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Abstract

Physically Unclonable Functions (PUFs) are being proposed as a low
cost alternative to permanently store secret keys or provide device au-
thentication without requiring non-volatile memory, large e-fuses or other
dedicated processing steps. In the literature, PUFs are split into two main
categories. The so-called strong PUFs are mainly used for authentication
purposes, hence also called authentication PUFs. They promise to be
lightweight by avoiding extensive digital post-processing and cryptogra-
phy. The so-called weak PUFs, also called key generation PUFs, can only
provide authentication when combined with a cryptographic authentica-
tion protocol. Over the years, multiple research results have demonstrated
that Strong PUFs can be modeled and attacked by machine learning tech-
niques. Hence, the general assumption is that the security of a strong PUF
is solely dependent on its security against machine learning attacks. The
goal of this paper is to debunk this myth, by analyzing and breaking three
recently published Strong PUFs (Suresh et al., VLSI Circuits 2020; Liu et
al., ISSCC 2021; and Jeloka et al., VLSI Circuits 2017). The attacks pre-
sented in this paper have practical complexities and use generic symmetric
key cryptanalysis techniques.

1 Introduction

Physically Unclonable Functions (PUFs) are the method of choice for hardware
applications requiring device authentication. Since securely storing a secret key
in an Integrated Circuit (IC) is expensive and simply hard-coding it is vulnerable
to physical attacks, PUFs offer a third option: as the manufacturing process of
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ICs is subject to environmental variances, one can parameterize a cryptographic
algorithm by harvesting the resulting randomness.

PUF taxonomy distinguishes between two types of Physically Unclonable
Functions, namely Weak- and Strong PUFs. While both types are described
in the literature as Challenge-Response Protocols, they differ by the challenge
domain’s size, i.e., the number of Challenge Response Pairs (CRPs). Weak
PUFs support a relatively small number of CRPs, while the number of CRPs
supported by a Strong PUF is much larger. Thus, Weak PUFs are usually used
for storing a (small number of) cryptographic key(s), whereas Strong PUFs are
often perceived as a building block in an authentication protocol.

The focus of this paper is on analysing the security of Strong PUFs as a de-
vice implementing a random n-to-m function. Broadly speaking, the workings
of such a device consists of an n-bit challenge, and an m-bit response; in Strong
PUF-literature, typically, m = 1. To compute the response, the PUF uses a
finite amount of intrinsic randomness harvested from some physical properties
of the hardware implementing it (e.g. the start-up value of a SRAM or the
delay of a multiplexer in case of an arbiter PUF or the frequency of a ring oscil-
lator). Following a sequence of successful attacks using Machine Learning (ML)
techniques, the most recent trend is to build Strong PUFs from an IC template
cascading non-linear components. The behavior of the non-linear components
is determined by the intrinsic randomness mentioned above and the intuition
behind this approach is that the cascade amplifies the non-linear effect. It ap-
pears from the literature that this approach indeed thwarts machine learning
attacks; however, as we show in this paper it is not enough by itself to provide
the desired properties.

1.1 Previous Work

The first PUF allowing for a large number of CRPs (thus initiating the research
line on Strong PUFs) was the arbiter PUF introduced in [6]. The arbiter PUF
exploits signal delay variations unique to each integrated circuit to parameterize
a challenge-response protocol (i.e., assigning a unique behavior to each device).
The paper further introduces the adversary objectives and capabilities. It is
assumed that the adversary has physical access to the IC and their goal is to
clone the PUF. The PUF is considered secure if the adversary is unable to:1

• Apply an exhaustive search over the entire CRP space;

• Produce a counterfeit which perfectly simulates the behaviour of the at-
tacked PUF;

• Apply a timing attack based on a measurement of the delays in the at-
tacked strong PUF, followed by a prediction of the outputs;

1We stress that these attack scenarios are reproduced from [6] and are therefore informal.
We provide a formal discussion in Section 5
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• Apply non-invasive attacks (e.g., algorithmic attacks); in this case the
adversary models the PUF and tries to predict the response associated
with a specific challenge with “very high” probability.2

A series of strong PUFs were subsequently proposed in the literature, e.g.,
ring oscillator [17], XOR-Arbiter [17], or the OT-based PUFs [15]. At CCS’10,
Rührmair et al. [16] developed a machine learning model attempting to predict
the response of previously published strong PUFs. This resulted in breaking all
Strong PUFs published until that point.

Other important work in the field of Strong PUFs’ analysis is presented by
Delvaux et al. in [4], in which the authors analyse eight Strong PUFs in an in-
tegrated framework. This work was then extended in [5], in which eleven more
Strong PUFs were added to the integrated framework, showing numerous secu-
rity and practicality issues for all the nineteen analysed primitives. Both papers
focus on the analysis of Strong PUFs as authentication protocols, underlining
that the CRP size of all the analysed Strong PUFs is not suitable for ensuring
a sufficient level of security. The conclusion of these two papers is that “proper
compensation seems to be in conflict with the lightweight objective” of a Strong
PUF.

Moreover, [3] presents an analysis of five Arbiter-PUF based authentica-
tion protocols, using machine learning techniques, concluding that the use of
lightweight obfuscation logic provides insufficient protection against machine-
learning attacks for all five analysed primitives.

Consequently, the primary focus in PUF-design has shifted towards explic-
itly showing resistance to ML-modeling. A recent trend in this direction are
cascaded Strong PUFs suggested in [19]. The idea is to use a composition of
random sub-functions (i.e., a cascade), conjecturing that the overall non-linear
effect thwarts ML-modeling. The three PUFs we investigate in this paper are all
of this type. Besides the three primitives addressed in this paper, many more
strong PUFs are proposed in the literature, always aiming at increasing ma-
chine learning resistance. One such example is the “Double-Arbiter” PUF [12],
which introduces a new type of Strong PUF based on the Arbiter PUF. The
aim of this new primitive is to increase the unpredictability of the response,
which is measured as the tolerance of the primitive to machine learning attacks.
Another example of a cascaded PUF is the LP-PUF introduced in [20]. The
LP-PUF consists of three layers, namely an Arbiter layer, a mixing layer and a
XOR layer, leading to the generation of 1-bit responses. As the author observes,
the structure of the LP-PUF resembles the Substitution-Permutation-Network
(SPN), a technique used for the design of block ciphers. The same observation
could apply for many cascaded Strong PUFs presented in the literature, leading
to a natural inclusion of symmetric-key cryptanalysis techniques in the security
evaluation of a Strong PUF. Although ML represents an important technique
to asses the security of a primitive, it represents only a first step in the secu-
rity analysis. ML is a black box approach and it does not take into account

2The term very high probability is used in the original paper. We interpret it to mean
better than a random guess.
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the structure of a Strong PUF. In this work we go beyond this approach, by
using tools from symmetric-key cryptanalysis and by taking insights from the
description of the primitive. More precisely, in this paper we choose to analyse
three representative strong PUFs (Suresh et al. [18], VLSI Circuits 2020; Liu
et al. [11], ISSCC 2021; and Jeloka et al. [7], VLSI Circuits 2017) because they
have nice CMOS circuit implementations.

1.2 Our Contribution

This paper serves as a tutorial for the design of secure PUFs from a symmetric-
key point of view. We motivate the need for such a tutorial by investigating—
from an algorithmic point of view—three recently published cascaded Strong
PUFs and show that they all exhibit undesirable properties undermining their
security.

We stress that our aim with this paper is to provide general guidelines to the
design of secure algorithms and that we did not attempt to provide a thorough
cryptanalysis of the three algorithms. Indeed, more powerful attacks probably
exist, and directly fixing the issues we raise is unlikely to result in secure devices.

2 Suresh et al.

In this section we present details of the strong PUF proposed by Suresh et
al. in [18]. We then show that the cascaded nature of this algorithm collapses
the 2128 CRP domain into a much smaller subspace of equivalence classes.

2.1 Description

Suresh et al. [18] offer a cascaded algorithm in 14nm CMOS with a claimed
1028 ≈ 293 CRP space. It takes a 128-bit challenge and returns a 1-bit response.
The algorithm is abstracted into three layers as depicted in Figure 1.

The first layer consists of 64 random 4-to-1 functions (denoted ES1 boxes in
the original paper). It takes a 256-bit input and returns a 64-bit output. The
second layer involves 16 AES Sboxes, each taking an 8-bit input and returning
an 8-bit output. The third layer again consists of 64 random 4-to-1 functions
(denoted ES2 boxes in the original paper). Finally, the 1-bit response is taken
as the parity of the third layer’s output.

The original paper also refers to the first and third layers as Stage 1 and
Stage 2, respectively. In lieu of a complete specification, which was not provided
in [18], we proceed by assuming that the bit permutations are according to the
wirings illustrated in Figure 1.

2.2 Intuition

According to [18], the PUF offers a challenge space in the range 1028–1031 ≈ 293–2103.
As this is the only quantifiable claim, we understand it to be the advertised se-
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Figure 1: A schematic description of the PUF. The figure is copied without any
modifications from [18] and we use it under the provisions of fair use.

curity. Since the response of the PUF consists of only a single bit, predicting
the output with probability better than 1

2 amounts to a successful attack.
Our first observation is that the first layer is an entropy choke point, i.e.,

no matter how much randomness was invested in it, it cannot cascade more
than 64 bits of entropy to the rest of the device. We say that two inputs are
in the same collision class if they result in the same output after the first layer
(Stage 1). Such two values will result in the same computation throughout the
rest of the device and subsequently the same response for both inputs.

Our second observation is that each pair (ES132+n, ES1n) of ES1 functions
is isolated from all other ES1 functions. Therefore, we consider an alternative
representation where the first layer consists of 32 functions each mapping a 4-bit
input to a 2-bit output. Then the output values are 00, 01, 10, and 11 and they
induce four equivalence classes each containing four values on average.

2.3 Recovering the Equivalence Classes

By using the two observations presented in the previous section we show how
211.8 ≈ 103.55 queries are enough to group the 128-bit input into 264 sets. Each
of these sets contains on average 264 values all resulting in the same response.
Thus, learning the response to one challenge leaks the response to all the other
264 − 1 values from the same equivalence class.

Without loss of generality, we consider the equivalence classes of the pair
(ES163, ES131). The adversary fixes the last 124 bits of the input to an arbi-
trary value and iterates the first four. Two sets S0 and S1 are initialized and
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each 4-bit input is added to the set Si if and only if the response is i. However,
those are not yet the desired equivalence classes. Having the same response for
two different plaintexts can be caused by any of the following three reasons:

• a collision after Stage 1;

• a collision after Stage 2, without a collision after Stage 1;

• the same Hamming weight after Stage 2, regardless of the state after
Stage 1 or Stage 2.

The last two cases are false positives that need to be filtered out. In order to
do so, the last 124 bits are fixed to a different arbitrary value.

Note that the elements in the same class will always be mapped together to
one of the sets (but not necessarily the same one for different values of the last
124 bits). The equivalence classes are then computed by identifying which values
are always mapped together to the same set. The probability of recovering the
correct equivalence classes is approximately 99% when the process is repeated 7
times. For comparison, even three repetitions result in a success probability of
65% to identify the right set. The probability was computed empirically, using
Monte Carlo simulations.

The complexity of determining an equivalence class for a single pair of ES1
functions with 99% success rate is 7 · 16 = 26.8 ≈ 102.05chosen queries. This
is repeated for each pair of ES1 functions independently, leading to an overall
complexity of 32 × 26.8 = 211.8 = 103.55 chosen challenges for recovering all
pair-equivalence classes with expected success probability of (1− 0.01)32 = 0.73
(or 73%).

The next step after recovering all pair-equivalence classes is to link them
into state-equivalence classes. We define a state equivalence class as a set of
challenges for which the state after Stage 1 is equal, therefore leading to the
same response for both inputs.

Since each pair-equivalence class has an average of four elements, the average
number of elements in one state-equivalence class is 432 = 264 ≈ 1019.27. Addi-
tionally, the state after Stage 1 is 64-bit long, leading to 264 ≈ 1019.27 different
state-equivalence classes.

At this point, learning the response to any challenge leaks the response to all
other challenges within the same state-equivalence class. Note that the classes
are built such that on observing a new challenge it requires negligible effort to
identify which state-equivalence class it belongs to.

2.4 Discussion

Our approach exploits the fact that the input space collapses from 2128 to 264

after Stage 1. We see that by investing a relatively small amount of effort (the
analysis of 211.8 chosen challenges) an adversary can learn the outputs of Stage
1 for any new challenge, effectively removing the first layer of random functions.
Moreover, if the adversary learns the response associated to a challenge, then
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they also know that the same response is associated to all the challenges in
the same state-equivalence class with the initial one. This is an undesirable
behavior; or alternatively, in case this is an acceptable behavior, it can be
achieved using cheaper components.

Note that we did not investigate the properties of the other layers, and it is
likely that this basic attack can be improved further.

3 Liu et al.

The second design we analyse is [11] due to Liu et al. We show that this device
is vulnerable to two generic attacks. The first attack can be applied if the the
device exhibits an inherent bias, which can easily be detected and exploited. The
second attack is independent on the bias of the device, and allows the adversary
to guess the responses associated to a group of well chosen challenges.

3.1 Description

Liu et al. propose a cascade of 5-to-5-bit random functions formed in two layers
of five with a bit-permutation between them, resulting in a 25-to-25-bit function
which we denote by S(x); see Phase 1 in Figure 2. S(x) is used to digest the
100-bit input by first splitting it into four 25-bit blocks, then consuming the
blocks iteratively with a feed-backward operation from each block to the next
one; see Phase 2 in Figure 2.

A finalization function, which we denote by C(x) is used to compute the
response. First, a sequence of 5-to-1-bit random functions is applied to the
output coming from the last call to S(x), resulting in a 5-bit output. Then, the
parity of these five bits is returned as the response; see Phase 3 in Figure 2.

Formally, denote by x = (x0, x1, x2, x3) the 100-bit challenge, where xi is
the i-th part of length 25. Then,

PUF(x) = C(S(S(S(S(x0)⊕ x1)⊕ x2)⊕ x3)) (1)

is a succinct description of the function.
As before, we assume that the adversary does not have access to the descrip-

tion of the internal functions. Again the adversary seeks to predict the 1-bit
response associated to a newly seen challenge with a probability better than 1

2 .

3.2 Intuition

From the formal description in Equation (1) arises a natural observation:

Observation 1. Fix the first 75 bits of the challenge, namely x0, x1 and, x2;
then, Equation (1) is reduced to

PUF (x) = C(S(c⊕ x3)), (2)

where c = S(S(S(x0)⊕ x1)⊕ x2) is fixed but unknown.
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Figure 2: A schematic description of the PUF. The figure is copied without any
modifications from [11] and we use it under the provisions of fair use.

For brevity, we define an auxiliary function

f(x) = C(S(x)). (3)

We underline that PUF (x) = f(x⊕ c), where c = S(S(S(x0)⊕ x1)⊕ x2).

Definition 3.1. We define a map of a function f as the ordered set Mf = {(x, f(x)),∀x},
where the order is defined as follows:

(x1, f(x1)) < (x2, f(x2))⇔ x1 < x2.

Note that the map Mf was constructed such that the input before the last
application of the S function takes all possible values. In particular, all the
maps have the same elements, but arranged in a different order. This property
is formally described in the following general observation:

Observation 2. Let x0, x1, and x2 be randomly chosen and fixed. Then, the
map M c

f = {(x ⊕ c, f(x ⊕ c),∀x} is an affine translation by c = S(S(S(x0) ⊕
x1)⊕ x2) of the map Mf .

By constructing one arbitrary Mf in full, the adversary learns its distribu-
tion, i.e. the number of 0 or 1 responses. Due to Observation 2, any map M c

f

has the same distribution as Mf . If the device exhibits an inherent bias, then
the distribution of Mf can be trivially used by the adversary to predict the out-
put to any challenge not in Mf with probability better than 1

2 . For example, if
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the number of 0 responses associated to Mf is 225− 220, then the probability of

having a 0 response to an arbitrary challenge is Pr = 225−220

225 = 1− 2−5 = 0.96
(96%).

3.3 Attack Description

To construct Mf the adversary first chooses an arbitrary 75-bit value which they
use to fix x0||x1||x2. Then, iterating over the remaining 25 bits, the adversary
queries the PUF 225 ≈ 107.53 times and records the responses in Mf .

Constructing Mf requires 225 ≈ 107.53 chosen challenges. The memory com-
plexity for storing Mf can be optimized to 222 bytes, i.e., 4.19MB by querying
the challenges in a natural order and indexing the responses accordingly.

Fixing Mf as a reference system, and recalling Observation 2, we see that
determining c is sufficient for translating CRPs from Mf to M c

f . To do so, the
adversary observes 25 CRPs from the target equivalence class (i.e., these 25
CRPs share the same value in the first 75 bits). Then, by means of exhaustive
search on c, the adversary filters candidates where Mf [i ⊕ c] 6= M c

f [i] using
the 25 queries. This exhaustive search could be viewed as solving a system
of equations with 25 bit unknown values. Therefore, the minimum number of
equations such that this system is independent is 25. Our experiments show that
25 CRPs are enough for the correct c to be the only surviving candidate with
high probability. At this point the adversary can determine with full certainty
that M c

f [i] = Mf [i⊕ c] for all values of i. This way the adversary can learn the
responses to all the remaining challenges from M c

f .

3.4 Discussion

Note that the fact that the device is biased is not a problem in itself. Daemen
and Rijmen analyzed in [1] the bias of ideal m-to-n-bit functions and showed
that they are approximately normal distribution with mean 0 and variance 2−n.
For an ideal 100-to-1-bit function, such a bias would not be detectable. However,
what Observation 2 shows is that this device actually models a random 25-to-1-
bit function (in the best case scenario); making it significantly easier to detect
the bias.

A second observation that we did not pursue in this paper is that the cascade
structure will amplify the bias introduced by the random 5-to-5-bit functions.
Each of these functions is an entropy choke point in itself and the cascade will
result in bias that is even larger than what is predicted by [1] for the ideal case.

Moreover, we see again that by investing a relatively small amount of effort
(the processing of 225 + 25 chosen challenges and an exhaustive search over a
space of 225) an adversary can predict the response to unknown queries with
high probability. This is again an undesirable behavior; or alternatively, in case
this is an acceptable behavior, it can be achieved using cheaper components.

Note that we did not investigate the properties of the other layers, nor the
ones of the component functions, and it is likely that this basic attack can be
improved further.

9



4 Jeloka et al.

The third design we analyse was introduced by Jeloka et al. in [7]. We show that
the responses of this device preserve input correlations with high probability.

4.1 Description

Jeloka et al. propose an SRAM-based PUF with a claimed CRP space that
grows exponentially in the number of rows and the challenge length. The
device has a secret initial state S ∈ Fn×m

2 and a secret matrix of powers
P ∈ Zn×m

n . Each column of P is viewed as a permutation on the integers
{0, 1, . . . , n − 1}. Larger numbers are associated with “more power”. A chal-
lenge C = {r1, · · · , rt} ⊆ {0, 1, . . . , n−1} is defined as a sequence of rows, where
each two consecutive rows (ri, ri+1) “fight” and the cell with bigger associated
power wins the fight and overwrites its value over that of the other cell. The
fight takes place independently for each column. More precisely, in a fight be-
tween row i and row j, for each column k, if Pi,k > Pj,k then Sj,k ← Si,k;
otherwise Si,k ← Sj,k. The corresponding response to a challenge C denoted by
F (C), represents the m bits of the last row in the challenge.

[7] describes the PUF in an abstract way for any dimensions (n,m) and
challenge length t (see Algorithm 1). The authors suggest that n = m = 64 and
t = 6 are sufficient to attain some unspecified level of security.

Algorithm 1: Psuedo-code for the PUF from [7]

Input: C = {r1, . . . , rt}
Output: F (C) := Trt

T ← S
for (ri, ri+1) ∈ C do

for 0 ≤ j ≤ m− 1 do
if Pri,j > Pri+1,j

then
Tri+1,j ← Tri,j

else
Tri,j ← Tri+1,j

end

end

end
Return Trt

4.2 Intuition

We show how two challenges that are “similar” will result in the same response
with high probability. Concretely, we show that two challenges (sequences)
differing only in their first value will produce the same 64-bit response with
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probability 2−0.77. Note that since the response is 64-bit long, one would expect
this probability to be 2−64.

4.3 Attack Description

First, we analyze the state S with a single column. In the case where m = 1,
the response F (C) to the challenge C is a 1-bit value F (C) = b.

Observation 3. Let X̄ = (x1, x2, x3, x4) and F (a, X̄) be the result of the fight
between the rows a, x1, x2, x3, x4 (a, is the first row of the fight and the output
is x4). Let G(X̄) be the result of the fight without considering the first row a.
Then

F (a, X̄) 6= G(X̄) ⇐⇒ F (a, X̄) = Sa and G(X̄) 6= Sa

And the probability that a changes the response is

Pr
[
F (a, X̄) 6= G(X̄)

]
=

1

2
· 1

5!
=

1

240

The only case in which the result of two functions is different is when the
response is Sa and the powers have the form Pa > Px1 > Px2 > Px3 > Px4 with
p = 1

120 and F (X̄) 6= Sa with p = 1
2 .

Observation 3 shows that the first row in the challenge has small influence
on the final response. Therefore, two challenges that only differ in the first row
have different responses with the following probability

Pr

[
F (a, X̄) 6= F (b, X̄) =

1

120

]
The cases that F (a, X̄) 6= F (b, X̄) are as follows:

1. F (a, X̄) = Sa and F (b, X̄) 6= Sa with probability 1
240 .

2. F (a, X̄) = F (X̄) and b is the strongest: F (b, X̄) 6= F (X̄) with probability
1

240 .

So the total probability that both queries give the same result in a single column
is 1 − 1

120 = 119
120 . Since the powers in different columns are independent, the

probability of a correct guess for m = 64 columns is 119
120

64
= 2−0.77.

4.4 Discussion

In this case we see that the PUF does not offer good diffusion properties and
that each query allows to predict with high probability the response to multi-
ple other queries. This is an undesirable property as one can expect from an
authentication device to produce an uncorrelated response even for correlated
entries.

For brevity, we did not model the case where the two challenges differ in
positions other than the first one or when they differ in more than one position.
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As a general observation we offer that the probability for collision is higher when
the change occurs in earlier positions. This violates Jeloka et al.’s claim that
longer sequences result in better security.

5 Strong PUFS When Viewed as Symmetric-
key Algorithms

The work presented in this paper highlights a gap between two communities
concerned with the development and implementation of secure cryptographic
algorithms. The disparity is reflected in different areas such as design strate-
gies, security analysis, and even in the way a new algorithm is presented to a
larger audience. We discuss some of these differences, hoping to initiate a larger
discussion and exchange of ideas between the two communities.

5.1 Abstraction Level

The design process resulting in a secure device involves several levels of abstrac-
tion. In the context of this paper, we focus on three of those:

• Mathematical level. In this abstraction level, the mathematical properties
of abstract classes of functions are investigated. This kind of work involves
for example methods from probability theory, combinatorics, statistics,
algebra (both linear and modern), Fourier analysis, complexity theory,
etc., and is normally published in pure mathematics- or mathematically-
oriented cryptography- venues;

• Algorithmic level. At this level, the abstract functions are used as con-
ceptual building blocks to form an algorithmic model. In addition to
understanding the properties of the building blocks, the designer must
also understand how they interact when combined together (for security
reasons), and the platform that they will be running on (for efficiency
reasons). In addition to the algorithm description itself, the algorithmic
model includes a well-defined adversarial model and security claims per-
taining to it. This is at the core of what cryptographers do, and a standard
practice is to submit such works to cryptographic venues for peer-review
and 3rd party evaluation;

• Implementation level. Having completed the vetting process of the al-
gorithmic model, the algorithm is implemented first in simulation and
later in tangible form. Even assuming the ideal security of the algorithm,
the implementation process itself is susceptible to issues undermining the
device’s security (e.g., timing attacks, side-channels). It is therefore not
enough to understand the efficiency metrics and one must also understand
the idiosyncrasies of secure implementations.

Strong PUFs aim to achieve goals on the implementation level (e.g., secure
key storage). The PUFs we looked into stem from a deep understanding of the
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execution platform, namely IC, and are therefore very efficient. However, the
mathematical and algorithmic levels have been systematically overlooked. This
is why Rührmair et al. and Delvaux et al. were able to use machine learning
attacks in [3, 16] and why this paper can attack more recent works.

5.2 Adversarial Models

To be able to speak of the security offered by an algorithm, the conservation
must obtain a shared understanding of what “security” is. As the notion of
security only makes sense with respect to the existence of a bad actor (i.e., an
adversary), it makes sense to start the discussion there. An inherent imbalance
between defenders and attackers (designer and adversaries, respectively) is that
attack methods are plentiful, and it is enough for one of them to succeed for the
defender to fail their role. Since attackers are creative and resourceful, it is futile
to attempt predicting what methods they will use. Instead, cryptographers work
with adversarial models. An adversarial model presumes only the capabilities
of the adversary, but not how the adversary will use these capabilities.

Depending on the capabilities, an adversary can be classified as either pas-
sive or active. Whereas a passive adversary is capable of only observing the
communication channel, an active adversary is additionally able to delete, add,
and alter the data sent over the channel. In the context of PUF design, we
identified the following relevant models from [8,13]:

• Passive adversaries

– Ciphertext-only attack: the adversary can only observe the outputs
of the system; thus, the outputs of a secure cryptosystem should pro-
vide no information regarding the corresponding inputs, or the secret
key/randomness; this model is the easiest to carry out in practice,
since the only requirement is passively eavesdropping the communi-
cation channel.

– Known-plaintext attack: the adversary is in possession of some inputs
and the corresponding outputs generated under the same secret key.

• Active adversaries

– Chosen-plaintext attack: the adversary is capable of obtaining the
outputs corresponding to inputs of the adversary’s choice.

– Adaptive chosen-plaintext attack: the adversary may select the inputs
depending on the received outputs from the previous requests.

Since in many cases the input or parts thereof are public (e.g., HTTP headers)
known plaintext attacks are often regarded practical. Furthermore, in 2-party
authentication protocols such as the ones considered for strong PUFs, both
active models also appear reasonably feasible.
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5.3 Algorithmic Description

Symmetric-key algorithms normally define the input, output, and key spaces,
and an algorithmic description to produce the corresponding output given the
input and the secret key. A strong PUF can be modeled in the same way by
considering the challenge as the input, the PUF’s response as the output, and
the intrinsic randomness as the key.

A fundamental assumption in cryptography is the reputed Kerckhoffs’ prin-
ciple, which states that “a cryptosystem should be secure even if everything
about the system, except the key, is public knowledge”. In the algorithmic de-
scription, the key is seen as part of the input that is unknown to the adversary.

It follows from Kerckhoffs’ principle that the algorithmic description can be
provided independent of the key (just like an IC can be manufactured irrespec-
tive of the values it will receive through its input wires).

The dissemination of new algorithms is a sort of “conversation” between the
designers and their audience. To support this conversation, the designers pro-
vide a design rationale motivating their decisions. A reference implementation,
and/or test vectors are provided to alleviate any ambiguity in the algorithmic
description. If additional data was generated or used by the designers in the
design process, it is also provided for examination and reproducibility.

5.4 Security Claims

When the key is modeled as an additional input, it becomes apparent that any
algorithm using a finite number of secret bits is vulnerable to brute force attacks
since it is always possible (but not necessarily feasible) to exhaustively iterate
the key space. From the observation that the key size provides an upper bound
on the effort required for attacking the algorithm arises an intuitive definition
to what constitutes an attack.

Definition 5.1. A cryptosystem is said to be broken if an adversary can achieve
their goals with less effort that would be required if they used a brute force
attack.

Translating this to the case of Strong PUFs, let C be an arbitrary3 n-bit
challenge, f(C) its 1-bit response, and Q the set challenges that have already
been made and whose responses are known to the adversary. A reasonable
security claim would be that if C /∈ Q, no adversary can predict f(C) with
probability better than 1

2 , even when C is chosen after observing all the responses
to the challenges in Q (adaptive chosen challenge); Formally,

Pr[f(C)|C, Q] =
1

2
. (4)

3We note the terms arbitrary and random are not interchangeable in cryptography. A
value is said to be random if it is sampled rigorously from a given distribution, usually the
uniform one; it is said to be arbitrary when there is no importance to how it was sampled. For
example, one’s birthday is an arbitrary value, but for an encryption algorithm to be secure,
the key must be chosen randomly from the uniform distribution of k-bit vectors.
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Another way to view this security claim is through the notion of advantage: for
any n-bit uniformly random challenge C,

ADV =
1

2
+
|Q|
2n

. (5)

Equation (5) captures the intuitive notion that the only way for an adversary
to gain any knowledge is by querying device on that specific challenge.4

With an adversarial model, an algorithmic description, and a clear notion of
security, the designer can provide security claims. Such security claim for the
PUF presented in Section 2 can take the following form “the Strong PUF can re-
sist any chosen plaintext attack that runs in time less than 250 time and requires
less than 293 chosen queries”. If an attacker generates all the state-equivalence
classes, i.e. requiring 264 queries, they can guess the response associated to any
future challenge with probability 1. Therefore, such an attack which uses fewer
queries and running time than what is permissible, is interpreted as breaking
the algorithm.

A subtle point that we have seen overlooked is that in addition to being
correct, the security claim must also be sensible. For example, since a PUF
does not have a way to verify that a challenge has been received from a valid
server (rather than from an adversary), it does not make sense to ignore chosen
and adaptive-chosen challenge attacks. Likewise, our observations in this paper
do not invalidate the claims about resistance to ML-attacks, yet these PUFs are
not secure and should not be deployed in field settings.

Finally, we note that in light of the Strong PUFs we found in the literature,
it does not make sense to consider the complexity of a brute-force attack as a
function in the secret/random material. As the amount of randomness used is
much larger than the CRP-space, the adversary can clone the PUF trivially by
querying it completely. Thus Equations 4–5 are the more natural choice.

5.5 Concluding Remarks on Security-Efficiency Trade-offs

Surveying the recent literature on Strong PUFs, we noticed that the general
trend in designing them is to employ a series of random-based operations, such as
random Boolean functions, Sboxes, or linear layers. While the need for efficient
algorithms is understandable, the security/efficiency trade-off must be handled
carefully, as operations resulting in an insecure mechanism are by definition
inefficient. Moreover, in symmetric-key cryptography, two of the most important
properties that are analysed in a new design are the confusion and the diffusion
ensured by the component functions of a cipher. These aspects are covered in
a series of books such as [2, 9, 10].

In the PUFs we surveyed in this paper we see that the adversarial model is
not stated, and instead, heuristic are used to assess the device’s security. Among
symmetric-key cryptographers, this approach is considered obsolete. Modern

4Cryptographers sometimes use the word leakage to describe “the knowledge an adversary
may gain”. However, this term is already loaded with meaning in the electrical engineering
community, hence we omit it to avoid confusion.
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techniques for the design of symmetric-key algorithms build on over 50 years of
research in this domain to offer well understood trade-offs between efficiency and
security. In other words, it is unlikely that a casual, non-systematic approach
would yield a secure algorithm (regardless of its efficiency).5.

We refer readers interested in understanding the state of the art in lightweight
cryptography to the Wiki maintained by the cryptography group in the Univer-
sity of Luxembourg [14] noting that after more than a decade of research into
this area it is unlikely that the state-of-the-art can be significantly improved
without a paradigm shift. Interestingly, we observe that the amount of random-
ness exploited in PUF designs far exceeds what is common in symmetric-key
cryptography. Whereas contemporary symmetric-key primitives have key sizes
ranging between 80–256 bits, the algorithms we surveyed above use randomness
that is measured in the order of thousands of bits. More randomness is usually
associated with better security through an increase in the key size. It would be
interesting to explore in future work if a different trade-off can be obtained by
fixing the security level and somehow exploiting the additional randomness to
improve efficiency.

6 Conclusion

PUF design share many common characteristics with the design of symmetric-
key cryptographic algorithms. Motivated by undesirable properties we found in
three recently published Strong PUFs, we attempted to provide in this paper
a tutorial to the approach taken by symmetric-key researchers to ensure the
security of their algorithms. We hope that this paper would serve as a starting
point for discussion between the two communities.
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