
Algorithmic Views of Vectorized Polynomial
Multipliers for NTRU and NTRU Prime (Long

Paper)
Han-Ting Chen1, Yi-Hua Chung2, Vincent Hwang2,3, Chi-Ting Liu1,2 and

Bo-Yin Yang2

1 National Taiwan University, Taipei, Taiwan
r10922073@csie.ntu.edu.tw,gting906@gmail.com

2 Academia Sinica, Taipei, Taiwan
yhchiara@gmail.com,vincentvbh7@gmail.com,by@crypto.tw

3 Max Planck Institute for Security and Privacy, Bochum, Germany

Abstract.
This paper explores the design space of vector-optimized polynomial multiplications
in the lattice-based key-encapsulation mechanisms NTRU and NTRU Prime. Since
NTRU and NTRU Prime do not support straightforward applications of number–
theoretic transforms, the state-of-the-art vector code either resorted to Toom–Cook,
or introduced various techniques for coefficient ring extensions. All these techniques
lead to a large number of small-degree polynomial multiplications, which is the
bottleneck in our experiments.
For NTRU Prime, we show how to reduce the number of small-degree polynomial
multiplications to nearly 1/4 times compared to the previous vectorized code with
the same functionality. Our transformations are based on careful choices of FFTs,
including Good–Thomas, Rader’s, Schönhage’s, and Bruun’s FFTs. For NTRU, we
show how to deploy Toom-5 with 3-bit losses.
Furthermore, we show that the Toeplitz matrix–vector product naturally translates
into efficient implementations with vector-by-scalar multiplication instructions which
do not appear in all prior vector-optimized implementations.
We choose the ARM Cortex-A72 CPU which implements the Armv8-A architecture
for experiments, because of its wide uses in smartphones, and also the Neon vector
instruction set implementing vector-by-scalar multiplications that do not appear in
most other vector instruction sets like Intel’s AVX2.
Even for platforms without vector-by-scalar multiplications, we expect significant
improvements compared to the state of the art, since our transformations reduce the
number of multiplication instructions by a large margin.
Compared to the state-of-the-art optimized implementations, we achieve 2.18× and
6.7× faster polynomial multiplications for NTRU and NTRU Prime, respectively. For
full schemes, we additionally vectorize the polynomial inversions, sorting network, and
encoding/decoding subroutines in NTRU and NTRU Prime. For ntruhps2048677,
we achieve 7.67×, 2.48×, and 1.77× faster key generation, encapsulation, and de-
capsulation, respectively. For ntrulpr761, we achieve 3×, 2.87×, and 3.25× faster
key generation, encapsulation, and decapsulation, respectively. For sntrup761, there
are no previously optimized implementations and we significantly outperform the
reference implementation.
Keywords: NTRU · NTRU Prime · Cortex-A72 · Good–Thomas FFT · Cooley–
Tukey FFT · Schönhage’s FFT · Bruun’s FFT · Toeplitz matrix–vector product ·
Toom–Cook

mailto:r10922073@csie.ntu.edu.tw, gting906@gmail.com
mailto:yhchiara@gmail.com, vincentvbh7@gmail.com, by@crypto.tw

2 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

Contents
1 Introduction 3

1.1 Polynomials in NTRU and NTRU Prime 3
1.2 Review of Transformations . 4
1.3 Prior Works, Motivations, and Contributions 5
1.4 Code. 11
1.5 Structure of this Paper. 11

2 Preliminaries 11
2.1 ARM Cortex-A72 . 11
2.2 Modular Reductions and Multiplications in Armv8-A. 13

3 Polynomial Multiplications 13
3.1 The Chinese Remainder Theorem for Polynomial Rings 14
3.2 Cooley–Tukey FFTs . 14
3.3 Bruun-Like FFTs . 14
3.4 Good–Thomas FFTs . 17
3.5 Rader’s FFT for Odd Prime p . 17
3.6 Toom–Cook (TC) and Karatsuba . 17
3.7 Schönhage’s and Nussbaumer’s FFTs . 18
3.8 Enlarging Coefficient Rings . 18

4 Toeplitz Matrix–Vector Product 18
4.1 Module and Associative Algebra . 19
4.2 Matrix–Vector Products . 19
4.3 Toeplitz Matrices . 20
4.4 Small Dimensional Cases . 20
4.5 Large Dimensional Toeplitz Transformation 22

5 Implementations 24
5.1 Good–Thomas for “Big by Small” Polynomial Multiplications 24
5.2 NTRU Implementations over Z65536 . 25
5.3 NTRU Prime Implementations over Z4591 27

6 Results 30
6.1 Benchmark Environment . 31
6.2 Performance of Vectorized Polynomial Multiplications 31
6.3 Performance of Schemes . 32

7 Discussions 34

A Proof for the Toeplitz Transformation 36

B Examples of Toeplitz Transformations 36

C Matrix multiplications 37

D Detailed Numbers of Polynomial Multiplications 38

E Performance of Inversions, Encoding, and Decoding 39

F Detailed Numbers of NTRU Prime 40

G Detailed Numbers of NTRU 41

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 3

1 Introduction
At PQCrypto 2016, the National Institute of Standards and Technology (NIST) announced
the Post-Quantum Cryptography Standardization Process for replacing existing standards
for public-key cryptography with quantum-resistant cryptosystems. For lattice-based
cryptosystems, polynomial multiplications had been the most time-consuming operations.
Recently standardized [AAC+22] Dilithium, Kyber, and Falcon wrote number-theoretic
transforms (NTTs) into their specifications in response.

NTRU is still being used by Google [KMS22], and OpenSSH 9.0 still defaults to NTRU
Prime. However, the polynomial rings of NTRU and NTRU Prime (and Saber) do not
allow NTT-based multiplications directly. The state-of-the-art vectorized implementations
resorted to Toom–Cook [Too63, CA69], introduced various techniques extending coefficient
rings, or computed the results over Z by bounding the maximum value. All these approaches
lead to a large number of small-degree polynomial multiplications, which is the bottleneck
in our experiments. We study the compatibility of vectorization and various algorithmic
techniques in the literature. We choose the ARM Cortex-A72 implementing the Armv8-
A architecture (which naturally comes with the SIMD technology Neon) for this work.
Armv8-A is currently the most prevalent architecture for mobile devices and Apple hardware.
We are interested in the following questions regarding vectorized polynomial multiplications
for NTRU and NTRU Prime on Armv8-A, exemplified by the Cortex-A72:

• NTRU Prime: Can we avoid Schönhage [Sch77] and Nussbaumer [Nus80] while
maintaining the vectorization friendliness? [BBCT22] showed that vectorized “big
by big” polynomial multiplication takes ∼ 1.5× cycles of the “big by small” one with
AVX2. [BBCT22] applied Schönhage and Nussbaumer, each doubling the sizes of
the coefficient rings for the ease of vectorizations. This leads to a large number of
small-degree polynomial multiplications. We explain how to avoid the doubling with
a series of careful choices of fast Fourier transforms (FFTs) in Section 1.3.2.

• NTRU: What is the fastest implementation when moving from Cortex-M4 to Cortex-
A72? On Cortex-M4, the fastest polynomial multiplications alternated between
NTT-based and non-NTT-based approaches as implementations gradually improved.
We explore the optimizations that can be directly adapted to vectorization in
Section 1.3.4.

• Multiplication instructions: How would the algorithmic choices change with the
presence of vector-by-scalar multiplications? Neon multiplication instructions usually
come with vector-by-vector and vector-by-scalar encodings, as opposed to Intel AVX2
with only the former. We answer this question in Section 1.3.5. The use of vector-
by-scalar multiplications eventually leads to the fastest polynomial multiplications
in NTRU and NTRU Prime on Cortex-A72.

1.1 Polynomials in NTRU and NTRU Prime
1.1.1 NTRU Prime

The NTRU Prime submission comprises two families Streamlined NTRU Prime and NTRU
LPRime. Both operate on the polynomial ring Zq[x]/⟨xp − x − 1⟩ where q and p are
primes such that the ring is a finite field. We target the polynomial multiplications for
parameter sets sntrup761 and ntrulpr761 where q = 4591 and p = 761. One should
note that sntrup761, which is used by OpenSSH, uses a (Quotient) NTRU structure, and
requires inversions in Z3[x]

/〈
x761 − x − 1

〉
and Z4591[x]

/〈
x761 − x − 1

〉
. We refer the

readers to the specification [BBC+20] for more details. With no other assumptions on the
inputs, we call a polynomial multiplication “big by big”. If one of the inputs is guaranteed
to be ternary, we call it a “big by small” polynomial multiplication. Note that big-by-big

4 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

multiplications in NTRU Prime is required only if we apply the fast constant-time GCD
for the key generation [BY19]. Although we left this optimization as a future work, we
still optimize both big-by-big and big-by-small polynomial multiplications.

1.1.2 NTRU

The NTRU submission comprises two families NTRU-HPS and NTRU-HRSS. Both operate
on polynomial rings Z3[x]/⟨Φn⟩ , Zq[x]/⟨Φn⟩ , and Zq[x]/⟨xn − 1⟩ where q is a power
of 2, n is a prime, and Φn is the nth cyclotomic polynomial, which for prime n is
xn−1
x−1 =

∑
i<n xi. We target the parameter set ntruhps2048677 where q = 2048 and

n = 677. For more parameter sets and details, we refer to the specification [CDH+20].
While NTRU also requires inversions in Z3[x]/⟨Φn⟩ and Zq[x]/⟨xn − 1⟩ , we focus on the
polynomial multiplications in Z2048[x]

/〈
x677 − 1

〉
.

1.2 Review of Transformations
We assume all rings are unital and commutative. The polynomial ring R[x] is a set of
infinite sequences in R with finitely many non-zero elements; the degree of such a sequence
(a polynomial) is the index (0-based) of the last non-zero element. We define the set of
polynomials with degree less than n as R[x]<n. A polynomial g ∈ R[x] defines an ideal
⟨g⟩ := gR[x] and a quotient ring R[x]/⟨g⟩ . We often multiply in R[x]/⟨g⟩ for a monic
g of degree n with the convention deg(g) = −1 =⇒ g = 0. We regard R[x]/⟨g⟩ as an
(associative) R-algebra [Jac12, Chapter 7] over R. This allows us to characterize R[x]/⟨g⟩
as a ring and a module. We use R[x]/⟨g⟩ while focusing on the ring or R-algebra view,
and Rn for the module view. For arbitrary R-algebra monomorphism with R[x]/⟨g⟩ as
the domain, one can derive optimizations via a series of ring or module monomorphisms.

If g = xn − ζ, R[x]/⟨g⟩ is a weighted convolution [CF94]; if further ζ = −1, it is a
negacyclic convolution; or if ζ = 1, it is a (cyclic) convolution. For a =

∑
i aix

i, b =∑
i bix

i ∈ R[x]/⟨xn − ζ⟩ , the weighted convolution c = ab ∈ R[x]/⟨xn − ζ⟩ is the size-n
polynomial

∑
i cix

i with ci =
∑i

j=0 ajbi−j + ζ
∑n−1

j=i+1 ajbn+i−j .
For a coprime factorization g =

∏
i0,...,ih−1

gi0,...,ih−1
, the Chinese remainder theorem

(CRT) allows us to multiply polynomials in R[x]/⟨g⟩ with the series of isomorphisms

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏
i0

R[x]〈∏
i1,...,ih−1

gi0,...,ih−1

〉 ∼= · · · ∼=
∏

i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉 .

Cooley–Tukey FFT [CT65] chooses gi0,...,ih−1
’s as binomials and Bruun’s FFT [Bru78,

Mur96] chooses gi0,...,ih−1
’s as trinomials of the form x2m +αxm +1. The finite field version

of Bruun’s FFT enables the choices gi0,...,ih−1
= x2m + αxm + β [BC87]. For g = xp − 1

with prime p, Rader’s FFT [Rad68] computes the map R[x]/⟨xp − 1⟩ ∼=
∏

i R[x]
/〈

x − ωi
p

〉
via a polynomial multiplication modulo xp−1 − 1 where ωp is a principal p-th root of
unity. A k-way Toom–Cook computes via the monomorphism R[x]

/〈∏2k−2
i=0 (x − si)

〉
∼=∏2k−2

i=0 R[x]/⟨x − si⟩ for some suitably chosen si’s. The case k = 2 with (s0, s1, s2) =
(0, 1, ∞) is called Karatsuba [KO62]. We usually use Toom-k when the si’s are clear.
Cooley–Tukey, Rader, and Bruun require R to endow some special structures.

There are ideas that do not ask for special structures or require simple structures
for R. If g = xn − 1 for an n with the coprime factorization n =

∏
d nd, Good–Thomas

FFT [Goo58] converts R[x]/⟨xn − 1⟩ into
⊗

d R[xd]/⟨xnd

d − 1⟩ . We then choose our
favorite transformations for each of R[xd]/⟨xnd

d − 1⟩ and tensor them. For a factorization
n = n0n1, Schönhage’s and Nussbaumer’s FFTs first start with writing g0|y=xn1 =
g(x). Schönhage requires g0|(yn0 − 1) and an injection R[x]/⟨xn1 − y⟩ ↪→ R[x]/⟨h⟩
with h|Φn0(x). Nussbaumer requires g0|Φ2n1 and an injection R[x, y]/⟨xn1−y, g0⟩ ↪→

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 5

R[x, y]/⟨h, g0⟩ with h|(x2n1 −1). The injections usually double the sizes of polynomial rings.
For finite index sets J ⊂ I, truncation [CF94, vdH04] computes the product by restricting
the domain and image of a monomorphism. For an ηI : R[x]

/〈∏
i∈I gi

〉 ∼=
∏

i∈I R[x]/⟨gi⟩ ,
we define ηJ as R[x]

/〈∏
j∈J gj

〉
∼=

∏
j∈J R[x]

/〈
gj

〉
. ηJ now computes a product with

size less than or equal to deg
(∏

j∈J gj

)
while requiring R the special structure defining

ηI .
Finally, to invert a monomorphism, it suffices to identify the homomorphic image. We

then perform additions, subtractions, multiplications, and divisions of elements in R. If an
element is not invertible, we can still perform a “division” by extracting the quotient. By
the correctness of an algorithm, if we omit the division by a ∈ R, then the result is the
a-multiple of the desired one. If we replace the coefficient ring R by aR for the image, the
desired result can be obtained by the actual division by a.

1.3 Prior Works, Motivations, and Contributions
We survey prior works and explain our motivations.

1.3.1 NTRU Prime: Prior Works

Table 1: Prior works of ntrulpr761/sntrup761 on Cortex-M4. GT = Good–Thomas,
MR = mixed–radix, I = implicit, VF = vectorization–friendly, and VUNF = vectorization–
unfriendly.

pqm4 [ACC+21](MR∗) [ACC+21](GT) [AHY22]
Idea

Toom-4 ✓ - - -
GT (I, VUNF) - - ✓ ✓
GT (I, VF) - - - ✓
Rader - ✓ - -

Applicability
Big by small ✓ ✓ ✓ ✓
Big by big ✓ ✓ - -
Coefficient ring Z4591 Z4591 Z Z

Performance
223 871 152 177 159 176 151 374

∗ Fastest mixed-radix approach in [ACC+21].

[BBC+20] was already using Good–Thomas FFT for computing big-by-small polynomial
multiplications in NTRU Prime on Intel Haswell processor with AVX2. [BBC+20] computed
the product as if one is working over the coefficient ring Z by choosing sufficiently many
moduli bounding the maximum value of the results in Z.

[ACC+21] implemented the same idea on Cortex-M4 and introduced alternative strate-
gies without switching from Zq (q = 4591 for ntrulpr761/sntrup761) to Z. They
introduced two such strategies: (i) FFT for Zq[x]

/〈
x1620 − 1

〉
with one radix-2, three

radix-3, and one radix-5 butterflies; and (ii) FFT for Zq[x]
/〈

x1530 − 1
〉

with one radix-17
and two radix-3 butterflies. The former leads to size-6 polynomial multiplications and
the later leads to size-10 polynomial multiplications. [ACC+21] explained how to use
Rader’s FFT for converting the radix-17 NTT into a size-16 cyclic convolution. [Haa21]
implemented [ACC+21]’s vectorization–unfriendly Good–Thomas on Cortex-A72.

6 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

[BBCT22] extended [BBC+20]’s AVX2 work to big-by-big polynomial multiplications
and introduced how to craft roots of unity with (truncated) Schönhage and Nussbaumer.
They were also aware of [ACC+21]’s strategies over Z4591, but crafted radix-2 roots of
unity for the ease of vectorization with AVX2 instead [BBCT22, Section 3.3]. For every
applications of Schönhage and Nussbaumer, the number of coefficients is doubled. This
implies a large number of small-degree polynomial multiplications after FFTs.

[AHY22] proposed several improvements on Cortex-M4. They extended the existence
of subtraction from radix-2 to arbitrary radices [AHY22, Section 3.1], and explained how
vectorization-friendly transformations result in flexible code-size optimizations [AHY22,
Section 3.3]. They proposed vectorization-friendly Good–Thomas for permuting on-the-fly
with compact code size.

The most extensively studied parameter sets are ntrulpr761/sntrup761. Table 1
summarizes prior works on Cortex-M4, Table 2 summarizes prior vector-optimized works.

Table 2: Prior works of ntrulpr761/sntrup761 with vector instructions. SN =
Schönhage–Nussbaumer, and E = explicit.

Platform Haswell Cortex-A72
Work [BBC+20] [BBCT22](GT) [BBCT22](SN) [Haa21]

Idea
GT (E, VUNF) ✓ ✓ - ✓
Schönhage - - ✓ -
Nussbaumer - - ✓ -
Truncation - - ✓ -

Applicability
Big by small ✓ ✓ ✓ ✓
Big by big - - ✓ -
Coefficient ring Z Z Z4591 Z

Performance
18 080 16 992 25 113 242 585

1.3.2 NTRU Prime: Motivations and Contributions

We propose four implementation strategies in this paper: (i) Good–Rader–outer, (ii)
Good–Rader–Bruun, (iii) Good–Thomas, and (iv) Good–Schönhage–Bruun. Each of our
strategies aims at addressing some particular implementation challenges. We go through
the design rationale of Good–Rader–Bruun and Good–Schönhage–Bruun, and will return
to Good–Rader–outer and Good–Thomas shortly.

Problem 1: truncated Schönhage vs vectorization–friendly Good–Thomas and Schön-
hage. Our first problem is to analyze the compatibility of vectorization–friendly Good–
Thomas and Schönhage. [BBCT22] applied Schönhage to Zq[x]

/〈
(x512 − 1)(x1024 + 1)

〉
.

We instead compute over Zq[x]
/〈

x1536 − 1
〉

by first pulling out the factor 3 via vectorization–
friendly Good–Thomas. For the power-of-two cyclic NTT, we apply Schönhage. Compared
to truncated Schönhage, our approach results in twice as many subproblems of half size.
This answers questions 6 and 7 in [Hwa22, Section 10.1].

Problem 2: Nussbaumer vs Bruun. Our second problem is to reduce the number of
polynomial multiplications. After applying Schönhage, we now have to multiply polynomials

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 7

in the ring Z[x]
/〈

x2k + 1
〉

where k = 6 in [BBCT22] and k = 5 in this work. [BBCT22]
applied Nussbaumer and doubled the number of coefficients. We avoid this doubling with
Bruun’s FFT. Our approach results in only half of size-8 polynomial multiplications with
slightly expensive computations.

Problem 3: Schönhage vs Rader-17. Our third problem aims at removing Schönhage.
We first observe that the Schönhage in [BBCT22] reduced a size-1536 problem to several
size-64 problems. We are looking for a multiple of 17 close to 1536

64 = 48. We choose 51
since one can define a size-51 cyclic NTT nicely over Zq. We optimize further by extending
the size-51 cyclic NTT to size-102.

Problem 4: generalize Bruun over x2k + c for c ̸= ±1. The last problem is to apply
Bruun’s FFT after the size-102 cyclic NTT. After the cyclic NTT, the goal is to multiply
polynomials over Zq[x]

/〈
x16 ± ωi

51
〉

. The composed multiplication over a finite field shows
that the factorization follows the same pattern of factorizing Zq[x]

/〈
x16 ± 1

〉
since 51⊥16.

We propose Good–Schönhage–Bruun based on Problems 1 and 2, and adapt the resulting
computation into Good–Rader–Bruun based on Problems 3 and 4.

Table 3: NTRU Prime strategies of this work (Cortex-A72). GRo = Good–Rader–outer,
GRB = Good–Rader–Bruun, GT = Good–Thomas, GSB = Good–Schönhage–Bruun.

NTRU Prime strategies
GRo GRB GT GSB

Idea
Good–Thomas (explicit, VF, Section 3.4) ✓ ✓ ✓ ✓
Schönhage (Section 3.7) - - - ✓
Rader (Section 3.5) ✓ ✓ - -
Bruun (Section 3.3) - ✓ - ✓
Vector-by-scalar (basemul, Section 4.2) ✓ - - -
Vector-by-vector (basemul, Section 4.2) - ✓ ✓ ✓

Applicability
Big by small ✓ ✓ ✓ ✓
Big by big ✓ ✓ - ✓
Coefficient ring Z4591 Z4591 Z Z4591

1.3.3 NTRU and Saber: Prior Works

[KRS19] applied Toom-4 to NTRU and Saber on Cortex-M4. They compared multiple
combinations of Toom-4, Toom-3, and Karatsuba. [CDH+20] later implemented Toom-
4 for NTRU on Haswell, and [MKV20] implemented Toom-4 with lazy interpolation
for Saber on Cortex-M4 and Haswell. [IKPC20] introduced the Toeplitz matrix-vector
product with Toom–Cook as the underlying monomorphism for Saber on Cortex-M4. Their
implementation remains to be the fastest non-NTT-based Saber on Cortex-M4. [CHK+21]
introduced the uses of NTTs for NTRU and Saber on Cortex-M4 and Skylake. They
improved NTRU polynomial multiplication by 10%−19% and Saber matrix-to-vector
multiplication by > 60%. Their ideas for NTRU were adapted from the works [ACC+21]
and [BBC+20].

[NG21] implemented Toom-4 and NTT for Saber, and Toom-4 for NTRU on Cortex-
A72. They skipped the NTT-based polynomial multiplications for NTRU without any

8 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

explanations. We believe the reason is that their Toom–Cook for Saber performed roughly
the same as their own NTT. Since the improvement for Saber is much more pronounced
than NTRU in [CHK+21], hypothetically, NTT-based NTRU polynomial multiplication
won’t outperform Toom–Cook on Cortex-A72. We also believe that [NG21] was not aware
of the Toeplitz approach for Saber [IKPC20] even though it was already publicly available
prior to [CHK+21]. Shortly after, [BHK+22] proposed several improvements for the NTTs
on Cortex-A72. Their NTT-based Saber matrix-to-vector multiplication was about 2×
faster than [NG21]’s.

Perhaps more surprisingly, [IKPC22] extended the Toeplitz approach for Saber to NTRU
by embedding cyclic convolutions into Toeplitz matrix-vector products of slightly larger
sizes. [IKPC22] outperformed [CHK+21] on all NTRU parameter sets. Finally, [AHY22]
outperformed [IKPC22] by proposing several NTT optimizations.

Table 4 summarizes prior works on Cortex-M4, and Table 5 summarizes prior vectorized
implementations.

Table 4: Prior works of ntruhps2048677 on Cortex-M4.

[KRS19] [CHK+21] [IKPC22] [AHY22]
Idea

Toom-4 ✓ - - -
Toeplitz - - ✓(TC-4) -
GT (implicity, VUNF) - ✓ - ✓
GT (implicity, VF) - - - ✓

Applicability
Big by small ✓ ✓ ✓ ✓
Big by big ✓ ✓ ✓ -
Coefficient ring Z216 Z Z216 Z

Performance∗∗

175k 156k 144k 140k

∗∗ We only find numbers with k-cycle as unit for some implementations.

Table 5: Prior works of ntruhps2048677 with vector instructions.

Platform Skylake Cortex-A72
Work [CDH+20]∗∗∗ [CHK+21] [NG21]

Idea
Toom-4 ✓ - ✓
Cooley–Tukey - ✓ -

Applicability
Big by small ✓ ✓ ✓
Big by big ✓ - ✓
Coefficient ring Z216 Z Z216

Performance
11 103 10 373 58 286

∗∗∗ From [CHK+21, Table 7].

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 9

1.3.4 NTRU: Motivations and Contributions

We propose three implementation strategies (i) Toeplitz–TC, (ii) Toom–Cook, and (iii)
Good–Thomas. We go through the motivations of Good–Thomas and Toom–Cook. The
Good–Thomas for NTRU is almost the same as the one for NTRU Prime since we compute
the results in Z[x], and reduce them to the polynomial rings in NTRU and NTRU Prime.

Table 6: Performance of [BHK+22]’s Saber. dim = 2 for lightsaber and dim = 3 for
saber. Numbers are stripped from Tables 4 and 5 of [BHK+22].

NTT dim × base_mul InnerProduct
lightsaber 1 529 Unknown 7 038
saber 1 529 2 689 9 284

Problem 5: NTT vs Toom–Cook. Our first problem for NTRU implementation is to
analyze the NTT on Cortex-A72 after [BHK+22]’s improvement. We roughly estimate the
performance of the vectorization–friendly Good–Thomas for Zq′ [x]

/〈
x1536 − 1

〉
where q′

is a 32-bit NTT-friendly modulus. We choose (q̃, v) = (1, 4) where v refers to the number
of coefficients in each vector (we follow the suggestions in [AHY22, Section 3.3]) and
compute size-384 cyclic NTT defined on 128-bit chunks (each holds a size-4 polynomial).
The estimation comes from two parts: size-384 cyclic NTT and size-4 base multiplications.
We derive the numbers based on [BHK+22]’s Saber on Cortex-A72. Table 6 extracts the
numbers we need. Since a 6-layer 32-bit NTT for Zq′ [x]

/〈
x256 + 1

〉
(for Saber) takes 1529

cycles, we estimate a size-384 NTT for the size-1536 cyclic polynomial ring to be no worse
than 1529 · 1536

256 · 9
6 ≈ 137611. Next, we estimate that 64 size-4 base multiplications will take

2689 − 2 · (9284 − 7038 − 1529) = 1255 cycles2. In summary, we believe that the size-384
NTT approach for Zq′ [x]

/〈
x1536 − 1

〉
will take at most 3 ·1376112+6 ·1255 = 48813 cycles

– outperforming [NG21] (58286 cycles in our benchmark). We expect the cycles to be
smaller than 48813 since cyclic NTT is faster than the negacyclic one and we overestimate
the size-384 NTT.

Problem 6: register utilization in Toom–Cook. In Armv8-A Neon, there are 32 SIMD
registers. [BHK+22] showed that this enables one to compute four layers of radix-2
butterflies for the NTTs without spilling registers (this is obvious). An immediate problem
is the register utilization for Toom–Cook. [KRS19, CDH+20, MKV20] applied Karatsuba,
Toom–3, and Toom–4. We believe the reason is that there are only 14 general purpose
registers on Cortex-M4 and 16 ymm registers in AVX2. Although [NG21] also implemented
Toom–Cook on with Armv8-A Neon, they didn’t explore the availability of high-order
Toom–Cook. In ntruhps2048677, since the coefficient ring is Z211 , we can only afford 5-bit
losses for Toom–Cook. Since evaluating Toom–4 at {0, ±1, ±2, 4, ∞} incurs 3-bit losses,
we want to find a point set for Toom–5 with 3-bit losses if we wish to replace Toom–4 with
Toom–5. A simple analysis shows that evaluating Toom–5 at {0, ±1, ±2, ±3, 4, ∞} results
in 4-bit losses. We choose the point set

{
0, ±1, ±2, ± 1

2 , 3, ∞
}

which doesn’t seem to be
used for Toom–5 in the literature.

1We only need 7 layers of radix-2 and one layer of radix-3 size-384, but overestimate the performance
as a 9-layer radix-2 computation.

2In [BHK+22], the inner product in the encryption of Saber consists of l NTTs, one dim × basemul,
and one inverse NTT. dim × basemul computes the double-width products of l size-4 base multiplications
over 256 coefficients, accumulates the products, and performs the modular reductions. We want the
performance for the case l = 1 which is not shown in their work. 9284 − 7038 − 1529 = 717 gives a
reasonable estimation for the double-width product of one size-4 base multiplication over 256 coefficients
without modular reductions. Subtracting 2 · 717 from 2689 (performance of dim × basemul for saber)
gives a reasonable estimation for the size-4 base multiplication with modular reductions.

10 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

We propose Good–Thomas based on Problem 5 and the vectorization–friendly Good–
Thomas proposed by [AHY22, Section 3.3]. Our Toom–Cook is based on Problem 6.

Table 7: NTRU strategies of this work (Cortex-A72).

NTRU strategies
Toeplitz–TC Toom–Cook Good–Thomas

Idea
Toeplitz (Section 4) ✓(TC-5) - -
Toom–5 (Section 3.6) - ✓ -
Good–Thomas (Section 3.4) - - ✓
Vector-by-scalar (basemul, Section 4.2) ✓ - -
Vector-by-vector (basemul, Section 4.2) - ✓ ✓∗∗∗∗

Applicability
Big by small ✓ ✓ ✓
Big by big ✓ ✓ -
Coefficient ring Z216 Z216 Z

∗∗∗∗ We also implemented vector-by-scalar for the base multiplication. There is no observable performance
improvement since permutation instructions are not the bottleneck in this case.

1.3.5 Matrix–Vector Multiplications and Vector-by-Scalar Multiplications

Finally, we go through the impact of vector-by-scalar multiplication instructions. The use
of vector-by-scalar multiplications leads to the fastest implementations Good–Rader–outer
for NTRU Prime and Toeplitz–TC for NTRU in this work.

Outer-product-based matrix-vector multiplications and Toeplitz matrices. In the
context of matrix–matrix multiplication in cubic time, there are six ways to iterate the
three indices i, j, k for computing C[i0][i1] = C[i0][i1] + A[i0][i2]B[i2][i1]. Iterating
with i0 → i1 → i2 is called inner-product approach and i2 → i0 → i1 is called outer-
product approach. When B is a vector, there are two ways for iterating: i0 → i2 and
i2 → i0. Since i0 → i2 is a special case of i0 → i1 → i2 and i2 → i0 is a special case
of i2 → i0 → i1, we call i0 → i2 inner-product-based and i2 → i0 outer-product-based
approaches. For vectorization, i0 → i2 means interleaving, applying vector-by-vector
multiplications, and deinterleaving. We show that i2 → i0 performs better when there
are vector-by-scalar multiplication instructions. There are no permutations if one already
has the matrix in registers and the register pressure is significantly reduced. In this work,
although we don’t have the full matrix in registers initially, we exploit the structure of
Toeplitz matrices to construct and place the matrix in registers. Since the register pressure
is significantly reduced, size-16 Toeplitz matrix–vector multiplications (which cover the
weighted convolutions) are now feasible without register spills.

Toeplitz conversions from arbitrary monomorphisms. Our next problem is about deriving
fast computations for Toeplitz matrix–vector products when the dimension is large. Let
n ≥ 2k − 1. We show that arbitrary algebra monomorphism f : R[x]<n → S gives rise to a
computation for a Toeplitz matrix–vector product with the same decreases of subproblem
sizes. If f is a composition of cheap algebra monomorphisms, then there is a corresponding
composition of Toeplitz matrix–vector products with the same series of subproblem sizes.
The resulting computation is then a fast computation for Toeplitz matrix–vector product.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 11

How to decompose the computating task into Toeplitz matrix–vector products. In
summary, we first pick our favorite algebra monomorphism f : R[x]<n → S. If f
already results in small Toeplitz matrix–vector products, then we apply vector-by-scalar
multiplication instructions. Otherwise, we turn f into something decomposing a large
Toeplitz matrix–vector product into several small ones.

Applications in this work. For ntrulpr761/sntrup761, we pick f as an FFT imple-
menting Z4591[x]

/〈
x1632 − 1

〉 ∼=
∏

i Z4591[x]
/〈

x16 ± ωi
51

〉
. Since we have weighted con-

volutions after applying f , we compute with vector-by-scalar multiplications. This is
our Good–Rader–outer. For ntruhps2048677, we regard the polynomial multiplication
in Z2048[x]

/〈
x677 − 1

〉
as a Toeplitz matrix–vector product of dimension 720. Then, we

choose f as the composition of one Toom–5, two Toom–3’s, and one Karatsuba, and turn f
into a fast computation for Toeplitz matrix–vector product. Since 720

5·32·2 = 8, we eventually
have several Toeplitz matrix–vector products of dimension 8. We compute them with
vector-by-scalar multiplications. This is our Toeplitz–TC.

1.4 Code.
Our source code can be found at https://github.com/vector-polymul-ntru-ntrup/
vector-polymul-ntru-ntrup.

1.5 Structure of this Paper.
This paper is structured as follows: Section 2 describes our target operations and platforms.
Section 3 surveys polynomial transformations used for multiplications. Section 5 describes
our implementations. We show the performance numbers in Section 6. Section 7 discusses
possible strategies based on this work for other parameter sets.

2 Preliminaries
Section 2.1 describes our target platform Cortex-A72, and Section 2.2 describes modular
reductions and multiplications.

2.1 ARM Cortex-A72
Our target platform is the ARM Cortex-A72. Cortex-A72 implements the 64-bit Armv8.0-
A instruction set architecture. It is a superscalar Central Processing Unit (CPU) with an
in-order frontend and an out-of-order backend. Instructions are first decoded into µops in
the frontend and dispatched to the backend, which contains these eight pipelines: L for
loads, S for stores, B for branches, I0/I1 for integer instructions, M for multi-cycle integer
instructions, and F0/F1 for Single-Instruction-Multiple-Data (SIMD) instructions. The
frontend can only dispatch at most three µops per cycle. Furthermore, in a single cycle,
the frontend dispatches at most one µop using B, at most two µops using I0/I1, at most
two µops using M, at most one µop using F0, at most one µop using F1, and at most two
µops using L/S [ARM15, Section 4.1].

We mainly focus on the pipelines F0, F1, L, and S for performance. F0/F1 are both
capable of various additions, subtractions, permutations, comparisons, minimums/maxi-
mums, and table lookups 3. However, multiplications can only be dispatched to F0, and
shifts to F1. The most heavily-loaded pipeline is clearly the critical path. If there are more
multiplications than shifts, we much prefer instructions that can use either pipeline to go

3There are some exceptions, including addv, smaxv, sadalp. We are not using them in this paper and
refer to [ARM15] for more details.

https://github.com/vector-polymul-ntru-ntrup/vector-polymul-ntru-ntrup
https://github.com/vector-polymul-ntru-ntrup/vector-polymul-ntru-ntrup

12 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

to F1 since the time spent in F0 will dominate our runtime. Conversely, with more shifts
than multiplications, we want to dispatch most non-shifts to F0. In practice, we interleave
instructions dispatched to the pipeline with the most workload with other pipelines (or
even L/S) — and pray. Our experiment shows that this approach generally works well. In
the case of chacha20 implementing randombytes for benchmarking [BHK+22], we even
consider a compiler-aided mixing of I0/I1, F0/F1, and L/S4. The idea also proved valuable
for Keccak on some other Cortex-A cores [BK22, Table 1].

SIMD registers. The 64-bit Armv8-A has 32 architectural 128-bit SIMD registers each
viewable as packed 8-, 16-, 32-, or 64-bit elements, denoted by the suffices .16B .8H, .4S,
and .2D respectively on the register name. For referencing a certain lane, we use the
annotation .H[5] for the 5th (zero-based) halfword of the register and similarly for other
lanes and data widths. We refer readers to [ARM21, Figure A1-1].

Armv8-A vector instructions. A plain mul multiplies corresponding vector elements and
returns same-sized results. However, mul also refers to another instruction encoding —
vector-by-scalar multiplication — if the last operand is a lane of a register. In this case
mul multiplies the vector by a scalar (the lane value). This simple feature helps a lot by
maximizing register utilization and minimizing permutations.

There are many variants of multiplications: mla/mls computes the same product vector
and accumulates to or subtracts from the destination. There are high-half products sqdmulh
and sqrdmulh. The former computes the double-size products, doubles the results, and
returns the upper halves. The latter first rounds to the upper halves before returning them.
There are long multiplications s{mul,mla,mls}l{,2}. smull multiplies the corresponding
signed elements from the lower 64-bit of the source registers and places the resulting
double-width vector elements in the destination register. It is usually paired with an
smull2 using the upper 64-bit instead. Their accumulating and subtracting variants are
s{mla,mls}l{,2}. We will not use the unsigned counterparts u{mul,mla,mls}l{,2}.

Next, the shifts: shl shifts left; sshr arithmetically shifts right; srshr rounds the
results after shifting. We won’t use the unsigned ushr and urshr.

For basic arithmetic, the usual add/sub adds/subtracts the corresponding elements.
Long variants s{add,sub}l{,2} add or subtract the corresponding elements from the
lower or upper 64-bit halves and signed-extend into double-width results5.

Then we have permutations — uzp{1,2} extracts the even and odd positions respec-
tively from a pair of vectors and concatenates the results into a vector. ext extracts the
lowest elements (there is an immediate operand specifying the number of bytes) of the
second source vector (as the high part) and concatenates to the highest elements of the
first source vector. zip{1,2} takes the bottom and top halves of a pair of vectors and
riffle-shuffles them into the destination.

Usually instructions extending or narrowing the data width are used in pairs. For exam-
ple, we frequently apply smull and smull2 to the same pair of vectors for the double-width
products. We denote (lo, hi) = (smull, smull2)(a, b) where lo is the destination register
of smull and hi is the destination register of smull2. For the accumulating/subtracting
variants s{mla, mls}{, 2}, we denote (lo, hi) = (lo, hi)(smlal, smlal2)(a, b) where the
pairs of destinations and the accumulators must be the same.

4We write some assembly and only obtain comparable performance. So we keep the implementations
with intrinsics instead for readability.

5There are several options for signed-extending vector elements — saddl{,2} and ssubl{,2} which go
to either F0/F1, sxtl{,2} to F1, and smull{,2} going to F0.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 13

2.2 Modular Reductions and Multiplications in Armv8-A.

Algorithm 1 Barrett reduction.
This is [BHK+22, Algorithm 11].
Input: a = a.

Output: a = a−
⌊

a⌊ 2eR
q ⌉

2eR

⌉
q ≡ a mod ±q.

1: sqdmulh t, a,
⌊

2eR
q

⌉
2: srshr t, t, #(e + 1)
3: mls a, t, q

Algorithm 2 Barrett multiplication.
This is [BHK+22, Algorithm 10].
Input: a = a.

Output: a = ab −
⌊

a⌊ bR
q ⌉2
R

⌉
q ≡ ab mod ±q.

1: sqrdmulh t, a,
⌊ bR

q ⌉2
2

2: mul a, a, b
3: mls a, t, q

Let q be an odd modulus, and R be the size of the arithmetic. We describe the modular
reductions and multiplications for computing in Zq. Barrett reduction [Bar86] reduces a

value a by approximating a mod ±q with a −
⌊

a·⌊ 2eR
q ⌉

2eR

⌉
(cf. Algorithm 1). For multiplying

an unknown a with a fixed value b, we compute ab −
⌊

a⌊ bR
q ⌉2
R

⌉
q ≡ ab mod ±q (Barrett

multiplication [BHK+22]) where ⌊⌉2 is the function mapping a real number r to 2
⌊

r
2
⌉

(cf. Algorithm 2). We propose heretofore unseen multiply-add/sub variants of Barrett
multiplication as shown in Algorithms 3 and 4. Algorithm 3 computes the representation
of a + bc by merging mul and add into mla. Algorithm 4 computes a − bc by toggling mls
into mla and merging mul and sub into mls. For accumulating several products, we use
Montgomery multiplication [Mon85] with long arithmetic as shown in Algorithm 5.

Algorithm 3 Barrett_mla.
Input: a = a.

Output: a = a + bc −
⌊

b⌊ cR
q ⌉2
R

⌉
q.

1: sqrdmulh t, b,
⌊ cR

q ⌉2
2

2: mla a, b, c
3: mls a, t, q

Algorithm 4 Barrett_mls.
Input: a = a.

Output: a = a − bc +
⌊

b⌊ cR
q ⌉2
R

⌉
q.

1: sqrdmulh t, b,
⌊ cR

q ⌉2
2

2: mls a, b, c
3: mla a, t, q

Algorithm 5 Inner product using Montgomery reduction [BHK+22, Algorithm 14].
Input: (a0, a1, b0, b1) = (a0, a1, b0, b1).
Output: c =

∑
i

aibi+(((
∑

i
aibi) mod ±R)(−q−1 mod ±R) mod ±R)

R ≡ (
∑

i aibi) R−1 mod ±q.
1: (lo, hi) = (smull, smull2)(a0, b0)
2: (lo, hi) = (lo, hi)(smlal, smlal2)(a1, b1)
3: uzp1 t, lo, hi
4: mul t, t, −q−1 mod ±R
5: (lo, hi) = (lo, hi)(smlal, smlal2)(t, q)
6: uzp2 c, lo, hi
7: ▷ Steps 3-6 (written c = Montgomery_long(lo, hi)) form a Montgomery reduction.

3 Polynomial Multiplications
We go through the mathematical background of various transformations. In general we
find chains of isomorphisms and monomorphisms gradually decomposing large problems
into smaller problems computably quickly. If the polynomial ring splits nicely, we have a

14 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

chain of isomorphisms. This is however generally false for NTRU and NTRU Prime and
we need to use both monomorphisms and isomorphisms.

This section is structured as follows. Section 3.1 reviews the Chinese remainder theorem
for polynomial rings. This forms the basis of various fast polynomial ring transformations.
We then survey various FFTs, including Cooley–Tukey in Section 3.2, Bruun and its finite
field counterparts in Section 3.3, Good–Thomas in Section 3.4, and Rader in Section 3.5.
Section 3.6 reviews Toom–Cook. Section 3.7 reviews Schönhage and Nussbaumer. We use
NTT as a synonym for FFT. Section 3.8 reviews the switches of coefficient rings for NTTs,
and the bit losses of Toom–Cook.

3.1 The Chinese Remainder Theorem for Polynomial Rings
Let n =

∏
l nl and gi0,...,ih−1

∈ R[x] be coprime polynomials where i0 ∈ [0, n0), . . . , ih−1 ∈
[0, nh−1). The CRT gives us the following chain of isomorphisms

R[x]〈∏
i0,...,ih−1

gi0,...,ih−1

〉 ∼=
∏
i0

R[x]〈∏
i1,...,ih−1

gi0,...,ih−1

〉 ∼= · · · ∼=
∏

i0,...,ih−1

R[x]〈
gi0,...,ih−1

〉 .

Usually, multiplications in
∏

i0,...,ih−1
R[x]

/〈
gi0,...,ih−1

〉
are cheap. If the chain of isomor-

phisms is also cheap, we have an algorithmic improvement for multiplying polynomials
in R[x]

/〈∏
i0,...,ih−1

gi0,...,ih−1

〉
. If the nl is a small constant, then it is usually cheap to

decompose a polynomial ring into a product of nl polynomial rings.
In this paper, we use the words “radix”, “split”, and “layer” for describing the choices

of transformations, demonstrated below for h = 2. Suppose we have isomorphisms

R[x]
/〈 ∏

i0,i1

gi0,i1

〉
η0∼=

∏
i0

R[x]
/〈∏

i1

gi0,i1

〉
η1∼=

∏
i0,i1

R[x]
/〈

gi0,i1

〉
where i0 ranges over 0, . . . , n0 −1 and i1 ranges over 0, . . . , n1 −1. We call the isomorphism
η0 a radix-n0 split and an implementation of η0 a radix-n0 computation. Usually, we
implement several isomorphisms together to minimize memory operations. We call the
resulting computation a multi-layer computation. Suppose we implement η0 and η1 in a
single load-store pair. If η0 and η1 rely on the same shape of computation X, we call the
resulting multi-layer computation a 2-layer X. Additionally, if n0 = n1, we call it a 2-layer
radix-n0 X.

3.2 Cooley–Tukey FFTs
In Cooley–Tukey FFTs [CT65], we have v a small constant, ζ ∈ R, ωn a principal

nth root of unity in R, n⊥char(R), and gi0,...,ih−1
= xv − ζω

∑
l

il

∏
j<l

nj

n ∈ R[x]. Since∏
i0,...,ih−1

gi0,...,ih−1
= xnv−ζn, the efficiency of multiplying polynomials in R[x]/⟨xnv − ζn⟩

boils down to the efficiency of the isomorphisms indexed by il’s. If v = 1, the NTT is
complete. An NTT with v > 1 is incomplete. Furthermore, the NTT is cyclic if ζn = 1.
We refer to [AHY22, Figures 1 and 2] as illustrations for the radix-2 and radix-3 cases.

3.3 Bruun-Like FFTs
[Bru78] first introduced the idea of factoring into trinomials gi0,...,ih−1

when n is a power
of two — as a way to reduce the number of real multiplications when we are operating
over C. [Mur96] later generalized it to arbitrary even n. For our implementations, we need
the results of factorizing x2k + 1 ∈ Fq[x] when q ≡ 3 (mod 4) [BGM93] and the composed
multiplication of polynomials in Fq[x] [BC87]. Factorizing xn − 1 over Fq is an active
research area [BGM93, Mey96, TW13, MVdO14, WYF18, WY21].

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 15

3.3.1 Review: Bruun’s Original Complex (R = C) Case

We choose gi0,...,ih−1
= x2v −

(
ζω

∑
l

il

∏
j<l

nj

n + ζ−1ω
−

∑
l

il

∏
j<l

nj

n

)
xv + 1 so x2n −

(ζn + ζ−n) xn + 1 =
∏

i0,...,ih−1
gi0,...,ih−1

. This provides us an alternative factoriza-
tion for x4n − 1 = (x2n − 1)(x2n + 1) by choosing ζn = ω4. Since the sum of a
complex number with norm 1 and its inverse is real, we only need arithmetic in R
to reach

∏
i0,...,ih−1

C[x]
/〈

gi0,...,ih−1(x)

〉
. For v = 1, if we split each gi0,...,ih−1

into the

degree-1 factors, we have C[x]
/〈

x2n + 1
〉 ∼=

∏
i0,...,ih−1

(
C[x]

/〈
x − ω

1+
∑

l
il

∏
j<l

nj

4n

〉
×

C[x]
/〈

x − ω
−1−

∑
l

il

∏
j<l

nj

4n

〉)
, which is

∏
i C[x]

/〈
x − ω1+2i

4n

〉
in disguise.

3.3.2 R = Fq Where q ≡ 3 (mod 4)

Theorem 1 ([BGM93, Theorem 1]). Let q ≡ 3 (mod 4) and 2w be the highest power of
two in q + 1. If k < w, then x2k + 1 factors into irreducible trinomials x2 + γx + 1 in Fq[x].
Else (i.e., k ≥ w) x2k + 1 factors into irreducible trinomials x2k−w+1 + γx2k−w − 1 in Fq[x].

We need Theorem 1 for our implementations. Also, given f0, f1 ∈ Fq[x], we define their
“composed multiplication” as (f0 ⊙ f1) :=

∏
f0(α)=0

∏
f1(β)=0 (x − αβ) where α, β run

over all the roots of f0, f1 in an extension field of Fq.We need the following from [BC87]:

Lemma 1 ([BC87, Equation 8]).
(∏

i0
f0,i0

)
⊙

(∏
i1

f1,i1

)
=

∏
i0,i1

(
f0,i0 ⊙ f1,i1

)
holds

for any sequences of polynomials f0,i0 , f1,i1 ∈ Fq[x].

Lemma 2 ([BC87, Equation 5]). If f0 =
∏

α(x − α) ∈ Fq[x], then for any f1 ∈ Fq[x], we
have f0 ⊙ f1 =

∏
α αdeg(f1)f1(α−1x) ∈ Fq[x].

Lemma 3. Let r be odd, xr − 1 =
∏

i0
(x − ωi0

r) ∈ Fq[x], and x2k − 1 =
∏

i1
f i1 ∈ Fq[x].

We have x2kr − 1 =
∏

i0

(
x2k − ω2ki0

r

)
=

∏
i0,i1

ω
i0deg(f i1)
r f i1(ω−i0

r x).

Proof. First observe x2kr − 1 = (xr − 1) ⊙
(

x2k − 1
)

6. By Lemma 1, this equals∏
i0

(
(x − ωi0

r) ⊙
(

x2k − 1
))

=
∏

i0,i1

(
(x − ωi0

r) ⊙ f i1

)
. Then, according to Lemma 2. we

write (x − ωi0
r) ⊙

(
x2k − 1

)
= x2k − ω2ki0

r and (x − ωi0
r) ⊙ f i1 = ω

i0deg(f i1)
r f i1(ω−i0

r x).

In summary, by Lemma 3 we have the following isomorphisms for Fq[x]
/〈

x2kr − 1
〉

:

Fq[x]〈
x2kr − 1

〉 ∼=
Fq[x]〈∏

i0

(
x2k − ω2ki0

r

)〉 ∼=
Fq[x]〈∏

i0,i1
ω

i0deg(f i1)
r f i1(ω−i0

r x)
〉 .

3.3.3 Bruun’s Butterflies and Inverses

We illustrate radix-2 Bruun’s butterflies. Define Bruunα,β as follows:

Bruunα,β :
{

R[x]
⟨x4+(2β−α2)x2+β2⟩ → R[x]

⟨x2+αx+β⟩ × R[x]
⟨x2−αx+β⟩

a0 + a1x + a2x2 + a3x3 7→ ((â0 + â1x), (â2 + â3x))

6∀q0⊥q1,
{

ωi0
q0 ωi1

q1 |0 ≤ i0 < q0, 0 ≤ i1 < q1
}

=
{

ωi
q0q1 |0 ≤ i < q0q1

}
in the splitting field of xq0q1 − 1.

16 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

where {
(â0, â1) =

(
a0 − βa2 + αβa3, a1 + (α2 − β)a3 − αa2

)
,

(â2, â3) =
(
a0 − βa2 − αβa3, a1 + (α2 − β)a3 + αa2

)
.

We compute (a0 − βa2, a1 + (α2 − β)a3, αa2, αβa3), swap the last two values implicitly,
and do an addition-subtraction (cf. Figure 1). Notice that we can use Barrett_mla and
Barrett_mls whenever a product is followed by only one accumulation or subtraction.

a0

a1

a2

a3

â0

â1

â2

â3

Figure 1: Bruun’s butterfly. (â0, â1, â2, â3) = Bruunα,β(a0, a1, a2, a3).

2Bruun−1
α,β :

{
R[x]

⟨x2+αx+β⟩ × R[x]
⟨x2−αx+β⟩ → R[x]

⟨x4+(2β−α2)x2+β2⟩
((â0 + â1x), (â2 + â3x)) 7→ 2a0 + 2a1x + 2a2x2 + 2a3x3

correspondingly defines the inverse, where{
2(a0, a1) = (â0 + â2 + (â3 − â1) α−1β, â1 + â3 − (â0 − â2) α−1β−1 (

α2 − β
)
),

2(a2, a3) = ((â3 − â1) α−1, (â0 − â2) α−1β−1).

We compute (â0 + â2, â1 + â3, â0 − â2, â3 − â1), swap the last two values implicitly, mul-
tiply the constants α−1, β, α−1β−1, and

(
α2 − β

)
, and add-sub (cf. Figure 2). Both

Bruunα,β and 2Bruun−1
α,β , takes 4 multiplications.

â0

â1

â2

â3

2a0

2a1

2a2

2a3

Figure 2: Inverse of Bruun’s butterfly. (2a0, 2a1, 2a2, 2a3) = 2Bruun−1
α,β(â0, â1, â2, â3).

3.3.4 Special Cases of Bruun’s Butterflies

Bruun√
2,1. The initial split of x2k + 1 leads to Bruun√

2,1. Since β = 1 and α2 − β =
2 − 1 = 1, we only need two multiplications with the constant

√
2.

Bruunα,±1. We only need 3 multiplications for each of Bruunα,±1 and 2Bruun−1
α,±1

since β = ±1. After we split x2k + 1 =
(

x2k−1 +
√

2x2k−2 + 1
) (

x2k−1 −
√

2x2k−2 + 1
)

,
we need Bruunα,±1 for further factorizations by Theorem 1.

Bruun
α, α2

2
. We save no multiplications, but only use 2 constants α and α2

2 instead of 4.

It is used in the split of x2k + ω2ki
r for an odd r.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 17

3.4 Good–Thomas FFTs

Good–Thomas FFT [Goo58] convert cyclic FFT and convolutions into multi-dimensional
ones for coprime nl’s. We first regard R[x]/⟨xnv − 1⟩ ∼= (R[x]/⟨xv − y⟩) [y]/⟨yn − 1⟩ as
a polynomial in y and define R̄ := R[x]/⟨xv − y⟩ [FP07]. Instead of transforming into∏

i R̄[y]
/〈

y − ωi
n

〉
with Cooley–Tukey, we choose ωnl

:= ωel
n and write ωn =

∏
l ωnl

where
(el) is the unique tuple satisfying a ≡

∑
l el(a mod nl) (mod n). Now we rewrite the image

as
∏

i R̄[y]
/〈

y −
∏

l ωi mod nl
nl

〉
. Rewriting the indices gives

∏
i0,...,ih−1

R̄[y]
/〈

y −
∏

l ωil
nl

〉
.

By introducing the equivalences y ∼
∏

l ul and ∀l, unl

l ∼ 1, we transform R̄[y]
/

⟨yn − 1⟩
into

∏
i0,...,ih−1

R̄[y]
/〈

y −
∏

l ωil
nl

〉
with a multi-dimensional FFT. Formally, we have

R̄[y]
⟨yn − 1⟩

∼=
R̄[y, u0, . . . , uh−1]〈

y −
∏

l ul, un0
0 − 1, . . . , u

nh−1
h−1 − 1

〉
∼=

∏
i0,...,ih−1

R̄[y, u0, . . . , uh−1]〈
y −

∏
l ul, u0 − ωi0

n0 , . . . , uh−1 − ω
ih−1
nh−1

〉 ∼=
∏

i0,...,ih−1

R̄[y]〈
y −

∏
l ωil

nl

〉 .

3.5 Rader’s FFT for Odd Prime p

Suppose ωp ∈ R for an odd prime p. [Rad68] introduced how to map a polynomial∑p−1
i=0 aix

i ∈ R[x]/⟨xp − 1⟩ to the tuple (âj) :=
(∑p−1

i=0 aiω
ij
p

)
∈

∏
i R[x]

/〈
x − ωi

p

〉
. Let

g ∈ Z∗
p be a generator. Now {1, . . . , p − 1} =

{
g, . . . , gp−1}

. Write j = gk and i = g−ℓ.
Then âgk − a0 = âj − a0 =

∑p−1
i=1 aiω

ij
p =

∑p−2
ℓ=0 ag−ℓωgk−ℓ

p for k = 0, . . . , p − 2.

The sequence
(∑p−2

ℓ=0 ag−ℓωgk−ℓ

p

)
j=0,...,p−2

is the size-(p − 1) cyclic convolution of

sequences
(
ag−i

)
i=0,...,p−2 and

(
ωgi

p

)
i=0,...,p−2

. We refer to [ACC+21, Appendix B]
and [AHY22, Section 3.1.3] for illustrations.

3.6 Toom–Cook (TC) and Karatsuba

Toom–Cook [CA69, Too63] and Karatsuba [KO62] are divide-and-conquer approaches
for multiplying polynomials in R[x]. We can also use them for multiplying polynomials
in R[x]<n. We introduce y ∼ x

n
k (zero-pad so that k|n) [Ber01], and map R[x]<n ↪→

R[x]
/〈

x
n
k − y

〉
[y]<k ↪→ R′[y]<k for R′ = R[x]/⟨g⟩ with deg g ≥ 2n

k − 1.
For a, b ∈ R′[y]<k, a k-way Toom–Cook computes ab ∈ R′[y]<2k−1 via evaluat-

ing a, b at suitably chosen si’s in R′. In other words, we apply the map R′[y]<k ↪→
R′[y]

/〈∏2k−2
i=0 (y − si)

〉
∼=

∏2k−2
i=0 R′[y]/⟨y − si⟩ .

If one of the evaluation points is si = ∞, the corresponding map into R′[y]/⟨y − si⟩
takes the highest degree coefficient (deg-(k −1) for a, b, deg-(2k −2) for ab). [KO62] chose
k = 2 at {si}i = {0, 1, ∞}; [Too63] chose {si}i = {0, ±1, . . . , ±(k − 1)}; and [Win80, Page
31] replaced −k + 1 with ∞. We write TC(2k−1)×k for the matrix mapping the coefficients
of a deg < k polynomial into

∏2k−2
i=0 R′[y]/⟨y − si⟩ and TC−1

(2k−1)×(2k−1) for the matrix

mapping
∏2k−2

i=0 R′[y]/⟨y − si⟩ into R[y]
/〈∏2k−2

i=0 (y − si)
〉

.

A key observation is that while working over Z2k for k = 5 and {si} =
{

0, ±1, ±2, ± 1
2 , 3, ∞

}
,

TC−1
9×9 only requires “division by 8”. This implies 3-bit losses. The matrix TC−1

9×9 will be
stated explicitly in the full version.

18 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

3.7 Schönhage’s and Nussbaumer’s FFTs

Instead of isomorphisms based on CRT, we sometimes compute chains of monomorphisms,
where we can determine the unique inverse image from the product of two images. Given
polynomials a, b ∈ R[x]/⟨g⟩ where g is a degree-n0n1 polynomial, we introduce with y =
xn1 , and write a and b as polynomials in R[x, y]/⟨xn1 − y, g0⟩ , where g0|y=xn1 = g(x). In
other words, a0(y) :=

∑n0−1
i0=0

(∑n1−1
i=0 ai+i0n1xi

)
yi0 ∈ R[x, y]/⟨xn1 − y, g0⟩ (ditto for b0).

We recap transforms when R[x, y]/⟨xn1 − y, g0⟩ does not naturally split. Our presentation
is motivated by [Ber01, Section 9, Paragraph “High–radix variants”] and [vdH04, Section 3].

We want an injection R[x]/⟨xn1 − y⟩ ↪→ R̄ such that R[x, y]/⟨xn1 − y, g0⟩ ↪→ R̄[y]
/

⟨g0⟩
is a monomorphism with R̄[y]

/
⟨g0⟩ ∼=

∏
j R̄[y]

/〈
g0,j

〉
. A Schönhage FFT [Sch77] is when

g0|(yn0 − 1), and R̄ = R[x]/⟨h⟩ with h|Φn0(x) (the n0-th cyclotomic polynomial). E.g.,
“cyclic Schönhage” for powers of two n0, n1 = n0

4 , g0 = yn0 − 1, and h = x2n1 + 1 is:

R[x]
⟨xn0n1 − 1⟩

∼=
R[x]

⟨xn1 −y⟩ [y]
⟨yn0 − 1⟩

↪→
R[x]

⟨x2n1 +1⟩ [y]
⟨yn0 − 1⟩

≜
R̄[y]

⟨yn0 − 1⟩
∼=

∏
i

R̄[y]
⟨y − xi⟩

.

We can also exchange the roles of x and y and get Nussbaumer’s FFT [Nus80]. We
map R[x, y]/⟨xn1 − y, g0⟩ ↪→ R[x, y]/⟨h, g0⟩ such that g0|Φ2n1(y) and h|(x2n1 − 1). This
can be illustrated for powers of two n0 = n1, h = x2n1 − 1, and g0 = yn0 + 1:

R[x]
⟨xn0n1 + 1⟩

∼=
R[x, y]

⟨xn1 − y, yn0 + 1⟩
↪→

R[y]
⟨yn0 +1⟩ [x]
⟨x2n1 − 1⟩

≜
R̃[x]

⟨x2n1 − 1⟩
∼=

∏
i

R̃[x]
⟨x − yi⟩

.

3.8 Enlarging Coefficient Rings

To multiply in R[x]/⟨xn − 1⟩ while R lacks a principal n-th root ωn of unity, we map
R ↪→ R′ and induce a multiplication in R′[x]/⟨xn − 1⟩ with ωn ∈ R′. For R = Zq with
signed arithmetic, we pick R′ = Zq′ with any q′ > nq2

2 [ACC+21, CHK+21] such that for
each prime p|q′, p ≡ 1 (mod n) [AB74].

The second scenario is division by 2 when 2 is not invertible, for example in Z2k .
Suppose we want r ∈ Z2k . We instead compute 2ϵr ∈ Z2k+ϵ , and right-shift 2ϵr by ϵ
bits [Ber01, Section 7, Paragraph “What to do when 2 is not invertible”]. For our Toom–
Cook defined over Z2k , we would compute in Z216 so r = 216−kr

216−k ∈ Z2k can be derived by
right-shifting 216−kr ∈ Z216 by 16 − k bits.

4 Toeplitz Matrix–Vector Product

In this section, we go through the benefit of Toeplitz matrix–vector products. The
fundamental of using Toeplitz matrix–vector product is best described via R-modules, dual
R-modules, and associative R-algebra. When the context is clear, we call an R-module a
module and an associative R-algebra an algebra.

Section 4.1 reviews some basics about modules and algebras. Section 4.2 distinguish
the inner-product-based and outer-product-based approaches for matrix–vector product.
Section 4.3 introduces Toeplitz matrix–vector product. Section 4.4 explains the benefit of
vector-by-scalar multiplications. Section 4.5 presents the generic Toeplitz matrix–vector
product conversion from ring monomorphisms computing the double-size products.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 19

4.1 Module and Associative Algebra
4.1.1 Module

Let (M, +) be an abelian group and R a ring. We turn M into an R-module by introducing
a scalar multiplication ·M : R × M → M (we write r ·M a for (·M)(r, a)) satisfying the
following:

• ∀a, b ∈ M, ∀r, s ∈ R, (r + s) ·M (a + b) = r ·M a + r ·M b + s ·M a + s ·M b.

• ∀a ∈ M, 1 ·M a = a.

• ∀a ∈ M, ∀r, s ∈ R, (rs) ·M a = r ·M (s ·M a).

We call (M, +, ·M) an R-module. For elements b0, . . . , bn−1 ∈ M , if they are linearly inde-
pendent and every element in M can be expressed as a linear combination of b0, . . . , bn−1,
we call {b0, . . . , bn−1} a basis of M and n the dimension. We denote by Rn for an n-
dimensional free module. Notice that a ring R and a polynomial ring R[x]/⟨g⟩ are free
modules, and the matrix ring Mn×n(R) is an R-module.

An R-module homomorphism is a map η : M → N satisfying:

∀r ∈ R, ∀a, b ∈ M, η(r ·M a + b) = r ·N η(a) + η(b).

One can verify that the set of R-module homomorphisms HomR(M, R) from M to R
is an R-module. We call HomR(M, R) the dual of M , and denote it as M∗. If M is a
finite-dimensional free R-module, it is isomorphic to M∗. For an R-module homomorphism
η : M → N , we define the transpose of η as the R-module homomorphism η∗ : N∗ → M∗

sending a∗ to a∗ ◦ η.

4.1.2 Associative Algebra

For rings R and A, we turn A into an associative R-algebra by introducing a module
structure. One identifies the module addition with the ring addition, and provide a scalar
multiplication ·A : R × A → A satisfying

∀r ∈ R, ∀a, b ∈ A, r ·A (ab) = (r ·A a)b = a(r ·A b).

An R-algebra homomorphism is a map that is a ring homomorphism and a module
homomorphism at the same time.

Obviously, a polynomial ring is an R-algebra and all the ring monomorphisms in
Section 3 are also module monomorphisms; therefore, they are algebra monomorphisms.

4.2 Matrix–Vector Products
There are two basic ways to multiply a matrix by a vector. Algorithm 15 computes the
result with several inner products of the rows of the matrix and the vector. Algorithm 16
accumulates several products of the columns of the matrix and the corresponding elements
of the vector. In the context of a vector instruction set, the former translates into vector-
by-vector multiplications with interleaved operands, requiring transposition of the inputs
and outputs, and a larger number of registers. The latter can be easily implemented with
vector-by-scalar multiplications, requiring much fewer permutation instructions and less
rigid instruction scheduling. It is easily seen that in the context of matrix multiplications,
Algorithm 15 is a special case of the inner product approach (cf. Algorithm 13), and
Algorithm 16 is a special case of the outer product approach (cf. Algorithm 14). We also
call them accordingly.

20 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

4.3 Toeplitz Matrices

Let M be an m × n matrix over the ring R. We call it a Toeplitz matrix if it takes the
form

M =

an−1 an−2 · · · a1 a0
an an−1 · · · a2 a1
...

...
. . .

...
...

am+n−3 am+n−4 · · · am−1 am−2
am+n−2 am+n−3 · · · am am−1

 , for all possible i, j, Mi,j = Mi+1,j+1.

We denote M as Toeplitzm×n(am+n−2, . . . , a0).

Toeplitz matrices for weighted convolutions. Express c = ab =
(∑

i aix
i
) (∑

i bix
i
)

∈
R[x]/⟨xn − ζ⟩ as c =

∑
i cix

i where ci =
(∑i

j=0 ajbi−j + ζ
∑n−1

j=i+1 ajbn+i−j

)
. We choose

an n′ ≥ n, and zero-pad a and c to size-n′ polynomials a′ and c′, respectively, and define

Expandn→n′,ζ =
(∑

i<n bix
i, ζ

)
7→

0, . . . , 0︸ ︷︷ ︸
n′−n

, bn−1, . . . , b0, ζbn−1, . . . , ζb1, 0, . . . , 0︸ ︷︷ ︸
n′−n

. We

have

c′ = Toeplitzn′×n′

(
Expandn→n′,ζ (b)

)
a′.

Toeplitzn×n

(
Expandn→n,ζ(−)

)
(−) is exactly the asymmetric_mul by [BHK+22, Section

4.2]. See [Hwa22, Paragraph “A Toeplitz matrix view of asymmetric multiplication”,
Section 8.3.2] for explanations.

4.4 Small Dimensional Cases

Toeplitz matrix–vector multiplications are extensively used in our implementations. For a
fast polynomial ring transformation resulting weighted convolutions, we apply the outer-
product-based Toeplitz matrix–vector multiplication. Existing works [SKS+21, NG21,
BHK+22] applied the inner product approach with pre-and post-transposes. The Toeplitz
structure admits fast construction of the full matrix. For a weighted convolution over
x4 − ζ, we apply Expand4→4,ζ with ext instructions, and accumulate vector-by-scalar
products. Algorithm 6 is an illustration.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 21

Algorithm 6 Outer product approach for R[x]
/〈

x4 − ζ
〉

.
Inputs: a = a0 + a1x + a2x2 + a3x3, b = b0 + b1x + b2x2 + b3x3.
Outputs: c = ab mod (x4 − ζ).

1: b = b3||b2||b1||b0
2: t0 = a3||a2||a1||a0
3: Compute t = ζa3||ζa2||ζa1||ζa0 with Barrett multiplication.
4: ▷ [BHK+22] proposed an interleaved version of this; others [SKS+21, NG21] reduced

the interleaved partial results instead.
5: ▷ The remaining steps are different from [BHK+22].
6: ext t1, t, t0, #3 · 4 ▷ t1 = a2||a1||a0||ζa3
7: ext t2, t, t0, #2 · 4 ▷ t2 = a1||a0||ζa3||ζa2
8: ext t3, t, t0, #1 · 4 ▷ t3 = a0||ζa3||ζa2||ζa1
9: (lo, hi) = (smull, smull2)(t0, b0)

10: (lo, hi) = (lo, hi)(smlal, smlal2)(t1, b1)
11: (lo, hi) = (lo, hi)(smlal, smlal2)(t2, b2)
12: (lo, hi) = (lo, hi)(smlal, smlal2)(t3, b3)
13: c = Montgomery_long(lo, hi)

Generally speaking, once the Toeplitz matrix is constructed via exts or memory
loads (recall that we can instead store an n × n Toeplitz matrix as an array of 2n − 1
elements), vector-by-scalar multiplications significantly reduce the register pressure and
remove the follow up permutation instructions. We illustrate the differences between
inner-product-based and outer-product-based Toeplitz matrix–vector multiplication for

a0 a′

1 a′
2 a′

3
a1 a0 a′

1 a′
2

a2 a1 a0 a′
1

a3 a2 a1 a0

b0
b1
b2
b3

where a′
1 = ζa3, a′

2 = ζa2, and a′
3 = ζa1 for the weighted convolutions defined in

R[x]
/〈

x4 − ζ
〉

. Figure 4 illustrates the register view of inner-product-based Toeplitz
matrix–vector multiplication and Figure 3 for the outer-product-based one. For Figure 4,
we apply log2 4 · 4

2 = 4 pairs of (trn1, trn2) to each operand to reach the register view.
While applying vector-by-vector multiplications, the interleaved operands occupy 11 reg-
isters and the interleaved partial results occupy 4 or 8 registers (this depends on the
coefficient ring). Finally, we also need to transpose the interleaved results with 4 pairs of
(trn1, trn2). On the other hand, Figure 3 requires no additional permutations and avoids
the interleaved operands and results. This implies nearly no permutation instructions and
very low register pressure.

22 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

v0 v1 v2 v3

a0

a1

a2

a3

a′
1

a0

a1

a2

a′
2

a′
1

a0

a1

a′
3

a′
2

a′
1

a0

v4

b0

b1

b2

b3

Figure 3: Outer-product-based Toeplitz matrix–vector multiplication via vector-by-scalar
multiplication. No permutations are required once we have data in registers v0, . . . , v3.
We only need 5 registers v0, . . . , v4 for holding the operands and 1 or 2 registers for the
partial results.

v0 v9 v10 v11

a0 a′
1 a′

2 a′
3

a4 a′
5 a′

6 a′
7

a8 a′
9 a′

10 a′
11

a12 a′
13 a′

14 a′
15

v4 v5 v6 v7

b0 b1 b2 b3b1 b2 b3

b4 b5 b6 b7

b8 b9 b10 b11

b12 b13 b14 b15

Figure 4: Inner-product-based Toeplitz matrix–vector multiplication via vector-by-
vector multiplication. One load (a0, . . . , a3), . . . , (a12, . . . , a15) into registers (v0, . . . , v3),
and transpose the registers as a 4 × 4 matrix. Same for (v4, . . . , v7) holding
(b0, . . . , b3), . . . , (b12, . . . , b15) and (v8, . . . , v11) holding (c0, . . . , c3), . . . , (c12, . . . , c15). No-
tice that we need to hold the registers v0, v4, . . . , v11 for computing a0b0 +c1b1 +c2b2 +c3b3.
Therefore, we need 11 registers (we don’t need (c0, c4, c8, c12)) for the operands. Since
we also need registers for holding the partial results (4 registers for Z216 and 8 registers
otherwise), the register pressure is high and forbids us to generalize to size-16 computations.

4.5 Large Dimensional Toeplitz Transformation
There are several benefits when working on Toeplitz matrices. Firstly, we only need
to store m + n − 1 coefficients Mm−1,0, . . . , M0,0, . . . , M0,n−1 of the matrix. Secondly,
additions/subtractions of two Toeplitz matrices require only m+n−1 additions/subtractions
in R. Finally, submatrices from adjacent rows and columns are also Toeplitz matrices.
These properties enable efficient divide-and-conquer computations when the dimension is
large.

For the sake of generality, multiplying two polynomials a, b ∈ R[x]<k will be considered
as ab ∈ R[x]<2k−1. Given an a ∈ R[x]<k, we write (a, −) : Rk → R2k−1 for the module
homomorphism b 7→ ab and (a, −)∗ its transpose. The Toeplitz matrix-vector product
(TMVP) can be defined for arbitrary R-algebra monomorphisms from R[x]<n to S where
n ≥ 2k − 1.

Definition 1. For arbitrary R-algebra monomorphism f : R[x]<n → S, we define fk =
f |R[x]<k

. Furthermore, let revk→k : Rk → Rk be the index reversal map and idm→n :
Rm → Rn be the inclusion (pad 0’s) map for m ≤ n. The TMVP associated with f refers
to the following module homomorphisms:(

Toeplitzk×k(−)
)

(a) = revk×k ◦ f∗
k ◦ (fk(a), −)∗ ◦ (f−1)∗ ◦ id(2k−1)→n.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 23

We call (f−1)∗ ◦ id(2k−1)→n split–matrix, fk(a) split–vector, (fk(a), −)∗ base multi-
plication, and f∗

k interpolation. If n = 2k − 1, f = TC(2k−1)×(2k−1), then this is the
k-way Toeplitz-TC matrix–vector product [IKPC20, IKPC22]. Generally, any R-algebra
monomorphism suffices. See Appendices A and B for formal proof and examples. We go
through a higher-level overview of the idea.

Since f is a ring monomorphism, we implement the module homomorphism (a, −) as
idn→(2k−1) ◦ f−1 ◦ (fk(a), −) ◦ fk, take the transpose of (a, −), and relate (a, −)∗ to the
Toeplitzation Toeplitzk×k(−) and the right-vector-multiplication (−)(a). This allows
us to convert any fast computation for (a, −) into something for

(
Toeplitzk×k(−)

)
(a).

Concretely, we suppose we have (a, −) = f ′ ◦ g−1 ◦ ((g ◦ fk) (a), −) ◦ g ◦ fk as shown in
Figure 5a where f ′ = idn→(2k−1) ◦ f−1. We transpose all the objects and maps and revert
all the arrows as shown in Figure 5b. Since (Toeplitz(−)) (a) = revk×k ◦ (a, −)∗, and
(−, a) R[x]/⟨xk−ζ⟩ = idk→k ◦ (Toeplitz(−)) (a) ◦ Expandk→k,ζ as shown in Figure 6, we
eventually have the following fast computation:

(−, a) R[x]/⟨xk−ζ⟩ = idk→k ◦revk→k ◦f∗
k ◦g∗ ◦((g ◦ fk) (a), −)∗ ◦

(
g−1)∗ ◦f ′∗ ◦Expandk→k,ζ .

Rk R2k−1
(a, −)

S S

fk f ′

(fk(a), −)

S′ S′

g g−1

((g ◦ fk) (a), −)

(a) Fast computation for (a,−).

(
Rk

)∗ (
R2k−1)∗(a, −)∗

S∗ S∗

f∗
k f ′∗

(fk(a), −)∗

S′∗ S′∗

g∗ (g−1)∗

((g ◦ fk) (a), −)∗

(b) Fast computation for (a,−)∗.

Figure 5: Fast computation for (a, −) and (a, −)∗. f ′ = idn→(2k−1) ◦ f−1.

24 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

R2k−1

Mk×k(R)

Rk

(
R2k−1)∗

(
Rk

)∗

Rk

Toeplitzk×k(−)

(−)(a)

∼=

∼=

(a, −)∗

revk×k

R[x]
⟨xk−ζ⟩

R[x]
⟨xk−ζ⟩

Expandk→k, ζ

(−, a) R[x]/⟨xk−ζ⟩

idk→k

Figure 6: Relations between (−, a) R[x]/⟨xk−1⟩ , (Toeplitzk×k(−))(a), and (a, −)∗.

5 Implementations

In this section, we describe our implementations. Section 5.1 goes through our Good–
Thomas for the “big by small” polynomial multiplications in ntrulpr761/sntrup761
and ntruhps2048677. Section 5.2 describes the “big by big” polynomial multiplica-
tions for ntruhps2048677, including Toom–Cook in Section 5.2.1 and Toeplitz–TC in
Section 5.2.2. Section 5.3 describes the “big by big” polynomial multiplications for
ntrulpr761/sntrup761, including Good–Schönhage–Bruun in Section 5.3.1, Good–Rader–
outer and Good–Rader–Bruun in Section 5.3.2.

5.1 Good–Thomas for “Big by Small” Polynomial Multiplications

We recall below the design principal of vectorization–friendly Good–Thomas from [AHY22],
and describe our Good–Thomas for the “big by small” polynomial multiplications in
ntruhps2048677 and ntrulpr761/sntrup761. For a cyclic convolution R[x]/⟨xvn0n1 − 1⟩
where n0⊥n1 and v a multiple of the number of coefficients in a vector, one introduces
the relations xv ∼ uw, un0 ∼ 1, and wn1 ∼ 1. Usually, one picks n0 and n1 care-
fully for fast computations. In the simplest form, one picks n0 as a power of 2 and
n1 = 3. Our Good–Thomas computes the polynomial multiplication in Z[x]

/〈
x1536 − 1

〉
with (v, n0, n1) = (4, 128, 3). After reaching Z[x, u, w]

/〈
x4 − uw, u3 − 1, w128 − 1

〉
, we

want to compute size-3 NTT over u3 − 1 and size-128 NTT over w128 − 1. It suffices
to choose a large modulus q′⊥384 with a principal 384-th root of unity since the prime
factorization 384 = 3 · 128 implies the definability for both u and w. We choose q′ as a
32-bit modulus bounding the maximum value of the product in Z[x]

/〈
x1536 − 1

〉
. This

implies v = 128
32 = 4 (each SIMD register in Neon holds a 128-bit chunk). Obviously, our

Good–Thomas supports the “big by small” polynomial multiplications in ntruhps2048677
and ntrulpr761/sntrup761 (generally, any “big by small” with size less than or equal to
1536).

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 25

5.2 NTRU Implementations over Z65536

We discuss our implementations for multiplying polynomials in Z2048[x]
/〈

x677 − 1
〉

for
ntruhps2048677. We propose two implementations with 16-bit arithmetic mod 65536: (i)
Toom–Cook implements Toom–Cook with the splitting sequence 5 → 3 → 3 → 2, and (ii)
Toeplitz–TC computes the Toeplitz matrix–vector product derived from Toom–Cook. Our
Toom–Cook applies a more aggressive divide-and-conquer than prior works [KRS19, NG21]
by carefully choosing the point set for evaluations. Our Toeplitz–TC reveals the benefit of
vector-by-scalar multiplications, which is more significant than the findings of [IKPC22].

5.2.1 Toom–Cook

We first describe our chosen Toom–Cook splitting sequence and implementation considera-
tions. We then detail our memory optimization for the interpolation of TC−1.

Chosen splitting sequence: Toom–5 → two Toom–3’s → Karatsuba. We first zero-pad
the size-677 polynomials to size-720 for ease of vectorization and compute in Z216 . Since the
coefficient ring of ntruhps2048677 is Z2048 and 216

2048 = 25, divisions by 2e for e = 0, . . . , 5
translate into shifting e bits. We choose the splitting sequence 5 → 3 → 3 → 2. Our
Toom–Cook consists of one layer of TC9×5, two layers of TC5×3’s, one layer of TC3×2,
675 size-8 schoolbooks, one layer of TC−1

3×3, two layers of TC−1
5×5’s, and one layer of

TC−1
9×9 . We choose the point sets

{
0, ±1, ±2, ± 1

2 , 3, ∞
}

(cf. Section 3.6) for TC9×5 and
{0, ±1, 2, ∞} for TC5×3. The interpolation matrices TC−1

9×9, TC−1
5×5, and TC−1

3×3 incur
3-, 1-, and 0-bit losses of precision, respectively. These add up to 5 bits, allowing us to
invert correctly.

Comparisons to prior splitting sequence [NG21]. [NG21] treated each polynomial as a
size-720 polynomial, and applied Toom–Cook with the splitting sequence 3 → 4 → 2 → 2.
The polynomial size goes down to 240 after the Toom-3, 60 after the Toom-4, and 15
after two Karatsuba’s. Since 60 is not a multiple of 8, [NG21] basically padded to
size-64 polynomials before Karatsuba. In this paper, we instead split via the sequence
5 → 3 → 3 → 2 down to size-8 schoolbooks. Our evaluation points for Toom-5 has the
same precision loss as Toom-4. This is 1 fewer bit than the standard {0, ±1, ±2, ±3, 4, ∞}.
We also avoid zero-padding in vectorization. We merge the two Toom-3 layers (for both
TC5×3 and TC−1

5×5) to reduce memory operations.

Memory optimizations for interpolations. Let k|n, g′ be a polynomial of degree at least
2n
k − 1, and R′ = R[x]/⟨g′⟩ . Recall that TC(2k−1)×k computes R[x]

/〈
x

n
k − y

〉
[y] ↪→

R′[y]
/〈∏2k−2

i=0 (y − si)
〉

∼=
∏2k−2

i=0 R′[y]/⟨y − si⟩ and results in computations in R[x]/⟨g′⟩ .
After examining the source code, we find that prior works [KRS19, NG21] inverted the
steps ∼= and ↪→ separately. Algorithm 7 is an illustration. Inverting ∼= means applying
the interpolation matrix and inverting ↪→ means accumulating the overlapped coefficients
while substituting y with x

n
k in each of the polynomials in R[x]/⟨g′⟩ . We instead alternate

between the inversions of ∼= and ↪→ to reduce memory operations, in essence merging two
layers of computations.

26 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

Algorithm 7 TC−1
5×5 by [KRS19, NG21].

Input: Size-3 polynomials p0, . . . , p4.
Output: c[0-10] = TC−1

5×5(p0, p1, p2, p3, p4).
1: Declare array mem[5].
2: for i = {0, 1, 2} do
3: mem[0-4] = TC−1

5×5 (p0[i], . . . , p4[i]).
4: ▷ Memory read and write.
5: for j = {0, . . . , 4} do
6: c[2j + i] = c[2j + i] + mem[j]
7: end for
8: ▷ Memory read and write.
9: end for

Algorithm 8 Our TC−1
5×5.

Input: Size-3 polynomials p0, . . . , p4.
Output: c[0-10] = TC−1

5×5(p0, p1, p2, p3, p4).
1: Registers r[11].
2: r[0-4] = TC−1

5×5 (p0[0], . . . , p4[0])
3: r[6-10] = TC−1

5×5 (p0[2], . . . , p4[2])
4: ▷ Memory read.
5: r[5] = 0
6: for j = {0, . . . , 4} do
7: r[i + 1] = r[i + 1] + r[i + 6]
8: end for
9: for j = {0, . . . , 5} do

10: c[2j] = r[j]
11: end for
12: ▷ Memory write.
13: r[0-4] = TC−1

5×5 (p0[1], . . . , p4[1])
14: ▷ Memory read.
15: for j ← 0 to 4 do
16: c[2j + 1] = r[j]
17: end for
18: ▷ Memory write.

5.2.2 Toeplitz–TC

We apply the Toeplitz matrix–vector product with TC’s as the underlying monomorphisms
and choose the same splitting sequence 5 → 3 → 3 → 2. We call it Toeplitz–TC.

Our Toeplitz–TC with the splitting sequence 5 → 3 → 3 → 2. Algorithm 9 describes
our Toeplitz–TC implementation. Essentially, we regard size-677 polynomials a and b as
size-720 polynomials. In practice, we zero-pad a and b to length 680 and omit the compu-
tations involving the indices 680, . . . , 719. Then, we apply one layer of Toeplitz–TC-5,
two layers of Toeplitz–TC-3’s, and one layer of Toeplitz–TC-2. Algorithm 10 describes
our Toeplitz–TC–3–3–2 following Toeplitz–TC–5.

Each step of Algorithms 9 and 10 is implemented as a subroutine. We merge compu-
tations while using all available registers without register spills. Initializations to zeros
and the corresponding computations are also omitted for efficiency. While applying TC,
TC′−1∗, and TC′∗, we prefer shifts over multiplications and reuse intermediate values.

Algorithm 9 Toeplitz–TC for ntruhps2048677.
Input: size-720 polynomials a, b.
Output: the size-677 polynomial c = ab mod (x677 − 1).

1: Declare uint16_t buff_a[9][288], buff_b[9][144], buff_c[9][144].
2: buff_a[0-8][0-287] = TC−1∗

9×9 (a)
3: ▷ See Section 4.5 for definition.
4: buff_b[0-8][0-143] = TC9×5 (b)
5: for i = {0, . . . , 8} do
6: buff_c[i][0-143] = Toeplitz–TC–3–3–2 (buff_a[i][0-287], buff_b[i][0-143])
7: end for
8: c[0-676] = TC∗

9×5 (buff_c[0-8][0-143])

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 27

Algorithm 10 Toeplitz–TC–3–3–2.
Input: a 144 × 144 Toeplitz matrix M, and a size-144 vector v.
Output: the size-144 vector c = M · v.

1: Declare uint16_t M1[5][96], M2[5][5][3][16].
2: Declare uint16_t v1[5][5][16], c1[5][5][16].
3: M1[0-4][0-95] = TC−1∗

5×5 (M[0-143][0-143])
4: for i = {0, . . . , 4} do
5: M2[i][0-4][0-2][0-15] =

(
TC−1∗

3×3 ◦ TC−1∗
5×5

)
(M1[i][0-95])

6: end for
7: v1[0-4][0-4][0-15] = (TC5×3 ◦ TC5×3) (v)
8: c1[i][j][0-15] = TC∗

3×2 (M2[i][j][0-2][0-15] · TC3×2 (b1[i][j][0-15]))
9: c[0-143] =

(
TC∗

5×3 ◦ TC∗
5×3

)
(c1[0-4][0-4][0-15])

Comparisons to [IKPC22]. [IKPC22] implemented the Toeplitz matrix–vector product
with TC(2k−1)×k as the underlying monomorphisms on Cortex-M4, but they chose the
splitting sequence 4 → 3 → 2 → 2. We improve the efficiency by applying a more aggressive
splitting sequence. For the first layer, we use Toeplitz–TC–5 instead of Toeplitz–TC–4.
Both strategies yield 3-bit losses. Although our TC−1∗

9×9, TC9×5, and TC∗
9×5 require more

multiplications, we have a smaller number of schoolbooks, which is the bottleneck of
the computation. Compared to [IKPC22], our Cortex-A72 implementation reaches the
best performance with size-8 schoolbooks instead of size-16 ones. Also, [IKPC22] used
TC−1∗

(2k−1)×(2k−1), TC(2k−1)×k and TC∗
(2k−1)×k to compute while we multiply some con-

stants to the precomputed matrices for easier computation. The modified TC−1∗
(2k−1)×(2k−1),

TC(2k−1)×k and TC∗
(2k−1)×k will be shown in the full version.

5.3 NTRU Prime Implementations over Z4591

In this section, we discuss our ideas for multiplying polynomials in Z4591[x]
/〈

x761 − x − 1
〉

.
We focus on the approaches without switching the coefficient ring. In other words, all
operations are defined in Z4591. For brevity, we assume R = Z4591 in this section. The state-
of-the-art vectorized “big by big” polynomial multiplication in NTRU Prime [BBCT22]
computed the product in R[x]

/〈
(x1024 + 1)(x512 − 1)

〉
with Schönhage and Nussbaumer.

This leads to 768 size-8 base multiplications where all of them are negacyclic convolutions.
[BBCT22] justified the choice as follows:

. . . since 4591 − 1 = 2 · 33 · 5 · 17, no simple root of unity is available for
recursive radix-2 FFT tricks. . . . They ([ACC+21]) performed radix-3, radix-5,
and radix-17 NTT stages in their NTT (defined in R[x]

/〈
x1530 − 1

〉
). We

instead use a radix-2 algorithm that efficiently utilizes the full ymm registers
(for vectorization) in the Haswell architecture.

We propose transformations (essentially) quartering and halving the number of coeffi-
cients involved in base multiplications for vectorization. Our first transformation computes
the result in R[x]

/〈
x1536 − 1

〉
. We apply Good–Thomas with ω3 ∈ R for a more rapid

decrease of the sizes of polynomial rings, Schönhage for radix-2 butterflies, and Bruun
over R[x]

/〈
x32 + 1

〉
. This leads to 384 size-8 base multiplications defined over trinomial

moduli. Our second and third transformations compute the result in R[x]
/〈

x1632 − 1
〉

.
We show how to incorporate Rader for radix-17 butterflies and Good–Thomas for the
coprime factorization 17 · 3 · 2. For computing the size-16 weighted convolutions, we
proposed two approaches: (i) We compute size-16 weighted convolutions with the outer
product approach. (ii) We split with Cooley–Tukey and Bruun for R[x]

/〈
x16 ± ωi

102
〉

, and
compute the products with the inner product approach. Since no extensions of coefficient

28 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

rings are involved, (i) leads to 102 size-16 weighted convolutions, and (ii) leads to 96 size-8
base multiplication with binomial moduli, 96 size-8 base multiplications with trinomial
moduli, and six size-16 base multiplications with binomial moduli.

5.3.1 Good–Thomas, Schönhage’s, and Bruun’s FFT

We first focus on Good–Schönhage–Bruun combining Good-Thomas, Schönhage’s and
Bruun’s FFTs in this section. Conceptually, we load and permute the coefficients for
Good–Thomas and Schönhage, perform five layers of radix-2 butterflies and one layer of
radix-3 butterflies to split the polynomial ring into 96 size-32 polynomial rings. Finally,
we split polynomial rings over x32 + 1 into 384 size-8 polynomial rings. In detail, the
implementation goes as follows:

1. We first transform the input array in[761] into a temporary array out[3][32][32],
where out[i][j][0-31] represents the size-32 polynomial in Z4591[x]

⟨x32+1,u−ωi
3,w−x2j⟩ .

Concretely, we combine the permutations of Good–Thomas and Schönhage as
out[i][j][k] = in[(16(64i + 33j) mod 96) + k] if (16(64i + 33j) mod 96) + k <
761 and zero otherwise. This step is the foundation of the implicit permuta-
tions [ACC+21].

2. For input small, we start with the 8-bit form of the polynomial. Since coefficients
are in {±1, 0}, we first perform five layers of radix-2 butterflies without any modular
reductions. The initial three layers of radix-2 butterflies are combined with the
implicit permutations. For the last two layers of radix-2 butterflies, we use ext if
the root is not a power of x16. For the last layer of radix-2 butterflies, we merge the
sign-extension and add-sub pairs into the sequence saddl, saddl2, ssubl, ssubl2.
We then apply one layer of radix-3 butterflies based on the improvements of [DV78,
Equation 8] and [HY22, Equation 5]. We compute the radix-3 NTT (v̂0, v̂1, v̂2) of
size-32 polynomials (v1, v2, v3) as:

v̂0 = v0 + v1 + v2,

v̂1 = (v0 − v2) + ω3(v1 − v2),
v̂2 = (v0 − v1) − ω3(v1 − v2).

We find it comparable to [AHY22, Algorithm 4] on Cortex-A72 but potentially faster
on platforms with fast single-width multiplication instructions7.

3. For the input big, we use the 16-bit form and perform one layer of radix-3 butterflies
followed by five layers of radix-2 butterflies. This implies only 1536 coefficients
are involved in radix-3 butterflies instead of 3072 as for the input small. We first
apply one layer of radix-3 butterflies and two layers of radix-2 butterflies followed by
one layer of Barrett reductions while permuting implicitly for Good–Thomas and
Schönhage. Then, we perform three layers of radix-2 butterflies and another layer of
Barrett reductions.

4. After splitting the polynomial ring into Z4591[x]
⟨x32+1,u−ωi

3,w−x2j⟩ , we apply Bruun’s but-

terflies. Specifically, the polynomial modulus x32 + 1 splits into:

x32 + 1 = (x16 + 1229x2 + 1)(x16 − 1229x2 + 1)
= (x8 + 58x4 + 1)(x8 − 58x4 + 1)(x8 + 2116x4 + 1)(x8 − 2116x4 + 1)

7Based on https://dougallj.github.io/applecpu/firestorm-simd.html, smull has the same
throughput as sqrdmulh on Apple M1. This implies short sequences of instructions are more favor-
able. The Armv8-A version of [AHY22, Algorithm 4] has longer sequence than that of [DV78, HY22].

https://dougallj.github.io/applecpu/firestorm-simd.html

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 29

We use Bruun1229,1 followed by Bruun58,1 and Bruun2116,1 to split the polynomials.
Then, we perform 384 size-8 base multiplications and compute the inverses of Bruun’s
butterflies.

Finally, we invert all the transformations.

Comparisons to existing uses of symbolic roots of unity. We compare our transformation
with the “big by big” polynomial multiplication for R[x]

/〈
x761 − x − 1

〉
by [BBCT22].

[BBCT22] computed the result in R[x]
/〈

(x1024 + 1)(x512 − 1)
〉

. We divide their trans-
formation into the following steps: (a) Introduce the equivalence x32 ∼ y and switch
to x64 ∼ −1 for Schönhage. (b) Compute FFT over (y32 + 1)(y16 − 1) with x2 as the
principal 64-th root of unity. (c) Introduce the equivalence x8 ∼ z and switch to x16 ∼ 1
for Nussbaumer. (d) Compute FFT over x16 − 1 with z as the principal 16-th root of unity.
(e) Compute base multiplications defined over z

64
8 + 1 = z8 + 1.

Compared to (a), we exploit the existing ω3 ∈ R and introduce x16 ∼ y then x32 ∼ −1
instead for Schönhage. This implies faster shrinking of polynomial rings after Schönhage.
Compared to (c), we simply split x32 + 1 into four polynomials of the form x8 + αx4 + 1,
removing the need to extend coefficient rings using Nussbaumer.

5.3.2 Good–Thomas and Rader’s

This section describes our transformation defined on R[x]
/〈

x1632 − 1
〉

. Let α = 1229,
(e0, e1, e2) = (18, 34, 51) so α2 = 2 ∈ R and ∀a ∈ Z102, a ≡ e0(a mod 17) + e1(a mod
3) + e2(a mod 2) (mod 102). We rewrite each size-1632 polynomial a(x) as the size-102
polynomial a′(x16), introduce x16 ∼ y, and compute FFTs in y. Since 4591 − 1 = 102 · 45,
there is a principal 102-th root of unity ω102 ∈ R. For evaluating y at powers of ω102, we
perform a 3-dimensional Good–Thomas based on the coprime factorization 102 = 17 · 3 · 2
as shown in Algorithm 11.

Algorithm 11 Good–Thomas, in practice merged with Algorithm 12.
Inputs: src[1632].
Outputs: poly_NTT[17][3][2][16].

1: for i = 0, . . . , 1631 do
2: Let t = i/16.
3: poly_NTT[t mod 17][t mod 3][t mod 2][i mod 16] = src[i].
4: end for

This gives us R′[y,u,w,z]
⟨y−uwz,u2−1,w3−1,z17−1⟩ where R′ = R[x]

/〈
x16 − y

〉
. For the FFT

defined on z, we use Rader’s FFT to convert the size-17 cyclic FFT into a size-16 cyclic
convolution. For the FFTs defined on u and w, we apply the straightforward radix-(3, 2)
butterfly [AHY22, Section 2.6]. Algorithm 12 illustrates the FFTs in y ∼ x16.

After substituting (y, u, w, z) with
(
x16, ωi2

2 , ωi1
3 , ωi0

17
)
, we have

∏
i0,i1,i2

R[x]
⟨x16−ω

i2
2 ω

i1
3 ω

i0
17⟩

∼=∏
i0,i1,i2

R[x]
⟨x16−ω

e0i0+e1i1+e2i2
102 ⟩ by choosing (ω2, ω3, ω17) = (ωe2

102, ωe1
102, ωe0

102). We implement
the following two approaches:

• Good–Rader–outer. We compute 102 size-16 weighted convolutions with vector-by-
scalar multiplications implementing outer products (cf. Algorithm 6). This is the
fastest and most penetrable implementation for the size-16 weighted convolutions.

• Good-Rader-Bruun. We split for i2 = 0, . . . , 15 and compute size-16 weighted
convolutions for i2 = 16. The remaining paragraphs are dedicated to this approach.

30 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

Algorithm 12 FFTs in y ∼ x16.
Inputs: poly_NTT[17][3][2][16].
Outputs: poly_NTT[17][3][2][16].

1: for i3 ∈ {0, . . . , 15} do
2: for i1 ∈ {0, 1, 2} , i2 ∈ {0, 1} do
3: rader-17 (poly_NTT[0-16][i1][i2][i3]).
4: end for
5: for i0 ∈ {0, . . . , 16} do
6: radix-(3, 2) (poly_NTT[i0][0-2][0-1][i3]).
7: end for
8: end for

Albeit it is a bit complicated, it gives several algebraic insights on vectorization-
friendly factorization for polynomial rings. We believe it will be a useful alternative
when there are no vector-by-scalar multiplications.

– Write x16 − ωe0i0+e1i1+e2i2
102 = x16 − (−1)i2ω

128(e0i0+e1i1)
51 (e2 = 51, e0i0 + e1i1 is

even, and ω2
102 = ω51 = ω256

51) and compute the following.

1. Transform Z4591[x]〈
x16−ω

128(e0i0+e1i1)
51

〉 into Z4591[x]〈
x8−ω

64(e0i0+e1i1)
51

〉 × Z4591[x]〈
x8+ω

64(e0i0+e1i1)
51

〉
with radix-2 Cooley–Tukey butterflies. The remaining problems are size-8
weighted convolutions.

2. Transform Z4591[x]〈
x16+ω

128(e0i0+e1i1)
51

〉 into Z4591[x]〈
x8+ω

32(e0i0+e1i1)
51 αx4+ω

64(e0i0+e1i1)
51

〉 and
Z4591[x]〈

x8−ω
32(e0i0+e1i1)
51 αx4+ω

64(e0i0+e1i1)
51

〉 with radix-2 Bruun’s butterflies. The

remaining problems are size-8 base multiplications defined on trinomials.
3. Compute size-8 base multiplications. The size-8 weighted convolutions

are obvious. For the trinomial cases, we extend the idea of [CHK+21,
Algorithm 17] by altering between the computations of abR−1 ∈ R[x] and
reductions modulo x8 + αx4 + β.

Finally, we invert all the computations after computing the base multiplications.

Comparisons to [ACC+21]. We compare to the size-1530 NTT by [ACC+21]. They
computed the result of R[x]

/〈
x1530 − 1

〉
with Rader’s radix-17 butterflies and two layers

of size-3 butterflies, resulting size-10 weighted convolutions at the end. This means that
the radix-17 and radix-3 butterflies are defined on size-10 polynomials. If we store every
size-10 polynomial in a pair of SIMD registers (each holding 8 halfwords), then 6

16 of the
computations are discarded at the end. We should store each size-15 polynomials in a
pair of SIMD registers, and compute radix-17, radix-3, and radix-2 butterflies, and size-15
weighted convolutions. The radix-17, radix-3, and radix2 butterflies are then the same
as our computation. This implies 1

16 of the computations will be discarded at the end.
Our transformations however admit further optimizations via truncation [vdH04], meaning
working over Z4591[x]

/〈
x1632−1
x96−1

〉
instead of Z4591[x]

/〈
x1632 − 1

〉
. We left the idea as a

future work.

6 Results
We present the performance numbers in this section. We focus on polynomial multiplica-
tions, leaving the fast constant-time GCD [BY19] as future work.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 31

6.1 Benchmark Environment
We use the Raspberry Pi 4 Model B featuring the quad-core Broadcom BCM2711 chipset. It
comes with a 32 kB L1 data cache, a 48 kB L1 instruction cache, and a 1 MB L2 cache and
runs at 1.5 GHz. For hashing, we use the aes, sha2, and fips202 from PQClean [KSSW]
without any optimizations due to the lack of corresponding cryptographic units. For the
randombytes, [BHK+22] used the randombytes from SUPERCOP which in turn used
chacha20. We extract the conversion from chacha20 into randombytes from SUPERCOP
and replace chacha20 with our optimized implementations using the pipelines I0/I1,
F0/F1. We use the cycle counter of the PMU for benchmarking. Our programs are
compilable with GCC 10.3.0, GCC 11.2.0, Clang 13.1.6, and Clang 14.0.0. We report
numbers for the binaries compiled with GCC 11.2.0.

6.2 Performance of Vectorized Polynomial Multiplications
Table 8 summarizes the performance of vectorized polynomial multiplications. For
ntruhps2048, all of our implementations outperform the state-of-the-art Toom–Cook [NG21].
Our Toeplitz–TC, Toom–Cook, and Good–Thomas are 2.18×, 1.56×, and 1.38× faster
than [NG21]. Comparing Toeplitz–TC and Toom–Cook based on the same splitting se-
quence, the result is consistent to [IKPC22]. But the most significant reason is the use
of vector-by-scalar multiplications. This finding is new. Furthermore, we clarify that
Toeplitz matrix–vector product is not privy to Toom–Cook. Comparing our Toom–Cook and
Good–Thomas, we find that Toom–Cook is more favorable for vectorization. This contradicts
to the AVX2 optimized NTTs by [CHK+21]. We left the investigation as future work.

Table 8: Overview of polymuls.
ntruhps2048677 ntrulpr761/sntrup761

Implementation Cycles Implementation Cycles
[NG21] 58 286 [Haa21] 242 585
Toeplitz–TC 26 784 Good–Rader–outer 36 266
Toom–Cook 37 318 Good–Rader–Bruun 39 788
Good–Thomas 42 355 Good–Thomas 47 696

Good–Schönhage–Bruun 50 398

For NTRU Prime, our Good–Rader–outer performs the best. It is followed by Good–
Rader–Bruun, Good–Thomas, and Good–Schönhage–Bruun. Notice that Good–Rader–
outer and Good–Rader–Bruun requires no extensions or changes of coefficient rings. Good–
Rader–outer relies on implementing matrix–vector products with vector-by-scalar multipli-
cations. If there are no vector-by-scalar multiplications, Good–Rader–Bruun demonstrates
further factorizations. The closest instances in the literature regarding vectorization are the
Good–Thomas and Schönhage–Nussbaumer by [BBCT22], and Good–Thomas by [Haa21].
[BBCT22]’s, [Haa21], and our Good–Thomas compute “big by small” polynomial multipli-
cations. We outperform [Haa21] Good–Thomas by a factor of 6.7× since they implemented
the base multiplications with scalar code using the C % operator. On the other hand,
[BBCT22]’s Schönhage–Nussbaumer and our Good–Schönhage–Bruun compute “big by
big” polynomial multiplications. Regarding the impact of switching “big by small” to
“big by big”, [BBCT22]’s Schönhage–Nussbaumer takes 25113

16992 ≈ 147.79% cycles of their
own Good–Thomas [BBCT22, Section 3.4.2] while our Good–Schönhage–Bruun takes only
50398
47696 ≈ 105.67% cycles of our own Good–Thomas. Essentially, this demonstrates the benefit
of vectorization-friendly Good–Thomas and Bruun over truncated [vdH04] Schönhage and
Nussbaumer.

32 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

We also provide the detailed cycle counts of the polynomial multiplications. Ta-
ble 14 details the numbers of Good–Thomas implementing the “big by small” polynomial
multiplications in ntruhps2048677 and sntruhp761/ntrulpr761. Table 15 details the
numbers of Toeplitz–TC and Toom–Cook implementing the “big by big” polynomial
multiplications in ntruhps2048677. For the “big by big” polynomial multiplications in
sntrup761/ntrulpr761, Table 13 details the numbers of Good–Rader–outer and Good–
Rader–Bruun and Table 16 details the numbers of Good–Schönhage–Bruun.

Compatibility with arithmetic masking. We briefly go through the compatibility of our
polynomial multiplications with arithmetic masking. Arithmetic masking is a mean of
protection from side-channel attacks. For a secret value a , we write it as a = a′♢a′′

where a′ and a′′ are called (arithmetic) shares. In higher-order masking, we write it as
a = a′♢a′′♢ · · · . We then define all the follow-up computations on the shares. If ♢ is
the addtion or multiplication in the ring where the shares belong to, any correct ring
monomorphisms can be applied to the follow-up computations. For simplicity, we assume
♢ = +. For correctness, there are constraints on the chosen ring monomorphisms. Suppose
the goal is to compute ab ∈ Zq[x]/⟨g⟩ via the secret-sharing ab = (a′ + a′′)b for some
monic polynomial g. There are two obvious ways: we compute a′b and a′′b in either
Zq[x]/⟨g⟩ or Z[x]/⟨g⟩ . The former says that any ring monomorphisms from Zq[x]/⟨g⟩
can be applied while the latter requires one to carefully bound the maximum values of a′b
and a′′b in Z. In the context of arithmetic sharing, we can only assume a′, a′′ ∈ Zq[x]/⟨g⟩
even if we know beforehand that a′ + a′′ = a has coefficients in {0, 1, 2} for NTRU and
{−1, 0, 1} for NTRU Prime. This implies a large overhead for our Good–Thomas for NTRU
and NTRU Prime and any other approaches working over Z in Tables 1, 2, 4, and 5. On
the other hand, approaches Toeplitz–TC, Toom–Cook, Good–Rader–outer, Good–Rader–
Bruun, and Good–Schönhage–Bruun require no modifications and suffer no performance
penalty (except for the growth of the number of shares, but any approaches suffer from
this) since the coefficient rings are unchanged.

6.3 Performance of Schemes
Before comparing the overall performance, we first illustrate the performance numbers of
some other critical subroutines. Most of our optimized implementations of these subroutines
are not seriously optimized except for parts involving polynomial multiplications. We
simply translate existing techniques and AVX2-optimized implementations into Neon.

Inversions. For ntruhps2048677, we need one inversion in Z2048[x]
/〈

x677 − 1
〉

and
one inversion in Z3[x]

/〈
x677−1

x−1

〉
. The inversion in Z2048[x]

/〈
x677 − 1

〉
consists of one

inversion in Z2[x]
/〈

x677 − 1
〉

and lifting to Z2048[x]
/〈

x677 − 1
〉

with eight polynomial
multiplications since the coefficient ring is Z2048. We use the 1-bit form of Z2 for the
inversion over Z2 without any algorithmic improvements and obtain a 20× speedup, leading
to 10.27× overall speedup for the inversion over Z2048. The rest of the improvement
for inversion over Z2048 comes from our improved polynomial multiplications (we use
Toeplitz–TC here). For the inversion in Z3[x]

/〈
x677−1

x−1

〉
, we use bitsliced implementation

and obtain a 8.6× speedup. For sntrup761, we need one inversion over Z4591 and one
inversion over Z3. We bitslice the inversion over Z3, and identify and vectorize the hottest
loop in the inversion over Z4591.

Sorting network, encoding, and decoding. We translate AVX2-optimized sorting net-
work, encoding, and decoding into Neon. Notice that inversions over Z2, Z3, and Z4591,

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 33

sorting networks, encoding, and decoding are implemented in a generic sense. With fairly
little effort, they can be used for other parameter sets.

Table 17 summarizes the performance of inversions, encoding, and decoding.

Performance of ntruhps2048677 and sntrup761/ntrulpr761. Table 9 summarizes our
ntruhps2048677 and Table 10 summarizes our sntrup761/ntrulpr761. We compare our
fastest ntruhps2048677 implementation to the existing NTRU on Cortex-A72 [NG21].
Our key generation is 7.67× faster. The main contribution is our optimized inversions
in Z2[x]

/〈
x677 − 1

〉
and Z3[x]

/〈
x677−1

x−1

〉
, followed by polynomial multiplications in

Z2048[x]
/〈

x677 − 1
〉

(for lifting) and sorting network. Our encapsulation is 2.48× faster.
The main contribution is the sorting network followed by polynomial multiplications.
Finally, our decapsulation is 1.77× faster. The improvement entirely comes from the
improved polynomial multiplications. Notice that Good–Thomas can only be applied to
“big by small” polynomial multiplications. For concrete evaluations, we pair Good–Thomas
with Toeplitz–TC and Toom–Cook, and provide the resulting numbers. For ntrulpr761
we outperform [Haa21] by a factor of 6.7. [Haa21] didn’t implement sntrup761.

Finally, Table 19 details the numbers of ntruhps2048677 with Toeplitz–TC, and
Table 18 details the numbers of sntrup761/ntrulpr761 with Good–Rader–outer. Notice
that only performance-critical subroutines are shown.

Table 9: Overall cycles of ntruhps2048677.
ntruhps2048677

Operation Key generation Encapsulation Decapsulation
Ref 8 245 039 227 980 331 274
[NG21] 7 686 272 196 526 212 265
Toeplitz–TC 1 002 187 79 213 120 208
Toom–Cook 1 127 089 88 037 146 422
Good–Thomas (with Toeplitz–TC) 1 061 870 96 814 152 059
Good–Thomas (with Toom–Cook) 1 178 983 97 182 165 381

Table 10: Overall cycles of sntrup761/ntrulpr761.
sntrup761

Operation Key generation Encapsulation Decapsulation
Ref 273 598 470 29 750 035 89 968 342
Good–Rader–outer 6 297 001 144 681 145 777
Good–Rader–Bruun 6 333 403 147 977 158 233
Good–Thomas 6 340 758 153 465 182 271
Good–Schönhage–Bruun 6 345 787 163 305 193 626

ntrulpr761
Operation Key generation Encapsulation Decapsulation
Ref 29 853 635 59 572 637 89 185 030
[Haa21] 775 472 1 150 294 1 417 394
Good–Rader–outer 257 382 400 223 435 789
Good–Rader–Bruun 260 606 412 629 461 250
Good–Thomas 269 590 422 102 471 014
Good–Schönhage–Bruun 272 738 436 965 499 559

34 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

7 Discussions
We briefly discuss possible future work. Platform-wise, we expect significant performance
improvement for ntrulpr761/sntrup761 on Haswell with AVX2. For NTRU, we would
like to explore the performance of Toom–Cook with Toom–5 on Skylake and see if it is
faster than [CHK+21]’s mixed–radix NTT. Parameter-wise, we briefly draft the following
approaches.

We first go through the NTRU parameter sets since they are more simple. For
ntruhrss701, we choose a transformation with the same series of subproblem sizes as
ntruhps2048677 and replace TC-3 with 3-way Karatsuba due to the increase of coefficient
ring. For ntruhps2048509, we suggest TC-4 and Karatsuba. For ntruhps4096821, we
borrow the transformation size 1728 from [CHK+21]’s NTTs, and suggest TC-4, TC-3,
3-way Karatsuba, and Karatsuba. For ntruhps40961229, we borrow the transformation
size 2560 from [BBC+20, Hwa22]’s NTTs for ntrulpr1277/sntrup1277, and suggest TC-5
and Karatsuba. For ntruhrss1373, we suggest TC-3 and Karatsuba. Notice that all the
transformations for NTRU can be turned into transformations for Toeplitz matrix–vector
products. Table 11 summarizes the choices of transformations.

Table 11: Our suggestions for NTRU parameter sets. Strategies of ntruhps2048677 are
implemented in this paper. K = Karatsuba.

ntruhps2048509 ntruhps2048677 ntruhrss701

Target ring Z2048[x]
⟨x509−1⟩

Z2048[x]
⟨x677−1⟩

Z8192[x]
⟨x701−1⟩

Ring/Toeplitz Z65536[x]
⟨x1024−1⟩ /512 Z65536[x]

⟨x1440−1⟩ /720 Z65536[x]
⟨x1440−1⟩ /720

Idea
TC-5 - ✓ ✓
TC-4 ✓ - -
TC-3 - ✓ -
3-way K - - ✓
K ✓ ✓ ✓

ntruhps4096821 ntruhps40961229 ntruhrss1373

Target ring Z4096[x]
⟨x821−1⟩

Z4096[x]
⟨x1229−1⟩

Z16384[x]
⟨x1373−1⟩

Ring/Toeplitz Z65536[x]
⟨x1728−1⟩ /864 Z65536[x]

⟨x2560−1⟩ /1280 Z65536[x]
⟨x2880−1⟩ /1440

Idea
TC-5 - ✓ -
TC-4 ✓ - -
TC-3 ✓ - ✓
3-way K ✓ - -
K ✓ ✓ ✓

Next, we go through our suggestions for NTRU Prime parameter sets. We pro-
pose four strategies for ntrulpr857/sntrup857. The first two strategies operate over
Z5167[x]

/〈
x1968 − 1

〉
and are similar to Good–Rader–outer and Good–Rader–Bruun with

Bruun’s FFT excluded. We first apply a 3-dimensional Good–Thomas based on the
coprime factorization 1968 = 41 · 3 · 16. We then apply Rader’s FFT for the size-41
NTT, and Cooley–Tukey FFT of sizes 3 and 2. This leaves us with the product ring∏

i Z5167[x]
/〈

x8 ± ωi
246

〉
, and we compute the products with vector-by-scalar or vector-by-

vector multiplications according to the target architecture. The remaining two strategies
are similar to Good–Schönhage–Bruun by operating over Z5167[x]

/〈
x1792 − 1

〉
. We first

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 35

pull out the factor 7 with vectorization–friendly Good–Thomas, and apply Schönhage
for the power-of-two dimension. The remaining problem is the multiplication in the
product ring

∏
i Z5167[x]

/〈
x16 + 1

〉
. We apply vector-by-scalar multiplications or Bruun’s

with vector-by-vector multiplications. For ntrulpr1013/sntrup1013, we first choose the
composition of vectorization–friendly 3-dimensional Good–Thomas and Rader’s FFT for
Z7177[x]

/〈
x2496 − 1

〉
, and truncate the computation to Z7177[x]

/〈
x2496−1
x312+1

〉
. The remain-

ing problem is the multiplication in the product ring
∏

i Z7177[x]
/〈

x16 − ωi
312

〉
. Again,

we choose between vector-by-scalar and vector-by-vector multiplications according to the
architecture. Finally, for ntrulpr1277/sntrup1277, we truncate the 3-dimensional Good–
Thomas and Rader from Z7879[x]

/〈
x4992 − 1

〉
to Z7879[x]

/〈(
x2496 + 1

) (
x64 − 1

)〉
, and

choose between Toeplitz matrix–vector products with TC-4 and Bruun’s FFT. Table 12
summarizes the choices of transformations.

Table 12: Our suggestions for NTRU Prime parameter sets.

ntrulpr857/sntrup857 ntrulpr1013/sntrup1013

Target ring Z5167[x]
⟨x857−x−1⟩

Z7177[x]
⟨x1013−x−1⟩

Ring Z5167[x]
⟨x1968−1⟩

Z5167[x]
⟨x1792−1⟩

Z7177[x]〈
x2496−1
x312+1

〉
Idea

Good–Thomas ✓ ✓ ✓ ✓ ✓ ✓
Truncation - - - - ✓ ✓
Schönhage - - ✓ ✓ - -
Rader ✓ ✓ - - ✓ ✓
Bruun - - - ✓ - -
Vector-by-scalar ✓ - ✓ - ✓ -
Vector-by-vector - ✓ - ✓ - ✓

ntrulpr1277/sntrup1277

Target ring Z7879[x]
⟨x1277−x−1⟩

Ring Z7879[x]
⟨(x2496+1)(x64−1)⟩

Idea
Good–Thomas ✓ ✓
Rader ✓ ✓
Bruun - ✓
Toeplitz(TC-4) ✓ -
K - ✓
Vector-by-scalar ✓ -
Vector-by-vector - ✓

36 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

A Proof for the Toeplitz Transformation

For arbitrary algebra monomorphisms f : R[x]<n → S, fk := f |R[x]<k
, and module

homomorphism (a, −) =
{

Rk → Rn

b 7→ ab
where n ≥ 2k − 1, we have

(
Toeplitzk×k(−)

)
(a) = revk×k ◦ f∗

k ◦ (fk(a), −)∗ ◦ (f−1)∗ ◦ id(2k−1)→n.

Proof. Observe (a, −)∗ = f∗
k ◦ (fk(a), −)∗ ◦

(
f−1)∗ ◦ id(2k−1)→n, it remains to show(

Toeplitzk×k(−)
)

(a) = revk×k ◦ (a, −)∗. Let z = (z0, . . . , z2k−2), [k] = {0, . . . , k − 1},
and 0m0,m1 the m0 × m1 matrix of zeros.

(
revk×k ◦ Toeplitzk×k(z)

)
(a) = (zi+j)(i,j)∈[k]2 (aj)(j,0)∈[k]×[1] =

 ∑
j∈[k]

zi+jaj

(i,0)∈[k]×[1]

=
∑
j∈[k]

(zi+jaj)(i,0)∈[k]×[1] =
∑
j∈[k]

(0k,j ajIk 0k,k−j−1) (zh)(h,0)∈[2k−1]×[1]

= Toeplitzk×(2k−1) (01,k−1, a0, . . . , ak−1, 01,k−1) (zh)(h,0)∈[2k−1]×[1] = (a, −)∗(z).

Applying revk×k from the left finishes the proof (cf. [Win80, Theorem 6]).

B Examples of Toeplitz Transformations

We give some examples of f ’s implementing
(

z1 z2
z0 z1

) (
a1
a0

)
:

(
0 1
1 0

) (
z1 z2
z0 z1

) (
a0
a1

)

=
(

1 1 0
0 1 1

) a0 0 0
0 a0 + a1 0
0 0 a1

 1 −1 0
0 1 0
0 −1 1

 z0
z1
z2

=

(
1 1 1
1 ω3 ω2

3

) a0 + a1 0 0
0 a0 + ω3a1 0
0 0 a0 + ω2

3a1

 F−1
3

z0
z1
z2

=
(

1 1 1 1
1 ω4 ω2

4 ω3
4

)
a0 + a1 0 0 0

0 a0 + ω4a1 0 0
0 0 a0 + ω2

4a1 0
0 0 0 a0 + ω3

4a1

 F−1
4

z0
z1
z2
0

where F−1
k =

(
F−1

k

)T is the inverse of the cyclic size-k FFT.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 37

C Matrix multiplications

Algorithm 13 Inner-product-based matrix–matrix multiplication.
1: for i0 = 0, . . . , n0 − 1 do
2: for i1 = 0, . . . , n1 − 1 do
3: for i2 = 0, . . . , n2 − 1 do
4: C[i0][i1] = C[i0][i1] + A[i0][i2]B[i2][i1]
5: end for
6: ▷ Inner product of the vectors A[i0][-] and B[-][i1].
7: end for
8: end for

Algorithm 14 Outer-product-based matrix–matrix multiplication.
1: for i2 = 0, . . . , n2 − 1 do
2: for i0 = 0, . . . , n0 − 1 do
3: for i1 = 0, . . . , n1 − 1 do
4: C[i0][i1] = C[i0][i1] + A[i0][i2]B[i2][i1]
5: end for
6: end for
7: ▷ Outer product of the vectors A[-][i2] and B[i2][-].
8: end for

Algorithm 15 Inner-product-based matrix–vector multiplication.
1: for i0 = 0, . . . , n0 − 1 do
2: for i2 = 0, . . . , n2 − 1 do
3: C[i0] = C[i0] + A[i0][i2]B[i2]
4: end for
5: ▷ Inner product of the vectors A[i0][-] and B[-].
6: end for

Algorithm 16 Outer-product-based matrix–vector multiplication.
1: for i2 = 0, . . . , n2 − 1 do
2: for i0 = 0, . . . , n0 − 1 do
3: C[i0] = C[i0] + A[i0][i2]B[i2]
4: end for
5: ▷ Outer product of the vectors A[-][i2] and B[i2].
6: end for

38 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

D Detailed Numbers of Polynomial Multiplications

Table 13: Detailed cycle counts of Good–Rader–outer and Good–Rader–Bruun, excluding
reductions to Z4591[x]

/〈
x761 − x − 1

〉
.

Good–Rader–outer Good–Rader–Bruun

Operation Count Cycles Total Operation Count Cycles Total
polymul - - 33 218 polymul - - 37 475
Good-Rader-17 24 395 9 480 Good-Rader-17 24 407 9 768
Radix-(3, 2) 2 2 337 4 674 Radix-(3, 2) 2 2 339 4 678
Weighted-16x16 1 9 093 9 093 CT 2 570 1 140

Bruun 2 838 1 676
Weighted-8x8 12 244 2 928
Trinomial-8x8 12 328 3 936
CT−1 1 592 592
Bruun−1 1 989 989
Weighted-16x16 1 1 019 1 019

Radix-(3, 2)−1 1 2 337 2 337 Radix-(3, 2)−1 1 2 341 2 341
Good-Rader-17−1 12 532 6 360 Good-Rader-17−1 12 543 6 516

Table 14: Detailed numbers of Good–Thomas for Zq′ [x]
/〈

x1536 − 1
〉

.
Operation ntruhps2048677 sntrup761/ntrulpr761
polymul 42 355 47 696
NTT (×2) 5 502
basemul 21 444
iNTT 8 884
Rq_reduce 547 5 102

Table 15: Detailed cycle counts of Toeplitz–TC and Toom–Cook, splitting 5 → 3 → 3 → 2.
Toeplitz–TC Toom–Cook

Operation Count Cycles Total cycles Operation Count Cycles Total cycles
polymul - - 26 784 polymul - - 37 278
tmvp_ittc5 1 2 387 2 387 tc5 2 586 1 172
tmvp_tc5 1 565 565
tmvp_ittc3 9 199 1 791 tc33 18 147 2 646
tmvp_ittc32 9 559 5 031
tmvp_tc33 9 148 1 332
tmvp2_8x8 9 1 389 12 501 k2 2 711 1 422

schoolbook_8x8 1 19 122 19 122
ik2 1 2 777 2 777
schoolbook_16x16 1 511 511

tmvp_ttc33 9 209 1 881 itc33 9 467 4 203
tmvp_ttc5 1 821 821 itc5 1 3 303 3 303

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 39

Table 16: Detailed Good–Schönhage–Bruun cycle counts including reducing to Z4591[x]
⟨x761−x−1⟩ .

Operation Count Cycles Total cycles
polymul - - 50 398
Good-Schönhage-3-2x2 1 1 708 1 708
Schönhage-3x2 3 1 246 3738
Good-Schönhage-5x2 1 1 527 1 527
Radix-3 1 2 084 2 084
Bruun 24 291 6 984
Trinomial-8x8 12 1 115 13 380
Bruun inverse 12 409 4 908
Schönhage-2x4 inverse 3 1 304 3 912
Good-Schönhage-2-3 inverse 1 7 653 7 653

E Performance of Inversions, Encoding, and Decoding

Table 17: Performance of inversions, encoding, and decoding in NTRU and NTRU Prime.
Operation Ref Ours

ntruhps2048677
poly_Rq_inv 3 506 621 341 482
poly_R2_inv 2 791 906 136 776
poly_S3_inv 4 153 823 482 005
crypto_sort_int32 104 691 17 819

sntrup761/ntrulpr761
Rq_recip3 116 353 545 5 500 466
R3_recip 127 578 811 580 494
Rq_encode 17 753 2 084
Rq_decode 31 715 3 914
Rounded_encode 14 707 3 145
Rounded_decode 31 832 3 445
crypto_sort_uint32 186 867 19 625

40 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

F Detailed Numbers of NTRU Prime

Table 18: Detailed performance numbers of sntrup761 and ntrulpr761 with Good–Rader–
outer. Only performance-critical subroutines are shown.

sntrup761 ntrulpr761
Operation Cycles Operation Cycles
crypto_kem_keypair 6 297 001 crypto_kem_keypair 257 382

ZKeyGen 6 241 207 ZKeyGen 245 982
XKeyGen 236 919

KeyGen 6 190 454 KeyGen 109 574
Rq_recip3 5 500 466
R3_recip 580 494
Rq_mult_small 36 266 Rq_mult_small 36 266
sort 197 99 sort 19 207
randombytes 88 678 randombytes 41 193

aes 127 837
Rq_encode 2 084 Rounded_encode 3 145

sha2 13 626 sha2 12 507
crypto_kem_enc 144 681 crypto_kem_enc 400 223

ZEncrypt 43 978 ZEncrypt 375 021
XEncrypt 366 654

Encrypt 36 820 Encrypt 76 034
Rq_mult_small 36 266 Rq_mult_small (2×) 2× 36 266

aes 254 771
sort 19 478
sha2 3 610

Rq_decode 3 914 Rounded_decode 3 445
Rounded_encode 3 145 Rounded_encode 3 145

randombytes 43 748
sha2 31 487 sha2∗ 27 719
sort 19 625

crypto_kem_dec 145 777 crypto_kem_dec 435 789
ZDecrypt 79 863 ZDecrypt 44 112

Decrypt 75 517 XDecrypt (defined as Decrypt) 39 702
Rq_mult_small 36 266 Rq_mult_small 36 266
R3_mult 37 652

Rounded_decode 3 445 Rounded_decode 3 445
ZEncrypt 43 978 ZEncrypt 375 021
sha2 19 901 sha2∗ 18 793

∗ The numbers of sha2 cycles of XEncrypt are included.

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 41

G Detailed Numbers of NTRU

Table 19: Detailed performance numbers of ntruhps2048677 with Toeplitz–TC. Only
performance-critical subroutines are shown.

Operation Cycles
crypto_kem_keypair 1 002 187

owcpa_keypair 990 579
poly_S3_inv 482 005
poly_Rq_mul(×5) 5× 26 784
poly_Rq_inv 341 482

poly_R2_inv 136 776
poly_Rq_mul(×8) 8× 26 784

sort 17 819
randombytes 12 054

crypto_kem_enc 79 213
owcpa_enc 32 501

poly_Rq_mul 26 784
randombytes 13 023
sort 18 040
sha3 5 148

crypto_kem_dec 120 208
owcpa_dec 100 842

poly_Rq_mul(×2) 2× 26 784
poly_S3_mul 28 341

sha3 18 867

References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, Daniel Smith-Tone, and Yi-Kai Liu. NISTIR8413 – status re-
port on the second round of the nist post-quantum cryptography standardization
process, September 2022. https://doi.org/10.6028/NIST.IR.8413-upd1.

[AB74] Ramesh C. Agarwal and Charles S. Burrus. Fast convolution using Fermat
number transforms with applications to digital filtering. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 22(2):87–97, 1974.

[ACC+21] Erdem Alkim, Dean Yun-Li Cheng, Chi-Ming Marvin Chung, Hülya Evkan,
Leo Wei-Lun Huang, Vincent Hwang, Ching-Lin Trista Li, Ruben Niederhagen,
Cheng-Jhih Shih, Julian Wälde, and Bo-Yin Yang. Polynomial Multiplication
in NTRU Prime Comparison of Optimization Strategies on Cortex-M4. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):217–
238, 2021. https://tches.iacr.org/index.php/TCHES/article/view/8733.

[AHY22] Erdem Alkim, Vincent Hwang, and Bo-Yin Yang. Multi-Parameter Support
with NTTs for NTRU and NTRU Prime on Cortex-M4. IACR Transactions on
Cryptographic Hardware and Embedded Systems, pages 349–371, 2022.

[ARM15] ARM. Cortex-A72 Software Optimization Guide, 2015. https://developer.
arm.com/documentation/uan0016/a/.

https://doi.org/10.6028/NIST.IR.8413-upd1
https://tches.iacr.org/index.php/TCHES/article/view/8733
https://developer.arm.com/documentation/uan0016/a/
https://developer.arm.com/documentation/uan0016/a/

42 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

[ARM21] ARM. Arm Architecture Reference Manual, Armv8, for Armv8-A architec-
ture profile, 2021. https://developer.arm.com/documentation/ddi0487/gb/
?lang=en.

[Bar86] Paul Barrett. Implementing the Rivest Shamir and Adleman Public Key En-
cryption Algorithm on a Standard Digital Signal Processor. In CRYPTO 1986,
LNCS, pages 311–323. SV, 1986.

[BBC+20] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Chitchanok
Chuengsatiansup, Tanja Lange, Adrian Marotzke, Bo-Yuan Peng, Nicola Tuveri,
Christine van Vredendaal, and Bo-Yin Yang. NTRU Prime. Submission to
the NIST Post-Quantum Cryptography Standardization Project [NIS], 2020.
https://ntruprime.cr.yp.to/.

[BBCT22] Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, and Nicola Tuveri.
OpenSSLNTRU: Faster post-quantum TLS key exchange. In 31st USENIX
Security Symposium (USENIX Security 22), pages 845–862, 2022.

[BC87] Joel V Brawley and Leonard Carlitz. Irreducibles and the composed product
for polynomials over a finite field. Discrete Mathematics, 65(2):115–139, 1987.

[Ber01] Daniel J. Bernstein. Multidigit multiplication for mathematicians. 2001.

[BGM93] Ian F Blake, Shuhong Gao, and Ronald C Mullin. Explicit Factorization of
x2k + 1 over Fp with Prime p ≡ 3 mod 4. Applicable Algebra in Engineering,
Communication and Computing, 4(2):89–94, 1993.

[BHK+22] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on Cortex-A72
and Apple M1. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2022(1):221–244, 2022. https://tches.iacr.org/index.php/TCHES/
article/view/9295.

[BK22] Hanno Becker and Matthias J. Kannwischer. Hybrid scalar/vector implemen-
tations of Keccak and SPHINCS+ on AArch64. Cryptology ePrint Archive,
2022.

[Bru78] Georg Bruun. z-transform DFT Filters and FFT’s. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 26(1):56–63, 1978.

[BY19] Daniel J. Bernstein and Bo-Yin Yang. Fast constant-time gcd computation
and modular inversion. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2019(3):340–398, 2019. https://tches.iacr.org/index.
php/TCHES/article/view/8298.

[CA69] Stephen A Cook and Stȧl O Aanderaa. On the minimum computation time
of functions. Transactions of the American Mathematical Society, 142:291–314,
1969.

[CDH+20] Cong Chen, Oussama Danba, Jeffrey Hoffstein, Andreas Hulsing, Joost Ri-
jneveld, John M. Schanck, Peter Schwabe, William Whyte, Zhenfei Zhang,
Tsunekazu Saito, Takashi Yamakawa, and Keita Xagawa. NTRU. Submission
to the NIST Post-Quantum Cryptography Standardization Project [NIS], 2020.
https://ntru.org/.

[CF94] Richard Crandall and Barry Fagin. Discrete Weighted Transforms and Large-
integer Arithmetic. Mathematics of computation, 62(205):305–324, 1994.

https://developer.arm.com/documentation/ddi0487/gb/?lang=en
https://developer.arm.com/documentation/ddi0487/gb/?lang=en
https://ntruprime.cr.yp.to/
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://tches.iacr.org/index.php/TCHES/article/view/9295
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://tches.iacr.org/index.php/TCHES/article/view/8298
https://ntru.org/

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 43

[CHK+21] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J. Kannwischer, Gregor
Seiler, Cheng-Jhih Shih, and Bo-Yin Yang. NTT Multiplication for NTT-
unfriendly Rings New Speed Records for Saber and NTRU on Cortex-M4
and AVX2. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(2):159–188, 2021. https://tches.iacr.org/index.php/TCHES/
article/view/8791.

[CT65] James W. Cooley and John W. Tukey. An Algorithm for the Machine Calculation
of Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[DV78] Eric Dubois and A Venetsanopoulos. A New Algorithm for the Radix-3 FFT.
IEEE Transactions on Acoustics, Speech, and Signal Processing, 26(3):222–225,
1978.

[FP07] Franz Franchetti and Markus Puschel. SIMD Vectorization of Non-Two-Power
Sized FFTs. In 2007 IEEE International Conference on Acoustics, Speech and
Signal Processing-ICASSP’07, volume 2, 2007.

[Goo58] I. J. Good. The Interaction Algorithm and Practical Fourier Analysis. Journal
of the Royal Statistical Society: Series B (Methodological), 20(2):361–372, 1958.

[Haa21] Jasper Haasdijk. Optimizing NTRU LPRime on the ARM Cortex - A72, 2021.
https://github.com/jhaasdijk/KEMobi.

[Hwa22] Vincent Bert Hwang. Case Studies on Implementing Number–Theoretic Trans-
forms with Armv7-M, Armv7E-M, and Armv8-A. Master’s thesis, 2022.
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A.

[HY22] Chenar Abdulla Hassan and Oğuz Yayla. Radix-3 NTT-Based Polynomial
Multiplication for Lattice Based Cryptography. Cryptology ePrint Archive, 2022.

[IKPC20] Írem Keskinkurt Paksoy and Murat Cenk. TMVP-based Multiplication for
Polynomial Quotient Rings and Application to Saber on ARM Cortex-M4.
Cryptology ePrint Archive, 2020. https://eprint.iacr.org/2020/1302.

[IKPC22] Írem Keskinkurt Paksoy and Murat Cenk. Faster NTRU on ARM Cortex-M4
with TMVP-based multiplication. 2022. https://eprint.iacr.org/2022/300.

[Jac12] Nathan Jacobson. Basic Algebra I. Courier Corporation, 2012.

[KMS22] Stefan Kölbl, Rafael Misoczki, and Sophie Schmieg. Se-
curing tomorrow today: Why google now protects its inter-
nal communications from quantum threats, November 2022.
https://cloud.google.com/blog/products/identity-security/
why-google-now-uses-post-quantum-cryptography-for-internal-comms.

[KO62] Anatolii Alekseevich Karatsuba and Yu P Ofman. Multiplication of many-digital
numbers by automatic computers. In Doklady Akademii Nauk, volume 145(2),
pages 293–294, 1962.

[KRS19] Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster Mul-
tiplication in Z2m [x] on Cortex-M4 to Speed up NIST PQC Candidates. In
International Conference on Applied Cryptography and Network Security, pages
281–301. Springer, 2019.

[KSSW] Matthias J. Kannwischer, Peter Schwabe, Douglas Stebila, and Thom Wiggers.
PQClean. https://github.com/PQClean.

https://tches.iacr.org/index.php/TCHES/article/view/8791
https://tches.iacr.org/index.php/TCHES/article/view/8791
https://github.com/jhaasdijk/KEMobi
https://github.com/vincentvbh/NTTs_with_Armv7-M_Armv7E-M_Armv8-A
https://eprint.iacr.org/2020/1302
https://eprint.iacr.org/2022/300
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://cloud.google.com/blog/products/identity-security/why-google-now-uses-post-quantum-cryptography-for-internal-comms
https://github.com/PQClean

44 Algorithmic Views of Vectorized Polynomial Multipliers for NTRU and NTRU Prime

[Mey96] Helmut Meyn. Factorization of the Cyclotomic Polynomial x2n + 1 over Finite
Fields. Finite Fields and Their Applications, 2(4):439–442, 1996.

[MKV20] Jose Maria Bermudo Mera, Angshuman Karmakar, and Ingrid Verbauwhede.
Time-memory trade-off in Toom-Cook multiplication: an application to module-
lattice based cryptography. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(2):222–244, 2020. https://tches.iacr.org/index.
php/TCHES/article/view/8550.

[Mon85] Peter L. Montgomery. Modular Multiplication Without Trial Division. Mathe-
matics of computation, 44(170):519–521, 1985.

[Mur96] Hideo Murakami. Real-valued fast discrete Fourier transform and cyclic convo-
lution algorithms of highly composite even length. In 1996 IEEE International
Conference on Acoustics, Speech, and Signal Processing Conference Proceedings,
volume 3, pages 1311–1314, 1996.

[MVdO14] FE Martínez, CR Vergara, and L Batista de Oliveira. Explicit Factorization of
xn − 1 ∈ Fq[x]. arXiv preprint arXiv:1404.6281, 2014.

[NG21] Duc Tri Nguyen and Kris Gaj. Optimized Software Implementations of
CRYSTALS-Kyber, NTRU, and Saber Using NEON-Based Special Instruc-
tions of ARMv8, 2021. Third PQC Standardization Conference.

[NIS] NIST, the US National Institute of Standards and Technology. Post-quantum
cryptography standardization project. https://csrc.nist.gov/Projects/
post-quantum-cryptography.

[Nus80] Henri Nussbaumer. Fast Polynomial Transform Algorithms for Digital Con-
volution. IEEE Transactions on Acoustics, Speech, and Signal Processing,
28(2):205–215, 1980.

[Rad68] Charles M. Rader. Discrete fourier transforms when the number of data samples
is prime. Proceedings of the IEEE, 56(6):1107–1108, 1968.

[Sch77] Arnold Schönhage. Schnelle multiplikation von polynomen über körpern der
charakteristik 2. Acta Informatica, 7(4):395–398, 1977.

[SKS+21] Pakize Sanal, Emrah Karagoz, Hwajeong Seo, Reza Azarderakhsh, and
Mehran Mozaffari Kermani. Kyber on ARM64: compact implementations
of Kyber on 64-bit ARM Cortex-A processors. Cryptology ePrint Archive,
Report 2021/561, 2021. https://eprint.iacr.org/2021/561.

[Too63] Andrei L Toom. The complexity of a scheme of functional elements realizing the
multiplication of integers. In Soviet Mathematics Doklady, volume 3(4), pages
714–716, 1963.

[TW13] Aleksandr Tuxanidy and Qiang Wang. Composed products and factors of
cyclotomic polynomials over finite fields. Designs, codes and cryptography,
69(2):203–231, 2013.

[vdH04] Joris van der Hoeven. The truncated Fourier transform and applications. In
Proceedings of the 2004 international symposium on Symbolic and algebraic
computation, pages 290–296, 2004.

[Win80] Shmuel Winograd. Arithmetic Complexity of Computations, volume 33. Siam,
1980.

https://tches.iacr.org/index.php/TCHES/article/view/8550
https://tches.iacr.org/index.php/TCHES/article/view/8550
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://csrc.nist.gov/Projects/post-quantum-cryptography
https://eprint.iacr.org/2021/561

Han-Ting Chen , Yi-Hua Chung , Vincent Hwang , Chi-Ting Liu and Bo-Yin Yang 45

[WY21] Yansheng Wu and Qin Yue. Further factorization of xn − 1 over a finite field
(II). Discrete Mathematics, Algorithms and Applications, 13(06):2150070, 2021.

[WYF18] Yansheng Wu, Qin Yue, and Shuqin Fan. Further factorization of xn − 1 over a
finite field. Finite Fields and Their Applications, 54:197–215, 2018.

	Introduction
	Polynomials in NTRU and NTRU Prime
	Review of Transformations
	Prior Works, Motivations, and Contributions
	Code.
	Structure of this Paper.

	Preliminaries
	ARM Cortex-A72
	Modular Reductions and Multiplications in Armv8-A.

	Polynomial Multiplications
	The Chinese Remainder Theorem for Polynomial Rings
	Cooley–Tukey FFTs
	Bruun-Like FFTs
	Good–Thomas FFTs
	Rader's FFT for Odd Prime p
	Toom–Cook (TC) and Karatsuba
	Schönhage's and Nussbaumer's FFTs
	Enlarging Coefficient Rings

	Toeplitz Matrix–Vector Product
	Module and Associative Algebra
	Matrix–Vector Products
	Toeplitz Matrices
	Small Dimensional Cases
	Large Dimensional Toeplitz Transformation

	Implementations
	Good–Thomas for ``Big by Small'' Polynomial Multiplications
	NTRU Implementations over Z65536
	NTRU Prime Implementations over Z4591

	Results
	Benchmark Environment
	Performance of Vectorized Polynomial Multiplications
	Performance of Schemes

	Discussions
	Proof for the Toeplitz Transformation
	Examples of Toeplitz Transformations
	Matrix multiplications
	Detailed Numbers of Polynomial Multiplications
	Performance of Inversions, Encoding, and Decoding
	Detailed Numbers of NTRU Prime
	Detailed Numbers of NTRU

