
New Baselines for Local Pseudorandom Number
Generators by Field Extensions

Akin Ünal

Department of Computer Science
ETH Zurich

Zürich, Switzerland
akin.uenal@inf.ethz.ch

May 26, 2023

Abstract. We will revisit recent techniques and results on the cryp-
toanalysis of local pseudorandom number generators (PRGs). By do-
ing so, we will achieve a new attack on PRGs whose time complexity
only depends on the algebraic degree of the PRG. Concretely, for PRGs

F : {0, 1}n → {0, 1}n
1+e

, we will give an algebraic algorithm that dis-
tinguishes between random points and image points of F , whose time
complexity is bounded by

exp(O(log(n)degF/(degF−1) · n1−e/(degF−1)))

and whose advantage is at least 1− o(1) in the worst case.
To the best of the author’s knowledge, this attack outperforms current
attacks on the pseudorandomness of local random functions with guar-
anteed noticeable advantage and gives a new baseline algorithm for local
PRGs. Furthermore, this is the first subexponential attack that is appli-
cable to polynomial PRGs of constant degree over fields of any size with
a guaranteed noticeable advantage.
We will extend this distinguishing attack further to achieve a search al-
gorithm that can invert a uniformly random constant-degree map F :

{0, 1}n → {0, 1}n
1+e

with high advantage in the average case. This algo-
rithm has the same runtime complexity as the distinguishing algorithm.

Keywords: PRGs · NC0 · Local Random Functions · Polynomial Equa-
tion Systems · Algebraic Attacks · Subexponential · Lower Bounds

1 Introduction

Pseudorandom Number Generators. A pseudorandom number generator (PRG)
is a deterministic algorithm F : {0, 1}n → {0, 1}m that stretches a seed con-
sisting of n bits to a longer string of m bits. Ideally, a PRG guarantees that, if
the seed has been sampled uniformly at random, then the bitstring output by
the PRG is indistinguishable from a truly random bitstring of length m for a

https://orcid.org/0000-0002-8929-0221
mailto:akin.uenal@inf.ethz.ch

certain class of algorithms. PRGs are part of the foundations of modern theo-
retical cryptography [HILL99, App12]. In the real world, keystream generators
(which can be seen as a more advanced form of PRGs) are a popular method to
construct fast and reliable symmetric encryption between two parties.

Local PRGs. While it is widely accepted that PRGs do exist from a practical
point of view, it is in theory not clear which computational complexity a PRG
must have to be reasonably secure while maintaining a high (i.e. polynomial)
output length. The most simple but plausibly secure PRGs are so-called local
PRGs, which have been introduced by Goldreich [Gol11] (also known as random
local functions, Goldreich’s PRGs and PRGs in NC0). For each of its output
bits, a local PRG only needs to look up a constant number of its input bits.
This makes local PRGs from a practical and a theoretical point of view highly
efficient. In fact, local PRGs have several applications in theory:

1. Ishai, Kushilevitz, Ostrovsky & Sahai [IKOS08] showed that local poly-
stretch PRGs (i.e. m ≥ n1+e for e > 0 constant) together with oblivious
transfer imply highly efficient secure communication protocols for two par-
ties evaluating a circuit on private data. In the semi-honest model, where
the users abide to the protocol but try to learn as much about the other
party’s data as possible, the authors could construct a protocol where the
computational complexity for both parties is linear in the size of the cir-
cuit to be evaluated. In the malicious model, where users may deviate from
the protocol, the authors constructed a protocol where the computational
complexity of both parties is slightly superlinear in the size of the circuit.
The first protocol has been extended to arithmetic circuits assuming local
poly-stretch PRGs F : kn → km over a field k [ADI+17]. In a recent work, it
could even be improved such that it remains secure in the malicious model
while maintaining only a constant computational overhead [AK23].

2. Further, local PRGs are interesting for multiparty-computation (MPC) pro-
tocols and fully-homomorphic encryption (FHE) schemes. These primitives
suffer strongly from computing circuits of large depths. While the complex-
ity of MPC protocols rise with the depth of the to be evaluated circuit, the
noise of FHE ciphers grows substantially with the multiplicative depth of the
circuit that is to be evaluated on encrypted data. In the case of lattice-based
FHE, this forces one to weaken the underlying learning with errors (LWE)
assumption to support the evaluation of deeper circuits.

3. Another important application of local PRGs are indistinguishability obfus-
cation (iO) schemes. Jain, Lin & Sahai [JLS21, JLS22] gave recently new
iO schemes whose security is reduced to a number of assumptions, including
local PRGs of polynomial stretch.

Subexponential Security. In particular, the recent iO constructions of Jain, Lin
& Sahai [JLS21, JLS22] need that the local PRGs they use have stronger se-
curity guarantees than usual: the advantage of each poly-time adversary of dis-
tinguishing the output of the PRG from uniform randomness must not only be

2

negligible, but smaller than the inverse of some subexponential functional. They
dub this subexponential security, and, in fact, require subexponential security of
all assumptions they use.

This raises the interest in attack algorithms on local PRGs whose runtime
are beyond poly-time and whose advantage is below negligible. While some ef-
ficient attacks on local PRGs have been known for quite some time, there has
been a recent interest in subexponential attacks on PRGs [BQ09, OW14, AL16,
CDM+18, Üna23a, Üna23b]. While efficient attacks are only applicable when a
certain stretch of the PRG is given, subexponential attacks are applicable even
for small polynomial stretches, and degrade gracefully with decreasing stretch
of PRGs. Hence, when estimating the concrete security of Goldreich’s PRGs,
existing subexponential attacks must be taken into consideration [CDM+18].

Faster Baselines for Local PRGs. In [Üna23b], the author gave new algebraic
attacks on local PRGs and PRGs of constant degree over large fields. He mis-
takenly claimed that his attacks would give new baselines for local PRGs. This
claim was erroneous as there are so-called shrinking-set attacks [Zic17, AIK08]
that provably break local PRGs of poly-stretch in subexponential time and are
by a log-factor in the exponent faster than the attacks given in [Üna23b].

However, as we will show in this paper, by improving the techniques of
[Üna23b] we can substantially lower the time complexity of algebraic attacks
on PRGs s.t. their runtimes only depend on the degree of PRGs rather than
their locality and still retain a high advantage. Since the degree of a PRG must
always be smaller than its locality, this yields a new algebraic attack on local
PRGs that surpasses the shrinking-set attack.

1.1 Contribution

In this work, we will revisit and improve the techniques of [Üna23a, Üna23b].
In Section 3, our improvements will yield a distinguishing attack on PRGs F :
{0, 1}n → {0, 1}m of constant degree d over Z2 and poly-stretch m ≥ n1+e

of subexponential time complexity 2O(log(n)d/(d−1)·n1−e/(d−1)) and high advantage

1−O
(
(log(n)/ne)

1/(d−1)
)
. We will give a generalized version of this attack that

works on constant-degree PRGs F : kn → km over any field k.

Further, for maps F : {0, 1}n → {0, 1}m where each output bit is computed
by a uniformly random polynomial fi ∈ Z2[X1, . . . , Xn] of degree d, we will give
an inversion algorithm in Section 4. The inversion algorithm has the same time
complexity as the distinguishing attack of Section 3. Its advantage depends on
the randomness of F and is high in the average case.

Finally, in Section 6, we will use our new techniques to give reductions be-
tween learning parity with noise-problems over fields of different sizes. Our re-
sults will show that the learning parity with noise-problem over Z2 and over
its extension field F2⌈log n⌉ are – up to logarithmic factors in the parameters –
equivalent.

3

To the best of the author’s knowledge, this paper gives the first distinguishing
attack on binary constant-degree poly-stretch PRGs that is provably subexpo-
nential and has a provable non-negligible advantage, even in the worst case.
Since the time complexity of this attack is independent of the locality of the
PRG, this attack outperforms other subexponential attacks on local PRGs that
have a provably non-negligible advantage in the worst case and gives us new
baselines for distinguishing the output of random local functions from true ran-
domness.

1.2 Technical Overview

For a PRG F , we will in the following denote by degF its (algebraic) degree
over its base field, and by locF its locality.

Note that the attacks against (local) PRGs in [Üna23b] are based on two
simple tricks: a basic algebraic distinguishing algorithm and a hashing resp. re-
duction technique. The basic algebraic algorithm has a subexponential runtime
and works well against PRGs F : kn → km of constant degree over a large field
k, however it struggles with PRGs over small fields, e.g. k = Z2 = {0, 1}.

The hashing technique compensates this problem by turning a binary PRG
F : {0, 1}n → {0, 1}m into a PRG G : kn → km

′
with m′ ≈ m s.t. the degree of

G equals the locality of F .
We will revisit both techniques in more detail:

The Basic Algebraic Attack. This attack appears in [Üna23b] as well as in [Zic17].
Assume we are given a PRG F : kn → km of constant degree over a field k.
Denote by f1, . . . , fm ∈ k[X] := k[X1, . . . , Xn] the polynomials that compute
the output values of F .

Now assume that we were aware of an algebraic relationship h between
the polynomials f1, . . . , fm. I.e., a new polynomial h ∈ k[Y] := k[Y1, . . . , Ym]
s.t. h(Y1, . . . , Ym) is not the zero polynomial, but h(f1(X), . . . , fm(X)) is the
zero polynomial in k[X]. The key observation is that we can use h to check if a
point y ∈ km lies in the image of F . Indeed, if y equals F (x) for some x ∈ kn,
then we must have

h(F (x)) = (h ◦ F)(x) = (h(f1, . . . , fm))(x) = (0)(x) = 0. (1)

On the other side, because of the famous Schwartz-Zippel Lemma we have for a
uniformly random y ← km

Pr
y←km

[h(y) ̸= 0] ≥ 1− deg h

#k
. (2)

A distinguisher that uses h to play the pseudorandomness game for the PRG F
would therefore have an advantage of 1− deg h

#k , which converges towards 1 if the
size of k grows faster than the degree of h.

Hence, an algebraic relationship of low degree among the output values of
F helps substantially in distinguishing the outputs of F from true randomness.

4

However, how can we compute such a relationship and, more importantly, how
can we bound the degree of h in the worst case?

In [Üna23b], it was shown that h will be sublinear if F is of poly-stretch
and of constant degree. In fact, we have deg h ∈ O(n1−

e
d−1) if m ≥ n1+e and

d = degF . This was shown by considering the morphism of rings

ϕ : k[Y1, . . . , Ym] −→ k[X1, . . . , Xn] (3)

g(Y1, . . . , Ym) 7−→ g(f1(X), . . . , fm(X)) (4)

that substitutes each variable Yi by the polynomial fi. Now, h is a non-zero
kernel element of ϕ of minimal degree. To estimate the degree of h, we restrict
ϕ to the subspace

k[Y]≤D := k[Y1, . . . , Ym]≤D := {g ∈ k[Y] | deg g ≤ D} (5)

of polynomials of degree ≤ D. When restricted to k[Y]≤D, the image of ϕ is
contained in

k[X]≤dD := k[X1, . . . , Xn]
≤dD := {g ∈ k[X] | deg g ≤ dD} . (6)

In fact, when we plug the degree-d polynomials f1, . . . , fm in g(Y1, . . . , Ym) the
degree of the resulting polynomial ϕ(g) = g(f1(X), . . . , fm(X)) will be stretched
by a factor of at most d. This means, by restricting ϕ to k[Y]≤D we get a linear
map

ϕD : k[Y1, . . . , Ym]≤D −→ k[X1, . . . , Xn]
≤dD (7)

of spaces of finite dimensions. According to the dimension formula for linear
maps we now have

dimkerϕD ≥dim k[Y1, . . . , Ym]≤D − dim k[X1, . . . , Xn]
≤dD (8)

=

(
m+D

D

)
−

(
n+ dD

dD

)
. (9)

I.e., we can guarantee the existence of an algebraic relationship of degree ≤ D
whenever

(
m+D
D

)
>

(
n+dD
dD

)
.

In [Üna23a], it was shown that Eq. (9) does hold for some sublinear D. In
fact, we have:

Lemma 1 ([Üna23a] Lemma 7). Let d ∈ N, d ≥ 2. Let m : N → N be a
function with m(n) ≥ 22d−1 · dd−1 · n.

Then, we have for all integers n ≥ 2d(
m(n) +D(n)

D(n)

)
>

(
n+ dD(n)

dD(n)

)
(10)

where D(n) =

⌈(
(2n)d

m

) 1
d−1

⌉
. For m(n) ≥ n1+e, we in particular have for n

large enough

D(n) =
⌈
2

d
d−1 · n1−

e
d−1

⌉
∈ O(n1−

e
d−1). (11)

5

Now, how do we find h ∈ kerϕ of degree ≤ D ∈ O(n1−
e

d−1)? Since we know that
h is a non-zero element of kerϕD, it suffices to write down a matrix representation
M of ϕD : k[Y]≤D → k[X]≤dD. M is a matrix of shape

(
m+D
D

)
×

(
n+dD
dD

)
over

k. The algebraic relation h corresponds to non-zero kernel vector of M . Hence,
we can use Gaussian elimination to find h. Eliminating the rows of M costs

O
((

m+D
D

)2 · (n+dD
dD

))
arithmetic operations. Therefore, the memory complexity

of finding h is
(
m+D
D

)
·
(
n+dD
dD

)
∈ nO(D) = 2O(log(n)·n1−e/(d−1)) and the time

complexity lies in O
((

m+D
D

)2 · (n+dD
dD

))
≤ 2O(log(n)·n1−e/(d−1)). Now, evaluating

h on a point y ∈ km costs deg h ·
(
m+deg h

m

)
∈ 2O(log(n)·n1−e/(d−1)) arithmetic

operations in k.
In total, we get a distinguishing algorithm with space and time complexities

in 2O(log(n)·n1−e/(d−1)) and noticeable advantage for fields k of size ≥ n. Formally,
it was shown:

Theorem 1 ([Üna23a] Theorem 2). Let m ∈ ω(n). Let F : kn → km be a
PRG of constant degree degF over k.

Then, there is an algebraic attack on F whose time and space complexities

are bounded from above by nO((ndeg F /m)
1

deg F−1). Further, the advantage of this
attack in the pseudorandomness game of F (Definition 4) is lower bounded by

advF (A) ≥ 1−O
((
ndegF /m

) 1
deg F−1 · 1

#k

)
. (12)

For m ≥ n1+e and #k ≥ n, the attack is a subexponential algorithm with

time and space complexities in 2O(log(n)·n1−e/deg F−1) and high advantage ≥ 1 −
O(n−e/(degF−1)).

Hashing to Larger Fields. Note that the above attack does not fare well against
PRGs of constant degree over small fields. In the reign of, let’s say, Z2 = {0, 1},
one can alter the above algorithm to find an algebraic relationship h that is
reduced modulo the field equations Y 2

1 − Y1, . . . , Y 2
m − Ym and prove that the

probability of h vanishing on a random point y ← {0, 1}m is bounded by

Pr
y←{0,1}m

[h(y) = 0] ≤ 1− 2− deg h. (13)

However, this will only yield a distinguishing attack with advantage ≥ 2− deg h.
Since the degree of h will be sublinear in the worst case, we can only guarantee
a subexponentially small advantage of this attack, which is very unsatisfactory.

To solve this problem for local PRGs, a simple hashing resp. reduction tech-
nique was introduced in [Üna23b]: if we are given a PRG F : {0, 1}n → {0, 1}m
and a point y ∈ {0, 1}m, the idea is to convert F and y to a new PRG G :
{0, 1}n → km

′
and a new point y ∈ km′

s.t. the following things hold:

1. The size of the field k is large enough i.e. #k ≥ n.
2. m′ is only by a small factor smaller than m.

6

3. y′ lies in the image of G if y lies in the image of F .
4. y′ is close to being uniformly random over km

′
if y is sampled uniformly

random from {0, 1}m.

To achieve this, the field k = Zp for a prime p ≥ n was considered in [Üna23b].
Set m′ := ⌊m/(3 ⌈log p⌉)⌋ ∈ O(m/ log n) and note that the distribution of ran-
dom matrices A← Zm×m′

p gives us a universal family of hash functions of type

{0, 1}m → Zm′

p . According to the leftover hash lemma, the matrix-vector prod-
uct A · y is statistically close to being uniform for y ← {0, 1}m. In fact, we can
bound its statistical distance from z ← Zm′

p by

∆ ((A,Ay), (A, z)) ≤ 2−n. (14)

This justifies to set y′ := A · y ∈ Zm′

p .

Now, we define G : {0, 1}n → Zm′

p as the concatenation G := A ◦ F . I.e.,
G first evaluates F normally on its seed and then applies the matrix A to the
binary output of F (over Zp). It is clear that y

′ = A · y must lie in G({0, 1}n) =
A · F ({0, 1}n) if y lies in F ({0, 1}n).

We are now in a situation where we can apply the algorithm of Theorem 1
on G and y′ to decide if y is an image of F or uniformly random. However,
to bound the advantage and runtime of this algorithm, we need to know the
algebraic degree of G or, more formally, of a representation of G by constant-
degree polynomials. It can be shown that G can be computed by polynomials
of degree d when F is of locality d. I.e., the degree of G (which influences the
performance of our algorithm) equals the locality of F , in general.

In total, we get a distinguishing algorithm for the PRG F : {0, 1}n → {0, 1}m,

m ≥ n1+e, with time and space complexities in 2O(log(n)locF/(locF−1)·n1−e/(locF−1))

and advantage ≥ 1−O
(
(log(n)/ne)

1/(locF−1)
)
where locF is the locality of F

(the additional log(n)1/(locF−1) factor in the time complexity and the advantage
of our attack stems from the fact that m′ is by a logarithmic factor smaller than
m).

A Bad Trade-Off. Note, that this attack has a high advantage, since ne/(locF−1)

grows substantially faster than log(n)1/(locF−1). However, the runtime of our at-
tack worsened: while the time and space complexities of the attack in Theorem 1
only depend on the degree of the PRG, the complexities of the attack that uses
the old hashing technique in [Üna23b] depend on its locality. In particular, this
attack is not applicable to PRGs that are computed by dense polynomials of
constant degree over the binary numbers.

In the following, we will improve the hashing technique and, as a result, gain
a new subexponential attack algorithm whose runtime is independent of the
locality of the PRG.

The New Extension Technique. The problem when hashing from Z2 to Zp is
that the embedding Z2 ↪→ Zp that maps zero to zero and one to one is not

7

homomorphic. While this inclusion preserves multiplication, it does not preserve
addition. Indeed, we have 1 + 1 = 0 in Z2 but not in Zp if p > 2. To get a
homomorphic inclusion we need to consider extension fields of Z2.

Set N := 2⌈logn⌉ and denote by FN the Galois field that has N elements. Up
to isomorphism, FN is uniquely determined by the number of its elements and
there exists a natural homomorphic ring homomorphism Z2 ↪→ FN .

In algebra, it is well known that finite fields are perfect, i.e. each extension
of finite fields is separable. The primitive element theorem postulates that each
finite separable field extension k ⊂ k is generated by one element. I.e., there is
one ζ ∈ k s.t. k has the basis 1, ζ, . . . , ζr−1 as k-vector space (where r = dimk k
is the dimension of k as k-vector space). In particular, we have

k = k[ζ]
∼
= k ⊕ ζ · k ⊕ ζ2 · k ⊕ . . .⊕ ζr−1 · k ∼= kr (15)

where the second and third equalities are isomorphisms of vector spaces (⊕
denotes the direct sum of vector fields).

Since the extension Z2 ⊂ FN is separable, it is also generated by one element.
Let’s call this element ζ, too. Eq. (15) implies that the linear map

ψ : Z⌈logn⌉
2 −→ FN (16)

(b1, . . . , b⌈logn⌉) 7−→ b1 + b2 · ζ + . . .+ b⌈logn⌉ · ζ⌈logn⌉−1 (17)

is an isomorphism of vector spaces. This leads to the following two observations:

1. Since ψ is bijective, i.e. one-to-one and onto, it maps uniformly random

vectors in Z⌈logn⌉
2 to uniformly random elements in FN . I.e., if we sample

b← Z⌈logn⌉
2 then ψ(b) is identically distributed as c← FN .

2. The natural inclusion Z2 ↪→ FN extends to a natural inclusion of polynomial
rings

Z2[X1, . . . , Xn] ↪→ FN [X1, . . . , Xn]. (18)

In fact, we can consider Z2[X1, . . . , Xn] to be a subring of FN [X1, . . . , Xn].
This inclusion preserves functionality and degree: if we have a polynomial f ∈
Z2[X1, . . . , Xn] we can – via the inclusion Z2[X1, . . . , Xn] ⊂ FN [X1, . . . , Xn]
– consider f to be a polynomial in FN [X1, . . . , Xn]. Interpreted as a poly-
nomial in FN [X1, . . . , Xn], f will evaluate on {0, 1}n to the same values as
before. Further, f – interpreted as element in FN [X1, . . . , Xn] – has the same
degree as f ∈ Z2[X1, . . . , Xn]. This comes from the fact that – when we go
from Z2[X1, . . . , Xn] to FN [X1, . . . , Xn] – we only “change” the coefficients
of f .
ψ now extends to an isomorphism of vector spaces

ψ : (Z2[X1, . . . , Xn])
⌈logn⌉ −→ FN [X1, . . . , Xn] (19)

(f1, . . . , f⌈logn⌉) 7−→ f1 + ζ · f2 + . . .+ ζ⌈logn⌉−1 · f⌈logn⌉. (20)

This isomorphism is degree-preserving: if f1, f2, . . . , f⌈logn⌉ are of degree ≤ d,
then so are their scaled versions f1, ζ ·f2, . . . , ζ⌈logn⌉−1 ·f⌈logn⌉ and the linear

combination ψ(f1, . . . , f⌈logn⌉) = f1 + ζ · f2 + . . .+ ζ⌈logn⌉−1 · f⌈logn⌉.

8

Now, given a PRG F : {0, 1}n → {0, 1}m of degree d and a point y ∈ {0, 1}m,
we want to apply ψ on blocks of length ⌈log n⌉ of F and y. Assume for the
simplicity of this exposition that m is a multiple of ⌈log n⌉ i.e. there is an m′ ∈ N
s.t. m = ⌈log n⌉ ·m′. Further, consider the following matrix 1 of shape m′ ×m
that applies the linear map ψ block-wise on its input:

A := Im′ ⊗
(
1 ζ . . . ζ⌈logn⌉−1) =

1 ζ . . . ζ⌈logn⌉−1

. . .

1 ζ . . . ζ⌈logn⌉−1

 (21)

where Im′ denotes the identity matrix of shape m′ ×m′ and ⊗ the Kronecker
product. Just as before, we can apply A via matrix-vector multiplication on F
and y. Concretely, we compute

y′ :=A · y ∈ Fm′

N , (22)

G(X) :=A · F (X). (23)

Then, y lies in the image of F iff y′ lies in the image of G. Further, y is uniformly
random from {0, 1}m iff y′ is uniformly distributed in Fm′

N . Note that for this
property we do not need to sample A uniformly at random as before, and we
do not need to invoke the leftover hash lemma. However, more importantly, the
degree of the PRG G : {0, 1}n → Fm′

N , which computes F (x) and then applies
A, equals the degree of F over Z2. This comes from the fact that ψ preserves the
algebraic degree of polynomials and A applies ψ block-wise to the polynomials
computing F .

It follows that we can invoke the distinguishing algorithm from Theorem 1

on G and y′ to decide if y lies in the image of F . If m ≥ n1+e, then m′ ≥ n1+e

⌈logn⌉
and the attack from Theorem 1 has time and space complexities in

2O(log(n)deg G/(deg G−1)·n1−e/(deg G−1)) = 2O(log(n)deg F/(deg F−1)·n1−e/(deg F−1)) (24)

and an advantage of

≥1−O
(
log(n)1/(degG−1) · n1−e/(degG−1)

N

)
(25)

≥1−O
(
log(n)1/(degG−1) · n1−e/(degG−1)

n

)
(26)

=1−O
(
log(n)1/(degG−1)

ne/(degG−1)

)
(27)

=1−O
(
log(n)1/(degF−1)

ne/(degF−1)

)
≥ 1− o(1). (28)

1 It is easy to notice the resemblance of A and the gadget matrix of Micciancio & Peik-
ert [MP12] in the setting of lattice-based cryptography.

9

This gives us a subexponential distinguishing attack on poly-stretch PRGs F :
{0, 1}n → {0, 1}m whose runtime is independent of the locality of F . I.e., this
attack is even applicable on PRGs computed by dense polynomials of constant
degree.

While we only handled the case of binary PRGs here, the extension technique
can naturally be used for PRGs F : kn → km that are polynomial over any small
field k.

We can summarize our result as follows:

Theorem 2 (Main Result). Let F : kn → km be a PRG of constant degree
degF over some field k. Set r := max (log(n)/log(#k), 1) and assume m ∈
ω(r · n).

Then, there is an algebraic attack on F whose time and space complexities

are bounded from above by nO((r·ndeg F

m)
1

deg F−1). Further, the advantage of this
attack in the pseudorandomness game of F (Definition 4) is lower bounded by

advF (A) ≥ 1−O
(r · n
m

)1/(degF−1)
≥ 1− o(1). (29)

For m ≥ n1+e, the attack is a subexponential-time algorithm with time and

space complexities in 2O(log(n)·r1/(deg F−1)·n1−e/(deg F−1)) and noticeable advantage
≥ 1−O((r/ne)1/(degF−1)).

Remark 1 (Avoiding Field Extensions.). The hashing technique in [Üna23b] did

indeed hash from {0, 1}m to Z⌊m/(3⌈log p⌉)⌋
p via a random matrix which induced

inevitable information loss. However, the new “extension technique” works via
a bijection that maps {0, 1}⌈logn⌉·m′

to Fm′

N without any information loss. In
fact, this technique is actually just a change in how we view the PRG F :
{0, 1}n → {0, 1}m and is reversible: a PRG G : Fn

N → Fm
N of degree d over F

can be seen as a PRG G′ : {0, 1}⌈log(n)⌉·n → {0, 1}⌈log(n)⌉·m of degree d over
Z2 and a PRG H : {0, 1}n → Fm

N of degree d over F can be seen as a PRG
H ′ : {0, 1}n → {0, 1}⌈log(n)⌉·m of degree d over Z2. We explain this further in
Remark 3.

A Search Algorithm for the Average Case. For learning with errors [Reg05] it is
known that there exists a simple search-to-decision reduction technique where
one solves a search problem with a secret vector s ∈ Rn over a polynomially
large ring R by guessing for each index i ∈ [n] a potential coordinate z ∈ R and
asking a decision oracle if the resulting problem instance with hard-wired si = z
is solvable. If z ̸= si, the resulting decision problem is with high probability not
solvable and the decision oracle will refute it. This gives a search algorithm that
uses a decision algorithm and has a computational overhead of n ·#R.

We can do the same thing for a polynomial inversion problem F (X) = y
where F : {0, 1}n → {0, 1}m is of constant degree. This gives a search algorithm
whose time complexity equals the runtime of the distinguishing attack in The-
orem 2 times a polynomial overhead of 2n. Unfortunately, we can only prove a
high advantage in the average case. Formally, we have:

10

Theorem 3 (Inversion Attack). Set r := max (log(n)/log(#k), 1) and as-
sume m ∈ ω(r · n).

There is an algorithm B that on input a polynomial map F : kn → km and
a target value y tries to output a preimage x ∈ F−1(y). The time complexity

of B is bounded by #k · nO
(
(r·ndeg F

m)1/(deg F−1)
)
. For each x ∈ kn, the success

probability of B can be bounded by

Pr
F

[B(F, F (x)) = x] ≥ 1− o(1) (30)

if the coefficients of F are drawn from k uniformly and independently at random.

The requirement that F is a uniformly random polynomial map of some constant
degree can be relaxed, see Definition 6 and Theorem 7.

Analogous to the decisional version, our findings for our search algorithm
shine back to Macaulay matrix-based solving algorithms and yield guarantees
for their success probability in the average case. We detail this in Remark 4.

Applicability to Learning Parity with Noise. Learning parity with noise (LPN)
[Pie12, BFKL94] consists of the problem of distinguishing a uniformly random
binary matrix from an LPN sample

(B,Bs+ e) (31)

where B ← Zm×n
2 and s← Zn

2 are uniformly random and e ∈ Zm
2 is a vector of

Bernoulli-distributed entries. I.e., each entry ei is zero with large probability 1−τ
and one with small probability τ . Usual parameters are m ∈ Ω(n), τ ∈ (0, 0.5).

A lot of advanced primitives ([BCGI18, BCG+22, BCG+19a, BCG+19b,
BCG+20] e.g.) use variations of LPN where one considers different noise-rates,
noise-distributions or higher values of m. A modification we will study here is
to cast LPN samples over larger fields (or rings) than Z2. In fact, for any field
(or ring) k, one can draw B ← km×n and s ← kn, and consider the sample
(B,Bs + e) where each entry of e is zero with probability 1 − τ and uniformly
sampled from k× with probability τ . The obfuscation schemes of [JLS21, JLS22],
for example, require the LPN assumption to hold over large prime fields Zp.

Now, one would like to understand how the hardness of LPN over Z2 relates
to the hardness of LPN over different fields and rings. Liu, Wang, Yang & Yu
gave reductions from LPN over the small field Z2 to the large integer ring Z2λ ,
and vice-versa. While they also studied LPN over the extension field F128 of Z2,
they did not give any reductions between LPN over Z2 and over F128.

We will fill this gap here. Concretely, we will show that LPN over Z2 and
an extension field F2r are – up to factors of r in the parameters – equivalent.

In fact, when given the LPN sample (B,Bs + e) ∈ Zrm×(n+1)
2 we can use the

matrix A from Eq. (21) to compute

(AB,ABs+Ae) ∈ Fm×(n+1)
2r . (32)

11

Now, AB is uniformly distributed in Fm×n
2r . If e ∈ Zrm

2 has a noise-rate of τ ,
then the noise-rate of Ae is close to r · τ . However, the coordinates of Ae are
usually not uniformly random from F×2r when they are not zero. We can come
up for this by replacing 1, ζ, . . . , ζr−1 in the rows of A by random bases of F2r

as Z2-vector space.

Vice-versa, if we are given (B,Bs+e) ∈ Fm×(n+1)
2r with s← Fn

2r , then we can

extract from each row of (B,Bs+ e) a linear equation b′i
T · s′+ e′i with b′i ∈ Zrn

2 ,
e′i ∈ Z2 and s′ ∈ Zrn

2 unique with As′ = s. Each new noise term e′i is zero with
probability approximately 1− τ .

In conclusion, we have the following reductions:

Theorem 4. 1. Solving LPN over F2r with m samples, n secrets and noise-
rate of τ is at least as hard as solving LPN over Z2 with r ·m samples, n
secrets and noise-rate of τ ′ ≈ τ/r.

2. Solving LPN over Z2 with m samples, rn secrets and noise-rate of τ is at
least as hard as solving LPN over F2r with m samples, n secrets and noise-
rate of τ ′ ≈ τ .

We detail both reductions in Section 6. Both reductions can be generalized to
arbitrary field extensions k ⊂ k. This shows that for each prime p, the difficulties
of LPN over different fields of characteristic p are comparable. What we still
do not know is how to compare the difficulties of LPN over fields of different
characteristics. E.g., we do not know if LPN over Z2 is substantially simpler or
more difficult than LPN over Zp, for p > 2λ prime.

1.3 Related Work

To better understand the new attacks of this work we will present here existing
attacks on PRGs of constant degree and constant locality, and finally compare
their performances.

Attacks on PRGs of Constant Degree.

Relinearization Attacks. Each known attack on PRGs of constant degree over
arbitrarily large fields is of algebraic nature. A first approach is to understand the
equation F (X) = y as a polynomial equation system with n variablesX1, . . . , Xn

and m polynomial equations f1(X) = y1, . . . , fm(X) = ym. By relinearizing this
equation system one can generate a linear equation system, on which one can
apply Gaussian elimination. If we have enough equations, i.e. m ≥

(
n+degF
degF

)
,

then with high probability [AG11] this linear equation system can be solved for
a possible seed x, or at least the satisfiability of the linear equation system can
be checked. This leads to a basic attack on polynomial PRGs that is efficient
and very reliable (its advantage is provably noticeable). This attack can already
be improved: we don’t need that m is greater than

(
n+degF
degF

)
, in fact, it suffices

that m ∈ Ω(ndegF). If m is smaller than
(
n+degF
degF

)
, but has the same asymptotic

complexity then it suffices to populate the linear equation system with more

12

polynomial equations that can be generated from F (X) = y up to some constant
degree.

Groebner Bases. Extending the idea of the relinearization-and-elimination al-
gorithm above leads to Groebner basis-based attacks. Groebner bases together
with a first algorithm for computing them have been introduced by Buchberger
[Buc76]. Faster algorithms have been given by Faugère [Fau99, Fau02], these
algorithms are based on Macaulay matrices [Mac16, Laz83]. Additionally, the
XL-algorithm with a lot of variations [CKPS00, CCNY12, DBM+08, MMDB08,
YC05] have been introduced, which also aim to compute something that is similar
to a Groebner basis. The core idea of those algorithms is to solve the polyno-
mial equation system F (X) = y by computing a Groebner basis for the ideal
(f1(X) − y1, . . . , fm(X) − ym) ⊂ k[X] for some monomial ordering. Most algo-
rithms do this by computing a Macaulay matrix up to an increasing degree and
applying Gaussian elimination on it: the Macaulay matrix for degree D is the
matrix where each row represents a polynomial XI · (fi(X) − yi), for a multi-
index I with |I| ≤ D− deg fi, and where each column represents a monomial of
k[X] up to degree D. I.e., the rows of the Macaulay matrix are the coefficient
vectors of polynomials XI · (fi(X)− yi). The columns are ordered according to
the monomial ordering. By applying Gaussian elimination to the Macaulay ma-
trix of degree D one can extract a Groebner basis from it, if D is large enough.
In most cases, the Groebner basis will be of the shape {X1 − x1, . . . , Xn − xn},
which allows to directly read off the solution X = x ∈ kn of the polynomial
equation system F (X) = y. Hence, Groebner basis-based attacks are usually
inversion attacks that try to extract the seed X = x from the PRG problem
F (X) = y.

While Groebner basis-based algorithms perform well in practice, it is hard
to give formal guarantees for them. In the worst case, the highest degree of
polynomials of a reduced Groebner basis for an equation system F (X) = y is
doubly exponential [Dub90]. However, the doubly exponential degree only occurs
in extreme cases. On average, the maximum degree for which a Macaulay matrix
must be computed is suspected to be upper-bounded by the degree of regularity
(in the case of graded anti-lexicographic monomial orders [CG21, CG23]). The
degree of regularity is a popular heuristic for Groebner basis-based algorithms,
it has been shown to be smaller than O(n1−e/(d−1)) for a system of m ≥ n1+e

equations of degree d [Üna23a]. This would yield an inversion attack of suspected

time complexity nO(n1−e/(deg F−1)).
In the case of refutation, better bounds can be given: a Groebner basis-based

algorithm for refutation problems only checks if the equation 1 = 0 can be
deduced from a Macaulay matrix of sufficiently large degree (so the monomial
ordering does not matter, those algorithms are actually just Macaulay matrix-
based). If up to some degree the span of the rows of the Macaulay matrix does not
contain a vector that corresponds to a constant non-zero polynomial, then the
algorithm assumes that the system F (X) = y is solvable and decides that y lies in
the image of the PRG F . Otherwise, the algorithm could prove that F (X) = y is
unsatisfiable and refutes y. It has been shown [Üna23a] that such algorithms only

13

need to compute the Macaulay matrix up to some degree in O(n1−e/(degF−1)).
If the base field k is large enough (#k ≥ n e.g.), then this approach will provably
have an advantage of 1−o(1). Otherwise, for small fields, the advantage can still
be lower bounded by an inverse of a subexponential function. Our results here
extend to this algebraic refutation approach: according to Remark 3, it suffices
to compute the Macaulay matrix up to some degree in O(log(n)1/(degF−1) ·
n1−e/(degF−1)) for this algorithm to have a provable advantage of 1− o(1), even
if k is small.

However, we want to point out that extending a PRG F : kn → km to

G : kn → k
m′

, m′ ≈ m · log(#k)/ log(n), will not improve the performance of a
Groebner basis resp. Macaulay matrix-based algorithm (i.e. solving G(x) = y′

will not be simpler than solving F (x) = y for such algorithms). The reason is that
– simply put – the field extension technique here will already be implicitly used
when computing Macaulay matrices, even when all computations happen over
the small base field k (as Remark 3 explains one polynomial over k inm′ variables
corresponds to many polynomials over k in m variables of the same degree).
Therefore, to use the results here on Groebner basis resp. Macaulay matrix-
based algorithms, it suffices to increase the degree up to which the Macaulay
matrix is computed by a small factor of log(n)1/(degF−1).

New Algebraic Attacks. In his master thesis, Zichron [Zic17], gave a new algebraic
attack on polynomial PRGs of constant degree over any field. The new idea is
to find an algebraic relationship 2 among the polynomials computing the output
values of the PRG. The author proved that the time complexity of this algorithm
is subexponential and gave lower bounds for the advantage of this algorithm
[Üna23b]. In the case of small base fields (like k = Z2), the author gave a
hashing technique that improves the advantage substantially by hashing from
Z2 values to Zp values.

On a PRG F : kn → kn
1+e

, the algorithm of Zichron and the author has

a time complexity of nO(n1−e/(deg F−1)) and a noticeable advantage if k is large.
If k is small, the advantage of this algorithm can only be lower-bounded by a
subexponentially small function.

Using the hashing technique of [Üna23b] on PRGs F : {0, 1}n → {0, 1}n1+e

yields an algorithm of time complexity nO(log(n)1/(locF−1)·n1−e/(locF−1)) and ad-
vantage 1− o(1). However, note that in this case the complexity depends on the
locality of the PRG, which makes this algorithm with hashing technique only
applicable to binary PRGs of constant locality.

Barrier of Applebaum and Lovett. Unfortunately, the time complexity of al-
gebraic algorithms must be subexponential in general. In fact, Applebaum &

2 Note that such a relationship h(Y) corresponds to a non-trivial element of the elim-
ination ideal (f1(X) − Y1, . . . , fm(X) − Ym) ∩ k[Y]. Since a generating set of this
elimination ideal can be computed by a Groebner basis (via an elimination order)
we see that algebraic relationships and Macaulay matrices are related. See [Üna23a]
for a detailed discussion of parallels.

14

Lovett proved that the time complexity of an algebraic algorithm deciding if y ∈
{0, 1}n1+e

lies in the image of a random local function F : {0, 1}n → {0, 1}n1+e

is lower-bounded by nO(n1−16·e/(d−1)) where d is the rational degree 3 of the pred-
icate of F [AL18, Theorem 5.4].

It is an interesting open problem to construct new algebraic algorithms that
perform provably faster than the barrier of Applebaum and Lovett and have
non-negligible advantage. Note that such new algorithms must avoid computing
Macaulay matrices.

The Polynomial Method. In a recent line of work [LPT+, BKW19, Din, Din21],
worst-case algorithms for finding solutions of a polynomial equation system
F (X) = y have been given. While these algorithms all have an exponential run-
time of 2O(n), they significantly beat the typical brute-force search for a solution
x by an exponential speed-up.

For solving quadratic systems over Z2 with n variables, the first algorithm
has been given by Lokshtanov, Paturi, Tamaki, Williams & Yu [LPT+] with a
worst-case runtime of O(20.8765n). Their algorithm has been improved to have an
asymptotic runtime of poly(n)·20.804n by Björklund, Kaski &Williams [BKW19].
Dinur [Din] further improved this asymptotically to O(20.6943n) and gave a better
algorithm for concrete parameters [Din21].

At the heart of all of those algorithms is the polynomial method, which is
usually used to prove lower bounds in circuit complexity theory [Wil14]. The
idea is that – instead of checking if fi(x) = yi for each i ∈ [m] separately on
input x ∈ {0, 1}n – we consider the polynomial

p(X) :=

m∏
i=1

(1 + fi(X)− yi)− 1 ∈ Z2[X]. (33)

p(X) does vanish on input x ∈ {0, 1}n iff each equation fi(x) = yi is fulfilled.
However, the degree of p is very large, so instead of looking for roots of p, one
uses a randomized simplification p̃ of p with significantly lower degree. By various
algebraic tricks, we can now iterate fast over x ∈ {0, 1}n and check if p̃ vanishes
on x.

Attacks on PRGs of Constant Locality. Local PRGs [Gol11] have been
subject to cryptoanalysis for a long time. The reader can find well-written surveys
on their security in [App13, CDM+18].

We will try to give here an overview on the most important attacks on local
PRGs F : {0, 1}n → {0, 1}m of polynomial stretch m ≥ n1+e over Z2. For
simplicity, we will assume that F is a random local function, i.e. for computing

3 The rational degree of a predicate P : {0, 1}locF → {0, 1} is defined as the smallest
number e s.t. there exist polynomials Q,R ∈ Z2[X1, . . . , XlocF] of degree e that
fulfil P (X) ·Q(X) = R(X) mod (X2

1 −X1, . . . , X
2
locF −XlocF) and Q ̸= 0. In other

words, P can be written as the rational function P (X) = R(X)
Q(X)

of degree e whenever
Q does not evaluate to zero.

15

each output bit it evaluates the same predicate P : {0, 1}locF → {0, 1} on a
constant set of input bits. The set of input bits depends on the corresponding
output bit. The security of random local functions has been extensively discussed
by Applebaum [App13].

Linear Tests as Sanity Checks. A linear test is a degree-1 polynomial L ∈
Z2[Y1, . . . , Ym] that gets evaluated on the potential output y of a PRG. If
y ← {0, 1}m is uniformly random, then the output L(y) is balanced. However,
for an image y = F (x), the output L(y) may be biased towards zero or one. In
fact, the bias of a PRG F : {0, 1}n → {0, 1}m is defined to be the maximum of
distinguishing advantages of linear tests of F , and one strives to construct PRGs
of negligible bias.

It has been shown that the bias of F depends mainly on the predicate P
that is used by F [ABR12]. Further, for random local functions linear tests are
a good first check to probe their security: if a random local function has a low
bias, it is also secure against a large corpus of other attacks [ABR12, App13].
Additionally, we know of random local functions that have a provably negligible
bias: in fact, [MST03] constructed a predicate of locality 5 and a local PRG
F : {0, 1}n → {0, 1}cn that uses this predicate s.t. the bias of F is provably

2−n/O(c4) (for small choices of c > 1).
Also, Viola [Vio08] showed that one can generically create PRGs that are

secure against low-degree tests by using PRGs of low bias.

Approximation-Based Attacks. Bogdanov and Qiao [BQ09] showed that suffi-
ciently close approximations x′ of the seed x can help to invert the function
F (x) efficiently. This leads to a subexponential inversion attack on local PRGs

F : {0, 1}n → {0, 1}n1+e

. This attack iterates over a set of 2O(n− e
2 locF) bitstrings

x′ of length n. With good probability one of those bitstrings x′ will be very close
to the correct solution x. By using this approximate solution x′ one can then
invert F (x) = y efficiently and check if the yielded solution is correct.

This leads to an inversion attack with time complexity 2O(n1− e
2 locF).

Correlation-Based Attacks. A predicate P : {0, 1}locF → {0, 1} is called c-
correlated if there are c different input variables Xi1 , . . . , Xic s.t. P (X)⊕Xi1 ⊕
. . .⊕Xic is unbalanced (i.e. its probability to evaluate to zero on a random input
x← {0, 1}locF is not 1/2). A predicate that has a high correlation is also called
resilient (when we say “high correlation” we mean it is only c-correlated for
large values of c).

Local random functions of low correlation can be efficiently inverted if they
have sufficient stretch [App13, ABW10, MST03, BQ09]. In fact, if F : {0, 1}n →
{0, 1}m stems from a predicate of correlation c, and we havem ∈ Ω(nc/2)+ω(n),
then we can deduce from Ω(nc/2) equations of the system F (X) = y a new
system of Ω(n) noisy equations of the shape Xi ⊕ Xj = y′l. By using an SDP
algorithm [CW04, GW95] on this noisy system of locality 2, we can extract an
approximation of x. By using this approximation and ω(n) fresh equations of
F (X) = y we can efficiently deduce the correct solution x [BQ09].

16

Siegenthaler showed that a predicate can either have a high algebraic de-
gree or a high correlation, but not both [Sie84]. In fact, a balanced predicate
P : {0, 1}locF → {0, 1} must be c-correlated for c ≤ locF − degF − 1. This
leads to the following important attack: Given a PRG F : {0, 1}n → {0, 1}m
of locality d = locF and stretch m ∈ ω(n⌊2d/3⌋/2) that stems from a pred-
icate P : {0, 1}d → {0, 1}, we can distinguish two cases: first case, we have
degF ≤ ⌊d/3⌋ ≤ ⌊2d/3⌋ /2. In this case, we can invert F by using relineariza-
tion (with high probability), since we have m ∈ ω(n⌊2d/3⌋/2) many equations.
Second case, we have degF > ⌊d/3⌋. In this case, we have for the correla-
tion c ≤ d − ⌊d/3⌋ − 1 and, hence, c ≤ ⌊2d/3⌋. In this case, the correlation-
based attack can be applied to efficiently invert F (x). It follows that a PRG
F : {0, 1}n → {0, 1}m of stretch m ∈ ω(n⌊2d/3⌋/2) and locality d cannot be
secure, at all.

O’Donnell and Witmer [OW14] showed that we really need a stretch of m ∈
ω(n⌊2d/3⌋/2) and that the correlation-based attack does not degrade gracefully for
smaller stretchesm. I.e., if the stretchm lies in o(n⌊2d/3⌋/2) the above attack does
not yield a subexponential attack, since the SDP algorithms have a minimum
number of equations they need to use.

Guess-and-Determine Attacks. Couteau, Dupin, Méaux, Rossi & Rotella [CDM+18]

gave multiple new attacks on PRGs F : {0, 1}n → {0, 1}n1+e

that they call
guesss-and-determine attacks. Their attacks are subexponential inversion at-
tacks.

The PRG they attack does not need to be local, but it needs to use a predicate
P : {0, 1}d+ℓ → {0, 1} of the following form

P (X) =M(X1, . . . , Xd)⊕Xd+1 ⊕ . . .⊕Xd+ℓ (34)

for some unbalanced predicate M : {0, 1}d → {0, 1}. Note that we have degF ≤
d < locF if F is not to be trivially broken. This is important, since d determines
the time complexity of their attack.

Their first attack proceeds as follows: In a so-called selection phase, their at-
tack chooses (intelligent and greedily) n1−e/(d−1) input bits s.t. sufficiently many
equations of F (X) = y will become linear once these input bits are fixed to con-
stant values. In a second phase, the algorithm iterates over all possible values
for these input bits. For each assignment, the algorithm gets a linear equation
system in the remaining variables with at least n equations. At this point, the
algorithm distinguishes two cases: if the resulting matrix has full rank, the al-
gorithm solves the linear equation system and receives a possible assignment for
the remaining inputs. Given such a candidate seed x′, the algorithm can check
if x′ is a correct solution for F (X) = y. Otherwise, if the yield matrix does
not have full rank, the algorithm can deduce multiple linear equations that does
have to hold over y = F (x). If all of these equations do hold over y, then the
algorithm knows that, with noticeable probability, y must lie in the image of F .

The runtime of this algorithm is poly(n) · 2n1−e/(d−1)

, and in the special case

of the tri-sum-and predicate, the runtime of their algorithm is poly(n) · 2n1−e/2.

17

Couteau, Dupin, Méaux, Rossi & Rotella could show that this attack has a
noticeable advantage at distinguishing the output of F from uniform randomness
for predicates P = M ⊕

⊕ℓ
i=1X2+i with M = X1X2. For other choices of

M : {0, 1}d → {0, 1}, they can only prove a high advantage of their algorithm
assuming a specially tailored assumptions which depends on locF .

Further, they use the notion of bit fixing algebraic immunity [MJSC16] and
show that the selection phase of their algorithm can be used to exploit low bit
fixing algebraic immunity of predicates. In fact, if the algebraic immunity of a
predicate M deteriorates fast, then instead of trying to extract a linear system
the algorithm tries to fix less input bits to extract a polynomial equation system
of low degree. This polynomial equation system can then be subexponentially
solved by a Groebner basis-based algorithm.

Yang, Guo, Johansson & Lentmaier [YGJL22] improved the guess-and-determine
attack in the case of the famous tri-sum-and predicate of locality 5. They could
show that their attack achieves a better runtime of poly(n) · 2n1−e/4. Further,
they gave a new attack, which they dubbed guess-and-decode attack, that works
similarly but, instead of inverting a linear subsystem, tries to decode a quadratic
equation system by using belief propagation. While their guess-and-decode has
the same asymptotic time complexity poly(n) · 2n1−e/4, and performs better in
practice, they could only verify experimentally its success probability.

Shrinking-Set Attacks. A shrinking set for a local PRG F : {0, 1}n → {0, 1}n1+e

is a subset Tx ⊂ [n] of input bit positions s.t. the set

Ty = {j ∈ [m] | fj only depends on input bits in Tx} (35)

of output bits that only depend on the input bits specified by Tx is truly larger
than Tx, i.e. #Ty > #Tx. Zichron [Zic17] showed that F must have a shrinking
set Tx of size #Tx ∈ Θ(n1−e/(locF−1)). It can be easily shown that, when we
sample Tx ⊂ [n] uniformly at random of size Θ(n1−e/(locF−1)), Ty will have more
elements than Tx with non-negligible probability.

This leads to the following distinguishing attack [AIK08] on F : sample Tx ⊂
[n] uniformly at random of size Θ(n1−e/(locF−1)). If Ty is larger than Tx, we
essentially have a smaller PRG

F ′ : {0, 1}#Tx −→ {0, 1}#Ty (36)

that maps the input bits chosen by Tx to the output bits specified by Ty. Given

a string y ∈ {0, 1}n1+e

and the task to decide if y lies in the image of F , we can
instead consider the substring y′ := (yj)j∈Ty and check if y′ lies in the image of
F ′. Indeed, if y = F (x) then y′ = F ′(x′) (for a substring x′ of x). Otherwise, if y
is uniformly random, then y′ will not lie in image of F ′ with probability at least
1/2 (since #Ty > #Tx). Therefore, it suffices to check if y′ lies in the image of
F ′. This can be done by brute-force: we iterate over all possible assignments for
the input bits chosen by Tx and see if y′ is a possible output of F ′.

Since the size of Tx lies in O(n1−e/(locF−1)), this yields a distinguishing attack

of time complexity O(2n
1−e/(locF−1)

). Note that this attack can be combined with

18

inversion attacks of [LPT+, BKW19, Din, Din21] to achieve better constants in
the exponent.

Comparing Runtimes. We will now consider the problem of distinguishing
the outputs of a local PRG F : {0, 1}n → {0, 1}m of poly-stretch m ≥ n1+e from
true randomness. Remember that the attack that we present in this work has a
time complexity upper-bounded by

nO(log(n)1/(deg F−1)·n1−e/(deg F−1)) = 2O(log(n)deg F/(deg F−1)·n1−e/(deg F−1)) (37)

and an advantage lower-bounded by

1−O(log(n)1/ degF /ne/(degF−1)) ≥ 1− o(1). (38)

From all attacks listed in this overview, only three have a (potentially)
faster runtime for small values of e than this attack, since the runtimes of all
other attacks depend on the locality of d or are directly exponential. Those
attacks are the basic algebraic attack that is based on algebraic relationships
[Zic17, Üna23a, Üna23b], the Groebner basis-based resp. Macaulay matrix-based
attacks [Fau99, Fau02, CKPS00, CCNY12, DBM+08, MMDB08, YC05] and
the guess-and-determine attacks of Couteau, Dupin, Méaux, Rossi & Rotella
[CDM+18] and Yang, Guo, Johansson & Lentmaier [YGJL22]. We will compare
each of those attacks individually with our attack:

1. The basic algebraic attack [Zic17, Üna23a, Üna23b] from Theorem 1 works
by finding an algebraic relationship among the polynomials f1, . . . , fm ∈
Z2[X] (without going from Z2 to a larger field). The runtime of this algorithm

is upper-bounded by nO(n1−e/(deg F−1)) = 2O(log(n)·n1−e/(deg F−1)) which is by
the factor log(n)1/(degF−1) in the exponent smaller than the runtime of the
algorithm of Theorem 2.
However, in the case of binary PRGs, the advantage of this algorithm is
only known to be lower-bounded by a subexponentially small function (note,
that for this case the algorithm must be slightly adapted s.t. it retrieves an
algebraic relationship that is reduced modulo the field equations of Z2, the
details are described in [Üna23a]).
Hence, while the basic algebraic algorithm is faster than the algorithm of
Theorem 2, it only gives an unsatisfactory advantage for breaking the pseu-
dorandomness of binary PRGs.

2. When trying to solve the equation system F (X) = y, the algorithms of
Faugère [Fau99, Fau02] and the XL-algorithms [CKPS00, CCNY12, DBM+08,
MMDB08, YC05] will aim to compute a Groebner basis for the ideal (f1(X)−
y1, . . . , fm(X)− ym). While this may work well in praxis, in the theoretical
very worst case, computing a Groebner basis may have a doubly exponential
time complexity.
In the simpler case of only checking the system of F (X) = y for satisfiability,
it suffices to consider algorithms that compute the Macaulay matrix up to

19

some degree D and inspect if they can deduce a contradiction from it. Our
results here show that there is some D ∈ O(log(n)1/(degF−1) ·n1−e/(degF−1))
s.t. it suffices to check the Macaulay matrix up to degree D to have a
high distinguishing advantage. It follows that for the Macaulay matrix-
based algorithm and the algorithm from Theorem 2, we can give the same

bound 2O(log(n)deg F/(deg F−1)·n1−e/(deg F−1)) on the time complexity and the
same bound 1 − o(1) on their advantages. However, following the discus-
sion in [Üna23a], while both algorithms have the same asymptotic bounds,
it is known that the hidden constants of the algorithm from Theorem 2 are
better in the non-uniform model: in fact, if the PRG F is known ahead, the
algebraic relationship h can be computed in a preprocessing phase. In the
actual security game, the non-uniform adversary then gets the relationship
h as a hint and can solve the fresh challenge y by simply evaluating h on
it. This is faster than computing the Macaulay matrix of F (X) = y up to
degree D = degF · deg h.

3. The guess-and-determine attacks of Couteau, Dupin, Méaux, Rossi & Rotella
[CDM+18] and Yang, Guo, Johansson & Lentmaier [YGJL22] have a time

complexity of 2O(n1−e/(d−1)) for an integer d ∈ [degF, locF − 1] that de-
pends on the predicate used by F . In the best cases, we have d = degF and
the algorithm performs by a factor of log(n)degF/(degF−1) in the exponent
faster than the algorithm from Theorem 2. However, in the general case, d
will be larger than the degree of the predicate of F (for example the predi-
cate P (X1, . . . , Xℓ) could be replaced by P (X1, . . . , Xℓ)⊕P (Xℓ+1, . . . , X2ℓ)).
Hence, in most cases the guess-and-determine attacks will perform worse
than the algorithm from Theorem 2.

Acknowledgements. Before writing this paper I presented its results in a talk
at the crypto seminar at NYU. I want to thank the audience for interesting
discussions we had while I gave my talk.

2 Preliminaries

2.1 Notation

Denote by N = {1, 2, 3, . . .} the set of natural numbers.
For a field k, we denote by k[X1, . . . , Xn] the ring of polynomials in n

variables over k. Sometimes, by abuse of notation, we will just write k[X] :=
k[X1, . . . , Xn]. For f ∈ k[X], we denote by deg f its degree, that is its total
degree.

For a prime p ∈ N, we denote by Zp := Z/pZ the field with p elements.
Further, for e ∈ N, we denote by Fpe the Galois field with pe elements. Up to
isomorphism, Fpe is uniquely determined by its size.

In this text, n will always denote the security parameter. An additional pa-
rameter is given by the stretch m = m(n) that depends on n. We will always
tacitly assume that m is time-constructible.

20

Let V be some vector space. Given subspaces V1, . . . , Vr ⊂ V that fulfil

Vi ∩

∑
j ̸=i

Vj

 = 0 (39)

for each i ∈ [r], we will denote by V1 ⊕ . . .⊕ Vr the smallest subspace of V that
contains each Vi. I.e., V1 ⊕ . . . ⊕ Vr equals V1 + . . . + Vr, but by using the ⊕
symbol we emphasize that the enumeration of basis vectors of V1, . . . , Vr stays
linearly independent.

2.2 Mathematical Preliminaries

Definition 1. Let k, k be fields. If there exists a homomorphism of rings ι : k →
k, we will call the pair k, k a field extension. Note that each ring homomor-
phism must send 1 to 1, therefore each ring homomorphism must be injective on
fields. In particular, ι : k → k is one-to-one and – without loss of generality –
we can assume that k is a subset of k. By abuse of notation, we will denote field
extensions always as subset-relationships k ⊂ k.

We will repeat here a well-known fact from algebra and the theory of field
extensions.

Lemma 2. Let k ⊂ k be an extension of finite fields. Then, k ⊂ k is simple,
i.e., there exists an element ζ ∈ k s.t. k = k[ζ]. I.e., each element of k can be
written as f(ζ) where f ∈ k[Z] is a univariate polynomial.

Proof (Sketch). First note that the unit group k
×

= k \ {0} must be cyclic.
Otherwise, there would be a proper divisor d|(#k − 1) s.t. we have xd = 1 for

each x ∈ k×. However, the polynomial Xd−1 can have at most d < #(k
×
) roots

in k. Ergo, there must exist at least one element in k
×

of proper order #k − 1.

Let ζ ∈ k be a generator of k
×
. Then, we have k[ζ] = k. In fact, besides zero

each element of k can be written as a power of ζ.

Note that each simple and finite field extension k ⊂ k that is generated by one
element ζ can be written as

k[ζ] = k
∼
= k ⊕ ζ · k ⊕ . . .⊕ ζr−1 · k ∼= kr (40)

where r = [k : k] := dimk k is the degree of the extension k ⊂ k. I.e., as a
k-vector space k has the basis 1, . . . , ζr−1 and each element c ∈ k has a unique
representation

c = b1 + b2 · ζ + . . .+ br · ζr−1 (41)

for b1, . . . , br ∈ k.
We cite here the general Schwartz-Zippel Lemma, which will be implicitly

used by Theorem 5.

21

Lemma 3 (Schwartz-Zippel [DL78, Zip79, Sch80]). Let k be any field and
let S ⊂ k be a finite set. Let h ∈ k[Y1, . . . , Ym] be a polynomial in m variables.
We have

Pr
y←Sm

[h(y) = 0] ≤ deg h

#S
. (42)

2.3 Cryptographic Preliminaries

In the following, we will revisit the definitions and results from [Üna23a, Üna23b]
for pseudorandom number generators. For compactness, the definitions here will
be less detailed than in [Üna23a, Üna23b].

Definition 2 (Pseudorandom Number Generators). Let k be a field. A
pseudorandom number generator (PRG) is a deterministic algorithm

F : kn −→ km (43)

that is parametrized by n.
We call m = m(n) the stretch of F . If m ≥ n1+e for some constant e > 0,

we call F a poly-stretch PRG.

Definition 3 (Locality and Degree of PRGs). Let F : kn → km be a
PRG over a finite field k. Let f1, . . . , fm : kn → k be the functions that compute
the corresponding output values of F . Note, that each fi can be computed by a
polynomial in k[X1, . . . , Xn]. In this text, we will always assume that each fi is
in fact a polynomial in k[X1, . . . , Xn] that is reduced modulo the field equations
of k.

1. We define the (algebraic) degree of F as the maximum of all degrees of the
polynomials computing its output values. I.e.

degF := max
i∈[m]

(deg fi) (44)

2. We define the locality of a polynomial f ∈ k[X1, . . . , Xn] as the number of
variables that occur non-trivially in f . I.e.

loc f := min {#S | S ⊆ [n], f ∈ k[Xi | i ∈ S]} . (45)

We define the locality of F as the maximum of all localities of the polyno-
mials computing its output values. I.e.

locF := max
i∈[m]

(loc fi) (46)

Definition 4 (Security Game for PRGs). Let F : kn → km be a PRG over
a finite field k. The security-game for F with an adversary A is given by:

1. A challenger draws a bit b← {0, 1}. If b = 0, it samples a preimage x← kn

uniformly at random, computes F (x) and sends (F, F (x)) to A. If b = 1, it
samples y ← km and sends (F, y) to A.

22

2. A receives (F, y∗) for some y∗ ∈ km and must decide which bit b has been
drawn by the challenger. A makes some computations on its own and finally
sends a bit b′ to the challenger.

A wins an instance of this game iff b = b′ holds at the end. We define A’s
advantage against F by

advF (A) := 2 · Pr[A wins]− 1 (47)

= Pr
x←kn

[A(F, F (x)) = 0] + Pr
y←km

[A(F, y) = 1]− 1 (48)

where we take the probability over the randomness of A and the challenger.

Definition 5. We say that an algorithm is subexponential if there is a con-
stant e ∈ [0, 1) s.t. its time complexity lies in 2O(ne).

Theorem 5 ([Üna23a] Theorem 2). Let m ∈ ω(n). Let F : kn → km be a
PRG of constant degree degF over k.

Then, there is an algebraic attack on F whose time and space complexities

are bounded from above by nO((ndeg F /m)
1

deg F−1). Further, the advantage of this
attack in the pseudorandomness game of F (Definition 4) is lower bounded by

≥ 1−O
((
ndegF /m

) 1
deg F−1 · 1

#k

)
. (49)

Remark 2. In [Üna23a], Theorem 5 has only been stated for fields k = Zp,
however, it is clear that the attack and the proof of Theorem 5 work for any
field k (in fact, the algorithm B that is used as a subroutine of this attack is
stated for any field and the Schwartz-Zippel lemma works for any field, too).

While in Definition 4 we only define the security of PRGs with regard to the
uniform distribution over kn, the attack of Theorem 5 works for any distribution
of seeds in kn. The reason is that the attack will always correctly recognize image
points F (x) independent of the seed x. However, a random point y ← km will

only be refuted by the attack with probability ≥ 1−O(
(
ndegF /m

) 1
deg F−1 · 1

#k).

3 The New Distinguishing Attack

We will prove here our main result:

Theorem 6. Let F : kn → km be a PRG of constant degree degF over some
field k. Set r := max (log n/log#k, 1) and assume m ∈ ω(r · n).

Then, there is an algebraic attack on F whose time and space complexities

are bounded from above by nO((r·ndeg F

m)1/(deg F−1)). Further, the advantage of this
attack in the game of Definition 4 against F is lower bounded by

≥ 1−O
((r · n

m

)1/(degF−1)
)
≥ 1− o(1). (50)

23

We will need the following lemma:

Lemma 4. Let k ⊂ k be a field extension generated by an element ζ ∈ k. Let
r = [k : k] = dimk k be the degree of this extension.

Then, the m′ × (rm′) matrix

Am′ := Im′ ⊗
(
1 ζ . . . ζr−1

)
=

1 ζ . . . ζr−1

. . .

1 ζ . . . ζr−1

 (51)

gives an isomorphism of k-vector spaces

Am′ : krm
′
−→ k

m′

(52)

and a degree-preserving isomorphism of k-vector spaces

Am′ : (k[X1, . . . , Xn])
rm′
−→ (k[X1, . . . , Xn])

m′
(53)

by left-multiplication.

Proof. Note, that 1, ζ, . . . , ζr−1 is a basis of k as a k-vector space. Indeed, since
ζ generates k over k, each element of k can be written as a polynomial g(ζ)
evaluated on ζ. Since the algebraic degree of ζ over k is r, there must exist a
non-zero polynomial h ∈ k[Z] of degree exactly r that has ζ as root. Therefore,
the polynomial representation g ∈ k[Z] of any element of k = k[ζ] can be reduced
modulo h to a polynomial of degree < r.

Since each element of c ∈ k has a unique representation as a linear combina-
tion

c = b1 + b2 · ζ + . . .+ br · ζr−1 (54)

for b1, . . . , br, Am′ gives us a linear bijective map from krm
′
to k

m′

.
Now, if we are given polynomials f1, . . . , fr ∈ k[X1, . . . , Xn] of degree ≤ d,

then f1 + f2 · ζ + . . .+ fr · ζr−1 is an element of k[X1, . . . , Xn]. Since scaling and
adding polynomials does not increase their degree, the degree of f1+f2 ·ζ+ . . .+
fr · ζr−1 is at most d (in fact, it equals the maximum of degrees of f1, . . . , fr).
It follows, that for each d ∈ N, Am′ gives us a bijective linear map

Am′ : (k[X1, . . . , Xn]
≤d)rm

′
−→ (k[X1, . . . , Xn]

≤d)m
′
. (55)

Proof (Theorem 6). Denote by A the algorithm from Theorem 5. A is an al-

gorithm that – when given a PRG G : k
n → k

m′

of degree d and a point

y′ ∈ km
′

– will always output 0 if y′ ∈ G(kn) and will output 1 with probability

≥ 1 − O
((
nd/m′

) 1
d−1 · 1

#k

)
for y′ ← k

m′

. The runtime of A is bounded by

≤ nO((nd/m′)1/(d−1)).

24

Let k be a field and F : kn → km a PRG of degree d := degF over k. We can
assume that #k < n, since otherwise the claim of the theorem follows directly

from Theorem 5. Set r :=
⌈

logn
log#k

⌉
=

⌈
log#k n

⌉
and m′ :=

⌊
m
r

⌋
.

We will attack the pseudorandomness of F by giving a reduction R that
transforms F to a PRG whose pseudorandomness can be broken by A with
noticeable advantage. On input F : kn → km and a point y ∈ km, R has to
decide if y lies in the image of F or has been sampled uniformly at random. We
assumed that the size of k is less than n, so k is finite. R now constructs an
extension field k of k s.t. k has (#k)r ≥ n elements. In particular, the algebraic
degree of the extension k ⊂ k will be r. According to Lemma 2, there is an
element ζ ∈ k that generates k over k, i.e.

k = k[ζ]. (56)

R can find an extension field k together with a generator ζ by searching
for an irreducible polynomial g ∈ k[Z] of degree r, which can be done in poly-
time. When given g, k is isomorphic to k[Z]/(g(Z)) and the residue class of
Z corresponds to the generator ζ. Alternatively, if R already knows a suitable
extension field k of k, R can find a generator for this extension by searching

for an element ζ ∈ k× whose multiplicative order is exactly #k − 1. The time
complexity of searching for ζ is at most polynomial in the size of k.

Given k ⊂ k and ζ, R computes the matrix Am′ ∈ km
′×(r·m′)

from Lemma 4.
Note that r·m′ ≤ m < (r+1)·m′. Since rm′ may be smaller thanm,R constructs

a new matrix B ∈ km
′×m

B =
(
Am′ 0m′×(m−rm′)

)
=

1 ζ . . . ζ⌈logn⌉−1 0 . . . 0
. . .

...
...

1 ζ . . . ζ⌈logn⌉−1 0 . . . 0

(57)

which consists of Am′ and m−rm′ < r columns of zero. Multiplying Am′ with F
and y is equivalent to truncating F and y to their first rm′ functions resp. outputs
and multiplying those with Am′ . Lemma 4 therefore yields that the map

G := B · F : kn −→ k
m′

(58)

x 7−→ B · F (x) (59)

is polynomial of degree d = degF over k, and that y′ := B · y is uniformly

distributed in k
m′

if y ← km.
R therefore computes y′ = B ·y and polynomials representing G = B ·F and

submits both to A. We can now consider two cases:

1. If y equals F (x) for some x ∈ {0, 1}n, then y′ = B ·y equals G(x) = B ·F (x).
In this case, A will always output 0.

25

2. If y ← km has been sampled uniformly at random, then y′ = B · y is dis-

tributed uniformly in k
m′

. In this case, A will output 1 with probability

≥1−O(
(
nd/m′

) 1
d−1 · 1

#k
) ≥ 1−O(

(
r · nd/m

) 1
d−1 · 1

n
) (60)

≥1−O((r · n/m)
1

d−1) (61)

It follows that the advantage of R is lower-bounded by

advF (R) ≥1−O((r · n/m)
1

d−1) (62)

and hence high.
Further, the time complexity of A is upper-bounded by

≤ nO((nd/m′)1/(d−1)) ≤ nO((r·nd/m)1/(d−1)). (63)

Hence, R’s time complexity is bounded by ≤ nO((r·nd/m)1/(d−1)), too.

Remark 3. If one does not want to use extension fields k, one can modify the
algorithm from Theorem 5 s.t. one receives an algebraic algorithm over the base
field k that has the same runtime and advantage bounds as in Theorem 2.

Given a binary PRG F : {0, 1}n → {0, 1}m, m ≥ n1+e, the idea is – when
running the algorithm from Theorem 5 – to compute a basis for kerϕD where

ϕD : Z2[Y1, . . . , Ym] −→ Z2[X1, . . . , Xn] (64)

Yi 7−→ fi (65)

for D ∈ O((log n)1/(degF−1) · n1−e/(degF−1)) large enough.
When one needs to decide if a point y ∈ {0, 1}m lies in the image of F , one

evaluates all basis polynomials of kerϕD on y: if one polynomial in kerϕD does
not vanish on y, then we know that y cannot lie in the image of F . Otherwise, if
the whole space kerϕD vanishes on y, then we know that with high probability
y must lie in the image of F .

The reason for this is that the algebraic relationship h ∈ FN [Y ′1 , . . . , Y
′
m′],

N = 2⌈logn⌉, that is yield in the algorithm of Theorem 5 after we went from
F : {0, 1}n → {0, 1}m to G : {0, 1}n → Fm′

N can be interpreted as ⌈log n⌉
polynomials in Z2[Y1, . . . , Ym] of degree O((log n)1/(degF−1) · n1−e/(degF−1)).

In fact, the matrix Am′ from Lemma 4 maps the variables Y1, . . . , Ym (which
represents binary values) to the variables Y ′1 , . . . , Y

′
m′ , m′ = ⌊m/ ⌈log n⌉⌋, (which

represent extension field values) by

Y ′i = Y(i−1)·⌈logn⌉+1 + ζ · Y(i−1)·⌈logn⌉+2 + . . .+ ζ⌈logn⌉−1 · Yi·⌈logn⌉. (66)

Further, h ∈ FN [Y ′1 , . . . , Y
′
m′] can be written as

h(Y ′) =
∑

I∈Nm′
0 ,|I|≤D

(cI,1 + ζ · cI,2 + . . .+ ζ⌈logn⌉−1 · cI,⌈logn⌉) · Y ′
I

(67)

26

for coefficients cI,i ∈ Z2. By substituting the Y ′-variables in h by Y -variables
according to Eq. (66) and by sorting the terms in h by powers of ζ, we see that
h can be written as

h(Y ′) = u1(Y) + ζ · u2(Y) + . . .+ ζ⌈logn⌉−1 · u⌈logn⌉(Y) (68)

for polynomials u1, . . . , u⌈logn⌉ ∈ Z2[Y1, . . . , Ym]. The degree of the polynomials
u1, . . . , u⌈logn⌉ is bounded by the degree of h.

It follows that checking one polynomial over the extension field FN is equiva-
lent to checking ⌈log n⌉ polynomials over the base field Z2. Hence, if y ← {0, 1}m
is truly random, with probability 1−o(1) one polynomial in kerϕD will not van-
ish on y for D large enough.

4 Solving the Polynomial Search Problem in the Average
Case

We will describe here a subexponential algorithm that – given a polynomial
map F : kn → kn

1+e

and a function value y = F (x) for any input x – will
extract a pre-image x′ s.t. F (x′) = y with high probability in the average case.
Unfortunately, this algorithm will not be successful in the worst case. Its success
probability will depend on the randomness of F (however it is independent of
the distribution of x).

We will first define the set of suitable distributions of polynomial maps F ,
for which our algorithm does have a high advantage:

Definition 6. Let D be a distribution with support in (k[X1, . . . , Xn]
≤d)m, this

means D outputs m polynomials over n variables of degree ≤ d.
We say that D has a linear core, if there is a distribution D′ s.t. D is

identically distributed as the output of the following procedure:

Draw F ′(X)← D′ and R← km×n. (69)

Set F (X) := F ′(X) +R ·X. (70)

Output F (X). (71)

Here, R ·X denotes the linear function that maps x ∈ kn to Rx.

Now, we can state our formal result:

Theorem 7. Let k be a field with q elements. Let D be a distribution over
(k[X1, . . . , Xn]

≤d)m with linear core, where m ∈ ω(r · n) for r = max{1, logn
log q }.

There is an algorithm B s.t. for each x ∈ kn and F ← D, B(F, F (x)) will
output x with high probability. Formally,

∀x ∈ kn : Pr
F←D

[x← B(F, F (x))] ≥ 1− o(1). (72)

The time-complexity of B is always bounded by

≤ q · nO(n·(r·n/m)1/(d−1)). (73)

27

For m ≥ n1+e and q = 2, we have a runtime of

≤ 2O(log(n)1/(d−1)·n1−e/(d−1)). (74)

The idea for our algorithm will essentially follow the typical search-to-decision
reduction paradigm that is already known from learning with errors [Reg05]: that
is, for each input value xi, i ∈ [n], guess a potential candidate z ∈ k. Then, ask
the algorithm A from Theorem 6 if the polynomial equation system

F (X1, . . . , Xi−1, z,Xi+1, . . . , Xn) = F (x) (75)

is solvable. Since the distribution of F has a linear core, it seems reasonable to
assume that F (x) will have enough entropy for a high distinguishing advantage
of A.

Unfortunately, this direct approach makes it hard to prove that we indeed
have a high distinguishing advantage. Hence, in the following, we will not give
F (X1, . . . , Xi−1, z,Xi+1, . . . , Xn) and F (x) to A. Instead, we will give the “san-
itized” polynomial

Gi,z(X1, . . . , Xi−1, Xi+1, . . . , Xn) (76)

:=F (X1, . . . , Xi−1, z,Xi+1, . . . , Xn)− F (0, . . . , 0, z, 0, . . . , 0) (77)

and the target value

yi,z := F (x)− F (0, . . . , 0, z, 0, . . . , 0) (78)

to A. In this case, we can prove that yi,z is uniformly random and independent
of Gi,z.

Proof (Theorem 7). Let k be a field of size q and let m ∈ ω(logn
log q · n). Let k be

an extension field k of k of degree r := 1 +
⌈
2 logn
log q

⌉
. It follows

#k = qr = q1+⌈2
log n
log q ⌉ ≥ q · (q

log n
log q)2 = q · n2. (79)

Without loss of generality, we can assume that r divides m and set m′ := m/r.

Now, let Am′ ∈ k
m′×m

be the matrix from Lemma 4 and let A be the

algorithm from Theorem 5 for polynomial maps G : kn−1 → k
m′

. Remember
that A works by computing an algebraic relationship h of degree D ∈ O(n ·
(n/m′)1/(d−1)) ∈ o(n) for G and checking if h vanishes on a potential image
point of G.

Finally, fix any x ∈ kn and let D be a distribution over (k[X1, . . . , Xn]
≤d)m

with linear core.
On input F ← D and y := F (x), our algorithm B proceeds as follows:

1. B computes r = 1 +
⌈
2 logn
log q

⌉
,m′ = m/r and the extension field k of k of

degree r.

28

2. B applies Am′ to F and y. I.e., it computes

G(X) :=Am′ · F (X) ∈ (k[X1, . . . , Xn]
≤d)m

′
(80)

y′ :=Am′ · y = G(x) ∈ km. (81)

Note, that G is distributed with linear core, since F is distributed with linear

core and Am′ gives an isomorphism km×n → k
m′×n

.
3. For each i ∈ [n] and z ∈ k, B computes

Gi,z(X1, ..., Xi−1, Xi+1, . . . , Xn) (82)

:=G(X1, ..., Xi−1, z,Xi+1, . . . , Xn)−G(0, . . . , 0, z, 0, . . . , 0) (83)

and

yi,z := y′ −G(0, . . . , 0, z, 0, . . . , 0). (84)

4. For each i ∈ [n] and z ∈ k, B uses algorithm A from Theorem 5 to compute
an algebraic relationship hi,z ∈ k[Y1, . . . , Ym′] for Gi,z. We have

hi,z(Y) ̸= 0, (85)

hi,z ◦Gi,z(X1, ..., Xi−1, Xi+1, . . . , Xn) = 0, (86)

deg hi,z ≤ D ∈ o(n). (87)

5. For each i ∈ [n], B does the following:
B enumerates all z ∈ k and checks if hi,z(yi,z) = 0. If there is exactly one
z ∈ k s.t. hi,z(yi,z) = 0, then B sets x′i := z. Otherwise, B aborts.

6. B outputs x′ := (x′1, . . . , x
′
n) ∈ kn as solution.

B’s runtime is dominated by step 4 and 5. We can upper-bound it by

q · n · nO(D) ≤ q · nO(n·(n/m′)1/(d−1)). (88)

To bound B’s advantage, we fix one i ∈ [n] and first bound the probability
that x′i = xi. Without loss of generality, we can assume i = 1.

First note that if z = x1 in step 5, then G1,z(X) = y1,z is always solvable,
and h1,z must vanish at y1,z. Hence, we only need to show that h1,z(y1,z) is
non-zero with high probability whenever z ̸= x1. Therefore, let z ∈ k \ {x1}
and let G(X) = G′(X) +R ·X, where R← k

m′×n
is distributed uniformly and

independently of G′ at random. Denote by R1, . . . , Rn ∈ k
m

the columns of R.
We have

G1,z(X2, . . . , Xn) (89)

=G(z,X2, . . . , Xn)−G(z, 0, . . . , 0) (90)

=G′(z,X2, . . . , Xn)−G′(z, 0, . . . , 0) (91)

+R · (z,X2, . . . , Xn)−R · (z, 0, . . . , 0) (92)

=G′(z,X2, . . . , Xn)−G′(z, 0, . . . , 0) +R2 ·X2 + . . .+Rn ·Xn (93)

29

and

y1,z =y′ −G(z, 0, . . . , 0) (94)

=G(x1, . . . , xn)−G(z, 0, . . . , 0) (95)

=G′(x1, . . . , xn)−G′(z, 0, . . . , 0) +R · x−R · (z, 0, . . . , 0) (96)

=G′(x1, . . . , xn)−G′(z, 0, . . . , 0) (97)

+R2 · x2 + . . .+Rn · xn +R1 · (x1 − z). (98)

Now, hi,z depends only on the map G1,z, whose distribution is independent of
the random vector R1. On the other hand, y1,z gets perturbed by the uniformly

random vector R1 · (x1 − z). Therefore, y1,z remains uniformly random in k
m

even if we condition its distribution on G1,z. Because of the Schwartz-Zippel
Lemma 3, we have for each x ∈ kn and z ∈ k \ {x1}

Pr [h1,z(y1,z) = 0] ≤ deg h

#k
≤ D

q · n2
∈ o

(
1

q · n

)
(99)

where the probability is taken over the randomness of F . Taking a union bound
over all z ∈ k \ {x1}, we get

Pr [∃z ∈ k \ {x1} : h1,z(y1,z) = 0] ≤ q · D

q · n2
∈ o

(
1

n

)
. (100)

It follows that for each i ∈ [n], the probability that B does not recover xi is
lower-bounded by o(1/n). Again, taking a union bound over all i = 1, . . . , n, the
probability that there is at least one i s.t. B does not successfully recover xi is
bounded by n · o(1/n) = o(1). It follows that B’s success probability is at least

≥ 1− o(1). (101)

Remark 4. In [Üna23b], we discussed implications for Macaulay matrix-based
algorithms that arise from the algorithm in Theorem 5. Analogously, we can
apply the results for the algorithm from Theorem 7 to Macaulay matrices and
distil new insights.

For this end, let k be a field with q elements, let k be a field of extension
degree r, draw F ← D and set G := Am′ · F for m′ = m/r. Fix some x ∈ kn.

For ℓ ∈ N, set

Mℓ(G) :=Mℓ(g1, . . . , gm′) (102)

:=spank
{
gi(X) · u(X) | i ∈ [m], u ∈ k[X],deg gi + deg u ≤ ℓ

}
. (103)

Note, that we have for ℓ large enough

Mℓ(G) =Mℓ−1(G) +

n∑
i=1

Xi ·Mℓ−1(G) (104)

30

and that Mℓ(G) is the image of the Macaulay matrix up to degree ℓ for the
equation system G(X) = 0.

Assume that the algorithm B from Theorem 7 can extract x from F and
F (x). This implies that the system G(X) − G(x) = 0 with hardwired Xi = z
can be refuted by an algebraic relationship of degree D ∈ O(n · (n/m′)1/(d−1))
for each i ∈ [n] and z ̸= xi. From our reasoning in [Üna23b], it follows that
MdD(G(X)−G(x), Xi − z) must contain 1. Hence, for each i ∈ [n] and z ̸= xi,
the space MdD(G(X)−G(x)) contains the element

1− (Xi − z)ti,z(X) (105)

for some ti,z ∈ k[X]dD−1. Let b(Xi) be the field equation of k i.e.

b(Xi) :=
∏
a∈k

(Xi − a). (106)

Now, the space

MdD+q−1(G(X)−G(x), b(Xi)) (107)

contains the element

b(Xi) · ti,z(X) + (1− (Xi − z)ti,z(X)) · b(Xi)

Xi − z
=

b(Xi)

Xi − z
(108)

for z ̸= xi. Subsequently, we can remove each factor Xi − z with z ̸= xi from
b(Xi) and are left with Xi − xi. It follows for each i ∈ [n]

Xi − xi ∈MdD+q−1(G(X)−G(x), b(Xi)). (109)

I.e., with high probability over the randomness of F ← D, the row space

MdD+q−1(G(X)−G(x), b1, . . . , bn) (110)

of the Macaulay matrix of degree dD + q − 1 will contain the Groebner basis
X1 − x1, . . . , Xn − xn of the ideal (G(X)−G(x), b1, . . . , bn).

Now, the space MdD+q−1(G(X)−G(x), b1, . . . , bn) is contained in the tensor
product of k and the row space of the k-valued Macaulay matrix of (F (X) −
F (x), b1, . . . , bn) up to degree dD+q−1. Hence, the Macaulay matrix of (F (X)−
F (x), b1, . . . , bn) of degree dD+q−1 over k will contain the k-valued polynomials
X1 − x1, . . . , Xn − xn, too.

5 On the Security of Polynomial and Local PRGs

We try to derive here some insights on parameter choices for PRGs of constant
locality and constant degree. By the attacks of this work, we know that the
number of security bits 4 of a PRG F : {0, 1}n → {0, 1}n1+e

provably lies in

O(log(n)degF/(degF−1) · n1−e/(degF−1)). (111)

4 By “number of security bits” we mean the logarithm of the average of the concrete
number of bit operations a “strong” computational machine needs to run the fastest
attacks on PRGs of constant degree.

31

For simplicity, we will pretend that the number of security bits of F is upper-
bounded by

n1−e/(degF−1). (112)

From a theoretical point of view, this is a very pessimistic view, since we are
ignoring the factor log(n)degF/(degF−1) and all potentially hidden constants in
Eq. (111). However, if we compare the simple theoretical security estimations
here with the experimental estimations of Couteau, Dupin, Méaux, Rossi &
Rotella [CDM+18] and Yang, Guo, Johansson & Lentmaier [YGJL22], we see
that their results are far more pessimistic. Hence, we think that the term in
Eq. (112) is a justified upper-bound for the number of security bits of F .

While n denotes the number of bits of the seed of F , we will use λ to denote
the desired number of security bits. In this view, n gives the number of bits we
are ready to invest, while λ denotes the number of bits we are going to get in the
end. Optimally, n and λ would be close, however, in our case, it is more suitable
to relate them polynomially: by δ > 1 we will denote the security leverage and
relate λ and n by

λδ = n. (113)

I.e., to achieve a security of λ we will need to invest polynomially more bits.
Now, we upper-bound λ by the term in Eq. (112). This leads to the formula

1 ≤ δ ·
(
1− e

degF − 1

)
. (114)

By rearranging everything, we get the following lower bound for the degree of F

degF ≥ δ

δ − 1
· e+ 1. (115)

Eq. (115) tells us how high we need to set the algebraic degree of F if we want
to maintain a security leverage of δ and a stretch of e. Note that for δ → ∞,
the RHS of Eq. (115) converges against e + 1. In fact, degF > e + 1 is the
trivial bound that we always have for degF and e, since for degF ≤ e + 1
the relinearization attack on F becomes efficient. In other words, the higher our
security leverage δ becomes, the less important subexponential attacks on F get.
Efficient attacks like relinearization and correlation attacks, however, will always
stay relevant and give hard bounds for degree and locality of F .

If F is additionally supposed to have constant locality, we need to take
the correlation-based attack from Section 1.3 into account. If c denotes the
correlation of F , then it must hold e < c/2, since otherwise the correlation-
based attack becomes applicable. Since we have c ≤ locF − degF − 1, we get
e < (locF − degF − 1)/2 and have therefore the minimum bound

locF > degF + 2e+ 1 ≥
(

δ

δ − 1
+ 2

)
· e+ 2 (116)

32

for the locality of F .
Eq. (115) and Eq. (116) now relate the degree, the locality, the stretch and

the security leverage of F . In particular, they tell us lower bounds for the degree
and locality of F for given δ and e. For given values of δ, we can now list the
concrete bounds on degF and locF in Table 15.

δ degF locF

1.1 ≥ 11 · e+ 1 > 13 · e+ 2
1.2 ≥ 6 · e+ 1 > 8 · e+ 2
1.3 ≥ 13/3 · e+ 1 > 19/3 · e+ 2
1.4 ≥ 7/2 · e+ 1 > 11/2 · e+ 2
1.5 ≥ 3 · e+ 1 > 5 · e+ 2
1.6 ≥ 8/3 · e+ 1 > 14/3 · e+ 2
1.7 ≥ 17/7 · e+ 1 > 31/7 · e+ 2
1.8 ≥ 9/4 · e+ 1 > 17/4 · e+ 2
1.9 ≥ 19/9 · e+ 1 > 37/9 · e+ 2
2.0 ≥ 2 · e+ 1 > 4 · e+ 2
2.1 ≥ 21/11 · e+ 1 > 43/11 · e+ 2
2.2 ≥ 11/6 · e+ 1 > 23/6 · e+ 2
2.3 ≥ 23/13 · e+ 1 > 49/13 · e+ 2
2.4 ≥ 12/7 · e+ 1 > 26/7 · e+ 2
2.5 ≥ 5/3 · e+ 1 > 11/3 · e+ 2
2.6 ≥ 13/8 · e+ 1 > 29/8 · e+ 2
2.7 ≥ 27/17 · e+ 1 > 61/17 · e+ 2
2.8 ≥ 14/9 · e+ 1 > 32/9 · e+ 2
2.9 ≥ 29/19 · e+ 1 > 67/19 · e+ 2
3.0 ≥ 3/2 · e+ 1 > 7/2 · e+ 2
3.5 ≥ 7/5 · e+ 1 > 17/5 · e+ 2
4.0 ≥ 4/3 · e+ 1 > 10/3 · e+ 2
4.5 ≥ 9/7 · e+ 1 > 23/7 · e+ 2
5.0 ≥ 5/4 · e+ 1 > 13/4 · e+ 2
∞ > e+ 1 > 3 · e+ 2

Table 1. This table shows for some values of the security leverage δ = log(n)/ log(λ)
corresponding lower bounds for the degree and locality of the PRG F : {0, 1}n →
{0, 1}n

1+e

. Each row can be read as: “if we want a security of λ bits while our seeds
contain n = λδ bits, then the degree of the PRG needs to be at least δ

δ−1
· e + 1 and

the locality of F needs to be larger than
(

δ
δ−1

+ 2
)
· e+ 2.”

If we want, for example, a PRG F : {0, 1}n → {0, 1}n2

of quadratic stretch,
i.e. e = 1, then it makes sense to pick a security leverage that is a by an epsilon
larger than 2. If δ > 2, the degree bound degF ≥ δ

δ−1 · e+ 1 is already implied

5 In the initial version of this text, Table 1 contained wrong values (the correct values
are a bit more pessimistic). The reason is that I initially computed the values in
Table 1 by hand. This time, I used a python script to generate the table. You can
find it here: https://github.com/Semigroup/algebraic-prg-attack-scripts

33

https://github.com/Semigroup/algebraic-prg-attack-scripts

by the trivial bound degF > e + 1 = 2 that stems from relinearization, since
δ

δ−1 ·e+1 < 2 ·e+1 = 3 and degF needs to be an integer. On the other hand, for

the locality bound locF >
(

δ
δ−1 + 2

)
·e+2 we have

(
δ

δ−1 + 2
)
·e+2 < 4·e+2 = 6.

I.e., we can choose locF = 6, and indeed this bound is also already implied by
the trivial bound locF > 3 · e+ 2 = 5.

However, note that a typical security of λ = 128 security bits would – under
a security leverage of δ > 2 – imply a seed of more than 1282 bits, i.e. 2 kilobytes,
and an output size of F of > 4 megabytes.

6 Reductions of Learning Parity with Noise

In the following, we will give some efficient reductions for the learning parity
with noise (LPN) problem over fields of different sizes. Our reductions will show
that LPN with low-rate noise over fields of constant size is (up to logarithmic
factors) equivalent to LPN with similar noise rate over fields of polynomial size.

First, we will define the distribution of LPN samples:

Definition 7. Let k be a finite field and let τ ∈ [0, 1] be a real number. The dis-
tribution Berk(τ) is defined to output zero with probability 1− τ and a uniformly
random element of k× with probability τ . I.e.,

Pr
e←Berk(τ)

[e = 0] = 1− τ, (117)

∀x ∈ k× : Pr
e←Berk(τ)

[e = x|e ̸= 0] =
1

#k − 1
. (118)

(119)

Let n ∈ N and s ∈ kn. The distribution LPNk(s, τ) is defined by the following
sample procedure:

Draw b← kn. (120)

Draw e← Berk(τ). (121)

Set c := bT · s+ e. (122)

Output (c, b). (123)

Where (b1, . . . , bn)
T · (s1, . . . , sn) = b1s1 + . . .+ bnsn denotes the scalar product

of kn.
For m ∈ N, we will denote by LPNk(s, τ)

m a tuple of m independent samples
of LPNk(s, τ).

For a field k and a field extension k of extension degree r = [k : k], we
will give two reductions of LPN here: the first reduction converts samples of
LPNk(s, τ)

r to LPNk(s, τ
′) for some τ ′ ≤ rτ and s ∈ kn. The second reduction

converts samples of LPNk(s, τ) to LPNk(s, τ
′) for τ ′ ≤ τ and s ∈ kn and s ∈ krn

s.t. s, s are in an efficiently computable one-to-one correspondence.

34

Remark 5. We will assume that the following algorithms know the field extension
k ⊂ k and can compute arithmetic operations efficiently in both fields. Further,
we will implicitly assume that they can parse k as k-vector space (according to
some unspecified basis). This condition is naturally satisfied if elements of k are
stored as tuples of elements of k.

Proposition 1. Let k ⊂ k be an extension of finite fields of degree r = [k : k].
Let τ = τ(n) ∈ [0, 1].

There is an efficient reduction R s.t. we have the following:

1. For each s ∈ kn, R will, on input ((c1, b1), . . . , (cr, br))← LPNk(s, τ), output
an element (c, b) distributed according to LPNk(s, τ

′), where

τ ′ = 1− (1− τ)r ∈ [τ, rτ]. (124)

2. If ((c1, b1), . . . , (cr, br)) are distributed uniformly at random in kr(n+1), then

the output of R will be distributed uniformly at random in k
n+1

.

Proof. Let (c1, b1), . . . , (cr, br) be the input of R. We set

c :=

c1...
cr

 ∈ kr and B :=

b
T
1
...
bTr

 ∈ kr×n. (125)

R samples a random basis z1, . . . , zr of k as k vector space and sets

z :=

z1...
zr

 ∈ kr. (126)

R computes and outputs

c := zT · c and b := zT ·B. (127)

Since z is a basis of k as k, it gives a bijection

kr×(n+1) −→ k
n+1

(128)

(c,B) 7−→ (zT c, zTB). (129)

Hence, (c, b) are uniformly distributed iff (c1, b1), . . . , (cr, br) are.
Now, sample (c1, b1), . . . , (cr, cr)← LPNk(s, τ) for some s ∈ kn and τ ∈ [0, 1].

We can rewrite c as

c = Bs+ e (130)

for e ← Berk(τ)
r. c = zT c is then equal to zTBs + zT e. It is clear that zTB

is distributed uniformly, we need to show that e := zT e = z1e1 + . . . + zrer is
distributed according to Berk(τ

′).
We can distinguish two cases:

35

1. Each noise term e1, . . . , er is zero. This will happen exactly with probability
(1− τ)r = 1− τ ′. In this case, e = zT e is zero, too.

2. Otherwise, the vector e = (e1, . . . , er) is non-zero. Since z is a random basis

of k as k vector space, e = zT e will be a uniformly random element of k
×
.

This element will be independent of zTB, since B is distributed uniformly
at random in kr×n

It follows that e is distributed according to Berk(τ
′) for τ ′ = 1− (1−τ)r. Hence,

(c, b) is distributed according to LPNk(s, τ
′).

To prove the correctness of the second reduction, we need the following two
lemmata:

Lemma 5. Let n ∈ N and let k ⊂ k be an extension of degree r = [k : k].
The matrix An from Lemma 4 has an inverse mapping A−1n : k

n → krn that is
k-linear s.t. we have for each x ∈ kn and x ∈ krn

A−1n (An · x) = x and An ·A−1n (x) = x. (131)

A−1n can be efficiently evaluated.

Proof. Let ζ ∈ k be the generator that is used by An. Since An implies an
isomorphism krn → k

n
, the map A−1n : k

n → krn must be bijective. Since An is
k-linear and its domain6 and codomain are k-vector spaces, A−1n is k-linear, too.

Computing A−1n (x) is equivalent to solving a k-linear equation system of
shape rn× rn. Hence, A−1n (x) can be efficiently evaluated.

Form ∈ N, we extend A−1n to a map k
n×m → krn×m by applying it column-wise,

i.e.

A−1n

(
u1 . . . um

)
:=

(
A−1n (u1) . . . A

−1
n (um)

)
(132)

for column vectors u1, . . . , um ∈ k
n
.

Lemma 6. Let v = (1, 0, . . . , 0) ∈ kr be the first unit vector. Define

ψ : k
n −→ krn (133)

x 7−→ vT ·A−11 (xT ·An). (134)

Then, ψ is a k-linear isomorphism.

Proof. Since ψ is a linear map of k-vector spaces of identical dimensions, it
suffices to prove that kerψ is trivial. For x = (x1, . . . , xn) ∈ k

n
, ψ(x) is given by

ψ(x) =vT ·A−11 (xT ·An) (135)

6 This is the main difference to the typical gadget-matrix G : {0, 1}⌈log p⌉n → Zn
p

from [MP12]. The subset {0, 1}⌈log p⌉n ⊂ Zn
p is not closed under addition, hence

G−1 : Zn
p → {0, 1}⌈log p⌉n cannot be linear.

36

=
(
vT ·A−11 (x1 ·A1) . . . v

T ·A−11 (xn ·A1)
)
. (136)

Hence, it suffices to prove

vT ·A−11 (x ·A1) = 0 =⇒ x = 0 (137)

for each x ∈ k. Now, A−11 (x ·A1) is given by an r × r-matrix over k

Z := A−11 (x ·A1) ∈ kr×r. (138)

Z is a matrix representation of the multiplication with x on k. In fact, we have
for each y ∈ k

Z ·A−11 (y) = A−11 (x ·A1) ·A−11 (y) = A−11 (x ·A1 ·A−11 (y)) = A−11 (x · y). (139)

If vTZ is zero, then Z does not have full rank. This implies that the multiplication
with x is not invertible in k. Since k is a field, x must be zero. This proves the
implication in Eq. (137), hence ψ is injective.

Proposition 2. Let k ⊂ k be an extension of finite fields of degree r = [k : k].
Denote by q = #k the size of k and let τ = τ(n) ∈ [0, 1].

There is an efficient reduction R s.t. we have the following:

1. For each s ∈ kn, R will, on input (c, b) ← LPNk(s, τ), output an element
(c, b) distributed according to LPNk(A

−1
n (s), τ ′) for

τ ′ = τ · q
r − qr−1

qr − 1
. (140)

2. If (c, b) is distributed uniformly at random in k
n+1

, then the output of R will
be distributed uniformly at random in krn+1.

Proof. Let (c, b) ∈ kn+1
. On input (c, b), R proceeds as follows:

1. R computes the vector

b1 := ψ(b) := vT ·A−11 (b
T ·An) ∈ krn, (141)

where v is the first unit vector, and

c := (c1, . . . , cr) := A−11 (c) ∈ kr. (142)

2. R outputs (c1, b1).

Because of Lemma 6, ψ(b) is uniformly distributed iff b is uniformly dis-
tributed. If c is uniformly distributed, then c1 is, too, hence R maps uniformly
random samples to uniformly random samples.

Now, fix s ∈ kn, draw b← k
n
and e← Berk(τ) and assume that we have

c = b
T · s+ e. (143)

37

Now, we have

A−11 (c) = A−11 (b
T · s+ e) (144)

= A−11 (b
T · s) +A−11 (e) (145)

= A−11 (b
T ·An ·A−1n (s)) +A−11 (e) (146)

= A−11 (b
T ·An) ·A−1n (s) +A−11 (e). (147)

Set e := (e1, . . . , er) := A−11 (e), then we have

c1 = b1 ·A−1n (s) + e1. (148)

We know that b1 is uniformly distributed iff b is uniformly distributed. It remains
to prove that e1 is Bernoulli-distributed if e is. One can compute

Pr [e1 = 0|e ̸= 0] =
Pr [e1 = 0, e ̸= 0]

Pr [e ̸= 0]
=

Pr [e1 = 0, (e2, . . . , er) ̸= 0]

Pr [e ̸= 0]
(149)

=

1
q ·

qr−1−1
qr−1

qr−1
qr

=
qr−1 − 1

qr − 1
. (150)

It follows

Pr
e←Berk(τ)

[e1 = 0] = 1− τ + τ · q
r−1 − 1

qr − 1
= 1− τ ′. (151)

Ergo, e1 is distributed according to Berk(τ
′) if e is distributed according to

Berk(τ).

Remark 6. Note that the reduction in Proposition 2 loses information. In fact,
if (c, b) is uniformly random, then c := A−11 (c) is uniformly random, however,
the reduction only outputs the first coordinate of c and throws the remaining
coordinates away.

For most applications, it makes more sense that the reduction outputs the
whole vector c and the whole matrix B := A−11 (b ·An), even if B is not uniformly
distributed.

Further, if (c, b) is an LPN sample, then (c,B) is of the form

c = B ·A−1n (s) +A−11 (e). (152)

Now, e = A−11 (e) is zero with high probability, but the entries of e are all cor-
related with each other. However, if the reduction converts a lot of independent
LPN samples, then this correlation can be compensated.

References

ABR12. Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for
local small-bias generators. In Ronald Cramer, editor, TCC 2012, volume
7194 of LNCS, pages 600–617. Springer, Heidelberg, March 2012.

38

ABW10. Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptog-
raphy from different assumptions. In Leonard J. Schulman, editor, 42nd
ACM STOC, pages 171–180. ACM Press, June 2010.

ADI+17. Benny Applebaum, Ivan Damg̊ard, Yuval Ishai, Michael Nielsen, and Lior
Zichron. Secure arithmetic computation with constant computational over-
head. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 223–254. Springer, Heidelberg, Au-
gust 2017.

AG11. Sanjeev Arora and Rong Ge. New algorithms for learning in presence
of errors. In Luca Aceto, Monika Henzinger, and Jǐŕı Sgall, editors, Au-
tomata, Languages and Programming, pages 403–415, Berlin, Heidelberg,
2011. Springer Berlin Heidelberg.

AIK08. Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom
generators with linear stretch in nc0. Comput. Complex., 17(1):38–69, apr
2008.

AK23. Benny Applebaum and Niv Konstantini. Actively secure arithmetic com-
putation and vole with constant computational overhead. In Carmit Hazay
and Martijn Stam, editors, Advances in Cryptology – EUROCRYPT 2023,
pages 190–219, Cham, 2023. Springer Nature Switzerland.

AL16. Benny Applebaum and Shachar Lovett. Algebraic attacks against random
local functions and their countermeasures. In Daniel Wichs and Yishay
Mansour, editors, 48th ACM STOC, pages 1087–1100. ACM Press, June
2016.

AL18. Benny Applebaum and Shachar Lovett. Algebraic attacks against random
local functions and their countermeasures. SIAM Journal on Computing,
47(1):52–79, 2018.

App12. Benny Applebaum. Pseudorandom generators with long stretch and low
locality from random local one-way functions. In Howard J. Karloff and
Toniann Pitassi, editors, 44th ACM STOC, pages 805–816. ACM Press,
May 2012.

App13. Benny Applebaum. Cryptographic hardness of random local functions-
survey. In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, page 599.
Springer, Heidelberg, March 2013.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent non-
interactive secure computation. In Lorenzo Cavallaro, Johannes Kinder,
XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 291–
308. ACM Press, November 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT ex-
tension and more. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518. Springer,
Heidelberg, August 2019.

BCG+20. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Pe-
ter Scholl. Efficient pseudorandom correlation generators from ring-LPN.
In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part II, volume 12171 of LNCS, pages 387–416. Springer, Heidelberg, Au-
gust 2020.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. In Yevgeniy Dodis and Thomas Shrimpton, editors,

39

CRYPTO 2022, Part II, volume 13508 of LNCS, pages 603–633. Springer,
Heidelberg, August 2022.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In David Lie, Mohammad Mannan, Michael Backes, and
XiaoFeng Wang, editors, ACM CCS 2018, pages 896–912. ACM Press,
October 2018.

BFKL94. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lip-
ton. Cryptographic primitives based on hard learning problems. In Dou-
glas R. Stinson, editor, CRYPTO’93, volume 773 of LNCS, pages 278–291.
Springer, Heidelberg, August 1994.

BKW19. Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving Systems
of Polynomial Equations over GF(2) by a Parity-Counting Self-Reduction.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano
Leonardi, editors, 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019), volume 132 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 26:1–26:13, Dagstuhl, Germany,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

BQ09. Andrej Bogdanov and Youming Qiao. On the security of goldreich’s
one-way function. In Irit Dinur, Klaus Jansen, Joseph Naor, and José
Rolim, editors, Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques, pages 392–405, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

Buc76. B. Buchberger. A theoretical basis for the reduction of polynomials to
canonical forms. SIGSAM Bull., 10(3):19–29, aug 1976.

CCNY12. Chen-Mou Cheng, Tung Chou, Ruben Niederhagen, and Bo-Yin Yang.
Solving quadratic equations with XL on parallel architectures. In Em-
manuel Prouff and Patrick Schaumont, editors, CHES 2012, volume 7428
of LNCS, pages 356–373. Springer, Heidelberg, September 2012.

CDM+18. Geoffroy Couteau, Aurélien Dupin, Pierrick Méaux, Mélissa Rossi, and
Yann Rotella. On the concrete security of Goldreich’s pseudorandom gener-
ator. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part II, volume 11273 of LNCS, pages 96–124. Springer, Heidelberg, De-
cember 2018.

CG21. Alessio Caminata and Elisa Gorla. Solving multivariate polynomial sys-
tems and an invariant from commutative algebra. In Jean Claude Ba-
jard and Alev Topuzoğlu, editors, Arithmetic of Finite Fields, pages 3–36,
Cham, 2021. Springer International Publishing.

CG23. Alessio Caminata and Elisa Gorla. Solving degree, last fall degree, and
related invariants. J. Symb. Comput., 114(C):322–335, jan 2023.

CKPS00. Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate poly-
nomial equations. In Bart Preneel, editor, EUROCRYPT 2000, volume
1807 of LNCS, pages 392–407. Springer, Heidelberg, May 2000.

CW04. Moses Charikar and Anthony Wirth. Maximizing quadratic programs:
Extending Grothendieck’s inequality. In 45th FOCS, pages 54–60. IEEE
Computer Society Press, October 2004.

DBM+08. Jintai Ding, Johannes Buchmann, Mohamed Saied Emam Mohamed, Wael
Said Abd Elmageed Mohamed, and Ralf-Philipp Weinmann. Mutantxl.
SCC, (TUD-CS-2009-0142):16–22, 01 2008.

Din. Itai Dinur. Improved Algorithms for Solving Polynomial Systems over
GF(2) by Multiple Parity-Counting, pages 2550–2564.

40

Din21. Itai Dinur. Cryptanalytic applications of the polynomial method for solving
multivariate equation systems over gf(2). In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
pages 374–403, Cham, 2021. Springer International Publishing.

DL78. Richard A. Demillo and Richard J. Lipton. A probabilistic remark on
algebraic program testing. Information Processing Letters, 7(4):193–195,
1978.

Dub90. Thomas W. Dubé. The structure of polynomial ideals and gröbner bases.
SIAM Journal on Computing, 19(4):750–773, 1990.

Fau99. Jean-Charles Faugére. A new efficient algorithm for computing gröbner
bases (f4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

Fau02. Jean Charles Faugère. A new efficient algorithm for computing gröbner
bases without reduction to zero (f5). In Proceedings of the 2002 Inter-
national Symposium on Symbolic and Algebraic Computation, ISSAC ’02,
page 75–83, New York, NY, USA, 2002. Association for Computing Ma-
chinery.

Gol11. Oded Goldreich. Candidate One-Way Functions Based on Expander
Graphs, pages 76–87. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

GW95. Michel X. Goemans and David P. Williamson. Improved approximation
algorithms for maximum cut and satisfiability problems using semidefinite
programming. J. ACM, 42(6):1115–1145, nov 1995.

HILL99. Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby.
A pseudorandom generator from any one-way function. SIAM Journal on
Computing, 28(4):1364–1396, 1999.

IKOS08. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptog-
raphy with constant computational overhead. In Richard E. Ladner and
Cynthia Dwork, editors, 40th ACM STOC, pages 433–442. ACM Press,
May 2008.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation
from well-founded assumptions. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2021, page 60–73,
New York, NY, USA, 2021. Association for Computing Machinery.

JLS22. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfusca-
tion from lpn over fp, dlin, and prgs in nc0. In Orr Dunkelman and Ste-
fan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022,
pages 670–699, Cham, 2022. Springer International Publishing.

Laz83. D. Lazard. Gröbner bases, gaussian elimination and resolution of systems
of algebraic equations. In J. A. van Hulzen, editor, Computer Algebra,
pages 146–156, Berlin, Heidelberg, 1983. Springer Berlin Heidelberg.

LPT+. Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, Ryan Williams,
and Huacheng Yu. Beating Brute Force for Systems of Polynomial Equa-
tions over Finite Fields, pages 2190–2202.

Mac16. F.S. Macaulay. The algebraic theory of modular systems. Cambridge Math-
ematical Library, xxxi, 1916.

MJSC16. Pierrick Méaux, Anthony Journault, François-Xavier Standaert, and
Claude Carlet. Towards stream ciphers for efficient FHE with low-noise
ciphertexts. In Marc Fischlin and Jean-Sébastien Coron, editors, EURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 311–343. Springer,
Heidelberg, May 2016.

41

MMDB08. Mohamed Saied Emam Mohamed, Wael Said Abd Elmageed Mohamed,
Jintai Ding, and Johannes A. Buchmann. MXL2: Solving polynomial
equations over GF(2) using an improved mutant strategy. In Johannes
Buchmann and Jintai Ding, editors, Post-quantum cryptography, second
international workshop, PQCRYPTO 2008, pages 203–215. Springer, Hei-
delberg, October 2008.

MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler,
tighter, faster, smaller. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 700–718. Springer,
Heidelberg, April 2012.

MST03. Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators
in NC0. In 44th FOCS, pages 136–145. IEEE Computer Society Press,
October 2003.

OW14. Ryan O’Donnell and David Witmer. Goldreich’s prg: Evidence for near-
optimal polynomial stretch. pages 1–12, 06 2014.

Pie12. Krzysztof Pietrzak. Cryptography from learning parity with noise. In
Mária Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser,
and György Turán, editors, SOFSEM 2012: Theory and Practice of Com-
puter Science, pages 99–114, Berlin, Heidelberg, 2012. Springer Berlin Hei-
delberg.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

Sch80. J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, oct 1980.

Sie84. T. Siegenthaler. Correlation-immunity of nonlinear combining functions for
cryptographic applications (corresp.). IEEE Transactions on Information
Theory, 30(5):776–780, 1984.

Üna23a. Akin Ünal. Worst-case subexponential attacks on prgs of constant degree
or constant locality. Cryptology ePrint Archive, Paper 2023/119, 2023.
https://eprint.iacr.org/2023/119.

Üna23b. Akin Ünal. Worst-case subexponential attacks on prgs of constant degree
or constant locality. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, pages 25–54, Cham, 2023. Springer
Nature Switzerland.

Vio08. Emanuele Viola. The sum of d small-bias generators fools polynomials
of degree d. In 2008 23rd Annual IEEE Conference on Computational
Complexity, pages 124–127, 2008.

Wil14. Richard Ryan Williams. The Polynomial Method in Circuit Complexity
Applied to Algorithm Design (Invited Talk). In Venkatesh Raman and S. P.
Suresh, editors, 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science (FSTTCS 2014), volume 29
of Leibniz International Proceedings in Informatics (LIPIcs), pages 47–60,
Dagstuhl, Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik.

YC05. Bo-Yin Yang and Jiun-Ming Chen. All in the xl family: Theory and prac-
tice. In Choon-sik Park and Seongtaek Chee, editors, Information Secu-
rity and Cryptology – ICISC 2004, pages 67–86, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

42

https://eprint.iacr.org/2023/119

YGJL22. Jing Yang, Qian Guo, Thomas Johansson, and Michael Lentmaier. Revis-
iting the concrete security of goldreich’s pseudorandom generator. IEEE
Transactions on Information Theory, 68(2):1329–1354, 2022.

Zic17. Lior Zichron. Locally computable arithmetic pseudorandom generators,
2017.

Zip79. Richard Zippel. Probabilistic algorithms for sparse polynomials. In Ed-
ward W. Ng, editor, Symbolic and Algebraic Computation, pages 216–226,
Berlin, Heidelberg, 1979. Springer Berlin Heidelberg.

43

	New Baselines for Local Pseudorandom Number Generators by Field Extensions

