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Abstract
Two fundamental properties of quantum states that quantum in-

formation theory explores are pseudorandomness and provability of de-
struction. We introduce the notion of quantum pseudorandom states
with proofs of destruction (PRSPD) that combines both these proper-
ties. Like standard pseudorandom states (PRS), these are efficiently
generated quantum states that are indistinguishable from random, but
they can also be measured to create a classical string. This string is
verifiable (given the secret key) and certifies that the state has been de-
structed. We show that, similarly to PRS, PRSPD can be constructed
from any post-quantum one-way function. As far as the authors are
aware, this is the first construction of a family of states that satisfies
both pseudorandomness and provability of destruction.

We show that many cryptographic applications that were shown
based on PRS variants using quantum communication can be based
on (variants of) PRSPD using only classical communication. This in-
cludes symmetric encryption, message authentication, one-time signa-
tures, commitments, and classically verifiable private quantum coins.
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1 Introduction
A Pesudorandom States family (PRS), introduced in [JLS18]) is an effi-
ciently samplamable family of pure states such that for any polynomial t,
t-copies of a (pure) quantum state |ϕ⟩ sampled uniformly at random from
the family is computationally indistinguishable from t-copies of a truly ran-
dom state sampled from the Haar measure. On the other hand, a provably
destructible family of quantum states is accompanied by two efficient quan-
tum algorithms, Destruct , and Ver , such that running Destruct on a state
|ϕ⟩ sampled from the family, produces a classical proof sϕ ← Destruct(|ϕ⟩)
that can be verified using Ver , such that given a copy of a sampled state
|ϕ⟩ one cannot output both, the state |ϕ⟩ and a valid proof of destruc-
tion sϕ. Proofs of destructions as defined above (or variants of it) have
served as a crucial property for many unclonable primitives, such as tok-
enized digital signatures [BDS16, CLLZ21, Shm22a], classically verifiable
quantum money [MVW12, Shm22b], quantum lightning and its applica-
tions [Zha21, CS20, RS19], one-shot signatures [AGKZ20], etc.

As far as the authors are aware, there is no construction of a family of
states that satisfies both pseudorandomness and provability of destruction.
Previous constructions of provably destructible distributions were provably
not pseudorandom. This stems from the fact that such techniques involved
sampling a state that maintains its security only when a single copy is given.
In fact, in most of these constructions (such as in [BDS16, CLLZ21]), given
O(n) copies of the sampled state, it is possible to not only tell the state
from a Haar-random state but to completely characterize and efficiently
generate the sampled state. On the side of pseudorandomness, previous
techniques focused on sampled states that are uniform (or close to uniform)
superpositions, with randomly sampled phases of the amplitudes. Since all
known proof generation mechanisms Destruct in the literature are essentially,
measurements in the computational basis, these constructions with uniform
superposition can not be provably destructible. In this work, we study how
to combine both these notions in a single primitive.

Is it possible to construct a provably destructible family of quantum
states that is also pseudorandom?

In classical cryptography, one-way functions (OWF) are considered a
minimal assumption for computational-cryptography, and they are also suf-
ficient for many applications. In the quantum setting, in contrast, (post-
quantum) one-way functions are sufficient but do not appear to be necessary
for a variety of cryptographic tasks such as symmetric encryption, digital
signatures, message authentication codes, and commitments. Specifically,
Ref. [JLS18] showed that one-way functions are sufficient to build PRS, but
Kretschmer [Kre21] showed a black-box separation in the other direction,
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thus implying that OWFs are not necessary for PRS. Several recent works
showed that PRS suffices to imply the aforementioned cryptographic appli-
cations (or variants thereof), without using OWF. For example, statistically-
binding bit-commitment protocols have been shown based on PRS [AQY21,
MY22a](see Section 1.4 for other related works). However, these construc-
tions used a different syntax than their classical counterparts—in particular
in requiring quantum communication.

One of the aims of this work is to investigate whether this change is
necessary:

Is it possible to achieve cryptographic applications without quantum
communication based on a pseudorandom states variant?

Indeed, this question has also been recently addressed by Ananth, Gu-
lati, Qian and Yuen [AGQY22], who have shown statistically binding bit
commitment and pseudo-encryption with classical communication. Their
constructions were based on variants of PRS (namely, short output PRS and
short output PRFS).

1.1 Our Results

Our first contribution, in Section 2, is defining the notion of proofs of de-
struction in the context of pseudorandom states, which addresses the first
question raised above, see Page 3. In a PRS with proof of destruction
(PRSPD), we augment a Destruct algorithm, which takes the pseudorandom
state, and generates a classical proof; and a Ver algorithm, which takes a
proposed proof and a key, and either accepts or rejects. We require that valid
proofs should be accepted with certainty. In terms of security, we add the
Unforgeability-of-proofs requirement, which guarantees that given t copies of
the pseudorandom state, it should be hard to produce t+ 1 distinct proofs
of destruction. We extend the notion of proofs of destruction to a variant of
PRS, called pseudorandom function-like states (PRFS), that was introduced
in [AQY21] (see Section 1.4 for further discussion). In a PRFS, the seed k
should allow to efficiently generate a state for any input x, such that the
states generated for different x’s should jointly be indistinguishable from
a random state. Namely, an adversary can choose x1, . . . , xm, and should
not be able to distinguish between ⊗i∈[m] |ψk,xi

⟩, where |ψk,xi
⟩ are gener-

ated from the PRFS family, and ⊗i∈[m] |φxi⟩ where |φxi⟩ is sampled from the
Haar measure. We import the notion of Unforgeability-of-proofs to PRFS and
define the notion of PRFSPD. We then proceed, in Section 3, to show how to
construct PRSPD and PRFSPD from any post-quantum one-way function,
which requires extending existing proof techniques for the construction of
these primitives. Currently, we do not have a candidate construction of
PRSPD or PRFSPD that does not use one-way functions directly.
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Finally, in Section 4, we show how pseudorandom states (and function-
like states) with proof of destruction can be used to achieve almost all of
the existing known applications of pseudorandom states (and function-like
states, respectively), without the need for quantum communication, thereby
addressing the second question mentioned above, see Page 4. Specifically,
we construct :

1. Length-restricted one-time secure digital signatures (Section 4.1), and
classically-verifiable private quantum coins1 (Section 4.2) from any
PRSPD.

2. A computational-hiding and statistically-binding bit commitment from
PRSPD in which the proofs satisfy some nice properties, which we
denote by PRSNPD—see Section 4.3 for details. While we do not
know how to construct such PRSNPD from PRSPD or PRFSPD, our
construction satisfies this niceness property.

3. CPA symmetric encryption (Section 4.5) and strong-CMA MAC (Sec-
tion 4.4) from any PRFSPD. Note that this form of encryption is
known to imply garbled circuits(Appendix D).

1.2 Our Techniques

Our construction of PRSPD is based on the following observation. Prior
constructions starting with [JLS18] showed that a uniform superposition
over all computational basis elements, with a random phase, constitutes a
PRS. Formally, the family |ψk⟩ = 1√

N

∑
y∈{0,1}n ω

PRFk(y)
N |y⟩ is a PRS family

whenever PRFk is a post-quantum PRF from n bits to n bits, where N = 2n
and ωN is the N -th root of unity. We show that a state which is supported
on a pseudorandom subset of computational basis elements is still a PRS.
More precisely, for a pseudorandom permutation PRP on 4n bits, let Ak′ =
{PRPk′(z||03n) : z ∈ {0, 1}n}. We prove that the following states form a
pseudorandom family:

|ψk,k′⟩ = 1√
N

∑
y∈Ak′

ω
PRFk(y)
N |y⟩. (1)

This modification allows us to generate a proof of destruction as follows.
The state |ψk,k′⟩ is measured in the computational basis, resulting in a (uni-
formly random) element of Ak′ , which we denote by p. The verification
procedure for p is to apply PRP−1

k′ (p) and checking that the result is of the
form z||03n for some string z. We show that this construction satisfies the
Unforgeability-of-proofs property.

1In this primitive, the verification is quantum, but sending the proof of possession to
the verifier only requires classical communication.
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We observe a property of our construction from which it is easy to de-
duce both—the pseudorandomness property and the unforgeability of proofs
property. We recall a property of the Haar-random distribution over quan-
tum states. The following distributions (over quantum states) are equiva-
lent: (i) Sample an n-qubit Haar-random state and output t copies of this
state. (ii) Sample t elements from {0, 1}n, according to some distribution,
and output a superposition over all t! permutations of this t-tuple. In fact,
the distribution can be i.i.d uniform over the domain, with only a negligible
effect on the outcome.

Now, if we sample the t elements not from the entire domain, but rather
from a large enough random sub-domain, the distribution over tuples will
remain statistically indistinguishable. We can apply this logic twice: First,
to derive pseudorandomness, since a random state over a random subdomain
is indistinguishable from a random state over the entire domain. Second, to
derive the unforgeability of proofs, since providing t samples of the PRSPD
state is statistically indistinguishable from a process that only uses t classical
values from the sub-domain. Thus, coming up with an additional element in
this random sub-domain can be done with at most negligible probability for
classical information-theoretic reasons. We further show that experiment (ii)
above is statistically close to experiment (iii): Sampling an exponential size
subdomain A and a random function f and preparing t copies of the state
|ψA,f ⟩ ∝

∑
x∈A ω

f(x)
N |x⟩. Experiment (iii) and experiment (iv) in which t

copies of the PRSPD states in Eq. (1) can now be seen to be computationally
indistinguishable, by the pseudorandomness properties of the PRF and PRP
functions. Transitions (ii)-(iv) are formalized in our main technical lemma,
Lemma 6.

Extending this idea to PRFSPD is done in a straightforward manner,
starting from the PRFS construction of [AGQY22]. Our PRFSPD family
can be thought of as |ψ(k,k′),x⟩ = 1√

N

∑
y∈Ak′,x

ω
PRFk(x,y)
N |y⟩, where Ak′,x =

{PRPk′(y||x||03n) : y ∈ {0, 1}n} for x ∈ {0, 1}n. The destruction is done as
before, and verification checks that p has the form y||x||03n.

How to use pseudorandom states with proof of destruction. In
many cases, a template can be used to remove the quantum communication
from a protocol involving pseudorandom states. Several protocols use PRS
in the following manner. In the first part of the protocol, a pseudorandom
state |ψk⟩ is generated and sent via quantum communication. In a later
step of the protocol, a testing procedure is applied to check if the state is
indeed |ψk⟩. In order to remove the quantum communication, we send the
(classical) proof of destruction of it (instead of the state itself). Furthermore,
we replace the testing whether the state is the “correct” state, with verifying
that the proof of destruction is valid. This approach can also be applied with
PRFS, where the state is |ψk,x⟩ used.
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Next, we demonstrate the use of the template above with a concrete
example. Ref. [AQY21] constructs a MAC scheme using PRFS, in which
the secret key is a random k, Signk(m) generate a quantum signature |ψk,m⟩,
and Verifyk(m, |φ⟩) is done by testing procedure discussed above, which tests
whether |φ⟩ is the expected state |ψk,m⟩. In our scheme(see Section 4.4),
Signk(m) is done by preparing |ψk,m⟩, and the classical signature is the proof
of destruction, denoted p, of this state. Clearly, the signature can now be
sent via a classical channel. The testing procedure above is replaced with
checking that p is a valid proof of destruction for (k,m).

The template above is indeed useful as a conceptual framework, but ap-
plying it sometimes requires consideration of the specifics of the primitives.
Some specific challenges that need to be addressed are as follows.

1. Pseudorandom states are pseudorandom as quantum states, but the
proofs of destruction are not required to be pseudorandom strings. For
example, one can easily transform a PRSPD scheme to one in which
the first bit of the proof of destruction is always 0.
This issue comes up in the context of bit-commitment. Ref. [MY22a]
shows a construction that can be viewed as a quantum analog of Naor’s
commitments from PRG. There, we need to make the additional as-
sumptions that the proofs are pseudorandom in order to prove the
hiding property—see Section 4.3.
Recall that Naor’s construction also requires a length-tripling PRG to
prove the statistical binding. For analogous reasons, in our setting, we
need a PRFSPD in which every key k accepts only a small fraction of
the potential proofs.
We define a PRSPD in which the proofs of destruction satisfy these
nice properties as PRSNPD.

2. Pseudorandom states are known to be uncloneable [JLS18, Theorem
2], but the proofs of destruction are classical and, therefore, can triv-
ially be copied. We are only guaranteed that generating new proofs of
destruction is hard. This difference means that for our quantum coins
scheme to be secure, the bank needs to keep a copy of the proofs that
were already accepted, so these would be rejected in further attempts.
In other words, unlike the quantum coin scheme proposed by [JLS18],
our quantum coin protocol is stateful—see Section 4.2for details.

3. It can be shown that PRS are non-invertible in the following sense:
Given |ψk⟩, one cannot find k′ such that |ψk′⟩ has a non-negligible
overlap with |ψk⟩ [MY22a, Lemma 4.1]. An analogous property does
not necessarily hold for proofs of destruction: Given a proof p for
|ψk⟩, one might be able to find k′ such that p is a valid proof of
this destruction for k′. For example, given a PRSPD scheme, one can
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modify it so k′ = 00 . . . 0 accepts all proofs of destruction. Since that
particular k′ has a negligible probability of getting sampled as the
key, it has no effect on the security of the scheme. But now, given a
proof of destruction p, it is trivial to find a k′ such that the proof of
destruction is accepted. This issue arises in the context of one-time
digital signatures, which we expand upon next.

To illustrate an example of such a challenge, let us describe our construc-
tion of one-time signatures from PRSPD. We recall Lamport’s one-time sig-
nature scheme and assume that we only wish to sign one-bit messages (the
extension to multiple bits is by repetition, as in the classical case). The idea
in Lamport’s OWF-based scheme is to sample uniformly random x0, x1 as
the signing key, set y0 = f(x0), y1 = f(x1) as a verification key, and set the
signature on message m ∈ {0, 1} to be xm. This was adapted to PRS by
[MY22a], by replacing f with the PRS generator algorithm.

We wish to convert our quantum verification key to being classical using
PRSPD. We achieve this by replacing the PRS states with their respective
proofs of destruction p0, p1. The signature will be the key associated with the
proof of destruction. However, contrary to the classical and PRS settings,
we must take a different approach here. A forgery here consists of a PRSPD
key k′m which verifies pm; indeed, if we were guaranteed that k′m = km then
we would have been done since unforgeability of proofs would have been
used in order to complete the security proof. However, this is not the case,
and the unforgeability of proofs alone is insufficient: see Item 3 above.

To rule out “junk keys”—keys which accept too many proofs of destruction—
we apply two modifications: the public key consists of a large number of
proofs p⃗m for every value of m (where all proofs of destruction are gener-
ated using the same key), instead of just one. We know that all of these
proofs of destruction will get accepted by the PRSPD verification by the
key that generated these states. We also modify the signature verification
algorithm so that given a signature k′m, it first samples a large polynomial
number of proofs of destruction with freshly random keys, and makes sure
that k′m is not verifying garbage (honestly generated keys will pass this test
with overwhelming probability). Only after passing this test will the forgery
be tested against p⃗m. One can easily see that this method rules out sim-
ple “junk keys” that accept all proofs, as in the example described above.
The full security proof uses a hybrid argument where the public key is not
generated using a key km of the PRSPD, but instead, it is generated by
applying the destruction algorithm to a Haar random quantum state.2 This
can only have a negligible change on the forgery probability by the pseudo-
randomness of the PRSPD. Interestingly, the construction by [MY22a] did
not use the pseudorandomness property and relied on a weaker notion called

2One may be concerned that true random states are infeasible to generate, however for
our purposes here we can use so-called “state-designs” instead of true random states.
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one-way state generators. We then show that an adversary which receives
such “garbage” proofs pm (i.e. proofs which are generated by the proof of
destruction procedure on Haar random states) cannot provide forgery.

1.3 Open Problems

• A primary motivation to study pseudorandom states is that it seems
as a weaker assumption than one-way functions, on which quantum
cryptography could be based upon. Unfortunately, this separation
result only holds for some of the PRS-variants. No such separation
result is known for short-output PRS and short-output PRFS. Note
that some of the applications prior to ours rely upon those. Similarly,
we did not prove a similar separation for PRSPD and PRFSPD, and
these challenges are left as an open problem.

• Does PRSPD imply short-input PRFSPD, i.e., PRFSPD with logarith-
mic input length? Ref. [AQY21] constructs short-input PRFS from
PRS generically by measuring the first log(λ) qubits and post-selecting
the outcome being the input. The same approach may not work in the
case of PRFSPD and PRSPD because the post-selection procedure as
proposed in [AQY21] may not commute with the Destruct algorithm
for general PRSPD. An alternate yet related approach would be to
run the Destruct algorithm on the input state without measurement,
then measure only the first log(λ) qubits, post-select on the outcome
being the input, and output the state on the unmeasured registers as
the PRFSPD state.
The hope is that if the starting state was Haar random, then the state
on the unmeasured bits will be Haar random. However, the destruct
algorithms may use ancillae qubits, and therefore the overall process
becomes non-unitary, even before the measurement. Since non-unitary
processes do not preserve Haar -random property, if we measure the
first log(λ) registers, the state on the rest of the registers might not
be statistically close to Haar random.

• The security guarantees for PRFSPD can be strengthened by giving
the adversary quantum adaptive access (instead of classical adaptive
access) to the oracles in the security games (see Eq. (2), Game 1 and
Game 2). This strengthened notion has been considered for the pseu-
dorandomness property of PRFS in Ref. [AGQY22], where it is called
quantum adaptive pseudorandomness. In this work, we only consider
classical adaptive queries from the adversary while defining security
guarantees for PRFSPD because it is sufficient for all of our applica-
tions. It is a natural research direction to investigate the stronger
definition. In particular, one may ask: does our PRFSPD construc-
tion (Section 3) satisfy the stronger definition? We think that our
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construction can be proven to be quantum adaptive pseudorandom
via techniques similar to that in [AGQY22], namely Zhandry’s small-
range distributions [Zha12]. However, proving the unforgeability of
proofs with respect to quantum query seems harder because unlike the
pseudorandomness game, we need to consider the quantum queries to
the verification oracle in the unforgeability game (see Games 1 and 2).

• In some of the applications, we required the following quantum information-
theoretic conjecture regarding Haar random states that we believe is
true: For any algorithm A that outputs a classical string, and any
polynomial t = t(n), the total variation distance between A(|ϕ1⟩) ⊗
· · · ⊗ A(|ϕt⟩), where |ϕ1⟩, . . . , |ϕt⟩ ∼ µHn and A(|ϕ⟩) ⊗ · · · ⊗ A(|ϕ⟩),
where the same state |ϕ⟩ ∼ µHn is used in all the algorithms, is negli-
gible in n.
We could not prove nor find any previous work in the literature that
proves or even formalizes this conjecture. We proved a different variant
of it in Lemma 2, which was sufficient for the applications and might be
of independent interest. We think this is an interesting open question
on its own, and if proven, this result can be a useful tool for quantum
cryptography.

1.4 Related works

Quantum forms of pseudorandomness have seen rapid development, which
we summarize in this section. All the results mentioned (except the concur-
rent result of [ALY23]), along with our main results are depicted in Fig. 1.

The study of pseudorandom state generators (PRS) was initiated by Ji,
Liu, and Song [JLS18]. They proved a construction based on the existence
of post-quantum one-way functions. Ji, Liu, and Song’s PRS construction
were simplified in Ref. [BS19].

Kretschmer [Kre21] proved a separation between one-way functions and
PRSs: there exists a quantum oracle relative to which PRSs exist, but one-
way functions do not exist. In other words, there is no black-box reduction
from PRS to one-way functions (while a black-box reduction in the other
direction is implied by [JLS18]).

Several variants of PRS have been introduced, all of which are implied by
post-quantum one-way functions. These different variants will play an im-
portant role when we discuss the applications. In Ref. [BS20b], the authors
show how to construct a scalable PRS based on OWFs; in this context, scal-
ability means that for any function n(λ) ≤ λ, one can construct a PRS with
n(λ) qubits. Perhaps counter-intuitively, and unlike pseudorandom genera-
tors, constructing pseudorandom states with a smaller number of qubits n
seems harder (and definitely does not follow from the definition).
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Figure 1: Various applications of PRS and its variants. Best viewed in color.
Unless stated otherwise, all applications are protocols that require quantum
communication.
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In [AQY21], Ananth, Qian, and Yuen define pseudorandom function-
like states (PRFS). An (d, n)-PRFS generator receives a key k ∈ {0, 1}λ
and an input x ∈ {0, 1}d and outputs an n-qubit state3. In the security
game, the adversary can choose (in advance) a set of inputs x1, . . . , xm; the
challenger either picks a random k and returns the PRFS states associated
with (k, x1), (k, x2), . . . , (k, xm), or samples a Haar random state for each
distinct xi, and send the states to the adversary. The adversary needs to
distinguish between these two cases. They show how to construct a (n, d)-
PRFS for d = O(log λ) from any (n + dλ)-PRS. We refer to PRFS in that
regime (namely, d = O(log λ)) as short input PRFS. They show how to
construct a PRFS with ω(log(λ)) input length, which we refer to as long input
PRFS, from any OWF. They also show that long input PRFS is separated
from OWFs. It is not known how to construct long input PRFS from a short
input PRFS. It is known that, similarly to vanilla PRS, short and long input
PRFS are separated from post-quantum one-way functions [AQY21].

Several applications of PRSs have been shown. In [JLS18], it was shown
that PRS implies a private quantum coin scheme—i.e., a private quantum
money scheme in which all the quantum money states are exact copies.
In [BS20a], an almost public quantum coin scheme was shown based on the
existence of any private coin scheme. In this context, public means that
users can verify a quantum coin without the bank. The scheme was almost
public because it has several limitations. For example, it only achieves
rational unforgeability; and the users must have coins in order to verify
other coins. Note that there are no other public quantum money schemes
based on one-way functions. Morimae and Yamakawa [MY22a] construct
a length-restricted one-time signature (also known as Lamport signature)
with a quantum public key.

PRFS has several applications, which depend on the parameters of the
PRFS. We start with those which are implied by the weakest form, namely,
short input PRFS. Ref. [AQY21] construct a symmetric pseudo-encryption
with quantum ciphers, which achieves one-time security. Pseudo-encryption
means that the key is shorter than the length of the encrypted message—
which is impossible to achieve unconditionally. This result requires a ω(log λ)-
PRS or alternatively, an (n, d)-PRFS with d > log λ and n = ω(log λ). As
observed by [AQY21], garbled circuits can be constructed from the sym-
metric pseudo-encryption mentioned above. Note that in this construction,
the original circuit is classical, and the resulting garbled circuit is quan-
tum. They also construct a statistically binding quantum bit-commitment
from a (2 log λ) + ω(log log λ))-PRS (or, alternatively, an (n, d)-PRFS satis-
fying 2d · n ≥ 7λ); and by adapting the result in [BCKM21], they construct
multi-party computation in the dishonest majority setting based on the same

3For technical reasons which are outside the scope of this work, the algorithm can
output abort.
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assumption.
Ref. [AQY21] also shows three other constructions based on long in-

put PRFS: Symmetric encryption scheme secure against selective CPA with
quantum ciphers based on (ω(λ), ω(λ))-PRFS; a reusable MAC with quan-
tum tags, which is length restricted to ℓ(λ) bits, based on a (d, n)-PRFS
with d(λ) ≥ ℓ(λ) and d = ω(log λ);

Recently, in [AGQY22], the authors report on statistically binding com-
mitments and pseudo-encryption with classical communication. Their con-
struction is based on short output PRFS, namely, log(λ) output and input
sizes. In a concurrent and independent work [ALY23], the authors showed
a construction of non-adaptive CPA-secure symmetric encryption with clas-
sical ciphertexts from short output PRFS (this result is yet to be added in
Fig. 1).

The notion of a PRS was used outside the context of cryptography in
the study of the wormhole growth paradox [BFV20] and quantum machine
learning.

From the results mentioned so far, there is no indication that PRS (or
any of its variants) are minimal assumptions for the cryptographic task
that they can be used to achieve. Two recent works address this aspect: (a)
Ref. [BCQ22] shows that EFI pairs—efficiently samplable, statistically far
but computationally indistinguishable pairs of mixed quantum states—are
equivalent to statistically binding quantum commitments, oblivious transfer,
and several other functionalities. (b) Ref. [MY22a, MY22b] proved that a
one-way state generator (OWSG) is equivalent to one-time signatures with
quantum public keys.

We mention that OWSGs are known to be implied from private quantum
coins and that a variant called secretly-verifiable and statistically invertible
one-way state generator (SV-SI-OWSG) is equivalent to EFI [MY22b].

2 Pseudorandom States and Function-like States
with Proofs of Destruction

In this section, we define pseudorandom states and function-like states with
proofs of destruction and study some important properties and distributions
related to them.

2.1 Core definitions

Definition 1 (Pseudorandom state generator with proofs of destruction).
A PRSPD scheme with key-length w(λ), output length n(λ) and proof length
c(λ) is a tuple of QPT algorithms (Gen ,Destruct ,Ver ) with the following syn-
tax:
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1. |ψk⟩ ← Gen(k): takes a key k ∈ {0, 1}w(λ), and outputs an n(λ)-qubit
pure state4 |ψk⟩.

2. p← Destruct(|ϕ⟩): takes an n(λ)-qubit quantum state |ϕ⟩, and outputs
a c(λ)-bit classical string, p.

3. b ← Ver (k, p): takes a key k ∈ {0, 1}w(λ), a c(λ)-bit classical string p
and outputs a boolean output b.

Correctness. A PRSPD scheme is said to be correct if

Pr
k

u←−{0,1}w(λ)
[1← Ver (k, p) | p← Destruct(|ψk⟩); |ψk⟩ ← Gen(k)] = 1

Security.

1. Pseudorandomness : A PRSPD scheme is said to be pseudorandom if
for any QPT adversary A, and any polynomial m(λ), there exists a
negligible function negl(λ), such that∣∣∣∣∣ Pr
|ψk⟩←Gen(k);k←{0,1}w

[A(|ψk⟩⊗m) = 1]− Pr
|ϕ⟩←µ(C2)⊗n

[A(|ϕ⟩⊗m) = 1]
∣∣∣∣∣ = negl(λ).

2. Unforgeability-of-proofs: A PRSPD scheme satisfies Unforgeability-of-proofs
if for any QPT adversary A in forging game (Game 1), there exists a
negligible function negl(λ) such that

Pr[Forging-ExpA,PRSPD
λ = 1] = negl(λ).

Game 1 Forging-ExpA,PRSPD
λ

1: Challenger samples k ∈ {0, 1}w(λ) uniformly at random.
2: AGen(k),Ver(k,·)(1λ) outputs p1, p2, . . . , pt+1 to the challenger.
3: Adversary wins if: i) all pi’s are distinct, ii) the number of queries made

to the Gen(k) oracle was t, and iii) Ver (k, pi) = 1 for 1 ≤ i ≤ t+ 1.

Definition 2 (Pseudorandom function-like state generator with proofs of destruction).
A PRFSPD scheme with key-length w(λ), input-length d(λ), output length
n(λ) and proof length c(λ) is a tuple of QPT algorithms (Gen ,Destruct ,Ver )
with the following syntax:

4The pseudorandom security guarantee implies that with overwhelming probability
over the chosen key, the state should be negligibly close to a pure state in trace distance;
otherwise, pseudorandomness of the state can be violated via Swap-test.
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1. |ψxk⟩ ← Gen(k, x): takes a key k ∈ {0, 1}w, an input string x ∈
{0, 1}d(λ), and outputs an n-qubit pure state |ψxk⟩.

2. p ← Destruct(|ϕ⟩): takes an n-qubit quantum state |ϕ⟩ as input, and
outputs a c-bit classical string, p.

3. b← Ver (k, x, p): takes a key k ∈ {0, 1}w, a d-bit input string x, a c-bit
classical string p and outputs a Boolean output b.

Correctness. A PRFSPD scheme is said to be correct if for every x ∈
{0, 1}d,

Pr
k

u←−{0,1}w

[1← Ver (k, x, p) | p← Destruct(|ψxk⟩); |ψxk⟩ ← Gen(k, x)] = 1

Security.

1. Pseudorandomness: A PRFSPD scheme is said to be quantum adaptively
pseudorandom if for any QPT adversary A there exists a negligible
function negl(λ), such that the following absolute value is bounded by
negl(λ),∣∣∣∣∣ Pr
k←{0,1}w

[AGen(k,·)(1λ) = 1]− Pr
∀x∈{0,1}d,|ϕx⟩←µ(C2)⊗n

[A|Haar
{|ϕx⟩}

x∈{0,1}d ⟩(·)(1λ) = 1]
∣∣∣∣∣ ,

(2)

where ∀x ∈ {0, 1}d, Haar {|ϕ
x⟩}

x∈{0,1}d (x) outputs |ϕx⟩. Here AGen(k,·)

represents that A gets classical oracle access to Gen(k, ·).

2. Unforgeability-of-proofs: A PRFSPD scheme satisfies Unforgeability-of-proofs
if for any QPT adversary A in forging game (Game 2), there exists a
negligible function negl(λ) such that

Pr[Forging-ExpA,PRFSPD
λ = 1] = negl(λ).

Remark 1. Definition 2 can be generalized by allowing the Gen algorithm to
output mixed states that are negligibly close in trace distance to a pure state
instead of restricting the output to be pure states. Note that it is necessary
that the output of Gen is negligibly close in trace distance to a pure state
for the pseudorandomness condition to hold, see [AQY21]. We consider the
stricter definition (Definition 2) in this article because it is both simple and
sufficient for all our purposes.
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Game 2 Forging-ExpA,PRFSPD
λ

1: Given input 1λ, Challenger samples k ← {0, 1}w(λ) uniformly at random.
2: Initialize an empty set of variables, S.
3: A gets oracle access to Gen(k, ·), Ver (k, ·, ·) as oracle.
4: for Gen query x made by A do
5: if ∃ variable tx ∈ S then tx = tx + 1.
6: else Create a variable tx in S, initialized to 1.
7: end if
8: end for
9: A outputs x, p1, p2, . . . , ptx+1 to the challenger.

10: Challenger rejects if pi’s are not distinct.
11: for i ∈ [tx + 1] do bi ← Ver (k, x, pi)
12: end for
13: Return ∧tx+1

i=1 bi.

Remark 2. A pseudorandom state generator or PRS(respectively, pseudo-
random function-like state generator or PRFS) is the same as PRSPD (re-
spectively, PRFSPD), but without the Destruct and Ver algorithms, and the
correctness and Unforgeability-of-proofs requirements.
Remark 3 (PRFSPD Input Shortening and PRSPD). PRFSPD with input
length d immediately implies PRFSPD with input length d′ ∈ {0, 1, · · · , d}
and in particular PRSPD. To see this, if (Gen ,Destruct ,Ver ) is a PRFSPD with
input length d, then for any d′ ∈ {0, 1, · · · , d}, consider the d′-input-length
scheme PRFSPDd′ = (Gen ′,Destruct ,Ver ′) where for x′ ∈ {0, 1}d′ :

• Gen ′(·, x′) = Gen(·, (x′||0d−d′)).

• Ver ′(·, x′, ·) = Ver (·, (x′||0d−d′), ·).

This is similar to how pseudorandom function-like states imply pseudoran-
dom states: A reduction that takes an adversary against the new scheme
and attaches d − d′ zeros to its queries shows that we can use it in order
to break the original scheme. Finally, PRFSPD with input length 0 exactly
implies the definition of a PRSPD.
Remark 4 (Computational assumptions are necessary for PRSPD and PRFSPD).
Clearly, PRSPD with ω(log(1λ)) output-length implies PRS with ω(log(1λ))
output-length which cannot exist unconditionally [Kre21, AGQY22], hence
PRSPD and PRFSPD with ω(log(1λ)) output-length cannot exist uncondi-
tionally. It should be noted that PRSPD (and therefore PRFSPD) with
O(log(1λ)) cannot exist since an adversary can learn an approximate de-
scription of the PRSPD state efficiently using tomography and use this de-
scription to win the forging game, see Game 1.
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2.2 Distributions related to the Destruct algorithm of PRSPD,
PRFSPD, and Haar random states

Definition 3 (Correlated and independent destructions for Haar random
states). For any algorithm Destruct , that take a n-qubit state as input and
outputs a c-bit classical string as output, and for every t ∈ poly(λ), Correlated-DestructionHaar ,Destruct

t

is the distribution on {0, 1}ct given by, (f1, . . . , ft) ∼ Correlated-DestructionHaar ,Destruct
t

where
(f1, . . . , ft)← Destruct⊗t(|ϕ⟩⊗t); |ϕ⟩ ∼ µHn .

For every t ∈ poly(λ), let Product-DestructionHaar ,Destruct
t be the t-fold prod-

uct of Product-DestructionHaar ,Destruct which is given by

f ∼ Product-DestructionHaar ,Destruct ≡ f ← Destruct(|ϕ⟩); |ϕ⟩ ∼ µHn .

Definition 4 (Correlated and independent destructions of PRSPD and
PRFSPD). For any PRSPD family PRSPD = (Gen ,Destruct ,Ver ) and for ev-
ery t ∈ poly(λ), Correlated-DestructionPRSPDt is the distribution on {0, 1}ct
given by, (f1, . . . , ft) ∼ Correlated-DestructionPRSPDt where

(f1, . . . , ft)← Destruct⊗t(|ψk⟩⊗t); |ψk⟩ ← Gen(k), where k u←− {0, 1}w.

For every t ∈ poly(λ), let Product-DestructionPRSPDt be the t-fold product
of Product-DestructionPRSPD which is given by

f ∼ Product-DestructionPRSPD ≡ f ← Destruct(|ϕk⟩); |ϕk⟩ ← Gen(k), where k u←− {0, 1}w.

For any PRFSPD family PRFSPD = (Gen ,Destruct ,Ver ), for any x ∈
{0, 1}d and for every t ∈ poly(λ), let Correlated-DestructionPRFSPD,xt =
Correlated-DestructionPRFSPDx

t and Product-DestructionPRFSPD,x = Product-DestructionPRFSPDx,
where PRFSPDx is the PRSPD scheme obtained out of PRFSPD by fixing
the input to x, see Definition 2 and Remark 3.

2.3 Properties of Pseudorandom States and Function-like
States with Proofs of Destruction

In this section, we state a few properties of PRSPD and PRFSPD, that
would be important for the applications in Section 4. These properties
(Lemmas 1 to 5) are true for arbitrary PRSPD and PRFSPD, but due to
space constraints, we only sketch the proofs in this version. For simplicity,
some of the proofs are sketched only for a special case, where the Destruct
algorithm of the respective PRSPD or PRFSPD family measures the state in
the computational basis, and outputs the measurement outcome. Note that
the Destruct algorithm, in general, could be more complicated and involve
ancillae registers. The proof for the general case is given in Appendix B in
the supplementary materials.
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Lemma 1 (PRSPD have well-distributed proofs). For every PRSPD scheme
(Gen ,Destruct ,Ver ) with key length w(λ) proof length c(λ), for every a ∈
{0, 1}c, there exists a negligible function negl(λ)a,

Pr[K u←− {0, 1}w : Destruct(Gen(K)) = a] = negl(λ)a.

Furthermore, there exists a negligible function ñegl(λ)a, such that

Pr[|ϕ⟩ ∼ µHn : Destruct(|ϕ⟩) = a] = ñegl(λ)a.

Proof sketch for the special case. The proof follows by combining pseudo-
randomness of the PRSPD with the observation that the Destruct algorithm
on a Haar random state produces a uniformly random outcome. □

The proof for the general case is given in Appendix B on Page 49.

Lemma 2 (PRSPD proofs are distributed close to product distribution).
Let PRSPD = (Gen ,Destruct ,Ver ) be a PRSPD scheme with key length w(λ)
proof length c(λ). For every t ∈ poly(λ), and a1, . . . , at ∈ {0, 1}c,5

PrCorrelated-DestructionHaar ,Destruct
t

[(f1, . . . , ft) = (a1, . . . , at)]

≤ N t(N+t−1
t

) Pr
Product-DestructionHaar ,Destruct

t

[(f1, . . . , ft) = (a1, . . . , at)],

where the subscript in the probability denotes the distribution of (f1, . . . , ft),
and the distributions are as defined in Definition 3.

Proof sketch for the special case. Observe that for any a1, . . . , at ∈ {0, 1}c(λ),
there exists a unique z⃗ such that ⟨a1, . . . , at|Symz⃗

t ⟩ is non-zero. Combining
this observation with Eq. (16) and the fact that Destruct is just a measure-
ment in the computational basis, we conclude that PrCorrelated-DestructionHaar ,Destruct

t
[(f1, . . . , ft) =

(a1, . . . , at)], i.e.,

Pr[|ϕ⟩ ∼ µHn : Destruct⊗t(|ϕ⟩⊗t) = (a1, . . . , at)] ≤
1(N+t−1
t

) ,
where equality holds when a1 = · · · = at. Moreover, PrProduct-DestructionHaar ,Destruct

t
[(f1, . . . , ft) =

(a1, . . . , at)] = 1
Nt for every a1, . . . , at ∈ {0, 1}c(λ). Hence,

PrCorrelated-DestructionHaar ,Destruct
t

[(f1, . . . , ft) = (a1, . . . , at)]

≤ N t(N+t−1
t

) Pr
Product-DestructionHaar ,Destruct

t

[(f1, . . . , ft) = (a1, . . . , at)].

□
5We believe that the distributions are in fact, statistically close due to the strong

concentration of the Haar measure, but we have not been able to prove it. The lemma is
a weaker version of this statement, but it suffices for our purposes.
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The proof for the general case is given in Appendix B on Page 50.
Remark 5. For every t ∈ poly(λ), Correlated-DestructionHaar ,Destruct

t and Product-DestructionHaar ,Destruct
t

are efficiently samplamable using a state t-design and a state 1-design for
n-qubit quantum states, respectively.

Lemma 3 (PRSPD proofs are collision-free). For every PRSPD scheme
PRSPD = (Gen ,Destruct ,Ver ) with key length w(λ), proof length c(λ), and
t ∈ poly(λ), there exists a negligible function ñegl(λ),

Pr
Correlated-DestructionPRSPD

t

[Collision] ≡ Pr
Correlated-DestructionPRSPD

t

[∃i ̸= j | fi = fj ] = ñegl(λ),

where the subscript under the probability is the distribution on f1, . . . , ft and
Correlated-DestructionPRSPDt is as defined in Definition 4.

Moreover, by the pseudorandomness of PRSPD (see Definition 1) there
exists a negligible function ñegl(λ) such that

Pr
Correlated-DestructionHaar ,Destruct

t

[Collision] ≡ Pr
Correlated-DestructionHaar ,Destruct

t

[∃i ̸= j | fi = fj ] = ñegl(λ),

where Correlated-DestructionHaar ,Destruct
t is as defined in Definition 3.

Proof sketch for the special case. The moreover part follows by observing
that for any t ∈ poly(n), measuring t-copies of a n-qubit Haar random state,
is statistically close up to negligible distance (in n) to the t-fold product
of the uniform distribution on {0, 1}n. Hence, the probability of observing
indistinct t-outcomes is negligible. The rest of the proof follows due to the
pseudorandomness of the PRSPD. □

The proof for the general case is given in Appendix B on Page 55.

Lemma 4 (PRFSPD proofs are collision-free). For every PRFSPD scheme
PRFSPD = (Gen ,Destruct ,Ver ) with key length w(λ), input length d(λ),
proof length c(λ), and t ∈ poly(λ), and x ∈ {0, 1}d there exists a negligible
function ñegl(λ),

Pr
Correlated-DestructionPRFSPD,x

t

[Collisionx] ≡ Pr
Correlated-DestructionPRFSPD,x

t

[∃i ̸= j | fxi = fxj ] = ñegl(λ),

where Correlated-DestructionPRFSPD,xt is as defined in Definition 4.

Proof. Given a PRFSPD scheme PRFSPD with input length d(λ), and any
fixed input x ∈ {0, 1}d, we can construct a PRSPD scheme PRSPDx as per
Remark 3. Applying Lemma 3 on PRSPDx, we get the desired result. □

19



Lemma 5 (Classical unforgeability of PRFSPD). Let PRFSPD = (Gen ,Destruct ,Ver )
be a Pseudorandom function-like state generator with proofs of destruction
family. Then, for every QPT adversary A, there exists a negligible function
negl(λ) such that

Pr[Classical-Forging-ExpA,PRFSPD
λ = 1] = negl(λ),

where Classical-Forging-ExpA,PRFSPD
λ is defined in Game 3.

Game 3 Classical-Forging-ExpA,PRFSPD
λ

1: Given input 1λ, Challenger samples k ← {0, 1}w(λ) uniformly at random.
Challenger also initializes an empty set S.

2: Initialize an empty set of variables, S.
3: A gets oracle access to Destruct(Gen(k, ·)), Ver (k, ·, ·) as oracle.
4: for Destruct(Gen(k, ·)) query x made by A do Add (x, σx) to S, where
σx is the response of Destruct(Gen(k, ·)) oracle on input x.

5: end for
6: A outputs x′, σ′x to the challenger.
7: Return 1 if (x′, σ′x) ̸∈ S and Ver (k, x′, σ′x) = 1.

Proof sketch. The proof follows by combining Lemma 4 with the Unforgeability-of-proofs
property of PRFSPD. □

The proof for the general case is given on Page 56.

3 Construction of PRFSPD from any Post-quantum
One-Way Function

In this section, we construct PRFSPD (Definition 2) from post-quantum one-
way functions. To be more precise, we build a PRFSPD from post-quantum
pseudorandom permutations (PRP) (Definition 13), and since post-quantum
OWFs imply post-quantum PRPs [Zha16], our statement follows. Finally,
recall Remark 3 which explains why a PRFSPD with input length d(λ) = λ
implies a PRFSPD with input length 0 ≤ d′(λ) ≤ d(λ), which also means
that it implies a PRSPD.

Theorem 6 (Main Theorem). Assume there exist post-quantum one-way
functions. Then, a PRFSPD scheme (Definition 2) with key length w(λ) = λ,
input length d(λ) = λ, output length n(λ) = 5·λ and proof length c(λ) = 5·λ,
exists.
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The construction is given in Fig. 2 and Fig. 3. In the construction, as
in the main theorem, we define the following lengths as a function of the
security parameter: key length w(λ) = λ, input length d(λ) = λ, output
length n(λ) = 5 · λ and proof length c(λ) = 5 · λ. Our only cryptographic
ingredient is a post-quantum pseudorandom permutation PRP on 5λ bits
(Definition 13).

We next prove the security of the PRFSPD construction. This means two
things: That the generated states are pseudorandom and that the classical
proofs generated are unforgeable. To this end, we prove our main technical
lemma that will easily imply both security aspects. Roughly, the lemma
below implies that (1) classical access to the Gen oracle, is computation-
ally indistinguishable from an oracle that outputs truly random quantum
states, and (2) for every input x ∈ {0, 1}d, generating more proofs of de-
struction than the number of queries that were made to the Gen oracle for
x is information theoretically impossible.

Lemma 6 (Main Technical Lemma). Let T a polynomial and let A a quan-
tum polynomial-time algorithm that outputs a bit b ∈ {0, 1} and has classical
oracle access to some arbitrary oracle with inputs in {0, 1}d, such that for
every possible input x ∈ {0, 1}d, A makes either 0 or exactly T queries to
the oracle on that input x. Then the following two distributions on b are
computationally indistinguishable:

• D0 : Sample k ← {0, 1}λ uniformly at random. A has classical access
to Gen(k, ·), Ver (k, ·, ·) (from Fig. 2 and Fig. 3, respectively), and makes
either 0 or exactly T queries to each of the possible inputs x ∈ {0, 1}d
to Gen(k, ·), and outputs a bit b.

• D1 : For every x ∈ {0, 1}d, sample a T -sized multi-set of {0, 1}5λ:
(ax,1, · · · , ax,T ), and generate the T · 5λ-qubit state,

|πx⟩ :=
∑
σ∈ST

|ax,σ(1), · · · , ax,σ(T )⟩ ,

and for each x ∈ {0, 1}d, partition the T · 5λ-qubit state |πx⟩ into T
sub-registers, each of size 5λ. The oracles are defined as follows: The
generation oracle Gen∗(·), given x ∈ {0, 1}d for the c-th query (for
c ∈ [T ]), outputs the c-th sub-register of the state |πx⟩. The proof
verification oracle Ver ∗(·, ·), given query (x, q) ∈

(
{0, 1}d × {0, 1}5λ

)
,

outputs 1 iff q ∈ {ax,1, · · · , ax,T }. A has classical access to Gen∗(·),
Ver ∗(·, ·), makes either 0 or exactly T queries to Gen∗(·) for every x ∈
{0, 1}d, and outputs a bit b.

The proof of the lemma is deferred to Appendix C on Page 58.

Proposition 1 (Security - Pseudorandomness). The PRFSPD scheme in
Fig. 2, Fig. 3 maintains the pseudorandomness property (as in Definition 2).
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Gen(k, x): For security parameter λ ∈ N, input k ∈ {0, 1}w(λ), x ∈ {0, 1}d(λ),
execute the following.

1. Generate the uniform superposition 2−λ
2 ·
∑
y∈{0,1}λ |y⟩ over λ qubits.

2. Apply the classical PRP circuit in superposition, with the superposi-
tion as input concatenated with (x, 03λ) ∈ {0, 1}4λ:

2−
λ
2 ·

∑
y∈{0,1}λ

|y⟩|x, 03λ⟩|PRPk
(
y, x, 03λ

)
⟩ .

3. Apply the inverse of the classical PRP circuit in superposition to un-
compute the left 5λ qubits and get:

2−
λ
2 ·

∑
y∈{0,1}λ

|05λ⟩|PRPk
(
y, x, 03λ

)
⟩ .

4. Apply the following circuit C : {0, 1}5λ → {0, 1}5λ in superposition:
Given input, the circuit C computes PRP−1

k (·), then flips the rightmost
3λ bits, then applies the permutation PRPk(·). One can verify that
the state we get is

2−
λ
2 ·

∑
y∈{0,1}λ

|PRPk
(
y, x, 13λ

)
⟩|PRPk

(
y, x, 03λ

)
⟩ .

5. Apply on the left 5λ qubits the unitary that for every z ∈ {0, 1}5λ maps
U : |z⟩ → ωz25λ · |z⟩ (this can be efficiently done with a phase kick-back
algorithm, as explained in the proof of Theorem 1 in [JLS18]),

2−
λ
2 ·

∑
y∈{0,1}λ

ω
PRPk(y,x,13λ)
25λ · (3)

|PRPk
(
y, x, 13λ

)
⟩|PRPk

(
y, x, 03λ

)
⟩ . (4)

6. Apply the circuit C again in order to un-compute the left register and
trace the remaining 5λ qubits to obtain the output state:

|ψxk⟩ := 2−
λ
2 ·

∑
y∈{0,1}λ

ω
PRPk(y,x,13λ)
25λ · |PRPk

(
y, x, 03λ

)
⟩ .

Figure 2: The state generation procedure of our Pseudorandom Function-
Like States with Proof of Destruction.

Proof. Let A be a quantum polynomial-time adversary and let T be a poly-
nomial bound on the running time of A. We claim that one can assume
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Destruct(|ϕ⟩)
1. Measure the state |ϕ⟩ in the computational basis, and output the mea-

surement outcome.
Ver (k, x, q)

1. Compute z := PRP−1
k (q) ∈ {0, 1}5λ.

2. Denote the bits of z as (z1, z2, · · · , z5λ). Output 1 iff (zλ+1, · · · , z5λ) =(
x||03λ

)
.

Figure 3: The state destruction and classical proof verification procedures
of our Pseudorandom Function-Like States with Proof of Destruction.

without the loss of generality that for every possible input x ∈ {0, 1}d, A
makes either 0 or exactly T queries to the generation oracle Gen(·) oracle.
The reason is as follows: We can think of a new adversary A′ that, at the
end of the execution of A, takes the inputs in {0, 1}d that A queried during
its execution x1, · · · , xt ∈ {0, 1}d (for t ∈ [T ]) without considering multiplic-
ity (i.e., some of the inputs were possibly queried more than others) and for
each of these inputs, complementing the number of times that it was queried
(which, as we know is bounded by T by the fact that T is an upper bound
on the total running time of A) to be T - such adversary still breaks the
pseudorandomness security guarantee and also satisfies the property that for
every possible input in {0, 1}d, the input was queried either 0 or T times.
Now, Lemma 6 in particular says that the output of A on the classical ac-
cess to the generation function Gen(k, ·) (which is part of D0 in the lemma’s
statement) is computationally indistinguishable from the output of A when
the access is to the generation function Gen∗(·) defined in the distribution
D1, in the statement of the Lemma 6.

One of the standard facts in quantum information theory is that the
distribution generated by T copies of a truly random, 5λ-qubit Haar state
is statistically equivalent (i.e. has trace distance 0) to the projection onto
the (5λ, T )-symmetric subspace ([Har13, Prop. 6]). In turn, an orthonormal
basis for the (5λ, T )-symmetric subspace is given by the set of states defined
by all T -sized multi-sets of {0, 1}5λ: For each T -sized multi-set M of {0, 1}5λ,
the corresponding state |ψM ⟩ is a 5λ · T -qubit state which is the uniform
superposition over all of the possible permutations of the T elements of M
(e.g. in case M is not only a multi-set but an actual T -sized set, and all of
its elements are distinct, the number of such permutations is T !, and if M
is T times the same element, the number of such permutations is 1).

It follows that the projection onto the (5λ, T )-symmetric subspace is
exactly the mixed state that corresponds to the distribution induced by
sampling a T -sized multi-set M of {0, 1}5λ and outputting the quantum
state |ψM ⟩. To conclude, for T queries, the oracle access Gen∗(·) is equivalent
to the oracle that outputs T copies of a 5λ-qubit Haar random state, and
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since the output bit of A is indistinguishable between Genk(·) and Gen∗(·),
then the output bit of A is also indistinguishable between Genk(·) and an
oracle that outputs Haar random states, in contradiction to the assumption
that A breaks the pseudorandomness guarantee. □

Proposition 2 (Security - Unforgeability of Proofs). The PRFSPD scheme
in Fig. 2, Fig. 3 maintains the Unforgeability-of-proofs property (as in Def-
inition 2).

Proof. Assume toward contradiction there exists a quantum polynomial-
time adversaryA that breaks the proof-unforgeability property of the scheme,
let ε the probability that the adversary obtains in winning the forging game
(i.e. ε is non-negligible). If T is a polynomial bound on the running time
of A, note that we can assume without the loss of generality that for every
possible input x ∈ {0, 1}d, A makes either 0 or exactly T queries to the
generation oracle Genk(·) and arbitrarily many queries to the verification
oracle Ver k(·, ·) (in the boundaries of its running time). The reason this can
be assumed w.l.o.g. is because we can consider a new adversary A′ that
uses A and (similarly to how we defined A′ as a function of A in the proof
of Proposition 1) complements the number of queries for each of its t ∈ [T ]
previously-queried x’s to being queried T times. However, this argument is a
bit more delicate when it comes to showing how the new adversary A′ breaks
the proof-unforgeability property: At the end of the execution of the inner
adversary A, it outputs x, p1, · · · , ptx+1 (where tx is the number of times
that the input x ∈ {0, 1}d was queried to Genk(·) by the inner adversary A)
such that ∀i ∈ [tx + 1] : Ver (k, x, pi) = 1. The outer adversary A′ then takes
the extra ℓ := T − tx queries that it made (these are the queries it made
in order to complement the number of queries for x from tx to T , as part
of the transformation of the inner adversary A to the outer adversary A′)
for the input string x and measures the ℓ copies it got in the computational
basis, to obtain ℓ valid classical proofs of destruction for x.

Note that each of the ℓ copies is a uniform superposition over a set of
size 2λ, which means that the probability that any of the ℓ (which is a
polynomial because T is a polynomial) proofs collides with the tx + 1 proofs
generated by the cheating inner adversary A, is negligible. Thus, the new
outer adversary A′ makes a total of T queries on the input x ∈ {0, 1}d but
manages to generate T + 1 distinct classical proofs of destruction, which
means it breaks the security with a non-negligible probability ε′. Finally,
one can think of an even outer process A∗, that uses A′ to generate the T+1
proofs, then checks by itself their validity using the verification algorithm
Ver (·, ·), and outputs a bit whether or not the adversary A′ won the forging
game. Note that because A′ wins the forging game with the non-negligible
probability ε′, then with the same probability, the output bit of A∗ is 1.

Finally, by Lemma 6, it follows that the output bit ofA∗ in the above pro-
cess is computationally indistinguishable from its output bit in the setting
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D1 defined in Lemma 6, where A∗ gets access only to Gen∗(·) and Ver ∗(·, ·)
(rather than Genk(·) and Ver k(·, ·)). Now, given the access to the two or-
acles Gen∗(·) and Ver ∗(·, ·) (i.e., in the setting of D1), for any algorithm,
even unbounded, the probability to output T + 1 distinct strings that are
all verified by the algorithm Ver ∗(x, ·) for some x ∈ {0, 1}d is zero, as by its
definition, accepts at most T different elements. Our contradiction follows
from the fact that ε′ (the probability for A∗ to output 1 in the setting D0)
is non-negligible, but has to be negligibly close to 0 (the probability for A∗
to output 1 in the setting D1, where it has access only to the oracles Gen∗(·)
and Ver ∗(·, ·)). □

4 Applications: Cryptography with Classical Com-
munication

In this section, all the constructions of the cryptographic primitives are
fully black-box constructions with uniform security reductions [RTV04] from
either PRSPD or PRFSPD, except for the construction of the statistically
binding and computationally hiding bit-commitment scheme in Section 4.3,
which is a fully black-box (with uniform reduction) construction from the
particular class of PRSPD that satisfies Definitions 8 and 9 with suitable
parameters. Therefore, the security guarantees of all these primitives hold
even against non-uniform adversaries with quantum advice, assuming the
same notion of security for the underlying PRSPD (or a special form of it)
and PRFSPD. For simplicity, we only consider uniform adversaries from here
onwards. Moreover, the outputs of all the algorithms in these constructions
should be considered classical unless explicitly specified otherwise. Due to
space constraints, some of the results and proofs have been moved to the
Supplementary materials, see Section 4.5 and Appendix E.

None of the cryptographic primitives considered in the applications can
exist unconditionally; see Appendix Ffor more details.

4.1 One-Time Signatures

Definition 5 (One-Time-Signature Adapted from [MY22a, Section 4.2]). A
One-Time-Signature scheme (OTS) is a triplet of QPT algorithms (Keygen , Sign ,Verify)
with the following syntax:

• (sk, pk)← Keygen(1λ): samples a classical secret key sk and a classical
public key pk.

• sig ← Sign(sk,m): takes a secret key sk, a classical message m ∈
{0, 1}ℓ(λ), and outputs a classical signature sig.

• b ← Verify(pk,m, sig): takes a public key pk, a classical message m,
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signature string sig, and outputs a boolean value, either accept (b = 1)
or reject (b = 0).

Statistical Correctness For every message m ∈ {0, 1}ℓ(λ), there exists a
negligible function negl(λ), (also called the correctness precision) such that

Pr[sk, pk ← Keygen(1λ); sig← Sign(sk,m) : Verify(pk, sig) = 1] ≥ 1− negl(λ).

One-time Unforgeability For every QPT adversary A in forging game
(see Game 4), there exists a negligible function negl(λ) such that

Pr[Forging-ExpA,OTS
λ = 1] = negl(λ).

Game 4 Forging-ExpA,OTS
λ

1: Given input 1λ, Challenger samples (sk, pk) ← Keygen(1λ) and gives pk
to the adversary.

2: A sends a message m ∈ {0, 1}ℓ(λ) to the challenger.
3: Challenger runs sig← Sign(sk,m) and sends sig to A.
4: A outputs (m̃, s̃ig) to the challenger.
5: Challenger rejects if m̃ = m.
6: Return b← Verify(pk, m̃, s̃ig).

Remark 7 (Length-restriction in Definition 5). Definition 5, as well as the
definition in [MY22a], are length-restricted, i.e., we can only sign messages
of a fixed length ℓ(λ). This is because the respective constructions can only
sign fixed-length messages6, and the known ways to generically transform a
length-restricted one-time signature, to an unrestricted one-time signature
that can sign messages of any length requires a Universal One-way Hash
Function (UOWHFs), which seems like a stronger primitive than PRSPD or
PRFSPD.

4.1.1 Construction from PRSPD

Next, we construct a One-Time-Signature scheme OTS (given in Fig. 4) from
a PRSPD scheme (see Definition 1) (Gen ,Destruct ,Ver ), with key-length w(λ),
and proof length c(λ). For simplicity, we consider the message length ℓ(λ) =
1, i.e., our construction can only sign single-bit messages. However, by
simple repetition, we can extend this scheme to a scheme with message
length ℓ(λ), for any arbitrary fixed polynomial ℓ(λ).

6The same holds for the One-Time-Signature construction in [MY22a] with quantum
public-keys.
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The naive approach would be to follow the template mentioned in the
introduction (on Page 6), and transform the one-time digital signature with
quantum public keys construction in [MY22a], to a one-time digital signature
with classical public keys, by replacing the pseudorandom state that was
used as the public key with a proof of destruction for it. However, the
scheme thus obtained may not be secure for arbitrary PRSPD. We can add
a dummy key to the PRSPD family that accepts all proofs of destruction on
verification. Since we are only adding a single key, the security properties
of the PRSPD would remain intact, but now the one-time signature scheme
can be easily forged since the dummy key acts as a valid signature for both
0 and 1 no matter what the public keys are. We solve this issue by adding
a check in the signature verification (see Item 1 in Fig. 4), that ensures that
the signature string does not accept proofs of destruction that were sampled
independently, and hence the attack with the dummy key does not work
anymore. A typical key sampled during Keygen would have this property
due to the Unforgeability-of-proofs property of the underlying PRSPD, hence
statistical correctness holds (see Theorem 8).

Assumes: PRSPD scheme, (Gen ,Destruct ,Ver )
Keygen(1λ)

1. Sample k0, k1
u←− {0, 1}w(λ).

2. For each i ∈ {0, 1}, generate {qij}j∈[w] where qij ← Destruct(Gen(ki)) for
every j independently.

3. Output sk = (k0, k1) and pk =
(
{q0
j }j∈[w], {q1

j }j∈[w]
)
.

Sign(sk,m)
Interprete sk = (k0, k1). Output km.

Verify(pk,m, sig)
Run the following steps and accept if both pass.

1. Sample k1, . . . , kw2
u←− {0, 1}w(λ), and for every j ∈ [w2]7, generate

rj ← Destruct(Gen(kj)). Run Ver (sig, rj) for every j and accept if all j
verifications fail.

2. Interprete pk =
(
{q0
j }j∈[w], {q1

j }j∈[w]
)
. Run Ver (sig, qmj ) for every j

and accept if all j verifications pass.

Figure 4: One-time Signature scheme OTS.

Theorem 8 (Statistical correctness of OTS). The One-Time-Signature OTS
is statistically correct (see Definition 5) if (Gen ,Destruct ,Ver ) satisfies cor-
rectness and Unforgeability-of-proofs (see Definition 1).

Proof sketch of Theorem 8. Fix a message m ∈ {0, 1} arbitrarily. Let sig←
Sign(sk,m) where (sk, pk) ← Keygen(1λ). Then, Item 2 of Verify(pk,m, sig)
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would pass with certainty due to the correctness (Gen ,Destruct ,Ver ), and
Item 1 would pass with overwhelming probability due to the Unforgeability-of-proofs
of (Gen ,Destruct ,Ver ). Hence, Verify(pk,m, sig) would pass with an over-
whelming probability. □

The full proof is given in Appendix E.1 on Page 66.

Theorem 9 (One-time Unforgeability of OTS). The One-Time-Signature
OTS is one-time unforgeable if PRSPD = (Gen ,Destruct ,Verify) is a PRSPD
(see Definition 1).

Proof. By a standard Lamport signature [Lam79] argument (also done in
the security proof of One-Time-Signature with quantum public keys from
PRS in [MY22a, Theorem 4.1]), any A in Game 4 for the scheme OTS, can
be reduced to an adversary B in the game Inverting-ExpB,PRSPD

λ (see Game 5)
for the underlying PRSPD scheme (Gen ,Destruct ,Ver ), such that B wins with
probability at least half the success probability of A (see [MY22a, Proof of
Theorem 4.1]).

Game 5 Inverting-ExpB,PRSPDλ

1: Given input 1λ, Challenger samples k u←− {0, 1}w(λ).
2: Challenger gives q1, . . . , qw to the adversary, where qj ←

Destruct(Gen(k)), for each j ∈ [w].
3: A sends an alleged key s to the challenger.
4: Challenger sets a = 1, b = 1.
5: for j ∈ [w2] do
6: Challenger runs kj u←− {0, 1}w(λ), rj ← Destruct(Gen(kj)), and aj ←

1− Ver (s, rj).
7: Set a← a · aj .
8: end for
9: for j ∈ [w] do

10: Challenger runs bj ← Ver (s, qj).
11: Set b← b · bj .
12: end for
13: Output a ∧ b.

Suppose Pr[Inverting-ExpB,PRSPDλ = 1] = p. For every t ∈ poly(λ), re-
call that Correlated-DestructionHaar ,Destruct

t ,Product-DestructionHaar ,Destruct
t and

Product-DestructionPRSPDt be distributions on {0, 1}ct as defined in Defini-
tions 3 and 4, i.e.,

(f1, . . . , ft) ∼ Correlated-DestructionHaar ,Destruct
t ≡ (f1, . . . , ft)← Destruct⊗t(|ψ⟩); |ψ⟩ ∼ µHn ,

and Product-DestructionHaar ,Destruct
t , Product-DestructionPRSPDt are the t-fold

product of Product-DestructionHaar ,Destruct and Product-DestructionPRSPD such
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that f ∼ Product-DestructionHaar ,Destruct and g ∼ Product-DestructionPRSPD
are sampled as

f ← Destruct(|ϕ⟩); |ϕ⟩ ∼ µHn ; g ← Destruct(Gen(k)); k u←− {0, 1}w,

respectively. By the pseudorandomness (see Definition 1) of the underlying
PRSPD,

Product-DestructionPRSPD ≈c Product-DestructionHaar ,Destruct .

Hence, by standard hybrid arguments, for any t ∈ poly(λ), their t-fold prod-
ucts are computationally indistinguishable, i.e.,

Product-DestructionPRSPDt ≈c Product-DestructionHaar ,Destruct
t (5)

We consider the following hybrids H0,H1,H2 and let p0, p1, p2 be the
respective success probabilities of B.

• H0: Same as Inverting-ExpB,PRSPDλ . Hence, p0 = p.

• H1: Line 2 in Game 5 is changed as follows:
Challenger gives q1, . . . , qw to the adversary, where qj ← Destruct(Gen(k)), for each j ∈ [w].
Challenger samples |ϕ⟩ ∼ µHn , and gives q1, . . . , qw to the adversary,
where qj ← Destruct(|ϕ⟩), for each j ∈ [w].
By the pseudorandomness guarantee (see Definition 1) of the under-
lying PRSPD, there exists a negligible function negl(λ) such that,

|p1 − p0| ≤ negl(λ).

• H2: Line 6 in Game 5 is changed as follows:
Challenger runs kj u←− {0, 1}w(λ), rj ← Destruct(Gen(kj)), and aj ← 1− Ver (s, rj).
Challenger runs |ϕj⟩ ∼ µHn , rj ← Destruct(|ϕj⟩), and aj ← 1 −
Ver (s, rj).
In other words, we change the distribution on (r1, . . . , rw2) from Product-DestructionPRSPDw2

to Product-DestructionHaar ,Destruct
w2 . Since (w(λ))2 ∈ poly(λ), by Eq. (5),

Product-DestructionPRSPDw2 ≈c Product-DestructionHaar ,Destruct
w2 . (6)

Given (r1, . . . , rw2) from the respective distribution, the rest of H1 and
H2 are identical and efficiently simulatable (by Remark 5), hence, by
Eq. (6), there exists a negligible function ñegl(λ) such that, |p2−p1| ≤
ñegl(λ).
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Therefore,

|p2 − p0| ≤ |p2 − p1|+ |p1 − p0| = negl(λ) + ñegl(λ),

which is negligible. Hence, it suffices to prove that p2 is negligible. Let S de-
note the alleged key that B responds to in H2. Let Success≥ 1

w
, Success< 1

w
⊂

{0, 1}w be the set of keys defined as

Success≥ 1
w
≡
{
s ∈ {0, 1}w | Pr

f∼Product-DestructionHaar ,Destruct
[Ver (s, f)] ≥ 1

w

}
,

(7)
Success< 1

w
≡ {0, 1}w \ Success≥ 1

w
.

(8)

For every s ∈ {0, 1}w, d ∈ {0, 1}c, let Success(s, d) and Fail(s, d) be
boolean random variables indicating Ver (s, d) = 1 and Ver (s, d) = 0, re-
spectively. We next use the following lemma that we prove in Appendix E.1
on Page 68, to complete the proof.

Lemma 7. There exists negligible functions, ϵ(λ) and δ(λ) such that,

Pr
[(
∧j∈[w]Success(S, qj)

)
∧ S ∈ Success< 1

w

]
≤ ϵ(λ),

Pr
[(
∧j∈[w2]Fail(S, rj)

)
= 1 ∧ S ∈ Success≥ 1

w

]
≤ δ(λ).

Note that, p2 = Pr
[(
∧j∈[w]Success(S, qj)

)
∧
(
∧j∈[w2]Fail(S, rj)

)
= 1

]
.

Since Success< 1
w

, Success≥ 1
w

partitions the keyspace, p2 is at most

Pr
[(
∧j∈[w]Success(S, qj)

)
∧ S ∈ Success< 1

w

]
+Pr

[(
∧j∈[w2]Fail(S, rj)

)
= 1 ∧ S ∈ Success≥ 1

w

]
,

which is negligible by Lemma 7. □

Remark 10 (Extending to q-times security). For any fixed q(λ) ∈ poly(λ),
a One-Time-Signature (Definition 5) OTS can be extended in a black-box
manner, to a digital signature scheme OTSq which is q-times secure, meaning
A cannot forge in Game 4 even if she has access to q-signing (adaptive)
queries instead of just one. The proof follows by adapting the proof for
the case of digital signatures with quantum public key, given in [MY22b,
Theorem 4.2.].

4.2 Non-interactive classically verifiable private quantum coins

A private quantum coin scheme with non-interactive classical verification
has its own advantages and disadvantages compared to a vanilla quantum
coin scheme. The obvious advantage is that it saves communication costs
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during verification, but this comes at a price: the bank cannot have multiple
branches since it must have a stateful memory to ensure that the same
classical certificate is not used multiple times to pass verification; otherwise,
unforgeability is meaningless.

Definition 6. A Non-interactive Classically-Verifiable private private quantum
coin scheme (NCV-Coin) is a quadruple of QPT algorithms, (Keygen ,Mint , Cert-Gen , Cert-Verify)
and has the following syntax:

• k ← Keygen(1λ): takes as input the security parameter and samples a
classical key k, where w(λ) is the key length.

• |ψk⟩ ← Mint(k): takes a key k ∈ {0, 1}w and outputs an n-qubit pure
state, |ψk⟩ as the quantum coin state.

• cert ← Cert-Gen(|ψ⟩): takes an n-qubit quantum state |ψ⟩ and outputs
a classical certificate string cert ∈ {0, 1}c.

• b ← Cert-Verify(k, cert): takes a key k and a certificate cert ∈ {0, 1}c
and outputs a boolean value, either accept (b = 1) or reject (b = 0).

Statistical Correctness

1. Pr[k ← Keygen(1λ); |ψk⟩ ← Mint(k); cert← Cert-Gen(|ψk⟩) : Cert-Verify(k, cert) =
1] = 1.

2. Moreover, for every q(λ) ∈ poly(λ), there exists a negligible function
negl(λ) such that,

Pr[∃i ̸= j, certi = certj ] ≤ negl(λ),

where cert1, . . . , certq are defined according to the following process:
k ← Keygen(1λ); |ψk⟩ ← Mint(k); cert1, . . . , certq ← Cert-Gen⊗q(|ψk⟩⊗q).
i.e., an honest user who gets q quantum coins must get q distinct
certificates on destructing them, with overwhelming probability.

Adaptive Unforgeability For every QPT adversary A, in Forging-Exp,NCV-Coin
λ

(see Game 6), there exists a negligible function negl(λ) such that,

Pr[Forging-ExpA,NCV-Coin
λ ] = negl(λ).

8This captures the fact that while the adversary can approach the bank several times
for verification, the bank only accepts classical certificates for verification.

9Without this check, the forging game can be won trivially: take one coin from the
Mint , destruct the coin to get a certificate cert, and submit two copies of cert. By statistical
correctness, both verifications will pass with overwhelming probability.
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Game 6 Forging-ExpA,NCV-Coin
λ

1: Given input 1λ, Challenger samples k ← Keygen(λ).
2: A sends m ∈ N to the challenger.
3: Challenger runs |ψk⟩⊗m ← Mint(k)⊗m and sends |ψk⟩⊗m to A.
4: A gets classical oracle access8 to Cert -Verify(k, ·) as an oracle.
5: A outputs cert1, cert2, . . . , certm+1 to the challenger.
6: Challenger checks if cert1, cert2, . . . , certm+1 are distinct, and if not, re-

jects.9
7: for i ∈ [m+ 1] do Challenger computes bi ← Cert -Verify(k, certi)
8: end for
9: Return ∧m+1

i=1 bi.

4.2.1 Construction from PRSPD

In this section, we construct a Non-interactive classically-verifiable private quantum coins
scheme NCV-Coin from a PRFSPD scheme (Gen ,Destruct ,Ver ).

Assumes: PRSPD scheme, (Gen ,Destruct ,Ver )
Keygen(1λ): Output k u←− {0, 1}w.
Mint(k): Output |ψk⟩ ← Gen(k).
Cert -Gen(|ψ⟩): Output cert← Destruct(|ψ⟩).
Verify(k, cert): Output b← Ver (k, cert).

Figure 5: NCV-Coin.

Remark 11. Any classically-verifiable private quantum coins scheme is forge-
able without the check in Line 6 in Forging-ExpA,NCV-Coin

λ because we can
use one classical certificate obtained by destructing one money state to pass
verification multiple times. Due to this check, the bank, in the real-world
scenario, needs to be stateful and cannot have multiple branches that can
verify the user’s money.

Interestingly, we can add a quantum algorithm State-Verify to our con-
struction in Fig. 5 that directly verifies the money state. State-Verify is the
same as the verification algorithm in quantum coins construction from PRS
in [JLS18], i.e., it applies a projective measurement that accepts the al-
leged input state ρ with probability ⟨ϕk|ρ|ϕk⟩, where |ϕk⟩ is the true coin
state. Since every PRSPD is a PRS, this construction with State-Verify algo-
rithm, as a vanilla quantum coins scheme, is the same as the construction
in [JLS18] based on PRS and hence is unforgeable in the vanilla quantum
money sense. Therefore to conclude, in our quantum coins scheme, a user
can choose two ways to verify her coin a) classical verification mode, where
she sends the proof of possession to the main bank for verification using
classical communication. Note that here the bank cannot have multiple
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non-communicating branches. b) quantum communication mode, where the
user sends the quantum coin itself for verification and hence needs quan-
tum communication. Here the bank can have multiple non-communicating
branches to verify these quantum states.

Theorem 12 (Statistical Correctness of NCV-Coin). The Non-interactive
classically-verifiable private quantum coins scheme NCV-Coin is statistically
correct (see Definition 6) if (Gen ,Destruct ,Ver ) satisfies correctness and Unforgeability-of-proofs
(see Definition 1).

Proof. Item 1 in the correctness definition (see Definition 6) follows directly
from the correctness of (Gen ,Destruct ,Ver ), and Item 2 follows from Lemma 4
for (Gen ,Destruct ,Ver ).

□

Theorem 13 (Adaptive Unforgeability of NCV-Coin). The Non-interactive
classically-verifiable private quantum coins NCV-Coin is adaptively unforgeable
if (Gen ,Destruct ,Verify) is a PRSPD (see Definition 1).

Proof. The forging game Forging-ExpA,NCV-Coin
λ given in Game 6 is exactly

the cloning game Forging-ExpA,PRSPDλ given in Game 1), where PRSPD =
(Gen ,Destruct ,Ver ) once Forging-ExpA,NCV-Coin

λ is rewritten in terms of the un-
derlying PRSPD. Hence, the result follows directly from the Unforgeability-of-proofs
of PRSPD. □

4.3 Statistically binding commitments with classical commu-
nication

Definition 7 (Statistically-binding and computationally-hiding bit commit-
ments [AGQY22]). A statistically-binding computational-hiding bit-commitment
(BC) is a pair of interactive QPT protocols (Cλ,Rλ)λ∈N with two phases
Commit and Reveal with the following syntax:

• σC ,R ← Commit(Cλ(b),Rλ). In this phase, C takes a bit b as input.
C engages in a classical interactive protocol with the R , at the end
of which they output the committed state σC ,R on the committer and
receiver registers C and R respectively.

• b ∪ {⊥} ← Reveal(Cλ,Rλ, σC ,R ): C and R take a committed state σC ,R
and runs a classical interactive protocol at the end of which R output
a bit b.

Correctness For every b ∈ {0, 1},

Pr[σC ,R ← Commit(Cλ(b),Rλ); b′ ← Reveal(Cλ,Rλ, σC ,R ) : b = b′] = 1
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Computational Hiding For every malicious QPT receiver {R ∗λ }λ and
for every distinguisher {Dλ}λ, there exists a negligible function negl(λ) such
that∣∣∣∣∣ Pr
σC,R ∗←Commit(Cλ(0),R ∗

λ
)
[Dλ(σR ∗) = 1]− Pr

σC,R ∗←Commit(Cλ(1),R ∗
λ

)
[Dλ(σR ∗) = 1]

∣∣∣∣∣ ≤ negl(λ).

Statistical Binding For every malicious QPT committer {C∗λ}λ, there
exists a (possibly inefficient) extractor E (that outputs either a bit or ⊥)
and a negligible function ϵ(λ) such that

Pr[µ ̸= b∗∧µ ̸= ⊥ | µ← Reveal(C∗,R , σC ∗,R ), b∗ ← E(τ), (τ, σC ∗,R )← Commit(C∗λ ,Rλ)] ≤ ϵ(λ).

4.3.1 PRSNPD

Our commitment scheme requires a PRSPD in which the proof of destruction
satisfies some additional properties, which we call PRSNPD. We do not
manage to generically prove that any PRSPD implies a PRSNPD. We do
manage to show that our construction of PRSPD from Section 3 is not only
a PRSPD, but a PRSNPD.

Definition 8 (PRSPD with bounded proofs). A PRSPD with (Q(λ),M(λ))−
bounded proofs is a PRSPD scheme satisfying the additional property that for
every k ∈ {0, 1}w(λ),∣∣∣{p ∈ {0, 1}c(λ) | Pr[Ver (k, p) = 1] ≥ Q}

∣∣∣ ≤M(λ),

where the probability is over the measurements of Ver .

Definition 9 (PRSPD with Pseudorandom-proofs). A PRSPD with Pseudorandom-proofs
is a PRSPD scheme if for every polynomial function t(λ),

{fi}∀i∈[t],di←Destruct(Gen(k));k
u←−{0,1}w

≈c {u1, . . . , ut}∀i∈[t],ui
u←−{0,1}c

.

Note that by the pseudorandomness guarantee of a PRSPD (see Defini-
tion 1),

{fi}∀i∈[t],di←Destruct(Gen(k));k
u←−{0,1}w

≈c {fi}∀i∈[t],fi←Destruct(|ψ⟩), |ψ⟩ ∼ µHn ,

where Hn = (C2)⊗n. Therefore, we can view Definition 9 as a property of
Destruct algorithm that the distribution {fi}∀i∈[t],fi←Destruct(|ψ⟩), |ψ⟩ ∼ µHn it
generates, is statistically close to a product of uniform distribution.
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Definition 10 (Pseudorandom states with nice proofs of destruction). A
Pseudorandom states with nice proofs of destruction (PRSNPD) is a(
1− 1

r(λ) , 2
m(λ)

)
-bounded proofs PRSPD (see Definition 8) with Pseudorandom-proofs

(see Definition 9) such that r(λ) ∈ poly(λ) and c(λ) − 2w(λ) − 2m(λ) ∈
ω(log(λ)), where w(λ) and c(λ) are the key length and proof length respec-
tively.

Proposition 3. Assume there exist post-quantum one-way functions. Then,
a PRSNPD scheme (Definition 10) with key length w(λ) = λ, input length
d(λ) = λ, output length n(λ) = 5 · λ and proof length c(λ) = 5 · λ exists.

Proof. In our main Theorem 6, we prove that there is a PRFSPD with
the above parameters. First, Remark 3 explains how the PRFSPD can be
easily turned into a PRSPD: by simply querying the generation algorithm
Gen(k, ·) only with x = 0d, i.e. the generation algorithm of the PRSPD is
Gen(k, 0d), and the proof verification is Ver (k, 0d, ·). It remains to observe
that this same construction from Section 3 satisfies the niceness properties:
For the property of pseudorandom proofs, note that the proof generation
algorithm Destruct is simply a measurement in the standard basis. This,
combined with the fact that the quantum states are pseudorandom, implies
that a measurement in the standard basis yields a pseudorandom classical
string.

To see why the construction is also bounded-proofs, note that the verifi-
cation algorithm Ver (k, 0d, ·) accepts exactly 2λ classical strings with prob-
ability 1 (that is, the set {y ∈ {0, 1}λ : PRPk(y, 0d, 03λ)}) and rejects the
rest. The proof length is c(λ) := 5 ·λ and the key length is w(λ) := λ, which
means that c(λ)− 2 · w(λ)− 2 · λ = λ, which is ω(log(λ)), as needed. □

4.3.2 Construction of a statistically-binding and computationally-
hiding bit commitments from PRSNPD

We start with a Pseudorandom states with nice proofs of destruction (PRSNPD)
(see Definition 10), i.e., a PRSPD with Pseudorandom-proofs and

(
1− 1

r(λ) , 2
m(λ)

)
-bounded proofs

PRSPD such that r ∈ poly(λ) and m(λ) satisfies c(λ) − 2w(λ) − 2m(λ) ∈
ω(log(λ)), where w(λ) and c(λ) are key length and proof length respec-
tively. The construction given in Fig. 6, is obtained by adapting the con-
struction of statistically-binding computational-hiding bit commitments from
PRGs [Nao89] to PRSPD.

Theorem 14 (Correctness of BC). The bit-commitment BC is correct (see
Definition 7) if (Gen ,Destruct ,Ver ) satisfies correctness (see Definition 1).

The proof is immediate from the correctness of (Gen ,Destruct ,Ver ); hence
we omit the proof.

35



Assumes: PRSNPD scheme, (Gen ,Destruct ,Ver )
Commit(Cλ(b),Rλ)

1. The receiver Rλ samples c1, c2, . . . , cr̃
u←− {0, 1}c independently and

uniformly, and sends them to the committer Cλ.
2. Cλ samples k

u←− {0, 1}w and generates r̃ proofs of destructions
(p1, . . . , pr̃)← Destruct⊗r̃

(
(Gen(k))⊗r̃

)
, where r̃(λ) = λ · r(λ).

3. If b = 0, Cλ sends s0 = (p1, . . . , pr̃) to Rλ, else sends s1 =
(c1 ⊕ p1, . . . , cr̃ ⊕ pr̃) to Rλ.

4. The state held by the registers of Cλ and Rλ at the end of this
phase is the classical string σC ,R = σC ⊗ σR , where σC = k, and
σR = sb, c1, . . . , cr̃.

Reveal(Cλ,Rλ, σC ,R )

1. Interpret the classical string σC ,R = σC ⊗ σR , where σC = k̃ is a w-bit
string, and σC = p̃1, . . . p̃r̃, c̃1, . . . , c̃r̃ a concatenation of 2r̃ many c-bit
string.

2. Cλ sends k̃ to R .
3. Rλ runs Ver (k̃, p̃i) for every i ∈ [r̃]. If all the Ver runs accept, then

output 0, else Rλ runs Ver (k̃, p̃i ⊕ c̃i) for every i ∈ [r̃]. If all the Ver
runs accept, then output 0, else output ⊥.

Figure 6: Bit-commitment scheme BC.

Theorem 15 (Computational hiding of BC). The bit-commitment BC is
computational-hiding if (Gen ,Destruct ,Verify) satisfies Pseudorandom-proofs prop-
erty (see Definition 9).

The proof is the same as the proof of computational-hiding for the PRG-
based construction in [Nao89]. Due to lack of space, we omit the proof from
this version. The full proof is given in Appendix E.2 on Page 70.

Theorem 16 (Statistical binding of BC). The bit-commitment BC is statistically-binding
if (Gen ,Destruct ,Verify) has

(
1− 1

r(λ) , 2
m(λ)

)
-bounded proofs property (see Def-

inition 8).

Proof sketch of Theorem 16. Let C∗λ be the malicious committer and Rλ be
the honest receiver. Let Bad-String ⊂ {0, 1}c be the set of all strings e such
that there exists k1, k2 ∈ {0, 1}w, and f1, f2 such that f2 = e ⊕ f1, i.e.,
f1 ⊕ f2 = c and

Pr[Ver (k1, f1) = 1] ≥
(

1− 1
r(λ)

)
, Pr[Ver (k2, f2) = 1] ≥

(
1− 1

r(λ)

)
.
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Let Good-String = Bad-String. Observe that if the random strings sent
from Rλ in the Commit phase are all in Good-String, then the malicious
committer cannot reveal to both 0 and 1 in the Reveal phase except with
negligible probability. The parameters for the bounded proofs property have
been chosen such that Good-String accounts for an overwhelming fraction of
{0, 1}c; hence all the random strings from Rλ, which are polynomially many,
will indeed be in Good-String with overwhelming probability.

□

4.4 CMA-Secure MAC

Definition 11 (Length-restricted strong CMA-secure MAC(Adapted from [Gol04,
Definition 6.2.1])). A length-restricted CMA secure MAC scheme (M) with
message length d(λ)10, key-length w(λ), and tag-length c(λ) is a tuple of
QPT algorithms (Sign ,Verify) with the following syntax:

• sig← Sign(k,m): takes a key k ∈ {0, 1}w(λ), a message m ∈ {0, 1}d(λ),
and outputs a tag sig ∈ {0, 1}c.

• b← Verify(k,m, sig): takes a key k, a message m, a tag sig, and outputs
a boolean value, either accept (b = 1) or reject (b = 0).

Correctness. For every message m ∈ {0, 1}d(λ),

Pr[k u←− {0, 1}w(λ); sig← Sign(k,m) : Verify(k, sig) = 1] = 1.

Strong CMA Unforgeability. For every QPT adversary A in the forging
game (see Game 7), there exists a negligible function negl(λ) such that

Pr[Strong-CMA-Forging-ExpA,Mλ = 1] = negl(λ).

Game 7 Strong-CMA-Forging-ExpA,Mλ

1: Given input 1λ, the challenger samples k u←− {0, 1}w(λ). The challenger
also initializes an empty set S.

2: A gets classical oracle access to Verify(k, ·) and Sign(k, ·).
3: for Sign(k, ·) query x made by A do
4: Add (x, σx) to S, where σx is the response of Sign(k, ·) oracle on input
x.

5: end for
6: A outputs x′, σ′x to the challenger.
7: Return 1 if (x′, σ′x) ̸∈ S and Verify(k, x′, σ′x) = 1.

10This is referred to as d-restricted MAC in [Gol04].
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Remark 17 (Strong vs. vanilla CMA security). Vanilla CMA security consid-
ers a similar forging game in which the adversary wins if she produces (m,σ)
that passes verification and that m was never queried to the Sign oracle. In
comparison, Definition 11 is a stronger notion because the adversary wins
the forging game even if she produces a valid (m,σ) such that m was queried
to the Sign oracle as long as σ was not received as a response in any of the
m-queries she did to the Sign oracle. Hence, we call this notion the strong
CMA security, also referred to as super-secure MACs11 in [Gol04, Section
6.5.2]. These notions are not known to be equivalent in general. How-
ever, the prominent classical MAC constructions have deterministic signing
procedures, i.e., every message has a unique signature string that passes ver-
ification, and all other strings are rejected. For such MAC schemes, strong
and vanilla CMA security are equivalent. This is not the case for our con-
struction. Hence we consider the strongest possible definition.
Remark 18 (Access to the verification oracle). In the classical CMA security
definitions, the adversary is not given access to the verification because the
classical MAC schemes usually have deterministic signing procedures; hence
the verification oracle can be simulated using the signing oracle, see [Gol04,
Proposition 6.1.3]. However, MAC schemes with quantum algorithms do not
have a deterministic signing in general; hence, we provide the adversary in
Strong-CMA-Forging-ExpA,Mλ explicit access to the verification oracle.

4.4.1 Construction from PRFSPD

Next we construct a length-restricted CMA secure MAC scheme with input-
length d(λ), key-length w(λ) and tag-length c(λ) from a PRFSPD scheme
(Gen ,Destruct ,Ver ) with key-length w(λ), input-length d(λ) and proof-length
c(λ). The construction given in Fig. 7, combines the quantum MAC con-
struction in [AQY21] with the proof of destruction property of PRFSPD, to
get an improved construction in the following two aspects. Firstly, the tags
in our construction are classical, whereas [AQY21] requires quantum tags.
Additionally, our construction satisfies strong-CMA security while [AQY21]
considers vanilla CMA security. We also briefly mention that our construc-
tion supports any poly-size message, whereas the one in [AQY21] is length-
restricted. We note that we remove this length restriction using a standard
technique, which is applicable to their construction as well.

Theorem 19 (Correctness of M). The length-restricted MAC scheme M
is correct (see Definition 11) if (Gen ,Destruct ,Ver ) satisfies correctness (see
Definition 2).

The proof is immediate from the correctness of the proof of destruction
of the underlying PRFSPD, and hence we omit the proof.

11We use the term strong in place of super because strong is the more colloquially
accepted term.
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Assumes: PRFSPD scheme, (Gen ,Destruct ,Ver )
Sign(k,m)
Output sig = Destruct(Gen(k,m)).
Verify(k,m, sig)
Output Ver (k,m, sig)).

Figure 7: MAC scheme M.

Theorem 20 (CMA Security ofM). The length-restricted MAC schemeM
is CMA-secure if (Gen ,Destruct ,Ver ) is a PRFSPD (see Definition 1).

Proof. The proof directly follows from the classical-unforgeability of proofs
for PRFSPD given in Lemma 5. □

Remark 21 (Unrestricted MAC). Note that the input-length of the MAC,
d(λ) ∈ ω(log(λ)). Hence, we can extend the MAC scheme to sign messages of
arbitrary polynomial length by dividing the message into blocks and signing
them individually; see [Gol04, Theorem 6.2.2] for more details. Therefore,
we conclude that PRFSPD implies CMA MAC, in a black-box manner.

4.5 CPA-Secure Symmetric Encryption

In this section, we will construct CPA-secure symmetric bit-encryption from
PRFSPD, which can be easily extended to a CPA-secure and even CCA-2
encryption for arbitrary message-length, see Remarks 23 and 24.

Definition 12 (CPA-secure symmetric bit-encryption(Adapted from [Gol04,
Definition 5.4.9])). A CPA secure symmetric bit-encryption E with key space
{0, 1}w(λ), and cipher space {0, 1}c(λ) is a tuple of QPT algorithms (Enc,Dec)
with the following syntax:

• ct ← Enc(k,m): takes a key k and a message bit m, and outputs a
classical cipher text ct.

• m← Dec(k, ct): takes a key k, a cipher text ct, and outputs a message
bit m.

Correctness: For every message m ∈ {0, 1}, there exists a negligible func-
tion negl(λ), such that

Pr[k ← {0, 1}w(λ); ct← Enc(k,m);m′ ← Dec(k, ct) : m = m′] ≥ 1− negl(λ).

CPA security For every QPT adversary A in the distinguishability game
(see Game 8, there exists a negligible function negl(λ) such that

Pr[Distinguish-ExpA,Eλ = 1] ≤ 1
2 + negl(λ).
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Game 8 Distinguish-ExpA,Eλ

1: Given input 1λ, the challenger samples k u←− {0, 1}w(λ).
2: A gets classical oracle access to Enc(k, ·).
3: Challenger samples a bit b and computes ctb ← Enc(k, b) and sends ctb

to A.
4: A outputs b′ to the challenger.
5: The output of the experiment is 1 if b = b′.

4.5.1 Construction from PRFSPD

Let (Gen ,Destruct ,Ver ) be a PRFSPD with input length d(λ) ∈ ω(log(λ)), and
key-length w(λ). We will give a construction of CPA secure symmetric bit-encryption
from such a PRFSPD with key-length w(λ).

In a nutshell, our construction combines the ideas in [AQY21], with the
proof of destruction property of PRFSPD state, to make the ciphers classical.
The construction is given in Fig. 8.

Assumes: PRFSPD scheme, (Gen ,Destruct ,Ver )
Enc(k, b)

1. Sample r ← {0, 1}d(λ)−1.
2. Output ct = (r,Destruct(Gen(k, r∥b))).

Dec(k, ct)
1. Interpret ct as r′, c′, where r′ ∈ {0, 1}d(λ)−1.
2. Run Ver (k, r′∥1, c). If accepted output 1 else 0.

Figure 8: Symmetric bit-encryption E .

Proposition 4 (Correctness of E). The symmetric bit-encryption scheme E
is correct (see Definition 12) if (Gen ,Destruct ,Ver ) satisfies correctness (see
Definition 2).

Proof. By the correctness of the underlying PRFSPD, the correctness holds
for encryptions of 1, i.e.,

Pr[k ← {0, 1}w(λ); ct← Enc(k, 1);m′ ← Dec(k, ct) : 1 = m′] = 1.

Next for encryptions of 0, it suffices to show that there exists a negligible
function negl(λ) such that,

prob0 ≡ Pr[k ← {0, 1}w(λ); ct← Enc(k, 0);m′ ← Dec(k, ct) : 1 = m′] = negl(λ).
(9)

The last equation can be proven using the Unforgeability-of-proofs property
of the underlying PRFSPD as follows. We construct an adversary A in the
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cloning game Forging-ExpA,PRFSPD
λ (see Game 2) that samples r0

u←− {0, 1}d−1

and queries the Gen oracle at r0∥1 and gets a state |ψr0∥0⟩. A runs Destruct on
|ψr0∥0⟩ to get a proof p← Destruct(|ψr0∥0⟩), and finally submits r∥0, p. Note
that A never queried r∥0 to Gen before, so she wins the cloning game if r∥0, p
passes the PRFSPD verification which by design, happens with probability
exactly prob0. Hence by the Unforgeability-of-proofs property of PRFSPD,
prob0 must be negligible. □

Theorem 22 (CPA Security of E). The symmetric bit-encryption scheme E
is CPA-secure (see Definition 12) if (Gen ,Destruct ,Verify) is a PRFSPD (see
Definition 1).

Proof. The proof follows essentially from the pseudorandomness of (Gen ,Destruct ,Verify)
(see Definition 2). We will consider the following sequence of hybrids:

H0 This is the real security game Distinguish-ExpA,Eλ . Since we are consid-
ering bit encryption, the challenger simply samples a bit b and feeds A the
encryption of b, i.e., (r,Destruct(Gen(k, rch∥b))) at the challenge phase. The
adversary A is given classical access to the CPA oracle Enc(k, ·) which she
can query both before and after the challenge phase. Let b1, . . . , bq be the
queries A makes to the CPA oracle where q ∈ poly(λ) (since A is polynomi-
ally bounded), and

{Enc(k, b1), . . .Enc(k, bq)} = {(r1,Destruct(Gen(k, r1∥b1))), . . . (rq,Destruct(Gen(k, rq∥bq)))},

be the respective responses from the oracle, where r1, . . . , rq are chosen uni-
formly. A succeeds if she submits a bit b′ at the end, such that b = b′.

H1 In this hybrid, we only change the distribution on r, r1, . . . , rq. The
challenger samples r independently, and then for every i ∈ [q], ri is chosen
uniformly from {0, 1}d(λ)−1 \ {r, r1, . . . , ri−1}, where {r, r1, . . . , ri−1} should
be interpreted as {r} for i = 1. Note that the distributions on (r, r1, . . . , rq)
in the hybrid have negligible statistical distance from the uniformly random
distribution that we had in H0 because q ∈ poly(λ) and the length of r is
d(λ) − 1 ∈ ω(log λ). Hence, the success probability of A in H0 and H1 are
negligibly close.

H2 In this hybrid, we replace
{(r1,Destruct(Gen(k, r1∥b1))), . . . (rq,Destruct(Gen(k, rq∥bq))), (r,Destruct(Gen(k, r∥b))}
with
{(r1,Destruct(|ϕ1⟩), . . . (rq,Destruct(|ϕq⟩), (r,Destruct(|ϕq+1⟩} where |ϕ⟩ ∼ µHn

and for each i ∈ [q], |ϕi⟩ ∼ µHn independently.
Let the difference in the success probabilities of the A in H1 and H2 be

p. We can construct an adversary B who can violate the pseudorandomness
(see Definition 2) of (Gen ,Destruct ,Ver ) with distinguishing advantage p. B
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simulatesA and when she queries bi in the ith query, B generates ri uniformly
from {0, 1}d(λ)−1 \ r1, . . . , ri−1, and queries the oracle (which she needs to
distinguish) on ri∥bi and performs Destruct on the output she receives and
feeds the obtained string to A. Moreover, B plays the role of the challenger
and samples a uniformly random bit b, and feeds the encryption of b using
the challenge oracle that she has access to. B outputs 1 if the output of the
A is the same as b. Clearly, the distinguishing probability is p. Hence, p
must be negligible.

Now note that in H2, the challenge bit b is information-theoretically
hidden from A. Therefore, her success probability in H2 must be at most 1

2 .
Hence, there exists a negligible function negl(λ) such that

Pr[A wins H0] ≤ 1
2 + negl(λ).

□

Remark 23 (Encryption of arbitrarily long messages). Any CPA-secure bit
encryption scheme can be extended to a CPA-secure encryption to arbitrarily
long messages via bit-by-bit encryption, see [Gol04, Section 5.3.2.2]. Hence,
we conclude that there is a black-box construction of CPA-secure encryption
for arbitrary message lengths, from PRFSPD.
Remark 24 (CCA-2 security of E). By combining the strong MAC scheme
from PRFSPD (see Theorems 19 and 20) with the CPA-secure encryption
scheme mentioned in the previous remark using the Encrypt-then-MAC, we
conclude that there is a black-box construction of CCA-2 secure encryption
for arbitrarily long messages from PRFSPD.
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A Notations, standard cryptographic definitions
and facts

For any finite set S, we use s u←− S to denote uniformly random sampling from
the set S. Next, we recall several definitions and results from cryptography
that are necessary for this work.

A.1 Cryptographic primitives

We assume that for any algorithm in a cryptographic scheme except for the
bit-commitment scheme in Section 4.3, the security parameter can be com-
puted efficiently from the input length. Hence, we follow the convention that
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the algorithms, except for the key generation (since it only receives the secu-
rity parameter as input) and the interactive algorithms in bit-commitment
schemes, do not receive the security parameter additionally as an input.

We use English alphabets such as c(λ), d(λ), w(λ), n(λ), etc., to denote
parameters in cryptographic primitives, that are functions of the security
parameter, λ. However, we drop λ from their description in the proofs for
brevity; for example, w instead of w(λ). Pseudorandom functions (PRF) and
pseudorandom permutations (PRP) are important constructions in classical
cryptography. Intuitively, they are families of functions or permutations
that look like truly random functions or permutations to polynomial-time
machines. In the quantum case, we need a strong requirement that they
still look random even to polynomial-time quantum algorithms.

Definition 13 (Quantum-Secure Pseudorandom Functions and Permuta-
tions). Let K, X , Y be the key space, the domain, and the range, all im-
plicitly depending on the security parameter λ. A keyed family of functions{
PRFk : X → Y

}
k∈K is a quantum-secure pseudorandom function (PRF) if

for any polynomial-time quantum oracle algorithm A,∣∣∣∣∣ Pr
k←K

[
APRFk(1λ) = 1

]
− Pr
f←YX

[
Af (1λ) = 1

]∣∣∣∣∣ = negl(λ). (10)

Similarly, a keyed family of permutations
{
PRPk ∈ SX

}
k∈K is a quantum-

secure pseudorandom permutation (PRP) if for any polynomial-time quan-
tum oracle algorithm A,∣∣∣∣ Pr

k←K

[
APRPk,PRP−1

k (1λ) = 1
]
− Pr
P←SX

[
AP,P−1(1λ) = 1

]∣∣∣∣ = negl(λ). (11)

In addition, both PRFk and PRPk are polynomial-time computable.

Theorem 25. PRFs and PRPs exist if quantum-secure one-way functions
exist.

Zhandry proved the existence of PRFs, assuming the existence of one-
way functions that are hard to invert, even for quantum algorithms [Zha12].
Assuming PRF, one can construct PRP using various shuffling construc-
tions [Zha16].

A.2 Quantum Information

For any n ∈ N, we use Hn to denote the Hilbert space on n-qubit registers,
i.e., Hn = C2⊗n, and N to denote N , the dimension of C2⊗n. Note that the
optimal distinguishing probability between two n-qubit quantum (possibly
mixed) states ρ0 and ρ1 is given by their trace distance D(ρ0, ρ1), defined as

D(ρ0, ρ1) def= 1
2 ∥ρ0 − ρ1∥1 . (12)
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We now turn to discuss standard properties of symmetric subspaces; for
an in-depth discussion, see [Har13]. For Hilbert space Hn of dimension N ,
i.e., it represents an n-qubit system, and integer t, we use ∨tHn to denote
the symmetric subspace of H⊗tn , the subspace of states that are invariant
under permutations of the subsystems. Let X be the set {0, 1, . . . , N − 1}
such that Hn is the span of {|x⟩}x∈X .

For any subset A ⊂ X , we use HA to denote the subspace Span(A), and
∨tHA to denote the symmetric subspace of H⊗tA .

For any t ∈ N, let NA
t be the set of all vectors z⃗ in NA such that∑j∈A zj =

t. We will abbreviate NA
t as Nt for the special case A = X . For any

x = (x1, x2, . . . , xt) ∈ At, denote k(x) to be the associated vector in NA
t ,

i.e., the yth coordinate of z⃗ is the number of xj that are y. For any z⃗ ∈ Nt,
define the state

|Symz⃗
t ⟩ =

√
1(t
z⃗

) ∑
x∈X t:k(x)=z⃗

|x⟩. (13)

For z⃗ ∈ NA
t , |Symz⃗

t ⟩ can be written as
√

1
(t

z⃗)
∑
x∈At:k(x)=z⃗ |x⟩.

The set of states {
|Symz⃗

t ⟩
}
z⃗∈NA

t
,
{
|Symz⃗

t ⟩
}
z⃗∈Nt

(14)

forms an orthonormal basis of the symmetric subspace ∨tHA and ∨tHn,
respectively. This implies that the dimension of the symmetric subspace
∨tHA is |NA

t | =
(|A|+t−1

t

)
. In particular,

dim
(
∨tHn

)
= |NXt | =

(
N + t− 1

t

)
. (15)

Let ΠSym
t be the projection onto the symmetric subspace ∨tHn, and for

any A ⊂ X , let ΠSym,A
t be the orthogonal projection onto ∨tHA.

Let µHn be the Haar measure on Hn, and µHA
be the induced measure

on HA, we have

∫ (
|ψ⟩⟨ψ|

)⊗t
dµHn(ψ) =

(
N + t− 1

t

)−1

ΠSym
t = ρSym

t =
(
N + t− 1

t

)−1∑
z⃗

|Symz⃗
t ⟩⟨Symz⃗

t |.

(16)∫ (
|ψ⟩⟨ψ|

)⊗t
dµHA

(ψ) =
(
|A|+ t− 1

t

)−1

ΠSym,A
t = ρSym,A

t

(
N + t− 1

t

)−1 ∑
z⃗∈NA

t

|Symz⃗
t ⟩⟨Symz⃗

t |.

(17)
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B Proof of the lemmas in Section 2.3
Proof of Lemma 1. Suppose not and there exists a ∈ {0, 1}c, such that

Pr[K u←− {0, 1}w; Destruct(Gen(K)) = a] = sa

is non-negligible.
Note that, in the Forging-ExpA,PRSPD

λ game (see Game 1), a = Destruct(Gen(k))
with probability sa. By the correctness guarantee, for any arbitrary fixed
k ∈ {0, 1}w,

Pr[Destruct(Gen(k)) = a] ̸= 0 =⇒ Pr[Ver (k, a) = 1] = 1.

Hence, for any arbitrary fixed k ∈ {0, 1}w,

Pr[Ver (k, a) = 1] ≥ Pr[Destruct(Gen(k)) = a]. (18)

Therefore,

Pr[K u←− {0, 1}w : Ver (K, a) = 1] =
∑

k∈{0,1}w

1
2w Pr[Ver (k, a) = 1] (19)

≥
∑

k∈{0,1}w

1
2w Pr[Destruct(Gen(k)) = a] By Eq. (18)

(20)
= Pr[K u←− {0, 1}w; Destruct(Gen(K)) = a] = sa.

(21)

We will construct an efficient algorithmA against the Unforgeability-of-proofs
property. A takes zero copies of the PRSPD state. She samples a key K̃
uniformly at random and performs Destruct on it, getting the classical result
F . She submits an alleged proof F . Let K be the actual key used by the
challenger.

With probability sa, F , takes the value a. Since the event F = a and
Ver (K, a) = 1 are independent,

Pr[Ver (K,F ) = 1] ≥ Pr[Ver (K, a) = 1∧F = a] = Pr[Ver (K, a) = 1] Pr[F = a] ≥ sa·sa = sa
2,

which is non-negligible since sa is non-negligible, giving us a contradiction
to Unforgeability-of-proofs (see Definition 1).

For the next part, we use pseudorandomness of PRSPD (see Definition 1).
Suppose there exists a ∈ {0, 1}c, such that Pr[|ϕ⟩ ∼ µHn : Destruct(|ϕ⟩) =

a] = s̃a is non-negligible.
We will construct an efficient distinguisher B as follows. B samples a

state 1-design for n-qubit states and performs Destruct to get a string F̃ .
Hence with probability s̃a, F̃ = a. Next given a challenge n-qubit state |ϕ⟩,
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she performs Destruct on it to get E ← Destruct(|ϕ⟩) and checks if E = F̃ .
Note that if |ϕ⟩ were Haar random, Pr[E = a] = s̃a, whereas if |ϕ⟩ were from
the PRSPD family, then Pr[E = a] = negl(λ) for some negligible function,
by the first part of the lemma.

Since the event F̃ = a is independent of the distribution on |ϕ⟩, we
conclude that B distinguishes with probability at least

Pr[F̃ = a](s̃a − negl(λ)) = s̃a(s̃a − negl(λ)),

which is non-negligible if s̃a is non-negligible, contradicting the pseudoran-
domness of PRSPD (see Definition 1). □

Proof of Lemma 2. We will view the Destruct algorithm as applying a mea-
surement on n-qubit PRSPD state and m-qubit ancilla initialized to |0m⟩.
Let X denote the entirem+n-qubit system. By Naimark’s theorem (see [Wat18,
Theorem 2.42, Corollary 2.43]), this is equivalent to adding an output regis-
ter Y with c-qubits initialized to 0 and then applying a projective measure-
ment of the form:

{Ba}a∈{0,1}c ≡ {U †(1X ⊗ |a⟩⟨a|Y)U}a∈{0,1}c ,

for some unitary operator U ∈ U(X⊗Y), where X and Y denotes the Hilbert
space corresponding to registers X and Y respectively. Hence {Ba}a∈{0,1}c

are set of orthonormal projectors and hence for every a, there exists or-
thonormal vectors {|ψaj ⟩}j∈[2n+m] such that

Ba =
∑

j∈[2n+m]
U †(|j⟩⟨j|X ⊗ |a⟩⟨a|Y)U =

∑
j∈[2n+m]

|ψaj ⟩⟨ψaj |,

where for every j ∈ [2n+m], |ψaj ⟩ = U †|j⟩X ⊗ |a⟩Y . Note that f1, . . . , ft ∼
Correlated-DestructionHaar ,Destruct

t is obtained by performing a measurement
{⊗i∈[t]Bai}a1,...,at on |ϕ⟩ = (|0c+m⟩ ⊗ |ψ⟩)⊗t, for a Haar random state |ψ⟩.

Therefore, for any a1, . . . , at,

Pr
Correlated-DestructionHaar ,Destruct

t

[f1, . . . , ft = a1, . . . , at] (22)

=
∫

Tr
(
⊗i∈[t]Bai

(
|0c+m⟩⟨0c+m| ⊗ |ψ⟩⟨ψ|

)⊗t)
dµH(ψ) (23)

=
∫

Tr
(
⊗i∈[t]Bai (|ψA⟩⟨ψA|)⊗t

)
dµHA

(ψ), (24)

(25)

where A = {0c+m∥x | x ∈ {0, 1}n}. Therefore |A| = 2n = N .
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By the additivity of trace, and Eq. (17), the above is

Pr
Correlated-DestructionHaar ,Destruct

t

[f1, . . . , ft = a1, . . . , at] (26)

=
∫

Tr
(
⊗i∈[t]Bai (|ψA⟩⟨ψA|)⊗t

)
dµHA

(ψ) (27)

= Tr

⊗i∈[t]Bai

(N + t− 1
t

)−1

ΠSym,A
t

 . (28)

(29)

Next, we use the following formulation of ΠSym,A
t , (see [Har13, Eq. 2],

and for a proof, see [Har13, Proposition 1]):

ΠSym,A
t = 1

t!
∑
σ∈St

∑
x1,...,xt∈A

|xσ−1(1) . . . xσ−1(t)⟩⟨x1, . . . , xt|.

We will use Permτ to denote the unitary that permutes the registers as
per τ for any τ ∈ St, the group of permutations over t objects12, i.e., for
B ≡ {0, 1}c+m+n, Hence13,

Permτ =
∑

x1,...,xt∈B
|xτ(1) . . . xτ(t)⟩⟨x1 . . . xt| =

∑
z1,...,zt∈B

|z1 . . . zt⟩⟨zτ−1(1) . . . zτ−1(t)|.

(30)
12The quantum operation of permuting registers is unitary because it can be realized

by the composition of SWAP gates on pairs of registers. This is because any permuta-
tion can be written as a composition of transpositions, and permuting registers as per a
transposition corresponds to applying a SWAP gate on two particular registers.

13The equation follows from the fact that permuting the registers maps the basis vector
|x1, . . . , xt⟩ 7→ |xτ(1), . . . , xτ(t)⟩.
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Let Ñ = 2m+n in the following equations. Continuing,

Pr
Correlated-DestructionHaar ,Destruct

t

[f1, . . . , ft = a1, . . . , at] (31)

=
(
N + t− 1

t

)−1 1
t!
∑
σ∈St

∑
x1,...,xt∈A

Tr
((
⊗i∈[t]Bai

)
|xσ−1(1) . . . xσ−1(t)⟩⟨x1, . . . , xt|

)
(32)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
x1,...,xt∈A

Tr
((
⊗i∈[t]Bai

)
Permσ−1 |x1, . . . , xt⟩⟨x1, . . . , xt|

)
(33)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
x1,...,xt∈A

Tr

⊗i∈[t]

 ∑
ji∈[Ñ ]

|ψai
ji
⟩⟨ψai

ji
|

Permσ−1 (|x1, . . . , xt⟩⟨x1, . . . , xt|)


(34)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
x1,...,xt∈A

Tr

 ∑
j1,...,jt∈[Ñ ]

(
⊗i∈[t]|ψai

ji
⟩⟨ψai

ji
|
)Permσ−1 |x1, . . . , xt⟩⟨x1, . . . , xt|


(35)
(36)

Note that, for any permutation σ ∈ St,

Perm†σ = (Permσ)−1 = Permσ−1 .

Hence, for any set of pure states {|αj⟩}j∈[t] and {|βj⟩}j∈[t], and permutation
σ ∈ St,

⊗j∈[t] (|αj⟩⟨βj |) Permσ−1 (37)

=
(
⊗j∈[t]|αj⟩

) (
⊗j∈[t]⟨βj |

)
Permσ−1 (38)

=
(
⊗j∈[t]|αj⟩

) (
⊗j∈[t]⟨βj |

)
Perm†σ (39)

=
(
⊗j∈[t]|αj⟩

) (
⊗j∈[t]⟨βσ(j)|

)
= ⊗j∈[t]

(
|αj⟩⟨βσ(j)|

)
. (40)
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Hence, continuing we get,
Pr

Correlated-DestructionHaar ,Destruct
t

[f1, . . . , ft = a1, . . . , at] (41)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
x1,...,xt∈A

Tr

 ∑
j1,...,jt∈[Ñ ]

(
⊗i∈[t]|ψai

ji
⟩⟨ψai

ji
|
)Permσ−1 |x1, . . . , xt⟩⟨x1, . . . , xt|


(42)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
x1,...,xt∈A

Tr

 ∑
j1,...,jt∈[Ñ ]

(
⊗i∈[t]|ψai

ji
⟩⟨ψaσ(i)

jσ(i)
|
) |x1, . . . , xt⟩⟨x1, . . . , xt|


(43)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

Tr

 ∑
j1,...,jt∈[Ñ ]

(
⊗i∈[t]|ψai

ji
⟩⟨ψaσ(i)

jσ(i)
|
) ∑

x1,...,xt∈A
|x1, . . . , xt⟩⟨x1, . . . , xt|


(44)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

Tr

 ∑
j1,...,jt∈[Ñ ]

(
⊗i∈[t]|ψai

ji
⟩⟨ψaσ(i)

jσ(i)
|
)(⊗i∈[t]|0c+m⟩⟨0c+m| ⊗ IN

)
(45)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
j1,...,jt∈[Ñ ]

Tr
(
⊗i∈[t]

(
|ψai
ji
⟩⟨ψaσ(i)

jσ(i)
| ·
(
|0c+m⟩⟨0c+m| ⊗ IN

)))
(46)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
j1,...,jt∈[Ñ ]

Tr
(
⊗i∈[t]

((
⟨0c+m| ⊗ IN

)
|ψai
ji
⟩⟨ψaσ(i)

jσ(i)
|
(
|0c+m⟩ ⊗ IN

)))
.

(47)

Let Wi =
(
⟨0c+m| ⊗ IN

)
|ψai
ji
⟩ for every i ∈ [t]. Continuing,

Pr
Correlated-DestructionHaar ,Destruct

t

[f1, . . . , ft = a1, . . . , at] (48)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
j1,...,jt∈[Ñ ]

Tr
(
⊗i∈[t]

((
⟨0c+m| ⊗ IN

)
|ψai
ji
⟩⟨ψaσ(i)

jσ(i)
|
(
|0c+m⟩ ⊗ IN

)))
(49)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
j1,...,jt∈[Ñ ]

Tr
(
⊗i∈[t]

(
WiW

†
σ(i)

))
(50)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
j1,...,jt∈[Ñ ]

∏
i∈[t]

(
Tr
(
WiW

†
σ(i)

))
(51)

≤ (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
j1,...,jt∈[Ñ ]

∏
i∈[t]

(√
Tr
(
WiW

†
i

)√
Tr
(
Wσ(i)W

†
σ(i)

))
.

(52)
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The last inequality is due to Cauchy-Schwarz for the Hilbert-Schmidt
inner product, i.e., for every two complex square matrices A,B,

Tr(AB†) = Tr(B†A) ≤
√

Tr(A†A)
√

Tr(B†B).

Note that for every σ ∈ St,

∏
i∈[t]

(√
Tr
(
WiW

†
i

)√
Tr
(
Wσ(i)W

†
σ(i)

))
=
∏
i∈[t]

Tr
(
WiW

†
i

)
.

Continuing using this fact,

Pr
Correlated-DestructionHaar ,Destruct

t

[f1, . . . , ft = a1, . . . , at] (53)

≤ (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
j1,...,jt∈[Ñ ]

∏
i∈[t]

(√
Tr
(
WiW

†
i

)√
Tr
(
Wσ(i)W

†
σ(i)

))
(54)

= (N − 1)!
(N + t− 1)!

∑
σ∈St

∑
j1,...,jt∈[Ñ ]

∏
i∈[t]

Tr
(
WiW

†
i

)
(55)

= (N − 1)!t!
(N + t− 1)!

∑
j1,...,jt∈[Ñ ]

∏
i∈[t]

Tr
(
WiW

†
i

)
(56)

= 1(N+t−1
t

) ∏
i∈[t]

 ∑
ji∈[Ñ ]

Tr
(
WiW

†
i

) (57)

= 1(N+t−1
t

) ∏
i∈[t]

Tr

 ∑
ji∈[Ñ ]

WiW
†
i

 (58)

(59)
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Next, for every a1, . . . , at,

Pr
Product-DestructionHaar ,Destruct

t

[(f1, . . . , ft) = (a1, . . . , at)] (60)

=
∏
i∈[t]

[∫
Tr (Bai |ψ⟩⟨ψ|) dµHA

(ψ)
]

(61)

=
∏
i∈[t]

[
Tr
(
Bai

|0c+m⟩⟨0c+m| ⊗ IdN
N

)]
(62)

= 1
N t

∏
i∈[t]

[
Tr
(
Bai

(
|0c+m⟩⟨0c+m| ⊗ IdN

))]
(63)

= 1
N t

∏
i∈[t]

Tr

 ∑
ji∈[Ñ ]

|ψai
ji
⟩⟨ψai

ji
|

 |0c+m⟩⟨0c+m| ⊗ IdN
 (64)

= 1
N t

∏
i∈[t]

Tr

 ∑
ji∈[Ñ ]

((
⟨0c+m ⊗ IN |

)
|ψai
ji
⟩⟨ψaσ(i)

jσ(i)
|
(
|0c+m⟩ ⊗ IN

))
(65)

= 1
N t

∏
i∈[t]

Tr

 ∑
ji∈[Ñ ]

WiW
†
i

 . (66)

Therefore, for every a1, . . . , at,

PrCorrelated-DestructionHaar ,Destruct
t

[(f1, . . . , ft) = (a1, . . . , at)]
PrProduct-DestructionHaar ,Destruct

t
[(f1, . . . , ft) = (a1, . . . , at)]

≤
1

(N+t−1
t )

∏
i∈[t]

(
Tr
(∑

ji∈[Ñ ]WiW
†
i

))
1
Nt

∏
i∈[t]

(
Tr
(∑

ji∈[Ñ ]WiW
†
i

)) = N t(N+t−1
t

) .
□

Proof of Lemma 3. By Lemma 1, for every a ∈ {0, 1}c, there exists a negli-
gible function negl(λ)a such that

Pr
F

[f = a] = negl(λ)a.

Hence, there exists a negligible function negl(λ), such that[
max
a

Pr
f∼F

[f = a])
]

= negl(λ).

Therefore the probability of seeing a colliding outcome, i.e.,
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Pr
Correlated-DestructionHaar ,Destruct

t

[Collision] ≡ Pr
Correlated-DestructionHaar ,Destruct

t

[∃i ̸= j | fi = fj ]

(67)
≤
∑
i ̸=j

Pr
(f1,...,ft)∼Correlated-DestructionHaar ,Destruct

t

[fi = fj ] (68)

=
∑
i ̸=j

Pr
(fi,fj)∼Correlated-DestructionHaar ,Destruct

2

[fi = fj ] (69)

=
∑
i ̸=j

∑
a∈{0,1}w

Pr
(fi,fj)∼Correlated-DestructionHaar ,Destruct

2

[fi = a, fj = a] (70)

≤
∑
i ̸=j

∑
a∈{0,1}w

N2(N
2
) Pr

(fi,fj)∼Product-DestructionHaar ,Destruct
2

[fi = a, fj = a] By Lemma 2

(71)

=
∑
i ̸=j

∑
a∈{0,1}w

N2(N
2
) ( Pr

f∼F
[f = a]

)2
(72)

≤ N2(N+1
2
) ∑
i ̸=j

∑
a∈{0,1}c

( Pr
f∼F

[f = a])
[
max
a

Pr
f∼F

[f = a])
]

(73)

= N2(N+1
2
) ∑
i ̸=j

[
max
a

Pr
f∼F

[f = a])
]

(74)

= N2(N+1
2
)(t2

)[
max
a

Pr
f∼F

[f = a])
]

(75)

≤ N2(N+1
2
)(t2

)
negl(λ) (76)

= N(t(t− 1))
N + 1 negl(λ), (77)

(78)

which is negligible for any t ∈ poly(λ). □

Proof of Lemma 5. Suppose there exists an adversaryA in Classical-Forging-Exp,PRFSPD
λ .

We will construct an adversary B in the game Forging-ExpA,PRFSPD
λ such

that A and B have the same success probability up to negligible factor
in the corresponding security games. B runs A and for every query x to
Destruct(Gen(k, ·)), B makes a query x to Gen(k, ·), and then performs Destruct
on the oracle output to get a classical string σx and feeds it to A as the out-
put of her query. If x was never queried before, B creates a set Sx and adds
σx to Sx. Otherwise, B checks if σx ̸∈ Sx in which case she adds σx to Sx,
but if σx ∈ Sx, B aborts. B answers Ver (k, ·) queries using the Ver (k, ·) oracle
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she has access to. At the end when A outputs a x′, σx′ , B sends x, S̃x′ to
the challenger, where S̃x′ = Sx′ ∪ {σx′} if Sx′ exists, otherwise S̃x′ = {σx′}.

Let WinB and WinA be the events Forging-ExpB,PRFSPD
λ = 1 and

Classical-Forging-ExpA,PRFSPD
λ = 1 respectively, and AbortB be the event that

B aborts. We will show that there exists a negligible function negl(λ) such
that

|Pr[WinB] ≥ Pr[WinA]− negl(λ).

Note that B aborts only if there is an x, the PRFSPD state corresponding to
which yields a collision in the proofs upon destruction. For every x ∈ {0, 1}d,
let CollisionxB be the event that there exist distinct indices q, q̃ such that
the qth and the q̃th queries made by A were for x, and she received the
same output for both the queries. By Lemma 4, for every x, there exists a
negligible function negl(λ)x such that Pr[CollisionxB] = negl(λ)x. Let Q be
the set of all x ∈ {0, 1}d queried by A to the Destruct(Gen(·)) oracle. Since
there were only polynomially many x ∈ Q,

Pr[AbortB] = Pr[
⋃
x∈Q

CollisionxB] ≤
∑
x∈Q

negl(λ)x = negl(λ),

where negl(λ) is some negligible function.
Let CollisionA be the analogous event of AbortB in the actual game,

i.e., Classical-Forging-ExpA,PRFSPD
λ , meaning CollisionA is the event that there

exists x and there exists the distinct indices q, q̃ such that the qth and the
q̃th queries made by A were for x and she received the same output for both
the queries. Hence,

Pr[CollisionA] = Pr[AbortB] = negl(λ). (79)

Let X ′, σX′ be the random variable representing the final output of A in
the simulation. Let GoodB be the event that either SX′ did not exist or σ′X ̸∈
SX′ , (i.e., (X ′, σX′) does not correspond to any past query) and (X ′, σX′)
passes verification. Conditioned on the event AbortB, GoodB implies that B
submits X ′, S̃X′ at the end, such that all the elements in the set S̃X′ would
pass verification with respect to X ′, and |S̃X′ | is strictly larger than the
number of X ′ queries made to Gen() by B, thus implying WinB. Hence,

Pr[GoodB ∧AbortB] ≤ Pr[WinB ∧AbortB.

Note that GoodB corresponds to the event WinA in the actual game, and
as mentioned in Eq. (79), AbortB corresponds to CollisionA (see Eq. (79)).
Hence,

Pr[WinA ∧ CollisionA] = Pr[GoodB ∧AbortB] ≤ Pr[WinB ∧AbortB]. (80)
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Therefore,

Pr[WinB] ≥ Pr[WinB ∧AbortB] (81)
≥ Pr[WinA ∧ Collision] By Eq. (80). (82)
≥ Pr[WinA]− Pr[CollisionA] (83)
= Pr[WinA]− negl(λ). By Eq. (79). (84)

□

C Proof of the technical lemma from Section 3
Proof of Lemma 6. Assume toward contradiction there exists a polynomial
T and a quantum polynomial-time adversary A which violate the lemma,
let ε the advantage that the adversary gets (i.e. the distribution on its
output bit b in the setting D0 has non-negligible statistical distance ε from
its output bit b in the setting D1). Recall that for every possible input
x ∈ {0, 1}d, A makes either 0 or exactly T queries to the oracle and consider
the following hybrid distributions over the output bit of the adversary at
the end of the process.

• Hyb0 : The original distribution D0. For a uniformly random k ←
{0, 1}λ, the adversary A gets classical oracle access to the generation
function Gen(k, ·) (from Fig. 2) and the classical proof verification func-
tion Ver (k, ·, ·) (from Fig. 3). Recall that the inputs to Gen(k, ·) are
of the form x ∈ {0, 1}d, and the inputs to Ver (k, ·, ·) are of the form
(x, q) ∈

(
{0, 1}d × {0, 1}5λ

)
.

• Hyb1 : Moving to a truly random permutation. Identical to the pre-
vious hybrid, with the only change that the PRP, PRPk (in both
Gen(k, ·), Ver (k, ·, ·)) is swapped with a uniformly random permuta-
tion P ← S25λ on the set {0, 1}5λ.

• Hyb2 : Moving to random disjoint sets. In this hybrid we discard the
permutation P and execute the following: The process starts with
sampling uniformly random subsets of {0, 1}5λ, {Ax, Bx}x∈{0,1}d , each
of size 2λ, conditioned on that all 2 · 2d sets are disjoint from one
another.

– When the adversary applies a query x ∈ {0, 1}d to Gen(·), the
output is the 5λ-qubit state:

2−
λ
2 ·

∑
j∈{0,1}λ

ω
bx,j

25λ · |ax,j⟩ ,

where the elements in the sets Ax, Bx are denoted by Ax :=
{ax,j}j∈{0,1}λ , Bx := {bx,j}j∈{0,1}λ , respectively.
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– When the adversary applies a query (x, q) to Ver (·, ·), the output
is 1 iff q ∈ Ax.

• Hyb3 : Moving to random i.i.d sets. This process is identical to the
previous, with one change: All 2 · 2d sets {Ax, Bx}x∈{0,1}d are sampled
as uniformly random i.i.d. subsets of {0, 1}5λ of size 2λ (we remove
the condition of the sets being disjoint).

• Hyb4 : Defining the classical function f and moving to the small-range
distribution of it. Consider both, the generation and verification or-
acles which are both inefficient quantum algorithms at this current
hybrid - both of them use as a black-box, quantumly-queriable classi-
cal oracle f , which for input |x, y⟩ (for x ∈ {0, 1}d, y ∈ {0, 1}|(Ax,Bx)|),
outputs |x, y ⊕ (Ax, Bx)⟩, where (Ax, Bx) is the full classical descrip-
tion of the sets Ax, Bx. Let us call this function f , and sampling the
random sets Ax, Bx (for all x ∈ {0, 1}d) only comes down to sampling
the outputs of f .
Now, for the difference between the previous hybrid and the current
one: The only difference is that we move from a distribution that for
every x ∈ {0, 1}d, instead of applying f(·) to get (Ax, Bx), it applies
f(·) to the small-range distribution version of these functions, for the
parameter r := 300·t(A)3·4

ε , where t(A) is the (polynomial) running time
of A. Concretely: The current process starts with sampling r random
elements z1, · · · zr in {0, 1}d followed by sampling a random ix ← [r]
for every x ∈ {0, 1}d. During the execution of the hybrid, given a
query x ∈ {0, 1}d to f(·), we output f(zix).

• Hyb5 : Using fewer sets for the generation of states. In this hybrid we
stop thinking about getting the description of our sets through f , and
just sample the sets at the beginning of the process. We will get back
to describing our process using the function f later. Observe that in
the previous hybrid process, we used only the 2 · r sets {Azi , Bzi}i∈[r]
rather than all of the 2 · 2d sets {Ax, Bx}x∈{0,1}d the process sampled.
In this process, instead of sampling all of the 2·2d sets {Ax, Bx}x∈{0,1}d ,
we sample only 2 · r sets: {Azi , Bzi}i∈[r], and the process carries on as
in the previous.

• Hyb6 : Using fewer elements from each set, for the generation of states.
In this process we still sample the sets {Azi , Bzi}i∈[r], but we don’t
generate superpositions of them. At the beginning of the process, we
execute:

1. For every i ∈ [r], sample a uniformly random T -sized multi-set
(ai,1, · · · , ai,T ) of Azi (uniformly random over all of the T -size
multi-sets of Azi).
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2. For every i ∈ [r], we generate the 5λ · T -qubit state,

|πi⟩ :=
∑
σ∈ST

|ai,σ(1), · · · , ai,σ(T )⟩ ,

where ST is the set of all permutations on T elements.

The proof verification algorithm Ver (·, ·) stays the same. The state
generation algorithm Gen(·), given x ∈ {0, 1}d for the c-th query (for
c ∈ [T ]), outputs the c-th sub-register of the state |πix⟩.

• Hyb7 : Using fewer elements for the verification of classical proofs.
Note two things: (1) In the previous hybrid we ignore the set Bzi

altogether, and (2) Regarding the set Azi , the only place where we use
the full information of its elements is to verify proofs in the procedure
Ver (·, ·) (where we check if the given proof is in the set Azi). In the
current hybrid, there are two changes: (1) We do not sample the
set Bzi , and (2) We do sample all 2λ elements of the set Azi , but
then for every i ∈ [r], we sample a small set: a uniformly random T -
sized multi-set Mi = (ai,1, · · · , ai,T ) of Azi . The generation algorithm
Gen(·) stays the same as before and the multi-set which it uses for
the state generation is Mi, but the verification changes: given input
(x, q) ∈

(
{0, 1}d × {0, 1}5λ

)
, the verification now just checks whether

q ∈ {aix,1, · · · , aix,T }.

• Hyb8 : Sampling fewer elements for the verification of classical proofs.
This hybrid is identical to the previous, only that for every i ∈ [r],
instead of sampling the entire, 2λ-sized set Azi and then sampling the
multi-set Mi, the multi-set Mi is just sampled as a uniformly random
T -sized multi-set of {0, 1}5λ (i.e. uniformly random overall T -sized
multi-sets of {0, 1}5λ).

• Hyb9 : Moving to the full-range distribution of the new functions.
The only change between this process and the previous is that in this
process, instead of sampling only r small multi-sets {Mi}i∈[r], we sam-
ple an i.i.d. uniformly random T -sized multi-set of {0, 1}5λ for every
x ∈ {0, 1}d: {Mx}x∈{0,1}d . The algorithms Gen(·) and Ver (·, ·) function
the same as before, only that they now do not do the mapping from
x to its small-range element zix , that is: For every x the generation
algorithm now generates the state,

|πx⟩ :=
∑
σ∈ST

|ax,σ(1), · · · , ax,σ(T )⟩ ,

and returns the c-th sub-register of |πx⟩ on the c-th query. The verifica-
tion algorithm, given query (x, q) checks whether q ∈ {ax,1, · · · , ax,T }.
Note that this is exactly the distribution D1.
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We next prove a bound on the computational indistinguishability be-
tween the hybrids.

• Hyb0 ≈c Hyb1 : The hybrids are computationally indistinguishable by
the security of the pseudorandom permutation PRPk.

• Hyb1 ≡ Hyb2 : One can observe the following property of a uniformly
random permutation P ← S25λ : for any set of disjoint sets {Ei}i∈[m]
such that ∀i ∈ [m] : Ei ⊆ {0, 1}5λ, the set of sets {P (Ei)}i∈[m] is a set
of uniformly random subsets of {0, 1}5λ, conditioned on that all subsets
are disjoint to each other. One can also verify that this immediately
implies that Hyb1 ≡ Hyb2.

• Hyb2 ≈s Hyb3 : Conditioned on the probabilistic event that all sets
{Ax, Bx}x∈{0,1}d are disjoint, the hybrids Hyb2, Hyb3 distribute exactly
the same. Thus, it is sufficient to show that this probabilistic event
happens with an overwhelming probability (or alternatively, as we will
do, that its negation happens with a negligible probability). Since
d = λ, we are sampling 2 · 2λ sets, each of size 2λ, which amounts to
22λ+1 elements. The size of the set we are sampling from is 25λ, and
thus by union bound the probability to have a repeating element is
bounded by

2−5λ ·
∑

ℓ∈[22λ]
ℓ = 2−5λ · 24λ − 22λ

2 ≤ 24λ

25λ = 2−λ ,

which is negligible.

• TD (Hyb3,Hyb4) ≤ ε
4 : The only difference between Hyb3 and Hyb4 is

how we query the function f : In Hyb3, for every input x ∈ {0, 1}d
the output is (Ax, Bx), while in the next Hyb4, for input x the out-
put is f(zix). In that sense, Hyb4 produces the small-range distribu-
tion version of Hyb3, and in Hyb4 we set r = 300·t(A)3·4

ε where t(A)
is the running time of A and thus an upper bound on the number
of (quantum) queries made by A to f . It follows by Theorem A.6
from [AGQY22], that the statistical distance between the two hybrid
processes are bounded by 300·t(A)3

r = ε
4 .

• Hyb4 ≡ Hyb5 : The change between these two processes is only seman-
tic. The sets from {Ax, Bx}x∈{0,1}d that are sampled but not included
in {z1, · · · , zr}, are never used - not in the generation nor the classical
proof verification algorithm. The oracles are identical and so are the
processes.

• Hyb5 ≈s Hyb6 : We can think of r+1 sub-hybrid processes Hyb5,0,Hyb5,1, · · · ,Hyb5,r,
where Hyb5,0 = Hyb5 and for each i ∈ [r] we change Gen(zi) from its be-
havior in Hyb5 to Hyb6. This also means that Hyb5,r = Hyb6. Lemma
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8 implies that for each i ∈ [r], td
(
Hyb5,i−1,Hyb5,i

)
≤ negl(λ) for a

negligible function negl(λ)14. It follows that the trace distance be-
tween Hyb5 and Hyb6 is bounded by r · negl(λ), which is negligible in
λ, because r is polynomial in λ.

• Hyb6 ≈s Hyb7 : The only difference between these two hybrid pro-
cesses is that in Hyb6, for an input (x, q) to the classical proof ver-
ification function Ver (·, ·), the proof is accepted if q ∈ Azix

, but in
Hyb7 the proof is accepted only if q is in the smaller, at-most-T -
sized set {aix,1, aix,2, · · · , aix,T }. The point is, that in Hyb6 the ad-
versary has no information on the rest of the set Azix

, i.e. it does
not receive any information on Azix

\ {aix,1, · · · , aix,T }. The prob-
ability for A to output an element in this gap is thus bounded by
|Azix

|/|{0, 1}5λ| = 2λ/25λ = 2−4λ. If there would be a non-negligible
advantage to distinguish these two processes it is necessarily the case
that in one of the queries that the adversary sent, there is an ele-
ment in Azix

\ {aix,1, · · · , aix,T } with a non-negligible amplitude, for
some x ∈ {0, 1}d. We could guess the position of that query with a
noticeable probability and find such an element with a non-negligible
probability, in contradiction to the fact that the probability is bounded
by 2−4n.

• Hyb7 ≡ Hyb8 : For each i ∈ [r], the distributions over the multi-
set Mi are the same: In Hyb7 we first sample uniformly at random
Azi , a subset of {0, 1}5λ, and then Mi is a uniformly random T -sized
multi-set of it. In Hyb8, we just sample Mi as a uniformly random
T -sized multi-set of {0, 1}5λ. These distributions over multi-sets have
statistical distance 0 and thus the processes are equivalent.

• TD (Hyb8,Hyb9) ≤ ε
4 : One can verify that just like process Hyb4 is the

small-range distribution version of Hyb3 (by thinking of a function f
that outputs a classical description of the sets used to generate states),
the process Hyb8 is the small-range distribution of the process Hyb9, by
thinking of a new classical function f ′ that for input x ∈ {0, 1}d, out-
puts the classical description of the uniformly random T -sized multi-set
Mx which blends in the following way: In the beginning of Hyb8 we
sample z1, · · · , zr ← {0, 1}d, ∀x ∈ {0, 1}d : ix ← [r], and then define
f ′(x) := Mzix

, while in Hyb9 we just output f(x) := Mx. By the exact
same argument for the statistical closeness TD (Hyb3,Hyb4) ≤ ε

4 , the
statistical closeness TD (Hyb8,Hyb9) ≤ ε

4 follows.
14In the formulation of Lemma 8, the state’s phases are given by a random function f

and here they are given by a random set B. note that these distributions are the same
up to no collisions in f : As long as there are no two elements in A that collide in f , the
distributions are identical. Since f is a random function on 5λ bits, and A is of size 2λ,
this will happen with an exponentially small probability, thus Lemma 8 is applicable.
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From the above statements it follows that the adversary A can dis-
tinguish between Hyb0 := D0 and Hyb9 := D1 with at most advantage
ε
2 + negl(λ) for some negligible function negl(λ). This is in contradiction to
the assumption that the distinguishing advantage of A is ε, and that ε is
non-negligible. □

Lemma 8. Let A ⊆ {0, 1}5λ a set of size 2λ and a polynomial T := T (λ).
Then, the following two distributions on quantum states have trace distance
negligible in λ.

• Q0 : Sample a random function f ←
(
{0, 1}5λ

){0,1}5λ

and output T
identical copies of the state

|ψf,A⟩ := 2−
λ
2
∑
a∈A

ω
f(a)
25λ · |a⟩ .

• Q1 : Sample a uniformly random T -sized multi-set of A: (a1, · · · , aT ).
Let ST be the set of all permutations on T elements. Output the state

1√
T !

∑
σ∈ST

|aσ(1), · · · , aσ(T )⟩ .

Proof. We ignore normalizations throughout the proof. Let ATd ⊆ AT the
subset of AT such that the T elements in the sequence (x1, · · · , xT ) ∈ AT
are all distinct. We can consider T copies of the state |ψf,A⟩:

(|ψf,A⟩)⊗T :=
(∑
a∈A

ω
f(a)
25λ · |a⟩

)⊗T
=

∑
(a1,··· ,aT )∈AT

ω

∑
i∈[T ] f(ai)

25λ · |a1, · · · , aT ⟩ .

Let Πd be the 5λ·T -qubit projection that checks whether a classical 5λ·T -bit
string is in ATd , and one can verify that (1) the probability for this projection
to succeed for (|ψf,A⟩)⊗T is T 2

|A| = T 2

2λ and that (2) after a successful projection
the state is,

|ψf,AT
d
⟩ :=

∑
(a1,··· ,aT )∈AT

d

ω

∑
i∈[T ] f(ai)

25λ · |a1, · · · , aT ⟩ ,

which means that for every f,A, the trace distance between the two states is
bounded by T 2

2λ , which in turn implies that for random f , the distributions
for T copies of |ψf,A⟩ or one copy of the state |ψf,AT

d
⟩ have trace distance

≤ T 2

2λ .
For a given subset A ⊆ {0, 1}5λ, |A| = 2λ, consider the mixed state that

corresponds to the distribution of |ψf,AT
d
⟩ over a random f :

Ef
[
|ψf,AT

d
⟩⟨ψf,AT

d
|
]
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:= Ef

[ ∑
(a1,··· ,aT )∈AT

d

ω

∑
i∈[T ] f(ai)

25λ · |a1, · · · , aT ⟩


·

 ∑
(b1,··· ,bT )∈AT

d

ω

∑
i∈[T ]−f(bi)

25λ · ⟨b1, · · · , bT |

]

= Ef

[ ∑
(a1,··· ,aT ),

(b1,··· ,bT )∈AT
d

ω

∑
i∈[T ](f(ai)−f(bi))

25λ · |a1, · · · , aT ⟩⟨b1, · · · , bT |
]

=
∑

(a1,··· ,aT ),
(b1,··· ,bT )∈AT

d

|a1, · · · , aT ⟩⟨b1, · · · , bT | · Ef

[
ω

∑
i∈[T ](f(ai)−f(bi))

25λ

]
.

A useful property of the above expression is that for a := (a1, · · · , aT ), b :=
(b1, · · · , bT ), a,b ∈ ATd , if a and b are permutations of each other (that is, as
T -element strings, with elements over the set {0, 1}5λ), then the expectation

Ef

[
ω

∑
i∈[T ](f(ai)−f(bi))

25λ

]
is one, because ∑i∈[T ] (f(ai)− f(bi)) = 0.

Also, note the following: Because f is a random function from {0, 1}5λ
to {0, 1}5λ, then for every element a ∈ {0, 1}5λ

Ef
[
ω
f(a)
25λ

]
= 0 ,

which follows from the standard fact: ∀N ∈ N : ∑i∈[N ] ω
i
N = 0. Now, as an

implication of the above, because a and b are strings in ATd rather than AT
(i.e. in each of them, their T elements are pairwise distinct), whenever the
strings are not permutations of each other, it means there is a free element
(say, in the set {a1, · · · , aT }) that is not in the other set {b1, · · · , bT }, which

makes the expectation Ef

[
ω

∑
i∈[T ](f(ai)−f(bi))

25λ

]
zero.

Since only a ∈ ATd and its permutations stay in the sum, it follows that
for every A ⊆ {0, 1}5n,

Ef
[
|ψf,AT

d
⟩⟨ψf,AT

d
|
]

=
∑

(a1,··· ,aT )∈AT
d
,σ∈ST

|aσ(1), · · · , aσ(T )⟩⟨a1, · · · , aT | ,

which is in turn equal to,

ρ :=
∑

(a1,··· ,aT )∈AT
d

 ∑
σ∈ST

|aσ(1), · · · , aσ(T )⟩

 ·
 ∑
σ∈ST

⟨aσ(1), · · · , aσ(T )|

 .

The last mixed state ρ corresponds to the distribution of sampling a
T -sized set {a1, · · · , aT } at random from A, and outputting a superposition
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of all of its permutations. One can think of a tweak of this distribution:
instead of sampling a T -sized set, sample a T -sized multi-set of A (i.e. with
repetitions) and then output the uniform superposition over all of its per-
mutations - note that this is exactly the distribution Q1. Finally, it is a
known fact that the number of such subsets of A is

(|A|
T

)
and the number of

such multi-sets is
(|A|+T−1

T

)
. The probability to sample a set out of all of

the multi-sets is overwhelming:

(|A|
T

)(|A|+T−1
T

) =
2λ!

T !·(2λ−T )!
(2λ+T−1)!
T !·(2λ−1)!

= 2λ! · T ! · (2λ − 1)!
T ! · (2λ − T )! · (2λ + T − 1)!

= 2λ! · (2λ − 1)!
(2λ − T )! · (2λ + T − 1)! =

(
2λ − (T − 1)

)
· · ·
(
2λ − (1)

)
(2λ + (T − 1)) · · · (2λ + 1)∏

i∈[T ]

(
1− 2 · i

2λ
)
≥
(

1− 2 · T
2λ

)T
,

which is 1− negl(λ) whenever T is any polynomial in λ. It follows that the
state ρ has statistical distance ≤ negl(λ) from Q1, and also has statistical
distance bounded by T 2

2λ = negl(λ)′ from Q0, which impies that the statistical
distance between Q0 and Q1 is negligible. □

D Point and Permute Garbled Circuits [BMR90,
AGQY22] for P/Poly from Pseudo One-time
Pad

In this section, we will construct garbling schemes for P/poly based on
PRFSPD. First, we recall the definition of a garbling scheme.

Definition 14 (Garbled circuits with classical encodings (adapted from
[AGQY22])). A Garbling Scheme for a class of circuits C with classical en-
codings is a triplet of QPTalgorithms (Garble, InputEncode,Decode) with the
following syntax:

• (GC, sk) ← Garble(1λ, C): takes as input a security parameter λ, the
classical description of a circuit C ∈ C, and outputs a classical state
GC called the garbled circuit, and a classical secret key sk.

• σx ← InputEncode(sk, x): takes as input a classical secret key sk, and a
classical input x, and outputs a classical encoding σx.

• χ ← Decode(GC, σx): takes as input a garbled circuit GC, an input
encoding σx, and a classical output χ.
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Correctness : For every circuit C ∈ C, and input x, C(x) = Decode(GC, σx),
where (GC, sk)← Garble(1λ, C) and σx ← InputEncode(sk, x).

Security : There exists a QPT simulator Sim such that for every C ∈ C,
input x, and QPT distinguisher D, there exists a negligible function negl(λ)
such that∣∣∣Pr[1← D(GC, σx) : σx ← InputEncode(sk, x), (GC, sk)← Garble(1λ, C)]

(85)

− Pr[1← D(GC, σx) : (GC, σx)← Sim(1λ, C, C(x))]
∣∣∣ ≤ negl(λ). (86)

Construction We construct a garbling scheme for P/poly. We assume
that each gate in the circuit has a fan-in of 2 and a fan-out of 1. Let
E = (Enc,Dec) be a CPA-secure encryption scheme with message length
strictly greater than the key length15. By Remark 23, we know that such
encryption schemes can be constructed from PRFSPD. It is known that
garbled circuits can be constructed from any CPA-secure encryption scheme
with the appropriate parameters mentioned above (and actually, a pseudo-
encryption scheme [AGQY22] suffices) [BMR90]. We repeat the construction
for completeness, without providing the completeness and security analysis.
This observation was already made in the case of quantum garbled circuits
by [AQY21].

The correctness and security guarantees follow from arguments identical
to the original work of [BMR90]. Hence we omit the proofs for brevity.

E Proofs of the results in Section 4

E.1 Proofs of the theorems in Section 4.1

Proof of Theorem 8. Fix a messagem ∈ {0, 1} arbitrarily. Let sig← Sign(sk,m)
where (sk, pk)← Keygen(1λ).

By the Unforgeability-of-proofs of (Gen ,Destruct ,Ver ), there exists a neg-
ligible function negl(λ), such that

Pr
k,k̃

u←−{0,1}w(λ);
r←Destruct(Gen(k̃))

[Ver (k, r) = 1] = negl(λ). (87)

Hence, the probability that the first step Item 1 of Verify(pk,m, sig) (see
15This is sufficient because we assume the fan-out of each gate to be 1. For a circuit

with fan-out r, we would need n(λ) = r · (w(λ) + 1)
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Assumes: CPA encryption scheme, (Enc,Dec) with key length k(λ), and
message length k(λ) + 1.
Garble(1λ, C)

1. For every wire w ∈ C, sample two strings k0
w, k

1
w ← {0, 1}k(λ), and

rw ← {0, 1}.

2. For every gate G ∈ C, compute a garbled gate consisting of four
entries, indexed by elements {0, 1}2. Let w1, w2 be the input wires of
G and w3 be the output wire. For every (b1, b2) ∈ {0, 1}2, the (b1, b2)th
entry is ρb1,b2

G = Enc(kb1
w1 ⊕ k

b2
w2 , θG,b1,b2), where

θG,b1,b2 =
(
k
G(b1⊕rw1 ,b2⊕rw2 )⊕rw3
w3 ∥G(b1 ⊕ rw1 , b2 ⊕ rw2)⊕ rw3

)
.

Let the concatenation of all the ciphers in the corresponding order be
TG.

3. Let Wout be the set of all output wires of the circuit C. Compute the
translation table {Ow}w∈Wout where for each w ∈ Wout, Ow(kb+rw

w ) =
b.

4. Output ({TG}G∈C , {Ow}w∈Wout) as GC, the garbled table and
{kbw, rw}b∈{0,1}w,w∈Win

, where Win is the set of input wires.
InputEncode(sk, x)

1. Let d(λ) be the input length of C, and π :Win → [d], be the function
assigning the input wire to the bits of the input.

2. Output σx =
{(
krw⊕xπ(w) , rw ⊕ xπ(w)

)}
w

.
Decode(GC, σx)

1. For every G ∈ C, with input wire w1, w2 and output wire w3,
(a) let k′w1 , k

′
w2 be the keys recovered for the gate G.

(b) Compute k′w3∥rw3 ← Dec(k′w1 ⊕ k
′
w2 , ρ

rw1 ,rw2
G ).

2. Continue layer-by-layer till the output wires are reached. Finally out-
put {Ow(k′w)}w∈Wout .

Figure 9: Garbled scheme G.

Fig. 4) would reject,
Pr

k
u←−{0,1}w(λ);

∀j∈[w2],kj

u←−{0,1}w(λ),

rj←Destruct(Gen(kj))

[∃j ∈ [w2] Ver (k, rj) = 1] (88)

≤
∑
j∈[w2]

Pr
k,kj

u←−{0,1}w(λ);
rj←Destruct(Gen(kj))

[Ver (k, rj) = 1] (89)

=
∑
j∈[w2]

Pr
k,k̃

u←−{0,1}w(λ);
r←Destruct(Gen(k̃))

[Ver (k, r) = 1] (90)

=
∑
j∈[w2]

negl(λ) By Eq. (87) (91)

= w2 · negl(λ), (92)
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which is negligible, since w(λ) ∈ poly(λ).
Next, by the correctness of (Gen ,Destruct ,Ver ) (see Definition 5), the

second step of Verify(pk,m, sig) (see Item 2) with probability 1, i.e., it would
fail with probability 0.

Therefore, the probability that Verify(pk,m, sig) (see Fig. 4) would reject,
i.e. either one of the two steps (see Items 1 and 2) will fail, is negligible. □

Proof of Lemma 7. The main ingredient in the proof is to use Lemma 2 to
bound the probabilities of events concerning proofs sampled from Correlated-DestructionHaar ,Destruct

using the probability for the analogous events with respect to Product-DestructionHaar ,Destruct .
In particular, for every s ∈ {0, 1}w,

Pr[∧j∈[w]Success(s, qj)] (93)
= Pr

(q1,...,qw)∼Correlated-DestructionHaar ,Destruct
w

[∧j∈[w]Success(s, qj)] (94)

≤ Nw(N+w−1
w

) Pr
(q1,...,qw)∼Product-DestructionHaar ,Destruct

w

[∧j∈[w]Success(s, qj)] By Lemma 2.

(95)

Since, Product-DestructionHaar ,Destruct
w is the w-fold product of Product-DestructionHaar ,Destruct ,

we conclude from Eq. (95) that for every s ∈ {0, 1}w,

Pr[∧j∈[w]Success(s, qj)] (96)

≤ Nw(N+w−1
w

) Pr
(q1,...,qw)∼Product-DestructionHaar ,Destruct

w

[∧j∈[w]Success(s, qj)] (97)

= Nw(N+w−1
w

) ∑
s∈Success

< 1
w

(
Pr

f∼Product-DestructionHaar ,Destruct
[Success(s, f)]

)w
. (98)
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Hence, the first term in Lemma 7,

Pr
[(
∧j∈[w]Success(S, qj)

)
∧ S ∈ Success< 1

w

]
(99)

=
∑

s∈Success
< 1

w

Pr[∧j∈[w]Success(s, qj)] Pr[S = s] (100)

≤
∑

s∈Success
< 1

w

Pr[∧j∈[w]Success(s, qj)] (101)

≤ Nw(N+w−1
w

) ∑
s∈Success

< 1
w

(
Pr

f∼Product-DestructionHaar ,Destruct
[Success(s, f)]

)w
By Eq. (98)

(102)

≤ Nw(N+w−1
w

) ∑
s∈Success

< 1
w

( 1
w

)w
By definition of Success< 1

w
.

(103)

= Nw(N+w−1
w

) |Success< 1
w
|

ww
(104)

≤ Nw(N+w−1
w

) 2w
ww

(105)

= NwN !w!
(N + w − 1)!

2w
ww

(106)

= w! Nw∏
r∈[w](N+r−1)

2w
ww

= Nw∏
r∈[w](N−1+r)

(w!)2w
ww

, (107)

which is negligible considering w ∈ poly(λ) andN ∈ exp(λ), because Nw∏
r∈[w](N−1+r)

→

116 as λ→∞, and by Stirling’s upper bound,

(w!)2w
ww

≤
√

2πw
(
w
e

)w
e

1
12w 2w

ww
= (
√

2πw)e 1
12w(

e
2
)w ,

which is negligible.
Next, for the second term in Lemma 7, we use the fact that (r1, . . . , rw2)

are chosen independently of the key S submitted by the adversary. Hence,
for every s ∈ Success≥ 1

w
,

= Pr[∧j∈[w2]Fail(s, rj)] (108)

=
∏

j∈[w2]
Pr[Fail(s, rj)] =

∏
j∈[w2]

(1− Pr[Success(s, rj)]) ≤
(

1− 1
w

)w2

≤ (e−1)w = e−w.

(109)

16One way to see it is: 1 ≤ Nw∏
r∈[w](N−1+r)

≤
(

1
(1− 1

N )

)w

=
(
1 + 1

N−1

)w, which con-

verges to 1 since w ∈ o(N − 1).
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Hence,

Pr
[(
∧j∈[w]Fail(S, rj)

)
= 1 ∧ S ∈ Success≥ 1

w

]
(110)

=
∑

s∈Success≥ 1
w

Pr[∧j∈[w]Fail(s, rj)] Pr[S = s] (111)

≤
∑

s∈Success≥ 1
w

e−w Pr[S = s] By Eq. (109) (112)

≤ e−w, (113)

which is negligible.
□

E.2 Proofs of the theorems in Section 4.3

Proof of Theorem 15. Let R ∗λ be the malicious receiver, and σbR ∗ be the state
held by R ∗ at the end of the commit phase. We will show that σ0

R ∗ ≈c σ1
R ∗ .

Note that,

σ0
R ∗ = (p1, . . . , pr̃, c1, . . . , cr̃) σ1

R ∗ = (c1 ⊕ p1, . . . , cr̃ ⊕ pr̃, c1, . . . , cr̃)

where (p1, . . . , pr̃)← Destruct⊗r̃ ((Gen(k))⊗r̃) .
Since the key k is not revealed to the R ∗ during the Commit phase, by

the Pseudorandom-proofs property of (Gen ,Destruct ,Verify),

σ0
R ∗ ≈c u0

R ∗ , and σ1
R ∗ ≈c u1

R ∗ ,

where u0
R ∗ = {(u1, . . . , ur̃, c1, . . . , cr̃)}

ui
u←−{0,1}c

and u1
R ∗ = {(c1⊕u1, . . . , cr̃⊕

ur̃, c1, . . . , cr̃)}
ui

u←−{0,1}c
.

Finally, note that for any choice of (c1, . . . , cr̃), u0
R ∗ and u1

R ∗ are the same
distribution. Hence, putting it all together,

σ0
R ∗ ≈c u0

R ∗ = u1
R ∗ ≈c σ1

R ∗ .

□

Proof of Theorem 16. Let C∗λ be the malicious committer and Rλ be the
honest receiver. Let Bad-String ⊂ {0, 1}c be the set of all strings e such that
there exists k1, k2 ∈ {0, 1}w, and f1, f2 such that f2 = e⊕f1, i.e., f1⊕f2 = c
and

Pr[Ver (k1, f1) = 1] ≥
(

1− 1
r(λ)

)
, Pr[Ver (k2, f2) = 1] ≥

(
1− 1

r(λ)

)
.

Let Good-String = Bad-String.
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We start with bounding the size of Bad-String. For every k ∈ {0, 1}w, let
Proof-Challengek ⊂ {0, 1}w be the set of all strings f such that Pr[Ver (k1, d) =
1] ≥

(
1− 1

r(λ)

)
. For any (possibly non-distinct) pair of keys k1, k2 let

Proof-Challengek1,k2 be the set

Proof-Challengek1,k2 ≡ {f1⊕f2 | f1 ∈ Proof-Challengek1∧f2 ∈ Proof-Challengek2}.

By the
(
1− 1

r(λ) , 2
m(λ)

)
-bounded proofs property of Gen ,Destruct ,Ver ), for

every k ∈ {0, 1}w, |Proof-Challengek| ≤ 2m. Hence for every k1, k2 ∈ {0, 1}w,
|Proof-Challengek1,k2 | ≤ 22m.Note that, Bad-String = ⋃

k1,k2∈{0,1}w Proof-Challengek1,k2 .
Hence

|Bad-String| ≤
∑

k1,k2∈{0,1}w

Proof-Challengek1,k2 (114)

≤
∑

k1,k2∈{0,1}w

22m = 22w+2m. (115)

Let C1, . . . , Cr̃ be the random messages sent by Rλ, P1, . . . , Pr̃ be the re-
sponse of C∗λ in the Commit phase, and Good be the event that C1, . . . , Cr̃ ∈
Good-String. Let bad = Goodc. Note that,

Pr[Bad] ≤
∑
i∈[r̃]

Pr[Ci ∈ Bad-String] =
∑
i∈[r̃]

Bad-String
2c ≤

∑
i∈[r̃]

22w+2m

2c = r̃

2c−2w−2m ,

(116)
which is negligible since c− 2w − 2m ∈ ω(log(λ)).

We define the extractor E as follows. If C1, . . . , Cr̃ ∈ Bad-String, E
outputs ⊥. Else, E checks if P1, . . . , Pr̃ ∈

⋃
k Proof-Challengek and outputs 0

if that’s the case, else checks if C1 ⊕ P1, . . . , Cr̃ ⊕ Pr̃ ∈
⋃
k Proof-Challengek,

and outputs 1 if that is the case, else outputs ⊥. . Note that, since C ∈
Good-String, D and D ⊕ C cannot both be in ⋃k Proof-Challengek. Hence,
conditioned on the event Good and that E(C1, . . . , Cr̃, P1, . . . , Pr̃) = 0, then
there cannot exist k ∈ {0, 1}w such that Pr[Ver (k,Ci ⊕ Pi) = 1] ≥ 1− 1

r , for
some i ∈ [r̃]. Hence for every k ∈ {0, 1}w,

Pr[Ver (k,Ci ⊕ Pi) = 1 ∀i ∈ [r̃]] (117)

=
r̃∏
i=1

Pr[Ver (k,Ci ⊕ Pi] For any fixed key, verification is independent.

(118)

≤
(

1− 1
r

)r̃
(119)

≤ e−
r̃
r = e−λ. (120)

Let S be the random variable representing the key that C∗λ sends in the
Reveal phase. Hence for every k ∈ {0, 1}w

Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 1 | E(τ) = 0 ∧ Good ∧ S = k] ≤ e−λ,
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where τ = (C1, . . . , Cr̃, P1 . . . , Pr̃) is the transcript. Therefore,
Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 1 | E(τ) = 0 ∧ Good] (121)
=

∑
k∈{0,1}w

Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 1 | E(τ) = 0 ∧ Good ∧ S = k] Pr[S = k | E(τ) = 0 ∧ Good]

(122)
≤ e−λ

∑
k∈{0,1}w

Pr[S = k | E(τ) = 0 ∧ Good] (123)

≤ e−λ. (124)
Hence,

Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 1 | E(τ) = 0] (125)
≤ Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 1 ∧ Good | E(τ) = 0] + Pr[bad] (126)
≤ Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 1 ∧ Good | E(τ) = 0 ∧ Good] + Pr[bad] (127)

≤ e−λ + r̃

2c−2w−2m By Eqs. (116) and (124)
(128)

Similarly, we can bound

Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 0 | E(τ) = 1] ≤ e−λ + r̃

2c−2w−2m . (129)

For the case when E(τ) outputs ⊥, we only need to consider conditioned
on the event Good as demonstrated in the previous cases. Note that con-
ditioned on Good and E(τ) = ⊥, it must hold that neither P1, . . . , Pr̃ ∈⋃
k Proof-Challengek nor C1 ⊕ P1, . . . , Cr̃ ⊕ Pr̃ ∈

⋃
k Proof-Challengek. Hence

following the same analysis as above, we can bound

Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 0 | E(τ) = ⊥] ≤ e−λ + r̃

2c−2w−2m ,

and

Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) = 1 | E(τ) = ⊥] ≤ e−λ + r̃

2c−2w−2m .

Combining the last two equations, we get

Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) ̸= ⊥ | E(τ) = ⊥] ≤ 2
[
e−λ + r̃

2c−2w−2m

]
. (130)

Combining all the last-four equations, we get
Pr[µ ̸= {b∗} ∪ {⊥} | b∗ ← E(τ), µ← Reveal(C∗,R , σC ∗,R )]
=

∑
b∗∈{0,1,⊥}

Pr[Reveal(C∗λ ,Rλ, σC ∗,R ) ̸∈ {b∗} ∪ {⊥} | E(τ) = b∗]

≤
(
e−λ + r̃

2c−2w−2m

)
+
(
e−λ + r̃

2c−2w−2m

)
+
(

2
[
e−λ + r̃

2c−2w−2m

])
By Eqs. (128) to (130)

= 4
(
e−λ + r̃

2c−2w−2m

)
,
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which is negligible. □

F Lower bounds for the applications
In this section, we discuss why computational assumptions are necessary for
the cryptographic primitives we discussed in the applications. Since most
of the primitives involve classical communication, the primary technique
that we use for most of these impossibility results is a classical analogue
of shadow tomography [Aar18, Proposition 17]. We note that similar re-
sults for the analogous primitive with quantum communication, via shadow
tomography [Aar18, Theorem 2].

Proposition 5 (Impossiblity result for unconditionally secure CMA MAC).
There cannot exist an CMA secure MAC scheme (see Definition 11) that is
secure against unbounded adversaries.

Proof sketch. LetM be an arbitrary MAC scheme with key length w(λ). We
will construct an algorithm A that makes only polynomially many queries
to the Sign oracle in the forging game Strong-CMA-Forging-ExpA,Mλ . A fixes
w(λ) + 1 distinct strings x1, x2, . . . , xw+1. Let ϵ = 1

poly(λ) be a small enough
error precision. Let k denote the key sampled by the challenger, and for each
i ∈ [w+1], let Ti denote the distribution of the tags Sign(k, xi). A initializes
a set S0 to the full keyspace {0, 1}w, and samples an index J u←− [w + 1].

Next for i = 1 to J , she does the following. She makes qϵ queries to
the signing oracle with message xi, i.e., to the distribution Ti and computes
probk̃,i ≡ Prsig∼Ti [Verify(k̃, sig) = 1] for every k̃ ∈ Si−1, upto error ϵ with
probability 1 − 2−λ. By [Aar18, Proposition 17], this can be done with
qϵ ∈ poly(λ, ϵ). After this, A computes the set Si ∈ Si−1 the set of all
k̃ ∈ Si, such that probk̃,i ≥ 1− ϵ. If the estimation is correct (which happens
with probability at least 1 − 1

2λ ), Si will be non-empty since k ∈ Si. A
samples a key ki

u←− Si, and computes sigi = Sign(ki, xi+1). If i = J , she
ends the game and submits sigi to the challenger as the alleged new tagged
message, other moves to i+ 1.

Clearly, if A terminates at any stage i ∈ [w+1], then she wins the game if
J = i, and Verify(k, sigi), passes. Since w ∈ poly(λ), Pr[J = i] = 1

w+1 is non-
negligible for every i. Hence, if Pr[Verify(k, sigi) = 1] is non-negligible for any
i ∈ [w+1], thenA would win the game with a non-negligible probability, too.
Hence, it is enough to show that with overwhelming probability, ∃i ∈ [w+1],
such that Pr[Verify(k, sigi) = 1] is non-negligible.

Note that if for any i ∈ [w + 1], Pr[Verify(k, sigi) = 1] is negligible, then
Si−1 must be a negligible fraction of Si, and hence |Si−1|

|Si| . Therefore, if
Pr[Verify(k, sigi) = 1] is negligible for every i, and we assume that shadow
tomography estimations were correct upto ϵ-precision (which happens with
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probability at least 1− w+1
2λ ), then

Sw+1 ≤
|S0|
2w+1 ,

which is strictly less than 1. Hence, with probability 1 − w+1
2λ , there must

exist i ∈ [w + 1], such that Pr[Verify(k, sigi) = 1] is non-negligible. These
arguments can be formalized by choosing ϵ ∈ 1

poly(λ) appropriately. □

Proposition 6 (Impossibility of classically-verifiable private quantum coins
with unconditional security). There cannot exist a classically-verifiable private quantum coins
scheme (see Definition 6) that is secure against unbounded adversaries.

Proof sketch. Let NCV-Coin be an arbitrary classically-verifiable private quantum coins
scheme. We will construct an algorithm A that makes only polynomially
many queries to the Mint oracle in the forging game Forging-ExpA,NCV-Coin

λ .
Let k denote the key sampled by the challenger, and |ψk⟩ the corresponding
coin state, and for each i ∈ [w+1], let Tk denote the distribution of the certifi-
cate Cert -Gen(|ψk⟩). Let ϵ ∈ 1

poly(λ) .A computes probk̃ ≡ Prcert∼Tk
[Cert -Verify(k̃, cert) =

1] for every k̃ ∈ {0, 1}w, upto error ϵ with probability 1 − 2−λ, using qϵ
samples from Tk, where qϵ ∈ poly(λ, ϵ), by [Aar18, Proposition 17]. She
generates the qϵ samples from Tk, cert1, . . . , certqϵ by querying Mint oracle
qϵ times to get the state |ψk⟩⊗qϵ and then running Cert -Gen⊗qϵ on them,
to get cert1, . . . , certqϵ . If cert1, . . . , certqϵ are not distinct, she aborts. By
Item 2 of the correctness of NCV-Coin, she would abort at this step only
with negligible probability. She then computes the set S ⊂ {0, 1}w, which
is the set of all k̃ such that probk̃ ≥ 1− ϵ. Note that the if the tomography
was correct, then k ∈ S. For each k̃ ∈ S, she runs Cert -Gen(Mint(k̃)) to
get certk̃. If certk̃ ∈ {cert1, . . . , certqϵ} for every k̃ ∈ S, then she aborts.
Otherwise, she selects a certk̃ ̸∈ {cert1, . . . , certqϵ}, and outputs it along
with cert1, . . . , certqϵ . Note that if the tomography estimation was cor-
rect, then k ∈ S. Independently, by correctness of NCV-Coin, Item 2),
certk ̸∈ {cert1, . . . , certqϵ} with overwhelming probability. Hence if the to-
mography estimation was correct, she would not abort at the last step
with overwhelming probability, i.e., probability 1 − negl(λ) for some neg-
ligible probability. Note that if A did not abort, she would submit qϵ + 1
many certificates, certk̃, cert1, . . . , certqϵ , out of which the last qϵ will pass
verification with certainty due to Item 1 of the correctness of NCV-Coin,
whereas certk̃ will pass verification with probability at least 1−2ϵ, assuming
the tomography estimation was correct. Hence, assuming the tomography
estimation was correct which happens with probability 1 − 2−λ, A wins
Forging-ExpA,NCV-Coin

λ with probability at least (1 − 2ϵ)(1 − negl(λ)), which
is non-negligible since ϵ ∈ 1

poly(λ) . □
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Proposition 7 (Impossibility result for unconditionally secure One-Time-Signature).
There cannot exist a One-Time-Signature scheme (see Definition 5) that is
secure against unbounded adversaries.

Proof sketch. The attack is similar to the one against Public-key quantum
money. Let OTS be One-Time-Signature for 1-bit messages, with statistical
correctness with precision δ (see Definition 5). Let (sk, pk) be the key pair
that the challenger samples in the Forging-ExpA,OTS

λ . Given the public key
pk, A simply brute forces over all possible strings of the appropriate length,
to obtain a string sig such that Verify(pk, 0, sig) ≥ 1 − 2δ. We know such a
string exists since sig0 ← Sign(sk, 0) would pass verification with probability
at least 1− δ. □

Next for the encryption schemes, we will argue why Pseudo One-Time
Pad or pseudo OTP schemes, which are a weaker primitive than CPA en-
cryption, cannot exist unconditionally. In pseudo-one-time pads, the mes-
sage length is strictly larger than the key length and the security guarantee
is that for any two messages m0,m1, the cipher distributions (C0, C1) =
({Enc(K,m0)}

K
u←−{0,1}w(λ) , {Enc(K,m1)}

K
u←−{0,1}w(λ)) are indistinguishable,

for any two messages m0,m1.

Proposition 8 (Impossibility result for pseudo OTP). There cannot exist
a pseudo OTP scheme that is secure against unbounded adversaries. The
impossibility result holds even with quantum ciphers.

Proof sketch. We will sketch a proof for pseudo OTP schemes with classical
ciphers. Letm ∈ {0, 1}d(λ) be arbitrary, and let Cm = {Enc(K,m)}

K
u←−{0,1}w(λ) .

By the correctness guarantee of the pseudo OTP scheme, there exists a key
k such that Pr[Dec(k,Cm) = m] is overwhelming.

Hence, there are at most a 2w(λ) many messages m̃ ∈ {0, 1}d(λ), such that
there exists k ∈ {0, 1}w(λ) such that Pr[Dec(k,Cm) = m̃] is an overwhelming
function. Note that, the message length is strictly larger than the key length,
i.e., d(λ) ≥ w(λ) + 1. Hence with probability 1− 2w(λ)

2d(λ) , which is at least 1
2 ,

for M u←− {0, 1}d(λ), it holds that

Pr[Dec(k,Cm) = M ] ≤ 1− 1
p
,

for every k ∈ {0, 1}, for some p ∈ poly(λ). Since m was arbitrary the above
also holds for a randomly chosen m.

This gives us a recipe for a distinguishing attack against the pseudo OTP
scheme with respect to (m0,m1) where m0,m1

u←− {0, 1}d(λ). Given a chal-
lenge cipher distribution Cb, the all-powerful adversary would perform a
classical version of shadow tomography on the cipher distribution Cb, with
respect to the predicates {Vk,b}k∈0,1w(λ),b′∈{0,1}, where Vk,b′ outputs 1 if
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Dec(k,Cb) = mb′ . By [Aar18, Proposition 17], we only need polynomially
many samples to estimate Ec∼Cb

Pr[Vk,b′(c)] upto error ϵ for every k and b
with probability 1 − 1

2λ independent of m0,m1, where ϵ ∈ 1
poly(λ) would be

chosen later.
As discussed above, for b′ = b, there would exist a key k such that

Ec∼Cb
Pr[Vk,b′(c)] = Pr[Dec(k,Cb) = mb′ ] ≥ 1− negl(λ)

where negl(λ) is some negligible function. Similarly, for b′ = 1 − b, with
probability atleast 1

2 ,

Ec∼Cb
Pr[Vk,b′(c)] = Pr[Dec(k,Cb) = mb′ ] ≤ 1− 1

p
,∀k ∈ {0, 1}w.

The adversary upon estimating Ec∼Cb
Pr[Vk,b′(c)] for each k, b, outputs b̃

for which there exists a k for which Ec∼Cb
Pr[Vk,b̃(c)] ≥ 1− negl(λ). Hence,

given the tomography succeeded, with probability at least 1
2 , the adversary

distinguishes with probability 1
p − 2ϵ − negl(λ). Therefore, the adversary

distinguishes with probability at least

(1− 2−λ)1
2 ·
(1
p
− 2ϵ− negl(λ)

)
,

which is non-negligible if we chose ϵ ∈ 1
poly(λ) small enough. □

Lastly, for statistically binding bit-commitment schemes, it is known
that they cannot exist unconditionally, see [May97, LC97].
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