
MAYO: Optimized Implementation with Revised
Parameters for ARMv7-M

Arianna Gringiani1, Alessio Meneghetti1, Edoardo Signorini3 and Ruggero
Susella2

1 University of Trento, Trento, Italy, a.gringiani@libero.it, alessio.meneghetti@unitn.it
2 STMicroelectronics, Agrate Brianza, Italy, ruggero.susella@st.com

3 Telsy, Torino, Italy, edoardo.signorini@telsy.it

Abstract. We present an optimized constant-time implementation of the MAYO
signature scheme on ARMv7-M. MAYO is a novel multivariate proposal based on the
trapdoor function of the Unbalanced Oil and Vinegar scheme. Our implementation
builds on existing techniques for UOV-based schemes and introduces a new approach
for evaluating the polar forms of quadratic maps. We modify MAYO’s original
parameters to achieve greater benefits from the proposed optimizations, resulting in
slightly larger keys and shorter signatures for the same level of security. We evaluate
the optimized implementation with the new parameters on the STM32H753ZIT6 mi-
crocontroller and measure its performance for the signing and verification procedures.
At NIST security level I, signing requires approximately 43M cycles, and verification
requires approximately 6M cycles. Both are 2.6 times faster than the results obtained
from the original parameters.
Keywords: MAYO · post-quantum cryptography · multivariate quadratic cryptog-
raphy · ARMv7-M

1 Introduction
Public key cryptography schemes, particularly key exchange and digital signatures, are a
key building block in the realization of secure communication protocols. While current
schemes have been deemed unbreakable in classical computational models, the rapid growth
of quantum computers and the potential use of Shor’s quantum algorithm [Sho94] threaten
their security. In response, the American National Institute of Standards and Technology
(NIST) initiated a standardization project in 2016 to establish new quantum-resistant public
key cryptography standards. Following three selection rounds, in 2022 NIST selected four
algorithms for standardization [AAC+22]: a key exchange algorithm (CRYSTALS-KYBER
[ABD+21]) and three digital signature algorithms (CRYSTALS-DILITHIUM [BDK+21],
Falcon [FHK+20] and SPHINCS+ [ABB+22]). Lattice-based schemes emerged as the most
versatile, with three of the four winners falling under this category. NIST also expressed
a desire to diversify the computational assumptions underlying these new standards,
particularly for digital signatures, and issued a new call starting in 2023. [NIS23].

Multivariate quadratic-based constructions offer an effective alternative, producing
highly efficient signature schemes with compact signatures, albeit typically large keys.
Several multivariate schemes participated in the NIST process, and in particular Rainbow
[DCK+21] and GeMSS [CFM+21] were a finalist and alternate proposal in Round 3.
Unfortunately, both schemes received significant attacks [TPD21, Beu21, Beu22a] during
the last round that led to their exclusion. Despite these attacks, the robustness of the
multivariate assumptions was not undermined and several signature schemes are still

mailto:a.gringiani@libero.it
mailto:alessio.meneghetti@unitn.it
mailto:ruggero.susella@st.com
mailto:edoardo.signorini@telsy.it

2 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

considered secure [KPG99, Beu20, Beu22b] and are expected to be part of the forthcoming
selection process.

In [Beu22b], Beullens introduced the MAYO signature scheme, proposing an innovative
technique that takes advantage of the robust construction of Unbalanced Oil and Vinegar
(UOV) and drastically reduces the key size while maintaining the efficiency of the original
construction. MAYO emerges as a promising scheme, especially in terms of implementation,
as it can leverage prior developments associated with multivariate schemes, specifically
those pertaining to UOV and Rainbow. However, a thorough analysis of the scheme’s
performance, particularly on embedded platforms, has yet to be conducted. In this
paper, we analyze the implementation of MAYO on ARMv7-M, an architecture for 32-bit
processors widely used in consumer electronic devices.

Our contribution In this work, we explore constant-time optimized implementation
techniques for ARMv7-M, originally designed for UOV-based schemes, and extend them to
the MAYO cryptosystem. The main techniques are extended from [CKY21] on Rainbow
and exploit optimized arithmetic on F16 via bitslicing. We describe a new approach for
evaluating the polar forms of quadratic maps, which are a key operation in MAYO. Next,
we argue how a different parametrization of the scheme can foster greater performance
gains, especially on 32-bit architectures. Finally, we analyze the optimized implementation
of the scheme with the new parameters on the STM32H753ZIT6 microcontroller, measuring
the performance of the signing and verification process. To the best of our knowledge, this
is the first optimized implementation of MAYO on the ARM platform.

Source code The source code for our implementation is available at https://github.
com/mayo-pqm4/mayo-pqm4.

Related Work A preliminary implementation of the MAYO scheme for Intel platforms
has been made in [Beu22b], using AVX2 instructions. However, this implementation
relied on an earlier parameter set based on F31. The MAYO team has since published a
draft specification document [BCC+23], which describes the scheme in detail and presents
an updated set of parameters that aligns with the approach taken in this work. The
performance of the scheme has been evaluated on Intel platforms, with the optional use of
AES-NI instructions.

Recent literature on optimizing multivariate schemes for ARM architecture has primarily
focused on the Rainbow scheme. Many of the implementation techniques that can be
adapted to UOV-based schemes are derived from [CKY21], which targets the Cortex-
M4 platform. Following the attacks on Rainbow, a novel parametrization for UOV was
proposed in [BCH+23]. This updated parametrization integrates recent advances from
the literature, reassessing the competitiveness of UOV also in the context of embedded
platforms.

Outline In Section 2 we introduce multivariate quadratic maps and the characteristics
of the ARMv7-M architecture. In Section 3 we describe the MAYO signature scheme,
discuss its security and its original parametrization. Section 4 introduces the optimized
implementation techniques for UOV-based schemes and describes their extension to MAYO.
In Section 4.4 new parameters for MAYO are proposed, showing how they can lead to
better performance. Finally, in Section 5, we analyze the resulting implementation of
MAYO with updated parameters and compare it with the original set.

https://github.com/mayo-pqm4/mayo-pqm4
https://github.com/mayo-pqm4/mayo-pqm4

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 3

2 Preliminaries
Notation For a, b ∈ N, we denote by [a, b] the set {a, . . . , b} and similarly we denote by [b]
the set {1, . . . , b}. We write Fq for a finite field of q elements. We denote by Fm×n

q the set of
matrices over Fq with m rows and n columns. In×n is the identity matrix of size n. 0m×n

is the m×n zero matrix. Unless otherwise specified, we denote by x ∈ Fn
q a column vector.

0n is the zero vector in Fn
q . For a sequence of elements x1, . . . , xn ∈ Fq, we denote by

[xi]i∈[n] the column vector (x1, . . . , xn) ∈ Fn
q . For a sequence of vectors x1, . . . , xm ∈ Fn

q ,
we denote by [xi]i∈[m] the matrix in Fm×n

q with xi as the i-th row. For simplicity, for
x ∈ Fn

q , y ∈ Fm
q , we write (x, y) as the column vector (x⊺ ∥ y⊺)⊺ ∈ Fn+m

q obtained from
the concatenation of the two vectors. For a square matrix A, we define Upper(A) as the
upper triangular matrix obtained as Upper(A)i,j = Ai,j if i = j, Upper(A)i,j = Ai,j + Aj,i

if i < j and Upper(A)i,j = 0 otherwise. For a finite set X, we write x←$ X to denote the
sample of the element x from the uniform distribution over X. Finally, we denote by

(
n
k

)
the binomial coefficient.

Multivariate quadratic maps Multivariate hash-and-sign signature schemes are based on
multivariate quadratic trapdoor functions. A multivariate quadratic map P : Fn

q −→ Fm
q

with m components and n variables is defined by m multivariate quadratic polynomials
p1(x), . . . , pm(x) in n variables x = (x1, . . . , xn) with coefficients in a finite field Fq. The
evaluation of P at v ∈ Fn

q is t = (t1, . . . , tm) ∈ Fm
q , where ti = pi(v) for i = 1, . . . , m.

In the following, we will only consider homogeneous quadratic maps P, for which all
components pi have no linear or constant part.

For a homogeneous multivariate quadratic polynomial p, we can define its polar form:

b(x, y) = p(x + y)− p(x)− p(y).

Similarly, for a homogeneous multivariate quadratic map P = (p1, . . . , pm) : Fn
q → Fm

q , its
polar form is defined as B = (b1, . . . , bm) : Fn

q × Fn
q → Fm

q . It can be shown that the polar
form of a multivariate quadratic map is a symmetric and bilinear map.

The security of multivariate schemes is strongly linked to the computational hardness of
the Multivariate Quadratic (MQ) problem. Let P : Fn

q → Fm
q be a multivariate quadratic

function. Given t ←$ Fm
q , the MQ problem asks to find a preimage v ∈ Fn

q such that
P(v) = t. The MQ problem is NP-hard over a finite field. Furthermore, it is believed
to be hard on average if n ∼ m, both classically and quantumly. Only exponential-time
algorithms are known to solve random instances of the problem for these parameters. If a
polynomial system is highly overdetermined or highly underdetermined, there exist special
algorithms that run in polynomial time [MHT13, CKPS00].

ARMv7-M The ARMv7-M is a processor architecture designed by ARM targeting
embedded microcontrollers. The first CPU supporting this architecture was the Cortex-
M3, but the ARMv7-M is fully supported by more recent CPU such as the Cortex-M4,
Cortex-M7, Cortex-M23 and Cortex-M33. It leverages on 16 32-bit registers, three of which
are reserved for stack pointer, program counter, and link register. It supports Thumb-2
instructions, where bitwise and arithmetic instructions take one cycle (with the exception
of the non constant-time umull instruction on Cortex-M3 and division). Load, stores, and
branches can take multiple cycles. A key feature of the ARMv7-M that we will leverage
to achieve constant-time implementations is the availability of conditional execution of
instructions that allows to selectively execute instructions based on the value of flags in
the Application Program Status Register (APSR), with no impact on the execution time.
Some examples are provided in Appendix A.

4 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

3 MAYO
The MAYO signature scheme is based on the trapdoor function of the Unbalanced Oil
and Vinegar (UOV) signature scheme. In UOV, the trapdoor function is a multivariate
quadratic map P : Fn

q → Fm
q that vanishes on a secret linear subspace O ⊂ Fn

q of dimension
dim O = m.

Given a target y ∈ Fm
q , the knowledge of the secret O can be used to find a preimage

x ∈ Fn
q for y by reducing the MQ problem to a linear system. Start by randomly sampling

v ∈ Fn
q and then solve P(v + o) = t for o ∈ O. Since

t = P(v + o) = P(v)︸ ︷︷ ︸
fixed

+P(o)︸ ︷︷ ︸
=0

+ B(v, o)︸ ︷︷ ︸
linear in o

, (1)

the system reduces to the linear system B(v, o) = t − P(v) of m equation and m
variables o. Notice that whenever the linear map B(v, ·) is non-singular, the system has a
unique solution o ∈ O and the preimage is x = v + o.

During key generation, a large part of the public map P can be chosen at random
before choosing O. This makes it possible to significantly reduce the size of the public key,
for example, by deterministically expanding a seed, following the approach of [PTBW11].
More precisely, the size of P is reduced to m · o(o + 1)/2 plus the length of the seed,
where m is the number of polynomials in the quadratic map and o is the dimension of the
secret subspace O. By choosing o < m one could randomly generate a larger portion of P ,
reducing the size of the public key. In addition, the size of O affects the complexity of key
recovery attacks on the scheme, so reducing it would allow one to choose overall smaller
parameters. However, in UOV it is required that o = m, since otherwise the system of (1)
would be overdetermined and, with high probability, without a solution.

3.1 Whipping the UOV map
With MAYO, Beullens proposes a whipping technique enabling the utilization of a smaller
secret subspace O of dimension dim O = o < m. The idea is to start from a multivariate
quadratic map P : Fn

q → Fm
q that vanishes on O, and to deterministically transform it into

a larger map P∗ : Fkn
q → Fm

q , for some k > 1, which vanishes on Ok ⊂ Fkn
q of dimension

ko ≥ m. The map P∗ is referred to as the whipping transformation of P.
In [Beu22b], the whipping transformation is obtained by choosing k(k + 1)/2 random

invertible matrices {Ei,j ∈ GLm(Fq)}1≤i≤j≤k and defining

P∗(x1, . . . , xk) =
k∑

i=1
Ei,i P(xi) +

∑
1≤i<j≤k

Ei,j B(xi, xj).

The matrices Ei,j can be part of the system parameters or selected randomly during
key generation. In the first case, in the specification it is currently proposed the utilization
of k(k + 1)/2 < m maps that represent multiplication by Xj . We fix a monic irreducible
polynomial f(X) of degree m and consider the extension field Fqm = F[X]/(f(X)). Then we
can set the matrices to be representations of the multiplication by 1, X, X2, . . . , X

k(k+1)
2 −1

in Fqm . In the following we suppose the matrices Ei,j are part of the system parameters
and that are obtained as above.

3.2 Signature scheme description
The parameters of the scheme are the integers q, n, o, m, k such that ko ≥ m, the matrices
{Ei,j ∈ GLm(Fq)}1≤i≤j≤k, and an opportune hash function H : {0, 1}∗ → Fm

q . The algo-
rithms for key generation, signing, and verification are described in detail in Algorithm 1.

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 5

Key Generation Fix a random matrix O ∈ Fo×(n−o)
q and let the secret subspace O be

the row space of (O Io×o) ∈ Fo×n
q . This condition does not excessively restrict the key

space, as most subspaces of dimension o have this form (for the parameters listed in
Table 1 and Table 2). Then, one randomly chooses a quadratic map P that vanishes on O.
Since P = (p1, . . . , pm) is homogeneous quadratic, each pi has an upper triangular matrix
representation Pi ∈ Fn×n

q such that x⊺Pix = pi(x). Consider the matrix representation
Pi divided into the following submatrices:

Pi =
(

P(1)
i P(2)

i

0o×n−o P(3)
i

)
.

The matrices P(1)
i ∈ F(n−o)×(n−o)

q (upper triangular) and P(2)
i ∈ F(n−o)×o

q are randomly
chosen by expanding a short seed. The matrix P(3)

i is subsequently computed by imposing
the condition pi(O) = 0m:

(O Io×o)
(

P(1)
i P(2)

i

0o×n−o P(3)
i

)
(O Io×o)⊺ = O P(1)

i O⊺ + O P(2)
i + P(3)

i = 0m.

So one can set P(3)
i as Upper(O P(1)

i O⊺ −O P(2)
i).

Signature Computation Given a message m ∈ {0, 1}∗, its signature is computed by
sampling a salt r ←$ {0, 1}λ and computing a preimage x of t = H(m ∥ r) ∈ Fm

q . Choose
random vectors (v̄1, . . . , v̄k) ∈ Fkn where the last o components of v̄i are zero. Then try
to find (o1, . . . , ok) ∈ Ok that solves the system

P∗(v̄1 + o1, . . . , v̄k + ok) = t. (2)

This system has m linear equations in ko ≥ m variables, so it will be solvable with high
probability. The signature is the pair σ = (r, x), where x = (v̄1 + o1, . . . , v̄k + ok) ∈ Fkn.

Similarly to Equation (1) for UOV, Equation (2) can be rewritten as

t =
k∑

s=1
Ei,i P(v̄i + oi) +

∑
1≤i<j≤k

Ei,j B(v̄i + oi, v̄j + oj)

=
k∑

i=1
Ei,i

(
P(v̄i) + B(v̄i, oi)

)
+

∑
1≤i<j≤k

Ei,j

(
B(v̄i, v̄j) + B(v̄i, oj) + B(v̄j , oi)

)
.

The constant term of the system is given by t−w, where

w =
k∑

i=1
Ei,i P(v̄i) +

∑
1≤i<j≤k

Ei,j B(v̄i, v̄j) ∈ Fm.

Notice that for v̄ ∈ Fn
q of the form (v, 0o), to evaluate P(v̄) only the P(1)

i component
of pi is required, so that pi(v̄) = v⊺P(1)

i v. Similarly, the evaluation of the polar form
B = (b1, . . . , bm) on a pair (ū, v̄) of the form (u, 0o), (v, 0o) can be computed as bi

(
ū, v̄) =

u⊺
(
P

(1)
i + (P (1)

i)⊺
)

v.
The linear part of the system is

k∑
i=1

Ei,i B(v̄i, oi) +
∑
i<j

Ei,j

(
B(v̄i, oj) + B(v̄j , oi)

)
.

6 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

Table 1: Original parameters of MAYO [Beu22b]

Security level n m o k q
I 66 67 5 14 16

III 98 99 6 17 16
V 130 132 7 19 16

The linear part in the signature generation process is computed through linear transfor-
mations Lv̄ : B(v̄, ·) : O → Fm

q , with v̄ of the form (v, 0o). For a vector c ∈ Fo
q, consider

o = (O Io×o)⊺c ∈ O. Then, each component bi(v̄, o) of Lv̄(o) can be written as

bi(v̄, o) = (v, 0o)⊺
(

P(1)
i + (P(1)

i)⊺ P(2)
i

(P(2)
i)⊺ P(3)

i + (P(3)
i)⊺

)
(O Io×o)⊺c

= v⊺
(
(P(1)

i + (P(1)
i)⊺) O⊺ + P(2)

i

)
c.

It follows that linear maps Lv̄ can be represented by using matrices Li = (P(1)
i +

(P(1)
i)⊺) O⊺ + P(2)

i which satisfy

Lv̄(o) = {v⊺Lic}i∈[m].

Signature Verification Given a signature σ = (r, x) for a message m, compute t′ =
P∗(x) ∈ Fm

q . If t′ = H(m ∥ r) accept, otherwise reject.

3.3 Security and original parameters
As MAYO represents a novel cryptographic proposal, to date, no instances of attacks have
been reported that specifically target its structure. Current understanding of potential
key recovery attacks on MAYO is derived from previous research on the UOV scheme,
with the sole variation being the choice of o < m. However, it is important to note that
while the foundational Oil and Vinegar construction has been extensively analyzed and is
widely regarded as secure, the addition of the whipping structure could potentially hide
exploitable vulnerabilities.

In the following, we summarize the best known attacks against UOV. The descriptions
are generalized for the case where o ≤ m, as it applies to MAYO, and their presentation
closely follows that given in [Beu22b]. The original parameters proposed in [Beu22b] are
given in Table 1.

Direct Attack In a direct approach, an attacker tries to forge a signature x for an hashed
message t by directly solving the polynomial system P∗(x) = t. A direct attack ignores
the structure of the scheme, so it can be used to attack any multivariate cryptosystem. In
the case of MAYO, we, therefore, consider P∗(x) = H(r ∥m) as a generic instance of the
MQ problem.

The main tool to solve nonlinear polynomial systems over finite fields is based on
the computation of Gröbner bases. The best known algorithms are Faugere’s F4/F5
[Fau02], XL [CKPS00], or the Hybrid Approach [BFP09]. The complexity of Gröbner
basis algorithms has been the object of extensive studies, in the following and in the
security estimates for the new parameters given in Section 4.4, we refer to [BMSV22] for
an estimate of its complexity.

The whipped quadratic map P∗ : Fkn
q → Fm

q yields systems of m equations and kn
variables. These systems are highly underdetermined, therefore it is possible to apply

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 7

Algorithm 1: MAYO Signature Scheme
KGen(1λ):

1: O←$ Fo×(n−o)
q

2: for i← 1, . . . , m do
3: P(1)

i ←$ F(n−o)×(n−o)
q ▷ Upper triangular

4: P(2)
i ←$ F(n−o)×o

q

5: P(3)
i ← Upper(−O P(1)

i O⊺ −O P(2)
i)

6: Pi ←
(

P(1)
i P(2)

i

0o×n−o P(3)
i

)
7: Li ← (P(1)

i + (P(1)
i)⊺) O⊺ + P(2)

i

8: pk← {Pi}i∈[m]

9: sk← (O, {P(1)
i }i∈[m], {Li}i∈[m])

10: return (pk, sk)

Sign(sk, m):
1: (O, {P(1)

i }i∈[m], {Li}i∈[m])← sk
2: w ← 0m

3: A← (A1, . . . , Ak)← (0m×o, . . . , 0m×o)
4: repeat
5: r ←$ {0, 1}λ

6: t← H(m ∥ r)
7: for i← 1, . . . , k do
8: vi ←$ Fn−o

q

9: for i← 1, . . . , k do
10: w ← w + Ei,i

[
v⊺

i P(1)
l vi

]
l∈[m]

11: Ai ← Ai + Ei,i

[
v⊺

i Ll

]
l∈[m]

12: for j ← i + 1, . . . , k do
13: w ← w + Ei,j

[
v⊺

i (P(1)
l + (P(1)

l)⊺)vj

]
l∈[m]

14: Ai ← Ai + Ei,j

[
v⊺

j Ll

]
l∈[m]

15: Aj ← Aj + Ei,j

[
v⊺

i Ll

]
l∈[m]

16: until the system Ac = t−w has a solution c ∈ Fko
q

17: (c1, . . . , ck)← c
18: o←

(
(O Io×o)⊺c1, . . . , (O Io×o)⊺ck

)
19: x← (v1∥0o + o1, . . . , vk∥0o + ok)
20: return σ = (r, x)

Verify(pk, m, σ):
1: (r, x)← σ
2: {Pi}i∈[m] ← pk
3: t← H(m ∥ r)
4: t′ ← 0m

5: for i← 1, . . . , k do
6: t′ ← t′ + Ei,i

[
x⊺

i Plxi

]
l∈[m]

7: for j ← i + 1, . . . , k do
8: t′ ← t′ + Ei,j

[
x⊺

i (Pl + (Pl)⊺)xj

]
l∈[m]

9: return t′ = t

8 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

the technique of [TW12] and reduce them to determined systems with m− ⌈kn/m⌉+ 1
equations. In the following, we denote by DirectMQ(n, m, q) the complexity of solving a
quadratic system over Fq of m equations and n variables. For MAYO, the complexity of
the Direct Attack can be estimated by

DirectMAYO(n, m, o, k, q) = DirectMQ(kn, m, q).

Kipnis-Shamir Attack The original work on the Oil and Vinegar (OV) scheme by Patarin
[Pat97], was attacked by Kipnis and Shamir [KS98]. The attack aims to efficiently recover
an equivalent private key for (P, O) by finding the secret subspace O. The vulnerability
is based on a common property of schemes based on the Oil and Vinegar construction:
consider Bi the matrix forms associated with the m components of B. Then, we have that
BiO ⊂ O⊥, where O⊥ is the orthogonal component of O. Since we assume that n = 2o,
both O and O⊥ have the same dimension o. Therefore, whenever Bi is non singular, we
have that BiO = O⊥ and O is a common invariant subspace of B−1

i Bj for any couple of
invertible Bi, Bj . The search for O then reduces to finding the common invariant subspace
of a large set of linear maps, whose complexity can be estimated by O

(
n3).

In later iterations of the scheme, such as UOV and MAYO, we have n > 2o. Therefore,
the equality BiO = BjO might no longer hold and O might not be an invariant subspace of
B−1

i Bj . However, it is possible to show that the probability of B−1
i Bj having a nontrivial

invariant subspace that is also a subspace of O is approximately q2o−n+1. The complexity
of the general attack can be estimated by

KSMAYO(n, m, o, k, q) = O
(
qn−2o−1n4).

Reconciliation Attack The Reconciliation Attack attempts to find the secret subspace O
by solving the system P(o) = 0m for o ∈ O. Once an element o1 ∈ O is found, the search
for another element o2 ∈ O is easier because it is possible to impose m linear constraints
given by the equations B(o1, o2). The process can be iterated until all o elements of a
basis for O are found. Therefore, the complexity of the attack is dominated by the search
for the first element o1.

Since O has dimension o, to solve P(o1) = 0m, we can impose o linear constraints
on o1, obtaining a quadratic system of m equations and n − o variables. If n − o > m,
the system has many solutions that do not belong to O, so that the search must be
repeated numerous times, making the attack inefficient. However, if n− o ≤ m, the system
P(o1) = 0m is expected to have a unique solution in O and the complexity of the attack
reduces to the solving of a random system of m quadratic equations in n − o variables,
possibly outperforming a direct attack.

ReconMAYO(n, m, o, k, q) = DirectMQ(n− o, m, q).

Intersection Attack The Intersection Attack is a generalization of the Reconciliation
Attack introduced in [Beu21]. Similarly to Kipnis-Shamir, the attack tries to find simulta-
neously k ≥ 2 elements oi ∈ O by searching for non-trivial intersections of k subspaces
of the form BiO. If such an intersection is found, then the attack reduces to solving a
system of

(
k+1

2
)
m− 2

(
k
2
)

quadratic equations in min(n, nk − (2k − 1)o) variables.
When o is chosen such that n ≥ 3o, the intersection is not guaranteed to be non-trivial

(even with k = 2) and the procedure must be repeated with a different choice of subspaces.
The probability of finding a non-trivial intersection is approximately q−n+3o−1 and the
attack must be repeated an average of qn−3o+1 times. In the context of MAYO, o is very
small compared to n and the attack is much less efficient with an estimated complexity of

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 9

IntersMAYO(n, m, o, k, q) = qn−3o+1DirectMQ(n, 3m− 2, q).

4 Implementation techniques
In this section, we describe the implementation techniques employed in key components
of Oil and Vinegar-based schemes. The main techniques are borrowed from the Rainbow
reference implementation on ARM Cortex M4 [CKY21]. This implementation can serve as
a useful reference for Oil and Vinegar-based schemes, such as MAYO, as most computations
remain largely the same.

We focus on the case where the base field is F = F16, which can benefit from fast
bitsliced implementation and will be used in the parametrization proposed in Section 4.4.
We are using the representation F16 = F2[X]/(g(X)) with g(X) = X4 + X + 1, which
allows for the most efficient implementation of bitsliced multiplications.

4.1 Bitsliced multiplication of F16 elements
For a ∈ F16 = F2[X]/(g(X)), write a = a3X3 + a2X2 + a1X + a0 with ai ∈ F2. Any
field element a can be represented with four bits packed into a nibble with a0 at the least
significant bit position. Two F16 elements are packed into a byte with the least significant
nibble in the lower half of the byte. Addition and subtraction of these elements is a simple
bit-wise XOR operation. For multiplication, 32-bit embedded CPUs do not offer carryless
multiplication operations. In general, it is more convenient to bitslice more field elements
into multiple registers and rely on bitwise operations.

Multiplication over F16 Let a, b ∈ F16 = F2[X]/(X4 + X + 1), where a = (a3, a2, a1, a0)
and b = (b3, b2, b1, b0). We can compute the product c = a · b = (c3, c2, c1, c0) as follows:

c3 = (a0 + a3)b3 + a1b2 + a2b1 + a3b0

c2 = (a2 + a3)b3 + (a0 + a3)b2 + a1b1 + a2b0

c1 = (a1 + a2)b3 + (a2 + a3)b2 + (a0 + a3)b1 + a1b0

c0 = a1b3 + a2b2 + a0b0 + a3b1

(3)

However, multiplying elements one by one does not take full advantage of the 32-bit
architecture. As we mentioned previously, it is more convenient to simultaneously multiply
more elements by a single element whenever possible.

Suppose that we need to multiply exactly 32 field elements by another field element
b. We denote with ai,j the jth component of the i-th field element, for j = 0, . . . , 3 and
i = 0, . . . , 31. The factor b is organized in the least significant nibble of a register B.
Elements ai are stored in four registers A0, A1, A2, A3 in bitsliced representation. Switching
from standard representation to bitsliced one and vice versa can be implemented efficiently
in 28 clock cycles, as shown in Algorithm 7.

Algorithm 2 describes the efficient implementation of bitsliced multiplication, following
Equation 3. The algorithm can be implemented in 27 clock cycles (Algorithm 8). Algorithm
2 relies on conditional operations which allow us to spare some additions whenever a
component of b is null. The constant-time conditional execution offered by the ARMv7-M
architecture ensures that bitsliced multiplications are performed in constant time (see
Appendix A).

The efficiency of bitsliced multiplications is maximized when we need to multiply 32
elements or multiples of 32. In general, multiplying m elements requires applying the
bitslicing algorithm ⌈m/32⌉ times to bitslice the elements in ⌈m/8⌉ registers. After that,
we apply Algorithm 2 ⌈m/32⌉ times.

10 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

Algorithm 2: Bitsliced multiply-accumulate of 32 F16 elements
Input: 32 bitsliced elements in registers A0, A1, A2, A3
Input: Single factor in register B
Input: Registers C0, C1, C2, C3
Output: Bitsliced result of the multiplication in registers C0, C1, C2, C3

1: T0← A0 + A3
2: T1← A2 + A3
3: T2← A1 + A2

4: if b0 ̸= 0 then
5: C0 += A0
6: C1 += A1
7: C2 += A2
8: C3 += A3
9: if b1 ̸= 0 then

10: C0 += A3
11: C1 += T0
12: C2 += A1

13: C3 += A2
14: if b2 ̸= 0 then
15: C0 += A2
16: C1 += T1
17: C2 += T0
18: C3 += A1
19: if b3 ̸= 0 then
20: C0 += A1
21: C1 += T2
22: C2 += T1
23: C3 += T0
24: return C0, C1, C2, C3

Algorithm 3: Batched vector-matrix multiplication
Input: M ∈ Fnrnc×m, representing {M(k) ∈ Fnr×nc}k∈[m]
Input: x ∈ Fnr

Output: (xT ·M(1), . . . , xT ·M(k)) ∈ Fm

1: res← 0m×nc

2: for j ← 1, . . . , nc do
3: for i← 1, . . . , nr do
4:

[
resk,j

]
k∈[m]

+← xi ·
[
Mi,j,k

]
k∈[m]

▷ bitsliced multiplication

5: return res

Batched matrix-vector multiplication In Section 3.2, we have seen that multivariate
polynomial evaluation can be computed by matrix-vector multiplications. As a result,
both private and public operations in multivariate cryptosystems are heavily dependent on
finite field multiplications, among which many can be performed in parallel. Bitslicing mul-
tiplications can be exploited to efficiently compute batched matrix-vector multiplications,
which arise, for example, during the MAYO signing process when calculating B(v, o). This
involves multiplying the vector v by all the m linear matrices L1, . . . , Lm.

Consider m rectangular matrices M(1), . . . , M(m) of dimension nr×nc to be multiplied
for a vector x ∈ Fnr . To facilitate sequential access to the elements, the matrices are
combined into a larger matrix M ∈ Fnrnc×m, where the k-th row of M stores M(k) in
row-major order. For clarity, the entry of M corresponding to M(k)

i,j is denoted as Mi,j,k.
M is stored in column-major order. Algorithm 3 illustrates the multiplication process.

To reduce computational burden in this use case, an option is to store the private
matrices L(i) in bitslice form, incorporating precomputation into key generation. However,
this would render the generated secret keys incompatible with other platforms that do not
utilize bitsliced multiplication. Therefore, it is assumed that all keys are stored in standard
representation, with elements bitsliced as needed for multiplication, and subsequently
converted back to their original form.

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 11

Algorithm 4: Constant-time Gaussian elimination
Input: A ∈ Fm×m

Input: y ∈ Fm

Output: fail ∈ {0, 1}, 1 if the system is not solvable
Output: x ∈ Fm such that A x = y

1: A′ ← (A y) ∈ Fm×(m+1)

2: fail ← 0
3: for i← 1, . . . , m do
4: for j ← i + 1, . . . , m do
5: p← A′

i,i

6: for k ← i, . . . , m + 1 do
7: if p = 0 then A′

i,k ← A′
i,k + A′

j,k

8: if A′
i,i = 0 then fail ← 1

9: p−1 ← A′−1
i,i ▷ constant look-up table inversion

10:
[
A′

i,k

]
k∈[i,m+1]

← p−1 ·
[
A′

i,k

]
k∈[i,m+1]

▷ bitsliced multiplication
11: for j = 1, . . . , m do
12: if j = i then continue
13: t← A′

j,i

14:
[
A′

j,k

]
k∈[i,m+1]

−← t ·
[
A′

i,k

]
k∈[i,m+1]

▷ bitsliced multiplication

15: (Im×m, x)← A′

16: return x, fail

4.2 Constant-time Gaussian Elimination

Solving linear systems constitutes a significant component in the signing process of a
UOV-based signature scheme, typically achieved through Gaussian elimination. However,
as this method operates on confidential inputs, it is imperative that the implementation is
constant-time, which is not inherently the case for Gaussian elimination. This constraint
arises from the need to examine all pivot elements and replace rows with null pivots prior
to executing the elimination process, which may lead to time leakage.

Suppose we have a determined linear system of m equations represented by the matrix
A ∈ Fm×m, and we want to find a solution to the system Ax = y. For the implementation
of Rainbow on Cortex-M4, in [CKY21] the authors employ a matrix inversion algorithm
inspired by the constant-time Gaussian elimination approach originally introduced in
[BCS13], followed by a multiplication by y. Since in the application to MAYO it is only
required to find a solution for the system, we can avoid the explicit calculation of A−1

and solve for x in Ax = y. The procedure is described in detail in Algorithm 4.
For the efficient computation of the inverse of an element in F16 we use a constant-time

look-up table. In Algorithm 9 we precompute the 8 bytes look-up table and sequentially
load it into a temporary register. We load two bytes of the look-up table at a time using
four movw instructions and perform shifting operations to select the right bits.

The multiplications on Lines 10, 14 are performed bitsliced. Although this can be
extended to the entire algorithm, it is not convenient to store the augmented matrix A′ in
bitsliced representation. The main reason is that individual access to pivot elements is
required during the process, which would be inefficient if the matrix were in bitsliced form.
In details, on Line 10, m + 1 elements are first bitsliced and then multiplied by p−1. The
resulting bitsliced values are stored in temporary registers, avoiding the need to recompute
the same elements on Line 14. Subsequently, on Line 14, further bitsliced multiplications
are performed, then these values must be unbitsliced. Overall, the algorithms require to
bitslice m + 1 elements a total of m(1 + m) times, and multiply m + 1 bitsliced elements.

12 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

Algorithm 5: Evaluation of MQ map
Input: Macaulay matrix M ∈ Fm×(n+1

2) representing a MQ map P
Input: x ∈ Fn

Output: y = P(x) ∈ Fm

EvalConst(M, x):
1: y ← 0m

2: for i← 1, . . . , n do
3: acc← 0m

4: for j ← i, . . . , n do
5:

[
acck

]
k∈[m]

+← xj ·
[
Mi,j,k

]
k∈[m]

▷ bitsliced multiplication
6:

[
yk

]
k∈[m]

+← xi ·
[
acck

]
k∈[m]

▷

bitsliced multiplication
7: return y

EvalLeak(M, x):
1: acc← 0(q−1)×m

2: for i← 1, . . . , n do
3: if xi = 0 then continue
4: for j ← i, . . . , n do
5: if xj = 0 then continue
6: t← xi xj ∈ F ▷ look-up table
7: for k ← 1 . . . , m do
8: acct,k ← acct,k + Mi,j,k

9: y ← acc1 ∈ Fm

10: for t← F \ {0, 1} do
11:

[
yk

]
k∈[m]

+← t ·
[
acct,k

]
k∈[m]

▷

bitsliced multiplication
12: return y

Gaussian elimination for underdetermined systems For the MAYO signing process, we
need to solve the linear system of Equation (2), which is an underdetermined system of m
quadratic equations in ko > m variables. To apply the constant-time Gaussian elimination
algorithm, we modify Algorithm 4 so that it takes as input matrix A ∈ Fm×n with n ≥ m.
The algorithm proceeds similarly, but the augmented matrix on Line 1 is obtained from
a subset of the columns of A. First, an ordered set J of m indices is chosen from [n].
Then the Gaussian elimination process is performed on (Ai,j)i∈[m],j∈J ∈ Fm×m. If the
algorithm returns a solution x′ ∈ Fm, we return x ∈ Fn such that

xj =
{

x′
j if j ∈ J

0 otherwise
.

If the restricted system is not solvable, the process is restarted with a new choice of salt r.
The probability that the restricted determined systems are not solvable is approximately
1/16, therefore we expect to find a solution after a few tries.

4.3 Evaluating Multivariate Quadratic maps
The evaluation of multivariate quadratic maps is crucial in MPKC signatures, where the
public quadratic map P needs to be directly evaluated for verification. Moreover, in
UOV-based schemes, this operation is also required, in constant time, during the signing
process. We then proceed to describe two algorithms for the evaluation, in constant and
variable time, of P, as illustrated in Algorithm 5

Let P = (p1, . . . , pm) be a quadratic system of m equations in n variables, where
pk(x) =

∑
1≤i≤j≤n a

(k)
i,j xixj for k = 1, . . . , m. P can be stored as a Macaulay matrix

M ∈ Fm×(n+1
2). M is stored in column-major form for sequential loading of coefficients

during the computations and we denote with Mi,j,k the entry of M corresponding to the
coefficient a

(k)
i,j .

To achieve private evaluation, we want to avoid direct computation of singular mono-
mials xixj , since these multiplications are tedious to bitslice. This involves first computing
the multiplications by xj and storing the result in a separate accumulator, followed by the

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 13

multiplications by xi. We thus describe pk(x) as

pk(x) =
n∑

i=1

(n∑
j=i

a
(k)
i,j xj

)
xi. (4)

Storing M in column-major form allows the sequential loading of coefficients to be multiplied
by xj . Overall, constant-time evaluation requires to bitslice and multiply m elements
n(n + 1)/2 + m times.

In the public signature verification process, the evaluation can be significantly acceler-
ated by leveraging variable-time operations, as demonstrated in [CKY21, Section 3.3]. The
main difference from the constant-time case involves the direct evaluation of the product
xixj using a look-up table of 256 elements. We store an accumulator of m elements for each
non-zero field element and sequentially add the columns of M to the row of the accumulator
corresponding to the value of xixj . This operation, although highly efficient, is unsuitable
for private operations since it would leak the value of the monomial. The result is obtained
by bitslicing the accumulator rows and multiplying each with the corresponding field
element. Overall, variable-time evaluation requires to bitslice and multiply m elements
q − 2 = 14 times. This results in a markedly more efficient public evaluation than private
ones, at the expense of (q−1)m⌈log2(q)⌉ bits of memory. However, for F16, only additional
512 bytes are required.

Evaluation of Polar Forms MAYO also requires the evaluation of polar forms B in
both the signing and verification processes. We could trivially obtain the evaluation of
B(x, y) = P(x + y)− P(x)−P(y) by performing three evaluations of the public map P
and then adding the results. However, it is possible to perform the computation in a more
efficient and compact way, as illustrated in Algorithm 6.

Let p(x) =
∑

i≤j ai,jxixj , the polar form of p is given by

b(x, y) =
∑
i≤j

ai,j

[
(xi + yi)(xj + yj)− xixj + yiyj

]
=
∑
i≤j

ai,j(xiyj + yixj).
(5)

Therefore, for public evaluation, it is sufficient to slightly modify the evaluation of the
variable-time MQ map of Algorithm 5. The difference is that on Line 4 we compute the
monomial t = xiyj + yixj instead of t = xixj . This only requires an additional look-up
table multiplication and an additional XOR operation with respect to the evaluation of P .
For the private evaluation, we can group the multiplications in Equation 5 as

b(x, y) =
n∑

i=1

[(n∑
j=i

ai,jyj

)
xi +

(n∑
j=i

ai,jxj

)
yi

]
,

similarly to the approach adopted in Equation 4. We obtain the private evaluation by
appropriately modifying the constant-time MQ map evaluation of Algorithm 5. The
algorithm requires to bitslice and multiply m elements 2

[n(n+1)
2 + m

]
times. This is

more efficient than trivially evaluating the polar form, which would require 3
[n(n+1)

2 + m
]

bitsliced multiplications of m elements.

4.4 New parameters for MAYO
In our analysis of implementation techniques for UOV-based schemes on 32-bit CPUs using
the ARMv7-M architecture, we observed that bitsliced multiplications significantly enhance

14 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

Algorithm 6: Evaluation of Polar Form
Input: Macaulay matrix M ∈ Fm×(n+1

2) representing a MQ map P
Input: x, y ∈ Fn

Output: z = B(x, y) = P(x + y)− P(x)− P(y) ∈ Fm

EvalPolarConst(M, x, y):
1: z ← 0m

2: for i← 1, . . . , n do
3: acc← 0m

4: for j ← i, . . . , n do
5:

[
acck

]
k∈[m]

+← xj ·
[
Mi,j,k

]
k∈[m]

▷ bitsliced multiplication
6:

[
zk

]
k∈[m]

+← yi ·
[
acck

]
k∈[m]

▷

bitsliced multiplication
7: acc← 0m

8: for j ← i, . . . , n do
9:

[
acck

]
k∈[m]

+← yj ·
[
Mi,j,k

]
k∈[m]

▷

bitsliced multiplication
10:

[
zk

]
k∈[m]

+← xi ·
[
acck

]
k∈[m]

▷

bitsliced multiplication
11: return z

EvalPolarLeak(M, x, y):
1: acc← 0(q−1)×m

2: for i← 1, . . . , n do
3: for j ← i, . . . , n do
4: t← xiyj + xjyi ∈ F ▷ 2 look-up

table multiplications
5: if t = 0 then continue
6: for k ← 1 . . . , m do
7: acct,k ← acct,k + Mi,j,k

8: z ← acc1 ∈ Fm

9: for t← F \ {0, 1} do
10:

[
zk

]
k∈[m]

+← t ·
[
acct,k

]
k∈[m]

▷

bitsliced multiplication
11: return z

the efficiency of both public and private components of the algorithm. In Section 4.1, we
discussed the specific case where the base field is F16. In this scenario, each multiplication
of m elements requires the application of both the bitslice and multiplication algorithms
⌈m/32⌉ times. Therefore, to achieve maximum performance from the bitslicing technique,
the number of polynomials (i.e. m) appearing in the public map should ideally be a
multiple of 32 or slightly less. The original parameters for MAYO do not satisfy this
requirement, with m values of 67, 99, and 132 for security targets of 128, 192, and 256
bits, respectively.

When 8 or fewer field elements need to be bitsliced, they can be stored in a single
register, streamlining the bitslicing and unbitslicing procedures. In Algorithm 10, the
costs of these operations is reduced to 7 cycles and 4 cycles, respectively, compared to the
original 28 cycles of Algorithm 7. However, the bitsliced multiplication instructions remain
the same, irrespective of the number of elements involved. Consequently, multiplying 8 or
fewer elements incurs the same computational cost as multiplying 32 elements once the
elements are bitsliced. This inefficiency becomes particularly noticeable for the parameters
of MAYO in Table 1, where we must separately multiply only 3 or 4 extra elements each
time.

To address this issue, we propose new parameters for MAYO, ensuring that m is a
multiple of 32 (see Table 2). By doing so, we can maximize the performance gains from
the bitslicing technique, ultimately leading to a more efficient implementation on 32-bit
ARMv7-M CPUs. The newly proposed parameters have been thoroughly analyzed for
security and efficiency to ensure that they meet the required security levels while enhancing
the overall performance of the scheme.

Whipping factor The whipping transformation of MAYO (Section 3.1) is largely deter-
mined by the parameter k. Smaller values of k lead to a smaller whipped map, resulting
in faster signing and verification processes. On the other hand, larger values of k allow
the size of the secret subspace to be reduced, thereby reducing the size of the keys. We
attempted to achieve a smaller k while maintaining the correctness of the scheme through

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 15

Table 2: New parameters proposal for MAYO, with comparison between old and new
parameters

Security
level

Parameters Pub. key
(Bytes)

Priv. key
(Bytes)

Sig.
(Bytes)Set n m o k q

I
[Beu22b] 66 67 5 14 16 503 10,218 462

This work 66 64 7 10 16 896 13,216 330

III
[Beu22b] 98 99 6 17 16 1,040 27,324 833

This work 98 96 8 12 16 1,728 34,560 588

V
[Beu22b] 130 132 7 19 16 1,848 56,826 1,235

This work 131 128 10 13 16 3,520 77,440 852

Table 3: Complexity (log2 of gates) of the attacks for the new parameter sets for MAYO

Security level Direct Reconc. K-S Inters.
I 145 146 249 287

III 211 212 371 426
V 277 275 493 565

the constraint ko ≥ m, prioritizing compact public keys and signatures among the secure
sets of parameters in our search.

Security analysis In defining new parameters, we adopted the same security targets
originally identified in [Beu22b]. We used the estimates of the complexity of MAYO
attacks provided in Section 3.3 to confirm that the new parameters align with their
respective security targets. For the Direct Attack and the Reconciliation Attack, we used
the "Multivariate Quadratic Estimator" of [BMSV22] to find the optimal algorithm and
the respective complexity estimates for the proposed parameters. The SageMath code
used in the analysis is available in the public repository.

Proposed parameters By setting the new values of m as 64, 96, and 128 respectively, we
conducted an exhaustive search on the MAYO parameters to identify the optimal trade-off
between efficiency and key/signature size. The newly proposed parameters are presented
in Table 2, along with their security analysis in Table 3. These parameters, at the cost of
slightly larger public keys, produce smaller k and marginally smaller signatures, ultimately
resulting in a more efficient implementation of the MAYO scheme on 32-bit ARMv7-M
CPUs.

Update of MAYO official parameters Recently, the MAYO team published a draft of
the scheme specification document [BCC+23]. In the document, the authors propose new
parameter sets for the purpose of optimized implementations. In particular, they choose the
m parameter to be a multiple of 32. Although the authors’ choice is not directly oriented
toward optimization on ARM architecture, the underlying reasoning closely aligns with
the discussion presented in this paper. Therefore, we are confident that the optimizations
proposed in this work for the parameters of Table 2 can be easily adapted to the new
official parameters proposed in [BCC+23].

16 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

Table 4: Performance evaluation of MAYO with first level parameters on ARMv7-M.
Public and private keys are provided as Macaulay matrices in standard form without
precomputation. The cycle count is reported as the average of 1000 iterations.

Parameters Set
Parameters Cycles

n m o k q Signature Verification
[Beu22b] 66 67 5 14 16 114,378k 15,144k

This work 66 64 7 10 16 42,981k 5,703k
This work (k = 14) 66 64 7 14 16 85,682k 10,776k

5 Experimental results
The evaluation was carried out by applying the optimizations of the previous section to the
reference implementation of MAYO [Beu22b]. Benchmarks were performed on parameters
in Table 2 of the first security level. Implementing the key generation in the ARMv7-M
instructions would not particularly benefit from the proposed optimization. Therefore, the
analyses mainly focus on the signature and verification processes.

Data encoding Keys are generated as described in Algorithm 1 and are appropriately
encoded. From the private key (O, {P(1)

i , Li}i∈[m]) and the public key {Pi}i∈[m], we
compute the Macaulay matrices MP ∈ Fm×(n+1

2), representing {Pi}i∈[m], and MP(1) ∈
Fm×(n−o+1

2), representing {P(1)
i }i∈[m]. Lastly, we pack the linear matrices Li in the rows

of ML ∈ Fo(n−o)×m.
Two consecutive F16 elements are packed in one byte where the first element occupies

the least significant bits. As MP , MP(1) and ML are stored in column-major order, if m is
odd, we store each of their columns in (m + 1)/2 bytes, where in the last byte we put the
last element of the column and fill the remaining nibble with zeroes. Even though in this
way the keys get slightly larger, different columns do not overlap, allowing faster access of
the elements in the instruction sequences. The private matrix O must be in row-major
order, so we apply the same reasoning if n− o is odd.

Platform For the implementation, we used an ARM STM32H753 Nucleo-144 board,
mounting an STM32H753ZIT6 microcontroller, which has a Cortex-M7 core that can run
with a frequency of up to 480 MHz. The board has 2 Mbytes of Flash memory and 1
Mbyte of SRAM, which gives us enough space to store whole MAYO keys.

Message hashing The hash function H applied to messages in the signing process is
the extendable output function SHAKE128. For its implementation we use th eXtended
Keccak Code Package (XKCP) 1.

Results The implementation results are reported in Table 4. The verification procedure
use variable-time algorithms and its running time heavily depends on the input signature.
We remark that the signing process may require a restart if the system described in
Section 4.2 does not have a solution; this happens with probability roughly 1/16, hence
the signing runtime might not be constant. Therefore, we repeat both the signing and
verification process for 1000 iterations and report the average running time. We expect
that the choice of the whipping parameter k greatly impacts both the signing and the
verification time, as the main operations are repeated k +

(
k+1

2
)

times. To highlight the
1https://github.com/XKCP/XKCP

https://github.com/XKCP/XKCP

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 17

improvement deriving from the choice of m being a multiple of 32, we include in the results
the performance of the scheme with a variant of our new parameters sets, where we keep
the original value k = 14.

The optimized implementation on the updated parameters reduces the latency of the
signature process by 62.4% and that of the verification process by 62.3%. Without reducing
the whipping parameter k to match the new parameters, we still obtain a reduction of
25.1% and 28.8% respectively.

6 Conclusions
We have explored the constant-time implementation of the MAYO multivariate digital
signature scheme on ARMv7-M microcontrollers. The original parameters proposed for
MAYO were not optimal for these embedded platforms. Therefore, we studied the security
aspects and complexities of potential attacks and identified a new set of parameters that
could improve the performance for the ARMv7-M platforms. This was achieved by finding
a balance between efficiency and key sizes.

The primary idea was to maximize the efficiency of bitsliced multiplications, a technique
that enables fast binary field arithmetic while enabling constant-time implementations. Our
choice of parameters allowed for more efficient multiplications in groups of 32 field elements,
resulting in signatures and verification runtimes that are 2.6 times faster compared to
those of the original parameters. Although our parameters result in slightly larger public
keys, they also produce shorter signatures.

Further improvements in performance could be achieved by using a simplified choice
of parameter maps or alternative methods for finite field multiplications. However, a
significant portion of the efficiency improvement is due to the reduction of the whipping
parameter k, which affects the time complexity of the signing and verification processes.

Ultimately, the proposed parameters for the MAYO scheme demonstrate better per-
formance on ARMv7-M platforms, offering an efficient, constant-time implementation for
embedded systems while maintaining security against quantum threats.

Acknowledgements
This work was created with the co-financing of the European Union FSE-REACT-EU,
PON Research and Innovation 2014-2020 DM1062/2021. The second author is a member
of the INdAM Research Group GNSAGA. The core of this work is contained in the first
author’s M.Sc. thesis.

References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John

Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al.
Status report on the third round of the nist post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2022. https:
//doi.org/10.6028/NIST.IR.8413-upd1.

[ABB+22] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph Do-
braunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, Andreas
Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M. Laurid-
sen, Florian Mendel, Ruben Niederhagen, Christian Rechberger, Joost Rijn-
eveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+ - Submission to the
NIST post-quantum project. NIST PQC Standardization Process, version 1.2,

https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.IR.8413-upd1

18 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

2022. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and
Damien Stehlé. CRYSTALS-Kyber - Algorithm Specifications And Sup-
porting Documentation. NIST PQC Standardization Process, version 3.02,
2021. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[BCC+23] Ward Beullens, Fabio Campos, Sofía Celi, Basil Hess, and Matthias Kan-
nwischer. MAYO - algorithm specifications. MAYO team, latest update:
28/02/2023, 2023. https://pqmayo.org/assets/specs/mayo.pdf, last ac-
cessed on 14/04/2023.

[BCH+23] Ward Beullens, Ming-Shing Chen, Shih-Hao Hung, Matthias J. Kannwischer,
Bo-Yuan Peng, Cheng-Jhih Shih, and Bo-Yin Yang. Oil and vinegar: Modern
parameters and implementations. Cryptology ePrint Archive, Report 2023/059,
2023. https://eprint.iacr.org/2023/059.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-
time code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron,
editors, CHES 2013, volume 8086 of LNCS, pages 250–272. Springer, Heidel-
berg, August 2013.

[BDK+21] Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-
Dilithium - Algorithm Specifications And Supporting Documen-
tation. NIST PQC Standardization Process, version 3.1, 2021.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[Beu20] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy signature
schemes. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part III, volume 12107 of LNCS, pages 183–211. Springer, Heidelberg, May
2020.

[Beu21] Ward Beullens. Improved cryptanalysis of UOV and Rainbow. In Anne
Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part I,
volume 12696 of LNCS, pages 348–373. Springer, Heidelberg, October 2021.

[Beu22a] Ward Beullens. Breaking rainbow takes a weekend on a laptop. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508
of LNCS, pages 464–479. Springer, Heidelberg, August 2022.

[Beu22b] Ward Beullens. MAYO: Practical post-quantum signatures from oil-and-vinegar
maps. In Riham AlTawy and Andreas Hülsing, editors, SAC 2021, volume
13203 of LNCS, pages 355–376. Springer, Heidelberg, September / October
2022.

[BFP09] Luk Bettale, Jean-Charles Faugere, and Ludovic Perret. Hybrid approach
for solving multivariate systems over finite fields. Journal of Mathematical
Cryptology, 3(3):177–197, 2009.

[BMSV22] Emanuele Bellini, Rusydi H. Makarim, Carlo Sanna, and Javier Verbel. An
estimator for the hardness of the MQ problem. Cryptology ePrint Archive,
Report 2022/708, 2022. https://eprint.iacr.org/2022/708.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://pqmayo.org/assets/specs/mayo.pdf
https://eprint.iacr.org/2023/059
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2022/708

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 19

[CFM+21] Antoine Casanova, Jean-Charles Faugère, Gilles Macario-Rat, Jacques
Patarin, Ludovic Perret, and Jocelyn Ryckeghem. GeMSS: A Great
Multivariate Short Signature. NIST PQC Standardization Process,
2021. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[CKPS00] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. Efficient
algorithms for solving overdefined systems of multivariate polynomial equations.
In Bart Preneel, editor, EUROCRYPT 2000, volume 1807 of LNCS, pages
392–407. Springer, Heidelberg, May 2000.

[CKY21] Tung Chou, Matthias J. Kannwischer, and Bo-Yin Yang. Rainbow on cortex-
M4. IACR TCHES, 2021(4):650–675, 2021. https://tches.iacr.org/index.
php/TCHES/article/view/9078.

[DCK+21] Jintai Ding, Ming-Shing Chen, Matthias Kannwischer, Jacques
Patarin, Albrecht Petzoldt, Dieter Schmidt, and Bo-Yin
Yang. Rainbow. NIST PQC Standardization Process, 2021.
https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[Fau02] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases
without reduction to zero (f5). In Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’02, page 75–83,
New York, NY, USA, 2002. Association for Computing Machinery.

[FHK+20] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William
Whyte, and Zhenfei Zhang. Falcon: Fast-Fourier Lattice-based Compact
Signatures over NTRU. NIST PQC Standardization Process, version 1.2,
2020. https://csrc.nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

[KPG99] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced Oil and Vinegar
signature schemes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592
of LNCS, pages 206–222. Springer, Heidelberg, May 1999.

[KS98] Aviad Kipnis and Adi Shamir. Cryptanalysis of the Oil & Vinegar signature
scheme. In Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
257–266. Springer, Heidelberg, August 1998.

[MHT13] Hiroyuki Miura, Yasufumi Hashimoto, and Tsuyoshi Takagi. Extended algo-
rithm for solving underdefined multivariate quadratic equations. In Philippe
Gaborit, editor, Post-Quantum Cryptography - 5th International Workshop,
PQCrypto 2013, pages 118–135. Springer, Heidelberg, June 2013.

[NIS23] NIST. Post-quantum cryptography: Digital signature schemes standardization
project, 2023. https://csrc.nist.gov/projects/pqc-dig-sig/.

[Pat97] Jacques Patarin. The oil and vinegar algorithm for signatures. In Dagstuhl
workshop on cryptography, 1997, 1997.

[PTBW11] Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and Christopher Wolf.
Small public keys and fast verification for multivariate quadratic public key
systems. Cryptology ePrint Archive, Report 2011/294, 2011. https://eprint.
iacr.org/2011/294.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://tches.iacr.org/index.php/TCHES/article/view/9078
https://tches.iacr.org/index.php/TCHES/article/view/9078
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/pqc-dig-sig/
https://eprint.iacr.org/2011/294
https://eprint.iacr.org/2011/294

20 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms
and factoring. In 35th FOCS, pages 124–134. IEEE Computer Society Press,
November 1994.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES you need on cortex-m3 and
M4. In Roberto Avanzi and Howard M. Heys, editors, Selected Areas in
Cryptography - SAC 2016 - 23rd International Conference, St. John’s, NL,
Canada, August 10-12, 2016, Revised Selected Papers, volume 10532 of Lecture
Notes in Computer Science, pages 180–194. Springer, 2016.

[TPD21] Chengdong Tao, Albrecht Petzoldt, and Jintai Ding. Efficient key recovery
for all HFE signature variants. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 70–93, Virtual Event,
August 2021. Springer, Heidelberg.

[TW12] Enrico Thomae and Christopher Wolf. Solving underdetermined systems
of multivariate quadratic equations revisited. In Marc Fischlin, Johannes
Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS,
pages 156–171. Springer, Heidelberg, May 2012.

A Instruction Sequences
In this appendix we show some key algorithms used in our implementation.

Please note that the .w suffix for some operations is due to the fact that ARMv7-M
allows for instruction encoding in 16 and 32 bits, and these can be mixed. The result
might lead to performance penalties due, for example, to having a 32-bit instruction split
into two words, as originally observed in [SS16]. The .w suffix forces the encoding of
instructions in 32 bit, thus avoiding misalignment.

Some of the following algorithms make use of the conditional execution of ARMv7-M
instructions. These are the so called it-blocks, because they start with an it instruction
and can comprise of up to 4 following instructions, depending on the number of t or e
following the initial it instruction. The it instruction requires to have the flags already set,
this is usually achieved through a tst instruction. Using conditional execution instructions
is advantageous for achieving constant-time implementation, as it mitigates the risk of
side-channel attacks by ensuring that the number of cycles will be consistent regardless of
the secret input or condition flags.

Arianna Gringiani, Alessio Meneghetti, Edoardo Signorini and Ruggero Susella 21

Algorithm 7: Conversion of 32 F16 elements to bitsliced representation
Input: 32 F16 elements stored in normal representation in registers A0, A1, A2, A3
Output: Bitsliced elements in registers A0′, A1′, A2′, A3′

1: and.w A0′, A0, #0x11111111
2: and.w A3′, A1, #0x11111111
3: orr.w A0′, A0′, A3′, lsl#1
4: and.w A3′, A2, #0x11111111
5: orr.w A0′, A0′, A3′, lsl#2
6: and.w A3′, A3, #0x11111111
7: orr.w A0′, A0′, A3′, lsl#3

8: and.w A1′, A1, #0x22222222
9: and.w A3′, A0, #0x22222222

10: orr.w A1′, A1′, A3′, lsr#1
11: and.w A3′, A2, #0x22222222
12: orr.w A1′, A1′, A3′, lsl#1
13: and.w A3′, A3, #0x22222222
14: orr.w A1′, A1′, A3′, lsl#2

15: and.w A2′, A2, #0x44444444
16: and.w A3′, A0, #0x44444444
17: orr.w A2′, A2′, A3′, lsr#2
18: and.w A3′, A1, #0x44444444
19: orr.w A2′, A2′, A3′, lsr#1
20: and.w A3′, A3, #0x44444444
21: orr.w A2′, A2′, A3′, lsl#1

22: and.w A3′, A3, #0x88888888
23: and.w A3, A0, #0x88888888
24: orr.w A3′, A3′, A3, lsr#3
25: and.w A3, A1, #0x88888888
26: orr.w A3′, A3′, A3, lsr#2
27: and.w A3, A2, #0x88888888
28: orr.w A3′, A3′, A3, lsr#1

Algorithm 8: Bitsliced multiplication of 32 F16 elements
Input: 32 F16 elements stored in bitsliced representation in registers A0, A1, A2, A3
Input: F16 factor element in least significant nibble of register B
Input: 32 F16 elements stored in bitsliced representation in accumulators C0, C1, C2, C3
Output: Bitsliced result of the multiplication in registers C0, C1, C2, C3

1: eor.w T0, A0, A3
2: eor.w T1, A2, A3
3: eor.w T2, A1, A3

4: tst.w B, #1
5: itttt ne
6: eorne.w C0, C0, A0
7: eorne.w C1, C1, A1
8: eorne.w C2, C2, A2
9: eorne.w C3, C3, A3

10: tst.w B, #2
11: itttt ne
12: eorne.w C0, C0, A3
13: eorne.w C1, C1, T0
14: eorne.w C2, C2, A1
15: eorne.w C3, C3, A2

16: tst.w B, #4
17: itttt ne
18: eorne.w C0, C0, A2
19: eorne.w C1, C1, T1
20: eorne.w C2, C2, T0
21: eorne.w C3, C3, A1

22: tst.w B, #8
23: itttt ne
24: eorne.w C0, C0, A1
25: eorne.w C1, C1, T2
26: eorne.w C2, C2, T1
27: eorne.w C3, C3, T0

Algorithm 9: Constant-time inversion of an element in F16

Input: Non-zero element a of F16 in the least significant nibble of register A
Output: Inverse of a in register B

1: movw T0, #0x4976
2: lsr.w B, T0, A
3: and.w B, #1

4: movw T0, #0x53E8
5: lsr.w T1, T0, A
6: and.w T1, #1
7: orr.w B, B, T1, lsl#1

8: movw T0, #0x2DD8
9: lsr.w T1, T0, A

10: and.w T1, #1
11: orr.w B, B, T1, lsl#2

12: movw T0, #0x953C
13: lsr.w T1, T0, A
14: and.w T1, #1
15: orr.w B, B, T1, lsl#3

22 MAYO: Optimized Implementation with Revised Parameters for ARMv7-M

Algorithm 10: Conversion of 8 F16 elements to and from bitsliced representation
Input: 8 F16 elements stored in normal rep-

resentation in register A
Output: Bitsliced elements in registers

A0′, A1′, A2′, A3′

1: and.w A0′, A, #0x11111111
2: and.w A1′, A, #0x22222222
3: lsr.w A1′, A1′, #1
4: and.w A2′, A, #0x44444444
5: lsr.w A2′, A2′, #2
6: and.w A3′, A, #0x88888888
7: lsr.w A3′, A3′, #3

Input: 8 F16 elements stored in bit-
sliced representation in registers
A0′, A1′, A2′, A3′

Output: Normal elements in register A
1: and.w A, A0′, #0x11111111
2: orr.w A, A, A1′, lsl#1
3: orr.w A, A, A2′, lsl#2
4: orr.w A, A, A3′, lsl#3

	Introduction
	Preliminaries
	MAYO
	Whipping the UOV map
	Signature scheme description
	Security and original parameters

	Implementation techniques
	Bitsliced multiplication of F16 elements
	Constant-time Gaussian Elimination
	Evaluating Multivariate Quadratic maps
	New parameters for MAYO

	Experimental results
	Conclusions
	Instruction Sequences

