
“vr2FHE” - Securing FHE from Reaction-based
Key Recovery Attacks

Bhuvnesh Chaturvedi1, Anirban Chakraborty1, Ayantika Chatterjee1, and
Debdeep Mukhopadhyay1

Indian Institute of Technology Kharagpur, Kharagpur, India,
bhuvneshchaturvedi2512@gmail.com, ch.anirban00727@gmail.com,

cayantika@gmail.com, debdeep.mukhopadhyay@gmail.com

Keywords: FHE · IND-CVA · Reaction Attack · Full Key Recovery · Applica-
tion Level Security · Merkle tree

Abstract. Fully Homomorphic Encryption (FHE) promises to secure
our data on the untrusted cloud, by allowing arbitrary computations
on encrypted data. However, the malleability and flexibility provided
by FHE schemes also open up arena for integrity issues where a cloud
server can intentionally or accidentally perturb client’s data. Contempo-
rary FHE schemes do not provide integrity guarantees and, thus, assume
a honest-but-curious server who, although curious to glean sensitive in-
formation, performs all operations judiciously. However, in practice, a
server can also be malicious as well as compromised, where it can per-
form crafted perturbations in the cloud-stored data and computational
results to entice the client into providing feedback. While some effort
has been made to protect FHE schemes against such adversaries, they
do not completely stop such attacks, given the wide scope of deploy-
ment of contemporary FHE schemes in modern-day applications. In this
work, we demonstrate reaction-based full-key recovery attack on two of
the well-known FHE schemes, TFHE and FHEW. We first define prac-
tical scenarios where a client pursuing FHE services from a malicious
server can inadvertently act as a Ciphertext Verification Oracle (CVO)
by reacting to craftily perturbed computations. In particular, we propose
two novel and distinct reaction attacks on both TFHE and FHEW. In
the first attack, the adversary (malicious server) extracts the underlying
error values to form an exact system of Learning with Errors (LWE)
equations. As the security of LWE collapses with the leakage of the er-
rors, the adversary is capable of extracting the secret key. In the second
attack, we show that the attacker can directly recover the secret key in
a bit-by-bit fashion by taking advantage of the key distribution of these
FHE schemes. The results serve as a stark reminder that FHE schemes
need to be secured at the application level apart from being secure at
the primitive level so that the security of participants against realistic at-
tacks can be ensured. As the currently available verifiable FHE schemes
in literature cannot stop such attacks, we propose vr2FHE (Verify -
then - Repair or React) that is built on top of present implementations
of TFHE and FHEW, using the concept of the Merkle tree. vr2FHE first

2 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

verifies the computational results at the client end and then, depending
on the perturbation pattern, either repairs the message or chooses to re-
quest for recomputation. We show that such requests are benign as they
do not leak exploitable information to the server, thereby thwarting both
the attacks on TFHE and FHEW.

1 Introduction

Fully Homomorphic Encryption (FHE) allows the ability to perform arbitrary
computation over encrypted data without the need to decrypt it first. This al-
lows a client to offload its private data securely on an untrusted cloud server 1

while simultaneously allowing it to avail the computation ability of the server.
In FHE setting, the general consensus is that the server is considered to be
honest-but-curious. In other words, it is assumed that the server might try to
infer information about the client’s data but it will perform the computations
judiciously. However, in practical, real-world settings, the server can be actively
malicious and start undertaking spurious activities, including manipulating the
client’s data to leak secret information. Such malicious operations are more po-
tent and dangerous as they are not restricted to only leaking information about
data; rather, they target the secret key, thereby transforming privacy leakage
into a security breach. However, a major challenge for undertaking such an at-
tack is that the server cannot directly observe the effect of data manipulations
on its end since it does not possess the secret key. On the contrary, it can tam-
per with the result of a computation and send it to the client for decryption. If
the decryption produces an incorrect result, the client might inform the server
of such an erroneous result and ask for re-computations. As mentioned in [27],
such a scenario exists in practice in the pay-per-computation model, where the
client pays for each correct computation only. In case of a wrong result, it will
certainly ask the server for a free re-computation. Such a reaction [45,47] from
the client might result in the leaking of secret information.

In an FHE setting, the client does not have any means to differentiate between
the correct result and a random value sent by the server, since it does not know
the result of the computation 2. In such cases, the client relies on an application-
level constraint [64] and only accepts the result if it satisfies such constraint (post
decryption); otherwise, it asks the server to perform the computation again. This
becomes easier in practice since the client uses certain software to communicate
with the cloud and process the results instead of performing them manually [65].
A suitable example of such application-level constraint could be the count of
returned rows in the context of encrypted databases. When the server processes a

1 We have used the terms cloud and server interchangeably throughout the paper.
2 The premise of FHE rests on the assumption that the client wants to offload the
computation to the server, which has computational power and offers it as a service.
The client can ask the server to evaluate a circuit on its encrypted data and send
back the results in encrypted form. In that case, the client does not know the end
result of the computation and, therefore, cannot verify the genuineness of the result.

Securing FHE keys from Reaction-based Attacks 3

query of the client, it sends back the resultant rows along with a count of number
of rows returned, both in encrypted form. The client matches the returned value
with the actual count to check whether it has received all the rows or some got
lost (e.g., packet drop) in the transmission. In case of a mismatch, the client can
ask the server to re-run the query. It is easy to observe that while the server
may honestly evaluate the query to generate correct results, it might tamper the
count of rows to force a mismatch and thus induce a reaction from the client.
In spite of few holistic FHE interity solutions explored in context of Verifiable
Fully Homomorphic Encryption [64], such reactions can be induced in general.
We consider this reaction, or the lack thereof, from the client as a response of an
oracle that, given a ciphertext, outputs whether it decrypted correctly or not.
Throughout our paper, we refer to this oracle as Ciphertext Verification Oracle
or CVO. We note that such CVO exists due to the application-level constraint
(the row count in our example), as the client might not be able to verify the
correctness of other computational results (e.g., content of the rows).

Reaction-based attacks have been explored in literature, in the context of
FHE schemes [53,65,27]. However, such explorations are limited, and the at-
tacks proposed do not apply to state-of-the-art FHE schemes like TFHE [26]
and FHEW [31]. We present a detailed discussion of such works and their appli-
cation and limitations later in Sec. 3. We focus on these two schemes as 1○ they
belong to the FHE category, i.e., any Boolean circuit of arbitrary depth can be
computed and 2○ they are developed on top of Learning With Errors (LWE)
security guarantees. These attacks, which target the lack of integrity guarantees
in FHE ciphertexts and computations, have led to the development of techniques
that provide the verifiability of FHE computations. Such techniques require the
server to produce proof or attestation that the result was computed honestly
by evaluating the requested circuit on the client’s inputs. The client uses this
proof to first verify whether the result received from the server was not tampered
with and represents genuine computational result of correct circuit. The client
proceeds to decrypt only those ciphertexts that have accompanying valid proof
or attestation. Otherwise, the client may ask for re-computation for the same
ciphertext [64].

1.1 Motivation

Prior works in literature [50,64] have highlighted that CVOs do exist in practice
and are frequently unavoidable in practical settings such as Machine-Learning-
as-a-Service (MLaaS) and Private Information Retrieval (PIR). Moreover, [53]
and [65] have shown how an adversary can leverage feedback from the client to
carry out reaction-based attacks on Somewhat Homomorphic Encryption (SHE)
schemes. Given such attacks, it is well acknowledged in the literature that in-
tegrity issues in current FHE schemes can lead to serious security implications.
In order to prevent such attacks as well as ensure genuineness of the computa-
tional output by the server, a number of works [16,23,36,48,54,60,64] have been
proposed in literature that augments the core FHE scheme with a proof or at-
testation that can be verified at the client end. Such design approach has been

4 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

termed as verifiable FHE where the server generates proof of genuineness of its
computations and sends it to the client along with the actual computational
result. The majority of these schemes rely on standard integrity techniques such
as Message Authentication Codes (MACs), Zero Knowledge Proofs (ZKPs), and
Trusted Execution Environments (TEEs). However, these approaches suffer from
major drawbacks when applied to contemporary FHE application settings. For
example, MACs cannot be used in applications where server inputs are involved
since such MACs can only be generated by the client [64]. Similarly, ZKPs are
limited to RLWE schemes that do not involve bootstrapping operations since the
underlying mathematics differs across these two operations [64]. Finally, TEEs
have a limited amount of memory and are slower compared to the untrusted
hardware, while FHE ciphertexts are larger in size and computations are al-
ready slow even on untrusted hardware [64]. Therefore, these techniques do not
work with Learning with Errors (LWE)-based FHE schemes, such as FHEW [31]
and TFHE [26], which provides fastest gate-level bootstrapping.

Apart from the aforementioned limitations, these schemes fail to protect un-
derlying FHE schemes in the presence of Ciphertext Verification Oracle. It must
be noted that these works inherently assume that the proof generation process
will be done honestly by the server. In other words, the client will be able to
identify any perturbation by verifying the proof. However, the server being ma-
licious, can deviate from the proof generation protocol. Moreover, the server
might perform both the computation and proof generation honestly but perturb
the final result before sending to the client. An alternate scenario could appear
where a third-party adversary, snooping on the network traffic between the client
and the server, perturbs the data such that it results in proof invalidation. In
such cases, although the server is honest, the client might stop using the server’s
service, or the client can be starved of any correct result. Therefore, it is imper-
ative to consider a repair mechanism such that some of the faulty computations
can be rectified. In addition, the client must be protected from reaction-based
attacks such that any reaction (request for re-computation) made by the client
must not leak any information regarding the underlying plaintext message, error,
or secret key.

1.2 Contribution

In this paper, we for the first time in literature, demonstrate reaction-based
attack on two well-known FHE schemes, TFHE [25] and FHEW [32], to perform
full key recovery. We propose two distinct attacks on both schemes by exploiting
the client itself as CVO. Further, we also propose an end-to-end software-based
countermeasure, built on top of existing implementations of TFHE and FHEW,
to thwart such reaction-based attacks. To summarize, we make the following
contributions:

1. Client as a Verification Oracle in IND-CVA notion: The immense
possibility of wide-scale deployment of FHE in different applications across
varied domains opens up diverse security scenarios. One such application

Securing FHE keys from Reaction-based Attacks 5

domain is Private Information Retrieval (PIR) where the information pro-
cessing is done homomorphically at the server side, while the results are vali-
dated using some application-level constraints at the client side. We define a
security game to establish the practicality of application-level constraint un-
der the security notion of IND-CVA (Indistinguishability against Ciphertext
Verification Attack). Such a practical application is encrypted database in
the context of PIR, where the client performs query on encrypted database
and homomorphically computes the number of rows returned by the query.

2. Attack 1: Recovering Errors by introducing crafted perturbations:
Using the CVO, we propose a reaction-based attack on TFHE and FHEW,
where the server maliciously inserts crafted perturbations in the final com-
putational result and send it to the client. Due to the application-level con-
straint, the client being able to identify decryption failure, responds to the
server about re-computation. We, for the first time, show that the underly-
ing error of homomorphically computed ciphertext can be recovered by the
server through reactions of the client. We undertake a binary search-based
approach that, using client feedback, reduces the search space of the errors
until only one error value remains, which is the correct error. Once errors are
recovered from sufficient ciphertexts, we form a system of exact equations
and solve them to recover the secret key.

3. Attack 2: Optimised Key recovery by exploiting key distribution:
In the first attack, we perturbed the component of the ciphertext that con-
tain information about message, error and the secret key. In this attack, we
rather target the other component of the ciphertext which is essentially a
randomly generated (by the client) vector and does not posses any sensitive
information. We, for the first time, show the security implication of this ran-
dom variable-vector by exploiting the key distribution of the FHE schemes.
This attack is more potent that the previous one as it leaks the secret key
directly, requiring only “one” reaction from the client to leak a bit of the
secret key. This attack shows the implication of key distribution space for
FHE schemes from a completely different security perspective. As an inter-
esting outcome, we show that almost half of the secret key bits can be leaked
without requiring any decryption failures (or reaction from the client).

4. vr2FHE - verifiable and reaction-attack secure FHE: The currently
available works under the aegis of verifiable FHE do not protect the two
schemes targeted in this paper. As a final contribution, we propose a coun-
termeasure, called vr2FHE, driven by the rationale of verification as well
as repair mechanism depending on the perturbation patterns. vr2FHE is an
effective countermeasure against both the attack proposed in this paper.
Additionally, it provides the client with the ability to both verify the result
as well as compute the correct result locally in case of a decryption failure,
without requiring significant overhead. Our proposed technique does not re-
quire any modification to the existing FHE libraries, and it relies on existing
cryptographic primitives that are also post-quantum secure.

6 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

1.3 Organization

The rest of the paper is organized as follows: Section 2 provides the background
of LWE [61] problem along with a brief working of FHEW [32] and TFHE [25]
libraries and the concept of Merkle tree which we use to develop our countermea-
sure, while Section 3 provides a summary of existing attacks on FHE schemes.
Section 4 explains the threat model under which our attack works and how the
client works as a ciphertext verification oracle. Section 5 explains how we leverage
the CVO to mount a key recovery attack. Section 6 provides our experimental
results for simulating the attacks. Section 7 provides existing countermeasures
and their limitations. Section 8 provides details of our proposed countermeasure
while section 9 provides an explanation of how our countermeasure works. Sec-
tion 10 provides the overhead that our proposed countermeasure introduces, and
Section 11 concludes our paper.

2 Background

In this section, we provide a brief background on the LWE problem, which is the
underlying mathematical foundation for the FHE schemes we discuss in this pa-
per. We follow it up with the working principles of two well-known FHE libraries
that are based upon the LWE primitive. Finally, we provide a brief overview of
the working principle of the Merkle tree which we use in the countermeasure
against our proposed attack.

2.1 Learning With Errors problem

The idea of the Learning With Errors problem was introduced by Regev in
2005 [61]. Since its inception, LWE and its ring variant RLWE [56] has been used
as a foundation of multiple cryptographic constructions [42,8,58,2,18,55,19,14]
due to the assumption that it is as hard as worst-case lattice problems. LWE is
based on the addition of random noises to each equation in a system of equations,
thus turning it into a system of approximate equations, as follows

a11s1 + a12s2 + · · ·+ a1ksk ≈ b1 (mod q)

a21s1 + a22s2 + · · ·+ a2ksk ≈ b2 (mod q)

...

am1s1 + am2s2 + · · ·+ amksk ≈ bm (mod q)

For brevity, let k > 1 be an integer and s be a secret sampled uniformly from
some set S ∈ Zk. An LWE sample is denoted by a tuple (a, b) ∈ Zq

k ×Zq, where
a ∈ Zq

k is chosen uniformly and b = a · s+ e ∈ Zq. Here e is a noise value, also
called error, sampled uniformly from a Gaussian distribution with mean 0 and
standard deviation σ ∈ R+. LWE problem has the following two variants -

– Search problem: having access to polynomially many LWE samples, retrieve
s.

Securing FHE keys from Reaction-based Attacks 7

– Decision problem: distinguish between LWE samples and uniformly random
samples drawn from Zq

k × Zq.

Both versions are considered to be hard to solve, even for a quantum computer.
The attacks on LWE-based schemes try to solve any one of the above problems
or to estimate the security level of the schemes based on the parameter set used
to implement them. However, once these error values are recovered, they can be
removed from the corresponding ciphertext to obtain a system of exact equations
which can then be trivially solved.

2.2 Domain of Homomorphic Encryption Schemes

Torus Domain For TFHE Torus [26] is defined as a set of real numbers
modulo 1, or real values lying between 0 and 1. It is denoted as T = R/Z = R
mod 1. This set T along with two operators, namely addition ‘+’ and external
product ‘·’, forms a Z-module. It means that addition is defined over two torus
elements while external product is defined as a product between an integer and a
torus element, both of which result in a torus element. The product between two
torus elements is not defined. In the CPU implementation of TFHE library [25],
Torus elements are defined as 32-bit unsigned integers, and all the operations are
performed modulo 232. The plaintext bits 1 and 0 are encoded as Torus elements
µ and −µ.

Integer Domain for FHEW The plaintexts and ciphertexts as well as the
underlying operations in the FHEW library [32] are defined over Integers mod-
ulo 512. The plaintext space is divided into two halves with each half either
representing a 0 (encoded as 0) or 1 (encoded as 128). On the other hand, the
ciphertext space is divided into four quadrants representing one of the four pos-
sible ciphertext values between 0 to 3. Thus, unlike TFHE where plaintext and
ciphertext space is the same, they are different in the case of FHEW.

2.3 Fully Homomorphic Encryption Libraries

In this work, we focus on two well-known FHE libraries, namely FHEW [32]
and TFHE [25], both based on LWE. The overall working principle of these two
FHE schemes can be broadly broken into three stages. First is the encryption
stage that runs on the client side and involves the encryption key. Once the
ciphertexts are generated, they are sent to the server upon which homomorphic
gate evaluation is performed. Finally, bootstrapping is performed on the resulting
ciphertext to reduce the overall noise. The last two stages run on the server and
do not directly involve the secret key. Once the computations are done at the
server, the final encrypted result is sent to the client for decryption and involves
the decryption key.

The Encryption Stage In the secret key setting, the encryption process starts
with sampling a noise value e ∈ Zq from a Gaussian distribution and adding it

8 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

to the encoded message x to obtain an intermediate value of b′ = x± e. It then
samples a random vector a ∈ Zq

k and performs a dot product with the secret
vector s ∈ Bk where B ∈ {0, 1} for TFHE and B ∈ {0,±1} for FHEW. The
result of this dot product is then added to the intermediate value b′ to obtain
its final value as b = a · s + x ± e. The final ciphertext comes out to be (a, b).
The above process is the same in the case of both FHEW and TFHE, the only
difference being the length of secret key k and the standard deviation σ of the
Gaussian distribution.

In the public key setting, the owner of the secret key generates its public key
by first generating a random matrix A ∈ Zq

m×k and a random vector e ∈ Zq
m

consisting of noise values randomly sampled from a Gaussian distribution. It
then computes a vector b = A× s+ e ∈ Zq

m, where “×” represents the matrix-
vector product. This matrix-vector pair (A,b) acts as its public key. To encrypt
an encoded message x ∈ Zq, a user randomly selects a row (a, b′) from the public
key and then adds x to b′ to obtain b. The pair (a, b) acts as the ciphertext
corresponding to the plaintext message x.

We would like to mention that our attack works irrespective of whether the
user is working under the secret key setting or public key setting as our attack
targets the decryption stage which involves the secret key in both these settings.

Homomorphic gate evaluation and bootstrapping In both FHEW and
TFHE, the server receives two ciphertexts c1 = (a1, b1) and c2 = (a2, b2) on
which it performs the gate evaluation operation. It does so by defining a gate
constant as a pair (1024, bFgc) and (0, bTgc) for FHEW and TFHE, respectively.

The second part of these constants, i.e., bFgc and bTgc, are defined differently for
the 4 and 10 homomorphic gates, apart from NOT-gate, defined in FHEW and
TFHE, respectively. The result c = (a, b) of the gate computation is evaluated
by computing a = 1024 − (a1 + a2) and b = bFgc − (b1 + b2) under modulo-
512 in FHEW. In TFHE it is evaluated by computing a = 0 ± (a1 ± a2) and
b = bTgc ± (b1 ± b2) under modulo-232, where the ordering of + or − depends
on the homomorphic gate being evaluated. During bootstrapping, which takes
place immediately after the gate operation, the noise is reduced followed by
a key-switching procedure to switch back to the original secret key as the re-
freshing operation changes the underlying secret key. In the case of FHEW, an
additional modulus switching operation is required to switch the modulus from
the ciphertext to the plaintext domain, while in TFHE it is carried out during
the noise reduction phase itself.

The Decryption Stage Once the client receives the ciphertext c = (a, b),
a result of some homomorphic computation, it begins the decryption process
by computing a · s, and then subtracting this result from b. As a result of this
computation, the client receives a noisy version x± e of the underlying encoded
plaintext message x, called the phase ϕ of the message. In the case of TFHE, the
sign of this phase is checked to output 1 if it is positive and 0 if it is negative.
In the case of FHEW, a constant value 64 is added to this phase such that it

Securing FHE keys from Reaction-based Attacks 9

becomes x+e′, where e′ = ±e+64. This is then divided by 128 to obtain x′+e′′,
where 0 < e′′ < 1, and x′ is the plaintext bit corresponding to the encoded bit
x. Finally, the floor value of x′ + e′′ is taken, which removes e′′ and reveals the
plaintext bit x′. However the last step (checking sign in TFHE and flooring in
FHEW) of the decryption operation extracts the correct message only when the
associated noise e is below a pre-determined threshold, otherwise, it decrypts
incorrectly.

2.4 Merkle Tree

Merkle tree [57] or hash tree is a data structure where the leaf nodes store the
hash values of the data blocks while the non-leaf nodes (internal) store the hash
values of its child nodes. The root node, which is referred to as Merkle root,
stores a single hash value which becomes a part of the proof. Merkle tree is
generally used to check the membership of an element (such as a file) in a data
block. The data owner generates a Merkle tree by first generating hashes of its
data elements, and then repeatedly generates their pair-wise hashes until it is
left with only one hash value. The owner stores this hash value on its end and
offloads its data along with the generated Merkle tree onto a public system, say
a cloud server. Now whenever it requires a data element, it sends a request to the
cloud and receives the requested element along with a Merkle proof. This proof
consists of the sibling data element of the requested element along with all the
non-leaf hash values of the previously generated Merkle tree. To verify, the data
owner first generates the hash of the requested element along with its sibling.
It then uses the other hashes it received as part of the proof to re-calculate
the Merkle root, which it then compares with the one stored with it. If they
match then it has received the correct data element, otherwise, the element was
modified. The data owner can also publish the Merkle root so that others can also
verify its data elements. Thus Merkle tree can achieve both designated as well
as public verifiablility. Originally designed as a signature scheme, it is now used
to verify the integrity of data in applications such as file systems [17], NoSQL
database [29], distributed version control systems [52], and cryptocurrency [59].

3 Existing Attacks on FHE Schemes

The majority of the works that tried to break the security of FHE schemes either
target the underlying hard problems [51,12,3,15,44,13,49,9,4,5,7,6,24,33] or tar-
get the implementation of such schemes through side-channel leakages [11,10].
However, the theoretical attacks targeting the underlying mathematical prob-
lems do not work efficiently for lattice dimensions that are used in the practi-
cal instantiation of such schemes. Moreover, the side channel attacks on such
schemes are carried out on the client side, since the key generation as well
as encryption and decryption operations run on the client side. On the other
hand, works also exist which show how a malicious server can carry out key
recovery attacks on Somewhat Homomorphic Encryption (SHE) schemes. [24]

10 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 1: Strength of active adversary in increasing order (from left to right); weak-
est in IND-CPA and strongest in IND-CCA2. Our attack works under the IND-
CVA1 model.

showed full key recovery attacks on BVG [21], Brakerski [20] and GSW[43] SHE
schemes. Similarly, [53] showed a full key recovery attack on Gentry-Haveli [41]
SHE scheme. However, all these attacks rely on the adversary having access to
a decryption oracle, which is both impractical and infeasible [65].

Recently, a new class of attacks on FHE schemes have been proposed that is
based on the idea of reaction attacks [45,47] which uses the client as a verifica-
tion oracle. [65] showed a message and key recovery attacks on both the original
Gentry’s scheme [39,40] as well as the FHE scheme over the integers [30]. How-
ever, their attack requires the key to be sparse. Similarly, [53] showed a mes-
sage recovery attack on a ciphertext-checking SHE scheme, which is a variant
of Smart-Vercauteren [63] scheme. However, they did not show a key recovery
attack on the scheme. [27] showed the possibility of a key recovery attack by
targeting the bootstrapping key, which is an encryption of the secret key, but
they did not show it on any existing scheme. Compared to these attacks, ours
is a full key recovery attack on two existing FHE schemes, namely FHEW and
TFHE. We show two attacks where the first attack recovers the key by first
recovering the underlying error values, while the second attack directly recovers
the secret key. Our attacks works irrespective of whether the key is sparse or
not, and whether or not bootstrapping is present, which makes it more generic
and directed toward any LWE-based scheme.

4 Security Notions and Threat Model

In this section, we first explain the different security notions that are relevant in
the context of FHE settings. Next, we present a practical scenario in the form of
a security game to establish the client as a verification oracle. Finally, we argue
how the verification oracle is different from the decryption oracle.

4.1 Security Notions

The security of a cryptographic scheme in the presence of an active adversary
is evaluated under various security notions that are defined based on the oracles
that an adversary can query during the entire attack. The strength of such an
adversary increases with the number and type(s) of oracle(s) it has access to

Securing FHE keys from Reaction-based Attacks 11

during the entire phase of the attack. In [28], the authors provide a comparison
of these security notions. In this paper, we majorly focus on 4 different notions
that are relevant in the context of FHE settings, which are shown in Fig. 1
in the increasing order of adversarial strength. These notions are defined as a
game between an adversary and a challenger, where the adversary is provided
(limited or unlimited) access to certain oracles that it can query. At some point,
it sends a pair of messages of its choice to the challenger and receives a challenge
ciphertext which is an encryption of one of these messages at random. The
adversary wins the game if it can successfully guess the message whose encryption
it received with an advantage significantly better than making a random guess.
We now briefly explain these notions and their relevance in the context of existing
practical FHE schemes.

Indistinguishability against Chosen Plaintext Attack or IND-CPA: This
is the weakest notion, where the adversary has (unlimited) access to only an en-
cryption oracle. In a public key setting, an adversary has de-facto access to such
an oracle since it can use the public key to run the encryption operation locally.
Since this notion ensures that the ciphertext does not leak any information about
the underlying plaintext message, all FHE schemes are required to be at least
IND-CPA secure.

(Non-Adaptive) Indistinguishability against Ciphertext Verification At-
tack or IND-CVA1: This notion is stronger than IND-CPA since the adversary
is provided access to an additional oracle in the form of a verification oracle. Such
an oracle, upon receiving a ciphertext, outputs whether it is valid or not. How-
ever, under IND-CVA1 notion, the adversary has access to a verification oracle
only before the challenge ciphertext is published.

(Non-Adaptive) Indistinguishability against Chosen Ciphertext At-
tack or IND-CCA1: This notion is stronger than IND-CVA1 since the verifi-
cation oracle is replaced with a decryption oracle that directly outputs the result
of the decryption. Similar to the IND-CVA1 model, the adversary has access to
the decryption oracle only before the challenge ciphertext is published. However,
this notion does not put a restriction on the type of ciphertext that the adversary
can use to query this oracle. Since most of the existing FHE schemes including
FHEW and TFHE involve publishing encryptions of the secret key, such as boot-
strapping keys, that are required to perform ciphertext maintenance operations,
an adversary can simply query the decryption oracle on them to directly obtain
the secret key [34]. Thus these schemes are not IND-CCA1 secure.

(Adaptive) Indistinguishability against Chosen Ciphertext Attack or
IND-CCA2: This is the strongest notion, where the adversary has unlimited
access to both encryption and decryption oracles, with the only restriction being
that the adversary cannot query the decryption oracle on the challenge ciphertext
itself. However, IND-CCA2 security requires the ciphertext to be non-malleable,
i.e., the adversary should not be able to modify the challenge ciphertext c which
encrypts a message m to another ciphertext c′ which encrypts a message m′

such that m′ = f(m) and f is known to the adversary. Since the basic feature

12 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 2: The game works as follows: (1) the client generates ciphertexts by en-
crypting its inputs, (2) the client sends these ciphertexts to the server, (3) the
server samples a random bit b, (4) if b is 0, the server evaluates the known func-
tion f on the input ciphertexts, otherwise randomly samples ciphertexts, (5) it
sends back the obtained ciphertexts to the client, (6) client decrypts the received
ciphertexts to obtain resultant plaintexts, (7) evaluates function g to obtain bit
b′, (8) it sends feedback if b′ is 1 as it obtained a random result, otherwise keeps
the message.

of all FHE schemes is ciphertext malleability, no schemes including FHEW and
TFHE can be IND-CCA2 secure [27].

From the above definitions of the security notions, it is easy to observe that
while the existing FHE schemes are IND-CPA secure, they are not IND-CCA1
secure. Therefore, current FHE schemes can be broken in presence of a de-
cryption oracle. However, the comparatively weaker security notion IND-CVA1,
which allows the availability of verification oracle, applies to FHE and thus re-
quires critical security evaluation. Interestingly, such verification oracles can be
found in many practical applications where FHE can be applied. In the following
subsection, we discuss about one such application.

4.2 Client as a verification oracle

In the context of FHE, the client acts as a verification oracle when it, upon
decrypting the received ciphertext, finds the result to be incorrect and thus asks
the server for a free re-computation. However, since the client does not know
the result of the requested computation, the decrypted value will essentially
look random to it. In other words, the client will not be able to differentiate
between a correct result and a random value. We explain this situation in the
form of a game, as shown in Fig. 2. The game starts with the client encrypting
its input using a homomorphic encryption scheme. It sends these ciphertexts
{Cm1

, · · · , Cmn
} to the server. The server randomly samples a bit b, and based

on its value performs one of the following two operations:

1. If b = 0, it computes the function f on the input ciphertexts {Cm1 , · · · , Cmn}
to obtain the resulting ciphertexts {C ′

m1
, · · · , C ′

ml
}0.

2. If b = 1, it generates the resulting ciphertexts {C ′
m1

, · · · , C ′
ml

}1 by generating
l ciphertexts randomly. It can do so by first randomly sampling a bit mi

Securing FHE keys from Reaction-based Attacks 13

where 1 ≤ i ≤ l and then generating an encryption of mi by running a
homomorphic gate operation on a combination of some input ciphertext Cmj

,
where 1 ≤ j ≤ n. For example if mi = 0, it performs XOR(Cmj , Cmj) in
case of TFHE, and AND(Cmj , NOT (Cmj)) in case of FHEW, to obtain an
encryption of 0. On the other hand if mi = 1, it performs XNOR(Cmj

, Cmj
)

in case of TFHE, and OR(Cmj
, NOT (Cmj

)) in case of FHEW, to obtain an
encryption of 1.

Finally it sends the resulting ciphertexts {C ′
m1

, · · · , C ′
ml

}b to the client. The
client decrypts these ciphertexts to obtain the corresponding plaintext messages.
At this point the client does not know whether these messages correspond to the
actual computation of the function, i.e., they have come from world − 0, or
are randomly generated, i.e., they have come from world − 1. To differentiate
between these two cases, the client relies on some pre-defined application-level
constraints [64]. One can think of this constraint as some function g that the
client applies on either the whole set or a subset of the resultant plaintexts.
The outcome of this function is a bit b′ that has the same value as b. In other
words, this function g helps the client in identifying whether it has received the
correct result or incorrect result (random value). However, since this function
is a part of the (publicly-available) application that is being run in the cloud-
computing scenario, the server is well aware of this function and thus can target
it to instigate reactions from the client. It can do so by tampering with the
ciphertexts that it returns to the client whose decryption forms the input to
this function. The client will ask for a free re-computation if the application-
level constraint fails, otherwise, it will simply accept the returned result while
assuming it to be correct.
Private Information Retrieval (PIR). We now take an example of a PIR
application to understand the implementation of such constraints in a practical
setting and show how an adversary can take advantage of it to obtain reactions
from the client. We assume a scenario where the client stores its database in
an encrypted form on a server and then queries it with encrypted parameters.
The server runs the query and returns the resultant rows to the client, along
with homomorphically calculated count of the rows returned. Upon receiving the
ciphertext stream, the client decrypts it and matches the row-count value with
the number of received rows to ensure that there are no missing rows. This acts
as the application-level constraint as the counts will match if the query is evalu-
ated correctly, otherwise not. As the server knows the query evaluation circuit, it
also knows the position of the encrypted row-count in the encrypted bit-stream.
Moreover, since the row-count is a result of a homomorphic evaluation, it can-
not be decrypted by the server to communicate in plaintext. The server can
simply manipulate this encrypted row-count to cause a mismatch between the
decrypted value and the actual number of rows returned. The client requests a
re-computation if it detects a mismatch, assuming that this was caused due to
an incorrect query processing. The server can exploit this reaction to leak secret
information (we show a detailed exploit using such reaction in later sections).
In a real-life banking scenario using the aforementioned database application,

14 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 3: Difference between the client as IND-CVA1 vs IND-CCA1 oracle in the
context of FHE settings.

millions of such queries are handled per second by the server. Assuming a mod-
est 100, 000 queries per minute and perturbation in the row-count field for just
10 queries (i.e., perturbing 10 ciphertexts), the failure rate would be 0.0001%
if all these perturbations cause erroneous decryption. Such failures can occur
even when the query is run in plaintext on an unencrypted database and thus
is tolerable in such strained applications. The server can mask the decryption
failure with this application-level failure to avoid raising suspicion.

4.3 IND-CVA1 vs IND-CCA1 Oracles

Unlike contemporary encryption schemes, in the context of FHE settings, cipher-
text validity cannot be ensured at the primitive level since the FHE ciphertexts
are usually full-domain. In other words, given a set of all possible FHE cipher-
texts C, all c ∈ C decrypt to a valid plaintext. Moreover, for the FHE schemes
that we target in this paper, the message space is binary which is not sufficient
to have an in-built constraint [27]. However, the validity of such ciphertexts is
ensured at the application level when these ciphertexts are combined to generate
meaningful information. This is done by applying an application-level constraint
on the resulting plaintext value and checking whether the constraint is satisfied
or not. For example, in the PIR application provided in the preceding subsec-
tion, the validity of the ciphertexts is checked by matching the returned value of
the row-count field with the actual number of rows returned and the client only
reacts when there is a mismatch between the counts. One can clearly observe
that such reactions do not leak either the value of the row-count or the contents
of the returned rows. On the other hand, the client behaves as a decryption ora-
cle when it decrypts the result of some homomorphic computation and directly
publishes it. However, in our example, the client will not publish the decryption
result since these queries usually return the information pertaining to specific
clients and are meant to be kept confidential for privacy reasons.

For brevity, we formally explain the difference between verification oracle
(IND-CVA1 notion) and decryption oracle (IND-CCA1 notion) under both secret
key and public key settings. We show the difference in the form of a game (as
shown in Fig. 3) between the client and an adversary, which is the server itself
in our case.

Securing FHE keys from Reaction-based Attacks 15

Client as (IND-CVA1 style) verification oracle: In this game, the client
first sets a secret bit b to 0, irrespective of whether we are working in the secret
key setting or the public key setting. We assume that the client does not make
the value of b public.

– Secret key setting: The client generates a random message bit and en-
crypts it using its secret key to generate the ciphertext c. It then sends it to
the server to evaluate a known function f . The server simply adds a pertur-
bation e to this ciphertext to obtain the final ciphertext c∗ and then sends
it to the client to be verified. The client decrypts this ciphertext c∗ using its
secret key to recover the plaintext bit b′ and matches it with b.

– Public key setting: The server itself generates a random message bit and
encrypts it using the public key to generate the ciphertext c. It adds a
perturbation e to this ciphertext to obtain the final ciphertext c∗ and then
sends it to the client to be verified. The client decrypts this ciphertext c∗

using its secret key to recover the plaintext bit b′ and matches it with b.

In both settings, the client outputs yes if b′ = b, otherwise, it outputs no. The
output of this oracle provides no additional information to the adversary since
it does not know the value of b. Moreover, in the secret key setting, it does not
even know the value of m. On the other hand, in the public key setting, when
the client outputs yes, the server will not be sure whether the perturbation
caused the underlying message m to flip to b, or whether the perturbation was
unsuccessful and the original value of m was itself equal to b. Thus in both cases,
the probability that it can successfully generate a ciphertext c∗ that decrypts
to b is no better than if it had randomly guessed the value of b. However, in
the public key setting, if the client outputs no, then the server knows that the
added perturbation was successful in causing the bit to flip. Moreover, since it
generated the message bit m and successfully flipped it to some message bit m′,
it now knows that the secret bit b initially generated by the client is same as m.
Thus the feedback from the client inadvertently leaks the secret information.

We would like to highlight the fact that the adversary would always win
the game if the value of b is made public since it can always deterministically
generate b′ that is equal to b. Thus the adversary gains no additional information
even if it is provided an access to the verification oracle since it will already know
the outcome of the query.

Client as (IND-CCA1 style) decryption oracle: In this game, the client
does not generate any secret bit b and the game directly starts with the genera-
tion of a message.

– Secret key setting: The client generates a random message bit and en-
crypts it using its secret key to generate the ciphertext c. It then sends c to
the server to evaluate a known function f . The server simply adds a pertur-
bation e to this ciphertext to obtain the final ciphertext c∗ and then sends
it to the client to be decrypted. The client decrypts this ciphertext c∗ using
its secret key to recover the plaintext bit m′ and sends it back to the server.

16 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

– Public key setting: The server itself generates a random message bit and
encrypts it using the public key to generate the ciphertext c. It adds a
perturbation e to this ciphertext to obtain the final ciphertext c∗ and then
sends it to the client to be decrypted. The client decrypts this ciphertext c∗

using its secret key to recover the plaintext bit m′ and sends it back to the
server.

Thus, unlike the verification oracle, which outputs whether the result of some
computation was correct or not, the decryption oracle directly reveals the result
of the computation. Moreover, in the public key setting, the adversary can di-
rectly observe the effect of the perturbation based on the decrypted result since it
knows the original plaintext message. One can clearly observe from these games
that in the case of verification oracle, information is leaked passively only when
the client provides a feedback, and not otherwise. On the other hand, in the case
of decryption oracle, the client always leaks information directly by providing the
decrypted result to the adversary itself. This provides the adversary with more
power since it can simply query the decryption oracle on the output of some
homomorphic operation and obtain the result in plaintext. On the other hand,
querying the verification oracle on the output of some homomorphic operation
may or may not leak information about the underlying plaintext.

5 Reaction Attack LWE-based on FHE Schemes

With the stream of ciphertext messages at the helm of the server, it can now
launch “reaction” attacks on randomly chosen ciphertext samples which are
part of the result of some homomorphic computation. We assume wlog. that
out of m such ciphertexts, the server randomly samples n ciphertexts, where
n ≪ m, to introduce purposeful perturbations. This is a reasonable assumption
in the cloud computing setting as the ciphertexts in the schemes that we are
targeting are essentially encryptions of single-bit information and a collection
of such ciphertexts are required to denote a meaningful plaintext message. It is
worth mentioning here that the value n is of the order Ω(k) where k is the size
of the secret key in bits.

Targeting the decryption error threshold The decryption process in FHE
schemes takes place at the client end after the homomorphically computed result
on ciphertexts reaches the client. Due to the accumulation of the errors after
homomorphic gate operations at the server, the total error in the computed
result increases which is then brought down using the bootstrapping operation
to retain homomorphicity. Otherwise, once the accumulated error crosses the
pre-defined threshold eth, it results in an incorrect decryption. We leverage this
fact to forcefully induce failed decryption by introducing errors purposefully.
The objective of the server is to breach the threshold eth during decryption.
Now for every ciphertext, the server already knows the error range in which
the underlying error value lies. More precisely, given a ciphertext Cr containing

Securing FHE keys from Reaction-based Attacks 17

Fig. 4: Different bounds of errors plotted on a number line where (A) shows the
effects of added perturbation when the positive range is chosen, and (B) shows
the effects of added perturbation when the negative range is chosen.

unknown error value er, the server already knows a range of absolute values
of error bounded by a minimum value, ±emin, and a maximum value, ±emax.
However, the server does not have the knowledge about the sign of er, and
therefore, the exact value and sign of emin and emax.

Modifying the final computed result Consider the error number scale de-
noted in Fig. 4. The actual error er and the error threshold can be either positive
(eth) or negative (e′th). As a consequence, the error range denoted by emin and
emax can have either positive or negative (e′min and e′max) values. Therefore,
any positive error value +er would essentially lie between the range +emin and
+emax. The converse is true for negative error values. Therefore, the following
relations hold for both positive and negative error values.

−e′th ≤ −e′max < −er < −e′min

+emin < +er < +emax ≤ +eth

For correct decryption at the client’s end, the actual error er must be less than
+eth or greater than −eth. We further note that the error er also lies between
either of the known ranges −e′max and −e′min or +emin and +emax. However, the
server neither knows the value nor the sign of the actual error er. Thus the server
first has to make a random guess about the sign of the error. Suppose the server
guesses that the error er is +ve. In that case it computes the quantity ediff =
+eth − (+emin) = +eth − emin. Now, we add the term ediff with the computed
result of the homomorphic gate operation. As depicted in Fig. 4(A), if the server
guessed incorrectly and the original error (after homomorphic gate operation) is
negative, the final error after perturbation lies within the permissible range (less
than the threshold), albeit in the opposite sign domain. In contrast, if the server
guessed correctly and the error is positive, the final error after the addition of
perturbation lies beyond the permissible range (more than the threshold) in the
positive domain.

The server may also start by guessing that the error er is −ve. In that case
it computes the quantity ediff = −eth − (−emin) = −eth + emin. Now, we add

18 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 5: (A) Truth table of NAND gate, and (B) Truth table for initial client
feedback, where r denotes the result of gate computation, sgn represents whether
the sign of error in this result is positive (0) or negative (1), and R represents
whether the feedback is received (1) or not (0).

the term ediff with the computed result of the homomorphic gate operation.
As depicted in Fig. 4(B), if the server guessed incorrectly and the original error
(after homomorphic gate operation) is positive, the final error after perturbation
lies within the permissible range (less than the threshold), albeit in the opposite
sign domain. In contrast, if the server guessed correctly and the error is negative,
the final error after the addition of perturbation lies beyond the permissible range
(more than the threshold) in the negative domain. Therefore, it is easy to note
that the decryption failure would only occur when the server correctly guesses
the sign of the error.

In the next subsections, we show two attacks that work for both TFHE and
FHEW. In the first attack, we begin with recovering the underlying error values
of the ciphertexts and then use them to recover the secret key. In the second
attack, we directly recover the secret key in a bit-by-bit manner. We explain the
idea of the attack wlog. when the client intends to perform homomorphic NAND
computations on the cloud. We choose the NAND gate as it is a universal gate.
However, our attack would work irrespective of the gate being computed.

5.1 Attack 1: Error and Key Recovery Attack on TFHE and FHEW

In this section, we show how an adversary can recover the secret key by first re-
covering the errors from ≈ n ciphertexts. We have already shown in section 2.1
that once the underlying errors are recovered, the system of approximate equa-
tions can be turned into a system of exact equations which can then be triv-
ially solved. However, the server also needs to recover the corresponding plain-
text message along with the errors since the final ciphertexts are of the form
b = a · s± e+m. Thus the server not only has to make a guess about the sign
of the underlying error but also about the underlying message. We note that
the FHE schemes discussed in this paper perform bit-wise encryption of the
plaintext messages and then perform homomorphic operations on those single-
bit ciphertexts. More precisely, each ciphertext received at the server is either
an encryption of ‘0’ or an encryption of ‘1’. Therefore, given a ciphertext, the
original plaintext value would be in binary. Thus the server can make a random

Securing FHE keys from Reaction-based Attacks 19

or informed guess about the plaintext message and then rely on the reaction
of the client to know whether its guess was correct or not. For balanced gates
like XOR or XNOR, i.e., gates for which both outcomes are equally likely or
Pr[mr = 0] = Pr[mr = 1] = 1

2 , the server has to rely on a random guess. On the
other hand, the server can make an informed guess for biased gates where the
probability of one message is higher than the probability of other. For example,
as per the truth table of NAND gate (as shown in Fig. 5(A)), 75% of times the
result of the computation would turn out to be 1. In short, given two ciphertexts
Cx1 and Cx2 , corresponding to two unknown and uniformly chosen plaintext bits
x1 and x2, the output of the NAND operation between Cx1 and Cx2 has a 0.75
probability of being 1. Thus we target encryption of 1 when computing a NAND
gate as we will have a higher chance of receiving a reaction from the client.
Such biases exist for other gates as well. For example, in the case of NOR gate,
the result of the computation would turn out to be 0 in 75% of times. Thus in
case we target NOR instead of NAND, we will target encryption of 0 instead of
encryption of 1.

Elimination of probable choices While the malicious server could perturb
the output ciphertexts to instigate a reaction from the client, there exist two
major challenges that the server needs to deal with. 1○ knowledge of the plaintext
value for the corresponding ciphertext and 2○ sign of the actual error. Now, given
two ciphertexts Cx1 and Cx2 from the client, let the NAND output be denoted
as Cr. As per the truth table, Cr could be either encryption of 0 or 1, denoted by
C0

r or C1
r , respectively. Now, following the strategy of introducing perturbations

(discussed previously), the server assumes the underlying error to be +ve and
thus adds the error term ediff = +eth − emin into the computed ciphertext Cr.
Depending on the input plaintext (r) of the perturbed ciphertext, one of the
following four conditions will take place.

1 r = 0, sign = +ve: The perturbed ciphertext is C0
r + ediff with the actual

error being positive (+er) and underlying plaintext is 0. As the original error
was positive, the decryption of C0

r will result in 1. However, since the original
plaintext was 0 and the decrypted one at the client’s end is 1, the client will
inform the server regarding the incorrect computation. Therefore, this particular
combination ensures a feedback from the client.

2 r = 0, sign = −ve: The perturbed ciphertext is C0
r + ediff with the actual

error being negative (-er) and underlying plaintext is 0. In this case, the decryp-
tion will result in 0, since the overall error after perturbation will still remain
within the error threshold +eth. Therefore, the client will not provide any feed-
back in this case as the decrypted output matches with the expected result for
the client.

3 r = 1, sign = +ve: The perturbed ciphertext is C1
r + ediff with the actual

error being positive (+er) and underlying plaintext is 1. We note that in this case,
the decrypted result would be 0 since the perturbed ciphertext was encryption
of 1 with a +ve error, thereby essentially flipping the result. Therefore the client

20 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

decrypts the result as 0 but the expected outcome was 1, thereby sending feedback
to the server for the incorrect result.
4 r = 1, sign = −ve: The perturbed ciphertext is C1

r + ediff with the actual
error being negative (-er) and underlying plaintext is 1. The original error being
−ve, the final result after decryption does not exceed the threshold +eth. There-
fore, it would not generate feedback from the client since the decrypted result
matches the expected result.

Considering r as the expected plaintext, sgn as the sign of the error, and R
denoting whether the feedback is received from the client, we record the different
combinations of these events from the above-mentioned four cases. Fig. 5(B)
shows the record of all possible combinations where sgn is considered as 0 on
the error being +ve and 1 on −ve. Likewise, R is set as 1 on receiving feedback
from the client, and 0 otherwise. Since the server relies on the feedback from the
client as a signal for determining the effect of the error, we strictly focus on cases
1 and 3, or more precisely, 1st and 3rd rows in the table shown in Fig. 5(B). We
observe that the server receives feedback only when the sign of the error is +ve
and does not receive feedback when the error is −ve. Thus presence or absence
of feedback from the client leaks the sign of the error with probability 1.

Recovering the plaintext value To recover the underlying plaintext message,
we introduce another perturbation in the original ciphertext Cr. In the case of
TFHE, we simply subtract 2µ, where µ = 229, from the ciphertext which causes
the underlying plaintext message to flip from 1 to 0 while keeping 0 to remain
the same. This follows from the decryption function, approxPhase(Cr), which
represents the sign bit of the underlying plaintext. Originally, b = s · a + µ + e
corresponds to encryption of 1, which implies, b− s ·a = µ+ e. When perturbed
to b∗ = b − 2µ, we have b∗ = −µ + e. Here, assuming a small e, we have a
flip in the sign bit, thereby transforming µ to −µ. On the other hand, for an
encryption of 0, we have b = s · a− µ+ e, implying, b− s · a = −µ+ e. Next it
is perturbed to b∗ = b− 2µ = −3µ+ e. Thus, the sign bit remains −ve in both
cases, which corresponds to a decryption of 0. The client will send feedback in
the first case as it was expecting 1 whereas it received 0. On the other hand, the
client will simply accept the message in the second case as it was expecting a 0
and it received a 0. This observation reveals the underlying plaintext message to
be 1 (in case of reaction) or 0 (in case of no reaction).

In the case of FHEW, we obtain a new ciphertext C ′
r by performing the op-

eration HomAND(Cr, HomNOT (Cr)). The obtained ciphertext C ′
r will always

be an encryption of 0 irrespective of whether Cr is an encryption of 1 or 0. Sim-
ilar to TFHE, the client will send feedback in the first case as it was expecting
1 whereas it received 0. On the other hand, the client will simply accept the
message in the second case as it was expecting a 0 and it received a 0. This
observation reveals the underlying plaintext message to be 1 (in case of reac-
tion) or 0 (in case of no reaction). We would like to emphasize that the FHEW
library [32] does not allow homomorphic gate evaluations on a pair of related
ciphertexts, where both the inputs are either the same or one is the complement

Securing FHE keys from Reaction-based Attacks 21

Algorithm 1 Error Recovery using Binary Search

1: eth := positive error threshold
2: emin := minimum bound of error
3: emax := maximum bound of error
4: c := ciphertext with the original error er
5: start ← emin

6: end ← emax

7: etemp ← 0
8: function getErrorPositive(c, start, end)
9: if start == end− 1 then return etemp

10: else
11: mid ← ⌊ start+end

2
⌋

12: ediff ← eth −mid
13: c ← c+ ediff = a · s+ xr + er + ediff
14: feedback ← CV O(c)
15: c ← c− ediff = a · s+ xr + er + ediff − ediff

= a · s+ xr + er
16: if feedback = “correct decryption” then
17: etemp ← mid
18: getErrorPositive(c, start, mid)
19: else
20: getErrorPositive(c, mid, end)
21: end if
22: end if
23: end function

of the other. However, this validation is performed over the server side as part
of the homomorphic gate evaluation and thus can be simply disabled.

Coming back to our attack, we will target only those ciphertexts whose under-
lying plaintext message r is 1 and the underlying error value is +ve. We target
an encryption of 1 to leverage the biasness of NAND gate towards 1. With this
combination of knowledge about the sign of the error and the underlying plain-
text message, the adversary launches its final phase of the attack to recover the
error value and then the secret key.

Recovering the error value In this section, we show how an adversary can
launch a key recovery attack by setting emin = 0 and emax = +eth, which encom-
passes the entire range of possible positive error values. Once done, the adversary
proceeds to use active perturbations in the computed ciphertext result and iter-
atively sends perturbed ciphertexts to the client, while awaiting its reaction. In
the previous paragraphs, we explained how the adversary can uniquely ascertain
the plaintext message and the corresponding error’s sign (+ve or −ve) of the
homomorphically computed ciphertext by carefully introducing additional error
and making just two queries to the client for a particular ciphertext. The final
error in the ciphertext result after the introduction of the perturbation can be
computed as e′ = er+(eth−emin) where er, eth, emin are the original error in the

22 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

computed ciphertext, positive error threshold for decryption and minimum error
bound, respectively. With the knowledge of the error sign, underlying plaintext
message, and a range of errors, the server now recursively perturbs the originally
computed ciphertext by changing the amount of additional error and sending it
back to the client for checking its reaction. The overall process for exact error
recovery is shown in Algorithm 1. We propose a recursive binary-search-based
approach to introduce different perturbations in the original ciphertext. The
central idea is that given two bounds emin and emax, we first determine whether
the error lies closer to the emin or emax. This can be found out using the same
idea that we used to determine the sign of the error. The variables start and
end are first initialized with emin and emax respectively. The first condition we
check is if start becomes equal to end− 1, which implies that there is only one
error value left in the range, which will be the original error er

3. Otherwise,
we compute a term mid as the mid-point of the range [start, end]. Following
the notion of binary search, our objective is to recursively divide the range into
half and ascertain whether the er lies in the first or second half. We calculate
the error term to be added as ediff = eth −mid. This error term ediff is then
added to the original ciphertext c. The idea is that if the error lies to the right of
mid on the error number line (refer Fig. 4), then the addition of this error term
ediff would make the overall error (er + ediff) to cross the positive threshold
eth. In such a case, the client experiences a decryption failure and reverts with
feedback to the server. On receiving the feedback, the server can understand
that the actual error er lies between mid and end. However, if the error er lies
to the left of mid, then the addition of the term ediff would still not cross the
error threshold eth. Quite obviously, the client would successfully decrypt the
ciphertext and thus will not send any feedback. Here again, on non-receival of
feedback, the server would understand that the error er lies between start and
mid. Therefore, similar to the working process of binary search, the server can
eliminate half of the error space on every iteration and gradually progress toward
the actual error. Therefore, the output of the algorithm is the actual error er of
the ciphertext.

Recovering The Secret Key Once the error is recovered for each ciphertext,
the server can trivially retrieve the secret key using Gaussian Elimination [46].
The number of such ciphertexts required to create the system of equations de-
pends on the size of the key. For example, if the key size is k bits, one will need
at least k ciphertext with correct error values for solving the equations and re-
trieving the key. We note that the number of ciphertexts required to launch the
attack is in the order of the size of the key, more precisely, Ω(k). Fig. 6 shows
the entire end-to-end process of our attack.

Why this is not a CCA1 attack? We would like to clarify that in the
case of the plaintext recovery step, even though the feedback from the client

3 since we are considering the entire range of error, the recovered error will always be
correct

Securing FHE keys from Reaction-based Attacks 23

Fig. 6: End-to-End attack process on FHEW and TFHE showing (A) how homo-
morphic gate is evaluated on client’s ciphertexts, (B) how the reaction from the
client is used to reduce search space which ultimately leads to recovery of error,
and (C) how recovered errors along with original ciphertexts are used to form a
system of exact equations which are then solved using Gaussian Elimination to
recover client key.

inadvertently leaks the underlying plaintext value of the targeted ciphertext, the
client is still behaving as a verification oracle and not as a decryption oracle. The
reason is that, since we only have two possibilities for the plaintext values due to
the message space of the targeted schemes being binary, feedback or the lack of it
from the client confirms that our guessed plaintext bit was correct or not (which
implies that the other bit is correct). For schemes where the plaintext space is
non-binary (say integers), feedback from the client will only reveal that the sent
value was incorrect and will not reveal the correct value. Moreover, during the
error recovery step, the client completely behaves as a verification oracle and not
as a decryption oracle. The reason is that when the adversary sends a perturbed
ciphertext to the client but does not receive feedback, it cannot differentiate
between a successful perturbation and an unsuccessful one. To put this as an
example, say the original ciphertext c was an encryption of 1 and it became c∗

after adding an error value e. The client decrypts this perturbed ciphertext and
does not provide feedback. At this point, the adversary is unsure of whether the
added perturbation successfully caused the message to flip to 0 but the client was
expecting 0 in the first place, or the added perturbation was unsuccessful but
the client was expecting 1. Thus the adversary gains no additional information
even after having access to a verification oracle. Hence this attack falls under
the IND-CVA1 security notion and not under the IND-CCA1 security notion.

5.2 Attack 2: Exploiting Key Distribution to Recover Secret Key

In this section, we show how an adversary can recover the entire secret key of
both schemes in a bit-by-bit fashion. Similar to our previous attack, we target the

24 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

decryption stage which, upon receiving a ciphertext c = (a, b) encrypted under
a secret key s, first computes the phase of the message as ϕ = b− a · s = m± e.
It is followed by rounding off this phase to the nearest encoded message m,
which is then decoded to output the original plaintext message (we refer the
readers to section 2.3 for more details). The intuition behind this attack is that
adding an error value into a coefficient aj of vector a will have no effect on the
decryption result if the corresponding secret bit sj is 0 (zero), as the added error
will be canceled out. On the other hand, the added error value might affect the
decryption result if the corresponding secret bit sj is 1 or −1, as the added error
value might cause the overall error to cross the threshold. Whether this error
crosses the threshold or not depends upon both the error value added to the
coefficient aj and the sign of the error value e already present in the ciphertext.
Since the goal of this attack is to flip the underlying message, it can be carried
out by targeting any ciphertext irrespective of the underlying plaintext message
and the sign of the original error value.

Intuition behind the attack The ciphertext in both TFHE and FHEW is of
the form c = (a, b) where b = a · s + m ± e and m is the underlying encoded
message. We can expand the representation of b as

b =

k∑
i=1

(ai ∗ si) +m± e (1)

where k is the length of the secret key. During decryption, the phase of the
message is computed as

ϕ = b−
k∑

i=1

(ai ∗ si) = m± e (2)

The attacker chooses a value j ∈ {1, 2, · · · , k}, either randomly or in some
specific order, and adds an error value e′ to the coefficient aj to turn it to
a′j = aj + e′. The new phase of the underlying message can now be written as

ϕ′ = b−
j−1∑
i=1

(ai ∗ si)− (a′j ∗ sj)−
k∑

i=j+1

(ai ∗ si)

ϕ′ =

k∑
i=1

(ai ∗ si) +m± e−
j−1∑
i=1

(ai ∗ si)− (aj ∗ sj)− (e′ ∗ sj)−
k∑

i=j+1

(ai ∗ si)

ϕ′ =

k∑
i=1

(ai ∗ si)−
k∑

i=1

(ai ∗ si) +m± e− (e′ ∗ sj)

ϕ′ = m± e− (e′ ∗ sj)

Now, based on the value of the corresponding secret bit sj , the following
three cases arise:

Securing FHE keys from Reaction-based Attacks 25

1 sj = 0: In this case, the value of ϕ′ reduces to

ϕ′ = m± e− (e′ ∗ 0) = m± e = ϕ

One can clearly see that sj = 0 cancels out the effect of the added error value
in aj , thus the phase of the message does not change. The ciphertexts decrypt
correctly and the client does not react.
2 sj = 1: In this case, the value of ϕ′ reduces to

ϕ′ = m± e− (e′ ∗ 1) = m± e− e′ = m+ e′′

where e′′ = −e′+e, if e is +ve, or e′′ = −e′−e, if e is −ve. At this point, whether
e′′ will cross the threshold or not will depend on the choice of e′. The adversary
may choose either an arbitrary value for e′ or set e′ = eth. Choosing the value of
e′ arbitrarily is not a good choice, since it might generate unpredictable results.
On the other hand, which eth to choose (either +eth or −eth) will depend on the
sign of the original error e, which the adversary does not know. Thus similar to
our previous attack, the adversary makes a guess about the sign of the original
error.
Assuming the sign of e to be −ve: The adversary sets the value of e′ to −eth.
If the original error e is indeed −ve, then e′′ = −eth − e < −eth which results in
incorrect decryption causing the client to react. On the other hand if the original
error e is +ve, then e′′ = −eth + e > −eth which results in correct decryption.
The client will not react in this case.
Assuming the sign of e to be +ve: The adversary sets the value of e′ to +eth.
If the original error e is indeed +ve, then e′′ = +eth + e > +eth which results in
incorrect decryption causing the client to react. On the other hand if the original
error e is −ve, then e′′ = +eth − e < +eth which results in correct decryption.
The client will not react in this case.
3 sj = −1: In this case, the value of ϕ′ reduces to

ϕ′ = m± e− (e′ ∗ −1) = m± e+ e′ = m+ e′′

where e′′ = e′ + e, if e is +ve, or e′′ = +e′ − e, if e is −ve. Similar to case 2
above, the adversary will have to choose a value of e′ based on whether e is +ve
or −ve, which again it does not know. The adversary again has to make a guess
about the sign of the original error.
Assuming the sign of e to be +ve: The adversary sets the value of e′ to +eth.
If the original error e is indeed +ve, then e′′ = +eth + e > +eth which results in
incorrect decryption causing the client to react. On the other hand if the original
error e is −ve, then e′′ = +eth − e < +eth which results in correct decryption.
The client will not react in this case.
Assuming the sign of e to be −ve: The adversary sets the value of e′ to −eth.
If the original error e is indeed −ve, then e′′ = −eth − e < −eth which results in
incorrect decryption causing the client to react. On the other hand if the original
error e is +ve, then e′′ = −eth + e > −eth which results in correct decryption.
The client will not react in this case.

26 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Algorithm 2 Direct Key Recovery

1: +eth := positive error threshold
2: −eth := negative error threshold
3: c := target ciphertext with the original error e
4: r := number of iterations to be made
5: function recoverSecretBit(j)
6: for i := 1; i ¡= r; ++i do
7: c.a[j] ← c.a[j]− (−eth)
8: feedback ← CV O(c)
9: c.a[j] ← c.a[j] + (−eth)
10: if feedback = “incorrect decryption” then return 1 (for both FHEW

and TFHE)
11: end if
12: end for
13: for i := 1; i ¡= r; ++i do
14: c.a[j] ← c.a[j] + (+eth)
15: feedback ← CV O(c)
16: c.a[j] ← c.a[j]− (+eth)
17: if feedback = “incorrect decryption” then return −1 (for FHEW) or

1 (for TFHE)
18: end if
19: end for
20: return 0
21: end function

Based on the above 3 cases, we make 2 key observations. First, we observe
that we never receive a reaction from the client if the targeted secret bit sj is 0,
since it masks the effect of the additional error. Second, we observe that adding
−eth causes incorrect decryption only when sj is 1 and e is −ve, for both FHEW
and TFHE. Similarly, adding +eth causes incorrect decryption only when e is
+ve but sj is −1 in case of FHEW and sj is 1 in case of TFHE.

Recovering The Secret Key An adversary can exploit the aforementioned
two observations to launch a direct key recovery attack on both FHEW and
TFHE. It does so by first making an assumption on both the secret key bit and
the sign of e. It initially assumes that sj = 1 and then proceeds to subtract −eth
or +eth from aj based on the assumed sign of error. On the other hand, if it
assumes that sj = −1 then it adds −eth or +eth to aj based on the assumed sign
of error. Assuming equal likelihood of all key bits and both signs, the probability
that this guess turns out to be correct is 1

3 ∗
1
2 = 1

6 in case of FHEW and 1
2 ∗

1
2 = 1

4 .
On the other hand, the guess may turn out to be wrong with probabilities 5

6 and
3
4 in the case of FHEW and TFHE, respectively. If the guess turns out to be
wrong then the adversary discards the current ciphertext and proceeds with the
next one. For sufficient repetitions r of this assumption, the probability that the
guess turns to be wrong for all samples is (56)

r and (34)
r for FHEW and TFHE,

respectively. On the other hand, the probability that the guess turns out to be

Securing FHE keys from Reaction-based Attacks 27

Fig. 7: End-to-End process of our improved attack showing (A) how homomor-
phic gate is evaluated on client’s ciphertexts, (B) how the reaction from the
client is used to recover a single bit of the secret key, and (C) how the entire
process is repeated to recover the key bit-by-bit. For each secret bit, ‘i’ goes from
1 to 2r, where ‘r’ denotes the number of repetitions.

correct for at least 1 sample out of r samples is 1− (56)
r and 1− (34)

r for FHEW
and TFHE, respectively. Thus the higher the number of repetitions, the higher
the probability to recover the secret bit. Once the guess turns out to be correct,
the targeted sample decrypts incorrectly and the client reacts. At this point, the
adversary knows that the targeted bit sj is 1 for both FHEW and TFHE, in
case it subtracted −eth. Moreover, it knows that the targeted bit sj is −1 and
1 for FHEW and TFHE, respectively, in case it added +eth. Finally, if it does
not get a reaction even after 2 × r repetitions, then it knows for sure that the
targeted bit sj is 0. The overall procedure of this attack has been explained in
algorithm 2 and shown in Fig. 7.

Why this is not a CCA1 attack? At this point, we would like to reiterate
the fact that the aforementioned attack does not depend on the underlying
plaintext bit, since the aim of this attack is to flip the plaintext bit irrespective
of its value. Thus feedback from the client only reveals that the plaintext was
flipped successfully, while a lack of it only reveals that the plaintext is still the
same. Moreover, the actual value of the plaintext bit is not revealed during the
entire duration of this attack. Thus the client truly behaves as a verification
oracle and this attack falls under the IND-CVA1 security notion and not under
the IND-CCA1 security notion.

6 Experimental results

In this section, we provide the experimental results of the attack for both FHEW
and TFHE. We first show the results of our attack when computing a single gate,
which is NAND in our case, to show the feasibility of our attack. We follow this
up with a possible implementation of our database example from section 4 and
then provide the results for leaking the key in such implementation.

28 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Table 1: Shows the total number of samples perturbed to recover error for the
required number of samples, the total number of CVO queries made, the total
time required for running the first attack on a NAND gate, and the number of
samples that resulted in incorrect decryption, for 5 different, random keys. All
times are in mins. and secs.

key 1 key 2 key 3 key 4 key 5

FHEW

samples perturbed 1376 1444 1541 1509 1464
CVO queries made 5043 5136 5251 5202 5147

time required 1m41s 1m47s 1m53s 1m50s 1m46s
decryption failure 2034 2101 2099 2058 2076

TFHE

samples perturbed 1836 1819 1741 1734 1743
CVO queries made 22573 22584 22419 22445 22455

time required 18m45s 18m17s 17m28s 17m30s 17m35s
decryption failure 9542 9596 9577 9424 9409

Fig. 8: Plot of the total number of CVO queries made to extract errors and
recover 5 different, randomly generated secret keys in the case of TFHE and
FHEW, respectively.

6.1 Results of key recovery attack on NAND gate

In our first attack where we recover the error values in the resultant cipher-
text, we set the range of errors to be [0, 63] and [0, 10200547327], where 63 and
10200547327 are the +ve error threshold of homomorphic NAND gate for FHEW
and TFHE, respectively. During the experiment, we generated 2000 pair of ran-
dom plaintext bits for both schemes. We encrypted these plaintext pairs using
5 different, randomly generated secret keys. We proceeded to run a homomor-
phic NAND gate on each of these ciphertext pairs to obtain the corresponding
computation result, upon which we ran our attack. Since the dimension of the
secret key for FHEW and TFHE is 500 and 630, respectively, we require to re-
cover errors from at least 500 and 630 ciphertexts. However, for certain cases,
we observed during experimentation that Gaussian elimination was only able to
partially recover the secret key. Thus we increased the number of samples to gen-

Securing FHE keys from Reaction-based Attacks 29

Table 2: Shows the total number of CVO queries made, the total time required
for our improved attack on a NAND gate, and the number of samples that
resulted in incorrect decryption, which is equal to the number of non-zero values
in the secret key. We provide values for 5 different, random keys. All times are
in mins. and secs.

key 1 key 2 key 3 key 4 key 5

FHEW
CVO queries made 7379 7397 7296 7313 7394

time required 7m47s 7m48s 7m43s 7m43s 7m52s
decryption failure 247 247 254 255 248

TFHE
CVO queries made 4502 4617 4624 4649 4654

time required 1m38s 1m41s 1m41s 1m43s 1m42s
decryption failure 323 312 312 306 307

erate more equations, which in our case are 510 and 640. We chose these values
at random, however, an adversary can empirically find the minimum number of
equations eqmin for which it can always recover the entire key. Once found, the
adversary can perform the perturbations until it successfully recovers errors for
eqmin number of ciphertexts, after which it can form the system of equations
and solve it to retrieve the secret key. The server will anyhow try to keep this
number as low as possible so as to also minimize the number of queries while also
increasing the probability of successful key recovery. Table 1 shows the count of
ciphertexts out of these 2000 samples which we needed to perturb to successfully
recover the error values of 510 and 640 ciphertexts, the total number of CVO
queries made for the same, the total time required to perform the end-to-end
attack and the number of samples that resulted in incorrect decryption. For
the first key, we perturbed 1376 and 1836 ciphertexts to recover error values
from 510 and 640 ciphertexts for FHEW and TFHE respectively. The overall at-
tack took around 2 minutes and 19 minutes, and required 5043 and 22573 CVO
queries in the case of FHEW and TFHE, respectively. It also required 2034 and
9542 decryption failures, which induces the client to react. We required 8 and 33
queries to successfully recover the error from 1 ciphertext for FHEW and TFHE,
respectively. We require an average of 5200 and 22000 queries and an average
of 2 and 18 minutes to recover errors from 510 and 640 ciphertexts in the case
of FHEW and TFHE, respectively, for the 5 keys. Once we recover the original
error from ciphertexts, a system of equations is formed which is then solved to
recover the entire key. We were able to recover the secret key successfully in all 5
cases. Fig. 8 shows the plot of the total number of CVO queries made to extract
errors and recover the secret key in the case of TFHE and FHEW, respectively.
We can observe from the plot that the number of queries required to recover
errors is almost the same across all 5 cases for both FHEW and TFHE, showing
that the number of required queries does not depend on the underlying secret
key.

In our improved attack, we set +eth to 63 and 10200547327, and −eth to 64
and 536870911. These are the +ve and −ve error thresholds of the homomor-
phic NAND gate for FHEW and TFHE, respectively. We generated a stream of

30 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 9: Plot of the total number of CVO queries made to directly recover 5
different, randomly generated secret keys in the case of TFHE and FHEW,
respectively.

random plaintext bits pairs and encrypted them using the same 5 secret keys
as above. We proceeded to run a homomorphic NAND gate on each of these
ciphertext pairs to obtain the corresponding computation result, upon which
we ran our attack. We empirically selected the value of r, i.e., the number of
repetitions, to be 11 and 6 for FHEW and TFHE, respectively. We target each
resulting ciphertext to recover 1 bit of the secret key. Table 2 shows the total
number of CVO queries made to recover the entire secret key, the total time re-
quired to perform the end-to-end attack, and the number of samples that resulted
in incorrect decryption. We would like to highlight the fact that the number of
decryption failures was the same as the number of non-zero secret key bits, i.e.∑

(si) : si ̸= 0. For the first key, it took around 8 and 2 minutes and required
7379 and 4502 queries to recover the entire 500 and 630 bits of the secret key
for FHEW and TFHE, respectively. We required an average of 7300 and 4300
queries and an average of 8 and 2 minutes to recover the entire secret key across
the 5 cases for FHEW and TFHE, respectively. Fig. 9 shows the plot of the total
number of CVO queries made and the total number of ciphertexts that failed
to decrypt correctly, to directly recover the secret key across both FHEW and
TFHE. Similar to the previous attack results, we can observe from the plots that
the number of queries required to recover errors is almost the same across all 5
cases for both FHEW and TFHE, showing that the number of required queries
does not depend on the underlying secret key.

Fig. 10 shows the plot of the total number of CVO queries made to extract
the entire secret key for all 4 and 6 major gates in FHEW and TFHE. The
results are shown for a randomly generated secret key. We observe that in the
case of FHEW, AND and NAND gates require comparatively less number of
queries as compared to OR and NOR to recover the secret key. Similarly, in the
case of TFHE, the number of queries are comparatively less for NOR, AND, and

Securing FHE keys from Reaction-based Attacks 31

Fig. 10: Total number of CVO queries to directly recover a random secret key
across all 4 gates of FHEW and across all 6 gates of TFHE. FHEW does not
support XOR and XNOR gates.

XNOR than for XOR, NAND, and OR gates. This implies that an adversary can
target the output of any gate to carry out the key recovery attack. Moreover, it
can utilize this distribution to select the best gate for which the least amount of
queries is required, if it can target multiple gates.

6.2 Results of key recovery attack on encrypted database example

Fig. 11 shows the entire end-to-end scenario of our example of an encrypted
database application. We consider a situation where this application is being
used by a bank, where the data of the customers has already been encrypted
and stored on the server in the form of a database. For simplicity, we assume that
the only query that will be performed on this database is a range query, which
returns all the rows of the queried table where the value of a field lies in a certain
range. Whenever the client, which is the bank staff in our case, wants to evaluate
such a query, it first encrypts all the parameters such as the table name, the field
name, and the range values. It then sends these encrypted values to the server.
Upon receiving these values, the server feeds them in the query processing circuit
which homomorphically evaluates the known query using the encrypted inputs.
The circuit outputs a block of ciphertexts that is an encryption of the contents of
the selected rows. Since the server does not know the table on which the query has
been processed, it does not know the size (in terms of the number of ciphertexts)
of the rows being returned. Also, since the output rows are the result of a series
of homomorphic operations on the input rows and the query parameters, the
output rows will look different than their corresponding input rows in terms of
ciphertexts, even though the underlying plaintext values will remain the same.
For example if an input row consists of the ciphertexts {C11, C12, · · · , C1r}, the
homomorphic operations outputs the same rows as {C ′

11, C
′
12, · · · , C ′

1r} where

32 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 11: Our PIR example works by (1) evaluating query on an encrypted table
to output matching rows along with a vector of matched rows, (2) counting
the number of matched rows, (3) perturbing one ciphertext corresponding to
matched rows, and (4) client decrypting and matching the row counts. If the
count matches then the client accepts the result, otherwise asks the server for
re-computation. Here query processing circuit and row counting circuits are part
of the function f , while the count and match circuit is part of the function g.

C1i ̸= C ′
1i, 1 ≤ i ≤ r. This prevents the server from looking up these output

values in the stored table to find which rows have been selected. Thus the server
neither knows which rows have been selected nor does it knows the count of such
rows.

Coming back to our query processing circuit, it also outputs a vector whose
elements are encryptions of 1 or 0 that signifies whether the corresponding row
has been selected or not. The server sends this vector as an input to the row
counting circuit which is built using a combination of full adder circuits. This
circuit homomorphically adds up all the entries of this vector and outputs an-
other vector of encryptions of 0 and 1. The plaintext entries of this new vector,
when combined, reveal the total number of rows that satisfied the query. The
server chooses one of the entries of this vector and adds a perturbation to it.
Finally, it sends back this perturbed vector and the block of ciphertexts con-
taining the encrypted rows to the client. Upon receiving these values, the client
first decrypts and then feeds them into the count and match circuit. The circuit
counts the number of returned rows and matches this value with the returned
count. If the count matches, then the client assumes that the query was pro-
cessed correctly and it has received all the required rows. On the other hand, if
there is a mismatch in the count then the client assumes that either the query
was not evaluated correctly or some of the rows were lost during transmission.
Since the client cannot differentiate between these two cases, it asks the server to
recompute the query. The query processing and row counting circuits form the
function f that is evaluated homomorphically by the server, while the count and
match circuit g acts as the application-level constraint that runs on the client
side.

For demonstrating our attack on the encrypted database, we take a toy ex-
ample where the table being queried has only 3 rows. We assume that this
application has been built using the TFHE library [25] as it is faster as com-

Securing FHE keys from Reaction-based Attacks 33

Table 3: Shows the total number of CVO queries made and total time required
for the improved attack on a full adder circuit implemented using TFHE and the
number of samples that resulted in incorrect decryption, which is equal to the
number of non-zero values in the secret key. We provide values for 5 different,
random keys. All times are in mins. and secs.

key 1 key 2 key 3 key 4 key 5

CVO queries made 4325 4392 4464 4525 4474

time required 7m50s 8m1s 8m6s 8m15s 8m12s

decryption failure 323 312 312 306 307

pared to the FHEW library [32]. In this toy example, the row counting circuit
was implemented as a single full adder constructed using basic gates of XOR,
AND, and OR. The input to this circuit was taken as a vector of 3 ciphertexts.
To simulate the entries for this vector, we generated a stream of random plain-
text bits and encrypted them using 5 different, randomly generated keys. We fed
these simulated rows into the full adder circuit to obtain another vector of size 2.
Once obtained, we first decrypted these values to obtain the correct result which
signifies the actual number of rows returned by the query. We then proceeded
to add perturbation to the ciphertext obtained as the output of the XOR (sum)
gate. The reason we chose the output of the XOR gate and not of the OR (carry)
gate is that in the actual implementation of the row counting circuit, the output
will be a result of a series of full adders where the output of the XOR gate forms
a part of the output while the output of the OR gate becomes the carry input of
the next adder. Once perturbed, we decrypted this entry and matched the new
value with the old value that was obtained before perturbation. If these values
matched, then the application-level constraint succeeds and we accept the re-
sult. On the other hand, if these values do not match then the application-level
constraint fails and we ask for a re-computation.

Since the application is assumed to be built using TFHE and we have two
possible attack vectors for the same, we provide the results for our improved
attack. In the real-life setting, an adversary will want to go for the better attack
vector to minimize its chances of getting caught and also to recover the key as
quickly as possible. Table 3 shows the total number of CVO queries made to
successfully recover the entire secret key of size 630. For the first key, the overall
attack took around 8 minutes and required 4325 CVO queries. We required an
average of 4400 queries and an average of 8 minutes to recover the entire secret
key across the 5 cases.

We performed our attacks using a Desktop computer running Intel Xeon Sil-
ver 4210R @ 2.4GHz powered by Ubuntu 18.04. To solve the system of equations,
we ran Gaussian Elimination from SageMath9.0 and Python 3.8 to recover the
entire secret key. However, our attack is not device specific and it can be carried
out using any system.

34 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

7 Need for verifiable FHE

Key recovery attacks on existing FHE schemes, including ours, target the lack
of integrity which a malicious server can exploit to tamper with the data associ-
ated with a computation. When the client decrypts such tampered ciphertext, it
provides feedback to the server in the form of a re-computation request in case
the result fails to satisfy the application-level constraint. Thus it has become
necessary to incorporate integrity checks in order to prevent such attacks. How-
ever, as stated in section 4.3, ciphertext integrity is not ensured at the primitive
level but at the application level. Moreover, there is a recent rise in a new class
of works in the form of verifiable FHE that provides both confidentiality and
correctness with a single technique. These works are based on providing proof of
correct computation along with its result. The associated proof helps the client
to verify whether the provided result is indeed generated by performing the re-
quested computation on the actual inputs or whether the server has deviated
from the computation. We provide an overview of existing verifiable FHE tech-
niques and their limitations along with the applicability of reaction attacks in
the presence of these techniques.

7.1 Existing verifiable FHE techniques and their limitations

There have been recent developments in the domain of verifiable FHE, which uses
either cryptographic techniques such as Message Authentication Codes (MACs)
and Zero-Knowledge Proof (ZKP) systems, or tamper-resistant hardware envi-
ronments such as Trusted Execution Environments (TEE). However, since gener-
ating normal MACs require a secret key that remains in possession of the client,
the server cannot generate them on its end for the intermediate or final results
of homomorphic computations. Recent works have proposed the construction of
homomorphic MACs, which provides the server with the ability to homomor-
phically generate valid tags for ciphertexts without requiring the client’s secret
key. [38] introduced the notion of fully homomorphic message authenticators,
which were later used by [22,23,35,62] to provide verifiable computation. How-
ever, all these schemes are limited to the evaluation of polynomial arithmetic
which forms only a subset of FHE computations. [16] and [36] proposed the idea
of using SNARK (Succinct Non-interactive ARguments of Knowledge) to provide
verifiable computation. However, they used specialized SNARKs that are meant
to be used on specific rings. Moreover, their techniques were more focused on
the correctness of the computation and not on the confidentiality aspect of such
computations. Recently [64] introduced the notion of maliciously-verifiable FHE
schemes and showed an instantiation of their scheme using a generic SNARK [37]
that works over multiple rings. However, all these schemes have only been shown
on RLWE-based schemes that do not require ciphertext-maintenance operations
such as bootstrapping. Moreover, the underlying mathematics of ZKP systems
are not compatible with these ciphertext-maintenance operations, as they involve
either ring-switching or non-ring operations [64], and thus are not compatible
with the schemes that we target in this paper. Finally, [60] showed how secure

Securing FHE keys from Reaction-based Attacks 35

enclaves such as TEEs can be used to ensure the honest execution of a func-
tion over user-generated inputs. Such hardware provides proof of correct com-
putation in the form of hardware attestation certificates. However, such secure
enclaves suffer from both low memory and computation power as compared to
the untrusted hardware, and thus are not enough for the memory-hungry FHE
ciphertexts and computation-hungry operations [64]. [48] proposed the usage of
one-digit checksum, however it does not work with the existing FHE schemes.
Finally [54] proposed the usage of blind hash, however it is incompatible with
FHE schemes where the plaintext space is binary, such as FHEW and TFHE.

7.2 Applicability of reaction attacks in the context of verifiable
FHE

While the existing works on verifiable FHE provide efficient techniques for gen-
erating and verifying the proofs, they lack in clearly stating the response of the
client in case the proof turns out to be false. In such a case, the client might
still ask the server for a free re-computation, thus invalidating the whole point
of providing the proof in the first place. Moreover, instead of relying on the
application-level constraint, the server can rely on the failure of proof verifica-
tion by intentionally providing false proof along with a correct answer to instigate
a reaction from the client. On the other hand, the client might also abort further
communication with the server. However, this itself is quite an impractical so-
lution. In case the client decides to permanently abort further communications
with the server, then it has to avail service of another server which would incur
a huge cost and time. Moreover, in certain situations, even temporarily aborting
further communication is not a viable solution. Considering our banking exam-
ple, aborting the communication with the server for even a few seconds will lead
to a huge loss to the bank. Thus it becomes important to accompany such verifi-
cation techniques with some repairing mechanisms, which can help the client to
locally rectify the incorrect results instead of asking for a re-computation. With
such mechanisms in place, the client can further utilize an actively malicious
server for its computational requirements.

8 Verify - then - Repair or React (vr2FHE)

We propose a method that the client can use to verify whether the result it
received is correct and has not been tampered with, and can use it to repair the
result locally if it turns out to be incorrect. Our method is based on the concept
of the Merkle tree, where we generate the hash of the intermediate results in
a bottom-up manner, as shown in Fig. 12(a). Our proposed method is divided
into two stages, namely, computation, and verification. We assume the circuit is
logically divided into multiple levels, where the gates on level i+ 1 can only be
evaluated when all the gates at level i have been evaluated. The gates at level 1
operate on only client inputs, while the gates from level 2 and onward operate on
intermediate results generated at some lower level, and may occasionally include

36 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 12: Shows (a) how a Merkle tree is generated, (b) how a Boolean circuit is
evaluated, and (c) how our countermeasure combines the concept of Merkle tree
with a Boolean circuit. The inputs are shown in blue, intermediate results are
shown in red, and outputs are shown in yellow.

the client inputs. The gates at the final level L generates either all or some of
the final outputs. The server sends the final output to the client for decryption
only when the final level has been evaluated and all outputs are ready. Fig. 12(b)
shows a sample Boolean circuit and the order in which each gate is evaluated.

In existing FHE libraries, including FHEW and TFHE, the client encrypts
its inputs and sends the generated ciphertexts to the server. On the other hand,
in our proposed method the client additionally sends the hashes of these cipher-
texts that are generated using some collision-resistant hash function. During the
evaluation of the requested function, the server computes a series of gates on the
input ciphertexts which are either provided by the client or are a combination of
client inputs and intermediate results of previous computations. Moreover, each
gate computation generates some intermediate or output ciphertexts. The server
also computes the hash of the output ciphertexts of each gate by evaluating a
hash function on a tuple consisting of this ciphertext value along with the hashes
of the input ciphertexts of this gate. For example, the hash of an intermediate
ciphertext cAB , which is the result of a gate computation on some ciphertexts
cA and cB , will be generated as

hcAB
= Hash{cAB , hcA , hcB}

where Hash{·, ·, ·} is a collision-resistant hash function agreed upon by the client
and server, and hcA and hcB are the hashes corresponding to ciphertexts cA and
cB , respectively. One can clearly see here that the hash of a ciphertext generated
at some level k depends upon the hash of some ciphertexts generated at or below
level k−1, whose hashes themselves depend upon the hashes generated at further
lower levels. Thus tampering with a ciphertext at any level k will change its hash,
due to the second-preimage-resistant property of the used hash function. This

Securing FHE keys from Reaction-based Attacks 37

Algorithm 3 Client Side Verification

1: function verify(cABCD, hcABCD , cAB , cCD, hcAB , hcCD , hcA , hcB , hcC , hcD)
2: h′

cABCD
← Hash{cABCD, hcAB , hcCD}

3: h′
cAB
← Hash{cAB , hcA , hcB}

4: h′
cCD
← Hash{cCD, hcC , hcD}

5: if h′
cABCD

= hcABCD and h′
cAB

= hcAB and h′
cCD

= hcCD then ▷ Verify
6: answer ← Decsk(cABCD)
7: if answer ̸= “correct answer” then
8: c′ABCD ← HomGate(cAB , cCD)
9: if c′ABCD ̸= cABCD then ▷ Repair
10: “malicious tampering”
11: answer ← Decsk(c

′
ABCD)

12: else ▷ React
13: “accidental decryption failure; ask for re-computation”
14: end if
15: else
16: “accept answer”
17: end if
18: end if
19: end function

will further result in changing the hashes of ciphertexts at level k+1 and above
since their hashes depend on the hashes at lower levels.

Once the evaluation is completed, the server sends the following pieces of
information to the client:

1. The resulting ciphertext cABCD generated at level L along with its corre-
sponding hash hcABCD

.
2. The ciphertexts cAB and cCD generated at level L − 1 along with their

corresponding hashes hcAB
and hcCD

, respectively.
3. Only the hashes hcA , hcB , hcC and hcD that corresponds to the ciphertexts

cA, cB , cC and cD generated at level L− 2. Here cA and cB generated cAB ,
while cC and cD generated cCD.

Among these values, cABCD forms the output of the requested computations
while the other values form the auxiliary information that aids the client in
identifying whether the output was tampered with or not. Upon receiving the
output ciphertext and the accompanying auxiliary data, the client first gener-
ates the hash of the output ciphertext cABCD, along with the hashes of the
intermediate ciphertexts cAB and cCD as

h′
cABCD

= Hash{cABCD, hcAB
, hcCD

}
h′
cAB

= Hash{cAB , hcA , hcB}
h′
cCD

= Hash{cCD, hcC , hcD}

It then checks whether h′
cABCD

= hcABCD
, h′

cAB
= hcAB

and h′
cCD

= hcCD
or not.

If they do not match, the client assumes that the received data was modified due

38 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

to some transmission error and it asks the server to re-transmit the data. Since
the server wants the hashes to match so that the client proceeds with decrypting
the received ciphertext, it will honestly generate these hashes. The presence of
feedback at this point is due to the hashes not matching, and not because the
decryption was incorrect. On the other hand, if the hashes match, the client
proceeds with the usual decryption. If the decryption result is correct, the client
simply accepts the message and provides no feedback. On the contrary, if the
decryption result turns out to be incorrect, it might raise suspicion in the client
since it knows that the output ciphertext was not modified due to a transmission
error. However, there is still a very small probability of decryption failure [27]
even if the ciphertext was not perturbed.

To differentiate between an honest and a malicious decryption failure, the
client re-computes the output ciphertext c′ABCD using the ciphertexts cAB and
cCD. It already knows that it has received correct values of cAB and cCD, due to
the previous hash check. Once generated, it checks whether c′ABCD = cABCD or
not. If c′ABCD ̸= cABCD, then the client knows that it has received a tampered
ciphertext, and thus the decryption failure was not accidental. However, the
client need not request a re-computation as it has already generated the correct
ciphertext c′ABCD locally which it can decrypt to obtain the correct result. On
the other hand, if c′ABCD = cABCD then the client knows that the incorrect
decryption was accidental and not intentional. In such a case, it asks the server
for a re-computation. Since this re-computation request is due to an accidental
decryption failure, it does not leak any information to the server. Fig. 12(c)
shows the overall process of circuit evaluation and hash generation that runs
on the server-side while Algorithm 3 provides an overview of overall client-side
verification steps.

The repair mechanism of our proposed method requires a local re-computation
of a single homomorphic gate. However, we only perform a re-computation when
the output ciphertext fails to decrypt correctly. On the other hand, the client
simply accepts the result if the decryption turns out to be correct. This leads
to a possibility of a timing attack due to timing variation introduced by the
gate computation. An adversary can potentially monitor this timing variation
to learn whether the decryption was successful or not. However, the adversary
needs to have access to the client machine to accurately measure this timing vari-
ation, which violates our threat model where we assume that having access to
the client machine is difficult in practice and the adversary needs to be stronger
in this model. On the other hand, our threat model considers the server to be
malicious and it does not have direct access to the client machine, otherwise,
the server could have decrypted the perturbed ciphertext itself and would not
have to depend on the reaction of the client. A potential countermeasure to fix
this issue might be to re-compute all the gates at the last level, irrespective of
whether the decryption is correct or not.

Securing FHE keys from Reaction-based Attacks 39

Fig. 13: Boolean circuit of a Full Adder. The client (green) generates the cipher-
texts corresponding to plaintext inputs, along with its hashes. The server (red)
evaluates the circuit homomorphically on the client inputs to generate outputs.
While evaluation starts from inputs and moves toward output(s), verification
starts from the output(s) and moves toward inputs.

8.1 Working example using a Full-Adder Circuit

We show our method by taking an example of a 1-bit full adder, as shown
in Fig. 13. We have specifically chosen this circuit as it forms a part of the
application-level constraint of our PIR database example provided in section 6.2.
The green shaded region shows the client operations, which start with encrypting
the inputs and generating the corresponding ciphertexts cA, cB , and cCin and
their corresponding hashes hcA , hcB and hcCin

. The client then sends ciphertext-
hash pairs (cA, hcA), (cB , hcB) and (cCin

, hcCin
) to the server for the computation

of a full adder circuit.
Upon receiving these pairs, the server (shown in red) starts the evaluation

of the full adder circuit on a level-by-level basis. At the first level, it com-
putes cI1 = cA ⊕ cB and cI3 = cA ∧ cB , where ⊕ and ∧ represents homo-
morphic XOR and AND gates, respectively. It also generates their correspond-
ing hashes using an agreed-upon hash function as hcI1

= Hash{cI1 , hcA , hcB}
and hcI3

= Hash{cI3 , hcA , hcB}. Once completed, it proceeds to the second
level where it computes cSum = cI1 ⊕ cCin and cI2 = cI1 ∧ cCin . It also gener-
ates their corresponding hashes as hcSum

= Hash{cSum, hcI1
, hcCin

} and hcI2
=

Hash{cI2 , hcI1
, hcCin

}. Finally, at the third and last level, it computes the re-
maining output as cCout

= cI2 ∨ cI3 , where ∨ represents homomorphic OR gate.
It also generates its corresponding hash as hcCout

= Hash{cCout
, hcI2

, hcI3
}. It

sends back to the client the output ciphertexts (cSum and cCout) along with
the auxiliary information (cI1 , cI2 , cI3 , cA, cB , cCin , hcSum

, hcCout
, hcA , hcB ,

hcCin
, hcI1

, hcI2
, and hcI3

). One may argue that the server need not send the
ciphertexts and their hashes that corresponds to the inputs back to the client
since they were generated by the client itself. We would like to clarify that this
situation may not arrive for general circuits with depth more than 3. Since we
are trying to show our method on a small circuit which can then be extended

40 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

to other circuits of higher depth, we explain the mechanism from the point of a
general circuit.

Coming back to our example, upon receiving the above information, the
client first generates the hashes corresponding to the output ciphertexts cSum

and cCout , along with the hashes of the intermediate ciphertexts cI1 , cI2 , cI3 and
cCin

as follows:

h′
cSum

= Hash{cSum, hcI1
, hcCin

}
h′
cCout

= Hash{cCout
, hcI2

, hcI3
}

h′
cI1

= Hash{cI1 , hcA , hcB}
h′
cCin

= Hash{cCin
}

h′
cI2

= Hash{cI2 , hcI1
, hcCin

}
h′
cI3

= Hash{cI3 , hcA , hcB}

Once generated, it compares these values with the received hashes to check
whether h′

cSum
= hcSum

, h′
cCout

= hcCout
, h′

cI1
= hcI1

, h′
cCin

= hcCin
, h′

cI2
= hcI2

and h′
cI3

= hcI3
. If anyone of these checks fails, the client assumes that the re-

ceived data was modified due to some transmission error, and it asks the server
to re-transmit the values. At this point, the server has no incentive of changing
anything in the information to be resent since the client has not yet decrypted
the underlying ciphertext. On the other hand, if the hashes match then the client
proceeds with decrypting the ciphertexts. Now, if both the ciphertexts decrypt
correctly then the client simply accepts the results and does not provide any
feedback to the server. At this point, the server is sure that the hashes have
matched and the ciphertexts have decrypted correctly. Conversely, if any one of
the ciphertexts fails to decrypt correctly, the client only proceeds with verifica-
tion for that particular ciphertext. We would like to highlight that in our attack
the server is forced to perturb only one of the output ciphertexts. The reason is
that if it perturbs more than one ciphertext then, upon receiving feedback, the
server will not be sure which perturbations lead to decryption failure. However,
a lack of feedback will ensure that the final result has been decrypted correctly
at the client’s end. Thus, the server only perturbs one ciphertext at a time so
that at most one output ciphertext fails to decrypt correctly. The server will be
sure which ciphertext decrypts incorrectly when it receives feedback.

We now show how the client proceeds with the verification process for the
decryption of each of the two outputs. The given circuit can be divided into two
sub-circuits, with the Sum circuit of depth 2 being our base case and the Cout

circuit of depth 3 which can be extended to any circuit of arbitrary depth. A
circuit of depth 1 is basically a single gate computation that the client itself can
do. This is required for our method to work since the client will be evaluating
at least one gate during the verification stage.
Sum : The client proceeds to recompute the value of cSum at its end by eval-
uating c′Sum = cI1 ⊕ cCin

, where cI1 and cCin
were both sent by the server.

Once generated, it checks whether c′Sum = cSum or not. If they do not match,

Securing FHE keys from Reaction-based Attacks 41

the client will know that the server has maliciously tampered with the value of
cSum.
Cout : The client proceeds to recompute the value of cCout at its end by evaluat-
ing c′Cout

= cI2 ∨ cI3 , where cI2 and cI3 are sent by the server. Once generated, it
checks whether c′Cout

= cCout
or not. If they do not match, the client will know

that the server has maliciously tampered with the value of cCout
.

For only repair, client can compute c′Sum and c′Cout
values after decrypting

cI1 , cI2 and cI3 respectively. However, to get a clear understanding of the server’s
intention (whether the server itself is malicious or not) client-side homomorphic
computations (c′Sum = cI1 ⊕ cCin

and c′Cout
= cI2 ∨ cI3) followed by equality

checks (c′Sum = cSum and c′Cout
= cCout

) are necessary. That decides the overall
overhead of the scheme. Also in both cases, the client does not ask for a re-
computation since it already has computed the correct value locally. On the
other hand, if the evaluated ciphertext matches the one sent by the server then
the client assumes that the decryption failure was accidental. However, since it
obtained the same ciphertext as the one sent by the server even after a local
computation, the client is now forced to ask for a re-computation. This request
does not leak any information to the client as this is a result of an accidental
failure.

The above two cases can now be extended to any circuits of any depth. The
client will only need to recompute one gate on its end while it needs to verify
hashes for three ciphertexts.

9 Defense against Our Proposed Attacks

While the existing schemes offering verifiable FHE do not protect against the
two attacks (refer Sec. 5.2) proposed earlier in this paper, we show that our
countermeasure vr2FHE reliably thwarts such attacks. Our proposed scheme first
performs verification and then decides whether to repair or request for a re-
computation. In this section, we establish that any re-computation request does
not leak any information regarding the error or the secret key to the server.

Defense against message recovery in first attack In our first attack, we
showed that the server could force the final output to be an encryption of some
known bit m by adding a gate on top of the output gate and sending it to
the client for decryption. Upon decryption, if the client does not react then the
server will know that the underlying message is m, otherwise, it will know that
the message is m. We now show how our proposed countermeasure can help the
client in detecting such modifications in the circuit. Fig. 14(A) shows the final
output and its hash when such a gate, say XOR, is added while Fig. 14(B) shows
the final output and its hash when no such gate is added and the final output
is the result of some known gate, say NAND. Assuming that the gate is added,
the client will get the final output as c′out along with the auxiliary information
{h′

c′out
, cout, hcout

, hc1 , hc2 , hc1 , hc2}. Upon receiving this information, the client

first proceeds with the hash verification and, assuming that they match, performs

42 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 14: Shows the final output of the circuit (A) when a gate is added at the
last level to force the output to be encryption of a particular bit, and (B) when
no gate is added. The original output gate is shown in red, while the added gate
is shown in blue. The ciphertexts that mismatch are highlighted in yellow.

the decryption of the received ciphertext c′out. If the result turns out to be
wrong, it proceeds with the re-computation of the final gate to verify whether
the decryption error was forced intentionally or not. However, it evaluates the
NAND gate instead of XOR, since it is the actual gate that is supposed to
generate the final output. Since the added gate is different from the original
gate, the computed ciphertext c′′out will obviously differ from the one received by
the client which is c′out. Moreover, even if the added gate is the same as the final
gate, the generated output will still differ since the inputs to these gates will
be different across the two gates due to them being on different levels. Hence,
the server cannot use such an additional gate to force the final output to be an
encryption of a known message without getting detected.

Defense against error recovery in first attack and key recovery in
second attack In our first attack, we also showed that the server might replace
an output ciphertext, which is the result of a genuine computation, with another
ciphertext it computed during some previous execution thus performing a replay
attack. Moreover, in both our attacks, we showed that the server might perturb
the output ciphertext by adding an error value to either its scalar component
b or its vector component a. However, in case of decryption failures in both
these attacks, the client computes the output ciphertexts on its end by using
the auxiliary information it received from the server. In order to ensure that
even re-computation on the client’s end generates the same output ciphertext
that was sent in the first place, the server will have to also carefully perturb
the intermediate ciphertexts so that their error values add up to the one present
in the final ciphertext. For example, the server adds an error e to the output
ciphertext cout and sends the modified output c′out. To avoid detection, it has
to add errors e1 and e2 to the intermediate ciphertexts c1 and c2 and send the

Securing FHE keys from Reaction-based Attacks 43

modified ciphertexts c′1 and c′2 in such a way that when the client evaluates c′1⊕c′2
on its end, it gets c′out containing error e. However, it needs to be kept in mind
that this homomorphic operation ⊕ involves bootstrapping which will reduce
the error e1 + e2 in the computed ciphertext if it is below the threshold, while
it will flip the underlying message and still reduce the error if the total error is
greater then the threshold. Thus in both cases, the final error will not be equal
to e which will also ensure that the output of this local gate computation will
not match the received ciphertext c′out. Hence our proposed technique helps the
client to detect whether the final ciphertext was perturbed or not. Moreover, it
also helps the client to detect replay attacks, which were not possible previously.

Attacking intermediate gate(s) or result(s) and its limitations: Since
our protocol only verifies the result of the last level and the hashes of the last
two levels of the computation, the server might try to tamper with the circuit
or the results at a lower level. For example, it can replace a gate or a result at
a lower level to check whether it still has any effect on the final ciphertext or
not. However, this attack may not be effective since the gates at the higher level
of the circuit can mask the effect of these perturbations. For example, suppose
the server replaces a NAND gate with an AND gate, which causes the resulting
message bit to change from 1 to 0. It might happen that this ciphertext goes into
an OR gate as one of the inputs while the other input is an encryption of 1. Thus
the output of this OR gate remains 1, irrespective of whether the NAND gate
was replaced with an AND gate (since 0 OR 1 = 1) or not (since 1 OR 1 = 1).
It needs to be highlighted that the server does not know any of these plaintext
values since all these computations are being evaluated homomorphically. Also
replacing the input(s) and/or intermediate result(s) might not work, since even
its effect may be masked by the gate being computed on the replaced ciphertexts.
For example, if an encryption of 0 is replaced with an encryption of 1, then an
OR gate computed on this modified ciphertext will introduce no further errors
if its other input is an encryption of 1, since 0 OR 1 = 1 OR 1 = 1. Hence, in
order to maximize the chances of observing the effect of the perturbations, the
server will have to introduce them in the output ciphertexts which will be easily
observable through our proposed countermeasure.

10 Performance Overhead

In this section, we evaluate the overhead of our proposed method in terms of
running time and data transmission. To generate the hashes, we used a C-
implementation of SHA-256 hashing algorithm taken from [1]. Moreover, since
FHEW and TFHE ciphertexts are of the form (a, b) where a is a vector of dimen-
sion k and each of the entries of the ciphertext is an integer, we summed up all
these entries to generate a short version of the ciphertext. Mathematically speak-

ing, the ciphertext c = (a, b) was shortened as cs = shorten(c) =

k∑
i=1

(ai) + b,

44 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Table 4: Shows the time required to run the homomorphic gates in the original
library and to run the same gates along with generating the hashes, for FHEW
and TFHE, respectively.

NAND AND NOR OR XNOR XOR

FHEW
Original Gate Computation 0.0620s 0.0619s 0.0618s 0.0621s - -

Gate Computation with Hashing 0.0625s 0.0623s 0.0625s 0.0624s - -

TFHE
Original Gate Computation 0.0219s 0.0218s 0.0215s 0.0215s 0.0218s 0.0216s

Gate Computation with Hashing 0.0221s 0.0220s 0.0217s 0.0217s 0.0219s 0.0216s

Table 5: Shows the time required to run a full adder circuit without and with
generating the hashes, along with the size of computation result transmitted by
the server to the client, for FHEW and TFHE, respectively.

Server-side Computation Client-side Verification Output File Size

FHEW
Full Adder without Hashing 0.6853s - 7.2KB
Full Adder with Hashing 0.6877s 0.0616s 31.7KB

TFHE
Full Adder without Hashing 0.1078s - 13.5KB
Full Adder with Hashing 0.1080s 0.0215s 54.9KB

where shorten() is a function that accepts a FHEW or TFHE ciphertext and
generates its shortened version by adding up all the individual entries of the
ciphertext. Its hash hc was then generated as hc = Hash{toString(cs)}, where
toString() is a function that takes an integer as input and converts it into
a string. The intuition behind this approach of shortening the ciphertext by
summing up all its entries is that this sum will change if any of the entries of
the ciphertext is changed. Mathematically speaking, if a ciphertext c = (a, b) is
modified to c′ = (a, b′) where b′ = b+1, then the hash of c and c′ will differ signif-
icantly due to the property of the hash function. The same effect will be observed
if an element of a is changed. This ensures that any changes made by the server
in either b or any element of a causes the hash of the corresponding ciphertext to
change significantly. On the other hand, to generate the hash hcI of some inter-
mediate ciphertext cI = (a, b) using the hashes hcI1 and hcI2 , we first shortened
the ciphertext to cIs and then converted it to string to generate c′Is . The hash
of this ciphertext was then generated as hcI = Hash{concat(c′Is , hcI1 , hcI2)},
where concat() is a function that takes multiple strings as input and concate-
nates them to produce a single string. Finally, the hash comparison was done in
the form of a string comparison as the hashes obtained are in the form of strings.

Coming to the empirical values, table 4 provides a comparison of the total
running times of the original gates as defined in the FHEW and TFHE, and the
total running times when the gate computation is followed by the hash generation
step. From the table, we can observe that for FHEW and TFHE, original gate
computation takes an average of 0.0619 and 0.0216 seconds, respectively, while
the average time increases to 0.0624 and 0.0218 seconds, respectively, when the
hash generation step is included. Thus the hash generation step increases the
per-gate computation time by an average of 0.0005 and 0.0002 seconds, or by
0.8% and 0.9%, for FHEW and TFHE, respectively.

Securing FHE keys from Reaction-based Attacks 45

Fig. 15: Running time of all 4 gates of FHEW. The blue bar shows the running
time when hashes of the gate outputs are not generated, while the red bar shows
the running time when hashes of the gate outputs are generated.

Table 5 provides the running time of a full adder circuit implemented using
the original gates and when these gates are followed by hash generation. The
complete circuit takes around 0.6853 and 0.1078 seconds for FHEW and TFHE,
respectively, when running without hash generation while it increases to 0.6877
and 0.1080 seconds when hash generation is involved. These values are shown
as server-side computations in the table since the circuit is being evaluated by
the server. The client-side verification, which involves hash re-generation and
verification along with gate re-computation if required, takes 0.0616 and 0.0215
seconds for FHEW and TFHE, respectively. Thus the verification only takes
around 1

10 -th and 1
5 -th of the time it would have required the client to evaluate

the circuit (without the hash generation) on its end. Finally the table provides
the amount of information the server needs to transmit to the client in both the
cases. For the original circuit evaluation, the server needs to send about 7.2KB
and 13.5KB of information, which consists of only the ciphertexts corresponding
to the sum and carry out, in case of FHEW and TFHE, respectively. In case of
the circuit evaluation with hashes, the server needs to send about 31.7KB and
54.9KB of information, which consists of other auxiliary information, in case
of FHEW and TFHE, respectively. Thus our technique increases the overhead
by about 24.5KB and 41.3KB, or by about 3.5× in case of FHEW and TFHE,
respectively.

Fig. 15 and 16 provides a plot of the running times of all gates without
and with hashing for all 4 gates of FHEW and 6 gates of TFHE, respectively.
From the figures, we can observe that in the case of FHEW, AND takes the
least amount of time while NAND and NOR both take the most amount of
time when running with hashing. In the case of TFHE, we can observe that
NOR, OR and XOR takes the least amount of time while NAND takes the most

46 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Fig. 16: Running time of all 6 gates of TFHE. The blue bar shows the running
time when hashes of the gate outputs are not generated, while the red bar shows
the running time when hashes of the gate outputs are generated.

amount of time when running with hashing. However, NOR and OR takes the
least amount of time and NAND takes the most amount of time even when not
running without hashing. Thus in the case of TFHE, our method does not add
significant overhead in terms of per-gate computation.

11 Conclusion

In this paper, we have shown that access to a CVO can result in the leakage of
the secret key to the malicious server. We have also shown that the error from a
single ciphertext can be leaked with a constant number of queries to the CVO.
In our experiment, we require 8 and 33 queries to extract errors from a single
ciphertext for the libraries FHEW and TFHE, respectively. In our improved
attack, we showed that we require at most 1 reaction from the client to recover
a single bit of the secret key. While CVO-based attacks exist in the literature, in
this paper we showed such an attack to recover the full secret key on practical
schemes that are being used in the real-life construction of various applications.
This attack highlights the fact that additional protections need to be adopted at
a system level to secure cloud applications [27] built using such FHE schemes.
This becomes all the more important since such schemes are gearing up for
deployment in practice, and may handle sensitive information once they are
deployed. Finally, we proposed a technique that aids the client in detecting
such attacks and limits its feedback to the server. Our proposed technique does
not incur significant overhead in terms of verification while incurring a slight
overhead in terms of network overhead. Lastly, our technique also helps the
client to repair the incorrect result while requiring minimal computation on its
end.

Securing FHE keys from Reaction-based Attacks 47

References

1. Public domain c sha-256 implementation. https://github.com/983/SHA-256, ac-
cessed: 2023-04-02

2. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (h) ibe in the standard model.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 553–572. Springer (2010)

3. Albrecht, M.R.: On dual lattice attacks against small-secret lwe and parameter
choices in helib and seal. In: Coron, J.S., Nielsen, J.B. (eds.) Advances in Cryptol-
ogy – EUROCRYPT 2017. pp. 103–129. Springer International Publishing, Cham
(2017)

4. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: Alge-
braic algorithms for LWE problems. ACM Commun. Comput. Algebra 49(2),
62 (2015). https://doi.org/10.1145/2815111.2815158, https://doi.org/10.1145/
2815111.2815158

5. Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the com-
plexity of the BKW algorithm on LWE. Des. Codes Cryptogr. 74(2), 325–354
(2015). https://doi.org/10.1007/s10623-013-9864-x, https://doi.org/10.1007/

s10623-013-9864-x

6. Albrecht, M.R., Göpfert, F., Virdia, F., Wunderer, T.: Revisiting the expected
cost of solving usvp and applications to LWE. IACR Cryptol. ePrint Arch. p. 815
(2017), http://eprint.iacr.org/2017/815

7. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with
errors. J. Math. Cryptol. 9(3), 169–203 (2015), http://www.degruyter.com/view/
j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml

8. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key
{Exchange—A} new hope. In: 25th USENIX Security Symposium (USENIX Se-
curity 16). pp. 327–343 (2016)

9. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,
L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming
- 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8,
2011, Proceedings, Part I. Lecture Notes in Computer Science, vol. 6755, pp.
403–415. Springer (2011). https://doi.org/10.1007/978-3-642-22006-7 34, https:
//doi.org/10.1007/978-3-642-22006-7_34

10. Aydin, F., Aysu, A.: Exposing side-channel leakage of seal homomorphic encryp-
tion library. In: Proceedings of the 2022 Workshop on Attacks and Solutions
in Hardware Security. p. 95–100. ASHES’22, Association for Computing Ma-
chinery, New York, NY, USA (2022). https://doi.org/10.1145/3560834.3563833,
https://doi.org/10.1145/3560834.3563833

11. Aydin, F., Karabulut, E., Potluri, S., Alkim, E., Aysu, A.: Reveal: Single-trace
side-channel leakage of the seal homomorphic encryption library. In: Proceedings
of the 2022 Conference & Exhibition on Design, Automation & Test in Europe.
p. 1527–1532. DATE ’22, European Design and Automation Association, Leuven,
BEL (2022)

12. Bai, S., Galbraith, S.D.: Lattice decoding attacks on binary lwe. In: Susilo, W., Mu,
Y. (eds.) Information Security and Privacy. pp. 322–337. Springer International
Publishing, Cham (2014)

13. Bai, S., Miller, S., Wen, W.: A refined analysis of the cost for solving LWE via
usvp. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.) Progress in Cryptology -
AFRICACRYPT 2019 - 11th International Conference on Cryptology in Africa,

https://github.com/983/SHA-256
https://doi.org/10.1145/2815111.2815158
https://doi.org/10.1145/2815111.2815158
https://doi.org/10.1145/2815111.2815158
https://doi.org/10.1007/s10623-013-9864-x
https://doi.org/10.1007/s10623-013-9864-x
https://doi.org/10.1007/s10623-013-9864-x
http://eprint.iacr.org/2017/815
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
http://www.degruyter.com/view/j/jmc.2015.9.issue-3/jmc-2015-0016/jmc-2015-0016.xml
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1007/978-3-642-22006-7_34
https://doi.org/10.1145/3560834.3563833
https://doi.org/10.1145/3560834.3563833

48 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

Rabat, Morocco, July 9-11, 2019, Proceedings. Lecture Notes in Computer Science,
vol. 11627, pp. 181–205. Springer (2019). https://doi.org/10.1007/978-3-030-23696-
0 10, https://doi.org/10.1007/978-3-030-23696-0_10

14. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Annual International Conference on the Theory and Applications of Cryptographic
Techniques. pp. 719–737. Springer (2012)

15. Bi, L., Lu, X., Luo, J., Wang, K., Zhang, Z.: Hybrid dual attack on LWE with
arbitrary secrets. Cybersecur. 5(1), 15 (2022)

16. Bois, A., Cascudo, I., Fiore, D., Kim, D.: Flexible and efficient verifiable
computation on encrypted data. In: Garay, J.A. (ed.) Public-Key Cryptog-
raphy - PKC 2021 - 24th IACR International Conference on Practice and
Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Pro-
ceedings, Part II. Lecture Notes in Computer Science, vol. 12711, pp. 528–
558. Springer (2021). https://doi.org/10.1007/978-3-030-75248-4 19, https://

doi.org/10.1007/978-3-030-75248-4_19

17. Bonwick, J., Ahrens, M., Henson, V., Maybee, M., Shellenbaum, M.: The zettabyte
file system (03 2023)

18. Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghu-
nathan, A., Stebila, D.: Frodo: Take off the ring! practical, quantum-secure key
exchange from lwe. In: Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security. pp. 1006–1018 (2016)

19. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for
the tls protocol from the ring learning with errors problem. In: 2015 IEEE Sym-
posium on Security and Privacy. pp. 553–570. IEEE (2015)

20. Brakerski, Z.: Fully homomorphic encryption without modulus switching from
classical gapsvp. In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptol-
ogy - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7417, pp. 868–886. Springer (2012). https://doi.org/10.1007/978-3-642-32009-
5 50, https://doi.org/10.1007/978-3-642-32009-5_50

21. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic en-
cryption without bootstrapping. In: Goldwasser, S. (ed.) Innovations in Theoreti-
cal Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012. pp. 309–
325. ACM (2012). https://doi.org/10.1145/2090236.2090262, https://doi.org/

10.1145/2090236.2090262

22. Catalano, D., Fiore, D.: Practical homomorphic macs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT 2013.
pp. 336–352. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

23. Chatel, S., Knabenhans, C., Pyrgelis, A., Hubaux, J.P.: Verifiable encodings for
secure homomorphic analytics (2022)

24. Chenal, M., Tang, Q.: On key recovery attacks against existing somewhat ho-
momorphic encryption schemes. In: Aranha, D.F., Menezes, A. (eds.) Progress in
Cryptology - LATINCRYPT 2014. pp. 239–258. Springer International Publishing,
Cham (2015)

25. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homo-
morphic encryption library (August 2016), https://tfhe.github.io/tfhe/

26. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In: ASIACRYPT (1). pp. 3–33.
Springer (2016)

https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-030-23696-0_10
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-030-75248-4_19
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/2090236.2090262

Securing FHE keys from Reaction-based Attacks 49

27. Chillotti, I., Gama, N., Goubin, L.: Attacking fhe-based applications by software
fault injections. Cryptology ePrint Archive, Paper 2016/1164 (2016), https://
eprint.iacr.org/2016/1164, https://eprint.iacr.org/2016/1164

28. Das, A., Dutta, S., Adhikari, A.: Indistinguishability against chosen ciphertext ver-
ification attack revisited: The complete picture. In: Susilo, W., Reyhanitabar, R.
(eds.) Provable Security. pp. 104–120. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2013)

29. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Proceedings of Twenty-First ACM SIGOPS Symposium on
Operating Systems Principles. p. 205–220. SOSP ’07, Association for Computing
Machinery, New York, NY, USA (2007). https://doi.org/10.1145/1294261.1294281,
https://doi.org/10.1145/1294261.1294281

30. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: Gilbert, H. (ed.) Advances in Cryptology – EURO-
CRYPT 2010. pp. 24–43. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

31. Ducas, L., Micciancio, D.: Fhew: Bootstrapping homomorphic encryption in less
than a second. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EURO-
CRYPT 2015. pp. 617–640. Springer Berlin Heidelberg, Berlin, Heidelberg (2015)

32. Ducas, L., Micciancio, D.: FHEW: A fully homomorphic encryption library (May
2017), https://github.com/lducas/FHEW

33. Espitau, T., Joux, A., Kharchenko, N.: On a dual/hybrid approach to small secret
lwe: A dual/enumeration technique for learning with errors and application to
security estimates of fhe schemes. In: Progress in Cryptology – INDOCRYPT 2020:
21st International Conference on Cryptology in India, Bangalore, India, December
13–16, 2020, Proceedings. p. 440–462. Springer-Verlag, Berlin, Heidelberg (2020)

34. Fauzi, P., Hovd, M.N., Raddum, H.: On the ind-cca1 security of fhe schemes.
Cryptology ePrint Archive, Paper 2021/1624 (2021), https://eprint.iacr.org/
2021/1624, https://eprint.iacr.org/2021/1624

35. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. p. 844–855. CCS ’14, Association for Computing Ma-
chinery, New York, NY, USA (2014). https://doi.org/10.1145/2660267.2660366,
https://doi.org/10.1145/2660267.2660366

36. Fiore, D., Nitulescu, A., Pointcheval, D.: Boosting verifiable computation on en-
crypted data. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) Public-
Key Cryptography – PKC 2020. pp. 124–154. Springer International Publishing,
Cham (2020)

37. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: Snarks for ring arithmetic.
IACR Cryptol. ePrint Arch. p. 322 (2021), https://eprint.iacr.org/2021/322

38. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) Advances in Cryptology - ASIACRYPT 2013. pp. 301–320.
Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

39. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009), crypto.stanford.edu/craig

40. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceed-
ings of the Forty-First Annual ACM Symposium on Theory of Computing.
p. 169–178. STOC ’09, Association for Computing Machinery, New York,
NY, USA (2009). https://doi.org/10.1145/1536414.1536440, https://doi.org/

10.1145/1536414.1536440

https://eprint.iacr.org/2016/1164
https://eprint.iacr.org/2016/1164
https://eprint.iacr.org/2016/1164
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://eprint.iacr.org/2021/1624
https://eprint.iacr.org/2021/1624
https://eprint.iacr.org/2021/1624
https://doi.org/10.1145/2660267.2660366
https://doi.org/10.1145/2660267.2660366
https://eprint.iacr.org/2021/322
crypto.stanford.edu/craig
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440

50 B. Chaturvedi, A. Chakraborty, A. Chatterjee, D. Mukhopadhyay

41. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption
scheme. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011.
pp. 129–148. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

42. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the fortieth annual ACM sympo-
sium on Theory of computing. pp. 197–206 (2008)

43. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Annual
Cryptology Conference. pp. 75–92. Springer (2013)

44. Guo, Q., Johansson, T.: Faster dual lattice attacks for solving LWE with appli-
cations to CRYSTALS. In: Tibouchi, M., Wang, H. (eds.) Advances in Cryp-
tology - ASIACRYPT 2021 - 27th International Conference on the Theory and
Application of Cryptology and Information Security, Singapore, December 6-
10, 2021, Proceedings, Part IV. Lecture Notes in Computer Science, vol. 13093,
pp. 33–62. Springer (2021). https://doi.org/10.1007/978-3-030-92068-5 2, https:
//doi.org/10.1007/978-3-030-92068-5_2

45. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key
cryptosystem. In: Varadharajan, V., Mu, Y. (eds.) Information and Communica-
tion Security. pp. 2–12. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

46. Herrn, H., Gauss, R.: Anwendung der wahrscheinlichkeitsrechnung
auf eine aufgabe der practischen geometrie. von herrn hofrath
und ritter gauss. Astronomische Nachrichten 1(6), 81–86 (1823).
https://doi.org/https://doi.org/10.1002/asna.18230010602, https://

onlinelibrary.wiley.com/doi/abs/10.1002/asna.18230010602

47. Hu, Z., Sun, F., Jiang, J.: Ciphertext verification security of symmetric encryption
schemes. Sci. China Ser. F Inf. Sci. 52(9), 1617–1631 (2009)

48. Kara, M., Laouid, A., dabbas, O.A., Hammoudeh, M., Bounceur, A.: One digit
checksum for data integrity verification of cloud-executed homomorphic encryption
operations. Cryptology ePrint Archive, Paper 2023/231 (2023), https://eprint.
iacr.org/2023/231, https://eprint.iacr.org/2023/231

49. Laine, K., Lauter, K.E.: Key recovery for LWE in polynomial time. IACR Cryptol.
ePrint Arch. p. 176 (2015), http://eprint.iacr.org/2015/176

50. Li, Z., Galbraith, S.D., Ma, C.: Preventing adaptive key recovery attacks on the
gentry-sahai-waters leveled homomorphic encryption scheme. Cryptology ePrint
Archive, Paper 2016/1146 (2016), https://eprint.iacr.org/2016/1146, https:
//eprint.iacr.org/2016/1146

51. Lindner, R., Peikert, C.: Better key sizes (and attacks) for lwe-based encryption.
In: Kiayias, A. (ed.) Topics in Cryptology – CT-RSA 2011. pp. 319–339. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

52. Loeliger, J.: Version Control with Git - Powerful techniques for centralized and dis-
tributed project management. O’Reilly (2009), http://www.oreilly.de/catalog/
9780596520120/index.html

53. Loftus, J., May, A., Smart, N.P., Vercauteren, F.: On cca-secure somewhat homo-
morphic encryption. In: In Selected Areas in Cryptography. pp. 55–72 (2011)

54. Lou, Q., Santriaji, M., Yudha, A.W.B., Xue, J., Solihin, Y.: vfhe: Verifiable fully
homomorphic encryption with blind hash (2023)

55. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 738–
755. Springer (2012)

https://doi.org/10.1007/978-3-030-92068-5_2
https://doi.org/10.1007/978-3-030-92068-5_2
https://doi.org/10.1007/978-3-030-92068-5_2
https://doi.org/https://doi.org/10.1002/asna.18230010602
https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.18230010602
https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.18230010602
https://eprint.iacr.org/2023/231
https://eprint.iacr.org/2023/231
https://eprint.iacr.org/2023/231
http://eprint.iacr.org/2015/176
https://eprint.iacr.org/2016/1146
https://eprint.iacr.org/2016/1146
https://eprint.iacr.org/2016/1146
http://www.oreilly.de/catalog/9780596520120/index.html
http://www.oreilly.de/catalog/9780596520120/index.html

Securing FHE keys from Reaction-based Attacks 51

56. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) Advances in Cryptology – EUROCRYPT 2010. pp.
1–23. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

57. Merkle, R.C.: A digital signature based on a conventional encryption function.
In: Pomerance, C. (ed.) Advances in Cryptology — CRYPTO ’87. pp. 369–378.
Springer Berlin Heidelberg, Berlin, Heidelberg (1988)

58. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. pp. 700–718. Springer (2012)

59. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Cryptography Mail-
ing list at https://metzdowd.com (03 2009)

60. Natarajan, D., Loveless, A., Dai, W., Dreslinski, R.: Chex-mix: Combining ho-
momorphic encryption with trusted execution environments for two-party obliv-
ious inference in the cloud. Cryptology ePrint Archive, Paper 2021/1603 (2021),
https://eprint.iacr.org/2021/1603, https://eprint.iacr.org/2021/1603

61. Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on
Theory of Computing. p. 84–93. STOC ’05, Association for Computing Ma-
chinery, New York, NY, USA (2005). https://doi.org/10.1145/1060590.1060603,
https://doi.org/10.1145/1060590.1060603

62. Shimin Li, Xin Wang, Rui Zhang 016: Privacy-preserving homomorphic macs with
efficient verification. In: Web Services - ICWS 2018 - 25th International Conference,
Held as Part of the Services Conference Federation, SCF 2018, Seattle, WA, USA,
June 25-30, 2018, Proceedings. Springer (2018)

63. Smart, N., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Public Key Cryptography - PKC 2010. vol. 6056,
pp. 420–443. Springer Berlin Heidelberg, Germany (2010), other page information:
420-443 Conference Proceedings/Title of Journal: Public Key Cryptography - PKC
2010 Other identifier: 2001176

64. Viand, A., Knabenhans, C., Hithnawi, A.: Verifiable fully homomorphic encryp-
tion (2023). https://doi.org/10.48550/ARXIV.2301.07041, https://arxiv.org/

abs/2301.07041

65. Zhang, Z., Plantard, T., Susilo, W.: Reaction attack on outsourced computing with
fully homomorphic encryption schemes. In: Kim, H. (ed.) Information Security
and Cryptology - ICISC 2011. pp. 419–436. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

https://eprint.iacr.org/2021/1603
https://eprint.iacr.org/2021/1603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.48550/ARXIV.2301.07041
https://arxiv.org/abs/2301.07041
https://arxiv.org/abs/2301.07041

	``vr2FHE'' - Securing FHE from Reaction-based Key Recovery Attacks

