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Abstract

Can a sender non-interactively transmit one of two strings to a receiver without knowing
which string was received? Does there exist minimally-interactive secure multiparty compu-
tation that only makes (black-box) use of symmetric-key primitives? We provide affirmative
answers to these questions in a model where parties have access to shared EPR pairs, thus
demonstrating the cryptographic power of this resource.

• First, we construct a one-shot (i.e., single message) string oblivious transfer (OT) protocol
with random receiver bit in the shared EPR pairs model, assuming the (sub-exponential)
hardness of LWE.
Building on this, we show that secure teleportation through quantum channels is possible.
Specifically, given the description of any quantum operation 𝑄, a sender with (quantum)
input 𝜌 can send a single classical message that securely transmits𝑄(𝜌) to a receiver. That
is, we realize an ideal quantum channel that takes input 𝜌 from the sender and provably
delivers 𝑄(𝜌) to the receiver without revealing any other information.
This immediately gives a number of applications in the shared EPR pairs model: (1) non-
interactive secure computation of unidirectional classical randomized functionalities, (2)
NIZK for QMA from standard (sub-exponential) hardness assumptions, and (3) a non-
interactive zero-knowledge state synthesis protocol.

• Next, we construct a two-round (round-optimal) secure multiparty computation protocol
for classical functionalities in the shared EPR pairs model that is unconditionally-secure in
the (quantum-accessible) random oracle model.

Classically, both of these results cannot be obtained without some form of correlated ran-
domness shared between the parties, and the only known approach is to have a trusted dealer
set up random (string) OT correlations. In the quantum world, we show that shared EPR pairs
(which are simple and can be deterministically generated) are sufficient. At the heart of our
work are novel techniques for making use of entangling operations to generate string OT cor-
relations, and for instantiating the Fiat-Shamir transform using correlation-intractability in the
quantum setting.
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1 Introduction

Understanding the nature of shared entanglement is one of the most prominent goals of quantum
information science, and its study has repeatedly unearthed surprisingly strong properties. A re-
markable example of this is the quantum teleportation protocol of [BBC+93], which demonstrated
that shared EPR pairs [EPR35], the most basic entangled resource, are “complete” for quantum
communication using classical channels. That is, if Alice and Bob share EPR pairs a priori, then
Alice can communicate an arbitrary state 𝜌 to Bob by sending just a single classical message. In
particular, this result positions shared EPR pairs at the center of proposals for building a quantum
internet.

1.1 Our contributions

In this work, we investigate the cryptographic power of shared EPR pairs.

Secure Teleportation through a Quantum Channel. First, we revisit the setting of quantum
teleportation, which shows that shared EPR pairs and one-way classical communication give rise
to a quantum channel implementing the identity map 𝜌→ 𝜌. We ask: what if Alice would instead
like to send her state 𝜌 to Bob through some arbitrary quantum map 𝜌→ 𝑄(𝜌)?1

Note that this is trivial given quantum teleportation if we allow either Alice or Bob to compute
the map 𝜌 → 𝑄(𝜌) for themselves. However, we are interested in guaranteeing that the effect
of the protocol would be (computationally) “no different” than the effect of Alice inputting 𝜌 to
an “ideal” channel 𝑄, and Bob receiving 𝑄(𝜌) on the other side, even if Alice or Bob attempt to
save extra information from or deviate from the protocol. In particular, we require each of the
following three properties to hold against arbitrarily malicious adversaries: (1) Alice would not
learn any side information created during the computation of 𝑄(𝜌), (2) Bob would learn nothing
about 𝜌 beyond 𝑄(𝜌), and (3) Bob would be convinced that the state he received was actually
computed as the output of the map 𝑄 (on some input 𝜌). We show that this is possible under
the sub-exponential hardness of learning with errors (LWE), a standard post-quantum security
assumption.

Informal Theorem 1.1. For any efficient quantum map 𝑄, there exists a protocol for “secure teleportation
through 𝑄” in the shared EPR pairs model assuming the sub-exponential hardness of LWE. That is, there
exists a one-shot2 protocol in the shared EPR pairs model that computes the ideal functionality 𝜌→ 𝑄(𝜌).

Building Block: One-shot String OT. The main building block for this protocol, and the key
technical contribution of this paper, is a one-shot protocol for (random receiver bit) string oblivious
transfer (OT) in the shared EPR pairs model, which realizes an ideal funtionality that takes two
strings 𝑚0,𝑚1 from a sender Alice, and delivers (𝑏,𝑚𝑏) to Bob for a uniformly random bit 𝑏.3

1We will also allow for preserving entanglement that 𝜌 may have with its environment, so technically we consider
𝑄 to map a state on Alice’s input register 𝒜 to a state on Bob’s output register ℬ.

2We use one-shot, one-message, and non-interactive interchangeably to refer to a protocol that consists of a single
message from a sender to a receiver.

3Note that it is impossible to obtain a one-shot protocol for fixed receiver bit OT, since Bob does not send any
message.
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Informal Theorem 1.2. Assuming the sub-exponential hardness of LWE, there exists a simulation-secure
one-shot protocol for (random receiver bit) string OT in the shared EPR pairs model.

Given such an OT protocol, we rely on two key previous results to obtain our final implica-
tion to secure teleportation through quantum channels: (1) [GIK+15] showed how to construct
a one-message protocol for secure computation of any unidirectional classical randomized func-
tionality 𝑓 that maps 𝑥→ 𝑓(𝑥; 𝑟) given a one-message protocol for string OT, and (2) [BCKM21a]
(building on the work of [BY22]) showed (implicitly) how to construct a one-message protocol for
secure computation of any unidirectional quantum functionality given a one-message protocol for
unidirectional classical functionalities.

Correlation Interactability. There have been many recent works that show how to instantiate
random oracles with a concrete hash function family and base the security of (classical) primitives
such as NIZKs and SNARGs on standard cryptographic assumptions [CCH+19, PS19, BKM20,
JJ21, JKKZ21, HLR21, CJJ21b, KVZ21, CJJ21a, HJKS22, KLV23, CGJ+22]. These works proceed by
constructing a special hash function family that satisfies the cryptographic notion of correlation-
intractability [CGH04]. Ours is the first to apply correlation-intractability to a setting that involves
quantum communication, addressing technical barriers along the way. In fact, we obtain our one-
message string OT protocol (refer to Informal Theorem 1.2) by utilizing correletion-intractability,
which we discuss further in Section 2.

The Multiparty Setting. Next, we consider the multiparty setting, where all pairs of parties have
access to shared EPR pairs. If each party has their own private input 𝑥𝑖, and their goal is to
compute 𝐶(𝑥1, . . . , 𝑥𝑛) for some (classical) circuit 𝐶, they will have to use at least two rounds of
interaction as single round protocols are susceptible to resetting attacks [HLP11].

Classically, two rounds are known to suffice for secure multiparty computation, under the
(minimal) assumption that two-round (chosen-input) oblivious transfer [GS18, BL18] protocols ex-
ist.4 In the classical setting, OT is a “public-key-style” primitive that provably cannot be built from
“minicrypt-style” primitives, including hash functions modeled as a random oracle [IR90]. On the
other hand, a line of work beginning with [CK88] and culminating with [BCKM21b, GLSV21] es-
tablished that with quantum communication, it is possible to obtain oblivious transfer, and thus
multiparty computation, from one-way functions or potentially even weaker assumptions [JLS18,
AQY22, MY22b]. However, these protocols require many rounds, and the possibility of achieving
round-optimal (two-round) secure computation without public-key primitives was left open.

In this work, we show that round-optimal secure computation that makes black-box use of
symmetric-key primitives (specifically, a random oracle) can be obtained in the shared EPR pairs
model.

Informal Theorem 1.3. There exists a two-round secure multiparty computation protocol in the shared
EPR pairs model with either of the following properties.

• Unconditional security in the quantum-accesible random oracle model (QROM).

• Computational security assuming (the black-box use of) non-interactive extractable commitments and
hash functions that are correlation-intractable for efficient functions.

4In chosen-input OT, the receiver specifies their input bit 𝑏, and they receive the message 𝑚𝑏. We contrast this with
the notion of OT discussed above, where the receiver’s bit 𝑏 is chosen uniformly at random.
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Discussion: Towards Weaker Correlated Randomness. In the classical world, it can be shown
that without any form of correlated randomness shared between the parties, it is impossible to
obtain either one-shot OT or two-round MPC (even with public-key primitives). Furthermore,
we show in Section 4.1 that one-shot (random receiver bit) string OT is impossible in the classical
common reference string model, even when parties can compute and communicate quantumly.
On the other hand, we remark that both our results can be obtained (even in the classical world)
with an “OT correlations” setup, which assumes that a trusted dealer has sampled random strings
𝑥0, 𝑥1 and bit 𝑏 and delivered 𝑥0, 𝑥1 to the sender and 𝑏, 𝑥𝑏 to the receiver. For the case of string
OT, this consequence is immediate and for the case of two-round MPC, this result follows from
the work of Garg et al. [GIS18].

Our results state that in the quantum world, shared EPR pairs are sufficient to obtain (i) one-
shot (random receiver bit) string OT and (ii) two-round MPC from symmetric-key primitives. As
noted in [ABKK23], shared EPR pairs are a fundamentally different resource than OT correlations.
Indeed, OT correlations are specific to OT, while, as indicated above, shared EPR pairs are known to
be broadly useful and have been widely studied independent of OT. Moreover, an OT correlations
setup requires private (hidden) randomness, while generating EPR pairs is a fully deterministic
quantum process.5 Our work can thus be viewed as a step towards realizing secure computation
protocols using weaker forms of correlated randomness. Finally, we remark that, unlike the case
of one-shot OT, it may be possible to achieve two-round MPC from symmetric-key primitives in
the classical common reference string model (i.e., without shared EPR pairs), and we leave this as
an intriguing open question for future study.

1.2 Applications

We now discuss several applications of our one-shot string OT construction and secure teleporta-
tion through quantum channel protocol.

Non-Interactive Computation of Unidirectional Functionalities. The study of non-interactive
protocols for unidirectional classical functionalities was initiated by [GIK+15]. Such functionali-
ties are defined by a classical circuit 𝑓 , take an input 𝑥 from the sender, (potentially) sample some
random coins 𝑟, and deliver 𝑓(𝑥; 𝑟) to the receiver. They showed the possibility (or impossibil-
ity) of achieving them in a model where the sender and the receiver have access to an one-way
communication channel. In particular, they showed that ideal string OT channel suffices to build
non-interactive secure computation of unidirectional classical functionalities. On the other hand,
the work of Agrawal et al. [AIK+20] showed that bit OT channels provably do not suffice for
non-interactive secure computation.6

Using our one-shot string OT construction, we can instantiate the results of Garg et al. [GIK+15]
and obtain non-interactive secure computation of unidirectional functionalities in the shared EPR

5In particular, any (even semi-honest) dealer that sets up OT correlations can learn the parties’ private inputs by ob-
serving the resulting transcript of communication, while this is not necesarily true of an EPR pair setup, by monogamy
of entanglement. We also remark that obtaining OT correlations from any deterministically generated shared quan-
tum state is non-trivial. In particular, if the parties shared a (deterministically generated) superposition over classical
OT correlations, the receiver could simply decide not to measure the register holding their choice bit, and obtain a
superposition over the sender’s strings, which violates the security of OT.

6A followup work of [AIK+21] showed that, assuming ideal obfuscation, there exists a protocol over a bit OT channels
with (non-standard) 1/poly(𝜆) security.
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pairs model, assuming sub-exponential LWE.
The works of [GIK+15, AIK+21] also discuss several applications of non-interactive secure

computation of unidirectional classical functionalities, and we mention one intriguing application
here. The modern internet relies on a public-key infrastructure, where certificate authorities val-
idate public keys by signing them under their own signing key.7 A single message protocol for
unidirectional classical functionalities would enable key authorities to non-interactively generate
and send freshly sampled and signed public key secret key pairs to clients, without learning the
client’s secret key. Moreover, the client would not learn the secret signing key of the authority who
sent their fresh pair. Thus, we show that there is a truly non-interactive solution to this widespread
key certification functionality in a world where nodes are connected by shared EPR pairs.8

NIZKs for QMA. Our secure telportation through quantum channels immediately gives a non-
interactive zero-knowlede (NIZK) for QMA in the shared EPR pairs model, by letting the channel
𝑄 compute a QMA verification circuit and output the resulting bit to the receiver. The only pre-
vious NIZK for QMA in the shared EPR pairs model is due to [MY22a], who argued security
in the quantum random oracle model.9 Thus, we obtain the first such protocol from a standard
(sub-exponential) hardness assumption.

Non-Interactive Zero-Knowledge State Synthesis. Many recent works consider the problem
of quantum state synthesis [Aar16, RY22, INN+22], which studies the efficiency of preparing a
complex quantum state with the help of an oracle or untrusted powerful prover. That is, given the
implicit description of a quantum circuit 𝑄, can a verifier prepare |𝜓⟩ = 𝑄 |0𝑛⟩ with the help of a
prover, and be convinced that they end up with the correct state?

In fact, [RY22] asked whether there is any meaningful notion of zero-knowledge state synthesis.
In this work, we propose one way to define zero-knowledge state synthesis. Roughly, we consider
any family of circuits {𝑄𝑤}𝑤 parameterized by a potentially secret witness 𝑤, and require that
a prover help the verifier prepare |𝜓𝑤⟩ = 𝑄𝑤 |0𝑛⟩ without leaking the witness 𝑤. We formalize
our definition in Section 4.4 and show that our secure teleportation protocol immediately gives
a one-message solution to this task in the shared EPR pairs model. We stress that there may be
other meaningful ways to define zero-knowledge state synthesis, and we leave a more thorough
exploration of definitions and applications of zero-knowledge state synthesis to future work.

Non-Interactive Quantum Cryptography. Finally, we observe that the full power of non-interactive
secure computation of unidirectional quantum functionalities gives rise to quantum analogues
of the classical applications mentioned above. For example, a certificate authority could non-
interactively prepare and send signed key pairs for encryption schemes with uncloneable or re-
vocable decryption keys [GZ20, CLLZ21, AKN+23, BGG+23, APV23], where decryption keys are
quantum states that can either provably not be distributed or verifiably be destroyed. The novel

7Note that despite the existence of quantum key distribution [BB84], public-key infrastructure would still likely be
required for the quantum internet, since QKD requires authenticated classical channels.

8We do stress that our model assumes the EPR pairs are generated honestly, for example by an honest network
administrator. Otherwise, such secure one-message protocols would be impossible to achieve.

9We also remark that [BM22] achieve NIZK for QMA in the (incomparable) common reference string model, but they
argue security using classical oracles, or alternatively assuming indistinguishability obfuscation and the non-black-box
use of a hash function modeled as a random oracle.
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guarantee is that even the certificiate authority itself will not learn the (description of) the de-
crpytion key.10 As another example, a bank could non-interactively distribute signed quantum
money states (technically, the serial number would be signed), without ever learning the classical
description of the state. In particular, while valid money states could be provably generated and
distributed non-interactively, no one (not even the bank) would ever learn a classical description
that would enable cloning.

1.3 Related Works

This work continues a long line of research that studies the power of shared entanglement as a
resource. We show that shared EPR pairs, which already have a long history of study in commu-
nication [BW92, BBC+93], cryptography [Eke91, Kob03, DLS22, ABKK23], and error-correction
[BDH06], can be leveraged to obtain perhaps surprisingly powerful secure computation tasks.

We also compare our results with the prior work of [ABKK23], which also studies oblivious
transfer in the shared EPR pairs model. They achieve a one-message protocol for bit OT, where
the sender’s inputs are one bit each, and explicitly leave open the problem of building string OT,
which we address in this work. We note that bit OT is not known to be complete for one-message
secure computation [GIK+15, AIK+20]. Moreover, security of the protocols in [ABKK23] are all
argued in the quantum random oracle model, while we argue security without random oracles,
and based on concrete properies of hash functions instead.

Concurrent Work. Finally, we mention a concurrent and independent work [CMS23] that was
posted recently to the arXiv. Their results and techniques are orthogonal to ours: in particular, they
obtain two-message OT in the CRS model assuming NIZK (and an assumption on hash functions),
whereas we obtain one-message OT from sub-exponential LWE, as well as unconditional two-
round MPC in the QROM, both in the shared EPR pairs model. We do not believe that (a simple
modification of) either work’s results or techniques immediately subsumes or improves results in
the other. We also remark that both our work and [CMS23] leave open the intriguing question of
obtaining minimally-interactive (two-round) MPC in the CRS model without the use of public-key
primitives.

2 Technical Overview

We give an overview of the key techniques used to obtain our results.

2.1 One-shot string OT

In this subsection, we focus on our key technical contribution, which is a construction of one-shot
string OT in the shared EPR pairs model. Throughout this section, we define one-shot string OT
as a one-message protocol that takes two strings 𝑚0,𝑚1 from the sender, and delivers 𝑚𝑏 to the
receiver for a random bit 𝑏← {0, 1}. For more discussion on our applications, we refer the reader
to Section 4.4.

10In this setting, publicly-verifiable revocation [BGG+23] seems crucial to ensure that no one need know the classical
description of the secret key.
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A string OT skeleton. As mentioned earlier, [ABKK23] constructed a one-shot bit OT proto-
col in the shared EPR pairs model (where the sender’s inputs are one bit each). However, their
techniques don’t appear to extend easily to the setting of one-shot string OT, for arbitrary length
strings. In fact, [GIK+15, AIK+20] showed that in the non-interactive setting, it is impossible to
obtain string OT from bit OT. We additionally observe that prior quantum OT templates [CK88,
ABKK23] only obtain “bitwise” correlations by sending unentangled BB84 states or by immedi-
ately measuring each EPR pair independently.

To get around this barrier, our idea is to directly obtain string correlations from shared en-
tanglement. This can be done by first entangling the separate EPR pairs in a special way before
performing measurements.

Setup: An EPR pair on registers (𝒮ctl,ℛctl) and 𝜆 EPR pairs on registers (𝒮msg,ℛmsg).

Sender’s message:

• Sample 𝑥← {0, 1}𝜆 and for each 𝑖 ∈ [𝜆] such that 𝑥𝑖 = 1, apply a CNOT gate from 𝒮ctl to 𝒮msg
𝑖 .

• Measure 𝒮msg in the standard basis to obtain 𝑣 ∈ {0, 1}𝜆, and measure 𝒮ctl in the Hadamard basis to delete
the control bit.

• Given input (𝑚0,𝑚1), send ̃︀𝑚0 = 𝑚0 ⊕ 𝑣, ̃︀𝑚1 = 𝑚1 ⊕ 𝑣 ⊕ 𝑥.

Receiver’s computation:

• Measureℛctl,ℛmsg in the standard basis to obtain 𝑏, 𝑣′, and output (𝑏,𝑚𝑏 = ̃︀𝑚𝑏 ⊕ 𝑣′).

Figure 1: An (insecure) skeleton for one-shot string OT

Our approach is illustrated in Fig. 1. Note that after the sender applies the random CNOT
gates and measures 𝒮msg to obtain 𝑣, the remaining state of the system is

1√
2
|0⟩𝒮ctl |0⟩ℛctl |𝑣⟩ℛmsg +

1√
2
|1⟩𝒮ctl |1⟩ℛctl |𝑣 ⊕ 𝑥⟩ℛmsg .

Thus, tracing out 𝒮ctl, we see that the receiver has a uniform mixture over |0, 𝑣⟩ and |1, 𝑣 ⊕ 𝑥⟩,
where 𝑣, 𝑣 ⊕ 𝑥 are uniformly random strings from their perspective, exactly as desired. Unfortu-
nately, since the sender’s control register is entangled with the receiver’s, the sender could know
exactly which bit 𝑏 the receiver obtains by measuring 𝒮ctl in the standard basis. Thus, we instead
ask that the sender “delete” their control bit by measuring it in the Hadamard basis. Of course,
a malicious (or even specious) sender may not follow these instructions, rendering this protocol
insecure. However, this protocol serves as the foundation for our eventual secure realization of
one-shot string OT.

Measurement check. Next, we add a mechansim for “forcing” the sender to delete their control
bit. We build on the commitment-based cut-and-choose approach [CK88, BF10, ABKK23] as fol-
lows. Suppose the sender really did behave honestly, and measured 𝒮ctl in the Hadamard basis to
obtain a bit ℎ. Then, the state on the receiver’s side will be

|𝜓𝑣,𝑥,ℎ⟩ :=
1√
2

(︁
|0, 𝑣⟩+ (−1)ℎ |1, 𝑣 ⊕ 𝑥⟩

)︁
.

7



So if the receiver was given (𝑣, 𝑥, ℎ), they could measure (ℛctl,ℛmsg) in the

{|𝜓𝑣,𝑥,ℎ⟩⟨𝜓𝑣,𝑥,ℎ| , I− |𝜓𝑣,𝑥,ℎ⟩⟨𝜓𝑣,𝑥,ℎ|}

basis and accept if the first outcome is observed. Of course, sending (𝑣, 𝑥, ℎ) to the receiver would
render the protocol insecure because the receiver could now obtain both 𝑣 and 𝑣 ⊕ 𝑥. Instead,
we apply a variant of the Fiat-Shamir-based non-interactive measurement check subprotocol of
[ABKK23], using a non-interactive commitment scheme Com and a hash function 𝐻 :

• Repeat the skeleton protocol ℓ times in parallel, and have the sender commit to all descrip-
tions cm1 = Com(𝑣1, 𝑥1, ℎ1), . . . , cmℓ = Com(𝑣ℓ, 𝑥ℓ, ℎℓ).

• Hash 𝑇 = 𝐻(cm1, . . . , cmℓ) to obtain a subset 𝑇 ⊂ [ℓ] of commitments.

• The sender sends (cm1, . . . , cmℓ) along with openings to {cm𝑖}𝑖∈𝑇 .

• For each 𝑖 ∈ 𝑇 , the receiver measures registersℛctl
𝑖 ,ℛ

msg
𝑖 in basis

{|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 | , I− |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |}

and aborts if any of these measurements reject. Otherwise, the parties continue the protocol
using indices 𝑖 ∈ 𝑇 .

Now, assuming 𝐻 behaves as a random oracle, we should be able to claim that conditioned on
the receiver not aborting, their states on registers {ℛctl

𝑖 ,ℛ
msg
𝑖 }𝑖∈𝑇 should be “close” to the honest

states {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩}𝑖∈𝑇 . We can make this precise by arguing that after an appropriate change of ba-
sis, the states {ℛctl

𝑖 }𝑖∈𝑇 are in a superposition of Hadamard basis states that are close in Hamming
distance to the honest state 𝐻⊗|𝑇 |

⃒⃒
ℎ𝑇
⟩︀
, where ℎ𝑇 are the bits {ℎ𝑖}𝑖∈𝑇 . If this is the case, then by

the “XOR extractor” lemma of [ABKK23], measuring these bits in the standard basis and XORing
the results together would produce a bit 𝑏 that is truly uniformly random and independent of the
sender’s view. Thus, we should be able to extract a perfectly random receiver’s bit by combining
correlations obtained from multiple instances 𝑖 ∈ 𝑇 of the skeleton protocol.

Defining two sender strings. Unfortunately, if we XOR together the correlations from all 𝑖 ∈ 𝑇 ,
it is no longer clear how to define the two sender strings. Indeed, the receiver will obtain one
out of two of each pair {(𝑣𝑖, 𝑣𝑖 ⊕ 𝑥𝑖)}𝑖∈𝑇 , which means one out of 2|𝑇 | possible sets of strings!
However, note that if the sender had used the same offset 𝑥 for each repetition, then if the receiver
XORs together one out of two of each {(𝑣𝑖, 𝑣𝑖 ⊕ 𝑥)}𝑖∈𝑇 , they obtain either

⨁︀
𝑖∈𝑇 𝑣𝑖 or 𝑥 ⊕

⨁︀
𝑖∈𝑇 𝑣𝑖

depending on the parity of their choice bits. Of course, since we are opening the commitments on
indices 𝑖 ∈ 𝑇 , the receiver would learn 𝑥, rendering this approach insecure.

Our solution is to make use of this “common offset” approach in a less direct manner. In
addition to the ℓ repetitions of the skeleton protocol described above, the sender will sample an
independent collection of strings 𝑡1, . . . , 𝑡ℓ,Δ and include commitments

̂︁cm1,0 = Com(𝑡1),̂︁cm1,1 = Com(𝑡1 ⊕Δ), . . . ,̂︁cmℓ,0 = Com(𝑡ℓ),̂︁cmℓ,1 = Com(𝑡ℓ ⊕Δ)

in their message. Then, the sender will use the random strings (𝑣1, 𝑣1 ⊕ 𝑥1), . . . , (𝑣ℓ, 𝑣ℓ ⊕ 𝑥ℓ) to
mask the openings for the commitments (̂︁cm1,0,̂︁cm1,1), . . . , (̂︁cmℓ,0,̂︁cmℓ,1). The effect of this is that
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the receiver will be able to open one out of two of each pair of commitments {̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 ,
obtaining either

⨁︀
𝑖∈𝑇 𝑡𝑖 or Δ⊕

⨁︀
𝑖∈𝑇 𝑡𝑖.

Finally, to maintain security, we require that the sender computes a non-interactive zero-
knowledge (NIZK) argument that they sampled {̂︁cm𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1} as commitments to pairs of
strings that all share the same offset Δ.

Using correlation-intractability. This nearly completes the description of our protocol. Turning
to the security proof, our goal is to reduce to a standard cryptographic assumption. Fortunately,
the flavors of commitments and zero-knowledge we require are known from LWE. However, we
also need some security from the Fiat-Shamir hash function 𝐻 . In [ABKK23] this hash was mod-
eled as a random oracle, and it was left open whether one could obtain security in the plain model.

Classically, a recent exciting line of work has shown how to securely instantiate the Fiat-Shamir
transform from standard cryptographic assumptions in many settings [CCH+19, PS19, BKM20,
JJ21, JKKZ21, HLR21, CJJ21b, KVZ21, CJJ21a, HJKS22, KLV23, CGJ+22]. These works rely on the
notion of correlation-intractability (CI), which is a property of the hash function𝐻 requiring that for
some relation𝑅 over inputs and outputs, the adversary can’t find any input 𝑥 such that (𝑥,𝐻(𝑥)) ∈
𝑅. In particular, it is known how to obtain CI for efficiently computable functions from LWE
[CCH+19, PS19]. Moreover, [HLR21] showed to extend this result to CI for efficiently verifiable
product relations 𝑅, where the range of 𝐻 is the 𝑡-wise cartesian product of a set 𝑌 , and each
input 𝑥 is associated with sets 𝑆𝑥,1, . . . , 𝑆𝑥,𝑡 ⊂ 𝑌 such that (𝑥, (𝑦1, . . . , 𝑦𝑡)) ∈ 𝑅 iff each 𝑦𝑖 ∈ 𝑆𝑥,𝑖.
The property of efficient verifiability states that there is an efficient (classical) algorithm that, given
(𝑥, 𝑖, 𝑦𝑖), determines whether 𝑦𝑖 ∈ 𝑆𝑥,𝑖.

Recall that in our protocol, we apply 𝐻 to a set of ℓ commitments in order to obtain the de-
scription of a subset 𝑇 ⊂ [ℓ] of commitments to open. Intuitively, we want it to be difficult for
the sender to find a set of commitments (cm1, . . . , cmℓ) to strings (𝑣1, 𝑥1, ℎ1), . . . , (𝑣ℓ, 𝑥ℓ, ℎℓ) such
that 𝑇 = 𝐻(cm1, . . . , cmℓ) is a “bad” set, meaning that the receiver’s registers {(ℛctl

𝑖 ,ℛ
msg
𝑖 )}𝑖∈𝑇 are

“close” to the states {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩}𝑖∈𝑇 (so the receiver won’t abort) but the registers {(ℛctl
𝑖 ,ℛ

msg
𝑖 )}𝑖∈𝑇

are “far” from the states {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩}𝑖∈𝑇 . Thus, given an input (cm1, . . . , cmℓ), it appears that de-
termining whether or not a potential output 𝑇 is “bad” requires (at least) applying some quantum
measurement to the receiver’s registers. Unfortunately, all prior work has used CI in a purely
classical setting, and extending the notion of efficiently verifiable relation to handle quantum ver-
ification algorithms appears to be beyond the reach of current techniques (though this may be an
interesting direction for future research).

Instead, we take a different approach. Suppose that the sender’s choices of 𝑥1, . . . , 𝑥ℓ were
fixed before the protocol begins. Then, we could pre-measure the receiver’s registers even before
initializing the malicious sender to obtain (𝑣1, ℎ1), . . . , (𝑣ℓ, ℎℓ). That is, we could first apply CNOTs
from ℛctl

𝑖 to each of the qubits in ℛmsg
𝑖 controlled on 𝑥𝑖, and then measure ℛctl

𝑖 in the Hadamard
basis to obtain ℎ𝑖 and measureℛmsg

𝑖 in the standard basis to obtain 𝑣𝑖. Then given just this classical
data, we can distinguish between honest commitments cm𝑖 to (𝑣𝑖, 𝑥𝑖, ℎ𝑖) and dishonest commit-
ments cm𝑖 to some other string (as long as the commitment is efficiently extractable). If we split ℓ
into 𝑡 disjoint groups and parse 𝑇 as 𝑡 different subsets of [ℓ/𝑡], then we can formulate a classically
efficiently verifiable product relation 𝑅 where ((cm1, . . . , cmℓ), 𝑇 ) ∈ 𝑅 iff all {cm𝑖}𝑖∈𝑇 are honest
and “many” {cm𝑖}𝑖∈𝑇 are dishonest.

Now, while we cannot guarantee that a malicious sender will sample any fixed (𝑥1, . . . , 𝑥ℓ), we
can guess beforehand which 𝑥1, . . . , 𝑥ℓ they will use, and simply give up on reducing to CI if the
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guess is wrong. Using complexity leveraging (and setting the security parameter of the CI hash
function large enough), we can hope that this is enough to still break sub-exponentially-secure CI.
It turns out that this strategy can only be made to work if our guessing loss depends only on the
security parameter 𝜆, and not on the number of repetitions ℓ (which must depend on the level of
security required from the CI hash). Thus, we make one final tweak to the protocol. The sender
will be required to sample 𝑥1, . . . , 𝑥ℓ as the output of a pseudorandom generator with seed 𝑠 of
length {0, 1}𝜆, and prove using the NIZK that they have done so honestly. Then, in the reduction
to CI, it suffices to guess a 𝜆-bit string 𝑠 rather than a 𝜆ℓ-bit string (𝑥1, . . . , 𝑥ℓ). This allows us to
eventually reduce security to the sub-exponential hardness of LWE.

Unconditional Protocols in the QROM. We remark that it appears plausible to obtain more ef-
ficient and unconditionally secure variants of our non-interactive protocols in the (quantum) ran-
dom oracle model. In particular, following [ABKK23], we expect that the measure-and-reprogram
technique [DFMS19] in the quantum random oracle model can be used in place of correlation in-
tractability, which would remove the need for sampling 𝑥1, . . . , 𝑥ℓ as the output of a PRG, and
remove complexity leveraging in the approach outlined above. It also may be possible to rely on
black-box commit-and-prove sigma protocols (e.g., variants of the protocol in [KOS18]) to prove
that commitments to pairs of strings share a common offset, thereby making our protocol black-
box and unconditionally secure in the QROM. We leave a formalization and detailed analysis
of this approach, and more generally an exploration of one-message protocols in the QROM, to
future work.

2.2 Two-round MPC

In this section, we give a brief overview of our approach to building two-round MPC in the shared
EPR model, which is presented in Section 5. Our starting point is a three-round chosen-input
string OT protocol from [ABKK23], which can be viewed as a two-round protocol in the shared
EPR model. In order to use this protocol to build two-round MPC, we take the following steps.

1. Show that the protocol is “black-box friendly”. That is, we split the protocol into an input-
independent phase that uses both quantum measurements and cryptographic operations, and
an input-dependent phase that is fully classical and information-theoretic.

2. Appeal to existing compilers (e.g. [CvT95, IPS08]) to obtain a “black-box friendly” MPC
protocol in the shared EPR pair model. Again, we have (1) an input-independent phase
at the beginning where every party performs a measurement on their halves of EPR pairs,
broadcasts a message, and performs some crytographic checks, and (2) an input-dependent
multi-round phase that is entirely classical and information-theoretic.

3. Use the [GS18] round-compressing compiler and two-round OT in the shared EPR pair
model to compress this black-box-friendly protocol into a two-round MPC in the shared
EPR pair model. Crucially, the compiler only has to operate on the second (multi-round
input-dependent) phase, and thus we obtain a final protocol that makes black-box use of
cryptography.

We stress that to make the above compiler work, we need to start with an OT protocol in which
all cryptographic operations and quantum computations are performed indepedently of the parties’ in-
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puts and before the second message. That is, it does not follow from any two-round quantum OT
protocol.

If we start with the protocol from [ABKK23] that was proven secure in the quantum random
oracle model, then we obtain a final MPC protocol in the quantum random oracle model. In
addition, we prove that a slight variant of the [ABKK23] protocol is secure without random ora-
cles, assuming non-interactive extractable commitments and correlation-intractability for efficient
functions. Interestingly, while we use a similar approach as described above, we do not have to re-
sort to sub-exponential assumptions here. Roughly, this is because the [ABKK23] protocol is built
from “bitwise” rather than “stringwise” correlations, and it suffices for the reduction to correctly
guess a random subset of the adversary’s bitwise measurements.

3 Preliminaries

Let 𝜆 denote the security parameter. We write negl(·) to denote any negligible function, which
is a function 𝑓 such that for every constant 𝑐 ∈ N there exists 𝑁 ∈ N such that for all 𝑛 > 𝑁 ,
𝑓(𝑛) < 𝑛−𝑐. We write non-negl(·) to denote any function 𝑓 that is not negligible. That is, there
exists a constant 𝑐 such that for infinitely many 𝑛, 𝑓(𝑛) ≥ 𝑛−𝑐.

3.1 Quantum information

A register 𝒳 is a named Hilbert space C2𝑛 . A pure quantum state on register 𝒳 is a unit vector
|𝜓⟩𝒳 ∈ C2𝑛 , and we say that |𝜓⟩𝒳 consists of 𝑛 qubits. A mixed state on register 𝒳 is described by
a density matrix 𝜌𝒳 ∈ C2𝑛×2𝑛 , which is a positive semi-definite Hermitian operator with trace 1.

A quantum operation (also referred to as quantum map or quantum channel) 𝑄 is a completely-
positive trace-preserving (CPTP) map from a register 𝒳 to a register 𝒴 , which in general may have
different dimensions. That is, on input a density matrix 𝜌𝒳 , the operation𝑄 produces 𝜏𝒴 ← 𝑄(𝜌𝒳 )
a mixed state on register 𝒴 . We will sometimes write a quantum operation 𝑄 applied to a state
on register 𝒳 and resulting in a state on register 𝒴 as 𝒴 ← 𝑄(𝒳 ). Note that we have left the
actual mixed states on these registers implicit in this notation, and just work with the names of the
registers themselves.

A unitary 𝑈 : 𝒳 → 𝒳 is a special case of a quantum operation that satisfies 𝑈 †𝑈 = 𝑈𝑈 † = I𝒳 ,
where I𝒳 is the identity matrix on register 𝒳 . A projector Π is a Hermitian operator such that
Π2 = Π, and a projective measurement is a collection of projectors {Π𝑖}𝑖 such that

∑︀
𝑖Π𝑖 = I.

Let Tr denote the trace operator. For registers 𝒳 ,𝒴 , the partial trace Tr𝒴 is the unique operation
from 𝒳 ,𝒴 to 𝒳 such that for all (𝜌, 𝜏)𝒳 ,𝒴 , Tr𝒴(𝜌, 𝜏) = Tr(𝜏)𝜌. The trace distance between states 𝜌, 𝜏 ,
denoted TD(𝜌, 𝜏) is defined as

TD(𝜌, 𝜏) :=
1

2
‖𝜌− 𝜏‖1 :=

1

2
Tr

(︂√︁
(𝜌− 𝜏)†(𝜌− 𝜏)

)︂
.

The trace distance between two states 𝜌 and 𝜏 is an upper bound on the probability that any
(unbounded) algorithm can distinguish 𝜌 and 𝜏 . When clear from context, we will write TD(𝒳 ,𝒴)
to refer to the trace distance between a state on register 𝒳 and a state on register 𝒴 .
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Lemma 3.1 (Gentle measurement [Win99]). Let 𝜌𝒳 be a quantum state and let (Π, I−Π) be a projective
measurement on 𝒳 such that Tr(Π𝜌) ≥ 1− 𝛿. Let

𝜌′ =
Π𝜌Π

Tr(Π𝜌)

be the state after applying (Π, I − Π) to 𝜌 and post-selecting on obtaining the first outcome. Then,
TD(𝜌, 𝜌′) ≤ 2

√
𝛿.

A non-uniform quantum polynomial-time (QPT) machine {Adv𝜆, |𝜓⟩𝜆}𝜆∈N is a family of polynomial-
size quantum machines Adv𝜆, where each is initialized with a polynomial-size advice state |𝜓𝜆⟩.
Each Adv𝜆 is in general described by a CPTP map. Similar to above, when we write 𝒴 ← Adv(𝒳 ),
we mean that the machine Adv takes as input a state on register 𝒳 and produces as output a state
on register 𝒴 , and we leave the actual descripions of these states implicit. Finally, a quantum in-
teractive machine is simply a sequence of quantum operations, with designated input, output, and
work registers.

Finally we will often use≈𝑐 as a shorthard to denote computational indistinguishability between
two families of distributions (over quantum states), and ≈𝑠 as a shorthard to denote statistical in-
distinguishability (or negligible closeness in trace distance) between two families of distributions.

3.2 Correlation intractability

Definition 3.2 (Correlation intractable hash function). Let {𝒳𝜆,𝒴𝜆}𝜆∈N be families of finite sets. An
efficiently computable keyed hash function family {𝐻𝜆 : {0, 1}𝑘(𝜆) × 𝒳𝜆 → 𝒴𝜆}𝜆∈N with keys of length
𝑘(𝜆) is 𝜖(𝜆)-correlation intractable for a relation ensemble {𝑅𝜆 ⊆ 𝒳𝜆×𝒴𝜆}𝜆∈N if for any QPT adversary
{Adv𝜆}𝜆∈N,

Pr

[︂
(𝑥,𝐻𝜆(hk, 𝑥)) ∈ 𝑅𝜆 :

hk← {0, 1}𝑘(𝜆)
𝑥← Adv𝜆(hk)

]︂
≤ 𝜖(𝜆).

We say that {𝐻𝜆}𝜆∈N is sub-exponentially correlation intractable for {𝑅𝜆}𝜆∈N if it is 2−𝜆𝛿 -correlation
intractable for some constant 𝛿 > 0.

Definition 3.3 (Sparse, efficiently verifiable, approximate product relations [HLR21]). A relation
𝑅 ⊆ 𝒳 ×𝒴𝑡 is an efficiently verifiable 𝛼-approximate product relation with sparsity 𝜌 if the following hold.

• Approximate product. For every 𝑥, the set 𝑅𝑥 := {𝑦 : (𝑥, 𝑦) ∈ 𝑅} consists of 𝑦 = (𝑦1, . . . , 𝑦𝑡) ∈
𝒴𝑡 such that

|{𝑖 ∈ [𝑡] : 𝑦𝑖 ∈ 𝑆𝑖}| ≥ 𝛼𝑡

for some sets 𝑆1,𝑥, . . . , 𝑆𝑡,𝑥 ⊆ 𝒴 that may depend on 𝑥.

• Efficiently verifiable. There is a polynomial-size circuit𝐶 such that for every 𝑥, the sets 𝑆1,𝑥, . . . , 𝑆𝑡,𝑥
are such that for any 𝑖, 𝑦𝑖 ∈ 𝑆𝑖,𝑥 if and only if 𝐶(𝑥, 𝑦𝑖, 𝑖) = 1.

• Sparse. For every 𝑥, the sets 𝑆1,𝑥, . . . , 𝑆𝑡,𝑥 are such that for all 𝑖, |𝑆𝑖,𝑥| ≤ 𝜌|𝒴|.

Imported Theorem 3.4 ([HLR21]). Assuming the existence of an efficiently computable keyed hash func-
tion family that is 𝜖(𝜆)-correlation intractable for any efficient function, there exists an efficiently com-
putable keyed hash function family {𝐻𝜆 : {0, 1}𝑘(𝜆)×𝒳𝜆 → 𝒴

𝑡(𝜆)
𝜆 }𝜆∈N that is 𝜖(𝜆)-correlation intractable
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for any efficiently verifiable 𝛼-approximate product relation ensemble {𝑅𝜆 ⊆ 𝒳𝜆×𝒴
𝑡(𝜆)
𝜆 }𝜆∈N with sparsity

𝜌, as long as 𝜌 < 𝛼 and 𝑡(𝜆) ≥ 𝜆/(𝛼− 𝜌)3.

Imported Theorem 3.5 ([CCH+19, PS19]). Assuming the 𝜖(𝜆)-hardness of LWE, there exists an effi-
ciently computable keyed hash function family that is 𝜖(𝜆)-correlation intractable for any efficient function.

Definition 3.6 (Programmability). A hash function family {𝐻𝜆 : {0, 1}𝑘(𝜆) × 𝒳𝜆 → 𝒴𝜆}𝜆∈N is pro-
grammable if for any 𝜆, 𝑥 ∈ 𝒳𝜆, and 𝑦 ∈ 𝒴𝜆,

Pr
hk←{0,1}𝑘(𝜆)

[𝐻𝜆(hk, 𝑥) = 𝑦] =
1

2𝑚(𝜆)
,

and there exists a PPT sampling algorithm Samp(1𝜆, 𝑥, 𝑦) that samples from the conditional distribution

hk : 𝐻𝜆(hk, 𝑥) = 𝑦.

Remark 3.7. [CCH+19] show a simple transformation that generically adds the above notion of pro-
grammability to natural correlation intractable hash functions.

3.3 Commitments

A non-interactive commitment in the common random string model is parameterized by polyno-
mials ℎ(𝜆), 𝑛(𝜆), and consists of the following algorithm.

• Com(ck,𝑚) → 𝑐: Take as input a commitment key ck ∈ {0, 1}ℎ(𝜆) and a message 𝑚 ∈
{0, 1}𝑛(𝜆), and output a commitment string 𝑐.

Definition 3.8 (Hiding). A non-interactive commitment scheme Com is hiding if for any QPT adversary
{Adv𝜆}𝜆∈N and messages {𝑚0,𝜆,𝑚1,𝜆}𝜆∈N,

⃒⃒⃒⃒
Pr

[︂
1← Adv𝜆(ck, 𝑐) :

ck← {0, 1}ℎ(𝜆)
𝑐← Com(ck,𝑚0,𝜆)

]︂
−Pr

[︂
1← Adv𝜆(ck, 𝑐) :

ck← {0, 1}ℎ(𝜆)
𝑐← Com(ck,𝑚1,𝜆)

]︂ ⃒⃒⃒⃒
= negl(𝜆).

Definition 3.9 (Extractability). A non-interactive commitment scheme Com is extractable if there exist
PPT algorithms (ExtGen,Ext) such that for any QPT adversary {Adv𝜆}𝜆∈N,

⃒⃒⃒
Pr
[︁
1← Adv𝜆(ck) : ck← {0, 1}ℎ(𝜆)

]︁
− Pr

[︁
1← Adv𝜆(ck) : (ck, ek)← ExtGen(1𝜆)

]︁⃒⃒⃒
= negl(𝜆),

and

Pr

⎡⎣∃𝑚′ ̸= 𝑚, 𝑟 s.t. Com(ck,𝑚′; 𝑟) = 𝑐 :
(ck, ek)← ExtGen(1𝜆)

𝑐← Adv𝜆(ck)
𝑚← Ext(ek, 𝑐)

⎤⎦ = negl(𝜆),

where Ext either outputs an 𝑛(𝜆)-bit message or ⊥.

Remark 3.10. Commitments satisfying these properties are known from LWE, for example via dual-Regev
encryption.
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3.4 Non-interactive zero-knowledge

Let ℒ be an NP language and let ℛℒ be the associated binary relation, where a statement 𝑥 ∈ ℒ if
and only if there exists a witness 𝑤 such that (𝑥,𝑤) ∈ ℛℒ. A non-interactive argument system for
ℒ in the common random string model consists of the following algorithms.

• Prove(crs, 𝑥, 𝑤) → 𝜋: The prover algorithm takes as input a common random string crs ∈
{0, 1}𝑛(𝜆), a statememt 𝑥, and a witness 𝑤, and outputs a proof 𝜋.

• Ver(crs, 𝑥, 𝜋) → {⊤,⊥}: The verify algorithm takes as input a common random string crs ∈
{0, 1}𝑛(𝜆), a statement 𝑥, and a proof 𝜋, and outputs either ⊤ or ⊥.

Definition 3.11 (Completeness). The non-interactive argument system (Prove,Ver) satisfies complete-
ness if for any (𝑥,𝑤) ∈ ℛℒ,

Pr

[︂
Ver(crs, 𝑥, 𝜋) = 1 :

crs← {0, 1}𝑛(𝜆)
𝜋 ← Prove(crs, 𝑥, 𝑤)

]︂
= 1− negl(𝜆).

Definition 3.12 (Soundness). The non-interactive argument system (Prove,Ver) satisfies soundness if
for any QPT adversary {Adv𝜆}𝜆∈N,

Pr

[︂
𝑥 /∈ ℒ ∧ Ver(crs, 𝑥, 𝜋) = ⊤ :

crs← {0, 1}𝑛(𝜆)
(𝑥, 𝜋)← Adv𝜆(crs)

]︂
= negl(𝜆).

Definition 3.13 (Zero-knowledge). The argument system (Prove,Ver) satisfies zero-knowledge if there
exists a PPT simulator Sim such that for any (𝑥,𝑤) ∈ ℛℒ,

⃒⃒⃒⃒
Pr

[︂
1← Adv𝜆(crs, 𝑥, 𝜋) :

crs← {0, 1}𝑛(𝜆),
𝜋 ← Prove(crs, 𝑥, 𝑤)

]︂
− Pr

[︁
1← Adv𝜆(crs, 𝑥, 𝜋) : (crs, 𝜋)← Sim(1𝜆, 𝑥)

]︁⃒⃒⃒⃒
= negl(𝜆).

Imported Theorem 3.14 ([CCH+19, PS19]). There exists a NIZK argument for NP assuming LWE.

3.5 Quantum entropy and leftover hashing

Quantum conditional min-entropy. Let 𝜌𝒳 ,𝒴 denote a bipartite quantum state on registers 𝒳 ,𝒴 .
Following [Ren08, KRS09], the conditional min-entropy of 𝜌𝒳 ,𝒴 given 𝒴 is defined to be

H∞
(︀
𝜌𝒳 ,𝒴 | 𝒴

)︀
:= sup

𝜏
max

{︁
ℎ ∈ R : 2−ℎ · I𝒳 ⊗ 𝜏𝒴 − 𝜌𝒳 ,𝒴 ≥ 0

}︁
.

In this work, we will exclusively consider the case where 𝜌𝒳 ,𝒴 can be written as∑︁
𝑥∈𝑋

𝑝𝑥 |𝑥⟩⟨𝑥|𝒳 ⊗ 𝜏𝒴

for some finite set 𝑋 and probability distribution {𝑝𝑥}𝑥∈𝑋 . We refer to such 𝜌𝒳 ,𝒴 as a classical-
quantum state. In this case, quantum conditional min-entropy exactly corresponds to the maxi-
mum probability of guessing 𝑥 given the state on register 𝒴 .

Imported Theorem 3.15 ([KRS09]). Let 𝜌𝒳 ,𝒴 be a classical-quantum state, and let 𝑝guess(𝜌𝒳 ,𝒴 |𝒴) be
the maximum probability that any quantum operation can output the 𝑥 on register 𝒳 , given the state on
register 𝒴 . Then

𝑝guess(𝜌
𝒳 ,𝒴 |𝒴) = 2−H∞(𝜌𝒳 ,𝒴 |𝒴).
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Leftover hash lemma with quantum side information. We now state a generalization of the
leftover hash lemma to the setting of quantum side information.

Imported Theorem 3.16 ([RK05]). Let ℋ be a family of universal hash functions from 𝑋 to {0, 1}𝜆, i.e.
for any 𝑥 ̸= 𝑥′, Prℎ←ℋ[ℎ(𝑥) = ℎ(𝑥′)] = 2−𝜆. Let 𝜌𝒳 ,𝒴 be any classical-quantum state. Let 𝒦 be a register
that holds ℎ← ℋ, letℛ be a register that holds ℎ(𝑥) where 𝑥 is from register 𝒳 , and define 𝜌𝒳 ,𝒴,𝒦,ℛ to be
the entire system. Then, it holds that

TD

⎛⎝𝜌𝒴,𝒦,ℛ, 𝜌𝒴,𝒦 ⊗ 1

2𝜆

∑︁
𝑟∈{0,1}𝜆

|𝑟⟩⟨𝑟|ℛ
⎞⎠ ≤ 1

21+
1
2
(H∞(𝜌𝒳 ,𝒴 |𝒴)−𝜆)

.

Small superposition of terms. We will also make use of the following lemma from [BF10].

Imported Theorem 3.17. ([BF10]) Let 𝒳 ,𝒴 be registers of arbitrary size, and let {|𝑖⟩}𝑖∈𝐼 and {|𝑤⟩}𝑤∈𝑊
be orthonormal bases of 𝒳 . Let |𝜓⟩𝒳 ,𝒴 and 𝜌𝒳 ,𝒴 be of the form

|𝜓⟩ =
∑︁
𝑖∈𝐽

𝛼𝑖 |𝑖⟩𝒳 |𝜓𝑖⟩𝒴 and 𝜌 =
∑︁
𝑖∈𝐽
|𝛼𝑖|2 |𝑖⟩⟨𝑖|𝒳 ⊗ |𝜓𝑖⟩⟨𝜓𝑖|𝒴

for some subset 𝐽 ⊆ 𝐼 . Furthermore, let ̂︀𝜌𝒳 ,𝒴 and ̂︀𝜌𝒳 ,𝒴mix be the classical-quantum states obtained by mea-
suring register 𝒳 of |𝜓⟩ and 𝜌, respectively, in basis {|𝑤⟩}𝑤∈𝑊 to observe outcome 𝑤. Then,

H∞(̂︀𝜌𝒳 ,𝒴 |𝒴) ≥ H∞(̂︀𝜌𝒳 ,𝒴mix |𝒴)− log |𝐽 |.

3.6 Secure computation

An ideal functionality ℱ is an interactive (classical or quantum) machine specifying some dis-
tributed computation. In this work, we will specifically focus on two-party functionalities between
party 𝐴 and party 𝐵. In some cases, party 𝐵 will have a random input, or no input. The ideal
functionalities we will consider in this work are specified in Fig. 2.

Security with abort. In what follows, we will by default consider the notion of security with
abort, where the ideal functionality ℱ is always modified to (1) know the identity of the corrupt
party (if one exists) and (2) be slightly reactive: after the parties have provided input, the func-
tionality computes outputs and sends output to the corrupt party only (if it expects output). Then
the functionality awaits either a “deliver” or “abort” command from the corrupted party. Upon
receiving “deliver”, the functionality delivers the honest party output. Upon receiving “abort”,
the functionality instead delivers an abort message ⊥ to the honest party. In the case where the
corrupt party does not expect output, the functionality ℱ still awaits a “deliver” or “abort” from
the corrupt party before delivering output (or ⊥) to the honest party.

The real-ideal paradigm. A two-party protocol Πℱ for computing the functionality ℱ consists
of two families of quantum interactive machines {A𝜆}𝜆∈N, {B𝜆}𝜆∈N. An adversary intending to
attack the protocol by corrupting one of the parties can be described by a family of quantum
interactive machines {Adv𝜆}𝜆∈N and a family of initial quantum states {|𝜓𝜆⟩𝒳 ,𝒜,𝒟}𝜆∈N on registers
(𝒳 ,𝒜,𝒟), where 𝒳 is the honest party’s input register,𝒜 is the adversary’s input register, and𝒟 is
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Ideal functionalities

Setup: Parties 𝐴 and 𝐵, security parameter 𝜆.

ℱOT

• ℱOT receives input 𝑚0,𝑚1 ∈ {0, 1}𝜆 from 𝐴 and 𝑏 ∈ {0, 1} from 𝐵.

• ℱOT delivers 𝑚𝑏 to 𝐵.

ℱROT

• ℱROT receives input 𝑚0,𝑚1 ∈ {0, 1}𝜆 from 𝐴.

• ℱROT samples a bit 𝑏← {0, 1} and delivers (𝑏,𝑚𝑏) to 𝐵.

ℱCL[𝐶]

• 𝐶 is a classical circuit with two inputs, one of length 𝑛1 = 𝑛1(𝜆) and one of length 𝑛2 = 𝑛2(𝜆).

• ℱCL[𝐶] receives input 𝑥 ∈ {0, 1}𝑛1 from 𝐴.

• ℱCL[𝐶] samples a string 𝑟 ← {0, 1}𝑛2 and delivers 𝐶(𝑥, 𝑟) to 𝐵.

ℱQU[𝑄]

• 𝑄 is a quantum operation that takes as input a state on register 𝒳 of 𝑛 = 𝑛(𝜆) qubits and outputs a state
on register 𝒴 .

• ℱQU[𝑄] receives as input a state on register 𝒳 from 𝐴.

• ℱQU[𝑄] computes 𝑄(𝒳 ) = 𝒴 and delivers 𝒴 to 𝐵.

Figure 2: Ideal functionalities considered in this work.

given directly to the distinguisher. That is, the honest party takes as input the state on register 𝒳 ,
Adv𝜆 takes as input the state on register 𝒜, and they interact in the protocol Πℱ . Then, the honest
party outputs a state on register 𝒳 ′, Adv𝜆 outputs a state on register𝒜′, and we define the random
variable Πℱ [Adv𝜆, |𝜓𝜆⟩] to consist of the resulting state on registers (𝒳 ′,𝒜′,𝒟), which will be given
to a distinguisher. In the case where the honest party has no input, we don’t include a register 𝒳 ,
and just consider families {|𝜓𝜆⟩𝒜,𝒟}𝜆∈N on registers 𝒜 and 𝒟. In the case where the honest party
has a classical input, we assume that 𝒳 is in a standard basis state. In other words, we consider
families {(𝑥𝜆, |𝜓𝜆⟩𝒜,𝒟)}𝜆∈N, where each 𝑥𝜆 is a classical string.

An ideal-world protocol ̃︀Πℱ for functionality ℱ consists of “dummy” parties ̃︀𝐴 and ̃︀𝐵 that have
access to an additional “trusted” party that implements ℱ . That is, ̃︀𝐴 and ̃︀𝐵 only interact directly
with ℱ , providing inputs and receiving outputs, and do not interact with each other. We consider
the execution of ideal-world protocols in the presence of a simulator, described by a family of
quantum interactive machines {Sim𝜆}𝜆∈N that controls either party ̃︀𝐴 or ̃︀𝐵. The execution of the
protocol in the presence of the simulator also begins with a family of states {|𝜓𝜆⟩𝒳 ,𝒜,𝒟}𝜆∈N on reg-
isters (𝒳 ,𝒜,𝒟) as described above, and we define the analogous random variable ̃︀Πℱ [Sim𝜆, |𝜓𝜆⟩].

Secure realization. We define what it means for a protocol to securely realize an ideal function-
ality.

Definition 3.18 (Secure realization). A protocol Πℱ securely realizes the functionality ℱ if for any
QPT adversary {Adv𝜆}𝜆∈N corrupting party 𝑀 ∈ {𝐴,𝐵}, there exists a QPT simulator {Sim𝜆}𝜆∈N
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corrupting party 𝑀 such that for any QPT distinguisher {D𝜆}𝜆∈N and polynomial-size family of states
{|𝜓𝜆⟩𝒳 ,𝒜,𝒟}𝜆∈N,⃒⃒⃒⃒

Pr[1← D𝜆(Πℱ [Adv𝜆, |𝜓𝜆⟩])]− Pr
[︁
1← D𝜆(̃︀Πℱ [Sim𝜆, |𝜓𝜆⟩])

]︁⃒⃒⃒⃒
= negl(𝜆).

3.7 The XOR extractor

Imported Theorem 3.19 ([ABKK23]). Let 𝒳 be an 𝑛-qubit register, and consider any quantum state
|𝛾⟩𝒜,𝒳 that can be written as

|𝛾⟩𝒜,𝒳 =
∑︁

𝑢:hw(𝑢)<𝑛/2

|𝜓𝑢⟩𝒜 |𝑢⟩𝒳 ,

where hw(·) denotes the Hamming weight. Let 𝜌𝒜,𝒫 be the mixed state that results from measuring 𝒳 in
the Hadamard basis to produce a string 𝑥 ∈ {0, 1}𝑛, and writing

⨁︀
𝑖∈[𝑛] 𝑥𝑖 into a single qubit register 𝒫 .

Then it holds that

𝜌𝒜,𝒫 = Tr𝒳 (|𝛾⟩⟨𝛾|)⊗
(︂
1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1|

)︂𝒫
.

4 One-Shot String Oblivious Transfer

4.1 Impossibility in the CRS model

First, we show that a classical shared random string is not sufficient to achieve one-shot (random
receiver bit) string OT, even when parties can compute and communicate quantumly. The intu-
ition is that the sender has the same view of the receiver right before it sends its message, and
can thus run the receiver’s honest computation on its message in order to learn the receiver’s
choice bit. This is easy to formalize in the case that the sender and receiver are running classical
computations, but takes a little more care in the quantum setting.

We will rely on recent observations about the quantum equivalence between mapping and
distinguishing. In particular, we will show that, EITHER the receiver cannot tell that the sender
measured their choice bit, which violates security against a malicious sender, OR their exists an
efficient adversarial receiver that can map between the sender’s strings 𝑚0,𝑚1 and can recover
them both, violating security against a malicious receiver.

Theorem 4.1. There does not exist a one-message protocol that securely realizes the functionality ℱROT in
the common reference string model, even if parties can compute and communicate quantumly.

Proof. We will use the following imported theorem, which is a special case of [DS22, Claim 3.5].

Imported Theorem 4.2 ([DS22]). Let D be a projector, Π0,Π1 be orthogonal projectors, and |𝜓⟩ ∈
Im (Π0 +Π1). Then,

‖Π1DΠ0 |𝜓⟩ ‖2 + ‖Π0DΠ1 |𝜓⟩ ‖2 ≥
1

2

(︀
‖D |𝜓⟩ ‖2 −

(︀
‖DΠ0 |𝜓⟩ ‖2 + ‖DΠ1 |𝜓⟩ ‖2

)︀)︀2
.

Now consider any one-message protocol for ℱROT, where the common reference string is sam-
pled as crs ← ℛ from some distribution ℛ over classical strings. Fix any pair of sender inputs
(𝑚0,𝑚1), and let |𝜓⟩ be the message sent by the honest sender on input 𝑚0,𝑚1 and crs (note that
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|𝜓⟩ is a sample from a distribution). Without loss of generality, we can consider the honest receiver
strategy to apply a unitary 𝑈𝑅 on |𝜓⟩ |0⟩ (where the auxiliary register is initialized with sufficiently
many qubits) and then measure an output register in the standard basis to obtain (𝑏,𝑚𝑏). We de-
fine

Π0 := 𝑈 †𝑅 |0,𝑚0⟩⟨0,𝑚0|𝑈𝑅, Π1 := 𝑈 †𝑅 |1,𝑚1⟩⟨1,𝑚1|𝑈𝑅.

Suppose that the protocol satisfies perfect correctness,11 which implies that |𝜓⟩ ∈ Im(Π0 +Π1).
Now, suppose that an adversarial sender applies the measurement {Π0,Π1} to |𝜓⟩ and then sends
the resulting mixture over Π0 |𝜓⟩ and Π1 |𝜓⟩ to the receiver. There are two cases.

In the first case, there does not exist a QPT procedure that distinguishes |𝜓⟩ from the mixture
over Π0 |𝜓⟩ and Π1 |𝜓⟩. In this case, the sender learns the bit 𝑏 obtained by the receiver from the
outcome of measurement {Π0,Π1}, which violates security.

In the second case, there exists a QPT distinguisher D (written as a projective measurement)
that distinguishes with non-negl(𝜆) probability. Then by Imported Theorem 4.2, we have that

E
crs,|𝜓⟩

[︀
‖Π1DΠ0 |𝜓⟩ ‖2 + ‖Π0DΠ1 |𝜓⟩ ‖2

]︀
= non-negl(𝜆),

where the expectation is over the sampling of crs ← ℛ and the sampling of the sender’s mes-
sage |𝜓⟩. However, this means that the following receiver strategy will return {𝑚0,𝑚1} with
non-negl(𝜆) probability, which violates security. Begin with |𝜓⟩ |0⟩. Apply 𝑈𝑅 and measure the
output register in the computational basis to obtain (𝑏,𝑚𝑏). Then, apply 𝑈𝑅D𝑈

†
𝑅 and measure the

output register in the computational basis to obtain (1− 𝑏,𝑚1−𝑏). This completes the proof.

4.2 Construction in the shared EPR pairs model

In this section, we give our construction of one-shot (random receiver bit) string oblivious transfer
in the shared EPR pairs model.

Ingredients

• Non-interactive extractable commitment (Com,ExtGen,Ext) in the common random string
model (Section 3.3). This is known from LWE (Remark 3.10).

• A programmable hash function family {𝐻𝜆}𝜆∈N that is sub-exponentially correlation in-
tractable for efficiently verifiable approximate product relations with constant sparsity (Sec-
tion 3.2). This is known from the sub-exponential hardness of LWE (Imported Theorems 3.4
and 3.5).

• Non-interactive zero-knowledge argument (NIZK.Prove,NIZK.Ver,NIZK.Sim) in the common
random string model (Section 3.4). This is known from LWE (Imported Theorem 3.14).

• Pseudorandom generator PRG.
11If it satisfies 1− negl(𝜆) correctness, we can apply Gentle Measurement (Lemma 3.1) to |𝜓⟩, which will only affect

our conclusions by a negl(𝜆) amount.
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Parameters

• Security parameter 𝜆.

• Correlation intractable hash security parameter 𝜆CI := 𝜆1/𝛿, where 𝛿 > 0 is the constant such
that {𝐻𝜆CI}𝜆CI∈N is 2−𝜆

𝛿
CI-correlation intractable.

• Size of commitment key ℎ = ℎ(𝜆).

• Size of NIZK crs 𝑛 = 𝑛(𝜆).

• Size of hash key 𝑘 = 𝑘(𝜆CI).

• Approximation parameter 𝛼 = 1/120.

• Number of repetitions in each group 𝑐 = 480.

• Sparsity 𝜌 =
((1−𝛼)𝑐
(1/2)𝑐 )
2𝑐 < 𝛼.

• Product parameter 𝑡 = 𝑡(𝜆CI) = 1803𝜆CI ≥ 𝜆CI/(𝛼− 𝜌)3.

• Total number of repetitions ℓ = ℓ(𝜆) = 𝑐 · 𝑡 = poly(𝜆).

• PRG range {0, 1}2𝜆ℓ.

• CI hash range 𝒴𝑡, where 𝒴 is the set of subsets of [𝑐] of size 𝑐/2. We will also parse 𝑇 ∈ 𝒴𝑡 as
a subset of [ℓ] of size ℓ/2.

We remark that we have not tried to fully optimize the constants in the parameters above.

Setup

• ℓ collections of EPR pairs indexed by 𝑖 ∈ [ℓ]. Each collection consists of one “control” pair
{𝒮ctl𝑖 ,ℛctl

𝑖 } and 2𝜆 “message” pairs on registers {𝒮msg
𝑖,𝑗 ,ℛmsg

𝑖,𝑗 }𝑗∈[2𝜆]. For each 𝑖 ∈ [ℓ], we define
𝒮𝑖 := (𝒮ctl𝑖 ,𝒮

msg
𝑖,1 , . . . ,𝒮msg

𝑖,2𝜆) andℛ𝑖 := (ℛctl
𝑖 ,ℛ

msg
𝑖,1 , . . . ,ℛ

msg
𝑖,2𝜆).

• Commitment key ck← {0, 1}ℎ.

• NIZK common random string crs← {0, 1}𝑛.

• Correlation intractable hash key hk← {0, 1}𝑘.

Note that a shared uniformly random string can be obtained by measuring shared EPR pairs
in the same basis, and thus this entire Setup can be obtained with just shared EPR pairs.

Finally, given a commitment key ck for Com and a set 𝑇 ⊂ [ℓ], we define the NP language ℒck,𝑇
of instance-witness pairs as follows.(︀(︀

{̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]
)︀
,
(︀
{𝑡𝑖}𝑖∈𝑇 ,Δ, 𝑠

)︀)︀
∈ ℒck,𝑇

if and only if12

12Technically, the random coins used to compute the commitments must also be included in the witness.
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∀𝑖 ∈ 𝑇 ,̂︁cm𝑖,0 ∈ Com(ck, 𝑡𝑖) ∧ ̂︁cm𝑖,1 ∈ Com(ck, 𝑡𝑖 ⊕Δ), and
∀𝑖 ∈ [ℓ], cm𝑖 ∈ Com(ck, (·, 𝑥𝑖, ·)),where (𝑥1, . . . , 𝑥ℓ) := PRG(𝑠).

Now, our protocol is described in Fig. 3.

One-shot protocol for ℱROT

Sender message. Input strings 𝑚0,𝑚1 ∈ {0, 1}𝜆.

1. Sample a PRG seed 𝑠← {0, 1}𝜆 and set (𝑥1, . . . , 𝑥ℓ) := PRG(𝑠), where each 𝑥𝑖 ∈ {0, 1}2𝜆.

2. For each 𝑖 ∈ [ℓ]:

• For each 𝑗 ∈ [2𝜆] such that 𝑥𝑖,𝑗 = 1, apply a CNOT gate from register 𝒮ctl
𝑖 to register 𝒮msg

𝑖,𝑗 .

• Measure {𝒮msg
𝑖,𝑗 }𝑗∈[2𝜆] in the standard basis to obtain 𝑣𝑖 ∈ {0, 1}2𝜆 and measure 𝒮ctl

𝑖 in the Hadamard
basis to obtain ℎ𝑖 ∈ {0, 1}.

• Compute cm𝑖 := Com(ck, (𝑣𝑖, 𝑥𝑖, ℎ𝑖); 𝑟𝑖), where 𝑟𝑖 ← {0, 1}𝜆 are the random coins used for commit-
ment.

3. Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)) ⊂ [ℓ] and let 𝑇 := [ℓ] ∖ 𝑇 .

4. Sample Δ← {0, 1}𝜆 and for each 𝑖 ∈ 𝑇 :

• Sample 𝑡𝑖 ← {0, 1}𝜆 and compute ̂︁cm𝑖,0 := Com(ck, 𝑡𝑖; 𝑟𝑖,0) and ̂︁cm𝑖,1 := Com(ck, 𝑡𝑖 ⊕Δ; 𝑟𝑖,1) where
𝑟𝑖,0, 𝑟𝑖,1 ← {0, 1}𝜆 are the random coins used for commitment.

• Define 𝑧𝑖,0 = (𝑡𝑖, 𝑟𝑖,0)⊕ 𝑣𝑖, 𝑧𝑖,1 = (𝑡𝑖 ⊕Δ, 𝑟𝑖,1)⊕ 𝑣𝑖 ⊕ 𝑥𝑖.

5. Define ̃︀𝑚0 := 𝑚0 ⊕
⨁︁
𝑖∈𝑇

𝑡𝑖, ̃︀𝑚1 := 𝑚1 ⊕Δ⊕
⨁︁
𝑖∈𝑇

𝑡𝑖.

6. Compute 𝜋 ← NIZK.Prove
(︀
crs,

(︀
{̂︁cm𝑖,0, ̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀
,
(︀
{𝑡𝑖}𝑖∈𝑇 ,Δ, 𝑠

)︀)︀
for the language ℒck,𝑇 .

7. Send
(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0, ̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
to the receiver.

Receiver computation. In what follows, abort and output ⊥ if any check fails.

1. Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)) and check that for all 𝑖 ∈ 𝑇 , cm𝑖 = Com(ck, (𝑣𝑖, 𝑥𝑖, ℎ𝑖); 𝑟𝑖).

2. For each 𝑖 ∈ 𝑇 , define |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩ := 1√
2

(︀
|0, 𝑣𝑖⟩+ (−1)ℎ𝑖 |1, 𝑣𝑖 ⊕ 𝑥𝑖⟩

)︀
, and measure registerℛ𝑖 in the basis

{|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 | , I− |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |}. Check that for all 𝑖 ∈ 𝑇 , the first outcome is observed.

3. Check that NIZK.Ver
(︀
crs,

(︀
{̂︁cm𝑖,0, ̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀
, 𝜋

)︀
= ⊤.

4. For each 𝑖 ∈ 𝑇 , measure register ℛ𝑖 in the standard basis to obtain 𝑏𝑖 ∈ {0, 1} and 𝑣′𝑖 ∈ {0, 1}2𝜆, compute
(𝑡′𝑖, 𝑟

′
𝑖) = 𝑧𝑖,𝑏𝑖 ⊕ 𝑣

′
𝑖, and check that for each 𝑖 ∈ 𝑇 , ̂︁cm𝑖,𝑏𝑖 = Com(ck, 𝑡′𝑖; 𝑟

′
𝑖).

5. Output
𝑏 :=

⨁︁
𝑖∈𝑇

𝑏𝑖, 𝑚𝑏 := ̃︀𝑚𝑏 ⊕
⨁︁
𝑖∈𝑇

𝑡′𝑖.

Figure 3: A protocol for one-shot random string OT in the shared EPR pair model.
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4.3 Security

Theorem 4.3. The protocol in Fig. 3 securely realizes (Definition 3.18) the functionality ℱROT. Thus,
assuming the sub-exponential hardness of LWE, there exists a one-message protocol for ℱROT in the shared
EPR pair model.

The proof of this theorem follows from Lemma 4.4 and Lemma 4.14 below.

Lemma 4.4. The protocol in Fig. 3 is secure against a malicious sender.

Proof. Let {Adv𝜆}𝜆∈N be a QPT adversary corrupting the sender, which takes as input register𝒜 of
{|𝜓𝜆⟩𝒜,𝒟}𝜆∈N. Note that we don’t consider a register 𝒳 holding the honest party’s input, since an
honest receiver has no input. We will define a sequence of hybrids, beginning with the real distri-
bution ΠℱROT

[Adv𝜆, |𝜓𝜆⟩] and ending with the distribution ̃︀ΠℱROT
[Sim𝜆, |𝜓𝜆⟩] defined by a simulator

{Sim𝜆}𝜆∈N. Each hybrid is a distribution described by applying an operation to the input register
𝒜, and a QPT distinguisher will obtain the output of this distribution along with the register 𝒟.
We drop the dependence of the hybrids on 𝜆 for convenience.

ℋ0(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample ck ← {0, 1}ℎ, crs ←
{0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run the Receiver’s honest computation on the sender’s message to obtain an output (𝑏,𝑚𝑏)
or ⊥. Output either (𝒜′, (𝑏,𝑚𝑏)) or (𝒜′,⊥).

ℋ1(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run the Receiver’s honest computation on the sender’s message to obtain an output (𝑏,𝑚𝑏)
or ⊥. Output either (𝒜′, (𝑏,𝑚𝑏)) or (𝒜′,⊥).

ℋ2(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
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• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.

• We will now coherently apply the check described in Step 4 to the registers {ℛ𝑖}𝑖∈𝑇 . First
we introduce some notation. For commitment key ck, commitment ̂︁cm, and two strings
𝑧0, 𝑧1 ∈ {0, 1}2𝜆, let Π[ck,̂︁cm, 𝑧0, 𝑧1] be a projection onto strings (𝑏, 𝑣′) ∈ {0, 1}1+2𝜆 such that̂︁cm = Com(ck, 𝑡; 𝑟), where (𝑡, 𝑟) := 𝑧𝑏 ⊕ 𝑣′.
Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto⨂︁

𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and aborts if the projection fails.

• If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure register ℛ𝑖 in the
standard basis to obtain 𝑏𝑖 ∈ {0, 1} and 𝑣′𝑖 ∈ {0, 1}2𝜆, and compute (𝑡′𝑖, 𝑟

′
𝑖) = 𝑧𝑖,𝑏𝑖 ⊕ 𝑣′𝑖. Then,

define
𝑏 :=

⨁︁
𝑖∈𝑇

𝑏𝑖, 𝑚𝑏 := ̃︀𝑚𝑏 ⊕
⨁︁
𝑖∈𝑇

𝑡′𝑖,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ3(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.

• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto⨂︁
𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.

• For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥ or if there does
not exist Δ such that 𝑡𝑖,1 = Δ⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .
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• If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure register ℛ𝑖 in the
standard basis to obtain 𝑏𝑖 ∈ {0, 1} and 𝑣′𝑖 ∈ {0, 1}2𝜆, and compute (𝑡′𝑖, 𝑟

′
𝑖) = 𝑧𝑖,𝑏𝑖 ⊕ 𝑣′𝑖. Then,

define
𝑏 :=

⨁︁
𝑖∈𝑇

𝑏𝑖, 𝑚𝑏 := ̃︀𝑚𝑏 ⊕
⨁︁
𝑖∈𝑇

𝑡′𝑖,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ4(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.

• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto⨂︁
𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.

• For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥ or if there does
not exist Δ such that 𝑡𝑖,1 = Δ⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .

• If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure register ℛctl
𝑖 in the

standard basis to obtain 𝑏𝑖 ∈ {0, 1}. Then, define

𝑏 :=
⨁︁
𝑖∈𝑇

𝑏𝑖, 𝑚0 :=
⨁︁
𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕Δ⊕
⨁︁
𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ5(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
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• We will insert a measurement on the registers {ℛ𝑖}𝑖∈𝑇 . Before specifying this measurement,
we introduce some notation.

– For {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 and a string 𝑒 ∈ {0, 1}|𝑇 |, define

Π[𝑒, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 ]
{ℛ𝑖}𝑖∈𝑇 :=

⨂︁
𝑖:𝑒𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |
ℛ𝑖⊗

⨂︁
𝑖:𝑒𝑖=1

I−|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |
ℛ𝑖 .

– For {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 and a constant 𝛾 ∈ [0, 1], define

Π[𝛾, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 ]
{ℛ𝑖}𝑖∈𝑇 :=

∑︁
𝑒∈{0,1}|𝑆|:hw(𝑒)<𝛾|𝑇 |

Π[𝑒, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 ]
{ℛ𝑖}𝑖∈𝑇 .

Compute (𝑣𝑖, 𝑥𝑖, ℎ𝑖)← Ext(ek, cm𝑖) for each 𝑖 ∈ 𝑇 . Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

Π
[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.

• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto⨂︁
𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.

• For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥ or if there does
not exist Δ such that 𝑡𝑖,1 = Δ⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .

• If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure register ℛctl
𝑖 in the

standard basis to obtain 𝑏𝑖 ∈ {0, 1}. Then, define

𝑏 :=
⨁︁
𝑖∈𝑇

𝑏𝑖, 𝑚0 :=
⨁︁
𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕Δ⊕
⨁︁
𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ6(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
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• Compute (𝑣𝑖, 𝑥𝑖, ℎ𝑖)← Ext(ek, cm𝑖) for each 𝑖 ∈ 𝑇 . Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

Π
[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.

• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto⨂︁
𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.

• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

Π
[︀
1/2, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.

• For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥ or if there does
not exist Δ such that 𝑡𝑖,1 = Δ⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .

• If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure register ℛctl
𝑖 in the

standard basis to obtain 𝑏𝑖 ∈ {0, 1}. Then, define

𝑏 :=
⨁︁
𝑖∈𝑇

𝑏𝑖, 𝑚0 :=
⨁︁
𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕Δ⊕
⨁︁
𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ7(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.

• Compute (𝑣𝑖, 𝑥𝑖, ℎ𝑖)← Ext(ek, cm𝑖) for each 𝑖 ∈ 𝑇 . Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

Π
[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.

• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto⨂︁
𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.
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• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

Π
[︀
1/2, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.

• For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥ or if there does
not exist Δ such that 𝑡𝑖,1 = Δ⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .

• If there was an abort, output (𝒜′,⊥). Otherwise, sample 𝑏← {0, 1}. Then, define

𝑚0 :=
⨁︁
𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕Δ⊕
⨁︁
𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ8(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.

• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto⨂︁
𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.

• For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥ or if there does
not exist Δ such that 𝑡𝑖,1 = Δ⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .

• If there was an abort, output (𝒜′,⊥). Otherwise, sample 𝑏← {0, 1}. Then, define

𝑚0 :=
⨁︁
𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕Δ⊕
⨁︁
𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ9(𝒜) / Sim(𝒜)

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample (ck, ek)← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
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• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
and a state on register 𝒜′.

• Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.

• Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto⨂︁
𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.

• For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥ or if there does
not exist Δ such that 𝑡𝑖,1 = Δ⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .

• If there was an abort, send ⊥ to the ideal functionality, and output 𝒜′. Otherwise, define

𝑚0 :=
⨁︁
𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕Δ⊕
⨁︁
𝑖∈𝑇

𝑡𝑖,0,

send (𝑚0,𝑚1) to the ideal functionality, and output 𝒜′.

Observe thatℋ9(𝒜) describes the behavior of a simulator Sim that operates on input register𝒜,
and interacts with the ideal functionality ℱROT. Thus, The following sequence of claims completes
the proof.

Claim 4.5. ℋ0 ≈𝑐 ℋ1.

Proof. This follows directly from the extractability of the commitment (Definition 3.9).

Claim 4.6. ℋ1 ≡ ℋ2.

Proof. The only difference is that we have applied the Step 4 check coherently before measuring
in the standard basis. Since these measurements commute, these hybrids describe the same distri-
bution.

Claim 4.7. ℋ2 ≈𝑠 ℋ3.

Proof. The newly introcued abort condition will only be triggered with negligible probability due
to the soundness of the NIZK (Definition 3.12) and the extractability of the commitment (Defini-
tion 3.9).

Claim 4.8. ℋ3 ≈𝑠 ℋ4.

Proof. We are now defining 𝑚0,𝑚1 based on the strings extracted by Ext rather than the strings
measured by the Receiver. Since the strings measured by the Receiver must be valid commitment
openings, this only introduces a negligible difference due to the extractability of the commitment
(Definition 3.9).
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Claim 4.9. ℋ4 ≈𝑠 ℋ5.

Proof. By Gentle Measurement (Lemma 3.1), it suffices to argue that the projection introduced in
ℋ5 will succeed with probability 1−negl(𝜆). So towards contradiction, assume that the projection
fails with non-negligible probability. We will eventually use this assumption to break the correla-
tion intractability of 𝐻 . First, consider the following experiment.

Exp1

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ]. Sample (ck, ek) ← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk, and receive a message that includes {cm𝑖}𝑖∈[ℓ],
{̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , 𝜋.

• Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)), check that for all 𝑖 ∈ 𝑇 , cm𝑖 = Com(ck, (𝑣𝑖, 𝑥𝑖, ℎ𝑖); 𝑟𝑖),
and that NIZK.Ver

(︀
crs,

(︀
{̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀
, 𝜋
)︀
= ⊤, and abort if not.

• For each 𝑖 ∈ [ℓ], compute (𝑣𝑖, 𝑥𝑖, ℎ𝑖)← Ext(ek, cm𝑖), and abort if any are ⊥.

• For each 𝑖 ∈ [ℓ], measure registers ℛ𝑖 in the basis {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 | , I− |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |}
and define the bit 𝑒𝑖 = 0 if the first outome is observed and 𝑒𝑖 = 1 if the second outcome is
observed.

• Output 1 if (i) there exists an 𝑠 ∈ {0, 1}𝜆 such that (𝑥1, . . . , 𝑥ℓ) = PRG(𝑠),13 (ii) 𝑒𝑖 = 0 for all
𝑖 ∈ 𝑇 , and (iii) 𝑒𝑖 = 1 for at least 1/30 fraction of 𝑖 : 𝑖 ∈ 𝑇 .

We claim that Pr[Exp1 → 1] = non-negl(𝜆). This nearly follows from the assumption that the
measurement introduced in ℋ5 rejects with non-negligible probability, except for the following
two differences. One difference from ℋ3 is that in Exp1, we are using {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 extracted
from {cm𝑖}𝑖∈𝑇 to measure registers {ℛ𝑖}𝑖∈𝑇 , rather than the strings sent by the adversary. How-
ever, this introduces a negligible difference due to the extractability of the commitment scheme.
The other difference is that we require (𝑥1, . . . , 𝑥ℓ), which are extracted from {cm𝑖}𝑖∈[ℓ], to be in
the image of PRG(·). However, by extractability of the commitment scheme and soundness of the
NIZK, the probability that the procedure does not abort and this fails to occur is negligible. Next,
consider the following experiment.

Exp2

• Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ]. Sample (ck, ek) ← ExtGen(1𝜆),
crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

• Sample 𝑠* ← {0, 1}𝜆 and set (𝑥*1, . . . , 𝑥
*
ℓ ) = PRG(𝑠*). For each 𝑖 ∈ [ℓ] and 𝑗 ∈ [2𝜆] such that

𝑥𝑖,𝑗 = 1, apply a CNOT gate from register ℛctl
𝑖 to ℛmsg

𝑖,𝑗 , then measure ℛctl
𝑖 in the Hadamard

basis to obtain ℎ*𝑖 and measureℛmsg
𝑖,1 , . . . ,ℛ

msg
𝑖,2𝜆 in the standard basis to obtain 𝑣*𝑖 .

• Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk, and receive a message that includes {cm𝑖}𝑖∈[ℓ].
13Note that this step is not efficient to implement, but this will not be important for our arguments.
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• Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)) and (𝑣𝑖, 𝑥𝑖, ℎ𝑖)← Ext(ek, cm𝑖) for each 𝑖 ∈ [ℓ].

• Output 1 if (i) (𝑥1, . . . , 𝑥ℓ) = (𝑥*1, . . . , 𝑥
*
ℓ ), (ii) (𝑣𝑖, ℎ𝑖) = (𝑣*𝑖 , ℎ

*
𝑖 ) for all 𝑖 ∈ 𝑇 , and (iii) (𝑣𝑖, ℎ𝑖) ̸=

(𝑣*𝑖 , ℎ
*
𝑖 ) for at least 1/30 fraction of 𝑖 : 𝑖 ∈ 𝑇 .

It follows that Pr[Exp2 → 1] = non-negl(𝜆)/2𝜆 > 1/2𝜆
𝛿
CI , since the guess of 𝑠* is uniformly

random and independent of the adversary’s view. Finally, we will show that Exp2 can be used to
break the correlation intractability of 𝐻 , but first we introduce some notation.

• For each (ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]), define the relation 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]] as follows. Recalling
that ℓ = 𝑐·𝑡, we will associate each 𝑖 ∈ [ℓ] with a pair (𝜄, 𝜅) for 𝜄 ∈ [𝑡], 𝜅 ∈ [𝑐]. Also, for each set
of strings {cm𝑖}𝑖∈[ℓ], we fix (𝑣𝑖, 𝑥𝑖, ℎ𝑖) := Ext(ek, cm𝑖) for each 𝑖 ∈ [ℓ]. Then the domain will
consist of strings {cm𝑖}𝑖∈[ℓ] such that (i) (𝑥1, . . . , 𝑥ℓ) = PRG(𝑠*), (ii) |𝑖 : (𝑣𝑖, ℎ𝑖) = (𝑣*𝑖 , ℎ

*
𝑖 )| ≤

(1− 1/60)ℓ, and (iii) for each 𝜄 ∈ [𝑡], |𝜅 : (𝑣(𝜄,𝜅), ℎ(𝜄,𝜅)) = (𝑣*(𝜄,𝜅), ℎ
*
(𝜄,𝜅))| ≥ (1/2)𝑐.

• For each {cm𝑖}𝑖∈[ℓ] in the domain of 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]], define the sets {𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
}𝜄∈[𝑡] as

follows. If (1/2)𝑐 ≤ |𝜅 : (𝑣(𝜄,𝜅), ℎ(𝜄,𝜅)) = (𝑣*(𝜄,𝜅), ℎ
*
(𝜄,𝜅))| ≤ (1− 1/120)𝑐, let 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]

consist of
subsets 𝐶 ⊂ [𝑐] of size 𝑐/2 such that for all 𝜅 ∈ 𝐶, (𝑣(𝜄,𝜅), ℎ(𝜄,𝜅)) = (𝑣*(𝜄,𝜅), ℎ

*
(𝜄,𝜅)). Otherwise,

let 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
= ∅.

• Define the set 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]]{cm𝑖}𝑖∈[ℓ]
to consist of all 𝑦 = (𝐶1, . . . , 𝐶𝑡) such that 𝐶𝜄 ∈

𝑆𝜄,{cm}𝑖∈[ℓ]
for all 𝜄 such that 𝑆𝜄,{cm}𝑖∈[ℓ]

̸= ∅. We claim that there are always at least 1/120
fraction of 𝜄 ∈ [𝑡] such that 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]

̸= ∅. To see this, note that 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
̸= ∅ iff

|𝜅 : (𝑣(𝜄,𝜅), ℎ(𝜄,𝜅)) ̸= (𝑣*(𝜄,𝜅), ℎ
*
(𝜄,𝜅))| > (1/120)𝑐. However, if less 1/120 fraction of 𝜄 sat-

isfies this condition, then the fraction of 𝑖 ∈ [ℓ] such that (𝑣𝑖, ℎ𝑖) ̸= (𝑣*𝑖 , ℎ
*
𝑖 ) is at most

(1/120) + (1/120)(1 − 1/120) < 1/60, which would contradict the fact that {cm𝑖}𝑖∈[ℓ] is in
the domain of 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]]{cm𝑖}𝑖∈[ℓ]

.

Thus,𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]] is an 𝛼-approximate efficiently verifiable product relation for 𝛼 =

1/120 with sparsity 𝜌 =
(︀(1−𝛼)𝑐
(1/2)𝑐

)︀
/2𝑐 < 𝛼.

Now, whenever Exp2 = 1, it must be the case that {cm𝑖}𝑖∈[ℓ] is in the domain of𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]],
and 𝑇 ∈ 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]]{cm𝑖}𝑖∈[ℓ]

. Thus, we can break correlation intractability as follows. Be-
gin running Exp2, but don’t sample hk. Once ek, 𝑠* are sampled and {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ] are measured,
declare the relation 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]]. Then, receive hk from the correlation intractability chal-
lenger, continue running Exp2 until {cm𝑖}𝑖∈[ℓ] is obtained, and output this to the challenger. The
above analysis shows that this breaks correlation intractability for the relation𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]].

Claim 4.10. ℋ5 ≈𝑠 ℋ6.

Proof. By Gentle Measurement (Lemma 3.1), it suffices to show that the projection introduced in
ℋ6 will succeed with probability 1 − negl(𝜆). To do so, we will rule out one bad case. For each
𝑖 ∈ 𝑇 , define the bit 𝑓𝑖 = 0 if and only if ̂︁cm𝑖,0 = Com(ck, 𝑡𝑖,0; 𝑟𝑖,0) and ̂︁cm𝑖,1 = Com(ck, 𝑡𝑖,1; 𝑟𝑖,1),
where (𝑡𝑖,0, 𝑟𝑖,0) = 𝑧𝑖,0 ⊕ 𝑣𝑖, (𝑡𝑖,1, 𝑟𝑖,1) = 𝑧𝑖,1 ⊕ 𝑣𝑖 ⊕ 𝑥𝑖, and (𝑣𝑖, 𝑥𝑖, ℎ𝑖) := Ext(ek, cm𝑖). Now we claim
that if the fraction of 𝑖 ∈ 𝑇 such that 𝑓𝑖 = 1 is ≥ 1/2− 1/30, then the attempted projection onto⨂︁

𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖
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performed during Step 4 of the receiver’s computation would have failed with probabilty 1 −
negl(𝜆). To see this, consider any state |𝜓⟩{ℛ𝑖}𝑖∈[ℓ],𝒳 in the image of Π

[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
, where

𝒳 is an arbitrary auxiliary register. Then, defining 𝛾 = 1/30, we can write |𝜓⟩ as

|𝜓⟩ :=
∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<𝛾|𝑇 |

(︃⨂︁
𝑖:𝑒𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩
ℛ𝑖

)︃
⊗ |𝜓𝑒⟩{ℛ𝑖}𝑖:𝑒𝑖=1,𝒳 ,

where |𝜓𝑒⟩ is some unit vector that is orthogonal to |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩ for all 𝑖 such that 𝑒𝑖 = 1. Then,⃦⃦⃦⃦⨂︁
𝑖∈𝑇

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓⟩
⃦⃦⃦⃦2

≤
⃦⃦⃦⃦ ∑︁
𝑒∈{0,1}|𝑇 |:hw(𝑒)<𝛾|𝑇 |

⨂︁
𝑖:𝑒𝑖=0

Π[ck,̂︁cm𝑖, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩
ℛ𝑖

⃦⃦⃦⃦2

≤
(︂
|𝑇 |
𝛾|𝑇 |

)︂ ∑︁
𝑒∈{0,1}|𝑇 |:hw(𝑒)<𝛾|𝑇 |

⃦⃦⃦⃦ ⨂︁
𝑖:𝑒𝑖=0

Π[ck,̂︁cm𝑖, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩
ℛ𝑖

⃦⃦⃦⃦2

≤
(︂
|𝑇 |
𝛾|𝑇 |

)︂2

· 2−(1/2−2𝛾)|𝑇 |

≤ (3/𝛾)2𝛾|𝑇 | · 2−(1/2−2𝛾)|𝑇 |

= 2|𝑇 |(2𝛾 log(3/𝛾)−(1/2−2𝛾))

= negl(𝜆)

where the second inequality is Cauchy-Schwartz, the third inequality follow from the fact that
there are at least 1/2−2𝛾 fraction of indices where 𝑓𝑖 = 1 and 𝑒𝑖 = 0, and the final equality follows
because 𝛾 = 1/30 is such that 2𝛾 log(3/𝛾)− (1/2−2𝛾) = 𝑂(1), and |𝑇 | = ℓ/2 = Ω(𝜆), which means
that the exponent is Ω(𝜆).

Thus it suffices to consider the case where the fraction of 𝑖 ∈ 𝑇 such that 𝑓𝑖 = 1 is < 1/2−1/30.
So consider any state |𝜓⟩{ℛ𝑖}𝑖∈[ℓ],𝒳 in the image of Π

[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
, which we can write as

|𝜓⟩ :=
∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<|𝑇 |/30

(︃⨂︁
𝑖:𝑒𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩
ℛ𝑖

)︃
⊗ |𝜓𝑒⟩{ℛ𝑖}𝑖:𝑒𝑖=1,𝒳 .

Then,
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Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓⟩

=
∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<|𝑇 |/30

⎛⎝ ⨂︁
𝑖:𝑒𝑖=0∧𝑓𝑖=0

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩

⎞⎠
⊗

⎛⎝ ⨂︁
𝑖:𝑒𝑖=1∨𝑓𝑖=1

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]

⎞⎠ |𝜓𝑒⟩
=

∑︁
𝑒∈{0,1}|𝑇 |:hw(𝑒)<|𝑇 |/30

⎛⎝ ⨂︁
𝑖:𝑒𝑖=0∧𝑓𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩

⎞⎠⊗
⎛⎝ ⨂︁
𝑖:𝑒𝑖=1∨𝑓𝑖=1

Π[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]

⎞⎠ |𝜓𝑒⟩
=

∑︁
𝑒′∈{0,1}|𝑇 |:hw(𝑒′)<|𝑇 |/2

⎛⎝⨂︁
𝑖:𝑒′𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩

⎞⎠⊗ |𝜓𝑒′⟩
∈ Im

(︀
Π
[︀
1/2, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀)︀
,

where the |𝜓𝑒′⟩ are some set of unit vectors.

Claim 4.11. ℋ6 ≡ ℋ7.

Proof. It suffices to show that inℋ6, the bit 𝑏 =
⨁︀

𝑖∈𝑇 𝑏𝑖 sampled by measuring registers {ℛctl
𝑖 }𝑖∈𝑇

of |𝜓⟩{ℛ𝑖}𝑖∈[ℓ],𝒳 in the standard basis is uniformly random, even conditioned on the auxiliary reg-
ister 𝒳 (which includes the view of the adversarial sender). This follows from Imported Theo-
rem 3.19 by applying a change of basis. In more detail, define the unitary 𝑈𝑣𝑖,𝑥𝑖,ℎ𝑖 to be applied
to ℛ𝑖 as follows: For each 𝑗 ∈ [2𝜆] such that 𝑥𝑖,𝑗 = 1 apply a CNOT gate from ℛctl

𝑖,𝑗 to ℛmsg
𝑖,𝑗 , then

apply a classically controlled phase flip 𝑍ℎ𝑖 to ℛctl
𝑖 , and finally apply a Hadamard gate to ℛctl

𝑖 . In
particular,

𝑈𝑣𝑖,𝑥𝑖,ℎ𝑖 |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩ = |0⟩ |𝑣𝑖⟩ .

Thus, for any |𝜓⟩ ∈ Im(Π
[︀
1/2, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
), it holds that registers {ℛctl

𝑖 }𝑖∈𝑇 of (
⨂︀

𝑖∈𝑇 𝑈𝑣𝑖,𝑥𝑖,ℎ𝑖) |𝜓⟩
are in a superposition of standard basis states with Hamming weight < |𝑇 |/2. Since applying
𝑈 †𝑣𝑖,𝑥𝑖,ℎ𝑖 to a standard basis measurement of ℛctl

𝑖 yields a Hadamard basis measurement of ℛctl
𝑖 ,

Imported Theorem 3.19 directly implies that the bit 𝑏 =
⨁︀

𝑖∈𝑇 𝑏𝑖 is uniformly random, even condi-
tioned on the auxiliary register 𝒳 .

Claim 4.12. ℋ7 ≈𝑠 ℋ8.

Proof. We are removing the two measurements introduced in hybrids ℋ5 and ℋ6, and indistin-
guishability follows from the same arguments used in the corresponding claims Claim 4.9 and
Claim 4.10.

Claim 4.13. ℋ8 ≡ ℋ9.

Proof. This is just a syntactic switch, routing information through the ideal functionalityℱROT.
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Lemma 4.14. The protocol in Fig. 3 is secure against a malicious receiver.

Proof. Let {Adv𝜆}𝜆∈N be a QPT adversary corrupting the receiver, which takes as input register 𝒜
of {|𝜓𝜆⟩𝒜,𝒟}𝜆∈N. Instead of explicitly considering a register 𝒳 holding the honest sender’s input,
we write their input as classical strings (𝑚0,𝑚1) ∈ {0, 1}𝜆. We define a simulator {Sim𝜆}𝜆∈N as
follows.

Sim𝜆(𝒜)

• Obtain (𝑏,𝑚𝑏) from the ideal functionality.

• Sample ck← {0, 1}ℎ.

• Sample 𝑇 ⊂ [ℓ] as a uniformly random sequence of 𝑡 subsets of [𝑐] of size 𝑐/2.

• For 𝑖 ∈ 𝑇 , sample 𝑣𝑖, 𝑥𝑖 ← {0, 1}2𝜆, ℎ𝑖 ← {0, 1}, 𝑟𝑖 ← {0, 1}𝜆, set cm𝑖 := Com(ck, (𝑣𝑖, 𝑥𝑖, ℎ𝑖); 𝑟𝑖),
and initialize registerℛ𝑖 to the state 1√

2

(︀
|0, 𝑣𝑖⟩+ (−1)ℎ𝑖 |1, 𝑣𝑖 ⊕ 𝑥𝑖⟩

)︀
.

• For 𝑖 ∈ 𝑇 , sample cm𝑖 ← Com(ck, 0).

• Sample random bits {𝑏𝑖}𝑖∈𝑇 conditioned on
⨁︀

𝑖∈𝑇 𝑏𝑖 = 𝑏.

• For 𝑖 ∈ 𝑇 , sample 𝑣′𝑖 ← {0, 1}2𝜆, 𝑡′𝑖, 𝑟′𝑖 ← {0, 1}𝜆, 𝑧𝑖,1−𝑏 ← {0, 1}2𝜆, set ̂︁cm𝑖,𝑏𝑖 := Com(ck, 𝑡′𝑖; 𝑟
′
𝑖),̂︁cm𝑖,1−𝑏𝑖 ← Com(ck, 0), 𝑧𝑖,𝑏𝑖 := (𝑡′𝑖, 𝑟

′
𝑖)⊕ 𝑣′𝑖, and initialize registerℛ𝑖 to the state |𝑏𝑖, 𝑣′𝑖⟩.

• Compute (crs, 𝜋)← NIZK.Sim
(︀
1𝜆,
(︀
{̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀)︀
.

• Sample hk← Samp(1𝜆, (cm1, . . . , cmℓ), 𝑇 ).

• Set ̃︀𝑚𝑏 := 𝑚𝑏 ⊕
⨁︀

𝑖∈𝑇 𝑡
′
𝑖 and sample ̃︀𝑚1−𝑏 ← {0, 1}𝜆.

• Run Adv𝜆 on input 𝒜, {ℛ𝑖}𝑖∈[ℓ], and(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
,

and output their final state on register 𝒜′.

Now, we define a sequence of hybrids, and argue indistinguishability between each adjacent pair.

• ℋ0: This is the real distribution ΠℱROT
[Adv𝜆, |𝜓𝜆⟩].

• ℋ1: Same asℋ0 except that (crs, 𝜋)← NIZK.Sim
(︀
1𝜆,
(︀
{̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀)︀
. Compu-

tational indistinguishability fromℋ0 follows directly from zero-knowledge of NIZK (Defini-
tion 3.13).

• ℋ2: Same as ℋ1 except that (𝑥1, . . . , 𝑥ℓ) ← {0, 1}2𝜆ℓ are sampled as uniformly random
strings. Computational indistinguishability from ℋ1 follows directly from the pseudoran-
domness of PRG.
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• ℋ3: Same asℋ2 except that 𝑇 ⊂ [ℓ] is sampled as described in the simulator, and the hash key
hk is sampled at the end of the Sender’s computation by hk ← Samp(1𝜆, (cm1, . . . , cmℓ), 𝑇 ).
This is the same distribution asℋ2, which follows from the programmability of the correlation-
intractable hash function (Definition 3.6).

• ℋ4: Same asℋ3 except that {cm𝑖 ← Com(ck, 0)}𝑖∈𝑇 are sampled as commitments to 0. Com-
putational indistinguishability from ℋ3 follows directly from hiding of the commitment
scheme (Definition 3.8).

• ℋ5: Same as ℋ4 except the registers {𝒮ctl𝑖 }𝑖∈𝑇 are measured by the Sender in the standard
basis rather than the Hadamard basis. We will let {𝑏𝑖}𝑖∈𝑇 be the bits measured. This is the
same distribution asℋ4 since these registers are outside the adverary’s view, and the results
of measuring these registers are independent of the adversary’s view.

• ℋ6: Same as ℋ5 except that {̂︁cm𝑖,1−𝑏𝑖 ← Com(ck, 0)}𝑖∈𝑇 are sampled as commitments to 0.
Computational indistinguishability fromℋ5 follows directly from hiding of the commitment
scheme.

• ℋ7: Same asℋ6 except that ̃︀𝑚1−𝑏 is sampled as a random string, where 𝑏 :=
⨁︀

𝑖∈𝑇 𝑏𝑖. This is
the same distribution as ℋ6 since Δ ← {0, 1}𝜆 is independent of the adversary’s view. Also
observe that for any honest sender inputs 𝑚0,𝑚1 ∈ {0, 1}𝜆, this is the same as the simulated
distribution ̃︀ΠℱROT

[Sim𝜆, |𝜓⟩], which completes the proof.

4.4 Applications

First, we make use of a result from [GIK+15] (based on earlier work of [IPS08]) showing that any
unidirectional randomized classical functionality can be securely computed in one message given
access to a secure one-message protocol for random string OT. In our words, their theorem is the
following.

Imported Theorem 4.15 ([GIK+15]). For any polynomial-size classical circuit 𝐶(𝑥, 𝑟)→ 𝑦, there exists
a one-shot secure computation protocol for ℱCL[𝐶] given polynomially many parallel queries to ℱROT.

Thus, we immediately obtain the following corollary of Theorem 4.3.

Corollary 4.16. For any polynomial-size classical circuit 𝐶(𝑥, 𝑟) → 𝑦, there exists a one-shot secure
computation protocol for ℱCL[𝐶] in the shared EPR pair model, assuming the sub-exponential hardness of
LWE.

Secure teleportation through quantum channels. Next, we consider the secure computation of
unidirectional quantum functionalities. The setting here is that, given the public description of
a quantum map 𝑄, a sender with an arbitrary state on register 𝒮 can send a single message to
the receiver who will recover the state 𝑄(𝒮) on register ℛ. The receiver is guaranteed to learn
only 𝑄(𝒮). Security also guarantees a strong notion of hiding against a malicious sender, whose
view will have no more information than if they had just traced register 𝒮 out of their system. In
particular, the sender won’t learn anything about the resulting state 𝑄(𝒮) or any other garbage
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registers that may have been created while computing 𝑄(𝒮). In other words, this notion captures
an ideal scenario where a sender places register 𝒮 into an honest channel implementing 𝑄, and
the receiver obtains the state at the other end.

In general, this notion corresponds to secure two-party quantum computation where only one
party has input and the other party has output. However, acheiving this task in only one message
(which can be classical without loss of generality) in the shared EPR pair model is reminiscent of
the setting of quantum teleportation, except that there are additional strong integrity and privacy
guarantees about the recevied state. This motivates the following definition.

Definition 4.17 (Secure Teleportation through Quantum Channel). A secure teleportation protocol
through a quantum channel 𝑄 is a one-message protocol in the shared EPR pair model that can securely
realize the ideal functionality ℱQU[𝑄] for any efficient quantum map 𝑄.

We now use a result from [BCKM21a] showing that any unidirectional quantum function-
ality can be securely computed in one message given access to a secure one-message protocol
for arbitrary unidirectional classical functionalities. Since this theorem is not explicitly stated in
[BCKM21a], we add some explanation for how it follows from their work.

Imported Theorem 4.18 ([BCKM21a]). For any polynomial-size quantum circuit 𝑄(𝒳 ) → 𝒴 , there
exists a one-shot secure computation protocol for ℱQU[𝑄] given one query to ℱCL[𝐶𝑄] for some polynomial-
size classical circuit 𝐶𝑄 that depends on 𝑄.

Proof. [BCKM21a, Section 5.1] presents and shows the security of a generic two-party quantum
computation protocol that is three-round when both parties obtain output and two-round when
only one party obtains output. Here, we are interested in the two-round case, where the receiver
sends the first message and the sender sends the second message. In particular, we note that in
the case that the receiver has no input, their first message only consists of the first message of
an underlying classical two-party computation protocol for a classical functionality in which the
receiver has no input (this fact was also used in the proof of [BCKM21a, Theorem 6.2]). Since we
are assuming that classical functionalities can be computed in a single message from sender to
receiver, this entirely removes the need for the receiver to send its first message, completing the
proof.

Remark 4.19. We describe at a very high level how the resulting one-message quantum protocol operates.
This description will be somewhat imprecise and simplified by design.

It makes use of a type of quantum garbled circuit first described in [BY22] and formalized by [BCKM21a].
This quantum garbled circuit is based on the Clifford + measurement representation of quantum circuits,
and supports a quantum input encoding procedure and classical garbling procedure. That is, given an input
|𝜓⟩, the sender can sample a classical key 𝑘 and run a quantum encoding procedure ̃︁|𝜓⟩ ← Encode𝑘(|𝜓⟩).
Then, there is a classical procedure ̃︀𝑄 ← Garble𝑘(𝑄) that given a key 𝑘 and description of quantum cir-
cuit 𝑄, outputs a classical garbled version of 𝑄. Finally, it holds that 𝑄(|𝜓⟩) = ̃︀𝑄(̃︁|𝜓⟩), but no other
information about |𝜓⟩ is leaked by ̃︁|𝜓⟩ and ̃︀𝑄.

Now, given a circuit 𝑄 describing a unidirectional quantum functionality, the sender samples 𝑘 and
sends ̃︁|𝜓⟩ ← Encode𝑘(|𝜓⟩) to the receiver. In addition, it inputs 𝑘 to a unidirectional randomized classical
functionality that will sample ̃︀𝑄 and along with a description of some measurement 𝑀 that the receiver can
apply to ̃︁|𝜓⟩ to check that it is well-formed (these are the zero and 𝑇 checks described in [BCKM21a]). Thus,
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the receiver obtains ̃︁|𝜓⟩ from the sender, and 𝑀 and ̃︀𝑄 from the classical functionality, checks that ̃︁|𝜓⟩ is
well-formed using 𝑀 , and finally evaluates ̃︀𝑄(̃︁|𝜓⟩) to obtain their output.

Thus, we immediately obtain the following corollary of Theorem 4.3 and Corollary 4.16.

Corollary 4.20. Assuming the sub-exponential hardness of LWE, there exists a secure teleportation protocol
through any quantum channel.

Now, we explore the following applications as special cases of Corollary 4.20.

NIZK for QMA. First we recall the definition of the complexity class QMA.

Definition 4.21 (QMA). A language ℒ = (ℒyes,ℒno) in QMA is defined by a tuple (𝑉, 𝑝, 𝛼, 𝛽), where
𝑝 is a polynomial, 𝑉 = {𝑉𝜆}𝜆∈N is a uniformly generated family of circuits such that for every 𝜆, 𝑉𝜆
takes as input a string 𝑥 ∈ {0, 1}𝜆 and a quantum state |𝜓⟩ on 𝑝(𝜆) qubits and returns a single bit, and
𝛼, 𝛽 : N→ [0, 1] are such that 𝛼(𝜆)− 𝛽(𝜆) ≥ 1/𝑝(𝜆). The language is then defined as follows.

• For all 𝑥 ∈ ℒyes of length 𝜆, there exists a quantum state |𝜓⟩ of size at most 𝑝(𝜆) such that the
probability that 𝑉𝜆 accepts (𝑥, |𝜓⟩) is at least 𝛼(𝜆). We denote the (possibly infinite) set of quantum
witnesses that make 𝑉𝜆 accept 𝑥 byℛℒ(𝑥).

• For all 𝑥 ∈ ℒno of length 𝜆, and all quantum states |𝜓⟩ of size at most 𝑝(𝜆), it holds that 𝑉𝜆 accepts
on input (𝑥, |𝜓⟩) with probability at most 𝛽(𝜆).

Next, we define the notion of NIZK for QMA (with setup). In the following definition, we
assume the completeness-soundness gap of the QMA language is 1-negl(𝜆) (which can be obtained
without loss of generality).

Definition 4.22 (NIZK for QMA). A NIZK for QMA for a language ℒ ∈ QMA with relationℛℒ consists
of the following efficient algorithms.

• NIZK.Setup(1𝜆) → (𝒫,𝒱): On input the security parameter 1𝜆, the setup outputs a bipartite state
on registers 𝒫,𝒱 .

• NIZK.Prove(𝒫, |𝜓⟩ , 𝑥)→ 𝜋: On input the state on register 𝒫 , a witness |𝜓⟩, and a statement 𝑥, the
proving algorithm outputs a proof 𝜋.

• NIZK.Verify(𝒱, 𝜋, 𝑥) → {⊤,⊥}: On input the state on register 𝒱 , a proof 𝜋, and a statement 𝑥, the
verification algorithm returns ⊤ or ⊥.

They should satisfy the following properties.

• Completeness. For all 𝑥 ∈ ℒyes, and all |𝜓⟩ ∈ ℛℒ(𝑥) it holds that

Pr [NIZK.Verify(𝒱,NIZK.Prove(𝒫, |𝜓⟩ , 𝑥), 𝑥)→ ⊤] = 1− negl(𝜆),

where (𝒫,𝒱)← NIZK.Setup(1𝜆).

• Soundness. For any non-uniform QPT malicious prover {𝑃 *𝜆 , |𝜓𝜆⟩}𝜆∈N and 𝑥 ∈ ℒno, it holds that

Pr [NIZK.Verify(𝒱, 𝑃 *𝜆 (𝒫, |𝜓𝜆⟩), 𝑥)→ ⊤] = negl(𝜆).
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• Zero-knowledge. There exists a simulator {𝑆𝜆}𝜆∈N such that for any non-uniform QPT malicious
verifier {𝑉 *𝜆 , |𝜓𝜆⟩}𝜆∈N, 𝑥 ∈ ℒyes, and |𝜓⟩ ∈ ℛℒ(𝑥), it holds that⃒⃒⃒⃒
Pr

[︂
𝑉 *𝜆 (𝒱, 𝜋, 𝑥)→ 1 :

(𝒫,𝒱)← NIZK.Setup(1𝜆)
𝜋 ← NIZK.Prove(𝒫, |𝜓⟩ , 𝑥)

]︂
−Pr

[︀
𝑉 *𝜆 (𝒱, 𝜋, 𝑥)→ 1 : (𝒱, 𝜋)← 𝑆𝜆(𝑥)

]︀ ⃒⃒⃒⃒
= negl(𝜆).

Corollary 4.23. Assuming sub-exponential LWE, there exists a NIZK for QMA in the shared EPR model,
where NIZK.Setup(1𝜆) is a deterministic algorithm that outputs polynomially many EPR pairs.

Proof. This follows as a special case of our secure teleportation protocol, where the map 𝑄 is the
QMA verification circuit that outputs a single classical bit. Indeed, soundness follow directly
from simulation security against a malicious sender, and zero-knowledge follows directly from
simulation security against a malicious receiver.

Prior work on NIZK for QMA includes the following.

• Constructions in a pre-processing model, where NIZK.Setup(1𝜆) is randomized and samples
correlated private randomness for the prover and verifier [ACGH20, CVZ20, BG22, Shm21,
BCKM21a, MY22a]. Some of these can also be interpreted as two-message protocols in the
common random string (CRS) model.

• A construction in the shared EPR pair + quantum random oracle model [MY22a].

• A construction in the common reference string + classical oracle model [BM22] (alternatively,
from iO and non-black-box use of a hash function modeled as a random oracle).

Thus, we achieve the first construction of NIZK for QMA in the shared EPR model from (sub-
exponential) standard assumptions.

Zero-knowledge State Synthesis. State synthesis [Aar16, RY22, INN+22] refers to the problem
of generating a quantum state 𝜌 given an implicit classical description of it. That is, given the
description of a quantum circuit 𝑄 acting on 𝑛 qubits, generate the state

𝜌 = Trℬ (𝑄 |0𝑛⟩) ,

where 𝜌 consists of 𝑚 qubits and ℬ is a register of 𝑛 − 𝑚 qubits. We note that prior work has
typically formalized this problem only for pure states (𝑛 = 𝑚), but the problem extends naturally
to mixed states.

Thus far, state synthesis has been studied in the setting where a weak verifier is interacting
with a more-powerful oracle or prover in order to generate a highly complex state 𝜌. However,
[RY22] raised the question of whether there is some meaningful notion of zero-knowledge state
synthesis. In this setting, the notion would make sense even for efficiently preparable states.

We propose one notion of zero-knowledge state synthesis. Rather than considering a single
circuit 𝑄, we consider a family of circuits {𝑄𝑤}𝑤 parameterized by a witness 𝑤 that may be known
to the prover but not necessarily to the verifier. The goal would then be to have the prover help
the verifier generate

𝜌𝑤 = Trℬ (𝑄𝑤 |0𝑛⟩)

without leaking the description of 𝑤. A formal definition follows.
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Definition 4.24 (Zero-knowledge State Synthesis). Let 𝑛(𝜆),𝑚(𝜆), 𝑘(𝜆) be polynomials such that
𝑚(𝜆) ≤ 𝑛(𝜆). A zero-knowledge state synthesis protocol for a family of polynomial-size quantum cir-
cuits {{𝑄𝜆,𝑤}𝑤∈{0,1}𝑘(𝜆)}𝜆∈N is an interactive protocol between a QPT interactive machine 𝑃 and a QPT
interactive machine 𝑉 . 𝑃 takes as input a classical string 𝑤 ∈ {0, 1}𝑘(𝜆) and has no output, while 𝑉 has
no input but outputs either a state on 𝑚(𝜆) qubits or a special abort symbol |⊥⟩⟨⊥|.14 For any 𝑤, we write
𝜌𝑤 = Trℬ

(︀
𝑄𝑤
⃒⃒
0𝑛(𝜆)

⟩︀)︀
, where register ℬ holds the final 𝑛(𝜆) −𝑚(𝜆) qubits. The protocol should satisfy

the following properties.

• Completeness. For any 𝑤 ∈ {0, 1}𝑘(𝜆), it holds that

TD (𝜌𝑤, ⟨𝑃 (𝑤), 𝑉 ⟩) = negl(𝜆),

where ⟨𝑃 (𝑤), 𝑉 ⟩ denotes the output of the honest verifier after interacting in the protocol with 𝑃 (𝑤).

• Soundness. For any QPT malicious prover {𝑃 *𝜆}𝜆∈N, there exists a state 𝜌* in the convex combina-
tion of {𝜌𝑤}𝑤∈{0,1}𝑘(𝜆) ∪ {|⊥⟩⟨⊥|} such that for any QPT distinguisher {𝐷𝜆}𝜆∈N,15

⃒⃒
Pr[𝐷𝜆(𝜌

*)→ 1]− Pr[𝐷𝜆(⟨𝑃 *𝜆 , 𝑉 ⟩)→ 1]
⃒⃒
= negl(𝜆),

where ⟨𝑃 *𝜆 , 𝑉 ⟩ denotes the output of the honest verifier after interacting in the protocol with 𝑃 *𝜆 .

• Zero-Knowledge. For any QPT malicious verifier {𝑉 *𝜆 }𝜆∈N, there exists a QPT simulator {𝑆𝜆}𝜆∈N
such that for any QPT distinguisher {𝐷𝜆}𝜆∈N and 𝑤 ∈ {0, 1}𝑘(𝜆),⃒⃒

Pr[𝐷𝜆(⟨𝑃 (𝑤), 𝑉 *𝜆 ⟩)→ 1]− Pr[𝐷𝜆(𝑆𝜆(𝜌𝑤))→ 1]
⃒⃒
= negl(𝜆),

where ⟨𝑃 (𝑤), 𝑉 *𝜆 ⟩ denotes the output of the malicious verifier 𝑉 *𝜆 after interacting in the protocol
with 𝑃 (𝑤), which may be a state on an arbitrary (polynomial-size) register.

Now we perform some sanity checks on the definition. We also stress that there may be other
natural definitions to consider, along with applications, and we defer a more thorough exploration
of this topic to future work.

• The trivial protocol where the prover prepares 𝜌𝑤 and sends it the verifier will not satisfy
soundness, because it may not be efficient (or even possible) in general for the verifier to
check that there exists 𝑤 such that its received state 𝜌 = Trℬ(𝑄𝑤 |0𝑛⟩).

• The trivial protocol where the prover sends 𝑤 and the verifier prepares 𝜌𝑤 will not satisfy
zero-knowledge, because the simulator will not in general be able to recover 𝑤 from 𝜌𝑤.

• This notion generalizes zero-knowledge for NP. Each instance 𝑥 of an NP language defines
a family of circuits {𝑄𝑤}𝑤 where 𝑄𝑤 runs the verification algorithm on 𝑥 and 𝑤 and outputs
a bit. Then, soundness says that for any no instance, the verifier outputs a state that is
computationally indistinguishable from a mixture over |0⟩⟨0| and |⊥⟩⟨⊥|, which implies that
it must output either |0⟩ (and reject) or |⊥⟩ (and reject) with overwhelming probability. Zero-
knowledge says that for any yes instance, and simulator can simulate the verifier’s view just
given |1⟩⟨1|, which merely indicates that the instance is a yes instance.

14We will assume that the abort symbol is orthogonal to this 𝑚(𝜆)-qubit Hilbert space.
15One could ask for a stronger definition of soundness, where the state output by the verifier must be statistically

rather than computationally close to a distribution over honest output states (and abort). However, our protocol will
only achieve this computational notion.
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We note that while prior work [BCKM21a] has implicitly constructed a two-message zero-
knowledge state synthesis protocol in the CRS model, our work is the first to obtain this primitive
with one message in the shared EPR pair model.

Corollary 4.25. Assuming sub-exponential LWE, there exists zero-knowledge state synthesis for any effi-
cient family of quantum circuits.

Proof. This follows as a special case of our secure teleportation protocol, where the map 𝑄 takes
a classical input 𝑤 and outputs 𝜌𝑤. Soundness follow directly from simulation security against a
malicious sender, where the state 𝜌* is defined by the probability distribution over classical strings
𝑤 (and abort) sent by the simulator to the ideal functionality. Zero-knowledge follows directly
from simulation security against a malicious receiver.

5 Two-Round MPC

In this section, we give a construction of a two-round MPC protocol for computing any classical
function 𝑓 in the shared EPR pairs model without making use of public-key cryptography.

5.1 Two-round OT in the shared EPR pairs model

In this section, we present syntax and definitions for (chosen-input) two-round oblivious transfer
where the parties begin with shared EPR pairs. We assume that all communication is classical
(which is without loss of generality, due to teleportation), and we additionally require that all
computation is classical after initial (input-independent) measurements of the shared EPR pairs.
The syntax follows.

• (ℛ,𝒮)← Setup(1𝜆): The setup algorithm prepares poly(𝜆) EPR pairs with halves on register
ℛ and other halves on register 𝒮 .

• 𝜎𝑅 ←𝑀𝑅(ℛ): The receiver performs a measurement𝑀𝑅 on its halves of EPR pairs, resulting
in a classical string 𝜎𝑅.

• 𝜎𝑆 ← 𝑀𝑆(𝒮): The sender performs a measurement 𝑀𝑆 on its halves of EPR pairs, resulting
in a classical string 𝜎𝑆 .

• (ots1, 𝜔) ← OT1(𝜎𝑅, 𝑏): The receiver, on input a string 𝜎𝑅 and bit 𝑏 ∈ {0, 1}, applies the first
OT algorithm to obtain a message ots1 and secret 𝜔.

• {ots2,⊥} ← OT2(𝜎𝑆 , ots1,𝑚0,𝑚1): The sender, on input a string 𝜎𝑆 , message ots1, and
strings 𝑚0,𝑚1, applies the second OT algorithm to obtain either a message ots2 or an abort
symbol ⊥.

• {𝑚,⊥} ← OT3(ots2, 𝑏, 𝜔): The receiver, on input a message ots2, bit 𝑏, and secret 𝜔, outputs
either a message 𝑚 or an abort symbol ⊥.

We now define what it means for such a protocol to be black-box friendly.

Definition 5.1. A two-round OT protocol in the shared EPR pair model is black-box friendly if:
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• The receiver’s algorithm OT1 can be split into two parts OTC
1 ,OT

NC
1 , where (otsC1 , 𝜔) ← OTC

1 (𝜎𝑅),
otsNC

1 ← OTNC
1 (𝑏, 𝜔), and ots1 := (otsC1 , ots

NC
1 ).

• The sender’s algorithm OT2 can be split into two parts OTC
2 ,OT

NC
2 , where {⊤,⊥} ← OTC

2 (𝜎𝑆 , ots
C
1 ),

ots2 ← OTNC
2 (𝜎𝑆 , ots1,𝑚0,𝑚1), and the output of OT2(𝜎𝑆 , ots1,𝑚0,𝑚1) is set to ⊥ if the output

of OTC
2 was ⊥ and is otherwise set to the output of OTNC

2 .

• The only algorithms in the entire protocol that involve cryptographic operations are OTC
1 and OTC

2 .

Next, we define the security properties that we will need.

Definition 5.2. A two-round OT protocol in the shared EPR pair model satisfies standard simulation-
based security if it satisfies Definition 3.18 for functionality ℱOT.

Definition 5.3. A two-round OT protocol in the shared EPR pair model satisfies equivocal receiver’s
security if there exists a QPT simulator SimEQ(1

𝜆) such that for any 𝑏 ∈ {0, 1},

{︁
(𝒮, ots1, 𝜔𝑏) : (𝒮, ots1, 𝜔0, 𝜔1)← SimEQ(1

𝜆)
}︁
≈𝑐

⎧⎨⎩(𝒮, ots1, 𝜔) :
(ℛ,𝒮)← Setup(1𝜆),

𝜎𝑅 ←𝑀𝑅(ℛ),
(ots1, 𝜔)← OT1(𝜎𝑅, 𝑏)

⎫⎬⎭ .

Theorem 5.4. Given a black-box friendly two-round OT protocol in the shared EPR pair model that satisfies
standard simulation-based security and equivocal receiver’s security, there exists a black-box construction
of two-round MPC for classical functionalities in the shared EPR pair model.

Proof. This follows from a few tweaks to the construction from [GS18], and some passages of this
proof will be taken verbatim from [GS18]. At a high level, the [GS18] construction proceeds in two
steps.

1. Write any multi-round secure MPC protocol as a conforming protocol, where in each round a
single party broadcasts a single bit.

2. Compile any conforming protocol into a two-round protocol using garbled circuits and two-
round OT with equivocal receiver’s security.

To implement Step 1, we will start with any multi-round MPC protocol in the OT-hybrid model
[Kil88, CvT95, IPS08] and replace each call to the OT ideal functionality with an implementation
of our black-box friendly two-round OT. However, we want to make sure that all cryptographic
operations happen “outside” of the part of the protocol that is compiled during Step 2 in a non-
black-box manner. Thus, we require each party to run their initial measurements 𝑀𝑅,𝑀𝑆 and
cryptographic algorithms OTC

1 ,OT
C
2 for each OT that they will participate in at the beginning of

the protocol. Note that this is possible because each of these algorithms are required to be input-
independent. The result will be a conforming protocol with the following structure.

Definition 5.5. A black-box friendly conforming protocol in the shared EPR pair model is an MPC
protocol Φ between parties 𝑃1, . . . , 𝑃𝑛 with inputs 𝑥1, . . . , 𝑥𝑛 respectively. For each 𝑖 ∈ [𝑛], we let 𝑥𝑖 ∈
{0, 1}𝑚 denote the input of party 𝑃𝑖. The protocol is defined by functions pre, check, post, and computation
steps or what we call actions 𝜑1, . . . , 𝜑𝑇 . Each pair of parties begins with a polynomial number of shared
EPR pairs, and we let 𝒫𝑖 denote party 𝑃𝑖’s register that contains its halves of EPR pairs with every other
party. Then, the protocol proceeds in three stages: the pre-processing phase, the computation phase, and the
output phase.

39



• Pre-processing phase: For each 𝑖 ∈ [𝑛], party 𝑃𝑖 computes

(𝑧𝑖, 𝑣𝑖, 𝑤𝑖)← pre(1𝜆, 𝑖, 𝑥𝑖,𝒫𝑖),

where pre is a quantum operation that takes as input the security parameter 1𝜆, party identifier 𝑖,
input 𝑥𝑖, and halves of EPR pairs on register 𝒫𝑖, and outputs 𝑧𝑖 ∈ {0, 1}ℓ/𝑛, 𝑣𝑖 ∈ {0, 1}ℓ (where ℓ
is a parameter of the protocol), and 𝑤𝑖 ∈ {0, 1}* . Next, 𝑃𝑖 broadcasts 𝑧𝑖 to every other party, while
retaining 𝑣𝑖 and 𝑤𝑖 as secret information. We require that all 𝑣𝑖,𝑗 = 0 for all 𝑗 ∈ [ℓ] ∖ {(𝑖− 1)ℓ/𝑛+
1, . . . , 𝑖ℓ/𝑛}. Finally, for each 𝑖 ∈ [𝑛], party 𝑃𝑖 computes

{⊤,⊥} ← check(𝑖, 𝑤𝑖, 𝑧1, . . . , 𝑧𝑛),

and aborts the protocol in the case of ⊥.

• Computation phase: For each 𝑖 ∈ [𝑛], party 𝑃𝑖 sets

st𝑖 := (𝑧1, . . . , 𝑧𝑛)⊕ 𝑣𝑖.

Next, for each 𝑡 ∈ {1, . . . , 𝑇} parties proceed as follows:

1. Parse action 𝜑𝑡 as (𝑖, 𝑓, 𝑔, ℎ) where 𝑖 ∈ [𝑛] and 𝑓, 𝑔, ℎ ∈ [ℓ].

2. Party 𝑃𝑖 computes one NAND gate as

st𝑖,ℎ = NAND(st𝑖,𝑓 , st𝑖,𝑔)

and broadcasts st𝑖,ℎ ⊕ 𝑣𝑖,ℎ to every other party.

3. Every party 𝑃𝑗 for 𝑗 ̸= 𝑖 updates st𝑗,ℎ to the bit value received from 𝑃𝑖.

We require that for all 𝑡, 𝑡′ ∈ [𝑇 ] such that 𝑡 ̸= 𝑡′, we have that if 𝜑 = (·, ·, ·, ℎ) and 𝜑𝑡′ = (·, ·, ·, ℎ′),
then ℎ ̸= ℎ′. Also we denote 𝐴𝑖 ⊂ [𝑇 ] to be the set of rounds in which party 𝑃𝑖 sends a bit. Namely,
𝐴𝑖 = {𝑡 ∈ 𝑇 : 𝜑𝑡 = (𝑖, ·, ·, ·)}.

• Output phase: For each 𝑖 ∈ [𝑛], party 𝑃𝑖 outputs post(st𝑖).

Finally, we require that the only algorithms in the entire protocol that involve cryptographic operations are
pre and check.

Now, the following two claims complete the proof of the theorem.

Claim 5.6. Assuming a black-box friendly two-round OT protocol in the shared EPR pair model that
satisfies simulation-based security, there exists a black-box friendly conforming protocol in the shared EPR
pair model.

Proof. We start with a multi-round MPC protocol in the OT-hybrid model [Kil88, CvT95] and
replace each call to the OT ideal functionality with an implementation of a black-box friendly
two-round OT in the shared EPR pair model. We assume without loss of generality that each pair
of parties (𝑃𝑖, 𝑃𝑗) participates in 𝑢 many OT protocols with 𝑃𝑖 as the receiver and 𝑃𝑗 as the sender.
We split the resulting protocol Π into three stages, where all pairs of parties begin with sufficiently
many shared EPR pairs.
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1. In the first stage, each party 𝑃𝑖 does the following. For each 𝑗 ̸= 𝑖, 𝑃𝑖 measures 𝑀𝑅 on
𝑢 disjoint sets of halves of EPR pairs that they share with party 𝑃𝑗 to obtain {𝜎𝑅,𝑖,𝑗,𝑜}𝑜∈[𝑢],
measures 𝑀𝑆 on 𝑢 other disjoint sets of halves of EPR pairs that they share with party 𝑃𝑗
to obtain {𝜎𝑆,𝑖,𝑗,𝑜}𝑜∈[𝑢], and computes {(otsC1,𝑖,𝑗,𝑜, 𝜔𝑖,𝑗,𝑜) ← OTC

1 (𝜎𝑅,𝑖,𝑗,𝑜)}𝑜∈[𝑢]. Then, party 𝑃𝑖
broadcasts 𝑦𝑖 := {otsC1,𝑖,𝑗,𝑜}𝑗 ̸=𝑖,𝑜∈[𝑢]. We assume without loss of generality that there exists 𝑘
such that for each 𝑖, 𝑦𝑖 ∈ {0, 1}𝑘.

2. In the second stage, each party 𝑃𝑖 runs OTC
2 (𝜎𝑆,𝑖,𝑗,𝑜, ots

C
1,𝑖,𝑗,𝑜) for each 𝑗 ̸= 𝑖, 𝑜 ∈ [𝑢] and

outputs ⊥ if any are ⊥ (and otherwise continues).

3. In the third stage, each party 𝑃𝑖 defines

𝑥′𝑖 :=
(︀
𝑥𝑖, {𝜔𝑖,𝑗,𝑜}𝑗 ̸=𝑖,𝑜∈[𝑢], {𝜎𝑆,𝑗,𝑖,𝑜}𝑗 ̸=𝑖,𝑜∈[𝑢], $𝑖

)︀
,

where $𝑖 are any additional random coins that 𝑃𝑖 needs for computing the MPC protocol.
Then, the parties engage in a deterministic MPC protocol with private inputs 𝑥′1, . . . , 𝑥

′
𝑛.

Note that each OT 𝑜 ∈ [𝑢] between receiver 𝑃𝑖 and sender 𝑃𝑗 can be completed by

• computing otsNC1,𝑖,𝑗,𝑜 ← OTNC
1 (𝑏, 𝜔𝑖,𝑗,0),

• setting ots1,𝑖,𝑗,𝑜 := (otsC1,𝑖,𝑗,𝑜, ots
NC
1,𝑖,𝑗,𝑜),

• computing ots2,𝑖,𝑗,𝑜 ← OTNC
2 (𝜎𝑆,𝑖,𝑗,𝑜, ots1,𝑖,𝑗,𝑜,𝑚0,𝑚1),

• and computing OT3(ots2,𝑖,𝑗,𝑜, 𝑏).

We assume without loss of generality that (i) |𝑥′1| = · · · = |𝑥′𝑛| = 𝑚′, (ii) in each round 𝑟 ∈ [𝑝],
a single party broadcasts a single bit computed using circuit 𝐶𝑟, (iii) there exists 𝑞 such that
for each 𝑟 ∈ [𝑝], |𝐶𝑟| = 𝑞, (iv) each 𝐶𝑟 is composed on just NAND gates with fan-in 2, and
(v) each party sends an equal number of bits in the execution of Π. Note that there are no
crytographic operations in this third stage.

Now we are ready to describe the transformed conforming protocol Φ. The protocol Φ will
include 𝑇 = 𝑝𝑞 actions, and we let ℓ = (𝑚′ + 𝑘)𝑛+ 𝑝𝑞 and ℓ′ = 𝑝𝑞/𝑛.

• pre(1𝜆, 𝑖, 𝑥𝑖,𝒫𝑖): Run party 𝑃𝑖’s first stage algorithm to obtain strings 𝑥′𝑖 ∈ {0, 1}𝑚
′

and 𝑦𝑖 ∈
{0, 1}𝑘. Sample 𝑟𝑖 ← {0, 1}𝑚

′
and 𝑠𝑖 ← ({0, 1}𝑞−1‖0)𝑝/𝑛. (Observe that 𝑠𝑖 is an ℓ′ bit random

string such that its 𝑞𝑡ℎ, 2𝑞𝑡ℎ,. . . locations are set to 0). Output

𝑧𝑖 := (𝑥′𝑖 ⊕ 𝑟𝑖, 𝑦𝑖, 0ℓ
′
), 𝑣𝑖 := (0ℓ/𝑛, . . . , 𝑟𝑖, 0

𝑘, 𝑠𝑖, . . . , 0
ℓ/𝑛), 𝑤𝑖 := {𝜎𝑆,𝑖,𝑗,𝑜}𝑗 ̸=𝑖,𝑜∈[𝑢].

• check(𝑖, 𝑤𝑖, 𝑧1, . . . , 𝑧𝑛): For each 𝑗 ̸= 𝑖, obtain 𝑦𝑖 from 𝑧𝑖 and use 𝑦𝑖 and 𝑤𝑖 to run 𝑃𝑖’s second
stage algorithm.

• We are now ready to desribe the actions 𝜑1, . . . , 𝜑𝑇 . For each 𝑟 ∈ [𝑝], round 𝑟 in Π is expanded
into 𝑞 actions {𝜑𝑗}𝑗∈{(𝑟−1)𝑞+1,...,𝑟𝑞}. Let 𝑃𝑖 be the party that computes the circuit 𝐶𝑟 and
broadcasts the output bit in round 𝑟. For each 𝑗, we set 𝜑𝑗 = (𝑖, 𝑓, 𝑔, ℎ) where 𝑓 and 𝑔
are the locations in st𝑖 that the 𝑗𝑡ℎ gate of 𝐶𝑟 is computed on (recall that initially st𝑖 is set
to (𝑧1, . . . , 𝑧𝑛) ⊕ 𝑣𝑖). Moreover, we set ℎ to be the first location in st𝑖 among the locations
(𝑖− 1)ℓ/𝑛+𝑚+ 𝑘+1 to 𝑖ℓ/𝑛 that has previously not been assigned to an action. Recall from
before that on the execution of 𝜑𝑗 , party 𝑃𝑖 sets st𝑖,ℎ := NAND(st𝑖,𝑓 , st𝑖,𝑔) and broadcasts
st𝑖,ℎ ⊕ 𝑣𝑖,ℎ to all parties.
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• post(𝑖, st𝑖): Gather the local state of 𝑃𝑖 and the messages sent by the other parties in Π from
st𝑖 and output the output of Π.

Now we need to argue that Φ preserves the correctness and security properties of Π. Observe
that Φ is essentially the same protocol as Π except that in Φ, some additional bits are sent. Specif-
ically, in addition to the messages that were sent in Π, in Φ parties send 𝑧𝑖 and 𝑞 − 1 additional
bits per every bit sent in Π. Note that these additional bits sent are not used in the computation
of Φ. Thus these bits do not affect the functionality of Π if dropped. This ensures that Φ inherits
the correctness properties of Π. Next note that each of these extra bits is masked by a uniformly
random and independent bit. This ensures that Φ achieves the same security properties as Π.
Also note that by construction, for all 𝑡, 𝑡′ ∈ [𝑇 ] such that 𝑡 ̸= 𝑡′, we have that if 𝜑𝑡 = (·, ·, ·, ℎ)
and 𝜑𝑡′ = (·, ·, ·, ℎ′) then ℎ ̸= ℎ′, as required. Finally, note that the only algorithms that involve
cryptographic operations are pre and check, as required.

Claim 5.7. Assuming a black-box friendly conforming protocol in the shared EPR pair model and a two-
round OT protocol in the shared EPR pair model that satisfies simulation-based security and equivocal
receiver’s security, there exists a black-box two-round MPC for classical functionalities in the shared EPR
pair model.

Proof. This follows from the compiler presented in [GS18, Section 6] that takes a conforming pro-
tocol and a two-round OT protocol and produces a two-round MPC protocol, by addressing the
following slight differenes.

1. We start with a conforming protocol where pre additionally operates on some shared quan-
tum registers, and there is an extra algorithm check in the pre-processing phases.

2. We start with a conforming protocol where there are no cryptographic operations in the
computation phase.

3. We use a two-round OT protocol in the shared EPR model rather than the CRS model.

4. We prove security against quantum adversaries rather than classical adversaries.

First, we note that (1) makes no difference in their construction or proof, since the entire pre-
processing phase in the compiled protocol is run exactly as it is run in the conforming protocol.
That is, it is run “outside” of the garbled protocol used to round-collapse the 𝑇 actions of the
computation phase. Next, because of condition (2) we obtain a resulting two-round MPC protocol
that is black-box, since only the computation phase is used in a non-black-box way by the compiler.
We also note that (3) makes no difference in the construction or proof, since the two-round OT is
used in a black-box manner. Finally, all of the simulators and reductions in [GS18] are straight-line
black-box and do not use rewinding (which is typical in the CRS model), and as such they carry
over immediately to the quantum setting.

5.2 Construction

In this section, we revisit an OT protocol from [ABKK23] and show that it is a black-box friendly
two-round OT in the shared EPR pair model.
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Ingredients

• Non-interactive extractable commitment (Com,ExtGen,Ext) in the common random string
model (Section 3.3).

• A programmable hash function family {𝐻𝜆}𝜆∈N that is correlation intractable for efficiently
verifiable approximate product relations with constant sparsity (Section 3.2).

• A universal hash function family {𝐹𝜆}𝜆∈N.

Parameters

• Security parameter 𝜆.

• Size of commitment key ℎ = ℎ(𝜆).

• Size of correlation intractable hash key 𝑘1 = 𝑘1(𝜆).

• Size of universal hash key 𝑘2 = 𝑘2(𝜆).

• Approximation parameter 𝛼 = 1/120.

• Number of repetitions in each group 𝑐 = 480.

• Sparsity 𝜌 =
((1−𝛼)𝑐
(1/2)𝑐 )
2𝑐 < 𝛼.

• Product parameter 𝑡 = 𝑡(𝜆) = 1803𝜆 ≥ 𝜆/(𝛼− 𝜌)3.

• Total number of repetitions ℓ = ℓ(𝜆) = 𝑐 · 𝑡 = 𝑂(𝜆).

• CI hash range 𝒴𝑡, where 𝒴 is the set of subsets of [𝑐] of size 𝑐/2. We will also parse 𝑇 ∈ 𝒴𝑡 as
a subset of [ℓ] of size ℓ/2.

The protocol is given in Fig. 4. We remark that shared uniformly random strings can be ob-
tained by measuring shared EPR pairs in the same basis, and thus the entire Setup can be obtained
with just shared EPR pairs.

5.3 Security

Imported Theorem 5.8 ([ABKK23]). If Com is replaced by an extractable commitment in the QROM
([ABKK23, Section 5]) and 𝐻𝜆 is modeled as quantum random oracle, the protocol in Fig. 4 satisfies stan-
dard simulation-based security and equivocal receiver’s security in the QROM.

Proof. A three-round version of this protocol was shown to be simulation-secure in the QROM
in [ABKK23, Section 7]. In the three-round version, the first round consists of random BB84
states sampled by the sender according to some distribution over basis choices. This is equiva-
lent to imagining that the sender and receiver share EPR pairs and having the sender measure
their halves using the bases sampled according to their distribution. This is exactly what is ac-
complished by the measurement 𝑀𝑆 in Fig. 4, and thus the simulation-security of the two-round
protocol in the shared EPR pair model has an identical proof. Equivocal sender’s security follows
by defining SimEQ in the same manner as in the proof of Theorem 5.9 below.
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Two-round OT in the shared EPR pair model

Setup
• 2ℓ EPR pairs on registers {(ℛ𝑖,𝑏,𝒮𝑖,𝑏)}𝑖∈[ℓ],𝑏∈{0,1}. Letℛ := {ℛ𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1} and 𝒮 := {𝒮𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1}.

• Commitment key ck← {0, 1}ℎ.

• Correlation intractable hash key hk← {0, 1}𝑘1 .

Protocol
• 𝑀𝑅(ℛ): Sample 𝜃𝑅 ← {0, 1}ℓ and for each 𝑖 ∈ [ℓ], measure registers ℛ𝑖,0 and ℛ𝑖,1 in the 𝜃𝑅𝑖 ba-

sis (where 0 indicates standard basis and 1 indicates Hadamard basis) to obtain bits 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1. Output
𝜎𝑅 := {𝜃𝑅𝑖 , 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1}𝑖∈[ℓ].

• 𝑀𝑆(𝒮): Sample 𝑈 as a uniformly random subset of [ℓ]. For 𝑖 ∈ [ℓ]:

– If 𝑖 ∈ 𝑈 sample 𝜃𝑆𝑖 ← {0, 1} and measure registers 𝒮𝑖,0 and 𝒮𝑖,1 in the 𝜃𝑆𝑖 basis to obtain bits 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1.

– If 𝑖 /∈ 𝑈 , measure register 𝒮𝑖,0 in the standard basis and 𝒮𝑖,1 in the Hadamard basis to obtain bits
𝑣𝑆𝑖,0, 𝑣

𝑆
𝑖,1.

Output 𝜎𝑆 := (𝑈, {𝜃𝑆𝑖 }𝑖∈𝑈 , {𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]).

• OTC
1(𝜎𝑅): For each 𝑖 ∈ [ℓ], compute cm𝑖 := Com(ck, (𝜃𝑅𝑖 , 𝑣

𝑅
𝑖,0, 𝑣

𝑅
𝑖,1); 𝑟𝑖), where 𝑟𝑖 ← {0, 1}𝜆 are

the random coins used for commitment. Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)). Output otsC1 :=
({cm𝑖}𝑖∈[ℓ], 𝑇, {𝜃𝑅𝑖 , 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1, 𝑟𝑖}𝑖∈𝑇 ) and 𝜔 := {𝜃𝑅𝑖 , 𝑣𝑅𝑖,𝜃𝑅𝑖 }𝑖∈𝑇 .

• OTNC
1 (𝑏, 𝜔): For 𝑖 ∈ 𝑇 , compute 𝑑𝑖 := 𝑏⊕ 𝜃𝑅𝑖 , and output otsNC1 := {𝑑𝑖}𝑖∈𝑇 .

• OTC
2(𝜎𝑆 , ots

C
1): Output ⊤ if:

– 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)),

– for all 𝑖 ∈ 𝑇 , cm𝑖 = Com(ck, (𝜃𝑅𝑖 , 𝑣
𝑅
𝑖,0, 𝑣

𝑅
𝑖,1); 𝑟𝑖) and,

– for all 𝑖 ∈ 𝑇 ∩ 𝑈 such that 𝜃𝑆𝑖 = 𝜃𝑅𝑖 , (𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1) = (𝑣𝑅𝑖,0, 𝑣
𝑅
𝑖,1),

and otherwise output ⊥.

• OTNC
2 (𝜎𝑆 , ots1,𝑚0,𝑚1): Sample 𝑠← {0, 1}𝑘2 , let 𝑉0 be the concatenation of bits {𝑣𝑆𝑖,𝑑𝑖}𝑖∈𝑇∖𝑈 , let 𝑉1 be the

concatenation of bits {𝑣𝑆𝑖,𝑑𝑖⊕1}𝑖∈𝑇∖𝑈 , compute ̃︀𝑚0 := 𝑚0 ⊕ 𝐹𝜆(𝑠, 𝑉0), ̃︀𝑚1 := 𝑚1 ⊕ 𝐹𝜆(𝑠, 𝑉1), and output
ots2 := (𝑠, 𝑈, ̃︀𝑚0, ̃︀𝑚1).

• OT3(ots2, 𝑏, 𝜔): Output 𝑚𝑏 := ̃︀𝑚𝑏 ⊕ 𝐹𝜆(𝑠, 𝑉 ), where 𝑉 is the concatenation of bits {𝑣𝑅
𝑖,𝜃𝑅𝑖
}𝑖∈𝑇∖𝑈 .

Figure 4: A black-box friendly two-round OT protocol that can be used to construct two-round
MPC in the shared EPR pair model.

Theorem 5.9. The protocol in Fig. 4 satisfies standard simulation-based (Definition 5.2) security and
equivocal receiver’s security (Definition 5.3).

By Theorem 5.4, we immediately have the following corollaries.

Corollary 5.10. There exists a two-round MPC protocol in the shared EPR pair model that is unconditionally-
secure in the quantum random oracle model. There exists a black-box two-round MPC protocol in the
shared EPR pair model assuming non-interactive extratable commitments and correlation intractability for
efficiently searchable relations.

Proof. (Of Theorem 5.9) First, we establish standard simulation-based security via the following
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two lemmas.

Lemma 5.11. The protocol in Fig. 4 satisfies simulation-based security against a malicious receiver.

Proof. Let {Adv𝜆}𝜆∈N be a QPT adversary corrupting the receiver, which takes as input register 𝒜
of {|𝜓𝜆⟩𝒜,𝒟}𝜆∈N. Instead of explicitly considering a register 𝒳 holding the honest sender’s input,
we write their input as classical strings (𝑚0,𝑚1) ∈ {0, 1}𝜆. We define a simulator {Sim𝜆}𝜆∈N as
follows.

Sim𝜆(𝒜)

• Prepare 2ℓ EPR pairs on registers (ℛ,𝒮), sample (ck, ek) ← ExtGen(1𝜆), and sample hk ←
{0, 1}𝑘1 .

• Run 𝜎𝑆 ←𝑀𝑆(𝒮) as the honest sender.

• Run (ots1,𝒜′)← Adv𝜆(𝒜,ℛ, ck, hk).

• Run OTC
2 (𝜎𝑆 , ots

C
1 ) and if the result is ⊥ then send abort to ℱOT and output 𝒜′.

• Parse ots1 as ({cm𝑖}𝑖∈[ℓ], 𝑇, {𝜃𝑅𝑖 , 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1, 𝑟𝑖}𝑖∈𝑇 , {𝑑𝑖}𝑖∈𝑇 ). For each 𝑖 ∈ 𝑇∖𝑈 , compute (𝜃𝑅𝑖 , 𝑣
𝑅
𝑖,0, 𝑣

𝑅
𝑖,1)←

Ext(ek, cm𝑖). Then, set 𝑏 := maj{𝜃𝑅𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇∖𝑈 , query ℱOT with 𝑏 to obtain 𝑚𝑏, and set
𝑚1−𝑏 := 0𝜆.

• Run ots2 ← OTNC
2 (𝜎𝑆 , ots1,𝑚0,𝑚1), run 𝒜′′ ← Adv𝜆(ots2,𝒜′), and output 𝒜′′.

Now, we define a sequence of hybrids.

• ℋ0: This is the real distribution ΠℱOT
[Adv𝜆, |𝜓𝜆⟩].

• ℋ1: Same asℋ0 except that ck is sampled as (ck, ek)← ExtGen(1𝜆).

• ℋ2: Same asℋ1 except that we delay the measurement of registers {𝒮𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1} until the
results of measurement are required for the protocol. That is, {𝒮𝑖,0,𝒮𝑖,1}𝑖∈𝑇∩𝑈 are measured
during OTC

2 and {𝒮𝑖,0,𝒮𝑖,1}𝑖∈𝑇∖𝑈 are measured during OTNC
2 (and the rest of the registers are

left unmeasured).

• ℋ3: Same as ℋ2 except that we insert a measurement on the registers {𝒮𝑖,0,𝒮𝑖,1}𝑖∈𝑇∖𝑈 that
is performed during OTNC

2 right before {𝒮𝑖,0}𝑖∈𝑇∖𝑈 are measured in the standard basis and
{𝒮𝑖,0}𝑖∈𝑇∖𝑈 are measured in the Hadamard basis to obtain {𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈𝑇∖𝑈 . Before specifying
this measurement, we introduce some notation.

– For any 𝑖, let 𝒮𝑖 := (𝒮𝑖,0,𝒮𝑖,1), and for {𝜃𝑖, 𝑣𝑖,0, 𝑣𝑖,1}𝑖∈𝑇∖𝑈 and 𝑒 ∈ {0, 1}|𝑇∖𝑈 |, define

Π[𝑒, {𝜃𝑖, 𝑣𝑖,0, 𝑣𝑖,1}𝑖∈𝑇∖𝑈 ]
{𝒮𝑖}𝑖∈𝑇∖𝑈

:=
⨂︁
𝑖:𝑒𝑖=0

𝐻𝜃𝑖 |𝑣𝑖,0, 𝑣𝑖,1⟩⟨𝑣𝑖,0, 𝑣𝑖,1|𝐻𝜃𝑖 ⊗
⨂︁
𝑖:𝑒𝑖=1

I−𝐻𝜃𝑖 |𝑣𝑖,0, 𝑣𝑖,1⟩⟨𝑣𝑖,0, 𝑣𝑖,1|𝐻𝜃𝑖 .
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– For {𝜃𝑖, 𝑣𝑖,0, 𝑣𝑖,1}𝑖∈𝑇∖𝑈 and a constant 𝛾 ∈ [0, 1], define

Π[𝛾, {𝜃𝑖, 𝑣𝑖,0, 𝑣𝑖,1}𝑖∈𝑇∖𝑈 ]
{𝒮𝑖}𝑖∈𝑇∖𝑈 :=

∑︁
𝑒:{0,1}|𝑇∖𝑈|:hw(𝑒)<𝛾|𝑇∖𝑈 |

Π[𝑒, {𝜃𝑖, 𝑣𝑖,0, 𝑣𝑖,1}𝑖∈𝑇∖𝑈 ]
{𝒮𝑖}𝑖∈𝑇∖𝑈 .

Now, before the {𝒮𝑖}𝑖∈𝑇∖𝑈 are measured according to the protocol, compute {(𝜃𝑅𝑖 , 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1)←
Ext(ek, cm𝑖)}𝑖∈𝑇∖𝑈 and attempt to project {𝒮𝑖}𝑖∈𝑇∖𝑈 onto

Π[1/6, {𝜃𝑅𝑖 , 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1}𝑖∈𝑇∖𝑈 ],

and abort and output ⊥ if this projection fails.

• ℋ4: Same asℋ3 except that 𝑚1−𝑏 is set to 0𝜆, where 𝑏 := maj{𝜃𝑅𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇∖𝑈 .

• ℋ5: Same asℋ4 except that the measurement introduced inℋ3 is removed, and the measure-
ment of registers {𝒮𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1} are performed during 𝑀𝑆 as in the honest protocol. For
any honest sender inputs 𝑚0,𝑚1 ∈ {0, 1}, this is the simulated distribution ̃︀ΠℱOT

[Sim𝜆, |𝜓𝜆⟩].

The following sequence of claims completes the proof of the lemma.

Claim 5.12. ℋ0 ≈𝑐 ℋ1

Proof. This follows directly from the extractability of the commitment scheme (Definition 3.9).

Claim 5.13. ℋ1 ≡ ℋ2

Proof. Delaying the honest party’s measurements has no effect on the distribution seen by the
adversary.

Claim 5.14. ℋ2 ≈𝑠 ℋ3

Proof. By Gentle Measurement, it suffices to show that the projection introduced in ℋ2 succeeds
with probability 1− negl(𝜆). So, towards contradiction, assume that the projection fails with non-
negligible probability. We will eventually use this assumption to break the correlation intractabil-
ity of 𝐻 . First, consider the following experiment.

Exp1

• Prepare 2ℓ EPR pairs on registers (ℛ,𝒮), sample (ck, ek) ← ExtGen(1𝜆), and sample hk ←
{0, 1}𝑘1 .

• Sample 𝑈 as a uniformly random subset of [ℓ] and sample 𝜃𝑆𝑖 ← {0, 1} for each 𝑖 ∈ [ℓ].

• Run (ots1,𝒜′) ← Adv𝜆(𝒜,ℛ, ck, hk), and let {cm𝑖}𝑖∈[ℓ] be the commitments that are part of
ots1.

• For each 𝑖 ∈ [ℓ], compute (𝜃𝑅𝑖 , 𝑣
𝑅
𝑖,0, 𝑣

𝑅
𝑖,1) ← Ext(ek, cm𝑖). Say that index 𝑖 is “consistent” if

𝑖 ∈ 𝑈 and 𝜃𝑆𝑖 = 𝜃𝑅𝑖 .
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• For each 𝑖 ∈ [ℓ], measure (𝒮𝑖,0,𝒮𝑖,1) in basis 𝜃𝑅𝑖 to obtain bits (𝑣𝑆𝑖,0, 𝑣
𝑆
𝑖,1). Say that index 𝑖 is

“correct” if (𝑣𝑆𝑖,0, 𝑣
𝑆
𝑖,1) = (𝑣𝑅𝑖,0, 𝑣

𝑅
𝑖,1).

• Output 1 if (i) all consistent 𝑖 ∈ 𝑇 are correct, and (ii) at least 1/6 fraction of 𝑖 ∈ 𝑇 ∩ 𝑈 are
incorrect.

We claim that Pr[Exp1 → 1] = non-negl(𝜆). This nearly follows by assumption that the mea-
surement introduced inℋ3 rejects with non-negligible probability, except for the following differ-
ences. One difference from ℋ3 is that to determine condition (i) in Exp1, we are using extracted
{𝜃𝑅𝑖 }𝑖∈𝑇∩𝑈 bases rather than the bases opened by the adversary. However, this introduces a negli-
gible difference due to the extractability of the commitment scheme. Another difference is that to
determine condition (ii), we are measuring registers 𝑖 ∈ 𝑇 ∩𝑈 rather registers 𝑖 ∈ 𝑇 ∖𝑈 . However,
since each 𝑖 is chosen to be in 𝑈 with probability 1/2 indepedent of the adversary’s view, this
produces the same distribution. Next, consider the following procedure.

Exp2

• Prepare 2ℓ EPR pairs on registers (ℛ,𝒮), sample (ck, ek) ← ExtGen(1𝜆), and sample hk ←
{0, 1}𝑘1 .

• Sample 𝑈 as a uniformly random subset of [ℓ] and sample 𝜃𝑆𝑖 ← {0, 1} for each 𝑖 ∈ [ℓ].

• For 𝑖 ∈ [ℓ], measure (𝒮𝑖,0,𝒮𝑖,1) in the 𝜃𝑆𝑖 basis to obtain bits (𝑣𝑆𝑖,0, 𝑣
𝑆
𝑖,1).

• Run (ots1,𝒜′) ← Adv𝜆(𝒜,ℛ, ck, hk), and let {cm𝑖}𝑖∈[ℓ] be the commitments that are part of
ots1.

• For each 𝑖 ∈ [ℓ], compute (𝜃𝑅𝑖 , 𝑣
𝑅
𝑖,0, 𝑣

𝑅
𝑖,1)← Ext(ek, cm𝑖).

• Output 1 if (i) all consistent 𝑖 ∈ 𝑇 are correct, (ii) at least 1/6 fraction of consistent 𝑖 ∈ 𝑇 are
incorrect, and (iii) at least 1/5 fraction of 𝑖 ∈ 𝑇 are consistent.

We claim that Pr[Exp2 → 1] = non-negl(𝜆). To establish (ii), note that conditioned on at least
1/6 fraction of 𝑖 ∈ 𝑇 ∩ 𝑈 being incorrect, we have that the expected fraction of consistent 𝑖 ∈ 𝑇
being incorrect is at least 1/6, and (iii) follows from a straightforward application of Hoeffding’s
inequality. Also note that we are measuring the 𝒮 registers in the 𝜃𝑆𝑖 bases rather than the 𝜃𝑅𝑖 bases,
but this make no difference since our claims are only about consistent indices 𝑖 (where 𝜃𝑆𝑖 = 𝜃𝑅𝑖 ).
Now, we will show that this experiment can be used to break the correlation intractability of 𝐻 ,
but first we introduce some notation.

• For each (ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]), define the relation 𝑅[ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]] as follows. Recall-
ing that ℓ = 𝑐·𝑡, we will associate each 𝑖 ∈ [ℓ] with a pair (𝜄, 𝜅) for 𝜄 ∈ [𝑡], 𝜅 ∈ [𝑐]. Also, for each
set of strings {cm𝑖}𝑖∈[ℓ], we fix (𝜃𝑅𝑖 , 𝑣

𝑅
𝑖,0, 𝑣

𝑅
𝑖,1) := Ext(ek, cm𝑖) for each 𝑖 ∈ [ℓ]. Then the domain

will consist of strings {cm𝑖}𝑖∈[ℓ] such that (i) |𝑖 : (𝜃𝑅𝑖 , 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1) = (𝜃𝑆𝑖 , 𝑣
𝑆
𝑖,0, 𝑣

𝑆
𝑖,1)| ≤ (1 − 1/60)ℓ

and (ii) for each 𝜄 ∈ [𝑡], |𝜅 : (𝜃𝑆(𝜄,𝜅), 𝑣
𝑆
(𝜄,𝜅),0, 𝑣

𝑆
(𝜄,𝜅),1) = (𝜃𝑅(𝜄,𝜅), 𝑣

𝑅
(𝜄,𝜅),0, 𝑣

𝑅
(𝜄,𝜅),1)| ≥ (1/2)𝑐.
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• For each {cm𝑖}𝑖∈[ℓ] in the domain of 𝑅[ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]], define the sets {𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
}𝜄∈[𝑡]

as follows. If (1/2)𝑐 ≤ |𝜅 : (𝜃𝑆(𝜄,𝜅), 𝑣
𝑆
(𝜄,𝜅),0, 𝑣

𝑆
(𝜄,𝜅),1) = (𝜃𝑅(𝜄,𝜅), 𝑣

𝑅
(𝜄,𝜅),0, 𝑣

𝑅
(𝜄,𝜅),1)| ≤ (1 − 1/120)𝑐,

let 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
consist of subsets 𝐶 ⊂ [𝑐] such that for all 𝜅 ∈ 𝐶, (𝜃𝑆(𝜄,𝜅), 𝑣

𝑆
(𝜄,𝜅),0, 𝑣

𝑆
(𝜄,𝜅),1) =

(𝜃𝑅(𝜄,𝜅), 𝑣
𝑅
(𝜄,𝜅),0, 𝑣

𝑅
(𝜄,𝜅),1). Otherwise, let 𝑆𝜄,{cm}𝑖∈[ℓ]

= ∅.

• Define the set 𝑅[ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]]{cm𝑖}𝑖∈[ℓ]
to consist of all 𝑦 = (𝐶1, . . . , 𝐶𝑡) such that 𝐶𝜄 ∈

𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
for all 𝜄 such that 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]

̸= ∅. Noting that there are always at least 𝛼 = 1/120

fraction of 𝜄 ∈ [𝑡] such that 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
̸= ∅, we see that 𝑅[ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]] is an 𝛼-

approximate efficiently verifiable product relation with sparsity 𝜌 =
(︀(1−𝛼)𝑐
(1/2)𝑐

)︀
/2𝑐 < 𝛼.

Now, whenever Exp2 = 1, it must be the case that {cm𝑖}𝑖∈[ℓ] is in the domain of𝑅[ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]],
and 𝑇 ∈ 𝑅[ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]]{cm𝑖}𝑖∈[ℓ]

. Thus, we can break correlation intractability as follows.
Begin running Exp2 until right before Adv𝜆 is initialized, except that we don’t sample hk. Instead,
declare the relation 𝑅[ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]], and receive hk from the correlation intractability chal-
lenger. Then, continue running Exp2 until {cm𝑖}𝑖∈[ℓ] is obtained, and output this to the challenger.
The above analysis shows that this breaks correlation intractability for 𝑅[ek, {𝜃𝑆𝑖 , 𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈[ℓ]].

Claim 5.15. ℋ3 ≈𝑠 ℋ4

Proof. First, we note that by a standard Hoeffding inequality, it holds that Pr
[︀
|𝑇 ∖ 𝑈 | ≥ ℓ/5

]︀
=

1−negl(𝜆), so we will assume that this is the case. Now, inℋ3 we are guaranteed that the state on
registers {𝒮𝑖,0,𝒮𝑖,1}𝑖∈𝑇∖𝑈 is in the image of

Π[1/6, {𝜃𝑅𝑖 , 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1}𝑖∈𝑇∖𝑈 ]

right before the {𝒮𝑖,0}𝑖∈𝑇∖𝑈 are measured in the standard basis and {𝒮𝑖,1}𝑖∈𝑇∖𝑈 are measured
in the Hadamard basis to obtain {𝑣𝑆𝑖,0, 𝑣𝑆𝑖,1}𝑖∈𝑇∖𝑈 . Thus, setting 𝑏 := maj{𝜃𝑅𝑖 ⊕ 𝑑𝑖}𝑖∈𝑇∖𝑈 , we see
that registers {𝒮𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇∖𝑈 are in a superposition of at most 2(1/6)(ℓ/5) = 2ℓ/30 states in the
{𝜃𝑅𝑖 }𝑖∈𝑇∖𝑈 basis. Moreover, at least 1/2 − 1/6 = 1/3 fraction of these registers will be measured
in the conjugate basis to obtain the bits {𝑣𝑆𝑖,𝑑𝑖⊕𝑏⊕1}𝑖∈𝑇∖𝑈 that comprise 𝑉1−𝑏. Thus, by Imported
Theorem 3.17 and Imported Theorem 3.16, the string 𝐹𝜆(𝑠, 𝑉1−𝑏) has statistical distance at most
2−

1
2
(ℓ/15−ℓ/30−𝜆) < 2−𝜆 conditioned on the adversary’s view. Thus, replacing 𝑚1−𝑏 with 0𝜆 results

in a statistically close distribution.

Claim 5.16. ℋ4 ≈𝑠 ℋ5

Proof. Same argument asℋ2 ≈𝑠 ℋ3.

Lemma 5.17. The protocol in Fig. 4 satisfies simulation-based security and equivocal receiver’s security
against a malicious sender.
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Proof. Let {Adv𝜆}𝜆∈N be a QPT adversary corrupting the sender, which takes as input register 𝒜
of {|𝜓𝜆⟩𝒜,𝒟}𝜆∈N. Instead of explicitly considering a register 𝒳 holding the honest receiver’s input,
we write their input as a bit 𝑏 ∈ {0, 1}. We define a simulator {Sim𝜆}𝜆∈N as follows.

Sim𝜆(𝒜)

• Sample ck← {0, 1}ℎ.

• Sample 𝑇 ⊂ [ℓ] as a uniformly random sequence of 𝑡 subsets of [𝑐] of size 𝑐/2.

• For 𝑖 ∈ [ℓ], sample 𝜃𝑅𝑖 , 𝑣
𝑅
𝑖,0, 𝑣

𝑅
𝑖,1 ← {0, 1}3.

• For 𝑖 ∈ 𝑇 , sample 𝑟𝑖 ← {0, 1}𝜆 and set cm𝑖 := Com(ck, (𝜃𝑅𝑖 , 𝑣
𝑅
𝑖,0, 𝑣

𝑅
𝑖,1); 𝑟𝑖) and for 𝑖 ∈ 𝑇 , set

cm𝑖 ← Com(ck, 0).

• For 𝑖 ∈ 𝑇 , initialize register 𝒮𝑖,0 to 𝐻𝜃𝑅𝑖

⃒⃒⃒
𝑣𝑅𝑖,0

⟩
and 𝒮𝑖,1 to 𝐻𝜃𝑅𝑖

⃒⃒⃒
𝑣𝑅𝑖,1

⟩
, and for 𝑖 ∈ 𝑇 , initialize

𝒮𝑖,0 to
⃒⃒⃒
𝑣𝑅𝑖,0

⟩
and 𝒮𝑖,1 to 𝐻

⃒⃒⃒
𝑣𝑅𝑖,1

⟩
.

• Sample hk← Samp(1𝜆, (cm1, . . . , cmℓ), 𝑇 ).

• Set otsC1 := ({cm𝑖}𝑖∈[ℓ], 𝑇, {𝜃𝑅𝑖 , 𝑣𝑅𝑖,0, 𝑣𝑅𝑖,1}𝑖∈𝑇 ) and otsNC1 := {𝜃𝑅𝑖 }𝑖∈𝑇 .

• Run (ots2,𝒜′)← Adv𝜆(𝒜, {𝒮𝑖,0,𝒮𝑖,1}𝑖∈[ℓ], ck, hk, otsC1 , otsNC1 ).

• Let 𝑉0 be the concatenation of bits {𝑣𝑅
𝑖,𝜃𝑅𝑖
}𝑖∈𝑇∖𝑈 and 𝑉1 be the concatenation of bits {𝑣𝑅

𝑖,𝜃𝑅𝑖 ⊕1
}𝑖∈𝑇∖𝑈 ,

and compute 𝑚0 := ̃︀𝑚0 ⊕𝐹 (𝑠, 𝑉0) and 𝑚1 := ̃︀𝑚1 ⊕𝐹 (𝑠, 𝑉1). Send (𝑚0,𝑚1) to the ideal func-
tionality ℱOT and output 𝒜′.

Now, we define a sequence of hybrids, and argue indistinguishability between each adjacent pair.

• ℋ0: This is the real distribution ΠℱOT
[Adv𝜆, |𝜓𝜆⟩].

• ℋ1: Same as ℋ0 except that 𝑇 ⊂ [ℓ] is sampled as described in the simulator, and the hash
key hk is sampled at the end of the Sender’s computation by Samp(1𝜆, (cm1, . . . , cmℓ), 𝑇 ).
This is the same distribution as ℋ0, which follows from programmability of the correlation-
intractable hash function (Definition 3.6).

• ℋ2: Same as ℋ1 except that {cm𝑖 ← Com(ck, 0)}𝑖∈𝑇 are sampled as commitments to 0.
Computational indistinguishability from ℋ1 follows directly from hiding of the comitment
scheme (Definition 3.8).

• ℋ3: Same as ℋ2 except that for 𝑖 ∈ 𝑇 , register ℛ𝑖,0 is measured in the standard basis to
obtain 𝑣𝑅𝑖,0 and register ℛ𝑖,1 is measured in the Hadamard basis to obtain 𝑣𝑅𝑖,1. This is the
same distribution asℋ2 since we are only changing the way we sample the bits {𝑣𝑖,𝜃𝑅𝑖 ⊕1}𝑖∈𝑇 ,
which are outside the adversary’s view.

• ℋ4: Same as ℋ3 except that 𝑑𝑖 := 𝜃𝑅𝑖 for 𝑖 ∈ 𝑇 , and 𝑉 is set to the concatentation of bits
{𝑣𝑅
𝑖,𝜃𝑅𝑖 ⊕𝑏

}𝑖∈𝑇∖𝑈 . This is the same distribution as ℋ3 since in ℋ3, the bits {𝜃𝑅𝑖 }𝑖∈𝑇 are sampled
uniformly at random and are only used to define the {𝑑𝑖}𝑖∈𝑇 . Also note that for any honest
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receiver input 𝑏 ∈ {0, 1}, this is the same as the simulated distribution ̃︀ΠℱOT
[Sim𝜆, |𝜓𝜆⟩],

which completes the proof.

Finally, we define SimEQ to run the first part of the simulator above, obtaining 𝒮 := ({𝒮𝑖,0,𝒮𝑖,1}𝑖∈[ℓ], ck, hk)
and ots := (otsC1 , ots

NC
1 ), and setting 𝜔0 := {𝜃𝑅𝑖 , 𝑣𝑅𝑖,𝜃𝑅𝑖 }𝑖∈𝑇 , 𝜔1 := {𝜃𝑅𝑖 , 𝑣𝑅𝑖,𝜃𝑅𝑖 ⊕1}𝑖∈𝑇 . The arguments

above imply that this definition of SimEQ establishes equivocal receiver’s security of the protocol.
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