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Abstract. As the technical feasibility of a quantum computer becomes more and more
likely, post-quantum cryptography algorithms are receiving particular attention in
recent years. Among them, code-based cryptosystems were first considered unsuited
for hardware and embedded software implementations because of their very large
key sizes. However, recent work has shown that such implementations are practical,
which also makes them susceptible to physical attacks. In this article, we propose a
horizontal correlation attack on the Classic McEliece cryptosystem, more precisely
on the matrix-vector multiplication over F2 that computes the shared key in the
encapsulation process. The attack is applicable in the broader context of Niederreiter-
like code-based cryptosystems and is independent of the code structure, i.e. it does
not need to exploit any particular structure in the parity check matrix. Instead, we
take advantage of the constant time property of the matrix-vector multiplication
over F2. We extend the feasibility of the basic attack by leveraging information-set
decoding methods and carry it out successfully on the reference embedded software
implementation. Interestingly, we highlight that implementation choices, like the
word size or the compilation options, play a crucial role in the attack success, and
even contradict the theoretical analysis.
Keywords: Post-quantum cryptography · Side-channel attacks · Classic McEliece

1 Introduction
There is almost no day without a Quantum Computing breaking news. During the last
five years the evolution of quantum technologies went from creating and improving qubits,
investigating both quantitative as well as qualitative aspects [Pre18, TF19, LGB+21], to
practical simulated models of connecting qubits into quantum networks [SLP+20, LSI+23],
all in a common goal of achieving a scalable quantum computer. From private companies
to public organisations/governments announcing new quantum computing and security
acts, all converge to this major technology challenge.The US Public Law No. 117-260 from
2022, also known as the Quantum Computing Cybersecurity Preparedness Act encourages
the migration of information technology systems to quantum-resistant cryptography. Also,
the European Union Agency for Cybersecurity urges all private data sensitive technologies
to adopt quantum resistant cryptographic solutions [BDH+22].

The post-quantum cryptography standardization process initiated by NIST in 2016
aims at standardizing cryptography algorithms whose security is not threatened by the
existence of a quantum computer of sufficient capacity. Two categories of algorithms are
considered, namely digital signatures and key encapsulation mechanisms (KEMs). One
KEM proposal under consideration in the fourth round of the standardization process is
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the Classic McEliece cryptosystem which is based on error-correcting codes [ABC+22] and
its security relies on the hardness of the binary syndrome decoding problem.

While the first rounds of the standardization process focused on performing cryptanalysis
of the algorithms, NIST explicitly stated that time has now come for more hardware
implementations, and in particular side-channel resistant implementations. In this regard,
it is of prime importance to evaluate the susceptibility of the implementations of these
algorithms to physical attacks in general and to side-channel attacks in particular. It is
also one of the main tracks followed by the NIST PQC seminar,1 where the side-channel
analysis topic is recurrent [Saa22, RCDB22].

Even before being considered a strong candidate in the post-quantum cryptography race,
code-based cryptosystems were subject to side-channel attacks [CD10, HMP10, MSSS11,
AHPT11, CEvMS16]. The first round of the NIST post-quantum standardization process
ended with the last documentation updates on June 12th, 2019. It was that moment
that triggered even more specific side-channel attacks, i.e. oriented towards the Classic
McEliece KEM. In a series of articles, either the security of session key or of the private
key was successfully broken [LNPS20, CCD+21, GJJ22, GCCD23].

In this work, we focus on the core operation of the encapsulation process in the Classic
McEliece cryptosystem, namely the matrix-vector multiplication over F2 between the
public-key, i.e. the parity-check matrix of the error-correcting code, and a random vector
of fixed, low Hamming weight. This operation has been targeted before by physical attacks,
for instance by laser fault injection [CCD+21] or a profiled side-channel attack [CDCG22].
In both of these works, the value of the integer syndrome is exploited to recover the secret
error vector. This breaks the security of the KEM and allows to recover the shared key,
since the secret error vector is used as seed to derive the shared secret key.

Conversely here, we recover the secret error vector by performing an unprofiled horizontal
correlation attack on the matrix-vector multiplication over F2. This attack directly relies
on the constant-time property of the implementation of the matrix-vector multiplication.
We show that a correlation exists between the columns of the parity-check matrix and the
Hamming distance leakage during the execution. This allows to identify which columns
of the parity-check matrix are involved in the syndrome computation and reveals the
positions of the errors in the secret error vector.

Contributions
This article makes the following contributions:

• We propose the first unprofiled attack on the Classic McEliece cryptosystem. This
attack uses a single side-channel trace and allows to recover the shared secret key of
the KEM. Since it targets the matrix-vector multiplication step, it is applicable to
any Niederreiter-like cryptosystem,

• We evaluate the attack success with respect to important implementation choices,
namely the size of the words used for the implementation of the matrix-vector
multiplication over F2 and the optimisation options passed to the compiler. In
particular, we highlight a discrepancy between the success rate of the attack in a
simulated setting and the observations made on real side-channel traces.

Organization
This article is organized as follows. Section 2 presents the Classic McEliece cryptosystem
before reviewing existing side-channel attacks that apply against it. Section 3 describes

1https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-sem
inars

https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars
https://csrc.nist.gov/Projects/post-quantum-cryptography/workshops-and-timeline/pqc-seminars
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the proposed horizontal correlation side-channel attack. Section 4 provides experimental
results, both with simulated and real side-channel traces, for various parameters. In
Section 5, we discuss the influence of the implementation choices on the attack success
rate, before concluding in Section 6.

2 Related work
2.1 Notations
The following notations are used in this article. Sets are written as calligraphic uppercase
letters, for example S. Matrices are written in uppercase bold letters, for example M.
Vectors are written in lowercase bold letters, for example v. The identity matrix of size
n is written as In. The jth column of a matrix M is written as M[:,j]. The entry on the
jth column of the ith row of a matrix M is written as M[i,j]. The ith entry of a vector v
is written as vi. The Hamming weight of a binary vector v, i.e. the number of non-zero
coordinates, is written as HW(v). The Hamming distance between two vectors u and v is
written as HD(u, v). The bitwise logical AND between two vectors u and v is written as
u ∧ v and the logical exclusive-OR is written as u⊕ v.

2.2 The Classic McEliece cryptosystem
The Classic McEliece cryptosystem is a candidate to the NIST post-quantum cryptography
standardization process [ABC+22]. After going through the first three rounds, it has been
selected as a fourth round candidate on July 5th, 2022. As a KEM, its role is to allow
for secure transfer of a shared secret key. It is split into three functions: key generation,
encapsulation and decapsulation. During key generation, a public key Hpub = (In−k|T)
and its associate private key Gpriv are generated. The encapsulation mechanism take as
input the public key and outputs the shared secret key k that will be used in the next
exchange and an encapsulated value s sent to the second party. The second party runs the
decapsulation using its private key Gpriv and the encapsulated message s to derive the
shared secret key k. We focus on the encapsulation step here.

2.2.1 Classic McEliece encapsulation

We target the encapsulation function of the Classic McEliece cryptosystem, described in
Algorithm 1 and more precisely the Encode subroutine, shown on line 3 in Algorithm 1
and detailed in Algorithm 2. The specific operation we target with the proposed attack
is the matrix-vector multiplication over F2 between the parity-check matrix and the
random error vector. This operation is essentially the encryption step of the Niederreiter
cryptosystem [Nie86]. In this setting, a message is first encoded into a constant-weight
vector before being multiplied by the parity-check matrix of a binary Goppa code. The
security of this construct relies on the NP-hardness of the binary syndrome decoding
problem [BMvT78]: knowing Hpub and s, recovering e is hard.

Algorithm 1 Classic McEliece encapsulation [ABC+22]
1: function Encaps(T)
2: Draw a random vector e ∈ Fn

2 with HW(e) = t.
3: Compute c←Encode(e, T)
4: Compute k← H(1 ∥ e ∥ c) ▷ session key (shared secret)
5: return (c, k)
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Algorithm 2 Classic McEliece encoding subroutine [ABC+22]
1: function Encode(e, T)
2: Define Hpub ← (In−k|T)
3: Compute s← Hpub.e
4: return s

2.2.2 Embedded software implementations

For years, embedded software implementations of the Niederreiter cryptosystem were
deemed impractical because of the high memory requirements for the public key storage.
The first implementation on an 8-bit microcontroller was done by Heyse in 2010 [Hey10],
but with relatively low-security parameters: n = 2048, k = 1751 and t = 27. These values
must be compared with the ones of the Classic McEliece submission provided in Table 1,
that lead to even larger keys. Implementation challenges of code-based cryptosystems on
embedded platforms are discussed in [BBMR14].

The selection of Classic McEliece as a candidate for the last rounds of the NIST post-
quantum cryptography standardization process sparked a renewed interest for embedded
software implementations. In [RKK20], the public key is not stored but retrieved from the
private key, following a streaming approach which had been described before in [Str12].
However, with the memory capacity of embedded devices increasing continuously, it
was only a matter of time before the public key could be fully stored in the Flash
memory. This happened in 2021, when Chen and Chou proposed an implementation of
the Classic McEliece cryptosystem on an ARM Cortex-M4 target, along with many other
optimisations [CC21].

2.3 Side-channel attacks

Side-channel attacks exploit the information leakage that occurs when an algorithm is
being executed on a physical device. Profiled attacks require access to an open device
for a preliminary training step, during which the attacker can freely set the secret values
and perform side-channel measurements. A classifier is trained with this data and used to
attack a closed device and recover the secret values. Conversely, an unprofiled attack does
not require a training step, and is therefore more readily applicable. Well-known examples
of unprofiled attacks are the differential power analysis (DPA) [KJJ99] and the correlation
power analysis (CPA) [BCO04].

2.3.1 Horizontal attacks

A horizontal attack, as originally published by Walter [Wal01], consists in observing several
intermediate values inside a single side-channel trace to extract secret information from it.
This is in contrast with vertical attacks, of which the DPA and the CPA are examples,
where a single intermediate value is repeatedly observed over several side-channel traces.

In [Wal01], a DPA-style attack on the modular exponentiation algorithm used in the
RSA cryptosystem is carried out, allowing the attacker to recover the secret exponent.
This attack was later improved by Clavier et al. [CFG+10]. By using correlation, authors
were able to distinguish a squaring from a multiplication by identifying if intermediate
values were involved in a computation or not. We follow a similar approach in this
article, essentially identifying which columns of the parity-check matrix are involved in the
computation.
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Table 1: Classic McEliece parameters
Parameters set 348864 460896 6688128 8192128

n 3488 4608 6688 8192
m 12 13 13 13
t 64 96 128 128
k = n−mt 2720 3360 5024 6528
n− k = mt 768 1248 1664 1664

2.3.2 Side-channel attacks on the Niederreiter / Classic McEliece cryptosystems

We focus here on side-channel attacks that aim at recovering the secret message in the
Niederreiter cryptosystem or equivalently the secret random vector in the Classic McEliece
cryptosystem. It is straightforward to see that if one is capable of recovering the secret
random vector e, then the encapsulation step is effectively deterministic and broken. As a
consequence, the attacker has access to the shared secret key, since all other operations
are deterministic and the Hpub matrix is public.

In [LNPS20], authors attack the constant-time Berlekamp-Massey decoding algorithm
used in the decapsulation step. This is done on the reference hardware implementation of
Classic McEliece. They adapt the attack from [SSMS09] and identify error positions by
repeatedly adding columns of the parity-check matrix to the syndrome, determining which
ones correspond to a decoding failure. While the iterative chunking strategy they propose
reduces the number of queries, the number of side-channel traces needed ranges from 334
to 654 for the Classic McEliece parameters. In contrast, the attack we propose succeeds
with a single side-channel trace.

The approach followed in [CDCG22] is entirely different and targets the encapsulation
step instead, in particular the matrix-vector multiplication over F2 used for the syndrome
computation. It consists in deriving an integer syndrome from side-channel measurements,
instead of the binary syndrome. Although this integer syndrome might be slightly incorrect
in some positions, because of noise in the side-channel measurements and errors in the
integer syndrome derivation, it is usually enough to recover the error positions using
a distinguisher based on the dot product. This attack has the advantage of requiring
a single side-channel measurement in the attack phase. However, being in the profiled
attack setting, an open device is still required for the profiling phase. An improvement of
the attack resistance to noise in the profiled setting was recently published by Grosso et
al. [GCCD23] thanks to a t-test based attack method.

In [CEvMS16], a horizontal attack is mounted not on the Niederreiter cryptosystem but
on the McEliece cryptosystem, specifically on its variant that uses quasi-cyclic moderate-
density parity-check (QC-MDPC) codes. This horizontal attack does not attack the
syndrome computation but the key rotation, which is inherent to the quasi-cyclic property.
Since the attack targets a hardware implementation, the registers which are overwritten
during the key rotation step have a very distinctive leakage, which can be exploited to
recover the key. Conversely, the attack we propose is more general since it does not exploit
the structure of the matrix.

Guo et al. proposed a profiled key-recovery attack on the Classic McEliece cryptosys-
tem [GJJ22]. Targetting the decapsulation step, it recovers the private key using between
300 and 800 side-channel traces. Since it targets the private key, i.e. the long-term secret, it
is definitely a more serious threat than message-recovery attacks, which recover the shared
secret key, i.e. the short-term secret. However, their attack requires specifically crafted
ciphertexts, which correspond to single-bit error vectors. Arguably, these very specific
error patterns could be easily detected during the decapsulation step and a countermeasure
based on an early abort could prevent the attack.
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It is worth noting that other post-quantum cryptosystems, based on lattices for instance,
have been the target of horizontal side-channel attacks as well, as already highlighted in
previous works [ATT+18, AAT+21].

In this work, we target the syndrome computation in the encapsulation step, but
propose an unprofiled attack instead. Therefore, before outlining the attack procedure, we
describe how the syndrome computation is usually implemented.

2.4 Software implementations of the syndrome computation
The target operation of the proposed attack is the syndrome computation, which is a
matrix-vector multiplication over F2, as given in Equation (1). This operation is the second
step of the encoding routine in the encapsulation process (see line 3 in Algorithm 2), which
is called after a uniform random constant-weight vector e has been drawn.

s = Hpub.e (1)

2.4.1 Schoolbook implementation

The matrix-vector multiplication over F2 is implemented in software by iterating over the
matrix rows and columns and performing a logical AND operation between the matrix
and the vector entries, while accumulating the result on the syndrome entry by a logical
XOR operation. We refer to this matrix-vector multiplication method as the schoolbook
method. This is described in Algorithm 3, where an (n− k)× n matrix M is multiplied
by an n-bit vector v to obtain an (n− k)-bit syndrome s.

Algorithm 3 Schoolbook matrix-vector multiplication over F2.
1: function Mat_vec_mult_schoolbook(M, v)
2: for r ← 0 to (n− k − 1) do
3: sr ← 0 ▷ Initialisation
4: for c← 0 to (n− 1) do
5: sr ← sr ⊕ (M[r,c] ∧ vc) ▷ Multiply and add
6: return s

However, for memory efficiency reasons, the schoolbook version of the matrix-vector
multiplication algorithm described in Algorithm 3 is rarely used in actual implementations.
This assumes that the vector and matrix entries, which are binary, are stored as they are,
each occupying a full word. To avoid occupying a full word to store only one bit, matrix
row and vector entries are usually packed into words.

2.4.2 Packed implementation

In the packed implementation, a vector b of size w is used to accumulate, by a logical
XOR operation, the result of the logical AND operation between the matrix entry and the
vector entry, which are both words. In this manner, the XOR and AND operations are
bitsliced, and a total of w bits are processed in parallel. We refer to w as the word width.
Then, this word is repeatedly shifted and XORed over itself, to perform a logical XOR
operation between all its bits. Then, the least-significant bit, on which the result has been
accumulated, is extracted. Eventually, this bit is packed into a syndrome word by shifting
it by an amount between 0 and w − 1 and performing a logical OR operation with the
previously stored word.

We refer to this matrix-vector multiplication over F2 method as the packed method,
where bits are packed into w-bit wide words. This is described in Algorithm 4, where an
(n− k)× n

w matrix M is multiplied by a vector v of size n
w to obtain an syndrome s of
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size n−k
w . This method is used in the reference implementation of the Classic McEliece

cryptosystem submitted to the NIST PQC standardization process [ABC+22] with w = 8.
Conversely, in the additional vectorized reference implementation, the value which is used
is w = 64. The optimized implementation by Chen and Chou [CC21] uses w = 32 this time.
Given the variety of the word widths used in these packed implementations, it is important
to evaluate how it affects the attack success. This will be experimentally highlighted and
discussed in the next sections.

Algorithm 4 Packed matrix-vector multiplication over F2.
1: function Mat_vec_mult_packed(M, v, w)
2: for r ← 0 to ( n−k

w − 1) do
3: sr ← 0 ▷ Initialisation
4: for r ← 0 to (n− k − 1) do
5: b← 0
6: for c← 0 to ( n

w − 1) do
7: b← b⊕ (M[r,c] ∧ vc) ▷ Multiply and add
8: i← w

2
9: while i > 0 do

10: b← b⊕ (b >> i) ▷ Exclusive-OR folding
11: i← i

2
12: b← b ∧ 1 ▷ LSB extraction
13: sr/w ← sr/w ∨ (b << (r mod w)) ▷ Bit packing
14: return s

As a side note, the schoolbook method shown in Algorithm 3 may be seen as a special
case of the packed method of Algorithm 4 with w = 1.

3 Horizontal correlation attack on the matrix-vector multi-
plication

The section describes the proposed horizontal correlation attack on the Classic McEliece
cryptosystem.

3.1 Attacker model
We place ourselves in the framework of physical attacks, where an attacker has a physical
access to the device. Therefore, the attacker can measure physical quantities such as power
consumption or electromagnetic radiations while the device is running. In addition, we
assume that the device under attack raises a reliable trigger signal before the encapsulation.
This last constraint could be relaxed, considering the regular patterns followed by the
power consumption of the device while the matrix-vector multiplication over F2 is being
performed, as shown in the next subsection.

We also assume that the attacker knows the public key Hpub and the syndrome s,
which are public, and aims at recovering the secret error vector e of Hamming weight t.
The value of t is a parameter of the cryptosystem and is assumed to be publicly known
too. Even though the value of s is not necessary in the basic version of the attack, it is
needed to carry out information-set decoding, as detailed in Subsection 3.4.

Being in the unprofiled attack setting, the attacker model we rely on is rather weak. In
particular, we do not assume that the attacker owns a copy of the device on which he can
perform a preliminary profiling step.
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3.2 Side-channel trace acquisition and reshaping
After implementing Algorithm 4 in C, we performed power consumption side-channel
measurements on the device running it. Experimental parameters are detailed in Section 4.
An example side-channel trace of the power consumption of the microcontroller, while the
matrix-vector multiplication over F2 is performed, is shown in Figure 1.
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Figure 1: Side-channel trace of the matrix-vector multiplication over F2 for n = 64 showing
the n− k = 32 blocks.

Since NIST explicitely requires the implementations submitted to the PQC standard-
isation process to be constant-time, the side-channel trace is very regular and patterns
can easily be spotted in it. This is visible in Figure 1, where a side-channel trace of the
multiplication between a 32×64 matrix and a 64-bit vector is shown. One can easily
see that a pattern is repeated 32 times, corresponding to the multiplication of the 32
matrix rows with the error vector. Precise identification of this pattern’s length is done by
observing peaks in the auto-correlation of the side-channel trace.

Therefore, after performing the acquisition of the raw side-channel trace Traw of length
nsamples as depicted in Figure 1, it is reshaped into a matrix Treshaped. The process is a
simpler version of the one presented in [CDCG22]. Each row of this matrix contains the
side-channel leakage associated with the multiplication of one matrix row with the error
vector. Therefore, there are (n− k) rows in Treshaped. The number of columns in Treshaped
is approximately nsamples

n−k , given that a few samples at the beginning and the end of Traw
do not correspond to the matrix-vector multiplication.

Traw

nsamples

Treshaped

≃ nsamples
n−k

n
−

k

Figure 2: Reshaping step applied on the raw trace (adapted from [CDCG22])

3.3 Horizontal Correlation Attack
The next step consists in performing a horizontal correlation attack between the columns
of the parity-check matrix and sub-traces corresponding to the multiplication of one matrix
row with the error vector. These sub-traces are easily identified due to the constant-time
property of the matrix-vector multiplication over F2, as it will be shown in the Section 4.
This defines a correlation matrix C of n rows and as many columns as the number of



Brice Colombier, Vincent Grosso, Pierre-Louis Cayrel and Vlad-Florin Drăgoi 9

samples in the sub-traces. An entry of the correlation matrix C stores the value of the
Pearson correlation coefficient, estimated using Equation (2), between a column of the
parity-check matrix and a column of the reshaped side-channel trace.

ρ(x, y) =

N∑
i=1

(xi − x̄) · (yi − ȳ)√√√√ N∑
i=1

(xi − x̄)2

√√√√ N∑
i=1

(yi − ȳ)2

with x̄ = 1
N

N∑
i=1

xi (2)

Formally, the value of each entry of the correlation matrix C is given in Equation (3),
where ρ stands for the Pearson correlation coefficient.

C[i,j] = ρ(Hpub[:,i], Treshaped[:,j]) (3)

From there, the positions of the errors in the secret error vector are derived. This is
done by keeping only the maximum value for every row of C and sorting them according
to the maximum absolute value of the correlation coefficient. This process effectively sorts
the columns of the parity-check matrix according to the probability that they are involved
in the syndrome computation. Therefore, it reveals the secret error vector e.

The intuition behind this attack path is that every bit of the error vector, no matter
the width w, will have a contribution to the side-channel leakage if it meets a 1 in the
associated matrix column. The asymmetry of the logical AND operation is crucial here:
the side-channel leakage associated with matrix columns which are aligned with a zero in
the error vector will be essentially random. Conversely, side-channel leakage associated
with matrix columns which are aligned with a one in the error vector will follow the changes
of values in the matrix columns.

An illustration of the proposed attack on a toy example is shown in Figure 3, with
parameters n = 8, k = 4, t = 3 and w = 2.

The correlation between the columns of the reshaped side-channel trace and the matrix
columns is computed to build the correlation matrix C in step 1 . The maximum of the
absolute values is computed for every column is computed in step 2 and the permutation
P that sorts the resulting vector is obtained in step 3 . Finally, the permutation P is
inverted and P −1 is applied to a vector made of t ones and n − t zeroes to recover the
secret error vector e in step 4 .

The “n/a” entries in the C matrix denotes correlation values which cannot be computed
because of the constant Hamming distance side-channel leakage for the last b computation,
implying a zero variance. In reality, the side-channel leakage is always noisy and prevents
such cases from happening.

3.4 Information-set decoding
Although the previous section suggested that the attack works by identifying the t matrix
columns for which the absolute value of the correlation coefficient is the greatest, it is
in fact sufficient to have those columns belong to the first n − k ones, which are called
the information set, instead of the first t columns strictly, like it was the case for the
toy example in Figure 3. First proposed by Prange [Pra62], the information-set decoding
strategy leverages linear algebra to decode more efficiently. The use of this strategy was
already proposed in the context of physical attacks, to significantly improve the attack
success rate [LNPS20, GJJ22, CDCG22].

Further improvements to the information-set decoding method may be used as well, to
improve the success rate of this strategy [LB88, Ste88, Dum91, MMT11, BJMM12, MO15].
With these improvements, up to δ ones might be missing from the information set, as
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Figure 3: Overview of the proposed horizontal attack on a toy example with parameters
n = 8, k = 4, t = 3 and w = 2.

opposed to the Prange setting for which δ = 0. These methods have an exponential time
complexity with respect to the n parameter of the cryptosystem. Therefore, their running
time quickly becomes prohibitive. However, they may still be used in a realistic setting up
to δ = 3. This is the value we keep for the experiments in the next section.
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Figure 4: Average number of ones in the first n− k positions of the error vector for several
SNR values for the Classic McEliece parameters.

4 Experimental results

4.1 Simulated trace

In order to precisely control the signal-to-noise ratio (SNR) and observe its influence on
the success rate of the proposed attack, we first experiment with a simulated trace. This
trace is generated by considering both a Hamming weight and a Hamming distance leakage
model. We do this at every step of Algorithm 4 where the b intermediate value is updated.
Therefore, the Hamming weight leakage model is simulated by storing HW(b), and the
Hamming distance leakage model by storing the Hamming distance between b and its
previous value, denoted as HD(b, b-). The inputs M and v of the algorithm are chosen at
random with HW(v) = t. Both the Hamming weight and the Hamming distance leakage
are normalized, to contribute equally to the overall information leakage.

The number of ones found in the first n− k positions of the error vector after sorting
according to the absolute value of the correlation coefficient is shown in Figure 4. Addi-
tionally, we plot the [t− δ; t] band in green for δ = 3 as justified above. If the number of
ones in the first n− k positions of the vector is higher than t− δ, then the correct error
vector can be recovered using the information-set decoding strategy outlined above. The
thick black line at the bottom of the plots shows the number of ones found in the first
n− k positions when choosing the error vector randomly.

The experiment is run 25 times for each set (n, k, t, SNR) of parameters, and the
number of ones is averaged. As expected, the higher the SNR, the easier it is to identify
which columns of the parity check matrix contributed to the syndrome computation.

Two other observations can be made. First, the wider the word, the lower the success



12 Horizontal Correlation Attack on Classic McEliece

rate. This is because the contribution of a single bit to the overall correlation coefficient is
less visible for large words. Therefore, the success rate of the attack is the highest for w = 8
and the lowest for w = 64. Second, the larger the cryptographic parameters, the higher
the success rate. This is explained by the fact that the error vector is used n− k times in
the syndrome computation. Therefore, the number of samples used in the computation
of the correlation coefficient is higher for large cryptographic parameters. Therefore, the
success rate of the attack is the highest for n = 8192 and the lowest for n = 3488.

4.2 Real trace
All the experiments are performed with the ChipWhisperer platform [OC14]. The target
microcontroller embeds an ARM Cortex-M4 core, which is the embedded software target
recommended by NIST for the PQC standardization process.2 The ARM Cortex-M4 core
has thirteen 32-bit registers. Therefore, one could argue that its “native” word width is
w = 32.

Unfortunately, the particular microcontroller we used embeds only 256 kB of Flash
memory. Therefore, the public key associated with even the smallest Classic McEliece
parameters does not fit in, since around 331 kB would be needed to store it (n×m×t

8 =
3488×12×64

8 = 331 008).
Consequently, we must scale the cryptosystem parameters accordingly. To accommodate

this constraint while keeping the parameters choice unbiased, we selected two parameters
sets from the Decoding challenge webpage:3 (n, k, t) = (640, 512, 13) and (1600, 1280, 30).

For each parameter set, we perform the experiments for three different word widths w:
8, 32 and 64. Additionally, we also explore the different optimisation levels available when
compiling the source code for the target microcontroller: -O0, -O1, -O2, -O3 and -Os. The
first one, -O0, corresponds to no optimisation at all. This setting is commonly used when
aiming at constant-time implementations, to prevent the compiler from optimising the
loops and ruining the developer’s efforts. Settings ranging from -O1 to -O3 correspond
to various optimisation efforts, -O3 being the highest, providing the best performance.
Finally, -Os aims at minimizing the code storage footprint in memory.

The number of clock cycles required for the multiplication of one matrix row with the
error vector for the two sets of parameters are given in Table 2. As expected, both the
word width and the optimisation level have a strong influence on these numbers.

The experimental results obtained for the two parameters sets are shown in Figure 5.
Each experiment was repeated 200 times to provide sufficient statistical significance for
the box plots.

Several observations can be made regarding these experimental results. First of all, for
a given word width w, the optimisation level used for the compilation has a strong impact
on the success rate of the attack, except for w = 64 for which this impact is lower. For
example, for w = 32, the only successful attack is the one performed on the program which
was compiled with the -O0 option. However, this is not always the case and, contrarily
to the intuition, the highest success rate is not always obtained for -O0. For example for
w = 8, this is for the -O3 optimisation level that the success rate is the highest. Overall,
there is no clear relation between the optimisation level and the attack success rate, but it
does have an impact on it.

The second observation, which again is unintuitive and contradicts the simulation
results presented in the previous subsection, is that the wider the word, the higher the
success rate. For w = 64, no matter the optimisation level, there are always more than
t − 3 ones in the first n − k positions of the error vector, therefore allowing for a full
recovery using the information-set decoding strategy. This observation is hard to explain

2https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_90gU
3https://decodingchallenge.org/goppa

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_90gU
https://decodingchallenge.org/goppa
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Table 2: Number of clock cycles for the multiplication of a matrix row by the error vector
Word Optimisation level
width -O0 -O1 -O2 -O3 -Os

w = 8 3120 829 741 222 741
w = 32 889 229 222 226 200
w = 64 743 206 194 153 194

(a) n = 640, k = 512, t = 13

Word Optimisation level
width -O0 -O1 -O2 -O3 -Os

w = 8 7080 1830 1821 476 1821
w = 32 1939 528 522 528 470
w = 64 1463 456 443 443 419

(b) n = 1600, k = 1280, t = 30
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(b) n = 1600, k = 1280, t = 30

Figure 5: Number of ones in the first n− k positions of the error vector for several word
widths and compilation options for the Decoding challenge parameters.

without a better understanding of the internal architecture of the processor. Some possible
causes are examined in the next section.
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5 Discussion on the attack success
As highlighted in the previous section, while the attack is indeed successful in several
settings, its success rate seems to depend heavily on implementation choices: the word
width and the optimisation level. Moreover, the attack as it is described relies on a specific
leakage model: the Hamming distance leakage model. The objective of this section is to
take a closer look at the effect of these settings and the conditions that make the attack
successful.

5.1 A closer look at the assembly

The attack success rate depends on the word width used for the implementation of the
matrix-vector multiplication over F2 as well as the optimisation level. Changing these
parameters has an effect on machine code generated by the compiler. The influence of
these parameters is examined below. We want to emphasize that, at the moment, we are
not able to provide quantitative results about the exact role of every instruction in the
observed side-channel leakage, especially with respect to the leakage model. Therefore, we
restrict our analysis to a qualitative approach, highlighting the differences between the
generated codes.

As a preliminary step, it is important to note that the target microcontroller has 32-bit
registers. Therefore, its “native” word width is 32 bits and we can expect implementations
that use this width to be compiled in a more straightforward manner.

For ease of reading, the generated assembly codes are grouped together in Appendix A.

w = 8 When the word width is w = 8, then the processor must handle data which
is smaller than its native register size. This is illustrated in Listings 1 to 3, where the
generated codes are shown for different optimisation levels. These are grouped if identical
for different optimisation levels.

As expected, with the lowest optimisation effort -O0, the code is rather simple (see
Listing 1). One should note that load and store instructions explicitly work with bytes,
hence the b suffix (ldrb and strb). For higher optimisation levels, the increment of the
row and columns indices are embedded in the instruction, shortening the code but still
matching precisely with the algorithm. Finally, for the highest optimisation level -O3, the
compiler determines that memory accesses can be grouped and loads words of 32 bits
directly, hence the ldr.w variant shown in Figure 3.

The differences between the generated codes depending on the optimisation level might
explain why the attack success varies so much between them for w = 8, as shown on the
left-hand side of Figure 5b.

w = 32 When the word width is w = 32, then the processor handles data which is of its
native register size. Therefore, the generated code is more consistent across optimisation
levels, as shown in Listings 4 to 6. This might explain why the success rate of the attack
for w = 32 seems more consistent, as shown in the center of Figure 5b. However, there is
no apparent reason why the attack only succeeds for the -O0 optimisation level and not
for the others.

We chose to not include the generated code for the -O3 optimisation level. Indeed, it is
different depending on the chosen n value. For n = 640, the inner for loop, found at line 6
in Algorithm 4, is fully unrolled. This is not the case for the larger value n = 1600, for
which the generated code is very similar to the one obtained with optimisation levels -O2
and -Os, shown in Listing 6.
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w = 64 When the word width is w = 64, then the processor must handle data which
is larger than its native register size. As such, when loading data, either a load double
ldrd instruction or two distinct load ldr.w instructions are used. We denote those as
step 1/2 in Listings 7 to 10. Some other instructions might be inserted between the
two steps to better fill up the pipeline. Again, we do not include the code generated for
the -O3 optimisation level because of inconsistent loop unrolling depending on the value of
n. Besides this difference, the code is the same as for w = 32. Therefore, similarly to the
conclusion we drew for w = 32, it is hard to find a reason why the attack is almost always
successful for w = 64.

5.2 Leakage assessment
To try to better understand the differences of success rate depending on the word width
and optimisation levels, we conducted a leakage assessment on the side-channel traces.
We used a rather common ANOVA (ANalysis Of VAriance) F-test, also referred to as
NICV [BDGN13], which is a ratio between the inter-class and intra-class variances, where
classes are intermediate values of the syndrome computation after application of a leakage
model. We consider both the Hamming weight and Hamming distance leakage models in
this analysis.

We perform the F-test on side-channel traces obtained with n = 1600 and k = 1280.
Since we consider intermediate values of b, this leaves us with a population of size of
(n−k)×n

w . For the largest value of w = 64 this is a population of 8000, which is statistically
relevant considering the number of classes at hand. Instead of plotting the values of the
F statistic for all samples, we keep only the maximum for a given set of parameters. In
addition, we normalize it since what we are interested in is a comparison between values
for a given leakage model.

Results are shown in Figure 6. For the Hamming weight leakage model, in Figure 6a, the
highest F statistic values are systematically obtained for the lowest level of optimisation -O0.
Intuitively, this can be explained because the code is less condensed than for higher levels
of optimisation, allowing to better observe the Hamming weight values through the
power consumption. The F statistic values are much lower for higher optimisation levels.
Nevertheless, even though the F statistic is very high for w = 8 and the -O0 optimisation
level, the attack does not succeed in this case, as shown in Figure 5. Therefore, it confirms
the intuition that the attack is not possible with the Hamming weight leakage model.

For the Hamming distance leakage model, in Figure 6b, which is the one being exploited
by the proposed attack, the variations observed for the different parameters almost follow
the success rates from Figure 5. This is a confirmation that the leakage model being
exploited experimentally is really the Hamming distance leakage model.

5.3 Dependency on the Hamming distance leakage model
The attack path is better explained using a Hamming distance leakage model, directly
illustrating the transitions from 0 to 1 or from 1 to 0 when updating the b value, as shown
in line 7 of Algorithm 4. A Hamming weight leakage model would not allow to follow the
proposed attack path, since, for a Hamming distance of 1, the Hamming weight might
either increase or decrease, which makes it useless when computing the correlation.

Nevertheless, when implementing and compiling the line 7 of Algorithm 4, it is un-
avoidable that several machine code instructions are generated. In particular, the logical
AND between the matrix entry and the error vector entry is computed first, before being
accumulated on b by a logical XOR later. As a consequence, a Hamming weight leakage
model on this intermediate value, storing the logical AND between the matrix entry and
the error vector entry, could be leveraged for the attack as well. This is formalised in
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Figure 6: Maximum value of the F statistic for several word widths and compilation
options and two leakage models.

Equation (4) after the definition of the Hamming distance.

HD(b, b-) = HD(b- ⊕Hpub[i,j] ∧ ej , b-) = HW(Hpub[i,j] ∧ ej) (4)

Another related issue with the Hamming weight or Hamming distance leakage models
is the so-called “double-cancellation” phenomenon [CDCG22, GCCD23]. It happens when
two bits of the intermediate value b are flipped in opposite directions. While this is visible
on the Hamming distance, this is hidden when considering only the Hamming weights.
However, it requires two ones to be in the same word of width w in e, which is quite rare
and not an issue for the proposed correlation-based attack.

5.4 Hardware implementations
While the experimental results provided show the attack success on a microcontroller,
there is a strong possibility that the same attack path could be exploited for hardware
implementations too. Indeed, the method of splitting the public-key matrix Hpub and
the error vector e in words of width w was also chosen in the FPGA implementation of
Classic McEliece [CCD+22]. Consequently, the Hamming distance between intermediate
values stored in the flip-flops of the digital design could be retrieved by side-channel
analysis, and the same attack would apply. The Hamming distance model is usually
very applicable when performing power or electromagnetic analysis of FPGA and ASIC
implementations [PSQ07, ATT+18]. As a side note, a mixture of a Hamming weight and
Hamming distance leakage was already exploited in a similar attack on the QC-MDPC
McEliece cryptosystem in [CEvMS16].

6 Conclusion
This article introduces the first unprofiled attack on the post-quantum cryptosystem Classic
McEliece. Exploiting the constant-time property of the matrix-vector multiplication over
F2 used in the encapsulation, the proposed horizontal correlation attack recovers the secret
error vector e, and therefore the KEM shared secret key, from a single side-channel trace.
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We highlighted how implementation choices, namely the word width used for the
bitsliced operations and the optimisation level passed to the compiler, have a strong impact
on the attack success rate. Using a leakage assessment methodology and disassembling
the generated code, we tried to explain the success rate variations.

As next steps, it is worth investigating the feasibility of the attack on a different
architecture, like RISC-V, or on a hardware target, like an FPGA. Another interesting
aspect could be to better exploit the Hamming weight leakage, since it is very strong
for the -O0 optimisation level. Combining both the Hamming weight and the Hamming
distance leakages could also lead to more powerful attacks.

A Assembly codes for different optimisation levels and word
widths

All the assembly codes shown below were obtained with the arm-none-eabi-gcc compiler,
version 9.2.1 20191025. Annotations are by the authors and follow the notations used in
the article.

Listing 1 w = 8, optimisation level -O0
ldrb r2, [r3, #0] // Load byte ej

...
ldrb r3, [r3, #0] // Load byte Hpub[i,j]
ands r3, r2 // Hpub[i,j] ∧ ej

uxtb r2, r3 // Unsigned extend byte
ldrb r3, [r7, #31] // Load byte b
eors r3, r2 // b = b ⊕ Hpub[i,j] ∧ ej

strb r3, [r7, #31] // Store byte b

Listing 2 w = 8, optimisation levels -O1, -O2 and -Os
ldrb.w r3, [r2, #1]! // Load byte Hpub[i,j]
ldrb.w lr, [ip, #1]! // Load byte ej

and.w r3, r3, lr // Hpub[i,j] ∧ ej

eors r1, r3 // b = b ⊕ Hpub[i,j] ∧ ej

Listing 3 w = 8, optimisation level -O3
ldr.w r4, [r2], #4 // Load 4 bytes Hpub[i,j], Hpub[i,j+1], Hpub[i,j+2] and Hpub[i,j+3]
ldr.w r3, [r0], #4 // Load 4 bytes ej, ej+1, ej+2 and ej+3
...
and.w r3, r3, r4 // Hpub[i,j] ∧ ej, Hpub[i,j+1] ∧ ej+1, Hpub[i,j+2] ∧ ej+2

// and Hpub[i,j+3] ∧ ej+3
eor.w r1, r1, r3 // bj = bj ⊕ Hpub[i,j] ∧ ej, bj+1 = bj+1 ⊕ Hpub[i,j+1] ∧ ej+1

// bj+2 = bj+2 ⊕ Hpub[i,j+2] ∧ ej+2 and bj+3 = bj+3 ⊕ Hpub[i,j+3] ∧ ej+3
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Listing 4 w = 32, optimisation level -O0
ldr r2, [r3, #0] // Load ej

...
ldr r3, [r3, #0] // Load Hpub[i,j]
ands r3, r2 // Hpub[i,j] ∧ ej

ldr r2, [r7, #36] // Load b
eors r3, r2 // b = b ⊕ Hpub[i,j] ∧ ej

str r3, [r7, #36] // Store b

Listing 5 w = 32, optimisation level -O1
ldr.w r3, [r2, #4]! // Load Hpub[i,j];
ldr.w r5, [r7, #4]! // Load ej;
ands r3, r5 // Hpub[i,j] ∧ ej

eors r1, r3 // b = b ⊕ Hpub[i,j] ∧ ej

Listing 6 w = 32, optimisation levels -O2 and -Os
ldr.w r4, [r2], #4 // Load Hpub[i,j];
ldr.w r3, [r0], #4 // Load ej;
...
and.w r3, r3, r4 // Hpub[i,j] ∧ ej

eor.w r1, r1, r3 // b = b ⊕ Hpub[i,j] ∧ ej

Listing 7 w = 64, optimisation level -O0
ldrd r0, r1, [r3] // Load Hpub[i,j] in 2 registers
...
ldrd r2, r3, [r3] // Load ej in 2 registers
and.w r5, r0, r2 // Hpub[i,j] ∧ ej (step 1)
and.w r6, r1, r3 // Hpub[i,j] ∧ ej (step 2)
ldrd r2, r3, [r7, #112] // Load b in 2 registers
eor.w r1, r2, r5 // b = b ⊕ Hpub[i,j] ∧ ej (step 1)
str r1, [r7, #56] // Store b (step 1)
eors r3, r6 // b = b ⊕ Hpub[i,j] ∧ ej (step 2)
str r3, [r7, #60] // Store b (step 2)

Listing 8 w = 64, optimisation level -O1
ldr.w r1, [r3, #8]! // Load Hpub[i,j] (step 1)
ldr r2, [r3, #4] // Load ej (step 1)
ldr.w r7, [r4, #8]! // Load Hpub[i,j] (step 2)
ands r1, r7 // Hpub[i,j] ∧ ej (step 1)
ldr r7, [r4, #4] // Load ej (step 2)
ands r2, r7 // Hpub[i,j] ∧ ej (step 2)
eor.w ip, r1, ip // b = b ⊕ Hpub[i,j] ∧ ej (step 1)
eors r0, r2 // b = b ⊕ Hpub[i,j] ∧ ej (step 2)
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Listing 9 w = 64, optimisation level -O2
ldr.w r1, [r3, #8]! // Load Hpub[i,j] (step 1)
ldr.w r6, [r4, #8]! // Load ej (step 1)
ldr r2, [r3, #4] // Load Hpub[i,j] (step 2)
ands r1, r6 // Hpub[i,j] ∧ ej (step 1)
ldr r6, [r4, #4] // Load ej (step 2)
...
and.w r2, r2, r6 // Hpub[i,j] ∧ ej (step 2)
eor.w r5, r5, r1 // b = b ⊕ Hpub[i,j] ∧ ej (step 1)
eor.w r0, r0, r2 // b = b ⊕ Hpub[i,j] ∧ ej (step 2)

Listing 10 w = 64, optimisation level -Os
ldr.w fp, [r4, #8]! // Load Hpub[i,j] (step 1)
ldrd sl, r1, [r8] // Load ej in 2 registers
ldr r7, [r4, #4] // Load Hpub[i,j] (step 2)
and.w sl, sl, fp // Hpub[i,j] ∧ ej (step 1)
ands r1, r7 // Hpub[i,j] ∧ ej (step 2)
...
eor.w r0, sl, r0 // b = b ⊕ Hpub[i,j] ∧ ej (step 1)
eor.w r3, r3, r1 // b = b ⊕ Hpub[i,j] ∧ ej (step 2)
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