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Abstract—Zero-knowledge (ZK) proof systems have emerged
as a promising solution for building security-sensitive ap-
plications. However, bugs in ZK applications are extremely
difficult to detect and can allow a malicious party to silently
exploit the system without leaving any observable trace. This
paper presents CODA, a novel statically-typed language for
building zero-knowledge applications. Critically, CODA makes
it possible to formally specify and statically check properties of
a ZK application through a rich refinement type system. One
of the key challenges in formally verifying ZK applications is
that they require reasoning about polynomial equations over
large prime fields that go beyond the capabilities of automated
theorem provers. CODA mitigates this challenge by generating
a set of Coq lemmas that can be proven in an interactive
manner with the help of a tactic library. We have used CODA to
re-implement 77 arithmetic circuits from widely-used Circom
libraries and applications. Our evaluation shows that CODA
makes it possible to specify important and formally verify
correctness properties of these circuits. Our evaluation also
revealed 6 previously-unknown vulnerabilities in the original
Circom projects.

1. Introduction

Zero-knowledge (ZK) proof systems [21] have emerged
as a promising solution for building security-sensitive ap-
plications. Because ZK proof systems allow users to prove
that they know a secret without actually revealing what that
secret is, they have found numerous use-cases in the context
of blockchain technology. For example, privacy-protecting
digital currencies like ZCash utilize zero-knowledge proofs,
as do layer-2 blockchain scaling solutions known as ZK-
rollups [25], [37], [34].

The goal of a zero-knowledge proof system is to gen-
erate two entities, namely a prover and a verifier. Given
an input I chosen by the verifier, the goal of the prover
is to construct a proof that they know a secret W sat-
isfying a relation R(I,W ). In most ZK proof systems,
the relation R is encoded using arithmetic circuits, which
represent polynomials over a finite field. However, because
manually constructing such arithmetic circuits is extremely
difficult and error-prone, domain-specific languages like Cir-
com [7] try to facilitate this process by generating most of
the arithmetic circuit automatically from the user-specified
computation. But, even despite compiler support, building
correct zero-knowledge applications remains a significant
challenge. Indeed, several recent attacks [42], [4], [16] have
shown that bugs in zk applications can allow attackers to
construct bogus proofs that are accepted by the verifier.
For example, a vulnerability in the ZCash protocol [16]
could enable the generation of counterfeit coins, and a recent
vulnerability [46] in the circom-pairing library could have
allowed attackers to forge signatures.

A particularly problematic aspect of bugs in ZK applica-
tions is that they are extremely difficult to detect, even once
they are exploited. Unlike other common types of attacks
like denial-of-service or privilege escalation, ZK attacks
allow a malicious party to silently exploit the system, with-
out leaving any observable trace. Hence, traditional defense
mechanisms, such as run-time monitoring or sandboxing,
are completely powerless at mitigating attacks caused by
bugs in ZK proof system implementations. This leaves static
analysis & verification as the only viable mechanism for
preventing silent attacks on ZK proof systems.

Motivated by this observation, this paper presents a
new statically-typed language called CODA for building ZK
applications. Critically, CODA makes it possible to formally
specify and statically check properties of a ZK application
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through a rich refinement type system. Intuitively, the re-
finement type specifications in CODA make it possible to
express the correspondence between the computation that
the programmer has in mind and the actual arithmetic circuit
that underlies the zero-knowledge proof system. As a result,
refinement types serve as a bridge between the developers’
mental computational model and the mathematical objects
that are used to realize that computation in a zero-knowledge
way.

At a high level, CODA serves the same role as a domain-
specific language like Circom, in that it is intended to facil-
itate the construction of arithmetic circuits. However, unlike
Circom which is a low-level imperative language, CODA is a
functional language with higher-order combinators. Beyond
making it possible to express the same computation in
a more concise and declarative way, CODA is designed
to facilitate static type checking. In particular, given the
refinement type specifications annotated by the user, the
CODA compiler generates a set of logical formulas whose
validity entails the correctness of the circuit. That is, if the
formulas generated by the CODA compiler can be proven to
be logically valid, this constitutes a proof that the program
conforms to its specification. Thus, type checking in CODA
essentially amounts to formal verification.

One of the key challenges in formally verifying ZK
applications is that they require reasoning about polynomial
equations over large prime fields. This fact is important
because current automated theorem provers (in particular,
SMT solvers) do not provide adequate support for logical
reasoning in such a theory. Hence, in contrast to recent work
on logically qualified data types [35], [36], [43], [44], [39]
that discharges typing constraints via an SMT solver, doing
so is unfortunately not an option for the CODA compiler.
To deal with this challenge, CODA outputs a set of lemmas
in Coq [24] that can be proven in an interactive manner.
Because many of the lemmas output by the CODA type
checker correspond to complex number-theoretic theorems,
it is unrealistic to expect that they can be discharged com-
pletely automatically. Thus, while human involvement in the
type checking process is unavoidable in some cases, CODA
tries to reduce the manual proof burden by providing tactics
to codify common proof patterns in this domain.

We have used CODA to re-implement and formally ver-
ify 77 complex arithmetic circuits from 9 Circom projects.
Out of the 77 circuits under consideration, we were able
to use CODA to formally verify 66 circuits and uncovered
6 previously unknown vulnerabilities in popular Circom
projects.

To summarize, this paper makes the following key con-
tributions:
• We introduce CODA, a statically-typed functional DSL for

facilitating the construction of arithmetic circuits and their
compilation down to R1CS constraints [11].

• We describe a refinement type language for specifying
functional correctness properties of ZK applications and
present type checking rules that are formally proven to
be sound. In other words, we show that type checking in
CODA corresponds to formal verification.

1 template BigLessThan(k){
2 signal input a[k];
3 signal input b[k];
4 signal output out;
5 component lt[k];
6 component eq[k];
7 for (var i = 0; i < k; i++) {
8 lt[i] = LessThan();
9 lt[i].in[0] === a[i];

10 lt[i].in[1] === b[i];
11 eq[i] = IsEqual();
12 eq[i].in[0] === a[i];
13 eq[i].in[1] === b[i];
14 }
15 component ors[k - 1];
16 component ands[k - 1];
17 component eq_ands[k - 1];
18 for (var i = 0; i <= k - 2; i++) {
19 ands[i] = AND();
20 eq_ands[i] = AND();
21 ors[i] = OR();
22 if (i == 0) {
23 ands[i].a === eq[1].out;
24 ands[i].b === lt[0].out;
25 eq_ands[i].a === eq[1].out;
26 eq_ands[i].b === eq[0].out;
27 ors[i].a === lt[1].out;
28 ors[i].b === ands[i].out;
29 } else {
30 // Bug! The next line should be:
31 // ands[i].a === eq_ands[i-1].out
32 ands[i].a === ands[i-1].out;
33 ands[i].b === lt[i].out;
34 eq_ands[i].a === eq_ands[i-1].out;
35 eq_ands[i].b === eq[i].out;
36 ors[i].a === ors[i-1].out;
37 ors[i].b === ands[i].out;
38 }
39 }
40 out === ors[k-1].out;
41 }

Figure 1. A Circom program for expressing the less-than relation between
a and b. The out signal is expected to be a binary field element that is
equal to 1 if and only iff a represents a smaller integer than b.

• We re-implement 77 widely-used ZK circuits from pop-
ular Circom projects in CODA and show that CODA is
useful for specifying and formally verifying these circuits.
Furthermore, our verification effort uncovered previously
unknown vulnerabilities.

2. Overview

In this section, we motivate our proposed approach with
the aid of a motivating example. To this end, we first present
an existing circuit written in Circom and then explain the
CODA workflow.

2.1. Motivating Example

Figure 1 shows a function called BigLessThan imple-
mented in Circom. This function takes two arrays a and
b representing two integers in Big Endian notation. For
a specific value of k (representing the number of bits),
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the Circom compiler generates an arithmetic circuit (i.e., a
polynomial equation over a finite field) such that the (binary)
output signal called out is 1 iff the integer represented
by a is less than that represented by b, and 0 otherwise.
While computing the correct value of out may not seem
particularly challenging, what makes this task tricky is that
we actually need to generate a set of constraints over
the signals out, a, and b satisfying a certain property. If
the generated set of constraints is incorrect, a malicious
party can engineer bogus proofs that are accepted by the
verifier [46].

For the purposes of this paper, it is not necessary to
understand the Circom code shown in Figure 1 except
to realize that the Circom code is actually quite involved
despite being based on the following simple observations:

• Observation 1: The length-i prefix of a is less than the
length-i prefix of b if the length-(i−1) prefix of a is less
than the length-(i−1) prefix of b, or if the length-(i−1)
prefixes are equal but a[i] < b[i].

• Observation 2: The length-i prefix of a is equal to the
length-i prefix of b if the length-(i−1) prefixes are equal
and a[i] = b[i].

Unfortunately, the actual Circom code generating the
constraints (using the === operator) is quite non-trivial and
uses the lt and eq components (which are similar to library
functions) to help implement this logic. While understanding
the exact details of the Circom code is not necessary for this
paper, the key take-away is that the code is far from trivial,
and, in fact, contains a subtle bug at line 32, with the appro-
priate fix indicated in comments immediately above. Such
a bug can allow a malicious prover to construct the input
arrays a and b in such a way that the generated constraints
will be satisfied even though the integer represented by a is
larger than that represented by b.

The bug in this example may look relatively innocuous,
but the consequences of such a mistake can be quite catas-
trophic in the context of a ZK application. For example,
if this circuit was used in a DeFi application to ensure
that parties cannot transfer more money than they have, an
attacker could exploit this bug to transfer money than they
actually own. Furthermore, in such a privacy-centric DeFi
application based on a ZK proof system, it would be very
difficult to detect that something bad is happening: since
no one except the attacker knows exactly how much money
they own, no party can detect that money is being stolen if
the verifier itself is buggy.

2.2. Our approach

Figure 2 shows the implementation of the BigLessThan
function in CODA. Even though the CODA code in Figure 2
compiles down to the same R1CS constraint representation
as the Circom code from Figure 1, the CODA program is
much more concise and declarative and allows the user
to directly implement Observation 1 and Observation 2
without being bogged down in low-level, orthogonal details.

1 circuit BigLessThan
2 (k: {Z | 0 <= v})
3 (a: {F | binary v}ˆk)
4 (b: {F | binary v}ˆk)
5 -> {F | v = (|a| < |b|)} {
6 let (lt, _) = iter 0 (k-1) (
7 \i. \(lt, eq). (
8 #Or lt (#And eq (#LessThan a[i] b[i])),
9 #And eq (#Eq a[i] b[i]))

10 )
11 (0, 1)
12 inv:(\i.
13 {F | v = (|a[:i]| < |b[:i]|)} *
14 {F | v = (|a[:i]| = |b[:i]|)})
15 in lt
16 }

Figure 2. A CODA DSL program for the same function in Figure 1.

In particular, the implementation of BigLessThan in CODA
uses the functional iter construct of the form:

iterτ es ee ef ea
where es, ee denote the start and end indices of the iterator,
ef is a lambda abstraction that is repeatedly applied to the
accumulator, and ea is the initial value of the accumulator.
Hence, the code in Figure 2 iterates from 0 to k − 1
(inclusive) and repeatedly applies ef to the accumulator,
which is initialized to the value (0, 1). In this case, the
accumulator is a pair of booleans (lt, eq) where lt (resp.
eq) indicates whether the length i prefix of a is less than
(resp. equal to) that of b. Observe that the new value of lt
is calculated as:

lt ∨ (eq ∧ (a[i] < b[i]))
which corresponds directly to Observation 1 from ear-
lier. Similarly, the computation of eq also directly fol-
lows Observation 2. Hence, the CODA implementation
of BigLessThan allows the developer to implement the
core logic in a relatively straightforward way by compos-
ing existing circuits that implement boolean disjunction
(#Or), conjunction (#And), and field element comparison
(#LessThan).
Specifying circuit behavior. Beyond making it significantly
easier to construct arithmetic circuits, a key aspect of the
CODA DSL is that it allows specifying important properties
of the circuit as refinement types, which are indicated in
blue in Figure 2. As we can see from the type annotation
on the input k, refinement types have the form {T | ϕ}
where T is a base type and ϕ is a logical qualifier. In this
case, the base type of k is an integer, denoted as Z, and
the logical qualifier 0 ≤ ν further states that the value of
k is non-negative. The type annotations on a and b are of
the form τk, indicating that they are arrays of size k with
elements of type τ . In this case, the element types of a and b
are field elements (indicated as F), and the logical qualifier
further restricts their values to be binary.

The most interesting part of the specification is the type
annotation for the return value of BigLessThan, which has
the following refinement type:

{F | ν = (|a| < |b|)}
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This states that the return value of the function is a binary
field element which is 1 iff the integer represented by a is
less than the one represented by b, where the operator |x|
interprets an array as a base-2 big integer. We note that the
expression |a| < |b| is valid in CODA’s type system, but it
is fundamentally not a valid program expression. In fact, it
is impossible to define the custom | · | operator as a CODA
function to map an array of field elements to the integer
that it represents (as a field element), since the array may
represent an integer larger than the size of the finite field.

Specifying invariants. In order to prove that the CODA
implementation of BigLessThan adheres to its specification,
the developer also needs to annotate the iter construct with
a so-called loop invariant, which specifies the refinement
type of the accumulator. For this example, the annotation
at lines 12-14 specifies that the accumulator is a pair of
(binary) field elements, where the first element indicates
whether the length-i prefix of a is less than the length-i
prefix of b, and the second pair indicates whether they are
equal. Because automated inference of loop invariants is,
in general, not always possible, the CODA DSL requires
the developer to annotate every usage of the iter construct
with a refinement type specification of its accumulator and
utilizes it in the verification process.

Verification. In order to prove that the implementation
of BigLessThan conforms to its specification, CODA
performs static type checking. In particular, CODA uti-
lizes the refinement type annotations to generate a set
of proof obligations, also referred to as lemmas. If all
of these lemmas are proven to hold, this constitutes a
formal proof that the implementation conforms to its
specification. For our running example, CODA generates
a total of 15 lemmas, one of which is the following:

∀(k i : nat)(a b : F list),

length(a) = k ∧ length(b) = k

∧ 0 ≤ i < k ∧ |a[: i]| < |b[: i]|
=⇒ |a[: i+ 1]| < |b[: i+ 1]|.

Essentially, this lemma states that, if the length-i prefix of
a represents an integer smaller than the length-i prefix of b,
then the same is true for the length-(i+1) prefixes. Note that
this lemma is needed for proving the correctness of the loop
invariant, which in turn is essential for establishing that the
return value of BigLessThan has the intended refinement
type specification.
Discharging proof obligations. Since proving properties
about ZK applications often requires proving number-
theoretic lemmas, there is unfortunately little hope of
discharging the proof obligations generated by the CODA
type checker completely automatically. Thus, rather than
using an automated thorem prover (e.g., SMT solver), the
CODA type checker instead outputs Coq theorems [24] to
be proven interactively with the aid of CODA’s domain-
specific Coq tactics. In our running example, 10 of the
lemmas can be discharged fully automatically and are not

shown to the user. The user does need to be involved for
proving the remaining 5 lemmas; however, CODA’s tactics
(as well as existing tactics provided by Coq and the Fiat
crypto library [17]) are still useful for simplifying the proof.

Code generation. Once proof obligations are discharged
and type checking succeeds, the CODA compiler generates a
Rank-1 Constraint System (R1CS) [11] representation of the
corresponding CODA program. We choose to compile CODA
code down to R1CS because there are existing zkSNARK
generators [23] that can be used to produce a prover and
verifier from a set of R1CS constraints. For our running
example, the R1CS constraints generated by the CODA
compiler are roughly of the same size and quality as the
constraints generated by the Circom compiler for the code
from Figure 1.1
Threat model. We consider a trustless setup where the
attacker has full access to the implementation of the ZK
circuit, both at the source code level as well as the R1CS
level. We also assume that the attacker has access to both
the prover and the verifier generated from this circuit. We
further assume that the attacker does not have to use the
zero-knowledge proof generated by the prover; instead, they
can replace the proof with their own bogus version.

3. The CODA Language

In this section, we present the syntax, semantics, types,
and compilation procedure of the CODA DSL.

3.1. CODA Syntax and Semantics

At a high level, the CODA DSL is designed with three
key goals in mind:
• Programmability: The DSL should make it possible to

concisely and conveniently express arithmetic circuits of
practical interest. To achieve this goal, CODA is modular
and allows composing different circuits. It also incorpo-
rates higher-order combinators that allow mapping over
arrays and performing aggregation.

• Compilability: Since our ultimate goal is to facilitate the
generation of a ZK proof system (consisting of a prover
and verifier), it should be possible to compile CODA
programs down to R1CS constraints, for which existing
techniques can generate ZK proof systems. To achieve this
goal, CODA primarily allows computation over finite field
elements and only allows using other values like integers
and booleans in restricted ways.

• Verifiability: To allow CODA programs to be statically
verified, CODA is both purely functional and based on
a static refinement type system. Furthermore, to allow
complex properties to be verified, CODA does not insist on
decidable type checking. Instead, it outputs Coq lemmas
to be proven semi-automatically using a combination of
proof tactics and manual intervention where necessary.

1. The size of the R1CS constraints is important both for efficiency and
also for reducing the time and space costs of producing the proof [1].
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r ::= circuit C
−−−−−→
(xi : Ti) → T {e} Circuit declaration

e ::= Expression:
| c constants
| x variable
| ⋆ wild card
| b | z | f arithmetic expressions
| assert e1 = e2 assertion
| e1 ⊘ e2 binary relation
| #C −→ei circuit reference
| a array operator
| t product operator
| λx : τ. e function abstraction
| e1 e2 function application
| letx = e1 in e2 variable binding
| iterλi.τ es ee ef ea iteration

b ::= ¬e | e1 ⊙ e2 Boolean expression
z ::= −Ze | e1 ⊕ e2 Integer expression
f ::= −e | e1 ⊗ e2 Field expression
t ::= Product operator:

| (e1, . . . , en)ϕ product constructor
| match ewith (x1, . . . , xn) → e′ product destructor
| e.i product indexing

a ::= Array operator:
| e1 :: e2 array constructor
| map e1 e2 map
| length e length
| sum e1 e2 e3 sum
| e1 [e2] array indexing

⊙ ∈ {∧,∨} Boolean operators
⊕ ∈ {+Z,−Z, ∗Z} Integer operators
⊗ ∈ {+,−, ∗, /} Field operators
⊘ ∈ {=, <,≤} Binary relations

Figure 3. Syntax of CODA Programs

Figure 3 shows the syntax for CODA programs. Top-level
CODA programs are referred to as circuits (parametrized
over a finite field F) and consist of three components: (1)
xi : Ti, which is a sequence of input parameters xi and
their corresponding type Ti, (2) T , the output type of the
circuit, and (3) e, the body of the circuit. Given some
choice of values for xi, a CODA program evaluates the body
expression e and returns the evaluation result v. At a high
level, CODA is a functional programming language with
domain specific constructs for building ZK circuits as well
as several standard functional combinators. In what follows,
we explain the key features of the CODA language.

Standard functional constructs in CODA include integer
and boolean expressions, arrays and tuples, lambda abstrac-
tions, function applications, iterators, and variable bindings.
A variable binding letx = e1 in e2 binds the result of
evaluating expression e1 to the (immutable) variable x and
evaluates e2. The expression iterλi.τ es ee ef ea performs
aggregation over indices. Specifically, es, ee are start and
end indices respectively, ef is a function, and ea is the initial
value of the accumulator. Starting with the initial value ea,
the function ef is applied on the accumulator to produce
a new value, and this process continues for all indices in
the range [es, ee). Note that this construct has a subscript
λi.τ indicating the loop invariant, which is used in type-
checking, as discussed in Section 3.3.

Beyond the standard functional constructs, CODA allows
expressing computations over finite fields, which are crucial
for building ZK circuits. Finite field expressions in CODA

include field addition, subtraction, and multiplication. These
operations are similar to their integer counterparts except
that they occur modulo the field size F and may therefore
over- or under-flow where their corresponding integer coun-
terparts do not.

As CODA programs need to encode relations (rather
than mathematical functions), they allow non-determinism,
which is expressed via the ⋆ construct in the DSL, which can
evaluate to any field element. Thus, a given CODA program
can have multiple outputs even when executed on the same
input. For example, a CODA function that takes as input a
value x and “returns” ⋆ corresponds to a relation R that
evaluates to true for any pair (x, y) (where y is the “output”
of the CODA function).

In addition to allowing completely non-deterministic
choices, CODA also allows constraining non-determinism
via assertions. For example, consider the following CODA
circuit:

circuit C (a : F) : F =
let b = ⋆ in
let _ = assert a * b = 0 in b

This circuit essentially corresponds to a relation C(a, b)
that evaluates to true if and only if a ∗ b = 0 for some
field elements a, b. Note that assertions are restricted to
predicates of the form e1 = e2, as the resulting constraint
must be compilable down to R1CS, which may not feasible
for arbitrary predicates.

We conclude our discussion of CODA syntax with circuit
references of the form #C(x). At a high-level, circuit
references allow CODA programs to refer to other circuits in
a compositional way. Operationally, they allow developers
to pretend that CODA circuits can be called like regular
functions (even though they are not). For instance, consider
a CODA program that returns #C(x), where C is some
circuit representing a relation R(x, y). Then, the top-level
CODA circuit C ′ can be viewed as syntactic sugar for the
following program:

circuit C’ (a : F) : F =
let b = ⋆ in
let _ = assert R(a, b) in b

3.2. CODA Semantics

The semantics of CODA require valuations, mappings
from variables to values. We formalize the semantics of
CODA expressions using judgments of the form σ ⊢ e ⇓ v,
indicating that e can evaluate to value v under valuation
σ. As emphasized earlier, CODA programs denote relations
rather than mathematical functions; hence, it is possible for
an expression e to evaluate to two distinct values v, v′ under
the same valuation.

While we present the semantics of the full CODA lan-
guage in Appendix A, Figure 4 shows the semantics for a
representative subset of CODA expressions. The semantics
utilize an environment ∆ mapping circuits to their defini-
tions in the E-CREF rule, and the iterator semantics are
defined recursively. Finally, note that, for assert statements,
evaluation gets stuck for field elements that do not satisfy
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v ::= Values:
| c constants
| (v1, . . . , vn) product value
| v1 :: v2 array value
| Closure(λx : τ. e, σ) closure

σ ::= Valuation:
| ∅ empty valuation
| σ[x 7→ v] augmentation

σ ⊢ v ⇓ v
E-VALUE

σ(x) = v

σ ⊢ x ⇓ v
E-VAR

v ∈ F
σ ⊢ ⋆ ⇓ v

E-NONDET

σ ⊢ e1 ⇓ f σ ⊢ e2 ⇓ f f ∈ F
σ ⊢ assert e1 = e2 ⇓ unit

E-ASSERT
σ ⊢ e1 ⇓ f1 σ ⊢ e2 ⇓ f2 f1 ⊗ f2 = f

σ ⊢ e1 ⊗ e2 ⇓ f
E-FBINOP

σ ⊢ λx : . e ⇓ Closure(λx : . e, σ)
E-LAM

σ ⊢ e1 ⇓ Closure(λx : . e, σ′) σ ⊢ e2 ⇓ v σ′[x 7→ v] ⊢ e ⇓ v′

σ ⊢ e1 e2 ⇓ v′
E-APP

σ ⊢ el ⇓ vl for all l ∈ {s, e, f, a}
vs ∈ Z ve ∈ Z vs ≥ ve

σ ⊢ iterλi.τ es ee ef ea ⇓ va
E-ITER0

σ ⊢ el ⇓ vl for all l ∈ {s, e, f, a}
vs ∈ Z ve ∈ Z vs < ve σ ⊢ iterλi.τ (vs +Z 1) ve vf (vf va) ⇓ v

σ ⊢ iterλi.τ es ee ef ea ⇓ v
E-ITERS

∆(C) = circuit R (x1 : T1) · · · (xn : Tn) → T {e} σ ⊢ ei ⇓ vi for all i ∈ {1, . . . , n} σ[x1 7→ v1] · · · [xn 7→ vn] ⊢ e ⇓ v

σ ⊢ #C e1 · · · en ⇓ v
E-CREF

Figure 4. Selected Semantics Rules of CODA Expressions

T ::= Basic types:
F field element

| Int integer
| Bool boolean
| T1 × · · · × Tn product (Unit denotes empty)
| [T ] array type
| {ν : T | ϕ} refinement type

τ ::= T
| x : τ1 → τ2 Function type

ϕ ::= Logical qualifiers:
| t refinement term
| ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ boolean operators
| ∀i∈[0,k). ϕ bounded quantification

t ::= Refinement terms:
true | false boolean constants

| F field size
| e expression
| toN(t) | toZ(t) field to integer conversion

Figure 5. Syntax of CODA Types

the predicate. Thus, if we think of a CODA circuit C with
inputs x and body e as a relation RC((x1, . . . , xn), y), we
have RC((in1, . . . , inn), out) evaluates to true if and only
if (x1 7→ in1, . . . , xn 7→ inn) ⊢ e ⇓ out.

3.3. CODA Type System

CODA facilitates static verification through its rich type
system based on refinement types. At a high level, refinement
types allow developers to express functional correctness
requirements on their ZK circuits as type annotations that
must be checked by the compiler.

Figure 5 shows the syntax for CODA’s refinement type
system, which can be split into four core classes, namely,

base types, compound types, function types, and refinement
types. The three base types include F, Int, and Bool, in-
dicating field elements, integers, and booleans respectively.
As standard, compound types include array types [T ], de-
noting an array of elements of type T , and product types,
T1× . . .×Tn, denoting tuples (e1, . . . , en) where each tuple
element ei has type Ti. Function types are of the form
x : τ1 → τ2, where τ1 is the type of the input and τ2 is
the type of the output. The crucial part of the CODA type
system are refinement types of the form {ν : T | ϕ} which
qualify standard types with an additional logical qualifier
ϕ that the value must satisfy. As a simple example, the
refinement type {ν : F×F | ν.1 = ν.2} describes a pair
whose first element is equal to its second element. In more
detail, logical qualifiers in CODA are (possibly universally
quantified) boolean combinations of atomic predicates in-
volving terms t. Terms in the refinement type syntax include
all expressions allowed in the CODA syntax as well as built-
in functions like toN and toZ used for converting fields to
signed and unsigned integers, respectively. We found such
field-element-to-integer conversion functions to be crucial
for concisely expressing many specifications of practical
interest; hence, we include them as primitives in our type
syntax. However, we also note that CODA’s refinement term
language is extensible, meaning that the developer can define
additional functions to use as part of their specification.

3.3.1. Type Checking Rules. While refinement types allow
developers to write specifications for their ZK circuits, we
still need an algorithm that can be used to statically verify
the type annotations, which is the job of the type checker.
We formalize CODA’s type checking algorithm using three
kinds of typing judgments, namely (1) a circuit typing judg-
ment, (2) an expression typing judgment, and (3) a subtyping
judgment, which utilize the following environments:
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∆;x1 : T1, . . . , xn : Tn ⊢ e : Ty

∆ ⊢C circuit C (x1 : T1) · · · (xn : Tn) → Ty {e}
T-CIRCDECL

Γ(x) = {ν : T | ϕ}
∆;Γ ⊢ x : {ν : T | ν = x}

TE-VAR
Γ(f) = x : τ1 → τ2

∆;Γ ⊢ f : (x : τ1 → τ2)
TE-VAR-FUNC

∆;Γ ⊢ ⋆ : {ν : F | true}
TE-NONDET

f ∈ Fp

∆;Γ ⊢ f : {ν : F | ν = f}
TE-CONSTF

∆;Γ ⊢ x : {ν : F | ϕ1} ∆;Γ ⊢ y : {ν : F | ϕ2}
∆;Γ ⊢ assert x = y : {ν : Unit | x = y}

TE-ASSERT
∆;Γ ⊢ x : {ν : F | ϕ1} ∆;Γ ⊢ y : {ν : F | ϕ2}

∆;Γ ⊢ x⊗ y : {ν : F | ν = x⊗ y}
TE-BINOPFIELD

∆;x : τ1,Γ ⊢ e : τ2

∆;Γ ⊢ λx : τ1. e : (x : τ1 → τ2)
TE-ABS

∆;Γ ⊢ x1 : (s : τs → τr) ∆; Γ ⊢ x2 : τs

∆;Γ ⊢ x1 x2 : τr[s 7→ x2]
TE-APP

s, e, j, f, a fresh τf = j : {ν : Int | s ≤ ν < e} → τ [i 7→ j] → τ [i 7→ j + 1]
τa = τ [i 7→ s] τr = τ [i 7→ e]

∆; Γ ⊢ iterλi.τ : s : Int → e : Int → f : τf → a : τa → τr
TE-ITER

∆(C) = circuit (x1 : T1) · · · (xn : Tn) → (y : Ty)

∆; Γ ⊢ #C : (x1 : T1 → · · · → xn : Tn → Ty)
TE-CREF

∆;Γ ⊢ e : τ ′ Γ ⊨ τ ′ <: τ

∆;Γ ⊢ e : τ
TE-SUB

Figure 6. Selected typing rules for CODA expressions and programs

• Circuit store: The circuit store ∆ keeps track of previ-
ously defined circuits. In particular, it maps the name of
a circuit to the input and output type and is used for type
checking circuit references.

• Type environment: The type environment Γ maps vari-
able names to their types and is used to type check
variable references.

Figure 6 presents our system’s typing rules. We elided
some of the standard, uninteresting rules for space.
Circuit typing. The top-level typing judgment, labeled T-
CIRCDECL, is used to type check CODA circuits. If the body
e of the circuit has type Ty under the assumption that each
argument xi has type Ti, then the whole circuit is well-
typed.
Expression typing. We describe well-typed expressions
with the typing judgment ∆;Γ ⊢ e : τ , meaning that “under
context Γ, the expression e has type τ .” Due to space
constraints, we only describe the most important expression
typing rules in the following discussion; however, the inter-
ested reader can find all expression typing rules (together
with their soundness proof) in Appendix B. We start with
the standard rules first and work our way down to the more
involved type checking rules.
Variables. The rules TE-VAR and TE-VAR-FUNC are used
for typing variables. In both of these rules, the type of
the variable is found in the context. For non-functional
variables, we additionally retain the information that the
returned data is the same as what is present in the variable
itself. This enables simple, lightweight equality reasoning.
Constants. The rule TE-NONDET and TE-CONSTLIST
are used for typing constants. Note that ⋆ corresponds to
non-deterministically chosen field elements; hence, ⋆ al-
ways has type F. Furthermore, a field constant f has type
{ν : F | ν = f}, which essentially corresponds to the

singleton set {f}. (The typing rules for boolean and integer
constants are similar.)
Assertions. The type checking rule for assertions, labeled
TE-ASSERT, keeps track of the constraint being asserted in
the type environment. Assertions only ensure the asserted
information so the base type is Unit.
Binops. The rule TE-BINOPFIELD deals with binary ex-
pressions. For a given expression x⊗ y to type check, x and
y must both be field elements. The type of the expression is
then {ν : T | ν = x ⊗ y}. The elided binop rules, defined
on data types like booleans, follow a similar structure.
Functions. The rules for function abstraction (TE-ABS)
and application (TE-APP) are standard: The abstraction rule
binds the type of x to its declared type τ1 and checks that
e2 has type τ2 under this assumption. The application rule
x1x2 checks that x1 has function type s : τs → τr and that
x2 has type τs. Then, the resulting type of the application
is the return type τr, with occurrences of s in τr substituted
by x2.
Iteration. The type checking rule for the iter construct es-
sentially checks the validity of the annotated loop invariant.
In particular, recall that the iter construct is annotated with
an invariant of the form λi.τ , indicating that the result of
the aggregation has type τ for each index i. Hence, this rule
asserts that (1) the initial value of the accumulator has type
τ [i 7→ s] (where s is the start index), (2) the return value has
type τ [i 7→ e] (where e is the end index), and (3) the function
f has a suitable type of the form τf ≡ j : τ1 → (τ2 → τ3),
where τ1 states that the index j is in the range [s, e) and the
return type τ2 → τ3 states that the accumulator invariant τ
is preserved, since τ2 ≡ τ [i 7→ j] and τ3 ≡ τ [i 7→ j + 1].
Circuit references. Circuit references are type-checked sim-
ilarly to function applications. In particular, if C is a circuit
with n inputs of type T1, . . . , Tn and an output of type τy,
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Γ ⊨ τ <: τ
TSUB-REFL

Γ ⊨ τ1 <: τ2 Γ ⊨ τ2 <: τ3

Γ ⊨ τ1 <: τ3
TSUB-TRANS

Γ ⊨ T1 <: T2 P ≡ [[ϕ1]] =⇒ [[ϕ2]]
∀x⃗ ∈ dom(Γ). ∀ν. Encode(Γ) =⇒ P

Γ ⊨ {ν : T1 | ϕ1} <: {ν : T2 | ϕ2}
TSUB-REFINE

Γ ⊨ τy <: τx
z fresh Γ ⊨ τr[x 7→ z] <: τs[y 7→ z]

Γ ⊨ (x : τx → τr) <: (y : τy → τs)
TSUB-FUN

Γ ⊨ T1 <: T2

Γ ⊨ [T1] <: [T2]
TSUB-ARRAY

Γ ⊨ Ti <: T ′
i for all i ∈ {0, . . . , n}

Γ ⊨ T1 × . . .× Tn <: T ′
1 × . . .× T ′

n

TSUB-PRODUCT

Figure 7. Subtyping rules for CODA

then the expression #C has type x1 : T1 → . . . → xn :
Tn → Ty.

3.3.2. Subtyping. The type checking rules described in
the previous section make use of a subtyping relation:
Specifically, the TE-SUB rule from Figure 6 states that an
expression of type τ ′ also has type τ as long as τ ′ is a
subtype of τ , denoted as Γ ⊨ τ ′ <: τ . In this subsection,
we discuss the subtyping relation, presented in Figure 7,
underlying CODA’s type system.

The first two rules, TSUB-REFL and TSUB-TRANS,
ensure that the subtyping relation is reflexive and transitive.

The third rule, called TSUB-REFINE, is the crux of the
entire type system and reduces refinement type checking to
querying logical validity in some formal logic. In particular,
a refinement type {ν : T1 | ϕ1} is considered a sub-type of
{ν : T2 | ϕ2} if the following two conditions hold: First, the
base type T1 must be a subtype of T2. Second, the logical
qualifier ϕ2 must be logically entailed by ϕ1 under the type
environment Γ. To perform the second check, the CODA
type system generates a logical encoding of ϕ1, ϕ2 and Γ
in Coq and produces a lemma that must be proven in order
for type checking to succeed. We discuss the process of
discharging proof obligations in Coq in the next subsection.

The next rule called TSUB-FUN is used for deciding
sub-typing between functions. As standard, this rule states
that subtyping for functions is contravariant with respect to
the argument types and covariant with respect to the return
types. The next two rules for arrays and products are also
standard and state that subtyping is covariant with respect
to the nested element types.

3.4. Discharging Proof Obligations in Coq

Because logical qualifiers in the CODA type system
make number-theoretic statements about finite field ele-
ments, the lemmas produced by the CODA type checker
cannot by discharged automatically in general. Hence, we

adopt a semi-automated approach, based on Coq, for dis-
charging the proof obligations generated by the CODA type
checker. We choose to use Coq for this purpose because of
the existence of libraries for finite field arithmetic as well
as a rich dictionary of tactics for proof automation.

Recall from the previous subsection that subtyping
checks in the CODA type system may involve an application
of TSUB-REFINE rule, which has the following premise:

∀x⃗ ∈ dom(Γ). ∀ν. Encode(Γ) =⇒ [[ϕ1]] =⇒ [[ϕ2]]

This logical validity query is translated into a Coq proposi-
tion by translating the formulas ϕ1, ϕ2 as well as the typing
environment into Coq objects. Hence, each application of
the TSUB-REFINE rule during type checking corresponds to
a Coq proposition that must be discharged, so type check-
ing is only valid under the assumption that the resulting
proof obligations have been discharged. As an example, the
following is one of the proof obligations generated for the
BigLessThan example from Section 2. This Coq proposition
essentially states that the output signal, out, of the circuit
actually indicates whether |xs| < |ys|, under the assumption
that the iter invariant holds.

∀(k : nat)(xs ys : list F )(out lt : F ),

2 ≤ k ∧ length(xs) = length(ys) = k

∧ binary(xs) ∧ binary(ys)

∧ lt = |xs[: k]| <? |ys[: k]| ∧ out = lt

=⇒ out = |xs| <? |ys|.

Discharging a proof obligation requires providing a for-
mal Coq proof of the corresponding proposition. As stated
earlier, Coq has a number of proof tactics that can be
used to automate proofs, so some of the simpler proof
obligations can be discharged automatically or with very
little manual effort, particularly with the help of the Fiat-
Crypto library [17]. For instance, 10 proof obligations for
the BigLessThan example can be discharged in a fully auto-
mated way via Coq’s standard auto tactic, and an additional
3 may be discharged trivially using fewer than four standard
tactics.

In addition to the standard tactics provided by Coq and
the Fiat-Crypto library [17] (which we use for representing
finite fields), we identified a number of other opportunities
for automatically discharging common proof obligations
generated by the CODA type checker. Table 1 summarizes
some of the tactics that we found to be useful when proving
CODA-generated Coq propositions. For example, because
statements about integers operations must be implemented
using field operations, which can overflow, we provide
tactics that can automatically prove the field operations are
overflow-safe. First, the F to Z tactic rewrites a field ex-
pression into an equivalent integer expression, generating in-
teger inequality side-conditions that ensure overflow safety.
However, the generated side-conditions often involve non-
linear arithmetic, such as multiplication and exponentiation,
making automated solving undecidable. To mitigate this
problem, we provide a domain-specific overflow tactic that
performs backtracking search and attempts to reduce non-
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Tactic Summary

F to Z Rewrite a field expression into an integer expression,
generating overflow-safety side-conditions

overflow Solve overflow-safety obligations
split sum Split a summation into disjoint sub-summations

switch sum Exchanges two nested summations
reduce sum Reduce trivial summations

ind Perform case analysis on an binary field element

TABLE 1. SELECTED CODA COQ TACTICS.

linear inequalities into equivalent linear inequalities based
the user-provided bounds on existing variables. Finally, the
resulting linear inequalities are solved by existing decision
procedures such as Coq’s lia tactic. As another example,
because ZKP programs build functionalities using field
arithmetics such as addition and multiplication, the proofs
often need to reason about indexed summations. To this end,
we provide the split sum tactic that splits a summation into
multiple disjoint summations, switch sum that exchanges
two nested summations, and reduce sum to reduce trivial
summations into simpler expressions.

3.5. Properties of Well-Typed Coda Programs

In this section, we present the key correctness guarantees
established by well-typed CODA programs and refer the
reader to Appendix B for the proofs. The correctness of
CODA’s type system is characterized by expression type
preservation. The preservation theorem states that if e is a
well-typed expression with type τ and e evaluates to some
value v, then v also has the type τ .

Type preservation requires one additional assumption –
well-typed valuations. We describe well-typed valuations
with the judgment ∆;Γ ⊨ σ, meaning that “under context Γ,
the values of all variables in σ have the same types as those
in Γ.” The interested reader can find the formal definition of
valuation typing in the Appendix B. This assumption ensures
that the arguments provided to a circuit are well-typed, for
if the arguments to the circuit are not well-typed then the
resulting value may also not be well-typed.

Theorem 1 (Expression Type Preservation). If ∆;Γ ⊢ e : τ
and σ ⊢ e ⇓ v and ∆;Γ ⊨ σ, then ∆;Γ ⊢ v : τ .

As a corollary, Theorem 1 immediately implies the
following: If (1) C is a well-typed CODA program and e⃗
are input values satisfying the assumptions specified in the
input types of C, and (2) #C e⃗ evaluates to output values
v⃗, then (3) the output values v⃗ are guaranteed to satisfy the
output types of C, as stated in the following theorem:

Theorem 2 (Circuit Evaluation Type Preservation). If
∆;Γ ⊢ #C e⃗ : τ and σ ⊢ #C e⃗ ⇓ v and Γ ⊨ σ, then
∆;Γ ⊢ v : τ .

4. The CODA Compiler

In this section, we describe the CODA compiler for
converting CODA programs to R1CS constraints. Because
zero-knowledge proof systems (based on zkSNARKs [9])
generate the prover and verifier from a Rank 1 Constraint

system, the CODA compiler needs to generate R1CS in order
to leverage existing frameworks for zkSNARK generation.
More formally, a Rank-1 constraint system (V,Φ) consists
of a set of variables V and a list Φ of second-degree
polynomial constraints of the form A ∗ B + C = 0, where
A, B and C are field constants or variables in V . The goal
of the CODA compiler is to translate CODA programs to a
set of R1CS constraints of this form.

We describe our compilation technique in Figure 8 using
judgments of the following shape:

σ ⊢ e⇝ ⟨Φ, u⟩
indicating that, under (symbolic) valuation σ, expression e
evaluates to a compilation value u, with a corresponding set
Φ of R1CS constraints. A compilation value u is essentially
a partially evaluated version of expression e, where the
original expression is simplified as much as possible and
brought into an irreducible form. Because many CODA
expressions are not valid R1CS terms, the primary goal
of partial evaluation is to facilitate the generation of valid
R1CS constraints.

Figure 8 shows a representative subset of the compilation
rules underlying the CODA compiler. The first rule called
C-NONDET simply introduces a fresh R1CS variable r
representing a non-deterministically chosen field element.
The next rule called C-ASSERT adds a new constraint
u1 = u2 where u1 and u2 are the results of partially
evaluating expressions e1 and e2 respectively. The next two
rules C-RED and C-IRRED compile binary field expressions
of the form e1 ⊗ e2. In the reducible case, both e1 and e2
are partially evaluated as constansts (u1, u2 ∈ F), so we
further reduce e1 ⊗ e2 by evaluating u1 ⊗ u2. Otherwise, in
the irreducible case, the compilation result is the symbolic
expression u1 ⊗ u2. 2

The final rule called C-CIRC in Figure 8 presents the
compilation procedure for the entire circuit. Given a circuit
C with parameters x1, . . . , xn and body e, the compilation
procedure introduces fresh symbolic values ri for each pa-
rameter xi and then compiles e into (Φ, u). The final R1CS
encoding of the circuit is then obtained as Φ ∪ rn+1 = u,
where the fresh variable rn+1 corresponds to the circuit
output.

Due to lack of space, Figure 8 does not show the com-
pilation rules for all CODA expressions, and the remaining
compilation rules are basically the same as the operational
semantics. Instead of formally describing the remaining
compilation rules in detail, we remark on a few salient
features of the remaining rules. First, because circuit inputs
and the ⋆ expression in CODA correspond to field elements,
all boolean and integer expressions can be compiled down to
constants. As a corollary, CODA can unroll all loops during
compilation. Furthermore, because array lengths in CODA
are fixed, the CODA compiler can statically infer the exact
shape of arrays. Hence, array operations, such as indexing
and mapping, can also be fully evaluated.

2. Fresh intermediate variables are generated to reduce the degree of
irreducible field expressions to ≤ 2.
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u ::= Compilation values:
| c constants
| (u1, . . . , un) product value
| u1 :: u2 array value
| Closure(λx : τ. e, σ) closure
| r R1CS variable
| r⊗u | u⊗ r Irreducible expressions

σ ::= Valuation:
| ∅ empty valuation
| σ[x 7→ u] augmentation

σ ⊢ u⇝ ⟨∅, u⟩
C-VALUE

r fresh
σ ⊢ ⋆⇝ ⟨∅, r⟩

C-NONDET

σ ⊢ e1 ⇝ ⟨Φ1, u1⟩ σ ⊢ e2 ⇝ ⟨Φ2, u2⟩
σ ⊢ assert e1 = e2 ⇝ ⟨Φ1 ∪ Φ2 ∪ {u1 = u2}, unit⟩

C-ASSERT

σ ⊢ e1 ⇝ ⟨Φ1, u1⟩ σ ⊢ e2 ⇝ ⟨Φ2, u2⟩
u1, u2 ∈ F u1 ⊗u2 = u3

σ ⊢ e1 ⊗ e2 ⇝ ⟨Φ1 ∪ Φ2, u3⟩
C-RED

σ ⊢ e1 ⇝ ⟨Φ1, u1⟩ σ ⊢ e2 ⇝ ⟨Φ2, u2⟩
u1 ̸∈ F or u2 ̸∈ F

σ ⊢ e1 ⊗ e2 ⇝ ⟨Φ1 ∪ Φ2, u1 ⊗u2⟩
C-IRRED

ri fresh for all i ∈ {1, . . . , n+ 1}
[x1 7→ r1] · · · [xn 7→ rn] ⊢ e⇝ ⟨Φ, u⟩

Φ′ = Φ ∪ {rn+1 = u}
circuit C (x1 : F) · · · (xn : F) → F {e}⇝C Φ′ C-CIRC

Figure 8. Rules for compiling CODA to R1CS constraints

5. Implementation

In this section, we provide more details about the imple-
mentation of CODA, which is largely implemented in OCaml
and consists of around 4000 lines of source code.
The CODA language We implemented CODA as a em-
bedded domain-specific language (EDSL) in OCaml. That
is, CODA programs are expressed as OCaml expressions
built from a library of atomic building blocks that represent
CODA constructs. The choice of implementing CODA as an
EDSL means that the developer is allowed to use features
from the host language (e.g., OCaml’s type system, module
system, as well as the expansive standard and third-party
libraries) to significantly bootstrap the development speed.
Type Checking The type checker implements the type
checking and subtyping rules shown in Figures 6 and 7.
Before type checking, CODA programs are normalized to the
administrative normal form (ANF), and types are normalized
to disallow consecutive refinements (i.e. refinement types
of the form {ν : {ν : T | ϕ1} | ϕ2} are normalized to
{ν : T | ϕ1 ∧ ϕ2}).
Lemma generation Recall that the TSUB-REFINE subtyp-
ing rule proves that one refinement type is the subtype of
another by requiring that implication of their qualifiers is a
valid Coq proposition. Thus, the CODA type checker collects
all such implications generated during type checking, and
translates them into equivalent Coq lemmas. The translation
is mostly standard: a base type is embedded as the corre-
sponding Coq type, an array type is embedded into Coq’s

list type refined with its length, a product type is embedded
as Coq’s product type, and a refinement type {ν : T | ϕ} is
embedded as T ’s embedding with a hypothesis that asserts
the truth of the embedding of ϕ. We also define interpreta-
tions of CODA operators that may appear in ϕ. Finally, we
use Fiat-Crypto [17] for the formalization of finite fields.
Extensibility of CODA Type System In case the user
has difficulty encoding a desired property P using CODA’s
refinement type (e.g., if P involves unbounded quantifi-
cation), we allow the user to extend the type system by
treating P as an opaque, uninterpreted predicate. The CODA
type checker will run as normal, but it may generate proof
obligations containing P . Thus, the user must also provide
the interpretation of P in the form of a Coq definition.
Code generation The CODA compiler implements rules
shown in Figure 8 to partially evaluate CODA programs into
constraints over field expressions. We highlight some details
that are elided in the compilation rules. First, the compiler
relaxes the restriction on the circuit’s input type by allowing
non-field inputs, as long as their concrete valuation has been
provided. During compilation, the compiler resolves any
array length into a concrete value such that array operations
can be fully evaluated. Finally, the collected constraints
undergo a global transformation pass that reduces the degree
of each constraint to at most 2, and eliminates any redundant
constraints. Finally, the CODA compiler outputs an R1CS
file in the zkInterface binary format for interoperating with
different zk-SNARK backends.
Verified library Thanks to the functional aspect of CODA,
the core CODA constructs can be easily composed to write
expressive, higher-order library functions that can be reused
across applications. Those functions can be verified just
like circuits by checking the implementation against the
specified types and proving the resulting lemmas in Coq.
We have implemented this idea by building a verified library
that encapsulates common ZKP patterns such as branching,
functional zip, element-wise array arithmetics and array
aggregate operations. Applications that use those library
functions not only benefit from shorter, easier to understand
programs, but also experience less proof burden, as those
library functions have been fully certified.

6. Evaluation

In this section, we describe the results of an evaluation
that is designed to answer the following research questions.

• RQ1: Can we use CODA to build formally verified
implementations of commonly-used ZK circuits?

• RQ2: Can CODA help discover correctness bugs?
• RQ3: Can CODA proof automation tatics help reduce

the manual verification effort?
• RQ4: Can the CODA compiler generate efficient R1CS

code and how does it compare against Circom?
Benchmarks. To answer these questions, we col-

lected 77 ZK circuits sampled from 9 widely-used li-
braries and projects implemented in Circom. The li-
braries include circomlib, the standard Circom library,
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circom-bigint, a popular big-integer library for Cir-
com, and the top-7 GitHub repositories under the “circom”
topic ranked by the number of GitHub stars.

For each library, we selected the circuits used in our
evaluation based on the following criteria: 1) Documen-
tation: The original Circom code should have sufficient
documentation to allow us to formally specify its behavior.
2) External dependencies: If the program has an external
dependency, we require the external dependency to also
satisfy the first criterion.

Experiment Setup. To perform our experiments, we
manually translated these benchmarks to CODA in a way
that preserves their semantics. We expressed the functional
correctness requirements for each circuit as refinement type
annotations and added invariant annotations wherever re-
quired in the CODA program. All experiments reported in
this section are conducted on a MacBook Pro with Apple
M1 Pro CPU and 16 GB of memory. CODA uses OCaml
version 4.13.1 and Coq version 8.15.2. We use Circom 2.1.2
to compare with our generated R1CS constraints.

6.1. Main Results

Table 6.1 summarizes the results of certifying our bench-
marks using CODA. Here, the column called “Original LOC”
shows to the lines of code of the original Circom circuit. In
the “CODA Program” group, the columns “LOC”, “Spec”
and “LOC/Spec” show the size of translated program in
terms of lines of code, the lines of specification (including
the refinement type and loop invariants, if any), and the ratio
of program size to specification size. Next, the “Proof Obli-
gations” group displays statistics about the proof obligations
generated by the CODA type checker. In particular, columns
“Avg”, “Total” and “Provable” shows the average number
of proof obligations per circuit, the total number of obliga-
tions, and the number of provable obligations respectively.
The column called “Discharged” shows the percentage of
correct lemmas that can be discharged (either automatically
or interactively), and “Auto” shows the percentage of those
that can be discharged fully automatically. Finally, the “Avg
Proof Length” column shows the average number of lines
for the Coq proof, and the “Avg TC Time” column shows the
average running time of the type checker in milliseconds.

Our key result is that, for 93% of the Circom programs
that are originally correct, we were able to prove the correct-
ness of our CODA translation. Overall, the specification-to-
implementation ratio for CODA program is 0.6, suggesting
that CODA does not impose an undue burden on program-
mers for writing specifications. In terms of the burden of
proving these specifications, the CODA type checker outputs
an average of 5 proof obligations as Coq lemmas, of which
76% discharged fully automatically. For the remaining ones,
the average proof length (using our tactic library) is 10 lines
of Coq code.

Result for RQ1: CODA is able to certify 93% of the non-
buggy benchmarks, achieving a program-to-specification
ratio of 0.6 and requiring only 10 lines of manual proofs.

6.2. Vulnerability Discovery

Because CODA is sound, a buggy program will lead to
erroneous lemmas that will not be provable in Coq. When
performing this evaluation, we discovered 6 benchmarks
that resulted in proof obligations we were unable to dis-
charge. Upon further inspection, we discovered that these
failed proofs were due to subtle (and previously unknown)
correctness bugs in the original Circom circuits.

Table 6.2 summarizes the vulnerabilities uncovered dur-
ing our evaluation. In this table, the “Library” and “Pro-
gram” columns show the library and program in which the
vulnerability resides, respectively. The “Bug” column sum-
marizes the root cause of the vulnerability. Note that all of
the uncovered bugs are due to important logical constraints
that are missing in the original program. Hence, these
vulnerabilities can be exploited by a malicious prover to
produce bogus zero-knowledge proofs for untrue statements.
We have informed the developers of all of the affected
libraries of the vulnerabilities, and all issues have been
confirmed by the developers.

Result for RQ2: CODA helped reveal 6 previously un-
known vulnerabilities in widely-used ZK circuits.

6.3. Case Study: Reduction in Verification Effort
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Figure 9. Comparison of verification effort of certifying the Circom-bigint
library using CODA vs. using shallow embedding. The vertical axis shows
the average number of constraints in log scale.

In this section, we investigate CODA’s effectiveness in
reducing the verification effort. Specifically, we compare
the effort of certifying ZKP programs using CODA versus
directly certifying the original Circom programs in Coq. In
the latter approach, the source programs are syntactically
translated into functions in Coq, a technique known as
shallow embedding. For example, using shallow embedding,
a Circom variable is encoded into a Coq variable, and
the body of a circuit is encoded as a conjunction of Coq
propositions.

We use the benchmarks from the Circom-bigint library
as a case study. Figure 6.3 compares the verification effort
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Library Original CODA Program Proof Obligations Proof Length TC Time
LOC LOC Spec Spec/LOC Avg Total Provable Discharged Auto (avg lines) (avg ms)

Circomlib 114 37 21 0.57 3 42 42 100% 76% 6 177
Circom-bigint 264 74 38 0.51 9 123 123 81% 69% 33 182

Semaphore 71 23 22 0.96 4 22 22 100% 91% 6 181
Sismo 121 60 35 0.58 8 32 32 100% 94% 3 184

ZK-SBT 88 29 18 0.62 6 37 37 100% 76% 4 181
Darkforest-eth 29 10 5 0.50 4 13 13 100% 77% 5 180

ZK-SQL 47 12 4 0.33 3 10 10 70% 80% 4 180
Circomlib-ml 27 13 4 0.31 3 10 10 83% 70% 4 181

ed25519-circom 50 27 16 0.59 3 17 9 100% 67% 6 182

TABLE 2. MAIN RESULTS

Library Program Bug
Circom-bigint BigMod Missing range check
Circomlib-ml IsPositive Zero considered positive

ed25519-circom LessThanPower Missing logical constraints
ed25519-circom LessThanBounded Missing logical constraints
ed25519-circom fulladder Missing logical constraints
ed25519-circom onlycarry Missing logical constraints

TABLE 3. VULNERABILITIES DISCOVERED IN THE BENCHMARKS.

required by each approach. The “Proof Length” columns
show the number of lines of Coq proof that is required to
certify the program using CODA and shallow embedding,
respectively. On average, CODA enables 60% reduction in
proof size.

Result for RQ3: CODA reduced the verification effort
by requiring 60% shorter proofs compared to the shallow
embedding approach.

6.4. Quality of Compiled R1CS
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Figure 10. The quality of R1CS constraints generated by CODA compared
to Circom.

Finally, we investigate whether the CODA compiler is
able to generate R1CS constraints whose size is comparable
to the Circom compiler. Because the size of a constraint
system crucially determines the cost producing the zero-
knowledge proofs from the constraint system [1], a DSL that
does not produce competitive R1CS constraints is unlikely
to be adopted. To this end, we compare the number of

constraints produced by the CODA compiler vs the Circom
compiler. We exclude benchmarks that have transitive de-
pendencies outside the benchmark set, as the compilation
procedure requires all referenced circuits be defined. Addi-
tionally, if a circuit contains a natural number parameter, we
instantiate the circuit using the representative values for said
parameter and take the average across all parameter values.
We compare CODA’s generated constraints against Circom’s
constraints produced by optimization levels -O1 and -O2.

The results of this evaluation are summarized in Fig-
ure 6.4. The key takeaway is that the CODA compiler is
able to produce R1CS constraints that are of comparable
quality to the Circom compiler. In particular, compared to
the Circom compiler on level -O1, CODA generates equal or
fewer constraints for 100% of the benchmarks. Compared to
the Circom compiler on level -O2, for 82% benchmarks, the
number of CODA’s generated constraints is within 10% of
the number of Circom’s constraints, while for 26% bench-
marks, CODA produced equal or fewer constraints than the
Circom compiler.

Result for RQ4: The CODA compiler can generate
constraints whose quality is comparable to Circom.

7. Related Work

In this section, we survey prior work that is most closely
related to our proposed approach.

Refinement types. There has been significant interest in
using refinement types for formal verification [35], [36],
[43], [44], [39]. Some example applications include proving
the absence of integer overflows [39] and verification of
memory safety [36]. Most of the prior techniques in this
space keep type checking decidable and use an off-the-shelf
SMT solver to discharge the constraints generated by the
type checker. However, zero knowledge circuit verification is
much more challenging than prior applications of refinement
types, and existing SMT solvers do not provide adequate
support for reasoning about polynomial equations over finite
fields. Thus, in contrast to prior work, CODA outputs Coq
propositions during type checking and uses a combination
of automated tactics and manual intervention (where neces-
sary) to enable formal verification of ZK circuits.

ZK programming languages and compilers. Due to the
increasing demand for zero-knowledge proofs, there have
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been several new domain-specific languages (DSLs) tar-
geting this domain. Example DSLs for constructing zk-
SNARKS [10] include Leo [12], Noir [5], Zokrates [15],
Zinc [28], Snarky [30], Lurk [3], and CirC [31]. In con-
trast to these prior efforts, the main focus of CODA is on
verifiability of the circuit with respect to the specification.

While most languages, include CODA, are intended for
zkSNARKs, there are also other programming languages
targeting zkSTARKs (Scalable Transparent ARgument of
Knowledge) [8]. For instance, Cairo [20], is a Turing com-
plete language that allows general computation, and has
recently become quite popular for zkSTARKs.

Formal methods & ZK. Writing correct zero-knowledge
programs requires specialized domain expertise. Due to
the importance of ZK circuits in blockchain applications,
recent work has proposed techniques for finding bugs in this
domain [42], [4], [16], [41]. For instance, Circomspect [14]
is an open-source static analyzer designed to find bugs in
Circom programs. Circomspect performs syntactic pattern
matching on the Circom source code to detect potential
issues. However, this approach suffers from both false posi-
tives as well as false negatives and is intended as a bug finder
rather than a verifier. Wen et al. [47] study common vulner-
abilities in Circom and describe a static analysis framework
for detecting these vulnerabilities. Their technique operates
over an abstraction called the circuit dependence graph
(CDG) that captures key properties of the circuit and allows
expressing semantic vulnerability patterns as queries over
the CDG abstraction. Another recent effort [33] focuses
on finding underconstrained bugs (or proving the absence
thereof) in Circom programs. This approach combines SMT
solving with lightweight uniqueness inference to effectively
reason about underconstrained circuits. In contrast, Coda is
designed with an refinement type system to specify the func-
tional correctness of circuits. Unlike previous approaches
that focus on finding common vulnerabilities, the focus of
CODA is on verifying full correctness of the circuit with
respect to a formal specification. Certification is achieved
using a combination of type checking and semi-automated
Coq proofs. On a related note, [4] formally verifies the
equivalence between constraint systems for probabilistic
proofs, with the goal of reducing the number of constraints.

Another orthogonal line of work [27] combines formal
methods and the zero-knowledge domain in a different
way. In particular, recent work has proposed ZK-UNSAT,
a technique for proving that a propositional formula is
unsatisfiable while revealing minimal information about the
resolution refutation proof of unsatisfiability. As the focus
of this work is generating zero-knowledge arguments of
unsatisfiability, it is not directly related to CODA.

Finally, there have been works on formally verifying the
compilation from high-level DSLs to arithmetic constraints.
The Leo [12] programming language seeks to provide a
certifying compiler from a high-level language to R1CS
constraints. [18] develops a certified compiler based on
CompCert [26] that correctly compiles a subset of C to
quadratic constraints. These works are complementary to
CODA in that they can be adapted to formally certify the

CODA compiler.
Formal verification for cryptography. There is a body of

work on applying formal verification techniques to crypto-
graphic protocols. For instance, FiatCrypto [17] introduces
a new approach for implementing cryptographic arithmetic
in high-level code with machine-checked proofs of func-
tional correctness through Coq. Corin et al. [13] leverage a
variant of probabilistic Hoare logic to prove the security of
ElGamal; Gagne et al. [19] use similar methods to prove the
security of the front-end of many CBC-based MACs, PMAC
and HMAC. Tiwari et.al [40] leverage component-based
program synthesis to automatically generate padding-based
encryption schemes, and block cipher modes of operations.
EasyCrypt [6] is a toolset that allows users to specify and
prove the correctness of cryptographic protocols.

On the other hand, there is little work on reasoning about
the correctness of zero-knowledge proofs. Leveraging the
MPC-in-the-head paradigm (i.e., Multi-Parity Computation),
Sidorenco et al.[38] generated machine-checked proofs of
ZK protocols using EasyCrypt. Almeida et al. [2] developed
a certifying compiler for Σ−protocols, a broad class of zero-
knowledge protocols including zkSNARKs [10]. Specifi-
cally, given a protocol written in its high-level language,
the compiler generates an executable implementation that
is provably correct using the Isabelle/HOL [29] theorem
prover. More recent work has focused on building special-
ized solvers for polynomial equations over finite fields [32],
[22], [45], [33]. Similar to the custom Coq tactic library that
reduces the proof burden in CODA, we believe the above-
mentioned works are complementary and can be incorpo-
rated into CODA to improve the degree of proof automation.

8. Conclusion

We presented CODA, a new statically-typed language for
building zero-knowledge applications. CODA enables devel-
opers to formally specify and statically check properties of
ZK circuits through a rich refinement type system. The type
checker underlying CODA generates a set of Coq lemmas
that, if valid, collectively constitute a proof of correctness of
the circuit. CODA facilitates interactive verification of these
lemmas using a combination of domain-specific proof tactics
and manual intervention where necessary. Finally, the CODA
compiler automatically translates high-level CODA circuits
to low-level R1CS constraints from which a zero-knowledge
proof system can be generated using existing techniques.

We used CODA to formally specify and verify 77 ex-
isting circuits from widely-used Circom projects. We were
able to verify the correct circuits and identified 6 previously
unknown vulnerabilities in the original Circom circuits.

9. Acknowledgement

We thank the reviewers for their helpful comments.
This work is supported in part by NSF #1908494, DARPA
N66001-22-2-4037, the Google Faculty Research Awards,
and the Ethereum Foundation Academic Grants.

13



References

[1] Elvira Albert, Marta Bellés-Muñoz, Miguel Isabel, Clara Rodrı́guez-
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[7] Marta Bellés-Muñoz, Jordi Baylina, Vanesa Daza, and José L. Muñoz-
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Appendix A.
Operational Semantics

The full operational semantics for CODA is shown in
Figure 11.

Appendix B.
Metatheory

In this section, we include some of the metatheory about
CODA’s type system as well as a brief sketch of the proof
of theorem 1.

For the purposes of the proofs, we consider a core subset
of the calculus that contains only field elements, integers,
booleans, pairs (products of arity 2), functions, and iter
expressions. Furthermore, we take “unit” to be a first-class
expression unit and type Unit.

B.1. Preliminary Definitions

Definition 1. The valuation typing relation, written as
∆;Γ ⊨ σ, is defined as:

∆;Γ ⊨ σ ::=

dom(Γ) = dom(σ)

∧ (∀x, v, τ.
Γ(x) = {ν : T | ϕ} ∧ σ(x) = v =⇒

∆;Γ ⊢ v : {ν : T | ν = x})
∧ (∀x, v, x′, τ1, τ2.

Γ(x) = x′ : τ1 → τ2 ∧ σ(x) = v =⇒
∆;Γ ⊢ v : x′ : τ1 → τ2)

The meaning of valuation typing is “a variable x is in
Γ if and only if it is also in σ; and the value v of every
variable x in σ must have the same type as x under Γ.”
Note that the two “cases” here correspond to the types in
the TE-VAR and TE-VAR-FUN rules, respectively.

Definition 2. The base type subtyping judgment, written as
⊨ T1 <: T2, is defined using the inference rules in fig. 12.

B.2. Subtyping Lemmas

We now state several useful properties about our sub-
typing rules.

Lemma 1 (Every Refinement Type is a Subtype of True).
For all Γ, T , and ϕ,

Γ ⊨ {ν : T | ϕ} <: {ν : T | true} (1)

Proof. By induction on the derivation of eq. (1).

Lemma 2 (Inversion for Function Subtyping, Unknown
Supertype). If Γ ⊨ x : τ1 → τ2 <: τ , then there exist τ ′1, τ

′
2

such that τ = x : τ ′1 → τ ′2 and Γ ⊨ τ ′1 <: τ1 and
Γ ⊨ τ2 <: τ ′2.

Proof. By induction on the derivation of
Γ ⊨ x : τ1 → τ2 <: τ .

Lemma 3 (Inversion for Function Subtyping, Both Known).
If Γ ⊨ x : τ1 → τ2 <: y : τ ′1 → τ ′2, then x = y and
Γ ⊨ τ ′1 <: τ1 and Γ ⊨ τ2 <: τ ′2.

Proof. By induction on the derivation of
Γ ⊨ x : τ1 → τ2 <: y : τ ′1 → τ ′2.

Lemma 4 (Inversion for Refinement Subtyping). If
Γ ⊨ {ν : T1 | p} <: τ , then there exists a T ′

2, q such that
all of the following hold:

• τ = {ν : T2 | q}
• Γ ⊨ T1 <: T2

• |=Coq ∀x⃗ ∈ dom(Γ). ∀ν. Encode(Γ) =⇒ [[p]] =⇒
[[q]]

Proof. By induction on the derivation of
Γ ⊨ {ν : T1 | p} <: τ .

Lemma 5 (Subtyping Weakening). If ∆;Γ ⊨ τ1 <: τ2 and
x /∈ dom(Γ), then ∆;Γ, x : τx ⊨ τ1 <: τ2.
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v ::= Values:
| c constants
| (v1, . . . , vn) product value
| v1 :: v2 array value
| Closure(λx : τ. e, σ) closure

σ ::= Valuation:
| ∅ empty valuation
| σ[x 7→ v] augmentation

σ ⊢ v ⇓ v
E-VALUE

σ(x) = v

σ ⊢ x ⇓ v
E-VAR

v ∈ F
σ ⊢ ⋆ ⇓ v

E-NONDET
σ ⊢ e1 ⇓ f σ ⊢ e2 ⇓ f f ∈ F

σ ⊢ assert e1 = e2 ⇓ unit
E-ASSERT

σ ⊢ e1 ⇓ f1 σ ⊢ e2 ⇓ f2 f1 ⊗ f2 = f

σ ⊢ e1 ⊗ e2 ⇓ f
E-FBINOP

σ ⊢ e1 ⇓ z1 σ ⊢ e2 ⇓ z2 z1 ⊕ z2 = z

σ ⊢ e1 ⊕ e2 ⇓ z
E-INTBINOP

σ ⊢ e1 ⇓ b1 σ ⊢ e2 ⇓ b2 b1 ⊙ b2 = b

σ ⊢ b1 ⊙ b2 ⇓ b
E-BOOLBINOP

σ ⊢ e1 ⇓ v1 σ ⊢ e2 ⇓ v2 v1, v2 ∈ F or v1, v2 ∈ Z or v1, v2 ∈ B v1 = v2

σ ⊢ e1 = e2 ⇓ true
E-EQTRUE

σ ⊢ e1 ⇓ v1 σ ⊢ e2 ⇓ v2 (v1, v2) ̸∈ ⊘
σ ⊢ e1 ⊘ e2 ⇓ false

E-EQFALSE

σ ⊢ e1 ⇓ z1 σ ⊢ e2 ⇓ z2 v1, v2 ∈ Z ⊘ ∈ {<,≤} (z1, z2) ∈ ⊘
σ ⊢ e1 ⊘ e2 ⇓ true

E-INEQTRUE

σ ⊢ e1 ⇓ v1 σ ⊢ e2 ⇓ v2 v1, v2 ∈ Z ⊘ ∈ {<,≤} (z1, z2) /∈ ⊘
σ ⊢ e1 ⊘ e2 ⇓ false

E-INEQFALSE

σ ⊢ λx : . e ⇓ Closure(λx : . e, σ)
E-LAM

σ ⊢ e1 ⇓ Closure(λx : . e, σ′) σ ⊢ e2 ⇓ v σ′[x 7→ v] ⊢ e ⇓ v′

σ ⊢ e1 e2 ⇓ v′
E-APP

σ ⊢ e1 ⇓ v1σ ⊢ e2 ⇓ v2

σ ⊢ e1 :: e2 ⇓ v1 :: v2
E-CONS

σ ⊢ e1 ⇓ vh :: vt σ ⊢ e2 ⇓ 0

σ ⊢ e1 [e2] ⇓ vh
E-INDCONSHEAD

σ ⊢ e1 ⇓ vh :: vt σ ⊢ e2 ⇓ z 0 < z σ ⊢ vt [z − 1] ⇓ v

σ ⊢ e1 [e2] ⇓ v
E-INDCONSTAIL

σ ⊢ ei ⇓ vi for all i ∈ {1, . . . , n}
σ ⊢ (e1, . . . , ei) ⇓ (v1, . . . , vi)

E-PRODCONS
σ ⊢ e1 ⇓ (v1, . . . , vn) σ[x1 7→ v1] · · · [xn 7→ vn] ⊢ e2 ⇓ v

σ ⊢ match e1 with (x1, . . . , xn) → e2 ⇓ v
E-PRODDESTR

σ ⊢ el ⇓ vl for all l ∈ {s, e, f, a}
vs ∈ Z ve ∈ Z vs ≥ ve

σ ⊢ iterλi.τ es ee ef ea ⇓ va
E-ITER0

σ ⊢ el ⇓ vl for all l ∈ {s, e, f, a}
vs ∈ Z ve ∈ Z vs < ve σ ⊢ iterλi.τ (vs +Z 1) ve vf (vf va) ⇓ v

σ ⊢ iterλi.τ es ee ef ea ⇓ v
E-ITERS

∆(C) = circuit R (x1 : T1) · · · (xn : Tn) → T {e} σ ⊢ ei ⇓ vi for all i ∈ {1, . . . , n} σ[x1 7→ v1] · · · [xn 7→ vn] ⊢ e ⇓ v

σ ⊢ #C e1 · · · en ⇓ v
E-CREF

Figure 11. Semantics of CODA program
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⊨ T <: T
BSUB-REFL

⊨ T11 <: T21 ⊨ T12 <: T22

⊨ (T11, T12) <: (T21, T22)
BSUB-PAIR

Figure 12. Base Type Subtyping Rules

Proof. By induction on the derivation of ∆;Γ ⊨ τ1 <: τ2.

B.3. Expression Typing Lemmas

Lemma 6 (Expression Typing Weakening). If ∆;Γ ⊢ e : τ
and x /∈ dom(G), then ∆;Γ, x : τx ⊢ e : τ

Proof. By induction on the derivation of ∆;Γ ⊢ e : τ .

Lemma 7 (Inversion for Types). Suppose that Γ ⊢ e : τ .
Then there exists a type τ ′ such that:

∆;Γ ⊢ e : τ ′ (2)
Γ ⊨ τ ′ <: τ (3)

and:
(a) If e = f for some f ∈ Fp, then τ ′ = {ν : F | ν = f}.
(b) If e = b for some b ∈ {true, false}, then τ ′ = {ν :

Bool | ν = b}.
(c) If e = x, then exactly one of the following is true:

• There exist T, ϕ such that τ ′ = τ ′ = {ν : T | ν = x}
and Γ(x) = {ν : T | ϕ}.

• There exist x′, τ1, τ2, τ
′
1, τ

′
2 such that τ = x′ :

τ1 → τ2 and Γ(x) = x′ : τ ′1 → τ ′2 and
∆;Γ ⊢ x : x′ : τ ′1 → τ ′2.

(d) If e = ⋆, then τ ′ = {ν : F | true}.
(e) If e = Closure(λx : τ ′1. e

′, σ) for some e′, τ ′1, then
there exist τ1, τ2, τ

′
2,Γ

′ such that τ = x : τ1 → τ2
and τ ′ = x : τ ′1 → τ ′2 and ∆;Γ′, x : τ ′1 ⊢ e : τ ′2 and
FV(τ ′2) ⊆ {ν, x}.

(f) If e = λx : τ1. e′, then there exists e, τ2 such that
∆;Γ ⊢ (λx : τ1. e) : x : τ1 → τ2.

(g) If e = e1 e2, then there exist x, τ ′1, τ
′
2 such that

τ ′ = τ ′2[e2 7→ x] and ∆;Γ ⊢ e1 : x : τ ′1 → τ ′2 and
∆;Γ ⊢ e1 e2 : τ ′.

(h) If e = (e1, e2), then there exists T1, T2, ϕ, T
′
1, T

′
2, ϕ1, ϕ2

such that:
τ = {ν : (T1, T2) | ϕ} (4)
τ ′ = {ν : (T ′

1, T
′
2) | ϕ1[ν 7→ ν.1] ∧ ϕ2[ν 7→ ν.2]} (5)

Γ ⊨ τ ′ <: τ (6)
∆;Γ ⊢ (e1, e2) : τ

′ (7)
∆;Γ ⊢ e1 : {ν : T ′

1 | ϕ1} (8)
∆;Γ ⊢ e2 : {ν : T ′

2 | ϕ2} (9)

Proof. By induction on the derivation of Γ ⊢ e : τ . As there
are many similar cases, we show only some of the cases
here.

• Case TE-CONSTF: Then we have
e = f (10)
τ = {ν : F | ν = f} (11)

Choosing τ ′ = τ discharges eq. (2) and clause (a), and
then applying TSUB-REFL discharges eq. (3).

• Cases TE-NONDET, TE-CONSTBOOL, TE-VAR, TE-
ABS: Similar.

• Case TE-SUB: Then
Γ ⊨ τ ′′ <: τ (12)
∆;Γ ⊢ e : τ ′′ (13)

The inductive hypothesis is:
Γ ⊢ e : τ ′′ =⇒ (14)

∃τ ′.
∆;Γ ⊢ e : τ ′∧ (15)
Γ ⊨ τ ′ <: τ ′′∧ (16)
all clauses (a) - (h) (17)

Clearly eq. (14) is satisfied. Thus eq. (2) and eq. (3)
follow immediately (the latter through transitivity of
eq. (16) and eq. (12)).
We then proceed by case analysis on e to show the
remaining clauses.
– Case e = f : Only clause (a) applies, and eq. (17)

implies that as required,
τ ′ = {ν : F | ν = f} (18)

– Case e = ⋆: Only clause (d) applies, and eq. (17)
implies that as required,

τ ′ = {ν : F | true} (19)
– The remaining cases are similar.

Lemma 8. If ∆;Γ ⊢ e : τ , then for all x, τ ′, we have
∆;Γ, x : τ ′ ⊢ e : τ .

Proof. By induction on the derivation of ∆;Γ ⊢ e : τ .

B.4. Correctness Properties

Theorem 1 (Expression Type Preservation). If ∆;Γ ⊢ e : τ
and σ ⊢ e ⇓ v and ∆;Γ ⊨ σ, then ∆;Γ ⊢ v : τ .

Proof. By induction on the derivation of σ ⊢ e ⇓ v, where
we want to prove the property:

∀Γ, τ. Γ ⊢ e : τ =⇒ Γ ⊢ v : τ

As there are many cases, we show only some of the
cases here.

• Case E-VALUE: Follows immediately from the
premises.

• Case E-NONDET: Then
e = ⋆ (20)
v = f ∈ Fp (21)

From lemma 7,

Γ ⊨ {ν : F | true} <: τ (22)
∆;Γ ⊢ e : {ν : F | true} (23)
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Applying TE-CONSTF and lemma 1 to v then yields
the desired result.

• Case E-VAR: Then
e = x (24)
v = σ(x) (25)

By lemma 7, we know that τ is either a refinement
type or a function.

If τ is a refinement type, i.e. Γ(x) = {ν :
T | ϕ} for some T, ϕ, then we have that
Γ ⊨ {ν : T | ν = x} <: τ . From definition 1, it follows
that Γ ⊢ v : {ν : T | ν = x}. The conclusion then fol-
lows by applying the TE-SUB rule.
Otherwise, the τ is a function type, i.e. Γ(x) = x′ :
τ1 → τ2 for some x′, τ1, τ2. The conclusion follows
similarly in this case.

• Case E-ASSERT: Then

e = (assert x1 = x2) (26)
σ ⊢ x1 ⇓ f (27)
σ ⊢ x2 ⇓ f (28)
v = unit (29)

In order to show that
∆;Γ ⊢ unit : {ν : Unit | x1 = x2}, we can use
the TE-SUB, TE-UNIT, and TSUB-REFINE rules.
This requires us to show that x1 = x2, when embedded
as a Coq proposition, is entailed by the embedding of
Γ:

|=Coq∀x⃗ ∈ dom(Γ). ∀ν.
Encode(Γ) =⇒

[[ν = unit]] =⇒ [[x1 = x2]]

(30)

We now argue that the above proposition holds. First,
by lemma 7, we have that ∆;Γ ⊢ x1 : {ν : F | ν = x1}
(similarly for x2). Using the inductive hypotheses for
x1 and x2, it can then be shown, resp., that

∆;Γ ⊢ f : {ν : F | ν = x1} (31)
∆;Γ ⊢ f : {ν : F | ν = x2} (32)

Applying lemma 7 to the above then yields

Γ ⊨ {ν : F | ν = f} <: {ν : F | ν = x1} (33)
Γ ⊨ {ν : F | ν = f} <: {ν : F | ν = x2} (34)

By lemma 4, we must have

|=Coq∀x⃗ ∈ dom(Γ). ∀ν.
Encode(Γ) =⇒

[[ν = f ]] =⇒ [[ν = x1]]

(35)

|=Coq∀x⃗ ∈ dom(Γ). ∀ν.
Encode(Γ) =⇒

[[ν = f ]] =⇒ [[ν = x2]]

(36)

If we instantiate ν in both propositions by setting

ν = f , then together they will imply the single
proposition:

|=Coq∀x⃗ ∈ dom(Γ).

Encode(Γ) =⇒
[[f = f ]] =⇒ [[f = x1 ∧ f = x2]]

(37)

Finally, the above proposition implies that:

|=Coq∀x⃗ ∈ dom(Γ).

Encode(Γ) =⇒
[[true]] =⇒ [[x1 = x2]]

(38)

This implies eq. (30), which completes the proof of this
case.

• Case E-PAIR: Then we have

e = (e1, e2) (39)
v = (v1, v2) (40)

First, from lemma 7, we have

τ = {ν : (T1, T2) | ϕ} (41)
τ ′ = {ν : (T ′

1, T
′
2) | ϕ1[ν 7→ ν.1] ∧ ϕ2[ν 7→ ν.2]}

(42)
Γ ⊨ τ ′ <: τ (43)
∆;Γ ⊢ (e1, e2) : τ

′ (44)
∆;Γ ⊢ e1 : {ν : T ′

1 | ϕ1} (45)
∆;Γ ⊢ e2 : {ν : T ′

2 | ϕ2} (46)

We then apply the inductive hypotheses with e1 and e2
to obtain:

∆;Γ ⊢ v1 : {ν : T ′
1 | ϕ1} (47)

∆;Γ ⊢ v2 : {ν : T ′
2 | ϕ2} (48)

Finally, we apply TE-SUB and TE-PAIR to derive the
conclusion.

• Cases E-FBINOP, E-BBINOP, E-INTBINOP: Similar.
• Case E-APP: Then

e = e1 e2 (49)
σ ⊢ e1 ⇓ Closure(λx : τ ′1. e

′, σ) (50)
σ ⊢ e1 ⇓ v2 (51)
σ[x 7→ v2] ⊢ e′ ⇓ v (52)

By lemma 7 on the type of e, there must exist
x′, τ1, τ2, τ

′
2 such that

∆;Γ ⊢ e1 : x′ : τ1 → τ2 (53)
Γ ⊨ x′ : τ ′1 → τ ′2 <: τ (54)
Γ ⊨ τ2[x

′ 7→ e2] <: τ (55)

Applying the inductive hypothesis to e1 then yields

∆;Γ ⊢ Closure(λx : τ ′. e′, σ) : x′ : τ ′1 → τ ′2 (56)

Now, by applying lemma 7 to the closure, it follows

18



that there exist Γ′ and τ ′′2 such that

∆;Γ ⊢ Closure(λx : τ. e′, σ) : x′ : τ ′1 → τ ′′2 (57)
Γ ⊨ x′ : τ ′1 → τ ′′2 <: x′ : τ ′′1 → τ ′′2 (58)
∆;Γ′, x : τ ′1 ⊢ e′ : τ ′′ (59)

The inductive hypothesis can then be applied to e′ to
obtain:

∆;Γ′, x : τ ′1 ⊢ v : τ ′′ (60)
Note that τ ′′ may only contain x′ and ν as free vari-
ables; consequently, τ ′′[x′ 7→ e2] contains only free
variables in dom(Γ). Furthermore, because v is already
well-typed under Γ′ and has no free variables besides
ν, it can be typed under any other typing context. It
follows that ∆;Γ ⊢ v : τ ′′[x′ 7→ e2]. The desired result
follows immediately by applying TE-SUB and eq. (55).

• Case E-LAM: Follows from lemma 7, TE-SUB, and
TE-CLO.

• Cases E-CREF, E-ITER0, E-ITERS: Similar to E-APP.

Appendix C.
Meta-Review

C.1. Summary

The paper proposes a novel domain specific language
called CODA for developing circuits used in zero-knowledge
proofs. To enable developing correctness proofs of these
circuits, CODA is based on functional programming with
static refinement types. Users write functional code with
correctness statements embedded in refinement types and
provide loop invariants. The CODA compiler performs type
checking, which may generate lemmas based on the refine-
ment types in the program. Users then manually discharge
those lemmas in an interactive theorem prover.

C.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field

C.3. Reasons for Acceptance

1) The paper provides a valuable step forward in an es-
tablished field. Zero-knowledge circuits are a relatively
simple model of computation, which at the same time
have a very high cost of errors. This makes it a perfect
candidate to apply the end-to-end formal framework
proposed in the paper to certify the correctness of these
circuits.

2) The proposed system strikes a good balance between
manual formal verification and automated formal ver-
ification. The idea of using semi-automated theorem
proving to overcome the limitations of existing tools
is interesting and novel. Furthermore, the fact that the
provided tactics can automate away some of the proof
burden is exciting, which lowers the barrier to formal
verification of safety-critical code.

3) The paper comes with formalized syntax and semantics
of CODA, as well as a soundness proof of its type
checking.

4) Using their system, the authors found a number of vul-
nerabilities in projects that developed zero-knowledge
circuits.

C.4. Noteworthy Concerns

Some reviewer was concerned about the amount of
manual effort involved in writing loop invariants and dis-
charging lemmas. However, the reviewers concluded that the
paper makes a significant step toward a mostly automated
framework of certifying the correctness of zero-knowledge
circuits.
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