·u ·∏smax

j=2 C
(3,4)
i,j (u)

e
(
SKGID,ρ(i),u, C2,i

) ]wi
(2.3)

We next look into the security of the proposed construction. Here again, we face several challenges
while adapting the security proof of [SP19, DKW21b] into our setting.

2.1.3 Challenges in the Security Analysis and Our Approach

The main difference between the MA-ABE and MA-ABUIPFE security model is in the secret key
queries made by the adversary. This is because MA-ABUIPFE is more like an FE scheme and
the adversary is entitled to ask for secret keys that would decrypt the challenge ciphertext which
is in contrast to any MA-ABE scheme where only non-authorized keys are released. On the other
hand, proving security of MA-ABUIPFE is more technically challenging compared to the (bounded)
MA-ABIPFE (like AGT-FE [AGT21b]) as an authorized key which always leads to a successful de-
cryption in case of MA-ABIPFE, may not be eligible for decrypting a ciphertext of MA-ABUIPFE.
The index set associated with the authorized key must match to the index set of the encrypted vector
for successful decryption in MA-ABUIPFE. In other words, the adversary should be restricted to
infer any information about the encrypted message vector from the authorized keys whose index
sets are not equal to the index set of the message vector. Moreover, AGT-FE is proven secure under
subgroup decision assumptions which are source group assumptions while our target is to prove
security under DBDH which is a target group assumption, thus the dual system encryption tech-
nique [Wat09] used for the security proof of AGT-FE does not work in our case. Hence, we design
a different proof strategy that works coherently with the hash-decomposition mechanism and for
target group assumptions in the prime-order bilinear group.

We prove the security of our MA-ABUIPFE in the static model similar to the DKW-MA-ABE.
The adversary is asked to submit all it’s queries including the challenge message vectors v0,v1
with a common index set I∗ and an associated challenge access structure (M, ρ). Recall that the
adversary can also corrupt or even maliciously generate some of the authorities indicated by a set C
of corrupted authorities or attributes. Let us consider a DBDH instance ([[a]]1, [[b]]2, [[c]]1, [[τ ]]T ) where
τ is either abc or random. In the first step, we use the information-theoretic partitioning lemma, the
so-called “zero-out” lemma [RW15, Lemma 1], to isolate and ignore the set of rows of M that
correspond to the corrupted authorities throughout the analysis. In particular, the lemma allows us
to replace the LSSS matrix M with an updated simpler matrix M′ such that a subset of columns,
say CM′ , of M′ can be set to zero that are related to the corrupted authorities. Next, we follow
the proof techniques of [ABCP15, SP19] and sample a basis S̃ = {(v0 − v1), b2, . . . , bn} of Znq
where n denotes the size of I∗ to represent key vectors u whose lengths are equal to n. However,
answering the hash and secret key queries require a careful treatment while embedding the DBDH
challenge instance. The role of the hash function of DKW-MA-ABE was limited to simulating the
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non-authorized keys of a fixed length. However, in our case, we need to deal with both authorized
and unauthorized keys and here again, our hash-decomposition mechanism plays a crucial role.
Moreover, a key can be non-authorized with respect to the index set or the associated policy, or
both.

Let S be the set of attributes queried under a user identifier GID as a part of secret key queries
such that S contains at least an attribute involved in the challenge policy. The main idea of simu-
lating secret keys of DKW-MA-ABE was to sample a special vector d ∈ Zsmax

q such that the inner
product of d withM ′

i is zero for all i ∈ ρ−1(S ∪ C) and to set the hash values as

H(GID ‖ j) = (gb2)
dj · ghj2 , ∀j ∈ CM′ , and uniform otherwise. (2.4)

This, in fact, enables in simulating the secret keys using the properties of d and by embedding
the matrix M′ into the public keys of authorities linked to the challenge policy. Unfortunately, we
observe that such encoding of hash values is not compatible with our hash-decomposition mech-
anism. Firstly, the hash function H2 does not take a GID as input and hence it is not possible to
encode the hash values depending on a vector like d which is sampled according to an unautho-
rized set of attributes (S ∪ C) under a given global identity. In our case, H2 should generate a good
amount of entropy for indices of key vectors irrespective of any global identity. This would restrict
an adversary to gain any illegitimate information about the encrypted message from any secret key
where the associated index set does not match with I∗ even though the attributes associated to the
key satisfy the challenge policy. Secondly, H3 takes a GID as it’s input along with a key vector, a
column number and an index set. The role of H3 is to make a secret key generated under a given GID
useless to the adversary whenever the associated attributes does not satisfy the challenge policy.

In the static security model the simulator knows all the secret key queries in advance. We ex-
ploit this fact to prepare encodings for the hash values keeping in mind their roles in the security
experiment. Our idea is to sample all possible {dφ}φ vectors corresponding to the sets {Sφ ∪ C}φ
such that Sφ ∪ C constitutes an unauthorized subset of row of M and use the information of {dφ}φ
in the encodings of the hash functions. More precisely, we use an add and subtract technique to set
the hash values as follows

H2(j ‖ k ‖ I∗) = (gb2)
∑
φ dφ,j · gh2,j2 , ∀j ∈ CM′ , and uniform otherwise.

H3(GID ‖ uφ′ ‖ j ‖ k) = (gb2)
∑
φ 6=φ′ −dφ,j · gh3,j2 , ∀j ∈ CM′ , and uniform otherwise.

Now, we multiply the above hash encodings while simulating non-authorized secret key queries
and obtain a hash encoding similar to Equation (2.4).

H2(j ‖ k ‖ I∗) · H3(GID ‖ uφ′ ‖ j ‖ k) = (gb2)
dφ′,j · gh2,j+h3,j2 ∀j ∈ CM′ .

For simplicity of this section, we have ignored a few additional elements in the above encodings
that connect the hash values with the H1 encodings which actually facilitates in using the fact that
dφ ·M ′

i = 0 for all i ∈ ρ−1(Sφ ∪ C) for non-authorized keys such that Iuφ = I∗. Lastly, when
simulating authorized secret keys we use the basis S̃ to obtain a vector η satisfying η ·uφ = 0
with the help of the admissibility condition uφ · (v0 − v1) = 0 for all keys leading to a successful
decryption of the challenge ciphertext. The full security analysis can be found in Section 5.3.

2.2 Constructing the Large Universe MA-ABUIPFE

We recall that in the large universe setting each authority is allowed to control exponentially many
attributes. We upgrade our small universe scheme to a large universe MA-ABUIPFE (LMA-ABUIPFE)
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by extending the techniques presented in [RW15] from encrypting a fixed length message to en-
crypting an unbounded length vector in the context of MA-ABUIPFE. To support exponentially
many attributes, we use an additional hash function R which maps arbitrary attributes to elements
of G2. We replace the map ρ of the LSSS access structure (M, ρ) by decomposition of two map-
pings T and δ, that is ρ(i) = T(δ(i)) = θ where δ labels row numbers i of the LSSS access matrix
to some attributes δ(i) and T assigns the attributes δ(i) to its respective authorities denoted by θ.
Our LMA-ABUIPFE is described as follows.

PKθ : ([[αθ]]T , [[yθ,2]]1, . . . , [[yθ,smax ]]1)

MSKθ : (αθ, yθ,2, . . . , yθ,smax)

CTv,P :

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]],

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ k ‖ I)) · [[riy(2)ρ(i),j,k]]T ,

C4,i,j = [[Mi,jfj + riyρ(i),j]]1, C5,i,j = R(δ(i) ‖ j ‖ I)
∀i ∈ [`], j ∈ [2, smax], k ∈ [n]

SKGID,t,u :

n∏
k=1

H1(t ‖ k ‖ I)αθ·uk ·
smax∏
j=2

n∏
k=1

([[y
(2)
θ,j,k]]2 · [[y

(3)
θ,j,k]]2)

uk ·
smax∏
j=1

R(t ‖ j ‖ I)τj ,

Zt,j = [[τj]]1, ∀j ∈ [smax]

The components ϑi,y
(2)
θ,j ,y

(3)
θ,j are defined similarly as in our MA-ABUIPFE scheme.

[[ϑi,k]]T = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ k ‖ Iv)),
[[y

(2)
θ,j,k]]T = e([[yθ,j]]1,H2(j ‖ k ‖ I)), [[y

(2)
θ,j,k]]2 = H2(j ‖ k ‖ I)yθ,j ,

[[y
(3)
θ,j,k]]2 = H3(GID ‖ u ‖ j ‖ k)yθ,j , ∀k ∈ [n].

The decryption procedure is similar to our MA-ABUIPFE scheme. We consider static security of
LMA-ABUIPFE and model the hash functions as random oracles. However, it may not be possible
to base security on the plain DBDH assumption. Following the same notations that we used to
sketch the proof technique of our MA-ABUIPFE, we discuss the main reason which prevent using
the DBDH assumption as before. The R-values related to the authorities in the challenge policy in
our proposed LMA-ABUIPFE scheme described above are roughly set as R(t ‖ j ‖ I∗) = g

ζt,j
2 g

aM ′i,j
2 ,

where ζt,j is a random Zq-element and M ′
i,j is the (i, j)-th entry of the updated LSSS matrix M′ in

the challenge policy. On the other hand, the randomness ri used in the encryption4 are set as ri = c.
Hence, the reduction requires the group element gac2 in order to simulate the components C5,i,j of
the challenge ciphertext. However, the DBDH assumption does not make it possible to make gac

available to an adversary.
Thus, for basing the security, we look into the parameterized versions of the DBDH assump-

tions. Unlike [RW15] where they consider a much more complex parameterized assumption, a
primary motivation of our security reduction is to depend on a simpler parameterized assumption
that is as close as possible to the plain DBDH assumption. More specifically, [RW15] consider an
exponent type assumption where each instance consists of at least O(L3

max) group elements and
Lmax ≥ max{`, smax}, where `, smax is the number of rows and columns of the challenge LSSS
access matrix respectively. Consequently, the reduction becomes more involved and complex. In
contrast, we prove the security of LMA-ABUIPFE based on the newly introduced L-DBDH as-
sumption where each instance has O(L2) group elements with L ≥ `. We show that the L-DBDH
assumption is generically secure using the techniques of [BBG05, RW15]. Although incomparable
with the assumption used in [RW15], it seems that our L-DBDH assumption is weaker as it contains

4 The ciphertext is re-randomized to ensure the distribution of its components is unharmed.
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fewer elements. Therefore, our LMA-ABUIPFE improves upon the previous results of [RW15] even
without considering the enhanced functionality of UIPFE.

There are some other technical hurdles in the security reduction that does not directly allow us-
ing the program and cancel technique similar to [RW15] while simulating secret key queries. This
is due to the fact that we are handling unbounded length messages and using a hash-decomposition
mechanism on top of large universe paradigm. In contrast to the small universe scheme, an author-
ity in a queried secret key of LMA-ABUIPFE may be present in the challenge policy but none of
their attributes are linked to it. We use our add and subtract technique which enables the reduction
to combine the decomposed hash values into a single hash value that eventually produces an ade-
quate amount of randomness preventing the leakage of unwanted information about the underlying
message vector from such secret keys.

On the other hand, if the authorities as well as some of their controlled attributes are present in
the challenge policy but the associated secret key is unauthorized then we observe that the program
and cancel technique of [RW15] is not sufficient to handle an adversary of LMA-ABUIPFE given
the fact that it can query for secret keys corresponding to vectors of arbitrary lengths. In order to
make these secret keys useless for an adversary irrespective of the associated lengths of vectors, we
delicately program the hash queries that enables the reduction to procreate additional entropy via
an interplay between the program and cancel technique of [RW15] and add and subtract mecha-
nism of ours at the time of simulating such unauthorized secret keys. Although the high-level proof
technique is inspired from [RW15], the technical obstacles mentioned above prevent applying their
approach straightforwardly into our setting. As a whole, we carefully embed the L-DBDH instance
into the adversary’s queries by extending the [RW15] technique in the context of amplifying en-
tropy for supporting computation over unbounded length vectors and at the same time making it
compatible for hash-decomposition mechanism used in our scheme. We present a detailed security
analysis in Section 6.3.

3 Preliminaries

In this section, we present the notations used in this paper and the new L-DBDH assumption we
introduce.

3.1 Notations

We will denote the underlying security parameter by λ throughout the paper. A function negl : N→
R is said to be a negligible function of λ, if for every c ∈ N, there exists a λc ∈ N such that ∀λ > λc,
negl(λ) < λ−c. We denote the set of positive integers {1, . . . , n} as [n]. We denote ∅ as the empty
set. We use the abbreviation PPT for probabilistic polynomial-time. For a set X , we write x← X
to denote that x is sampled according to the uniform distribution over the elements of X . Also for
any set X , we denote by |X| and 2X the cardinality and the power set of the set X respectively. We
use bold lower case letters, such as v, to denote vectors and upper-case, such as M, for matrices.
We assume all vectors, by default, are row vectors. The ith row of a matrix is denoted by Mi and
analogously for a set of row indices I , we denote MI for the sub-matrix of M that consists of the
rows Mi,∀i ∈ I . By rowspan(M), we denote the linear span of the rows of a matrix M.

For an integer q ≥ 2, we let Zq denote the ring of integers modulo q. We represent Zq as integers
in the range (−q/2, q/2]. The set of matrices of size m × n with elements in Zq is denoted by
Zm×nq . The operation (·)> denotes the transpose of vectors/matrices. Let u = (ui)i∈Iu ∈ Z|Iu|q ,v =

(vi)i∈Iv ∈ Z|Iv |q where Iu and Iv are the associated index sets, then the inner product between the
vectors is denoted as v ·u = u>v =

∑
i∈I uivi ∈ Zq whenever Iu = Iv = I.
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3.2 Bilinear Groups and Complexity Assumptions

Assume a bilinear group generator algorithm G that takes as input 1λ and outputs a tuple G =
(q,G1,G2,GT , g, e), where G1,G2 are the source groups and GT is the target group of the same
prime order q = q(λ) with generators g1, g2 and gT respectively. The map e : G1 × G2 → GT

satisfies the following properties:

– Bilinearity: ∀a, b ∈ Zq, e(ga1 , gb2) = e(g1, g2)
ab.

– Non-degeneracy: e(g1, g2) = gT generates GT .

For any a ∈ Zq, we define [[a]]i := gai ∈ Gi where i ∈ {1, 2, T}. The notation is analogously
extended for vectors a = (a1, . . . , an) ∈ Znq as [[a]]i ∈ Gn

i or matrices A ∈ Zn×mq as [[A]]i ∈ Gn×m
i

by entry wise exponentiation. For [[a]]i ∈ Gn
i and b ∈ Znq , we denote b · [[a]]i by the group element

[[a · b]]i ∈ Gi which is efficiently computable given the vectors [[a]]i and b.
We formally define the DBDH assumption and a parameterized version of it, we call L-DBDH

which would underlie of security of our small and large universe MA-ABUIPFE schemes respec-
tively.

Assumption 3.1 (Decisional Bilinear Diffie-Hellman (DBDH) [BLS01, SP19]) For a security pa-
rameter λ ∈ N, let G = (q,G1,G2,GT , g, e) ← G(1λ) be a bilinear group and let a, b, c ← Zq.
The DBDH assumption states that for any PPT adversaryA, there exists a negligible function negl
such that for any security parameter λ ∈ N, given the distribution (G, [[a]]1, [[c]]1, [[a]]2, [[b]]2, [[τ ]]T ),
A has advantage

AdvDBDH
A (λ) =

∣∣Pr
[
1← A

(
1λ,D, [[abc]]T

)]
− Pr

[
1← A

(
1λ,D, [[τ ]]T

)]∣∣ ≤ negl(λ),

Assumption 3.2 (L-Decisional Bilinear Diffie-Hellman (L-DBDH)) Let G = (q,G1,G2,GT , g,
e) ← G(1λ) be a bilinear group and let a, b, c, µ1, . . . , µL ← Zq. The L-DBDH assumption states
that for any PPT adversary A, there exists a negligible function negl such that for any security
parameter λ ∈ N, given the distributionG,

(
[[b]]1, [[c]]1,
[[a]]2, [[b]]2

)
,

{
[[aµi]]1, [[c/µi]]1,

[[aµi]]2

}
i∈[L]

,

{
[[cµι/µi]]1, [[acµι/µi]]1,

[[acµι/µi]]2

}
i,ι∈[L],
i 6=ι

, [[τ ]]T


A has advantage

AdvL-DBDH
A (λ) =

∣∣Pr
[
1← A

(
1λ,D, [[abc]]T

)]
− Pr

[
1← A

(
1λ,D, [[τ ]]T

)]∣∣ ≤ negl(λ).

We establish the generic security of L-DBDH in generic bilinear pairing group model in Ap-
pendix B.

3.3 Access Structures and Linear Secret Sharing Schemes

In this subsection, we present the formal definitions of access structures and linear secret-sharing
schemes. This subsection is taken verbatim from [DKW21a, Subsection 3.2].

Definition 3.1 (Access Structures) Let AU be the attribute universe. An access structure on AU
is a collection A ⊆ 2AU \ ∅ of non-empty sets of attributes. The sets in A are called the authorized
sets and the sets not in A are called the unauthorized sets. An access structure is called monotone
if ∀B,C ∈ 2AU if B ∈ A and B ⊆ C, then C ∈ A.
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Definition 3.2 (Linear Secret Sharing Schemes (LSSS)) Let q = q(λ) be a prime and AU the
attribute universe. A secret sharing scheme Π with domain of secrets Zq for a monotone access
structure A over AU , a.k.a. a monotone secret sharing scheme, is a randomized algorithm that
on input a secret z ∈ Zq outputs |AU| shares sh1, . . . , sh|AU| such that for any set S ∈ A the
shares {shi}i∈S determine z and other sets of shares are independent of z (as random variables). A
secret-sharing scheme Π realizing monotone access structures on AU is linear over Zq if

1. The shares of a secret z ∈ Zq for each attribute in AU form a vector over Zq.
2. For each monotone access structure A onAU , there exists a matrix M ∈ Z`×sq , called the share-

generating matrix, and a function ρ : [`]→ AU , that labels the rows of M with attributes from
AU which satisfy the following: During the generation of the shares, we consider the vector
v = (z, r2, ..., rs), where r2, . . . , rs ← Zq. Then the vector of ` shares of the secret z according
to Π is given by µ = Mv> ∈ Z`×1q , where for all j ∈ [`] the share µj “belongs” to the attribute
ρ(j). We will be referring to the pair (M, ρ) as the LSSS policy of the access structure A.

The correctness and security of a monotone LSSS are formalized in the following: Let S (resp.
S ′) denote an authorized (resp. unauthorized) set of attributes according to some monotone access
structure A and let I (resp. I ′) be the set of rows of the share generating matrix M of the LSSS
policy pair (M, ρ) associated with A whose labels are in S (resp. S ′). For correctness, there exist
constants {wi}i∈I in Zq such that for any valid shares {µi = (Mv>)i}i∈I of a secret z ∈ Zq

according to Π , it is true that
∑

i∈I wiµi = z (equivalently,
∑

i∈I wiMi = (1,

s−1︷ ︸︸ ︷
0, . . . , 0), where Mi

is the ith row of M). For soundness, there are no such wi’s, as above. Additionally, we have that
∃d ∈ Z1×s

q , such that its first component d1 = 1 and Mi · d = 0,∀i ∈ I ′.

Remark 3.1 (NC1 and Monotone LSSS) Consider an access structure A described by an NC1

circuit. There is a folklore transformation that can convert this circuit by a Boolean formula of
logarithmic depth that consists of (fan-in 2) AND, OR, and (fan-in 1) NOT gates. We can further
push the NOT gates to the leaves using De Morgan laws, and assume that internal nodes only
constitute of OR and AND gates and leaves are labeled either by attributes or their negations. In
other words, we can represent any NC1 policy over a set of attributes into one described by a mono-
tone Boolean formula of logarithmic depth over the same attributes and their negations. Lewko and
Waters [LW11] presented a monotone LSSS for access structures described by monotone Boolean
formulas. This implies that any NC1 access policy can be captured by a monotone LSSS. Therefore,
in this paper, we will only focus on designing an MA-ABIPFE schemes for monotone LSSS similar
to the MA-ABE scheme of Datta et al. [DKW21b].

We will use the following information theoretic property of LSSS access policies in the secu-
rity proof of our MA-ABUIPFE or LMA-ABUIPFE scheme. This lemma first appeared in [RW15,
Lemma 1]. Recently, Datta, Komargodski, and Waters [DKW21a] observed a gap in the proof
of [RW15] and presented a corrected proof; for details see [DKW21a, Section 4.3]. The security re-
duction of the MA-ABE scheme of Datta, Komargodski, and Waters [DKW21a] crucially utilize this
lemma to isolate an unauthorized set of rows of the challenge LSSS matrix submitted by the adver-
sary and essentially ignore it throughout the security reduction. Like [RW15,DKW21a,DKW21b],
in our case as well, the rows of the challenge LSSS matrix corresponding to the corrupt authorities
will constitute the unauthorized set in the application of the lemma.

Lemma 3.1 Let (M, ρ) be an LSSS access policy, where M ∈ Z`×sq . Let C ⊂ [`] be a non-
authorized subset of row indices of M. Let c ∈ N be the dimension of the subspace spanned by
the rows of M corresponding to indices in C. Then, there exists an access policy (M′, ρ) such that
the following holds:
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– The matrix M′ = (M ′
i,j)`×s ∈ Z`×sq satisfies M ′

i,j = 0 for all (i, j) ∈ C × [s− c].
– For any subset S ⊂ [`], if the rows of M having indices in S are linearly independent, then so

are the rows of M′ with indices in S.
– The distribution of shares {µx}x∈[`] sharing a secret z ∈ Zq generated with the matrix M is the

same as the distribution of the shares {µ′x}x∈[`] sharing the same secret z generated with the
matrix M′.

4 Definition of Decentralized (Large Universe) MA-ABUIPFE for LSSS

A large universe decentralized multi-authority attribute-based inner-product functional encryption
(LMA-ABUIPFE) scheme LMA-ABUIPFE = (GlobalSetup, LocalSetup,KeyGen,Encrypt,Decrypt)
for access structures captured by linear secret sharing schemes (LSSS) over some finite field Zq with
q = q(λ) and inner product value space U consists of five algorithms with the following syntax. We
denote byAU the authority universe and by GID the universe of users’ global identifiers in the sys-
tem. The attribute universe is denoted as Uatt which may be arbitrary. Further, an authority θ ∈ AU
may have any arbitrary number of attributes from Uatt under its control. Following [RW15], we as-
sume a publicly computable function T : Uatt → AU that maps each attribute t ∈ Uatt to a unique
authority θ = T (t). The algorithms proceed as follows:

GlobalSetup(1λ, smax): It is the global setup algorithm which on input the security parameter λ
and a maximum width smax of the LSSS matrix, and outputs the global public parameters GP. We
assume that GP includes the descriptions of AU and GID.

LocalSetup(GP, θ): The authority θ ∈ AU runs the local setup algorithm during its initialization
with the global parameters GP and generates its public parameters and a master secret key pair
(PKθ,MSKθ).

KeyGen(GP,GID,MSKθ, t, u,Iu): The key generation algorithm takes input the global param-
eter GP, a user’s global identifier GID ∈ GID, a master secret key MSKθ for authority θ controlling
an attribute t ∈ Uatt, and a vector u ∈ Z|Iu|q with an associated index set Iu. It outputs a secret key
SKGID,t,u which contains (u, Iu).

Encrypt(GP, (M, δ), {PKθ}θ, v,Iv): The encryption algorithm takes input the global param-
eter GP, an LSSS access structure (M, δ) where M is a matrix over Zq and δ is a row-labeling
function that assigns to each row of M an attribute in Uatt. We define the function ρ : [`]→ AU as
ρ(·) := T(δ(·)) which maps row indices of M to authorities θ ∈ AU . Accordingly, the encryption
algorithm further takes a set {PKθ}θ of public keys for all the authorities in the range of ρ, and a
message vector v ∈ Z|Iv |q with an associated index set Iv. It outputs a ciphertext CT. We assume
that CT implicitly contains the description of (M, δ) and Iv.

Decrypt(GP,GID,CT, {SKGID,t,u}t): The decryption algorithm takes in the global parameters
GP, a ciphertext CT generated with respect to some LSSS access policy (M, δ) and an index set I
associated to the message, and a collection of keys {SKGID,t,u}t corresponding to user ID-attribute
pairs (GID, S ⊆ Uatt) and a key vector (u, Iu) possessed by a user with global identifier GID. It
outputs a message ζ when the collection of attributes associated with the secret keys {SKGID,t,u}t
satisfies the LSSS access policy (M, δ), i.e., when the vector (1, 0, . . . , 0) belongs to the linear span
of those rows of M which are mapped by δ to the set of attributes in S that corresponds to the secret
keys {SKGID,t,u}t∈S possessed by the user with global identifier GID. Otherwise, decryption returns
⊥.
Correctness: An LMA-ABUIPFE scheme for LSSS-realizable access structures and inner product
message space U is said to be correct if for every λ ∈ N, every message vector v ∈ Z|Iv |q , key
vector u ∈ Z|Iu|q such that I = Iv = Iu, and GID ∈ GID, every LSSS access policy (M, δ), and
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every subset of authorities S ⊆ Uatt controlling attributes which satisfy the access structure it holds
that

Pr

Γ = v ·u
∣∣∣∣∣∣∣∣

GP← GlobalSetup(1λ, 1n),
(PKθ,MSKθ)← LocalSetup(GP, θ),

SKGID,t,u ← KeyGen(GP,GID,MSKθ, t,u),
CT← Encrypt(GP, (M, δ), {PKθ}θ,v),
Γ = Decrypt(GP,CT, {SKGID,t,u}t∈S)

 = 1.

Static Security: In this paper, we consider static security for LMA-ABUIPFE formalized by the
following game between a challenger and an adversary. The static security model is adapted from
[RW15], defined for MA-ABE, to the context of LMA-ABUIPFE. We emphasize that unlike MA-ABE,
our static security model allows the adversary to ask for secret keys which are capable of decrypting
the challenge ciphertext.

Global Setup: The challenger runs GlobalSetup(1λ, smax) to get and send the global public param-
eters GP to the attacker.

Adversary’s Queries: The adversary sends the following queries:
1. A list C ⊂ AU of corrupt authorities and their respective public parameters {PKθ}θ∈C , which

it might have created in a malicious way.
2. A setN ⊂ AU of non-corrupt authorities, i.e., C ∩N = ∅, for which the adversary requests

the public keys.
3. A set Q = {(GID, S,u, Iu)} of secret key queries with GID ∈ GID, S ⊆ Uatt such that

T(S) ∩ C = ∅, u ∈ Z|Iu| and Iu ⊂ Z where GIDs are distinct in each of these tuples.
4. Two message vectors v0,v1 ∈ Z|I

∗|
q having the same index set I∗, and a challenge LSSS

access policy (M, δ) with M = (Mi,j)`×smax = (M1, . . . ,M`)
> ∈ Z`×smax

q , δ : [`] → Uatt

and satisfying the constraint that for each (GID, S,u, Iu) ∈ Q, either S∪
⋃
θ∈C T

−1(θ) ⊆ [`]
constitutes an unauthorized subset of rows of the access matrix M or the secret key vector
u satisfies the relation (v0 − v1) ·u = 0 whenever Iu = I∗. Note that the set

⋃
θ∈C T

−1(θ)
contains the attributes belonging to the corrupt authorities.

Challenger’s Replies: The challenger flips a random coin β ← {0, 1} and replies with the follow-
ing:
1. The public keys PKθ ← LocalSetup(GP, θ) for all θ ∈ N .
2. The secret keys SKGID,t,u ← KeyGen(GP,GID,MSKθ, t,u) for all (GID, S,u) ∈ Q, t ∈ S.
3. The challenge ciphertext CT← Encrypt(GP, (M, δ), {PKθ}θ∈C∪N ,vβ).

Guess: The adversary outputs a guess β′ for β.

The advantage of the adversary A is AdvLMA-ABUIPFE
A,SS-CPA (λ) , |Pr[β = β′]− 1/2|.

Definition 4.1 (Static Security for LMA-ABUIPFE for LSSS) An LMA-ABUIPFE scheme for LSSS-
realizable access structures satisfies static security if for any PPT adversary A there exists negl(·)
such that for all λ ∈ N, we have AdvLMA-ABUIPFE

A,SS-CPA (λ) ≤ negl(λ).

Remark 4.1 (Static Security in the Random Oracle Model.) Similar to [RW15,DKW21a,DKW21b],
we additionally consider the aforementioned notion of selective security with static corruption in
the ROM. In this context, we assume a global hash function H published as part of the global pub-
lic parameters and accessible by all the parties in the system. In the security proof, we will model
H as a random oracle programmed by the challenger. In the security game, therefore, we let the
adversary A submit a collection of H-oracle queries to the challenger immediately after seeing the
global public parameters, along with all the other queries it makes in the static security game as
described above.

Remark 4.2 (Small Universe MA-ABUIPFE.) The above definition of LMA-ABUIPFE captures
the large universe scenario where one authority can control multiple attributes. We can similarly
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define a small universe MA-ABUIPFE or simply MA-ABUIPFE by restricting each authority to
control only a single attribute [RW15]. Hence, we would use the words “authority” and “attribute”
interchangeably in the case of MA-ABUIPFE. There are a few syntactic and semantic changes in
the above definition when adapted for the small universe setting:
1. There is a bijection between the attribute universe Uatt and the authority universe AU .
2. LocalSetup(GP, t) outputs (PKt,MSKt) for an authority/attribute t ∈ AU .
3. KeyGen(GP,GID,MSKt,u, Iu) outputs SKGID,t,u.
4. For an LSSS access structure (M, δ), we have ρ(·) = δ(·) is an injective map.
5. The changes in the security definition follow accordingly. Due to space constraints, we state

them directly in the proof of our small universe scheme in Section 5.3.

5 The Proposed Small Universe MA-ABUIPFE from DBDH

In this section, we describe the formal construction and proof for our MA-ABUIPFE scheme. The
construction is in prime-order groups and uses a hash functions that will be modelled as a random
oracle in the security proof.

5.1 The Construction

GlobalSetup(1λ, smax): The global setup algorithm takes input the security parameter λ, the max-
imum width of an LSSS matrix supported by the scheme smax = smax(λ) and the vector length n in
unary. It generates G = (q,G1,G2,GT , g, e). Consider the hash functions H1 : Uatt×Z×Z∗ → G2,
H2 : [smax] × Z × Z∗ → G2, H3 : GID × Z∗ × [smax] → G2. It outputs a global parameter
GP = (G,H1,H2,H3).

LocalSetup(GP, t): The authority setup algorithm takes as input GP and an authority index/attribute
t ∈ AU . It samples vectors αt, yt,2, . . . , yt,smax ← Zq and outputs

PK =
(
{[[αt]]1, {[[yt,j]]1}j∈{2,...,smax}}t∈Uatt

)
, MSK = {{αt, {yt,j}j∈{2,...,smax}}t∈Uatt}

KeyGen(GP,GID,MSKt, u,Iu): The key generation algorithm takes input GP, the user’s global
identifier GID, the authority’s secret key MSKt and a vector u ∈ Z|Iu|q . It proceeds as follows
1. Parse Iu = {ι1, . . . , ιn} and u = (uι1 , . . . , uιn).
2. Compute

SKt,u =
n∏
k=1

H1(t ‖ ιk ‖ Iu)αtuιk ·
smax∏
j=2

n∏
k=1

(H2(j ‖ ιk ‖ Iu) · H3(GID ‖ u ‖ j ‖ ιk))yt,juιk .

3. Output SKGID,t,u = (GID,u, SKt,u, Iu) as the secret key.

Encrypt(GP, (M, ρ), {PKt}, v,Iv): The encryption algorithm takes input the global parameter
GP, an LSSS access structure (M, ρ) where M = (M1, . . . ,M`)

> ∈ Z`×smax
q and ρ : [`] → AU ,

a set {PKt} of public keys for all the authorities in the range of ρ, and a message vector v ∈ Zmq .
The function maps the row indices of M to authorities or attributes. We assume ρ is an injective
function, that is, an authority/attribute is associated with at most one row of M. The algorithm
proceeds as follows:
1. Parse Iv = {ι1, . . . , ιm} and v = (vι1 , . . . , vιm).
2. Sample {ri ← Zq}i∈[`] and f = (f2, . . . , fsmax)← Zsmax−1

q .
3. Sample z, b2, . . . , bsmax ,x2, . . . ,xsmax ← Zmq .

4. Set the matrix B =
[
z, b2, . . . , bsmax

]>
smax×m

.
5. Compute ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ Iv)) and set ϑi := (ϑi,1, . . . , ϑi,m).
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6. Compute the following terms:
C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ Iv)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ Iv)),
C4,i,j = [[Mi,jfj + yρ(i),jri]]1

for all i ∈ [`], j ∈ {2, . . . , smax}, k ∈ [m].
7. Output the ciphertext

CT =
(
(M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv

)
.

Decrypt(GP,GID,CT, {SKGID,t,u}): The decryption algorithm takes input the public key PK,
a secret key SKS,u for an attribute set S ⊆ Uatt and a vector u ∈ Znq and a ciphertext CT for an
access structure (M, ρ) with M ∈ Z`×smax

q and an injective map ρ : [`]→ Uatt.
Parse SKGID,S,u =

(
GID,u, {SKρ(i),u}ρ(i)∈S, Iu

)
, where i ∈ [`] and CT = ((M, ρ) ,

C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv). Denote I = {i|ρ(i) ∈ S} ⊆ [`]. If (1, 0, . . . , 0)
is not in the span of MI (i.e., M restricted to the set of rows from I) or Iu 6= Iv decryption re-
turns ⊥. Else, when S satisfies (M, ρ), the algorithm finds {wi ∈ Zq}i∈I such that (1, 0, . . . , 0) =∑

i∈I wiMi. It then computes [[Γ ]]T = C0 ·u · [[µ]]T where [[µ]]T is given by


∏
i∈I


C1,i ·u ·

smax∏
j=2

n∏
k=1

uιk · C3,i,j,k · e(C4,i,j,H3(GID ‖ u ‖ j ‖ ιk)uιk )

e
(
SKρ(i),u, C2,i

)

wi

−1

and outputs loggT ([[Γ ]]T ).

5.2 Correctness

Consider a secret key SKGID,S,u = (GID,u, {SKt,u}t∈S, Iu) consisting of a set of attributes satisfy-
ing the LSSS access structure (M, ρ) associated with a ciphertext CT = ((M, ρ) , C0, {C1,i, C2,i,,
C3,i,j,k, C4,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv) such that Iu = Iv = I. In particular, the vector (1, 0, . . . ,
0) ∈ rowspan(MI) corresponding to the set of indices I = {i ∈ I|ρ(i) = t ∈ S}.
For each i ∈ I , we have the following:

e(SKρ(i),u, C2,i) =
n∏
k=1

e(g1,H1(ρ(i) ‖ ιk ‖ I))riαρ(i)uιk ·

smax∏
j=2

n∏
k=1

(e(g1,H2(j ‖ ιk ‖ I)) · e(g1,H3(GID ‖ u ‖ j ‖ ιk)))riyρ(i),juιk

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

uιkC3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk · e(g1,H2(j ‖ ιk ‖ I))riyρ(i),juιk

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

e(C4,i,j,H3(GID ‖ u ‖ j ‖ ιk)uιk )

= e([[Mi,jfj]]1,H3(GID ‖ u ‖ j ‖ ιk))uιk · e(g1,H3(GID ‖ u ‖ j ‖ ιk))riyρ(i),juιk
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Finally, for each i ∈ I , we have C1,i = [[MiB + ϑi]]T and so

C1,i ·u ·
smax∏
j=2

n∏
k=1

(uιk · C3,i,j,k · e(C4,i,j,H3(GID ‖ u ‖ j ‖ ιk)uιk ))

e
(
SKρ(i),u, C2,i

)
= [[MiB ·u]]T

n∏
k=1

e(g1,H1(ρ(i) ‖ ιk ‖ I))riαρ(i)uιk ·

smax∏
j=2

n∏
k=1

(uιk · C3,i,j,k · e(C4,i,j,H3(GID ‖ u ‖ j ‖ ιk)uιk ))

e
(
SKρ(i),u, C2,i

)
= [[MiB ·u]]T ·

smax∏
j=2

n∏
k=1

e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk ·

smax∏
j=2

n∏
k=1

e([[Mi,jfj]]1,H3(GID ‖ u ‖ j ‖ ιk))uιk

Since SKS,u corresponds to a set of qualified authorities, ∃{wi ∈ Zq}i∈I such that∑
i∈I wiMiB ·u = (1, 0, . . . , 0)B·u = z ·u and it holds that

∑
i∈I wiMi,j = 0, ∀j ∈ {2, . . . , smax}.

Hence, we have

∏
i∈I


C1,i ·u ·

smax∏
j=2

n∏
k=1

(uιk · C3,i,j,k · e(C4,i,j,H3(GID ‖ u ‖ j ‖ ιk)uιk ))

e
(
SKρ(i),u, C2,i

)

wi

= [[
∑
i∈I

wiMiB ·u]]T = [[z ·u]]T

Finally, the message is recovered as loggT ([[Γ ]]T ) where

[[Γ ]]T = (C0 ·u)/[[z ·u]]T = [[v ·u+ z ·u]]T/[[z ·u]]T = [[v ·u]]T .

5.3 Security Analysis
Theorem 5.1 If the DBDH assumption holds, then all PPT adversaries have a negligible advan-
tage in breaking the static security of the proposed small universe MA-ABUIPFE scheme in the
random oracle model.

Proof. We prove this theorem by showing that if there is any PPT adversary A who breaks the
static security of MA-ABUIPFE then there is a PPT adversary B who solves the DBDH problem
with a non-negligible advantage. Suppose, B gets an instance (G, [[a]]1, [[c]]1, [[a]]2, [[b]]2, [[τ ]]T ) of the
DBDH problem where G = (q,G1,G2,GT , g, e) ← G(1λ) is a group description, the elements
a, b, c ← Zq are random integers, and the element τ ∈ Zq is either abc or a random element of Zq.
The algorithm B works as follows: On input λ, A outputs smax,Uatt and queries the following.

Attacker’s Queries: Upon initialization, the adversary A sends the following to B:
(a) A list C ⊂ AU of corrupt authorities and their respective public key

{PKt = (Yt,1,Yt,2, . . . ,Yt,smax)}t∈C,

where Yt,1,Yt,2, . . . ,Yt,smax ∈ G1 for all t ∈ C.
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(b) A set N ⊂ AU of non-corrupt authorities, i.e., C ∩ N = ∅, for which A requests the public
keys.

(c) A collection of hash queries H1 = {(t, ιk, I) : t ∈ Uatt, ιk ∈ Z, I ⊂ N}, H2 = {(j, ιk, I) :
j ∈ {2, . . . , smax}, ιk ∈ Z, I ⊂ N} and H3 = {(GID,u, j, ιk) : GID ∈ GID,u ∈ Z∗, j ∈
{2, . . . , smax}, ιk ∈ Z}.

(d) A set Q = {(GID, S,u, Iu)} of secret key queries with GID ∈ GID, S ⊆ Uatt, u ∈ Z|Iu| and
Iu ⊂ Z.

(e) Two message vectors v0,v1 ∈ Znq having the same index set I∗, and a challenge LSSS access
policy (M, ρ) with M = (Mi,j)`×smax = (M1, . . . ,M`)

> ∈ Z`×smax
q and ρ : [`] → C ∪ N

injective and satisfying the constraint that for each (S,u, Iu) ∈ Qu, either ρ−1(C ∪ S) ⊆ [`]
constitutes an unauthorized subset of rows of the access matrix M or the secret key vector u
satisfies the relation (v0 − v1) ·u = 0 whenever Iu = I∗.
Before answering A’s queries, the adversary B substitute the secret sharing matrix M with the

matrix M′ from Lemma 3.1 computed using ρ−1(C) as the unauthorized subset of rows. Lemma 3.1
guarantees the fact that if B uses M′ instead of M in the simulation, the view of A in the sim-
ulated game is information theoretically the same as if B would have used the original matrix
M. Furthermore, Lemma 3.1 implies that if we assume the subspace spanned by Mρ−1(C) has di-
mension c̃, then so is the dimension of the subspace spanned by M′

ρ−1(C) and M ′
i,j = 0 for all

(i, j) ∈ ρ−1(C)× [smax − c̃]. B now proceeds to answer the queries of A. Denote ŝmax = smax − c̃,
where c̃ is the dimension of the sequence spanned by the rows of Mρ−1(C), the latter being the rows
of M controlled by corrupted authorities, C.

Note that I∗ can be any subset of Z and w.l.o.g one can consider I∗ = [n]5 for some n ∈ N.
Inspired by the proof techniques of prior works [ABCP15, SP19], the reduction first compute a
basis of (v0 − v1)⊥ as {b̃1, . . . , b̃n−1}. Then the set S̃ = {v0 − v1, b̃1, . . . , b̃n−1} form a basis of
Znq . For any vector u ∈ Znq , if we represent it as the linear combination of the vectors in S̃ as

u = ζ · (v0 − v1) +
n−1∑
k=1

ζkb̃k, for some ζ, ζk ∈ Zq

then ζ = 0 whenever it holds that (v0 − v1) · u = 0. Let ek be the k-th vector in the standard basis
of Znq . We write ei for each i ∈ [n] as

ei = ηi · (v0 − v1) +
n−1∑
k=1

λi,kb̃k for some η, λi,k ∈ Zq.

Generating Public Key: There are two cases to consider:
1. Case 1 — t ∈ N \ ρ([`]) (i.e., attribute t is absent in the challenge policy (M, ρ) but it belongs

to a non-corrupt authority) — In this case, B executes the Setup algorithm according to the
real experiment. It samples αt, yt,2, . . . , yt,smax ← Zq by itself, and computes the public key
component corresponding to attribute t as ([[αt]]1, [[yt,2]]1, . . . , [[yt,smax ]]1).

2. Case 2 — t ∈ ρ([`])\C (i.e., attribute t appears in the challenge policy (M, ρ) and it does not be-
long to a corrupt authority) — In this case, B samples α′t, y

′
t,2, . . . ,

y′t,smax
← Zq and implicitly sets αt = α′t + a · M ′

ρ−1(t),1 and yt,j = y′t,j + aM ′
ρ−1(t),j for

j ∈ {2, . . . , ŝmax} and yt,j = y′t,j for j ∈ {ŝmax + 1, . . . , smax}(these are well-defined as ρ
is injective), and sets the public key elements w.r.t. attribute t as ([[αt]]1, [[yt,2]]1, . . . , [[yt,smax ]]1)
where the elements [[αt]]1 and [[yt,j]]1 for j ∈ {2, . . . , ŝmax} are computed as follows:

5 In particular, we consider a map γ : I∗ → [n] and use γ(k) = ιk throughout the security analysis.
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[[αt]]1 = [[α′t]]1 ·M ′
ρ−1(t),1[[a]]1, [[yt,j]]1 = [[y′t,j]]1 ·M ′

ρ−1(t),j[[a]]1 (5.1)

for all j ∈ [2, ŝmax]. Note that, αt and {yt,j}j∈{2,...,smax} are distributed uniformly over Zq and
hence each of these elements of the public key is properly distributed.

Answering Hash Queries:
1. H1 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements h1,k̂, h1,t,ιk from

Zq and set

H1(t ‖ ιk ‖ I) = (gb2)
ηk ·

n−1∏
k̂=1

g
h
1,k̂
λ
k,k̂

2 · gh1,t,ιk2 . (5.2)

Otherwise, if (ιk 6∈ I∗ ∨ I 6= I∗), then output a random G2 element, i.e., sample uniformly

random element h′1,t,ιk from Zq and set H1(t ‖ ιk ‖ I) = g
h′1,t,ιk
2 . The reduction stores the hash

queries for future use.
2. H2 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements h2,k̂, h2,j,ιk for
j ∈ {2, . . . , ŝmax} (in Eq. 5.3) and elements h′2,j,ιk for j ∈ {ŝmax + 1, . . . , smax} from Zq (in Eq.
5.4) and set

H2(j ‖ ιk ‖ I) = (gb2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
k̂=1

g
h
2,k̂
λ
k,k̂

2 · gh2,j,ιk2 (5.3)

H2(j ‖ ιk ‖ I) = g
h′2,j,ιk
2 (5.4)

where Q denotes the total number of non-accepting key queries {(Sφ,uφ, Iuφ)}φ∈[Q] made
by the adversary in the case where Iuφ = I∗ but the attributes in Sφ does not satisfy the
challenge policy (M, ρ). Note that, for such secret key queries, there exists a vector dφ =
(dφ,1, . . . , dφ,smax) ∈ Zsmax

q such that dφ,1 = 1 and the inner product M ′
i ·dφ = 0 for all i ∈

ρ−1(C ∪ Sφ), where M ′
i denotes the i-th row of M′. Additionally, the set of rows R = {M ′

i ∈
Zsmax
q : i ∈ ρ−1(C)} has dimension c and M ′

i,j = 0 for all (i, j) ∈ ρ−1(C)× [ŝmax]. Therefore,R

spans the entire subspace V =

{
(

ŝmax︷ ︸︸ ︷
0, . . . , 0,ν) : ν ∈ Zcq

}
. Thus, it follows that dφ is orthogonal

to any of the vectors

{
(

ŝmax︷ ︸︸ ︷
0, . . . , 0,

j−1︷ ︸︸ ︷
0, . . . , 0, 1,

c−j︷ ︸︸ ︷
0, . . . , 0)

}
j∈{ŝmax+1,...,smax}

.

In other words, dφ,j = 0 for all j ∈ {ŝmax + 1, . . . , smax}. Combining the above two facts, we
have (M ′

i |[ŝmax]) · (dφ|[ŝmax]) = 0 for all i ∈ ρ−1(Sφ), where for a vector x, x|X denotes a vector
formed by taking the entries of x having indices in the set X ∈ N. For simplicity of notation,
let us denoteM ′

i ? dφ = (M ′
i |[ŝmax]) · (dφ|[ŝmax]) for i ∈ ρ−1(Sφ).

Otherwise, if (ιk 6∈ I∗ ∨ I 6= I∗), then output a random G2 element, i.e., sample uniformly

random element h′′2,t,ιk from Zq and set H2(j ‖ ιk ‖ I) = g
h′′2,t,ιk
2 . The reduction stores the hash

queries for future use.
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3. H3 queries. If (GID, Sφ,uφ, Iuφ) ∈ Q and Sφ ∩ ρ([`]) 6= ∅ and ρ−1(Sφ ∪ C) constitutes an
unauthorized subset of the rows of M then sample h3,j,ιk for j ∈ {2, . . . , ŝmax} (in Eq. 5.5) and
elements h′3,j,ιk for j ∈ {ŝmax + 1, . . . , smax} from Zq (in Eq. 5.6) and set

H3(GID ‖ uφ ‖ j ‖ ιk) = (gb2)
ηk

∑
φ′∈[Q]\{φ}−dφ′,j · gh3,j,ιk2 (5.5)

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′3,j,ιk
2 (5.6)

for all ιk ∈ Iuφ such that Iuφ = I∗ and dφ is as defined above.
If (GID, Sφ,uφ, Iuφ) ∈ Q and Sφ ∩ ρ([`]) 6= ∅ and Iuφ 6= I∗ then sample h′′3,j,ιk uniformly at

random from Zq and set H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′3,j,ιk
2 .

On the other hand, if (GID, Sφ,uφ, Iuφ) ∈ Q and Sφ∩ρ([`]) 6= ∅ and ρ−1(Sφ∪C) constitutes an
authorized subset of the rows of M then sample h′′′3,j,ιk ← Zq and set H3(GID ‖ uφ ‖ j ‖ ιk) =

g
h′′′3,j,ιk
2 . The reduction stores the hash queries for future use.

For all other cases, the reduction simple outputs a uniformly random element from G2 to answer
the hash query H3(GID ‖ uφ ‖ j ‖ ιk).

Generating Secret Keys: For any (GID, Sφ,uφ, Iuφ) ∈ Q, B returns a secret key SKGID,Sφ,uφ =(
GID,uφ, {SKt,uφ}t∈Sφ , Iuφ

)
, where it computes each of its components as follows. We denote

H2·3(GID,uφ, j, k) = H2(j ‖ ιk ‖ Iuφ) · H3(GID ‖ uφ ‖ j ‖ ιk)

for simplifying the representation of equations. For each t ∈ Sφ and Iuφ , it has four different cases
to consider:

1. Case 1 — (t ∈ Sφ \ ρ([`])) (i.e., the attribute is absent in the challenge policy (M,ρ)) — In
this case, B simulates the secret keys according to the real experiment. It knows αt, yt,j for all
j ∈ {2, . . . , smax} in clear and hence can compute

SKφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αtuιk ) ·
smax∏
j=2

n∏
k=1

H2·3(GID,uφ, j, k)yt,juιk

where H3(GID ‖ uφ ‖ j ‖ ιk) were sampled uniformly.
2. Case 2 — (t ∈ Sφ ∩ ρ([`])∧ Iuφ 6= I∗) (i.e., the attribute is present in the challenge policy, but

the associated index set does not match with the challenge index set) In this case, B extracts the
corresponding exponents of the hash values from the list of hash queries and computes

SKφ,t,uφ = (
∏n

k=1 H1(t ‖ ιk ‖ Iuφ)αtuιk ) ·
∏smax

j=2

∏n
k=1 H2·3(GID,uφ, j, k)yt,juιk

where H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′3,j,ιk
2 were sampled uniformly from Zq.

3. Case 3 — (t ∈ Sφ ∩ ρ([`]) ∧ Iuφ = I∗) and ρ−1(C ∪ Sφ) constitutes an unauthorized subset of
the rows of M (i.e., Sφ does not satisfy the challenge policy (M, ρ)). Note that the inner product
value (v0 − v1) ·uφ can be either zero or non-zero in this case. Since Sφ does not satisfy the
challenge policy (M, ρ), there exists a vector dφ = (dφ,1, . . . , dφ,smax) ∈ Zsmax

q such that dφ,1 = 1
and the inner product M ′

i ? dφ = 0 for all i ∈ ρ−1(Sφ), where M ′
i denotes the i-th row of M′.
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B computes the secret key SKt,u as follows.

SKφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αtuιk ) ·
smax∏
j=2

n∏
k=1

H2·3(GID,uφ, j, k)yt,juιk

= (
n∏
k=1

(gab2 )
ηkM

′
ρ−1(t),1

uιk ) ·
ŝmax∏
j=2

n∏
k=1

(gab2 )
ηkdφ,jM

′
ρ−1(t),j

uιk · gLφ(a,b)2

=
ŝmax∏
j=1

n∏
k=1

(gab2 )
ηkdφ,jM

′
ρ−1(t),j

uιk · gLφ(a,b)2

=
n∏
k=1

(gab2 )
ηkuιk (M

′
ρ−1(t)

?dφ) · gLφ(a,b)2 = g
Lφ(a,b)
2

where Lφ(a, b) represents a linear function in a, b and hence gLφ(a,b)2 can be efficiently com-
putable by B. The first equality follows from the definition of αt, yt,j (Equation (5.1)) and
the hash functions H1 (Equation (5.2)), H2 (Equation (5.3) and Equation (5.4)) and H3 (Equa-
tion (5.5) and Equation (5.6)). The last equality holds since M ′

ρ−1(t) ? dφ = 0 and the second
last equality holds since dφ,1 = 1.

4. Case 4 — (t ∈ Sφ ∩ ρ([`]) ∧ Iuφ = I∗) and ρ−1(Sφ) constitutes an authorized subset of rows
of M (i.e., Sφ satisfies the challenge policy (M, ρ)) – In this case, B computes the secret key
SKφ,t,uφ as follows.

SKφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αtuιk ) ·
smax∏
j=2

n∏
k=1

H2·3(GID,uφ, j, k)yt,juιk

= (
n∏
k=1

(gab2 )
ηkM

′
ρ−1(t),1

uιk ) ·
ŝmax∏
j=2

n∏
k=1

((gab2 )ηk
∑Q
φ=1 dφ,j)

M ′
ρ−1(t),j

uιk · gLφ(a,b)2

=

[
(gab2 )

ηkM
′
ρ−1(t),1 ·

ŝmax∏
j=2

(gab2 )
ηk

∑Q
φ=1 dφ,jM

′
ρ−1(t),j

]η·uφ
· gLφ(a,b)2 = g

Lφ(a,b)
2

where the last equality follows from the fact that η ·uφ = 0 if the secret key query satisfies
the condition (v0 − v1) ·uφ = 0 as Sφ is authorized. Hence, in this case, B can efficiently
simulates the secret key as Lφ(a, b) is linear in a, b.

Generating the Challenge Ciphertext: B implicitly sets the vectors

z = −abc · η = −abc(η1, . . . , ηn) ∈ Znq ,
xj = −(ac, . . . , ac) ∈ Znq , fj = −ac ∈ Zq, ∀j ∈ {2, . . . , ŝmax},
xj = 0 ∈ Znq , fj = 0 ∈ Zq, ∀j ∈ {ŝmax + 1, . . . , smax}

There are two cases to consider according to the authority whether it is corrupted or non-corrupted.
1. Case 1 — ρ(i) ∈ C (meaning that the authority associated with this row is corrupted) — In this

case, it holds that M ′
iB = 0 and M ′

i,jxj = 0 for all (i, j) ∈ ρ−1(C) × [ŝmax] since M ′
i |[ŝmax] ={ ŝmax︷ ︸︸ ︷

0, . . . , 0

}
and due to the above implicit setting of B,xj . Thus, for each such row, B picks

ri ← Zq, and using the authority public key PKρ(i) = (Yρ(i),1,Yρ(i),2, . . . ,Yρ(i),smax) obtained
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from A, it computes

C0 = [[vβ + z]]T , C1,i = [[M ′
iB + ϑi]]T = [[ϑi]]T , C2,i = [[ri]]1,

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[Yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e(ri[[Yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))
C4,i,j = [[M ′

i,jfj + Yρ(i),jri]]1 = [[Yρ(i),jri]]1

for all i ∈ [`], j ∈ {2, . . . , smax} and k ∈ [n], where ϑi = (ϑi,1, . . . , ϑi,m) and

ϑi,k = e(ri[[Yρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

2. Case 2 — ρ(i) ∈ N (meaning that the authority associated with this row is uncorrupted) —
Firstly, B sets C0 = [[vβ + z]]T where β is the challenge bit for A. It also implicitly sets ri = c
and the matrix B = (z,0, · · · ,0)> ∈ Zsmax×n

q . This implies M ′
iB = M ′

i,1z = −M ′
i,1 · abc · η

and the k-th element of the vector is (M ′
iB)k = −M ′

i,1abcηk. Recall that, for each i ∈ [`], we
have αρ(i) = α′ρ(i) + a ·M ′

i,1 and yρ(i),j = y′ρ(i),j + aM ′
i,j . Now, B implicitly computes the vector

ϑi := (ϑi,1, . . . , ϑi,m) as

ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗))

= e([[cα′ρ(i) + ac ·M ′
i,1]]1, [[bηk +

n−1∑
k̂=1

h1,k̂λk,k̂ + h1,ρ(i),ιk ]]2)

= [[bcα′ρ(i)ηk +M ′
i,1abcηk + (cα′ρ(i) + ac ·M ′

i,1)h1,i,k]]T

where h1,i,k =
∑n−1

k̂=1
h1,k̂λk,k̂ + h1,ρ(i),ιk . We write h1,i = (h1,ρ(i),ιk)

n
k=1. Thus, for each i ∈ [`],

B sets C2,i = [[c]]1 and computes

C1,i = [[MiB + ϑi]]T = [[bcα′ρ(i)η + (cα′ρ(i) + ac ·M ′
i,1)h1,i]]T

= e(gc1, g
b
2)
α′
ρ(i)
η · e(gc1, g2)

α′
ρ(i)

hi · e(gc1, ga2)M
′
i,1h1,i

Next, B computes C3,i,j,k as follows. Recall that C3,i,j,k is a product of two pairing operations.
Note that,M ′

i,jxj,k = 0 if j ∈ {ŝmax+1, . . . , smax}. Thus, for j ∈ {2, . . . , ŝmax}, the first pairing
is computed as

e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗))

= e([[M ′
i,jxj,k]]1, (g

b
2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
k̂=1

g
h
2,k̂
λ
k,k̂

2 · gh2,ρ(i),ιk2 )

= [[M ′
i,jxj,kbηkd

+
j +M ′

i,jxj,kh2,i,k]]T

where d+j =
∑Q

φ=1 dφ,j and h2,i,k =
∑n−1

k̂=1
h2,k̂λk,k̂ + h2,ρ(i),ιk . If j ∈ {2, . . . , ŝmax}, the second

pairing is computed as

e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e([[cy′ρ(i),j + acM ′
i,j]]1, (g

b
2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
k̂=1

g
h
2,k̂
λ
k,k̂

2 · gh2,ρ(i),ιk2 )

= [[bc(y′ρ(i),j + aM ′
i,j)ηkd

+
j + c(y′ρ(i),j + aM ′

i,j)h2,i,k]]T

Finally, for each i ∈ [`], j ∈ {2, . . . , ŝmax}, k ∈ [n], the ciphertext component C3,i,j,k is obtained
as
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C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= [[bcy′ρ(i),jηkd
+
j + cy′ρ(i),jh2,i,k]]T

= e(gc1, g
b
2)
y′
ρ(i),j

ηkd
+
j · e(gc1, g2)

y′
ρ(i),j

h2,i,k

which B can compute as a part of the challenge ciphertext. Now, if j ∈ {ŝmax + 1, . . . , smax},
recall that yρ(i),j are known is clear and hence B computes C3,i,j,k as

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e(ri[[yρ(i),j]]1, [[h
′
2,j,ιk

]]2) = e(gc1, g2)
yρ(i),jh

′
2,j,ιk

for all i ∈ [`], k ∈ [n]. The last remaining part C4,i,j is given by

C4,i,j = [[M ′
i,jfj + yρ(i),jri]]1 = [[−acM ′

i,j + cy′ρ(i),j + acM ′
i,j]]1 = (gc1)

y′
ρ(i),j

if i ∈ [`], j ∈ {2, . . . , ŝmax}. Note that, M ′
i,jfj = 0 and yρ(i),j are known in clear for j ∈

{ŝmax + 1, . . . , smax}. Hence, B computes C4,i,j as

C4,i,j = [[M ′
i,jfj + yρ(i),jri]]1 = [[cyρ(i),j]]1 = (gc1)

yρ(i),j

for each i ∈ [`], j ∈ {2, . . . , smax}. Observe that, the elements B,xj, fj and ri are not prop-
erly distributed. Thus, B re-randomizes the ciphertext components using the algorithm CTRand
described below before it sends to A.

Ciphertext Re-randomization Algorithm: The algorithm described below provides properly dis-
tributed ciphertexts even if the randomness used within the ciphertexts inputted into the algo-
rithm are not uniform. The algorithm uses only publicly available information to perform the re-
randomization and hence rectify the distribution of the challenge ciphertext in the reduction.
CTRand((M, ρ),CT,PK): The algorithm takes input an LSSS access policy (M, ρ), where M =
(Mi,j)`×smax = (M1, . . . ,M`)

> ∈ Z`×smax
q and ρ : [`]→ Uatt, a ciphertext CT = ((M, ρ) , C0, {C1,i,

C2,i,, C3,i,j,k, C4,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv), and the public key components PK such that ρ([`]) ⊆
Uatt.
1. Sample

(a) r′1, . . . , r
′
` ← Zq;x′2, . . . ,x′smax

∈ Znq ; f ′2, . . . , f
′
smax
∈ Zq,

(b) B′ = (z′, b′2, . . . , b
′
smax

)> ∈ Zsmax×n
q ,

2. Compute C ′0 = C0 · [[z′]]T .
3. For all i ∈ [`], j ∈ {2, . . . , smax} and k ∈ [n], compute

C ′1,i = C1,i · [[MiB
′ + ϑ′i]]T , C

′
2,i = C2,i · [[r′i]]1,

C ′3,i,j,k = C3,i,j,k · e([[Mi,jx
′
j,k]]1,H2(j ‖ ιk ‖ I∗)) · e(r′i[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

C ′4,i,j = C4,i,j · [[Mi,jf
′
j + yρ(i),jr

′
i]]1

where ϑ′i = (ϑ′i,1, . . . , ϑ
′
i,n) and ϑ′i,k = e(r′i[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

4. Output the ciphertext
CT =

(
(M, ρ) , C ′0, {C ′1,i, C ′2,i,, C ′3,i,j,k, C ′4,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv

)
.

Guess: If A guesses the challenge bit β ∈ {0, 1} correctly, B returns 1; Otherwise B outputs 0.
Now, observe that z = −τ · η where [[τ ]]T is the DBDH challenge element. If τ = abc, then all
the secret keys and the challenge ciphertext are distributed properly, in particular, the challenge
ciphertext is an encryption of the message vector vβ for β ← {0, 1}. Therefore, in this case, A
outputs β′ = β with probability 1/2 + ε(λ) where ε(λ) is the advantage of A in the static security
game of the MA-ABUIPFE scheme. On the other hand, if τ is a random element of Zq then the
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ciphertext element C0 is uniformly random in GT , and hence from A’s point of view there is no
information of the challenge bit β in the challenge ciphertext. So, the probability of A outputting
β′ = β is exactly 1/2. Hence, by the guarantee of DBDH assumption, A has a non-negligible
advantage against the proposed MA-ABUIPFE scheme in the static security game. This completes
the proof. ut

6 The Proposed Large Universe MA-ABUIPFE from L-DBDH

In this section, we describe the construction of our LMA-ABUIPFE scheme. The construction is in
prime-order groups and additionally uses hash functions that are modelled as random oracles in the
security proof just like our small universe construction.

6.1 The Construction

GlobalSetup(1λ, smax): The global setup algorithm takes input the security parameter λ and a
vector length n both in unary, and the maximum width of an LSSS matrix supported by the scheme
smax = smax(λ). It generates G = (q,G1,G2,GT , g, e) and specify hash functions H1 : Uatt ×
Z × Z∗ → G2, H2 : [smax] × Z × Z∗ → G2, H3 : GID × Z∗ × [smax] × Z → G2 and R :
Uatt× [smax]×Z∗ → G2 mapping strings (t, j) ∈ Uatt× [smax] to elements in G2. It outputs a global
parameter GP = (G,H1,H2,H3,R).

LocalSetup(GP, θ): The authority setup algorithm takes input the global parameter GP and an au-
thority index θ ∈ AU . It samples αθ, yθ,2, . . . , yθ,smax ← Zq and outputs PKθ = ([[αθ]]1, [[yθ,2]]1, . . . ,
[[yθ,smax ]]1) and MSKθ = (αθ, yθ,2, . . . , yθ,smax).

KeyGen(GP,GID,MSKθ, t, u,Iu): The key generation algorithm takes input GP, the user’s
global identifier GID, the authority’s secret key MSKθ, an attribute t controlled by the authority and
a vector u ∈ Z|Iu|q . It samples τj ← Zp for j ∈ [smax] and proceeds as follows:
1. Parse Iu = {ι1, . . . , ιn} and u = (uι1 , . . . , uιn).
2. Compute

Kt,u = (
∏n

k=1 H1(t ‖ ιk ‖ Iu)αθuιk ) ·
∏smax

j=2

∏n
k=1(H2(j ‖ ιk ‖ Iu) ·H3(GID ‖ u ‖ j ‖ ιk))yθ,juιk .

3. Compute SKt,u = Kt,u ·
∏smax

j=1 R(t ‖ j ‖ Iu)τj and Z
(j)
t = [[τj]]1 ∀ j ∈ [smax].

Output SKGID,t,u = (GID,u, SKt,u,Z
(j)
t , Iu).

Encrypt(GP, (M, δ), {PKθ}, v,Iv): The encryption algorithm takes input the global parameter
GP, an LSSS access structure (M, δ) where M = (M1, . . . ,M`)

> ∈ Z`×smax
q and δ : [`] → Uatt, a

set {PKθ} of public keys for all the relevant authorities, and a message vector v ∈ Zmq . The function
δ maps the row indices of M to attributes. We define the function ρ : [`] → AU as ρ(·) = T(δ(·))
which maps row indices of M to authorities. The algorithm proceeds as follows:
1. Parse Iv = {ι1, . . . , ιm} and v = (vι1 , . . . , vιm).
2. Sample {ri ← Zq}i∈[`] and f = (f2, . . . , fsmax)← Zsmax−1

q .
3. Sample z, b2, . . . , bsmax ,x2, . . . ,xsmax ← Zmq .

4. Set the matrix B =
[
z, b2, . . . , bsmax

]>
smax×m

.
5. Compute ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ Iv)) and set ϑi := (ϑi,1, . . . , ϑi,m).
6. Compute the following terms:

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ Iv)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ Iv)),

C4,i,j = [[Mi,jfj + yρ(i),jri]]1,

for all i ∈ [`], j ∈ {2, . . . , smax}, k ∈ [m].
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7. Compute C5,i,j = R(δ(i) ‖ j ‖ Iv)ri for all i ∈ [`], j ∈ [smax].
8. Output the ciphertext

CT =

(
(M, δ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j, C5,i,1, C5,i,j}j∈{2,...,smax},

i∈[`],k∈[m]

, Iv
)

.

Decrypt(GP,GID,CT, {SKGID,t,u}): It takes input the public key PK, a secret key SKS,u for an
attribute set S ⊆ Uatt and a vector u ∈ Znq and a ciphertext CT for an access structure (M, δ) with
M ∈ Z`×smax

q and a map δ : [`]→ Uatt.
Parse SKGID,t,u = (GID,u, SKt,u,Z

(j)
t , Iu), where i ∈ [`] and CT = ((M, δ), C0, {C1,i, C2,i,,

C3,i,j,k, C4,i,j, C5,i,1, C5,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv). Denote a set I = {i|δ(i) ∈ S} ⊆ [`]. If
(1, 0, . . . , 0) is not in the span of MI (i.e., M restricted to the set of rows from I) or Iu 6= Iv
decryption returns ⊥. Else, when S satisfies (M, ρ), the algorithm finds {wi ∈ Zq}i∈I such that
(1, 0, . . . , 0) =

∑
i∈I wiMi. It first computes

[[Λi]]T =
smax∏
j=2

n∏
k=1

uιk · C3,i,j,k · e(C4,i,j,H3(GID ‖ u ‖ j ‖ ιk)uιk )

and outputs loggT ([[Γ ]]T ) where [[Γ ]]T = C0 ·u · [[µ]]T and

[[µ]]T =


∏
i∈I


C1,i ·u · [[Λi]]T ·

smax∏
j=1

e(Z
(j)
δ(i), C5,i,j)

e
(
SKρ(i),u, C2,i

)

wi

−1

.

6.2 Correctness

Consider a secret key SKGID,S,u = (GID,u, {SKt,u,Z(j)
t }t∈S, Iu) consisting of a set of attributes

satisfying the LSSS access structure (M, δ) associated with a ciphertext CT = ((M, δ), C0, {C1,i,
C2,i,, C3,i,j,k, C4,i,j, C5,i,1, C5,i,j}j∈{2,...,smax},

i∈[`],k∈[m]

, Iv) such that Iu = Iv = I. In particular, the vector

(1, 0, . . . , 0) ∈ rowspan(MI) corresponding to the set of indices I = {i ∈ I|δ(i) = t ∈ S}.
For each i ∈ I , we have the following:

e(SKρ(i),u, C2,i) =
n∏
k=1

e(g1,H1(δ(i) ‖ ιk ‖ I))riαρ(i)uιk ·

smax∏
j=2

n∏
k=1

(e(g1,H2(j ‖ ιk ‖ I)) · e(g1,H3(GID ‖ u ‖ j ‖ ιk)))riyρ(i),juιk ·

smax∏
j=1

e(g1,R(δ(i) ‖ j ‖ I))τjri

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

uιkC3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk · e(g1,H2(j ‖ ιk ‖ I))riyρ(i),juιk

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

e(C4,i,j,H3(GID ‖ u ‖ j ‖ ιk)uιk )

= e([[Mi,jfj]]1,H3(GID ‖ u ‖ j ‖ ιk))uιk · e(g1,H3(GID ‖ u ‖ j ‖ ιk))riyρ(i),juιk
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For each i ∈ I ,

e(Z
(j)
δ(i), C5,i,j) = e(g1,R(δ(i) ‖ j ‖ I))τjri .

Finally, for each i ∈ I , we have C1,i = [[MiB + ϑi]]T and so

C1,i ·u · [[Λi]]T ·
smax∏
j=1

e(Z
(j)
δ(i), C5,i,j)

e
(
SKρ(i),u, C2,i

)
= [[MiB ·u]]T

n∏
k=1

e(g1,H1(δ(i) ‖ ιk ‖ I))riαρ(i)uιk ·

smax∏
j=2

n∏
k=1

(uιk · C3,i,j,k · e(C4,i,j,H3(GID ‖ u ‖ j ‖ ιk)uιk )) ·
smax∏
j=1

e(R(δ(i) ‖ j ‖ I), g2)
τjri

e
(
SKρ(i),u, C2,i

)
= [[MiB ·u]]T ·

smax∏
j=2

n∏
k=1

e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk · e([[Mi,jfj]]1,H3(GID ‖ u ‖ j ‖ ιk))uιk

Since SKS,u corresponds to a set of qualified authorities, ∃{wi ∈ Zq}i∈I such that∑
i∈I wiMiB ·u = (1, 0, . . . , 0)B · u = z ·u and

∑
i∈I wiMi,j = 0,∀j ∈ {2, . . . , smax}. Hence,

we have

∏
i∈I


C1,i ·u · [[Λi]]T ·

smax∏
j=1

e(Z
(j)
δ(i), C5,i,j)

e
(
SKρ(i),u, C2,i

)

wi

= [[
∑
i∈I

wiMiB ·u]]T = [[z ·u]]T

Finally, the message is recovered as loggT ([[Γ ]]T ) where

[[Γ ]]T = (C0 ·u)/[[z ·u]]T = [[v ·u+ z ·u]]T/[[z ·u]]T = [[v ·u]]T

6.3 Security Analysis

Theorem 6.1 If the L-DBDH assumption holds, then all PPT adversaries have a negligible advan-
tage in breaking the static security of the proposed LMA-ABUIPFE scheme in the random oracle
model.

We prove this theorem by showing that if there is any PPT adversary A who breaks the static
security of MA-ABUIPFE then there is a PPT adversary B who solves the L-DBDH problem with
a non-negligible advantage.

Suppose A breaks the static security of the LMA-ABUIPFE scheme with a non-negligible ad-
vantage. We then build a PPT adversary B that solves the L-DBDH problem with a non-negligible
advantage. Suppose, B gets an instanceG,

(
[[b]]1, [[c]]1,
[[a]]2, [[b]]2

)
,

{
[[aµi]]1, [[c/µi]]1,

[[aµi]]2

}
i∈[L]

,

{
[[cµι/µi]]1, [[acµι/µi]]1,

[[acµι/µi]]2

}
i,ι∈[L],
i 6=ι

, [[τ ]]T
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of the L-DBDH problem where ` ≤ L, G = (q,G1,G2,GT , g1, g2, e) ← G(1λ) is a group descrip-
tion, the elements a, b, c, µi ← Zq are random integers, and the element τ ∈ Zq is either abc or a
random element of Zq. The algorithm B works as follows:

Generating the Global Public Parameters: B sets the global public parameter GP = G =
(q,G1,G2,GT , g1, g2, e) and simulates A on behalf of the LMA-ABUIPFE challenger which takes
input 1λ and GP.

Attacker’s Queries: Upon initialization, the adversary A sends the following to B:
(a) A set C ⊂ AU of corrupt authorities and their respective public keys

{PKθ = (Yθ,1,Yθ,2, . . . ,Yθ,smax)}θ∈C,
where Yθ,1,Yθ,2, . . . ,Yθ,smax ∈ G1 for all θ ∈ C.

(b) A set N ⊂ AU \ C of non-corrupt authorities for which A requests the public keys.
(c) A collection of hash queries H1 = {(t, ιk, I) : t ∈ Uatt, ιk ∈ Z, I ⊂ N}, H2 = {(j, ιk, I) :

j ∈ {2, . . . , smax}, ιk ∈ Z, I ⊂ N} and H3 = {(GID,u, j, ιk) : GID ∈ GID,u ∈ Z∗, j ∈
{2, . . . , smax}, ιk ∈ Z}.

(d) A set R = {(t, j, I)} ⊂ Uatt × [smax] for each of which A queries the set of R values
{R(t ‖ 1 ‖ I), . . . ,R(t ‖ smax ‖ I)}
The hash functions are modeled as a random oracle in this proof.

(e) A set Q = {(GID, S,u, Iu)} of secret key queries with GID ∈ GID, S ⊆ Uatt such that
T(S) ∩ C = ∅, u ∈ Z|Iu| and Iu ⊂ Z where GIDs are distinct in each of these tuples.

(f) Two message vectors v0,v1 ∈ Znq having the same index set I∗, and a challenge LSSS access
policy (M, δ) with M = (Mi,j)`×smax = (M1, . . . ,M`)

> ∈ Z`×smax
q , δ : [`] → Uatt and satisfy-

ing the constraint that for each (GID, S,u, Iu) ∈ Q, either S∪
⋃
θ∈C T

−1(θ) ⊆ [`] constitutes an
unauthorized subset of rows of the access matrix M or the secret key vector u satisfies the rela-
tion (v0 − v1) ·u = 0 whenever Iu = I∗. Note that the set

⋃
θ∈C T

−1(θ) contains the attributes
belonging to the corrupt authorities.

Before answering A’s queries, the adversary B substitute the secret sharing matrix M with
the matrix M′ from Lemma 3.1 computed using IC = {i ∈ [`] : δ(i) ∈

⋃
θ∈C T

−1(θ)} as the
unauthorized subset of rows. Lemma 3.1 guarantees the fact that if B uses M′ instead of M in the
simulation, the view ofA in the simulated game is information theoretically the same as if B would
have used the original matrix M. Furthermore, Lemma 3.1 implies that if we assume the subspace
spanned by Mi|i∈IC has dimension c̃, then so is the dimension of the subspace spanned by M′

i|i∈IC
and M ′

i,j = 0 for all (i, j) ∈ IC × [smax − c̃]. B now proceeds to answer the queries of A. Denote
ŝmax = smax − c̃, where c̃ is the dimension of the sequence spanned by the rows of Mi|i∈IC , the
latter being the rows of M controlled by corrupted authorities, C.

Note that I∗ can be any subset of Z and w.l.o.g one can consider I∗ = [n]6 for some n ∈ N.
Inspired by the proof techniques of prior works [ABCP15, SP19], the reduction first compute a
basis of (v0 − v1)⊥ as {b̃1, . . . , b̃n−1}. Then the set S̃ = {v0 − v1, b̃1, . . . , b̃n−1} form a basis of
Znq . For any vector u ∈ Znq , if we represent it as the linear combination of the vectors in S̃ as

u = ζ · (v0 − v1) +
n−1∑
k=1

ζkb̃k, for some ζ, ζk ∈ Zq

then ζ = 0 whenever it holds that (v0 − v1) · u = 0. Let ek be the k-th vector in the standard basis
of Znq . We write ei for each i ∈ [n] as

ei = ηi · (v0 − v1) +
n−1∑
k=1

λi,kb̃k for some η, λi,k ∈ Zq.

6 In particular, we consider a map γ : I∗ → [n] and use γ(ιk) = k throughout the security analysis.
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Generating Authority Public Keys: There are two cases to consider:

1. Case 1 — θ 6∈ ρ([`]) (the authority is not present within the challenge access structure) —
In this case, B executes the Setup algorithm according to the real experiment. It samples
αθ, yθ,2, . . . , yθ,smax ← Zq by itself, and computes the public key component corresponding
to attribute t as ([[αθ]]1, [[yθ,2]]1, . . . , [[yθ,smax ]]1).

2. Case 2 — θ ∈ ρ([`]) \ C (the authority is non-corrupted and appears in the challenge access
structure) — In this case, B samples α′θ, y

′
θ,2, . . . , y

′
θ,smax

← Zq and implicitly sets αθ = α′θ +∑
i∈X aµi ·M ′

i,1 and yθ,j = y′θ,j +
∑

i∈X aµiM
′
i,j for j ∈ {2, . . . , ŝmax} and yθ,j = y′θ,j for j ∈

{ŝmax + 1, . . . , smax}(these are well-defined as ρ is injective), and sets the public key elements
w.r.t. attribute θ as ([[αθ]]1, [[yθ,2]]1, . . . , [[yθ,smax ]]1). where the elements [[αθ]]1 and [[yθ,j]]1 for j ∈
{2, . . . , ŝmax} are computed as follows:

[[αθ]]1 = [[α′θ]]1 ·
∏
i∈X

M ′
i,1[[aµi]]1, [[yθ,j]]1 = [[y′θ,j]]1 ·

∏
i∈X

M ′
i,j[[aµi]]1 (6.1)

for all j ∈ [2, ŝmax]. Note that, αθ and {yθ,j}j∈{2,...,smax} are distributed uniformly over Zq and
hence each of these elements of the public key is properly distributed.

Answering Hash Queries:

1. H1 queries. If (T(t) ∈ ρ([`]) ∧ ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements
h1,k̂, h1,t,ιk from Zq and set

H1(t ‖ ιk ‖ I) = (gb2)
ηk ·

n−1∏
k̂=1

g
h
1,k̂
λ
k,k̂

2 · gh1,t,ιk2 . (6.2)

Otherwise, if (T(t) 6∈ ρ([`])∨T(t) ∈ C ∨ ιk 6∈ I∗ ∨I 6= I∗), then output a random G2 element,

i.e., sample uniformly random element h′1,t,ιk from Zq and set H1(t ‖ ιk ‖ I) = g
h′1,t,ιk
2 . The

reduction stores the hash queries for future use.
2. H2 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements h2,k̂, h2,j,ιk for
j ∈ {2, . . . , ŝmax} (in Eq. 6.3) and elements h′2,j,ιk for j ∈ {ŝmax + 1, . . . , smax} from Zq (in Eq.
6.4) and set

H2(j ‖ ιk ‖ I) = (gb2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
k̂=1

g
h
2,k̂
λ
k,k̂

2 · gh2,j,ιk2 (6.3)

H2(j ‖ ιk ‖ I) = g
h′2,j,ιk
2 (6.4)

where Q denotes the total number of non-accepting key queries {(Sφ,uφ, Iuφ)}φ∈[Q] made
by the adversary in the case where Iuφ = I∗ but the attributes in Sφ does not satisfy the
challenge policy (M, δ). Note that, for such secret key queries, there exists a vector dφ =
(dφ,1, . . . , dφ,smax) ∈ Zsmax

q such that dφ,1 = 1 and the inner product M ′
i ·dφ = 0 for all i such

that δ(i) ∈ Sφ ∪
⋃
θ∈C T

−1(θ), where M ′
i denotes the i-th row of M′. Additionally, the set

of rows RM = {M ′
i ∈ Zsmax

q : i ∈ ρ−1(C)} has dimension c and M ′
i,j = 0 for all (i, j) ∈

ρ−1(C) × [ŝmax]. Therefore, RM spans the entire subspace V =

{
(

ŝmax︷ ︸︸ ︷
0, . . . , 0,ν) : ν ∈ Zcq

}
.

Thus, it follows that dφ is orthogonal to any of the vectors{
(

ŝmax︷ ︸︸ ︷
0, . . . , 0,

j−1︷ ︸︸ ︷
0, . . . , 0, 1,

c−j︷ ︸︸ ︷
0, . . . , 0)

}
j∈{ŝmax+1,...,smax}

.
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In other words, dφ,j = 0 for all j ∈ {ŝmax + 1, . . . , smax}. Combining the above two facts,
we have (M ′

i |[ŝmax]) · (dφ|[ŝmax]) = 0 for all i ∈ [`] such that δ(i) ∈ Sφ, where for a vector x,
x|X denotes a vector formed by taking the entries of x having indices in the set X ∈ N. For
simplicity of notation, let us denoteM ′

i ? dφ = (M ′
i |[ŝmax]) · (dφ|[ŝmax]) for i ∈ {i : δ(i) ∈ Sφ}.

Otherwise, if (ιk 6∈ I∗ ∨ I 6= I∗), then output a random G2 element, i.e., sample uniformly

random element h′′2,t,ιk from Zq and set H2(j ‖ ιk ‖ I) = g
h′′2,t,ιk
2 . The reduction stores the hash

queries for future use.
3. H3 queries. If (GID, Sφ,uφ, Iuφ) ∈ Q and Sφ ∩ ρ([`]) 6= ∅ and Sφ ∪

⋃
θ∈C T

−1(θ) corresponds
to an unauthorized subset of the rows of M then sample h3,j,ιk ← Zq and set

H3(GID ‖ uφ ‖ j ‖ ιk) = (gb2)
ηk

∑
φ′∈[Q]\{φ}−dφ′,j · gh3,j,ιk2 , ∀ j ∈ {2, . . . , ŝmax} (6.5)

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h3,j,ιk
2 , ∀ j ∈ {ŝmax + 1, . . . , smax} (6.6)

for all ιk ∈ Iuφ such that Iuφ = I∗ and dφ is as defined above.
If (GID, Sφ,uφ, Iuφ) ∈ Q and Sφ ∩ δ([`]) 6= ∅ and Iuφ 6= I∗ then sample h′3,j,ιk uniformly at

random from Zq and set H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′3,j,ιk
2 .

If (GID, Sφ,uφ, Iuφ) ∈ Q and Sφ ∩ δ([`]) 6= ∅ and Sφ ∪
⋃
θ∈C T

−1(θ) corresponds to an autho-

rized subset of the rows of M then sample h′′3,j,ιk ← Zq and set H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′3,j,ιk
2 .

If (GID, Sφ,uφ, Iuφ) ∈ Q and δ(i) 6∈ Sφ ∀ i ∈ [`] and Iuφ = I∗ then B sample h′′′3,j,ιk ← Zq
and set

H3(GID ‖ uφ ‖ j ‖ ιk) = (gb2)
ηk

∑
φ∈[Q]−dφ,j · g

h′′′3,j,ιk
2 , ∀ j ∈ {2, . . . , ŝmax} (6.7)

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′′3,j,ιk
2 , ∀ j ∈ {ŝmax + 1, . . . , smax} (6.8)

The reduction stores the hash queries for future use.
For all other cases, the reduction simple outputs a uniformly random element from G2 to answer
the hash query H3(GID ‖ uφ ‖ j ‖ ιk).

4. R queries. If T(t) 6∈ ρ([`]) or T(t) ∈ Cθ or I 6= I∗ then sample ξt,j ← Zq and set R(t ‖ j ‖ I) =

g
ξt,j
2 and stores the value to possibly reuse in a key query.

If T(t) ∈ ρ([`]) and I = I∗ then define a set X ′′ = {i : ρ(i) = T(t)} \ {i : δ(i) = t} ⊆ [`] and
sample ξ′t,j ← Zq for each j ∈ [smax] and set

R(t ‖ j ‖ I) = g
ξ′t,j
2 g

∑
i∈X′′ aµiM

′
i,j

2 = g
ξ′t,j
2

∏
i∈X′′

(gaµi2 )M
′
i,j . (6.9)

Generating Secret Keys: For any (GID, Sφ,uφ, Iuφ) ∈ Q, B returns a secret key SKGID,Sφ,uφ =
(GID,uφ,
{SKt,uφ}t∈Sφ , Iuφ), where it computes each of its components as follows. For each t ∈ Sφ and
Iuφ , it has four different cases to consider:

1. Case 1 — T(t) = θ 6∈ ρ([`]) (i.e., the authority of the attribute is not present in the challenge
policy) — In this case, B simulates the secret keys according to the real experiment. It knows
αθ, yθ,j for all j ∈ {2, . . . , smax} in clear and hence can compute

Kφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αθuιk ) ·
smax∏
j=2

n∏
k=1

(H2(j ‖ ιk ‖ Iuφ) · H3(GID ‖ uφ ‖ j ‖ ιk))yθ,juιk ,

SKφ,t,uφ = Kφ,t,uφ ·
smax∏
j=1

R(t ‖ j ‖ Iuφ)τj and Z
(j)
φ,t = [[τj]]1 ∀ j ∈ [smax]
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where H3(GID ‖ uφ ‖ j ‖ ιk) and τj ← Zq for j ∈ [smax] were sampled uniformly and
{R(t ‖ j ‖ Iuφ)}j∈[smax] are computed using the procedure described above.

2. Case 2 — (T(t) = θ ∈ ρ([`])∨Sφ∩ δ([`]) = ∅∧Iuφ 6= I∗) (i.e., the authority of the attribute is
present in the challenge policy, but the associated index set does not match with the challenge
index set) In this case, B extracts the corresponding exponents of the hash values from the list
of hash queries and computes

Kφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αθuιk ) ·
smax∏
j=2

n∏
k=1

(H2(j ‖ ιk ‖ Iuφ) · H3(GID ‖ uφ ‖ j ‖ ιk))yθ,juιk ,

SKφ,t,uφ = Kφ,t,uφ ·
smax∏
j=1

R(t ‖ j ‖ Iuφ)τj and Z
(j)
φ,t = [[τj]]1 ∀ j ∈ [smax]

where H3(GID ‖ uφ ‖ j ‖ ιk) and τj ← Zq for j ∈ [smax] were sampled uniformly.
3. Case 3 — (T(t) = θ ∈ ρ([`]) ∧ Sφ ∩ δ([`]) = ∅ ∧ Iuφ = I∗) (i.e., the authority of the attribute

is present in (M, δ), but none of user’s attributes is in it) — In this case, according to the hash
oracle queries, we have

H1(t ‖ ιk ‖ Iuφ) = (gb2)
ηk ·

n−1∏
k̂=1

g
h
1,k̂
λ
k,k̂

2 · gh1,t,ιk2 ; (Eq. 6.2)

H2(j ‖ ιk ‖ Iuφ) = (gb2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
k̂=1

g
h
2,k̂
λ
k,k̂

2 · gh2,j,ιk2 , ∀ j ∈ {2, . . . , ŝmax}; (Eq. 6.3)

H2(j ‖ ιk ‖ Iuφ) = g
h′2,j,ιk
2 , ∀ j ∈ {ŝmax, . . . , smax}; (Eq. 6.4)

H3(GID ‖ uφ ‖ j ‖ ιk) = (gb2)
ηk

∑Q
φ=1−dφ,j · g

h′′′3,j,ιk
2 , ∀ j ∈ {2, . . . , ŝmax} (Eq. 6.7)

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′′3,j,ιk
2 , ∀ j ∈ {ŝmax + 1, . . . , smax} (Eq. 6.8)

R(t ‖ j ‖ Iuφ) = g
ξ′t,j
2 · g

∑
i∈X aµiM

′
i,j

2 , ∀j ∈ [smax]. (Eq. 6.9)

Note that, in this case, X ′′ = X = {i : ρ(i) = θ} ⊆ [`]. It sets Z(j)
φ,t = [[τj]]1 where τ1 =

−b
∑n

k=1 ηkuιk and τj ← Zq for all j ∈ {2, . . . , smax}. Now, B computes the other secret key
component SKφ,t,uφ as

Kφ,t,uφ ·
smax∏
j=1

R(t ‖ j ‖ Iuφ)τj

=
n∏
k=1

(gbηk2 )αθuιk
ŝmax∏
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n∏
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((gb2)
ηk
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φ=1 dφ,j · (gb2)

ηk
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(g
∑
i∈X aµiM
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g
−baµiM ′i,1
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2 · gL
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i∈X

g
abηkµiM

′
i,1uιk

2 ·
∏
i∈X

n∏
k=1

g
−baµiM ′i,1ηkuιk
2 · gL(a,b)2 = g

L(aµi,b)
2

where L′(aµi, b), L(aµi, b) denote linear functions in aµi, b and hence can be efficiently com-
putable by B. Note that, τ1 is not properly distributed. B returns the re-randomized key using
the SKRand algorithm described at the end of the reduction.
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4. Case 4 — (T(t) = θ ∈ ρ([`])∧Sφ∩δ([`]) 6= ∅∧Iuφ = I∗) and Sφ∪
⋃
θ∈C T

−1(θ) is unauthorized
(i.e., the authority takes part in the execution of the challenge policy and the attributes along with
the corrupted attributes form an unauthorized key)— In this case, according to the hash oracle
queries, we have

H1(t ‖ ιk ‖ Iuφ) = (gb2)
ηk ·

n−1∏
k̂=1

g
h
1,k̂
λ
k,k̂

2 · gh1,t,ιk2 ; (Eq. 6.2)

H2(j ‖ ιk ‖ Iuφ) = (gb2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
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g
h
2,k̂
λ
k,k̂

2 · gh2,j,ιk2 , ∀ j ∈ {2, . . . , ŝmax}; (Eq. 6.3)

H2(j ‖ ιk ‖ Iuφ) = g
h′2,j,ιk
2 , ∀ j ∈ {ŝmax, . . . , smax}; (Eq. 6.4)

H3(GID ‖ uφ ‖ j ‖ ιk) = (gb2)
ηk

∑
φ′∈[Q]\{φ}−dφ′,j · gh3,j,ιk2 , ∀ j ∈ {2, . . . , ŝmax} (Eq. 6.5)

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h3,j,ιk
2 , ∀ j ∈ {ŝmax + 1, . . . , smax} (Eq. 6.6)

R(t ‖ j ‖ Iuφ) = g
ξ′t,j
2 · g

∑
i∈X aµiM

′
i,j

2 , ∀j ∈ [smax]. (Eq. 6.9)

It sets Z(j)
φ,t = [[τj]]1 where τj = −bdφ,j

∑n
k=1 ηkuιk for j ∈ {1, . . . , ŝmax} and τj ← Zq for all

j ∈ {ŝmax + 1, . . . , smax}. Now, B computes the other secret key component SKφ,t,uφ as

Kφ,t,uφ ·
smax∏
j=1

R(t ‖ j ‖ Iuφ)τj

=
n∏
k=1

(gbηk2 )αθuιk
ŝmax∏
j=2
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∏
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L(aµi,b)
2

where L′(aµi, b), L(aµi, b) denote linear functions in aµi, b and hence can be efficiently com-
putable by B. Observe that, X \ X ′′ = {i : δ(i) = t} ⊆ [`] contains rows that map to t in
the challenge policy. If t 6∈ δ([`]), then X \X ′′ is empty and hence the first product in the last
equation is eliminated. On the other hand, if t ∈ δ([`]) then (dφ ?M

′
i) = 0 and hence the

product in the last equation is vanished. Therefore, B can efficiently simulate the secret key.

35



Note that, τ1 is not properly distributed. B returns the re-randomized key using the SKRand
algorithm described at the end of the reduction.

5. Case 5 — (T(t) = θ ∈ ρ([`])∧Sφ∩δ([`]) 6= ∅∧Iuφ = I∗) and Sk∪
⋃
θ∈C T

−1(θ) is authorized
(i.e., the authority takes part in the execution of the challenge policy and the attributes along
with the corrupted attributes form an authorized key)– In this case, the hash oracles are defined
as follows:

H1(t ‖ ιk ‖ Iuφ) = (gb2)
ηk ·
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2 · gh1,t,ιk2 ; (Eq. 6.2)
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2 · gh2,j,ιk2 , ∀ j ∈ {2, . . . , ŝmax}; (Eq. 6.3)

H2(j ‖ ιk ‖ Iuφ) = g
h′2,j,ιk
2 , ∀ j ∈ {ŝmax, . . . , smax}; (Eq. 6.4)

H3(GID ‖ uφ ‖ j ‖ ιk) = g
h′′3,j,k
2 , ∀ j ∈ {2, . . . , smax}

R(t ‖ j ‖ Iuφ) = g
ξ′t,j
2 · g

∑
i∈X aµiM

′
i,j

2 , ∀j ∈ [smax]. (Eq. 6.9)

It sets Z(j)
φ,t = [[τj]]1 where τj = −bdφ,j

∑n
k=1 ηkuιk for j ∈ {1, . . . , ŝmax} and τj ← Zq for all

j ∈ {ŝmax + 1, . . . , smax}. Now, B computes the other secret key component SKφ,t,uφ as

Kφ,t,uφ ·
smax∏
j=1

R(t ‖ j ‖ Iuφ)τj

=
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where L′φ(aµi, b), Lφ(aµi, b) denote linear functions in aµi, b and hence can be efficiently com-
putable by B. Observe that, for any authorized key it holds that η · uφ = 0 and hence the first
product in the last equation is vanished. Therefore, B can efficiently simulate the secret key.
Note that, τ1 is not properly distributed. B returns the re-randomized key using the SKRand
algorithm described at the end of the reduction.

Generating the Challenge Ciphertext: B implicitly sets the vectors

z = −abc · η = −abc(η1, . . . , ηn) ∈ Znq ,
xj = −(ac, . . . , ac) ∈ Znq , fj = −ac ∈ Zq, ∀j ∈ {2, . . . , ŝmax},
xj = 0 ∈ Znq , fj = 0 ∈ Zq, ∀j ∈ {ŝmax + 1, . . . , smax}

There are two cases to consider according to the authority whether it is corrupted or non-corrupted.

36



1. Case 1 — ρ(i) ∈ C (meaning that the authority associated with this row is corrupted) — In this
case, it holds that M ′

iB = 0 and M ′
i,jxj = 0 for all (i, j) ∈ ρ−1(C) × [ŝmax] since M ′

i |[ŝmax] ={ ŝmax︷ ︸︸ ︷
0, . . . , 0

}
and due to the above implicit setting of B,xj . Thus, for each such row, B picks

ri ← Zq, and using the authority public key PKρ(i) = (Yρ(i),1,Yρ(i),2, . . . ,Yρ(i),smax) obtained
from A, it computes

C0 = [[vβ + z]]T , C1,i = [[M ′
iB + ϑi]]T = [[ϑi]]T , C2,i = [[ri]]1,

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[Yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e(ri[[Yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))
C4,i,j = [[M ′

i,jfj + Yρ(i),jri]]1 = [[Yρ(i),jri]]1,

C5,i,1 = R(δ(i) ‖ 1 ‖ I∗)ri , C5,i,j = R(δ(i) ‖ j ‖ I∗)ri

for all i ∈ [`], j ∈ {2, . . . , smax} and k ∈ [n], where ϑi = (ϑi,1, . . . , ϑi,m) and

ϑi,k = e(ri[[Yρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

2. Case 2 — ρ(i) ∈ N (meaning that the authority associated with this row is uncorrupted) —
Firstly, B setsC0 = [[vβ+z]]T where β is the challenge bit forA. It also implicitly sets ri = c/µi
and the matrix B = (z,0, · · · ,0)> ∈ Zsmax×n

q . This implies M ′
iB = M ′

i,1z = −M ′
i,1 · abc · η

and the k-th element of the vector is (M ′
iB)k = −M ′

i,1abcηk. Recall that, for each i ∈ [`], we
have αρ(i) = α′ρ(i) + a

∑
ς∈X µς ·M ′

ς,1 and yρ(i),j = y′ρ(i),j + a
∑

ς∈X µςM
′
ς,j . Now, B implicitly

computes the vector ϑi := (ϑi,1, . . . , ϑi,m) as

ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗))
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)
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k̂=1
h1,k̂λk,k̂ + h1,ρ(i),ιk . We write h1,i = (h1,ρ(i),ιk)

n
k=1. Thus, for each i ∈ [`],

B sets C2,i = [[c/µi]]1 and computes

C1,i = [[MiB + ϑi]]T
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Next, B computes C3,i,j,k as follows. Recall that C3,i,j,k is a product of two pairing operations.
Note that,M ′

i,jxj,k = 0 if j ∈ {ŝmax+1, . . . , smax}. Thus, for j ∈ {2, . . . , ŝmax}, the first pairing
is computed as

e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗))

= e([[M ′
i,jxj,k]]1, (g

b
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i,jxj,kbηkd

+
j +M ′
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where d+j =
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φ=1 dφ,j and h2,i,k =
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k̂=1
h2,k̂λk,k̂ + h2,ρ(i),ιk . If j ∈ {2, . . . , ŝmax}, the second

pairing is computed as

e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e([[cy′ρ(i),j/µi + a
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Finally, for each i ∈ [`], j ∈ {2, . . . , ŝmax}, k ∈ [n], the ciphertext component C3,i,j,k is obtained
as

e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= [[y′ρ(i),jηkd
+
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which B can compute as a part of the challenge ciphertext. Now, if j ∈ {ŝmax + 1, . . . , smax},
recall that yρ(i),j are known is clear and hence B computes C3,i,j,k as

C3,i,j,k = e([[M ′
i,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e(ri[[yρ(i),j]]1, [[h
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]]2)
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1 , g2)
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′
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for all i ∈ [`], k ∈ [n].
Next, B computes
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if i ∈ [`], j ∈ {2, . . . , ŝmax}. Note that, M ′
i,jfj = 0 and yρ(i),j are known in clear for j ∈

{ŝmax + 1, . . . , smax}. Hence, B computes C4,i,j as

C4,i,j = [[M ′
i,jfj + yρ(i),jri]]1 = [[yρ(i),jc/µi]]1 = (g

c/µi
1 )yρ(i),j

for each i ∈ [`], j ∈ {2, . . . , smax}. Lastly, B computes

C5,i,j = R(δ(i) ‖ j ‖ I∗)ri = (g
ξ′
δ(i),j

2 · g
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ς∈X′′ aµςM
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2 )c/µi
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2 )M
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for all i ∈ [`], j ∈ [smax]. Notice that, i 6∈ X ′′ and ` ≤ L, and hence the adversary B can com-
pute the ciphertext componentC5,i,j . Observe that, the elements B,xj, fj and ri are not properly
distributed. Thus, B re-randomizes the ciphertext components using the algorithm CTRand de-
scribed below before it sends to A.

Re-randomization Algorithms: The algorithms described below provides properly distributed se-
cret keys and ciphertexts even if the randomness used within their original version (inputted through
the algorithm) are not uniform. The algorithm uses only publicly available information to perform
the re-randomization. This algorithm is used to rectify the distribution of the secret keys and ci-
phertexts in our reduction.

SKRand(GP, t, SKGID,t,u): The algorithm takes input the global parameters GP, an attribute t
and a secret key SKGID,t,u = (GID,u, SKt,u, {K(j)

t }j∈[smax], Iu). The algorithm samples τ ′j ← Zq for
each j ∈ [smax], computes

SK′t,u = SKt,u ·
smax∏
j=1

R(t ‖ j ‖ Iu)τ
′
j and Z

(j)′

φ,t = Z
(j)
φ,t · [[τ

′
j]]1 ∀ j ∈ [smax]

and outputs SK′GID,t,u = (GID,u, SK′t,u, {K
(j)′

t }j∈[smax], Iu).

CTRand((M, ρ),CT,PK): The algorithm takes input an LSSS access policy (M, δ), where M =
(Mi,j)`×smax = (M1, . . . ,M`)

> ∈ Z`×smax
q and δ : [`]→ Uatt, a ciphertext CT = ((M, δ), C0, {C1,i,

C2,i,, C3,i,j,k, C4,i,j, C5,i,1, C5,i,j}j∈{2,...,smax},
i∈[`],k∈[m]

, Iv), and the public key components PK such that

δ([`]) ⊆ Uatt. The algorithm defines a map ρ : [`]→ AU as before and proceeds as follows:

1. Sample
(a) r′1, . . . , r

′
` ← Zq,

(b) B′ = (z′, b′2, . . . , b
′
smax

)> ∈ Zsmax×n
q ,

(c) x′2, . . . ,x
′
smax
∈ Znq ,

(d) f ′2, . . . , f
′
smax
∈ Zq

2. Compute C ′0 = C0 · [[z′]]T .
3. For all i ∈ [`], j ∈ {2, . . . , smax} and k ∈ [n], compute

C ′1,i = C1,i · [[MiB
′ + ϑ′i]]T ,

C ′2,i = C2,i · [[r′i]],
C ′3,i,j,k = C3,i,j,k · e([[Mi,jx

′
j,k]]1,H2(j ‖ ιk ‖ Iv)) · e(r′i[[yρ(i),j]]1,H2(j ‖ ιk ‖ Iv))

C ′4,i,j = C4,i,j · [[Mi,jf
′
j + yρ(i),jr

′
i]]1

C ′5,i,1 = C5,i,1 · R(δ(i) ‖ 1 ‖ Iv)r
′
i

C ′5,i,j = C5,i,j · R(δ(i) ‖ j ‖ Iv)r
′
i

where ϑ′i = (ϑ′i,1, . . . , ϑ
′
i,n) and ϑ′i,k = e(r′i[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

4. Output the ciphertext CT =

(
(M, ρ) , C ′0, {C ′1,i, C ′2,i,, C ′3,i,j,k, C ′4,i,j, C ′5,i,1, C ′5,i,j}j∈{2,...,smax},

i∈[`],k∈[m]

, Iv
)

.

Guess: If A guesses the challenge bit β ∈ {0, 1} correctly, B returns 1; Otherwise B outputs 0.
Now, observe that z = −τ · η where [[τ ]]T is the L-DBDH challenge element. If τ = abc, then
all the secret keys and the challenge ciphertext are distributed properly, in particular, the challenge
ciphertext is an encryption of the message vector vβ for β ← {0, 1}. Therefore, in this case, A
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outputs β′ = β with probability 1/2 + ε(λ) where ε(λ) is the advantage of A in the static security
game of the LMA-ABUIPFE scheme. On the other hand, if τ is a random element of Zq then the
ciphertext element C0 is uniformly random in GT , and hence from A’s point of view there is no
information of the challenge bit β in the challenge ciphertext. So, the probability of A outputting
β′ = β is exactly 1/2. Hence, by the guarantee of L-DBDH assumption, A has a non-negligible
advantage against the proposed LMA-ABUIPFE scheme in the static security game. This completes
the proof.
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APPENDIX

A The Proposed Small Universe ABUIPFE from DBDH

In this section, we describe the formal construction and security analysis of our small uni-
verse single authority ABUIPFE scheme. The construction is in prime-order groups and enjoys
succinct secret keys.The construction also makes use of hash functions which are modeled as
random oracles in the security analysis.

A.1 The Construction

Setup(1λ, smax,Uatt): The setup algorithm takes input the security parameter λ, the maximum
width of an LSSS matrix supported by the scheme smax = smax(λ), the vector length n in unary
and the description of the attribute universe Uatt. It first generates G = (q,G,GT , g, e). Consider
two hash functions H1 : Uatt × Z × Z∗ → G2 and H2 : [smax] × Z × Z∗ → G2. Then for each
attribute t ∈ Uatt, it samples the scalars αt, yt,2, . . . , yt,smax ← Zq, and outputs

PK =
(
G, {[[αt]]1, {[[yt,j]]1}j∈{2,...,smax}}t∈Uatt

)
, MSK = {G, {αt, {yt,j}j∈{2,...,smax}}t∈Uatt}

KeyGen(MSK, S, u,Iu): The key generation algorithm takes input master secret key MSK,
a set of attributes S ⊆ Uatt and a vector u ∈ Znq with an associated index set Iu ⊂ N. For each
t ∈ S, it does the following:

1. Parse Iu = {ι1, . . . , ιn} and u = (uι1 , . . . , uιn).
2. For each j ∈ {2, . . . , smax}, k ∈ [n], compute Kj,k = [[Kj,k]]2, where Kj,k ← Zq.
3. Compute

SKt,u = (
n∏
k=1

H1(t ‖ ιk ‖ Iu)αtuιk ) ·
smax∏
j=2

n∏
k=1

(H2(j ‖ ιk ‖ Iu) · Kj,k)yt,juιk

.

Output SKS,u =
(
u, {SKt,u}t∈S, {Kj,k}j∈{2,...,smax},k∈[n], Iu

)
as the secret key.

Encrypt(PK, (M, ρ), v,Iv): The encryption algorithm takes input the public key PK, an
LSSS access structure (M, ρ) where M = (M1, . . . ,M`)

> ∈ Z`×smax
q and ρ : [`] → Uatt,

and a message vector v ∈ Zmq . The function ρ maps the row indices of M to attributes. We
assume that ρ is an injective function, that is, an attribute is associated with at most one row of
M. The algorithm proceeds as follows:

1. Parse Iv = {ι1, . . . , ιm} and v = (vι1 , . . . , vιm).
2. Sample {ri ← Zq}i∈[`] and f = (f2, . . . , fsmax)← Zsmax−1

q .
3. Sample z, b2, . . . , bsmax ,x2, . . . ,xsmax ← Zmq .
4. Set the following matrices:

B =
[
z, b2, . . . , bsmax

]>
smax×m

, X =
[
x2,x3, . . . ,xsmax

]>
(smax−1)×m

5. Compute ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ Iv)) and set ϑi := (ϑi,1, . . . , ϑi,m).



6. Compute the following terms:

C0 = [[v + z]]T , C1,i = [[MiB + ϑi]]T , C2,i = [[ri]]1,
C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ Iv)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ Iv)),

C4,i,j = [[Mi,jfj + yρ(i),jri]]1

for all i ∈ [`], j ∈ {2, . . . , smax}, k ∈ [m].
7. Output the ciphertext, CT =

(
(M, ρ) , C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv

)
.

Decrypt(PK, SKS,u,CT): The decryption algorithm takes input the public key PK, a secret
key SKS,u for an attribute set S ⊆ Uatt and a vector u ∈ Znq and a ciphertext CT for an access
structure (M, ρ) with M ∈ Z`×smax

q and an injective map ρ : [`]→ Uatt.
Parse SKS,u =

(
u, {SKρ(i),u}ρ(i)∈S, Iu

)
, where i ∈ [`] and CT = ((M, ρ), C0, {C1,i, C2,i,,

C3,i,j,k, C4,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv). Denote I = {i|ρ(i) ∈ S} ⊆ [`]. If (1, 0, . . . , 0) is not
in the span of MI (i.e., M restricted to the set of rows from I) or Iu 6= Iv decryption returns
⊥. Else, when S satisfies (M, ρ), the algorithm finds {wi ∈ Zq}i∈I such that (1, 0, . . . , 0) =∑

i∈I wiMi. It then computes

[[Γ ]]T = C0 ·u ·


∏
i∈I


C1,i ·u ·

smax∏
j=2

n∏
k=1

(uιk · C3,i,j,k · e(C4,i,j,K
uιk
j,k ))

e
(
SKρ(i),u, C2,i

)

wi

−1

and outputs loggT ([[Γ ]]T ).

A.2 Correctness

Consider a secret key SKS,u =
(
u, {SKt,u}t∈S, {Kj}j∈{2,...,smax}, Iu

)
consisting of a set of at-

tributes satisfying the LSSS access structure (M, ρ) associated with a ciphertext CT = ((M, ρ),
C0, {C1,i, C2,i,, C3,i,j,k, C4,i,j}i∈[`],j∈{2,...,smax},k∈[m], Iv) such that Iu = Iv = I. In particular, the
vector (1, 0, . . . , 0) ∈ rowspan(MI) corresponding to the set of indices I = {i ∈ I|ρ(i) = t ∈
S}.
For each i ∈ I , we have the following:

e(SKρ(i),u, C2,i) =
n∏
k=1

e(g1,H1(ρ(i) ‖ ιk ‖ I))riαρ(i)uιk ·

smax∏
j=2

n∏
k=1

(e(g1,H2(j ‖ ιk ‖ I)) · e(g1,Kj,k))riyρ(i),juιk

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

uιkC3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk · e(g1,H2(j ‖ ιk ‖ I))riyρ(i),juιk

For i ∈ I, j ∈ {2, . . . , smax}, k ∈ [n],

e(C4,i,j,K
uιk
j,k ) = e([[Mi,jfj]]1,Kj,k)

uιk · e(g1,Kj,k)riyρ(i),juιk
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Finally, for each i ∈ I , we have C1,i = [[MiB + ϑi]]T and so

C1,i ·u ·
smax∏
j=2

n∏
k=1

(uιk · C3,i,j,k · e(C4,i,j,K
uιk
j,k ))

e
(
SKρ(i),u, C2,i

)

= [[MiB ·u]]T

n∏
k=1

e(g1,H1(ρ(i) ‖ ιk ‖ I))riαρ(i)uιk ·

smax∏
j=2

n∏
k=1

(uιk · C3,i,j,k · e(C4,i,j,K
uιk
j,k ))

e
(
SKρ(i),u, C2,i

)
= [[MiB ·u]]T ·

smax∏
j=2

n∏
k=1

e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I))uιk · e([[Mi,jfj]]1,Kj,k)
uιk

Since SKS,u corresponds to a set of qualified authorities, ∃{wi ∈ Zq}i∈I such that∑
i∈I wiMiB ·u = (1, 0, . . . , 0)B · u = z ·u and

∑
i∈I wiMi,j = 0,∀j ∈ {2, . . . , smax}.

Hence, we have

∏
i∈I

[C1,i ·u ·
smax∏
j=2

n∏
k=1

(uιk · C3,i,j,k · e(C4,i,j,K
uιk
j,k ))

e
(
SKρ(i),u, C2,i

) ]wi
= [[
∑
i∈I

wiMiB ·u]]T = [[z ·u]]T

Finally, the message is recovered as loggT ([[Γ ]]T ) where

[[Γ ]]T = (C0 ·u)/[[z ·u]]T = [[v ·u+ z ·u]]T/[[z ·u]]T = [[v ·u]]T

A.3 Security Analysis

Theorem A.1 If the DBDH assumption holds, then all PPT adversaries have a negligible ad-
vantage in breaking static security of the proposed small universe ABUIPFE scheme in the
random oracle model.

Proof. We prove this theorem by showing that if there is any PPT adversary A who breaks the
static security of ABUIPFE then there is a PPT adversary B who solves the DBDH problem
with a non-negligible advantage.

Suppose,B gets an instance (G, [[a]]1, [[c]]1, [[a]]2, [[b]]2, [[τ ]]T ) of the DBDH problem where G =
(q,G1,G2,GT ,
g, e) ← G(1λ) is a group description, the elements a, b, c ← Zq are random integers, and
the element τ ∈ Zq is either abc or a random element of Zq. The algorithm B works as follows:

On input λ, A outputs smax,Uatt and queries the following.

Attacker’s Queries: Upon initialization, the adversary A sends the following to B:

(a) A collection of hash queries H1 = {(t, ιk, I) : t ∈ Uatt, ιk ∈ Z, I ⊂ N} and H2 =
{(j, ιk, I) : j ∈ {2, . . . , smax}, ιk ∈ Z, I ⊂ N}.

(b) A set Q = {(S,u, Iu)} of secret key queries with S ⊆ Uatt, u ∈ Z|Iu| and Iu ⊂ Z.
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(c) Two message vectors v0,v1 ∈ Znq having the same index set I∗, and a challenge LSSS access
policy (M, ρ) with M = (Mi,j)`×smax = (M1, . . . ,M`)

> ∈ Z`×smax
q and ρ : [`] → Uatt

injective and satisfying the constraint that for each (S,u, Iu) ∈ Qu, either ρ−1(S) ⊆ [`]
constitutes an unauthorized subset of rows of the access matrix M or the secret key vector
u satisfies the relation (v0 − v1) ·u = 0 whenever Iu = I∗.

Note that I∗ can be any subset of Z and w.l.o.g one can consider I∗ = [n]7 for some n ∈ N.
Inspired by the proof techniques of prior works [ABCP15, SP19], the reduction first compute a
basis of (v0 − v1)⊥ as {b̃1, . . . , b̃n−1}. Then the set S̃ = {v0 − v1, b̃1, . . . , b̃n−1} form a basis
of Znq . For any vector u ∈ Znq , if we represent it as the linear combination of the vectors in S̃ as

u = ζ · (v0 − v1) +
n−1∑
k=1

ζkb̃k, for some ζ, ζk ∈ Zq

then ζ = 0 whenever it holds that (v0 − v1) · u = 0. Let ek be the k-th vector in the standard
basis of Znq . We write ei for each i ∈ [n] as

ei = ηi · (v0 − v1) +
n−1∑
k=1

λi,kb̃k for some η, λi,k ∈ Zq.

Generating Public Key: There are two cases to consider:

1. Case 1 — t ∈ Uatt \ ρ([`]) (i.e., attribute t is absent in the challenge policy (M, ρ)) —
In this case, B executes the Setup algorithm according to the real experiment. It samples
αt, yt,2, . . . , yt,smax ← Zq by itself, and computes the public key component corresponding
to attribute t as ([[αt]]1, [[yt,2]]1, . . . , [[yt,smax ]]1).

2. Case 2 — t ∈ Uatt ∩ ρ([`]) (i.e., attribute t appears in the challenge policy (M, ρ)) — In
this case, B samples α′t, y

′
t,2, . . . , y

′
t,smax

← Zq and implicitly sets αt = α′t + a ·Mρ−1(t),1

and yt,j = y′t,j + aMρ−1(t),j for j ∈ {2, . . . , smax} (these are well-defined as ρ is injective),
and sets the public key elements w.r.t. attribute t as ([[αt]]1, [[yt,2]]1, . . . , [[yt,smax ]]1). where the
elements [[αt]]1 and [[yt,j]]1 for j ∈ {2, . . . , smax} are computed as follows:

[[αt]]1 = [[α′t]]1 ·Mρ−1(t),1[[a]]1,[[yt,j]]1 = [[y′t,j]]1 ·Mρ−1(t),j[[a]]1 (A.1)

for all j ∈ [2, smax]. Note that, αt and {yt,j}j∈{2,...,smax} are distributed uniformly over Zq and
hence each of these elements of the public key is properly distributed.

Finally, it sends the public key as PK =
(
G, {[[αt]]1, {[[yt,j]]1}j∈{2,...,smax}}t∈Uatt

)
.

Answering Hash Queries:

1. H1 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements h1,k̂, h1,t,ιk
from Zq and set

H1(t ‖ ιk ‖ I) = (gb2)
ηk ·

n−1∏
k̂=1

g
h
1,k̂
λ
k,k̂

2 · gh1,t,ιk2 . (A.2)

Otherwise, if (ιk 6∈ I∗ ∨ I 6= I∗), then output a random G2 element, i.e., sample uniformly

random element h′1,t,ιk from Zq and set H1(t ‖ ιk ‖ I) = g
h′1,t,ιk
2 . The reduction stores the

hash queries for future use.
7 In particular, we consider a map γ : I∗ → [n] and use γ(k) = ιk throughout the security analysis.
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2. H2 queries. If (ιk ∈ I∗ ∧ I = I∗), then sample uniformly random elements h2,k̂, h2,t,ιk
from Zq and set

H2(j ‖ ιk ‖ I) = (gb2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
k̂=1

g
h
2,k̂
λ
k,k̂

2 · gh2,t,ιk2 (A.3)

where Q denotes the total number of non-accepting key queries {(Sφ,uφ, Iuφ)}φ∈[Q] made
by the adversary in the case where Iuφ = I∗ but the attributes in Sφ does not satisfy the
challenge policy (M, ρ). Note that, for such secret key queries, there exists a vector dφ =
(dφ,1, . . . , dφ,smax) ∈ Zsmax

q such that dφ,1 = 1 and the inner product Mi ·dφ = 0 for all
i ∈ ρ−1(S), whereMi denotes the i-th row of M.
Otherwise, if (ιk 6∈ I∗ ∨ I 6= I∗), then output a random G2 element, i.e., sample uniformly

random element h′2,t,ιk from Zq and set H2(j ‖ ιk ‖ I) = g
h′2,t,ιk
2 . The reduction stores the

hash queries for future use.

Generating Secret Keys: For any (Sφ,uφ, Iuφ) ∈ Q, B returns a secret key SKSφ,uφ =
(uφ, {SKt,uφ}t∈Sφ ,
{Kφ,j,k}j∈{2,...,smax}, Iuφ), where it computes each of its components as follows. For each t ∈ Sφ
and Iuφ , it has four different cases to consider:

1. Case 1 — (t ∈ Sφ \ ρ([`])) (i.e., the attribute is absent in the challenge policy (M,ρ)) — In
this case, B simulates the secret keys according to the real experiment. It knows αt, yt,j for
all j ∈ {2, . . . , smax} in clear and hence can compute

SKφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αtuιk ) ·
smax∏
j=2

n∏
k=1

(H2(j ‖ ιk ‖ Iuφ) · Kφ,j,k)yt,juιk

where {Kφ,j,k ← G2}j∈{2,...,smax},k∈[n] are sampled uniformly.
2. Case 2 — (t ∈ Sφ ∩ ρ([`]) ∧ Iuφ 6= I∗) (i.e., the attribute is present in the challenge policy,

but the associated index set does not match with the challenge index set) In this case, B
extracts the corresponding exponents of the hash values from the list of hash queries and
computes

SKφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αtuιk ) ·
smax∏
j=2

n∏
k=1

(H2(j ‖ ιk ‖ Iuφ) · Kj,k)yt,juιk

where {Kφ,j,k = g
kφ,j,k
2 }j∈{2,...,smax},k∈[n] and kφ,j,k’s are sampled uniformly from Zq.

3. Case 3 — (t ∈ Sφ ∩ ρ([`]) ∧ Iuφ = I∗) and ρ−1(Sφ) constitutes an unauthorized subset of
the rows of M (i.e., Sφ does not satisfy the challenge policy (M, ρ)).
Note that the inner product value (v0 − v1) ·uφ can be either zero or non-zero in this
case. Since Sφ does not satisfy the challenge policy (M, ρ), there exists a vector dφ =
(dφ,1, . . . , dφ,smax) ∈ Zsmax

q such that dφ,1 = 1 and the inner product Mi ·dφ = 0 for all
i ∈ ρ−1(Sφ), where Mi denotes the i-th row of M. B computes the secret key SKt,u as
follows.
It first samples k′φ,j,k ← Zq and sets

Kφ,j,k = (gb2)
ηk

∑
φ′∈[Q]\{φ}−dφ′,j · gk

′
φ,j,k

2
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for all j ∈ {2, . . . , smax}, k ∈ [n]. Note that the fact Kφ,j,k ∈ G2 is randomly distributed
since k′φ,j,k is chosen uniformly at random from Zq. Next, it computes

SKφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αtuιk ) ·
smax∏
j=2

n∏
k=1

(H2(j ‖ ιk ‖ Iuφ) · Kj,k)yt,juιk

= (
n∏
k=1

(gab2 )ηkMρ−1(t),1uιk ) ·
smax∏
j=2

n∏
k=1

((gab2 )ηk
∑Q
φ=1 dφ,j · (gab2 )ηk

∑
φ′∈[Q]\{φ}−dφ′,j)Mρ−1(t),juιk · gLφ(a,b)2

= (
n∏
k=1

(gab2 )ηkMρ−1(t),1uιk ) ·
smax∏
j=2

n∏
k=1

(gab2 )ηkdφ,jMρ−1(t),juιk · gLφ(a,b)2

=
smax∏
j=1

n∏
k=1

(gab2 )ηkdφ,jMρ−1(t),juιk · gLφ(a,b)2

=
n∏
k=1

(gab2 )ηkuιk (Mρ−1(t)·dφ) · gLφ(a,b)2

= g
Lφ(a,b)
2

where Lφ(a, b) represents a linear function in a, b and hence gLφ(a,b)2 can be efficiently com-
putable by B. The first equality follows from the definition of αt, yt,j (Equation (A.1)) and
the hash functions H1 (Equation (A.2)) and H2 (Equation (A.3)). The last equality holds due
to the fact thatMρ−1(t) ·dφ = 0 and the second last equality holds since dφ,1 = 1.

4. Case 4 — (t ∈ Sφ∩ρ([`])∧Iuφ = I∗) and ρ−1(S) constitutes an authorized subset of rows
of M (i.e., S satisfies the challenge policy (M, ρ)) – In this case, B samples k′′φ,j,k ← Zq
and sets Kφ,j,k = gk

′′
φ,j,k for all j ∈ {2, . . . , smax}. It then computes the secret key SKφ,t,uφ as

follows:

SKφ,t,uφ = (
n∏
k=1

H1(t ‖ ιk ‖ Iuφ)αtuιk ) ·
smax∏
j=2

n∏
k=1

(H2(j ‖ ιk ‖ Iuφ) · Kj,k)yt,juιk

= (
n∏
k=1

(gab2 )ηkMρ−1(t),1uιk ) ·
smax∏
j=2

n∏
k=1

((gab2 )ηk
∑Q
φ=1 dφ,j)Mρ−1(t),juιk · gLφ(a,b)2

=

[
(gab2 )ηkMρ−1(t),1 ·

smax∏
j=2

(gab2 )ηk
∑Q
φ=1 dφ,jMρ−1(t),j

]η·uφ
· gLφ(a,b)2

= g
Lφ(a,b)
2

where the last equality follows from the fact that η ·uφ = 0 if the secret key query satisfies
the condition (v0 − v1) ·uφ = 0 as Sφ is authorized. Hence, in this case, B can efficiently
simulates the secret key as Lφ(a, b) is linear in a, b.

Generating the Challenge Ciphertext: B implicitly sets the vectors

z = −abc · η = −abc(η1, . . . , ηn) ∈ Znq ,
xj = −(ac, . . . , ac) ∈ Znq , ∀j ∈ {2, . . . , smax}

Firstly, B sets C0 = [[vβ + z]]T where β is the challenge bit for A. It also implicitly sets
ri = c, fj = −ac and the matrix B = (z,0, · · · ,0)> ∈ Zsmax×n

q . This impliesMiB = Mi,1z =
−Mi,1 · abc · η and the k-th element of the vector is (MiB)k = −Mi,1abcηk. Recall that, for
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each i ∈ [`], we have αρ(i) = α′ρ(i) + a ·Mi,1 and yρ(i),j = y′ρ(i),j + aMi,j . Now, B implicitly
computes the vector ϑi := (ϑi,1, . . . , ϑi,m) as

ϑi,k = e(ri[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗))

= e([[cα′ρ(i) + ac ·Mi,1]]1, [[bηk +
n−1∑
k̂=1

h1,k̂λk,k̂ + h1,ρ(i),ιk ]]2)

= [[bcα′ρ(i)ηk +Mi,1abcηk + (cα′ρ(i) + ac ·Mi,1)h1,i,k]]T

where h1,i,k =
∑n−1

k̂=1
h1,k̂λk,k̂ + h1,ρ(i),ιk . We write h1,i = (h1,ρ(i),ιk)

n
k=1. Thus, for each i ∈ [`],

B sets C2,i = [[c]]1 and computes

C1,i = [[MiB + ϑi]]T

= [[bcα′ρ(i)η + (cα′ρ(i) + ac ·Mi,1)h1,i]]T

= e(gc1, g
b
2)
α′
ρ(i)
η · e(gc, g)α

′
ρ(i)

hi · e(gc1, ga2)Mi,1h1,i

Next, B computes C3,i,j,k as follows. Recall that C3,i,j,k is a product of two pairing operations.
The first pairing is computed as

e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I∗))

= e([[Mi,jxj,k]]1, (g
b
2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
k̂=1

g
h
2,k̂
λ
k,k̂

2 · gh2,ρ(i),ιk2 )

= [[Mi,jxj,kbηkd
+
j +Mi,jxj,kh2,i,k]]T

where d+j =
∑Q

φ=1 dφ,j and h2,i,k =
∑n−1

k̂=1
h2,k̂λk,k̂ + h2,ρ(i),ιk . The second pairing is computed

as

e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

= e([[cy′ρ(i),j + acM ′
i,j]]1, (g

b
2)
ηk

∑Q
φ=1 dφ,j ·

n−1∏
k̂=1

g
h
2,k̂
λ
k,k̂

2 · gh2,ρ(i),ιk2 )

= [[bc(y′ρ(i),j + aMi,j)ηkd
+
j + c(y′ρ(i),j + aMi,j)h2,i,k]]T

Finally, for each i ∈ [`], j ∈ {2, . . . , smax}, k ∈ [n], the ciphertext component C3,i,j,k is obtained
as

C3,i,j,k = e([[Mi,jxj,k]]1,H2(j ‖ ιk ‖ I∗)) · e(ri[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))
= [[bcy′ρ(i),jηkd

+
j + cy′ρ(i),jh2,i,k]]T

= e(gc1, g
b
2)
y′
ρ(i),j

ηkd
+
j · e(gc1, g2)

y′
ρ(i),j

h2,i,k

which B can compute as a part of the challenge ciphertext. The last remaining partC4,i,j is given
by

C4,i,j = [[Mi,jfj + yρ(i),jri]]1
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= [[−acMi,j + cy′ρ(i),j + acM ′
i,j]]1 = (gc1)

y′
ρ(i),j

Therefore, for each i ∈ [`], j ∈ {2, . . . , smax}, B can simulate C4,i,j . Note that, the elements
B,xj, fj and ri are not properly distributed. Thus, B re-randomizes the ciphertext components
using the algorithm CTRand described below before it sends to A.

Ciphertext Re-randomization Algorithm: The algorithm described below provides properly
distributed ciphertexts even if the randomness used within the ciphertexts inputted into the al-
gorithm are not uniform. The algorithm uses only publicly available information to perform the
re-randomization and hence rectify the distribution of the challenge ciphertext in the reduction.

CTRand((M, ρ),CT,PK): The algorithm takes input an LSSS access policy (M, ρ), where
M = (Mi,j)`×smax = (M1, . . . ,M`)

> ∈ Z`×smax
q and ρ : [`] → Uatt, a ciphertext CT =

((M, ρ), C0, {C1,i, C2,i,, C3,i,j,k,
C4,i,j}j∈{2,...,smax},

i∈[`],k∈[m]

, Iv), and the public key components PK such that ρ([`]) ⊆ Uatt. The algo-

rithm proceeds as follows:

1. Sample
(a) r′1, . . . , r

′
` ← Zq,

(b) B′ = (z′, b′2, . . . , b
′
smax

)> ∈ Zsmax×n
q ,

(c) x′2, . . . ,x
′
smax
∈ Znq ,

(d) f ′2, . . . , f
′
smax
∈ Zq

2. Compute C ′0 = C0 · [[z′]]T .
3. For all i ∈ [`], j ∈ {2, . . . , smax} and k ∈ [n], compute

C ′1,i = C1,i · [[MiB
′ + ϑ′i]]T ,

C ′2,i = C2,i · [[r′i]],
C ′3,i,j,k = C3,i,j,k · e([[Mi,jx

′
j,k]]1,H2(j ‖ ιk ‖ I∗)) · e(r′i[[yρ(i),j]]1,H2(j ‖ ιk ‖ I∗))

C ′4,i,j = C4,i,j · [[Mi,jf
′
j + yρ(i),jr

′
i]]1

where ϑ′i = (ϑ′i,1, . . . , ϑ
′
i,n) and ϑ′i,k = e(r′i[[αρ(i)]]1,H1(ρ(i) ‖ ιk ‖ I∗)).

4. Output the ciphertext CT =

(
(M, ρ) , C ′0, {C ′1,i, C ′2,i,, C ′3,i,j,k, C ′4,i,j}j∈{2,...,smax},

i∈[`],k∈[m]

, Iv
)

.

Guess: If A guesses the challenge bit β ∈ {0, 1} correctly, B returns 1; Otherwise B outputs
0. Now, observe that z = −τ · η where [[τ ]]T is the DBDH challenge element. If τ = abc,
then all the secret keys and the challenge ciphertext are distributed properly, in particular, the
challenge ciphertext is an encryption of the message vector vβ for β ← {0, 1}. Therefore, in
this case,A outputs β′ = β with probability 1/2 + ε(λ) where ε(λ) is the advantage ofA in the
static security game of the ABUIPFE scheme. On the other hand, if τ is a random element of Zq
then the ciphertext element C0 is uniformly random in GT , and hence from A’s point of view
there is no information of the challenge bit β in the challenge ciphertext. So, the probability
of A outputting β′ = β is exactly 1/2. Hence, by the guarantee of DBDH assumption, A has
a non-negligible advantage against the proposed ABUIPFE scheme in the static security game.
This completes the proof.

B Generic Security of the L-DBDH Assumption

We prove in this section that the L-DBDH assumption is generically secure following the
generic proof template of Boneh, Boyen and Goh [BBG05].
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Theorem B.1 The L-DBDH assumption holds in the generic bilinear group model.

Proof. We first fix the polynomials P,Q,R, f according to the Definition A.4 of [BBG05]
below:

P =
(

1, b, c, {aµi, c/µi}i∈[L] , {c · µι/µi, ac · µι/µi}ι,i,∈[L],i 6=ι
)

= (pi)i,

Q = (1, a, b, {aµi}i∈[L], {ac · µι/µi}ι,i,∈[L],i 6=ι) = (qj)j, R = (1), f = abc

It is easy to see that there does not exist a set of constants {xi,j, yi,j, z} ⊂ Zq such that

f =
∑
i,j

xi,jpiqj +
∑
i,j

yi,jqiqj + z.

Thus, f is independent of (P,Q,R) according to the Definition A.4 of [BBG05]. For anyL ∈ N,
we see that P contains s = 3+2L+2L·(L−1) = 2L2+3 tuples. The maximum total degrees of
P,Q are dP = 4, dQ = 4 and hence d = max(dP+dQ, 2dQ, dR, df ) = 8. Therefore, by [BBG05,
Theorem A.5], we have that any generic algorithm breaking the L-DBDH assumption with
advantage 1/2 must take time at least Ω(

√
q/d− s), where s = 2L2 + 3.

51


	Decentralized Multi-Authority Attribute-Based Inner-Product FE: Large Universe and Unbounded
	Introduction
	Technical Overview
	Constructing the Small Universe MA-ABUIPFE
	Constructing the Large Universe MA-ABUIPFE

	Preliminaries
	Notations
	Bilinear Groups and Complexity Assumptions
	Access Structures and Linear Secret Sharing Schemes

	Definition of Decentralized (Large Universe) MA-ABUIPFE for LSSS
	The Proposed Small Universe MA-ABUIPFE from DBDH
	The Construction
	Correctness
	Security Analysis

	The Proposed Large Universe MA-ABUIPFE from L-DBDH
	The Construction
	Correctness
	Security Analysis

	The Proposed Small Universe ABUIPFE from DBDH
	The Construction
	Correctness
	Security Analysis

	Generic Security of the L-DBDH Assumption


