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Abstract. Arithmetization-Oriented primitives are the building block
of advanced cryptographic protocols such as Zero-Knowledge proof sys-
tems. One approach to designing such primitives is the HADES design
strategy which aims to provide an efficient way to instantiate generaliz-
ing substitution-permutation networks to include partial S-box rounds.
A notable instance of HADES, introduced by Grassi et al. at USENIX
Security ’21, is Poseidon. Because of its impressive efficiency and low
arithmetic complexity, Poseidon is a popular choice among the design-
ers of integrity-proof systems. An updated version of Poseidon, namely,
Poseidon2 was published at AfricaCrypt ’23 aiming to improve the ef-
ficiency of Poseidon by optimizing its linear operations. In this work,
we show some caveats in the security argument of HADES against alge-
braic attacks and quantify the complexity of Gröbner basis attacks. We
show that the complexity of the attack is lower than claimed with the
direct implication that there are cases where the recommended number
of rounds is insufficient for meeting the claimed security. Concretely, the
complexity of a Gröbner basis attack for an instance of Poseidon with
1024 bits of security is 731.77 bits and the original security argument
starts failing already at the 384-bit security level. Since the security of
Poseidon2 is derived from the security of Poseidon, the same analysis
applies to the instances of Poseidon2. The results were shared with the
designers and the security arguments were updated accordingly.

Keywords: HADES · Poseidon · Hash functions · Zero-Knowledge proof
systems · Gröbner basis attacks

1 Introduction

Arithmetization-Oriented (AO) primitives are a common building block for ad-
vanced cryptographic protocols such as Zero-Knowledge (ZK) proofs, Multiparty
Computation (MPC), and Fully Homomorphic Encryption (FHE). AO primi-
tives are usually defined over a finite field of large order and designed to have
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a simple and efficient algebraic representation. Examples of such primitives are
Rescue [4], Rescue-Prime [41], RPO [6], and Chaghri [7] which are designed
based on the Marvellous design strategy [4], Griffin [26] and Anemoi [14] which
are Feistel-like designs, Poseidon [29] and Poseidon2 [30] based on HADES de-
sign strategy, and more examples such as MiMC [2], LowMC [3], Kreyvium [15],
FLIP [38], Rasta [21], Dasta [33], Pasta [22], Fasta [17], Elisabeth [18], Ru-
bato [32], Tip5 [42], and XHash [5] to name just a few.

A promising approach for designing efficient AO primitives is the HADES
design strategy. Poseidon and its successor Poseidon2 are the most important
and widely used hash functions designed based on the HADES approach which
are sponge functions [10] instantiated by the Poseidonπ and Poseidon2π permu-
tations. Poseidon2, optimizes the linear layers of Poseidon to improve efficiency
and mitigate the attack proposed in [9].

The HADES design strategy allows the designers to optimize the combina-
tion of substitution-permutation network (SPN) and Partial SPN [25] (PSPN)
to derive an efficient design while not jeopardizing security. In HADES, SPN is
referred to as full layers and used to justify arguments for the primitive’s re-
sistance against statistical attacks using the wide trail strategy. Then, PSPN is
referred to as partial rounds with the goal to not only improve the performance
of the design but also in combination with full layers ensure resistance against
algebraic attack. Indeed, it is claimed that both full and partial layers provide
same resistance in case of algebraic attacks [31].

The security of the HADES approach is based on an extensive analysis of
various techniques such as:

– Statistical attacks: Differential cryptanalysis, linear cryptanalysis.
– Algebraic attacks: Interpolations attacks [34], Gröbner basis attacks [19],

Higher-Order differential attacks [36], and Zero-Sum partitions attacks [13].

The security arguments of HADES and its instances were scrutinized by
third-party cryptanalysts which presented security vulnerabilities exploiting the
partial layers [12,35]. It has been observed that in some cases, the linear layer
results in invariant subspaces in partial layers. Subsequently, the security argu-
ments and suggested secure parameters were updated accordingly by imposing
additional constraints on the choice of the linear layer in the partial layer. Later,
[9] showed how to bypass two full rounds as an auxiliary approach for mounting
algebraic attacks but no parameter sets were yet shown to be vulnerable. Sauer
designed an algebraic attack on Poseidon [39] and showed that the resistance
of Poseidon against Gröbner basis attacks is overstated. However, he did not
provide any instance that is indeed vulnerable.

Our contributions. We investigate the feasibility of Gröbner basis attacks
against Poseidon and Poseidon2 as the most important instances of HADES. Our
approach is to conduct a thorough security analysis against the CICO problem
in the context of Gröber basis attacks, which are considered to be among the
most promising algebraic attacks against AO designs [1].5

5 See also [29, Sec. 5.2]
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To estimate the complexity of Gröbner basis attacks, we approximate the
solving degree by computing the Gröbner basis for toy parameters and extrap-
olate the solving degree. Extrapolation of the solving degree is a common ap-
proach in the cryptography community to compute the Gröbner basis complex-
ity [4,41,6,42,14,9]. The solving degree shows that the polynomial system de-
scribing Poseidon is not regular, and using the degree of regularity to bound the
solving degree results in over-estimation of the provided security [39]. Moreover,
in the design of HADES, it is believed that partial rounds provide the same se-
curity resistance against algebraic attacks as full rounds.6 We demonstrate that
in cases where the state size is larger than two, partial rounds offer less resis-
tance against Gröbner basis attacks than full rounds. To show the impact of our
observations and as a proof of concept, we demonstrate an instance with 1024
bits of security which is broken by our approach; the complete parameter set
can be found in Table 1.

λ log2(p) α t r RF RP CGB

1024 128 3 24 8 8 85 712.98
Table 1. an instance of Poseidon hash function with security parameter λ, state size
t, rate r, and (RF , RP ) the number of full and partial rounds, respectively. CGB is the
complexity of the Gröbner basis attack.

The proposed algebraic attacks suggest that the partial layers do not pro-
vide the expected level of security against algebraic attacks, requiring that the
security argument be re-evaluated for instances following this design strategy.

Additionally, we conducted a more thorough investigation into Poseidon’s se-
curity argument with respect to the claimed resistance against algebraic attacks.
We revealed three distinct flaws in these arguments, each of which has implica-
tions for the required number of rounds. First, we show a typo in the security
argument against Gröbner basis attacks in the full round setting. Then, we show
that the logical reasoning for the security argument against the Gröbner basis
attack is not sound. Finally, we present an error in the symbolic computation of
bounds that undermines security.

Structure of the Paper. In Section 2, the notations used throughout the
paper and the required background materials are described. In Section 3, an
overview of Poseidon and Poseidon2 designs, their security arguments, and the
flaws in the security arguments are outlined. In Section 4, a Gröbner basis at-
tack is proposed, and vulnerable instances are demonstrated. In Section 4.4,
we compare the complexity of computing the Gröbner basis and the running
time of the algorithm and discuss that running time is usually faster than the
suggested complexity. Finally, in Section 5, the paper is summarized, the steps

6 See [31, Sec. 2: “Crucial Points of the Hades Strategy”] later retracted in Version
121947 of [27, Sec. 2.2: “Interaction Between Full and Partial Rounds”].
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taken toward disclosure are outlined, and possible directions for future research
are discussed.

2 Preliminaries

2.1 Notations and Definitions

In this paper, we define λ as the security parameter. To show an inclusive range
of numbers, we use [a, b] = {a, . . . , b}. Vectors are denoted by bold capital letters
such as X,Y,Z, . . . and the elements of the vector X are denoted by (x1, . . . , xn).
Matrices are denoted by calligraphic capital letters such as M,N where Mi,j is
the jth element in the ith row.

Definition 1 (Macaulay Matrix [37]). Let P ∈ K[x1, . . . , xn] be a polyno-
mial system with monomial ordering ≺, the Macaulay matrix M[d](P) of degree
d is a matrix with coefficients in K, where M[d]i,j is the coefficient of the jth

biggest monomial with respect to ≺ in the ith polynomial in the extended system.
For example, let P = {P1, P2} = {x2+xy, y}. Then M[2](P) for degrevlex order
is defined as:

M[2](P) =

x2 xy y2 x y 1


1 1 0 0 0 0 P1

0 0 0 0 1 0 P2

0 1 0 0 1 0 xP2

0 0 1 0 1 0 yP2

.

Definition 2 (Linear Algebra Constant (ω) [43]). In the rest of this paper,
2 < ω ≤ 2.3716 is defined as the linear algebra constant and is the complexity of
matrix multiplication.

Definition 3 (CICO resistance). A hash function H : D1 ×D2 → R1 × R2

is CICO resistant if it is computationally infeasible to find x ∈ D1 and y′ ∈ R2

such that H ({x, x′}) = {y, y′} for given x′ ∈ D2, y ∈ R1.

2.2 Multivariate polynomial systems

Let K be a field, the polynomial ring K[x1, . . . , xn] is a set of all polynomials
in the variables x1, . . . , xn and coefficients in K. A polynomial system is a finite
set of polynomials P1, . . . , Pm ∈ K[x1, . . . , xn] such that:

P1(x1, . . . , xn) = 0

P2(x1, . . . , xn) = 0
...

Pm(x1, . . . , xn) = 0
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The polynomial systems typically describing AO hash functions span a zero-
dimensional ideal, meaning that the set containing all their solutions is finite.
One can use Gröbner basis to solve multivariate polynomial systems. The steps to
solve a multivariate polynomial system using one of the Gröbner basis algorithms
are:

1. Compute a Gröbner basis with respect to degrevlex term order.
2. Convert the Gröbner basis to lex term order.
3. Find the roots of the polynomial system by factoring univariate polynomials

and extending the partial solutions.

The primary motivation for first computing the Gröbner basis in degrevlex order
is its lower complexity compared to other term orderings. Complexity of Step
1. The complexity of computing a Gröbner basis in degrevlex term order is upper
bounded by [11]:

O

((
n+ dsol
dsol

)ω)
, (1)

where n is the number of variables in the multivariate polynomial system and
dsol is the solving degree of the polynomial system [20]. Solving degree is defined
as the highest degree of the polynomials involved in the computation of the
Gröbner basis using the F5 algorithm. In the case of regular systems, the solving
degree matches the Macaulay bound which is defined as:

dsol =

m∑
i=1

(di − 1) + 1,

where di is the polynomial degree of Pi for 1 ≤ i ≤ m.
However, most of the AO primitives, when modeled as a polynomial system,

are not regular systems [4,39,9], and in most of the cases, the solving degree
grows slower than the Macaulay bound.

To determine the solving degree, the current approach used in design and
cryptanalysis is to compute the solving degrees of round-reduced versions of the
system, and extrapolate a bound for it [4,1,9,39,14].

Complexity of Step 2. The computed Gröbner basis in degrevlex order
is usually complicated and not useful for solving the system. Therefore, it is
converted to a Gröbner basis in lex order. The conversion is performed using
the FGLM [23] algorithm and the complexity is upper bounded by:

O
(
nD3

)
,

where D is the degree of the zero-dimensional ideal. In some cases, this step can
be performed more efficiently using the sparse FGLM [24] algorithm which has
asymptotic complexity of:

O(
√
6/nπD2+n−1

n ). (2)
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Complexity of Step 3. When the ideal is zero-dimensional (as is the case
for us), the Gröbner basis in the lex order contains a unique univariate polyno-
mial that can be factored and is used to iteratively solve the entire system. When
the unique univariate polynomial is factored, it results in a partial solution to the
system. In an iterative process, partial solutions are substituted in other poly-
nomials, and these are factored in a similar way until a full solution is obtained.
solving a univariate polynomial system of degree D defined over the finite field
Fp the Cantor/Zassenhaus [16] algorithm can be used with complexity [40]:

O(D2(logD log logD)(log p+ logD)).

2.3 The Sponge Construction

The Sponge construction [10] is a generic method for constructing a hash function
from a fixed-length public permutation. Let Fp be a finite field of order p and
f : Fn

p → Fn
p be a fixed-length transformation operating over a state of size n

with elements in Fp. The sponge function F with rate r and capacity c where
r + c = n, takes as input M of arbitrary length, and after applying a padding
function, generates the output H. The length of the padded input and the output
of F is a multiple of r. The sponge function works as follows:

1. Let S be the state of the sponge function of length n = r + c.
2. The state S is initialized to (0, . . . , 0).
3. Absorbing phase: The padded message M is split into χ blocks M1,M2, . . . ,Mχ

of length r. For each i ∈ 1, 2, . . . , χ, the Mi is added to the first r blocks of
S and the function f is applied i.e.,

S = f(S + Mi||0)

4. Squeezing phase: once all blocks of the padded message have been absorbed,
the squeezing phase starts to generate the output. In this phase, the function
outputs blocks H1, . . . ,Hχ′ of length r and update the internal state S by
applying the function f .

In Figure 1, a schematic construction of the sponge function is illustrated. To
study more about sponge construction in the context of ZK-friendly hash func-
tions, we refer to [8].

Assuming that f is computationally indistinguishable from a random per-
mutation, a sponge function with capacity of c elements offers 2log2(p)c/2 bits of
collision resistance and preimage resistance [10].

2.4 The HADES Design Strategy

The HADES design strategy is a paradigm for developing efficient and secure
AO primitives. HADES uses two types of SPN networks, known as full layers—
placed at the beginning and at the end of the permutation—and partial layers,
placed in the middle. Each full round of HADES works as follows:
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Fig. 1. A sponge function with rate r, capacity c, and internal permutation f .

1. Add round keys.
2. Substitution (non-linear) layer applied to all the elements in the state.
3. Permutation (linear) layer.

Each partial round of HADES works as follows:

1. Add round keys.
2. Substitution (non-linear) layer applied to specific elements, usually the first

one, in the state.
3. Permutation (linear) layer.

In Figure 2 an overview of the HADES design strategy is depicted.
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Fig. 2. The SPN layer at the beginning and the end are full layers. The PSPN in the
middle is the partial layer where the S-box only applies to the first element of the state.

3 Poseidon and Poseidon2

Let us denote the set of vectors over the finite field Fp with arbitrary length with
F∗
p. Poseidon: F∗

p → (Fr
p)

χ′
is a hash function operating over Fp with output of χ′
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blocks of length r. It is constructed by using the Poseidonπ permutation in the
sponge construction with rate r and capacity c. Poseidonπ is a permutation with
a state size of t and consists of R = RF+RP rounds, where RF = Rf+Rf rounds
are full rounds with t S-boxes, and RP rounds are partial rounds with only one
S-box applied to the first element of the state. The Poseidonπ permutation is
illustrated in Figure 3 and works as follows:

1. Add round constants: ARCC : Ft
p → Ft

p, ARCC(X) = X + C.
2. Substitution layer: Sα : Fp → Fp, Sα(x) = xα, where the S-box is applied

to the first element (in partial rounds), or all elements of the state (in full
rounds).

3. Linear layer: LM : Ft
p → Ft

p, LM(X) = M·X⊺ where M is a MDS matrix.

Where M is a Cauchy matrix [44] and is defined as follows:

Mi,j =
1

xi + yj
,

for pairwise distinct xi and yj with the condition that xi + yj ̸= 0 for all i, j ∈
[1, t].

To improve the efficiency of Poseidon, the authors designed Poseidon2. Po-
seidon2 uses different partial rounds and different linear layers. Posedion2 works
as follows:

1. Initial linear layer: LM′ : Ft
p → Ft

p, LM′(X) = M′ · X⊺ where M′ is an
MDS matrix.

2. For R rounds:
(a) Add round constants: ARCC : Ft

p → Ft
p

ARCC(X) = X + C.

In the case of partial rounds, C = (c1, 0, . . . , 0).
(b) Substitution layer: Sα : Fp → Fp, Sα(x) = xα, where the S-box is

applied to the first element (in partial rounds), or all elements of the
state (in full rounds).

(c) Linear layer: LM : Fp → Fp, LM(X) = M · X⊺.

Where M is an MDS matrix. In case of full rounds, M = M′ and is same as the
MDS matrices defined for Griffin-π [26]. In case of partial rounds, M = M′′ is
defined in [30, Section 5.2]. Figure 3 depicts how Poseidon and Poseidon2 work
and the updated operations in Poseidon2 are denoted by dashed lines.

Instances of Poseidon and Poseidon2 that provide λ bits of security, guarantee
that any algorithm that finds collision or preimage requires a complexity of at
least 2λ. In the case of the CICO problem, as long as finding x∥x′ ∈ D using
exhaustive search is not possible with complexity less than 2λ, any algorithm
that finds such x∥x′ ∈ D requires a complexity of at least 2λ.
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Fig. 3. Construction of Poseidonπ (bottom), and Poseidon2π (top) permutations. The
modified steps are shown with dashed line

3.1 Security Claims for Poseidon and Poseidon2

The security of Poseidon is analyzed against various attacks in order to compute
the reliable number of required rounds. The authors provided a script to facilitate
the computation of the number of rounds7. In our analysis, we utilized this script
to calculate the necessary number of rounds required to ensure the security of
our chosen parameters. Currently, the scripts are updated after communicating
the results with the authors.

3.2 Flaws in the Security Analysis of Poseidon

In addition to the flaw described in Section 4, we identified three more minor
flaws which, when combined, increase the likelihood of an attack to exist. In
Section 3.2, we demonstrate that using loose bounds in security arguments leads
to incorrect conclusions. In Section 3.2, we investigate the security argument
against Gröbner basis attacks in the case of χ = 1, where the system is already
a Gröbner basis in the full-permutation setting. We highlight a typo causing
an underestimation of the required number of rounds. Finally, in Section 3.2,
we identify a flaw in the symbolic computations of round-level Gröbner basis
analysis that led to an overclaiming of the security.

Improper Logic The argument for determining the number of rounds that is
safe against a Gröbner basis attack can be summarized as follows [29, Section
5.5.2]:

1. Compute the complexity of the attack as a function of the Poseidon param-
eters α,RF , RP , t, r, χ, λ.

2. Optionally, derive an upper bound for the computed complexity that is easier
to manipulate.

3. Calculate the maximum number of rounds R∗
F and R∗

P that can be attacked
given the parameters of Poseidon.

7 https://extgit.iaik.tugraz.at/krypto/hadeshash

https://extgit.iaik.tugraz.at/krypto/hadeshash
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4. Assume that all values for RF , RP higher than R∗
F , R

∗
P cannot be attacked

and are secure.

The problem arises due to Step 2, where a lower bound should be used. As a
result, Step 4 concludes resistance against adversaries that Step 3 did not handle.

Consider a simple example: let us assume that a sponge construction with
rate r uses an N -round permutation; further, assume an attack with complexity
23Nr. However, this expression may be challenging to work with (e.g., because
3 is odd and we wish to take a square root) so we attempt to simplify it by
noting that 23Nr ≤ 24Nr, although this is not a tight upper bound. Using the
argumentation shown above, we find N∗ from:

24N
∗r = 2λ.

Solving for N∗ yields

N∗ =
λ

4r
.

Consequently, for all 0 ≤ N ≤ N∗, a sponge function using the N -round
permutation can be attacked. This is still a true statement. Using the above ar-
gumentation, it is then conjectured that the sponge function is safe from attacks
for all N ≥ N∗ = λ

4r . This is not a true statement as now using the proper
expression to find a safe number of rounds Ns, we obtain

23Nsr = 2λ,

and find:

Ns =
λ

3r
.

Therefore, for all 0 ≤ N ≤ Ns, the sponge function can be attacked, and
for all N > Ns, the sponge function is safe for the given security level. The
problem is that for N∗ ≤ N ≤ Ns, we argued that the sponge construction with
N rounds is safe, while it is not the case. When using Step 3 and Step 4 outlined
earlier, one should use a lower bound rather than an upper bound in Step 2, as it
may result in an overestimation of the resistance of the sponge function against
attacks.

Similarly, the resistance of Poseidon against a round-level Gröbner basis at-
tack is found to be (up to reasonable approximation) [29]:

CGB = 2Cq−C′
,

with

C = 2 log2

(
αα

(α− 1)α−1

)
C ′ = log2

(
2π(α− 1)q

α

)
q = (t− 1)RF +RP + χ
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That concludes Step 1. In Step 2, this approximation was upper-bounded by:

CGB = 2C·q−C′
≤ 2C·q, (3)

Ultimately, resistance against the round-level attack is assumed as long as:

(t− 1)RF +RP ≥ C−1 min{λ, log2(p)} − 1, (4)

Since (3) is not a tight bound (4) necessarily underestimates the required number
of round. The effect of this omission is more noticeable when α, state size t, and
rate r grow.

Transcription Error Full-Permutation Equation. In the full round equa-
tion setting [29, Section C.2.2], a system of equations for the entire R rounds is
derived by considering each input as a variable and applying the round functions
to them. When the number of input variables χ is the same as the number of
output variables, the resulting system will consist of χ equations in χ variables,
and the degree of each polynomial is upper-bounded by Dα(R) = αR.

When χ = 1, the system consists of a single polynomial of degree at most
αR in one variable, which is already a Gröbner basis in lex order. Therefore, the
only step required to complete the attack is the factorization of the univariate
polynomial. Per the security argument provided in [29, Section C.2.2], one should
have:

log2
(
αωR

)
≥ log2

(
α2R

)
≥ min{λ, log2(p)},

which implies:

R ≥
⌈
min{λ, log2(p)}

2 log2 α

⌉
= logα(2) ·min{λ

2
,
log2(p)

2
},

where R = RF + RP . Later, the designers in [29, Equation 11], write the con-
straint for the full round attack as:

RF +RP ≥ logα(2) ·min{λ
3
,
log2(p)

2
}, (5)

where the denominator of the fraction λ
3 is 3 instead of 2. This mistake results in

an overestimation of the security that the Poseidon permutation provides against
Gröbner basis attacks in the case where χ = 1.

As an example of how the mistake influences the number of rounds, the
constraint in [29, Equation 5] would imply that 6 full rounds and 22 partial
rounds are sufficient for α = 3, t = 2, p ≈ 21024, and a desired security level of
128 bits, whereas to gain that security level for these parameters, at least 35
partial rounds are required.
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Symbolic Computation Error In [29, Section C.2.2] it is shown that for
security level of λ, the maximum number of rounds that can be attacked using
Gröbner basis is:

(t− 1)RF +RP + χ ≤ C−1 ·min{λ, log2(p)χ}, (6)

with

C = 2 log2

(
αα

(α− 1)α−1

)
.

The designers argue that the maximal number of rounds that can be attacked
is when χ = 1 [29, Section C.2.2] but this is not true. Rewriting (6), we get

(t− 1)RF +RP ≤ C−1 ·min{λ− χC, χ(log2(p)− C)}.

Here, the first argument of the minimum function is indeed maximized for
χ = 1, but the last argument is maximized for χ = t−1 because λ−C is positive
for the suggested parameters of Poseidon. Ultimately, security is conjectured if:

(t− 1)RF +RP ≥ C−1 ·min{λ, log2(p)}+ t− 2,

but if we address the algebra error, we obtain:

(t− 1)RF +RP ≥ C−1 ·min{λ+ C(t− 2), log2(p)(t− 1)}.

Previously, the constraint for this kind of Gröbner basis attack appeared to
be less restrictive than the other attacks, as it was subsumed by the constraints
for the other kinds of Gröbner basis attacks [29, Equation 11]. However, once the
error is addressed, this is no longer true. More importantly, there are parameter
sets for which this constraint would require the highest number of partial rounds
to be secure. For example, for α = 3, log2(p) ≈ 256, λ = 1536, RF = 8, t = 8, an
interpolation attack would be thwarted if RP ≥ 158, a subspace attack would
fail if RP ≥ 80, and a full-permutation attack requires RP ≥ 73, but a round-
level Gröbner basis attack require RP ≥ 230 to achieve required resistance.
Therefore, [29, Equation. 5] requires three constraints rather than two and this
omission does affect the required number of rounds for some parameter sets.

4 The Gröbner Basis Attack

The CICO resistance of Poseidon and Poseidon2 is analyzed using the Gröbner
basis attacks in this section. To solve the CICO problem, we first model Poseidon
and Poseidon2 as a system of multivariate polynomials with known output and
unknown input and we solve the system to find the desired input.
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4.1 Poseidon: Polynomial Modeling

Poseidon is modeled for the case where α = 3, the number of input blocks of size r
is χ = 1 and the underlying permutation is applied only once. In Poseidon, which
is a sponge function, the first r elements of the input state of the permutation
are absorbed from the input, and the next c elements are initialized to a constant
value. Without loss of generality, we can assume that the last c element of the
input state is initialized to 0.

while it is possible to model Poseidon in various ways using algebraic relations
describing them, the model that minimizes the complexity of the Gröbner basis
attack is the preferred one.

After a thorough analysis of various methods for polynomial modeling, we
identified the approach used by Sauer [39] that aims to minimize the solving
degree of the system results in the lowest theoretical complexity.

In the described polynomial system, Ci = {ci,1, . . . , ci,t} denotes the round
constants for round i ∈ {1, . . . , R}. Xi = {xi,1, . . . , xi,t} are the variables that
describe the state of the round i ∈ {0, . . . , R}, where X0 = (x1, . . . , xr, 0, . . . , 0)
is the input and XR = (H1, . . . ,Hr, xR,r+1, . . . , xR,t) is the output. The first
round of Poseidon before multiplication by M can be described as:

x1,j − (x0,j + c1,j)
α
= 0 j ∈ [1, r],

that has 2r variables and r polynomials. The state after the first and second
S-box layers is modeled as follows:

x2,j −

((
r∑

k=1

Mj,k · x1,k +

t∑
k=r+1

Mj,k · cα1,k

)
+ c2,j

)α

= 0,

where j ∈ [1, t]. The described polynomials add t new variables and t new poly-
nomials to the system. The next Rf full rounds (i.e., 3 ≤ i ≤ Rf ) are modeled
as:

xi,j −

((
t∑

k=1

Mj,k · xi−1,k

)
+ ci,j

)α

= 0 j ∈ [1, t],

adding (Rf − 2)t new variables and (Rf − 2) new polynomials to the system.
We introduce a variable Y to simplify the equations for partial rounds and it is
initialized as:

Y⊺ = M · (xRf ,1, . . . , xRf ,t)
⊺.

The partial rounds Rf < i ≤ Rf +RP are modeled as:

xi,1 − (y1 + ci,1)
α
= 0

yj = Mj,1 · xi,1 +

t∑
k=2

Mj,k · (yk + ci,k) j ∈ [1, t],
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adding RP new variables and RP new polynomials to the system. The last Rf

rounds Rf +Rp < i ≤ R− 1 are modeled as:

xi,j − (yj + ci,j)
α
= 0 j ∈ [1, t]

yj =

t∑
k=1

Mj,k · xi,k j ∈ [1, t],

that add (Rf −1)t variables in (Rf −1)t polynomials to the system. Finally, the
last round is modeled as:

t∑
k=1

M−1
j,k · xR,k − (yj + cR,j)

α = 0 j ∈ [1, t].

The last round adds c new variables and t polynomial to the system. The final
system has r + (RF − 1)t+RP polynomials of degree α in r + (RF − 1)t+RP

variables.

4.2 Poseidon2: Polynomial Modeling

Poseidon and Poseidon2 differ in the linear layer, constant addition layer for
partial rounds, and the initial round. The first round can be modeled as follows:

x1,j −

(
t∑

k=1

M′′[j, k] · x0,k + c1,j

)α

= 0 j ∈ [1, r],

The full rounds are modeled in the same way as in Section 4.1 with different
coefficients coming from M′′. The partial rounds are modeled as follows:

xi,1 − (y1 + ci,1)
α
= 0

yj = M′
j,1 · xi,1 +

t∑
k=2

M′
j,k · (yk) j ∈ [1, t],

where Y is defined in the same way as Section 4.1. The final system, similar to
Poseidon’s system, has r+(RF −1)t+RP polynomials of degree α in r+(RF −
1)t+RP variables.

4.3 Complexity of the Attack

Both Poseidon and Poseidon2 can be modeled as a sequence of polynomials that
are not regular. Therefore, the Macaulay bound used in [29] is a loose upper
bound for the solving degree of the system. In order to extrapolate the solving
degree, we run the attack for smaller parameters and derive a formula for the
solving degree. We calculated the solving degree for more than 100 different
parameter sets of Poseidon and Poseidon2, with state sizes up to five and rate
up to four, using different values for α. Our experiments show that changing the
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value of α, does not affect the asymptotic growth of the solving degree when the
number of rounds is increased. More precisely, the solving degree grows at the
same rate independently of α in all the cases we analyzed (i.e., the derivative of
the solving degree does not change). In addition, the field size seems to have no
effect on the value or the growth of solving degrees. In the case of Poseidon2,
the solving degree is the same as Poseidon’s solving degree when RF > 2. Using
the collected data, and the conjecture that the solving degree grows linearly as
a function of a number of variables, we propose the following heuristic formula
for the solving degree.

dsol = r
RF

2
+ 0.8RP + α. (7)

Our experiments show that partial rounds do not provide the same level of
resistance against algebraic attacks as full rounds and the solving degree growth
is a function of the rate instead of the state size.
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Fig. 4. Comparison of the claimed solving degree [29] and the solving degree of the
system describing Poseidon for different state sizes when RP = 0, and rate = 1. The
solving degree growth is a linear function of the number of rounds and not the state
size. The plot on the right shows the overestimation of the complexity of Poseidon
in [?] and the complexity of this work.

In Table 2, we describe instances of Poseidon and Poseidon2 in which the
complexity of a Gröbner basis attack is less than their claimed security level.

4.4 Discussion on Complexity and Running time

In an attempt to optimize the polynomial system describing Poseidon from [39],
one can remove the variables corresponding to the output capacity which results
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λ α t r RF RP CGB CSFGLM CElim

1024 3 24 8 8 85 712.98 705.67 466.18
512 5 12 4 8 57 430.71 615.40 413.62
384 7 9 3 8 47 351.56 593.25 400.61

Table 2. Examples of Poseidon and Poseidon2 hash functions with security parameter
λ over the finite field Fp with log2(p) ≈ 128. CGB is the complexity of computing
the Gröbner basis in degrevlex order, CSFGLM is the asymptotic complexity of sparse
FGLM, and CElim is the complexity factoring univariate polynomials and recovering
their roots.

in a polynomial system with larger solving degree and fewer variables. Compar-
ing the theoretical complexity of the attack of both systems shows that removing
these variables makes the system harder to solve. However, computing the Gröb-
ner basis for the system with fewer variables is more efficient in practice and has
a noticeably lower running time than suggested by the theoretical complexity.
For example, modeling an instance with (RF = 10, RP = 2, t = 2, r = 1) using
the first approach resulted in a complexity of > 252 and the code did not termi-
nate after 7 days.8 On the other hand, when modeling the same instance using
the second approach, the complexity for computing the Gröbner basis is 263.3

and the code terminates after 216.64 seconds. These two instances are described
in Table 3.

Polynomial Modeling Theoretical Complexity Expected Running Time Actual Running Time
(field multiplications) (seconds) (seconds)

Minimize solving degree 252 218.42 > 219.2

Minimize variables 263.3 231.3 216.64

Table 3. POSEIDON instances with running time that does not match the expected
complexity. The expected running time is computed using the number of basic CPU
operations that can be done in 1 second on the host machine.

A similar observation is made in [28] and the authors use ω = 1 to ensure a
security margin. An explanation for the faster running time is that the F4/F5
algorithms that are commonly used in computing the Gröbner basis do not work
with the full Macaulay matrix, but rather smaller submatrices that are selected
based on ad-hoc criteria. Moreover, the matrices are highly sparse, and therefore
the running time of the algorithm is noticeably faster than what the complexity
suggests. Therefore, using ω = 2 in analyzing the security of the design may lead
to an overestimation of the actual resources the attacker requires to break it.

8 At this point it was killed by the cluster’s scheduler.
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5 Conclusion

In this paper, we analyzed the security of Poseidon and Poseidon2 which are
primitives based on the HADES design strategy. We studied Gröbner basis at-
tacks, and showed that partial rounds are not providing the claimed resistance.
Using Gröbner basis attacks, we break instances of Poseidon and Poseidon2
claiming 1024 bits of security using an attack whose complexity is upper bounded
by 2731.77 and show that the original security argument does not hold for in-
stances with as small as 384 bits of claimed security. Since the vulnerabilities
presented in this paper are more pronounced in non-standard security levels we
are not aware of any practical instance directly affected. However, we argued
that the actual running time of the attack is significantly less than what is sug-
gested by the complexity analysis and hence we encourage the potential users to
consider in their risk assessment the ongoing erosion in the security of HADES
instances.
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