
NP-Hardness of Approximating Meta-Complexity:
A Cryptographic Approach

Yizhi Huang
Tsinghua University

huangyizhi01@gmail.com

Rahul Ilango
Massachusetts Institute of Technology

rilango@mit.edu

Hanlin Ren
University of Oxford

h4n1in.r3n@gmail.com

April 12, 2023

Abstract

It is a long-standing open problem whether the Minimum Circuit Size Problem (MCSP)
and related meta-complexity problems are NP-complete. Even for the rare cases where the
NP-hardness of meta-complexity problems are known, we only know very weak hardness of
approximation.

In this work, we prove NP-hardness of approximating meta-complexity with nearly-
optimal approximation gaps. Our key idea is to use cryptographic constructions in our
reductions, where the security of the cryptographic construction implies the correctness of
the reduction. We present both conditional and unconditional hardness of approximation
results as follows.

• Assuming subexponentially-secure witness encryption exists, we prove essentially opti-
mal NP-hardness of approximating conditional time-bounded Kolmogorov complexity
(Kt(x | y)) in the regime where t≫ |y|. Previously, the best hardness of approximation
known was a |x|1/poly(log log |x|) factor and only in the sublinear regime (t≪ |y|).

• Unconditionally, we show near-optimal NP-hardness of approximation for the Mini-
mum Oracle Circuit Size Problem (MOCSP), where Yes instances have circuit com-
plexity at most 2ϵn, and No instances are essentially as hard as random truth tables.
Our reduction builds on a witness encryption construction proposed by Garg, Gentry,
Sahai, and Waters (STOC’13). Previously, it was unknown whether it is NP-hard to
distinguish between oracle circuit complexity s versus 10s logN .

• Finally, we define a “multi-valued” version of MCSP, called mvMCSP, and show that
w.p. 1 over a random oracle O, mvMCSPO is NP-hard to approximate under quasi-
polynomial-time reductions with O oracle access. Intriguingly, this result follows al-
most directly from the security of Micali’s CS proofs (Micali, SICOMP’00).

In conclusion, we give three results convincingly demonstrating the power of cryptographic
techniques in proving NP-hardness of approximating meta-complexity.

i

mailto:huangyizhi01@gmail.com
mailto:rilango@mit.edu
mailto:h4n1in.r3n@gmail.com

Contents

1 Introduction 1
1.1 Why Care About NP-Hardness of Meta-Complexity? 1
1.2 Can Cryptography Help? . 2
1.3 Our Results . 3

1.3.1 Witness Encryption and Conditional Time-Bounded Kolmogorov Com-
plexity . 4

1.3.2 Oracle Witness Encryption and MOCSP 6
1.3.3 CS Proofs and A Multi-Valued Version of MCSP with Random Oracles . 7
1.3.4 Applications . 8

1.4 Related Work . 9
1.5 Discussions on Barriers Results . 10

2 Preliminaries 11
2.1 Witness Encryption . 11
2.2 Cryptographic Commitments . 13
2.3 SNARGs . 13
2.4 Kolmogorov Complexity . 14

3 Conditional NP-Hardness of Approximating Meta-Complexity 15
3.1 Witness Encryption Implies NP-Hardness of Approximating Kt(x | y) 15
3.2 SNARGs Imply NP-Hardness of Approximating mvMCSP 20

4 Unconditional NP-Hardness of GapMOCSP 21
4.1 From Witness Encryption to NP-Hardness of GapMOCSP 22
4.2 From Weak Security to Strong Security . 27
4.3 Description of GGSW . 30
4.4 Security of GGSW . 32

4.4.1 Hybrid Games . 32
4.4.2 Proof of Security . 35

4.5 NP-Hardness of GapMOCSP and GapMINcKT 41

5 Unconditional NP-Hardness of Gap-mvMCSPO 42
5.1 Description of CS Proofs . 42

5.1.1 Probabilistically Checkable Proofs . 42
5.1.2 Merkle Trees . 43
5.1.3 Kilian’s Protocol . 45
5.1.4 Micali’s CS Proofs . 46
5.1.5 CS Proofs in the Common Random String Model 46

5.2 Security of CS Proofs in the Plain Model . 48
5.3 Security of CS Proofs in the CRS Model . 51
5.4 NP-hardness of Gap-mvMCSPO . 55

6 Applications 56
6.1 Pseudorandom Self-Reductions . 56
6.2 Heuristics for Complexity . 57

References 59

A Optimality of Corollary 4.8 65

B Random Oracles Are Incompressible 65

ii

1 Introduction

Given an object (such as a string or a Boolean function), how hard is it to compute the “com-
putational complexity” of this object? Such questions can be formalised by meta-complexity
problems which aim to capture the “complexity of complexity” [All17]. A prominent example of
a meta-complexity problem is the Minimum Circuit Size Problem (MCSP) [KC00]. In MCSP,
one is given the length-2n truth table of a Boolean function f : {0, 1}n → {0, 1} as well as a
size parameter s, and the goal is to determine whether f can be computed by a circuit of size
at most s.

Characterising the precise computational complexity of many meta-complexity problems,
especially MCSP, remains elusive. It is easy to see that MCSP is in NP (simply guess a circuit
of size at most s and check, by brute force,1 that it computes the given truth table). On the
other hand, building on the natural proofs framework [RR97,HILL99,GGM86], Kabanets and
Cai [KC00] showed that if one-way functions exist, then MCSP is not in P. Therefore, MCSP is
an intractable problem in NP under standard cryptographic assumptions. However, the question
of whether MCSP is NP-complete remains wide open. Indeed, Levin is reported to have delayed
publishing his theory of NP-completeness [Lev73] in hopes of showing MCSP is NP-complete.2

Since then, there have been many works investigating whether MCSP and related problems are
NP-complete (e.g., [KC00,ABK+06,AHM+08,Fel09,KS08,HP15,HW16,AHK17,MW17,HOS18,
AIV19,AD17, IKV18,AH19, Ila20a, ILO20, Ila20b,SS20,Hir20,ACM+21,LP22,Hir22a,Hir22b]).

1.1 Why Care About NP-Hardness of Meta-Complexity?

Since we already know that MCSP and other meta-complexity problems are intractable under
standard cryptographic assumptions, one may wonder what the motivation is for showing these
problems are NP-hard. Perhaps surprisingly, researchers have discovered a growing number of
important motivations for showing meta-complexity problems are actually NP-hard. We list
some that we find compelling:

Eliminating Heuristica. Heuristica is the name Impagliazzo [Imp95] gives to a world where
P ̸= NP but NP is easy on average. Unlike other complexity classes such as EXP, PSPACE,
or NC1 [Bar89,FF93,BFNW93,TV07], there is no known worst-case to average-case reduction
for NP. Indeed, there are barrier results against any NP-complete problem having a “black-box”
worst-case to average-case reduction [FF93,BT06]. In a breakthrough result, Hirahara [Hir18]
overcomes this barrier by giving a non-black-box worst-case to average-case reduction for ap-
proximating MCSP. If one could show this approximation version of MCSP is NP-hard, then
this would imply that NP does have a worst-case to average-case reduction and thus rule out
Heuristica.

Later work of Hirahara [Hir22b] further extends this result by showing that, to eliminate
Heuristica, it suffices to show that a certain additive approximation to GapMINcKT (roughly
speaking, a “conditional” version of meta-complexity) is NP-hard.

Basing one-way functions on P ̸= NP. A longstanding goal in cryptography is to base
the existence of one-way functions on worst-case assumptions such as P ̸= NP (or rather
NP ̸⊆ BPP). Recently, an approach to showing this has emerged using meta-complexity [LP20,
RS21, ACM+21, LP21b, LP21a, IRS22, LP22]. In a breakthrough paper, Liu and Pass [LP20]
show that one-way functions exist if and only if time-bounded Kolmogorov complexity is mildly

1This guess and check are non-deterministically efficient since every Boolean function on n-bits has a trivial
circuit of size O(n2n), which is polynomial size since we are given the length-2n truth table as input.

2Allender and Das [AD17] cite a personal communication from Levin regarding this and a discussion can be
found on Levin’s webpage [Lev].

1

hard on average over the uniform distribution. As mentioned previously, Hirahara’s worst-
case to average-case reduction [Hir18] also holds for approximating time-bounded Kolmogorov
complexity. Thus, if one “just” combines these two results and also shows that approximating
time-bounded Kolmogorov complexity is NP-hard, then we would have that one-way functions
exist if and only if P ̸= NP. Unfortunately, the results of [Hir18] and [LP20] do not yet compose,
as the types of average-case hardness that they consider are different ([Hir18] considered errorless
heuristics while [LP20] considered error-prone heuristics).

Proving circuit lower bounds. Any reduction from SAT to MCSP needs to generate No
instances of MCSP, which is equivalent to circuit lower bounds; therefore, NP-hardness of meta-
complexity has a strong connection to circuit lower bounds. This argument was formalized by
Kabanets and Cai [KC00], who show that if MCSP is NP-complete under “natural” reductions3,
then E does not have polynomial-size circuits. Note that this is a consequence that we believe
but seems hard to show with current techniques.

We also mention an instance where new circuit lower bounds are proved along the way of
pursuing the NP-hardness of meta-complexity. Ilango [Ila20b] showed that for every constant
d there is a constant ϵ > 0 and a function whose depth-d and depth-(d+ 1) formula complexity
are 2ϵn apart. This follows from the techniques used to prove the NP-hardness of MCSP for
constant-depth formulas; note that the standard switching lemma arguments [Hås86] are unable
to prove such strongly-exponential (2Ω(n)) size lower bounds.

Curiosity. MCSP and its time-bounded Kolmogorov complexity variants are simple and im-
portant computational problems that have been studied since at least the 1960s [Tra84]. It is
remarkable that despite this long history of study, these problems (unlike thousands of other
problems) have thoroughly eluded attempts at classifying their complexity (in particular, com-
pleteness for some natural complexity class). Indeed, we lack compelling evidence either for or
against the existence of a polynomial-time mapping reduction from SAT to MCSP or many other
meta-complexity problems. The situation is especially lacklustre when considering hardness of
approximation. Essentially no NP-hardness is known for any even moderately strong model
(e.g. depth-3 formulas) beyond logarithmic factors4 in the truth table [KS08, Ila20b, Hir22b].
Are these problems NP-complete or not? Are they NP-hard to approximate or not?

1.2 Can Cryptography Help?

The starting point of our work is the following question:

Can cryptography be useful in showing the NP-hardness of meta-complexity?

In some sense, prior work already shows that the answer to this question is yes. For example, a
trivial corollary of Kabanets and Cai [KC00] is that if one-way functions exist, then MCSP ∈ P
if and only if P = NP. One can view this as a kind of NP-completeness result, but the proof
is somewhat unsatisfying: if one-way functions exist, then both P ̸= NP and MCSP ̸∈ P.

Another (more satisfying) example is a result by Impagliazzo, Kabanets, and Volkovich
[IKV18], who show that if indistinguishability obfuscation (iO) exists, then MCSP ∈ ZPP if
and only if NP = ZPP. Their proof can be viewed as a non-black box reduction from SAT
to MCSP. However, one drawback is that assuming iO exists is very close to assuming that

3That is, deterministic reductions whose output length and numerical parameters only depend on the input
length (instead of the particular input), and the sizes of the inputs and the outputs are polynomially related.
Almost all known NP-complete problems are NP-hard under “natural” reductions.

4The only exception to this that we are aware of is Hirahara’s recent result that it is NP-hard to compute an
n1/poly log logn factor approximation to the conditional time-bounded Kolmogorov complexity. But even this is in
a weaker sublinear-time model.

2

one-way functions exist. In particular, if iO exists and NP is not in BPP infinitely often, then
one-way functions exist [KMN+14].

Thus, while these results are interesting, in both cases it is somewhat unclear what the
takeaway should be. Do these results really suggest that MCSP is NP-hard, or rather per-
haps just that MCSP is intractable based on plausible cryptographic and complexity-theoretic
assumptions?

To address this, one can refine the original question.

Can cryptography be useful in showing black-box NP-hardness of meta-complexity?

Here by a black-box reduction, we mean showing, for example, that one can solve SAT in
polynomial time given an oracle to MCSP. Such a result would constitute perhaps the strongest
evidence yet that MCSP is indeed NP-complete under the usual definition of NP-completeness.

It may seem counter-intuitive that cryptography could be helpful in proving black-box NP-
completeness results. While the existence of one-way functions implies that problems like MCSP
are intractable [RR97, HILL99, KC00], it is not at all clear how to turn this into a black-box
reduction from say SAT to MCSP.5

Intriguingly, a recent breakthrough result by Hirahara [Hir22a] uses tools from information-
theoretic cryptography, such as secret sharing schemes and one-time encryption schemes, to
show the NP-hardness of many important meta-complexity problems. Indeed, Hirahara’s result
convincingly demonstrates the power of information-theoretic cryptography for proving NP-
hardness of meta-complexity problems.

In this paper, we focus on notions from computational cryptography, instead of information-
theoretic cryptography. There is a natural intuition for why such cryptography could be useful: it
gives structured computational hardness one could hope to exploit. In more detail, one potential
reason it is difficult to prove the NP-hardness of MCSP is that we lack strong enough circuit
lower bounds. Indeed, just deterministically generating a No instance of MCSP requires proving
circuit lower bounds! It is hard to imagine proving an NP-hardness result when we cannot even
generate an explicit No instance. Moreover, this argument is made formal by several works
[KC00, MW17, HP15, SS20], who showed that NP-hardness of MCSP under certain types of
reductions would imply breakthrough separations in complexity theory such as EXP ̸⊆ P/poly.

Thus, since NP-hardness of MCSP (at least in some settings) implies circuit lower bounds,
it is natural to wonder whether we can go in the opposite direction: are circuit lower bounds
sufficient for the NP-hardness of meta-complexity problems? So far the answer appears to be no.
For example, we have subexponential-size lower bounds against AC0 [Ajt83,FSS84,Yao85,Hås86]
and AC0[p] where p is a prime [Raz87, Smo87, Smo93], but the NP-hardness of AC0-MCSP
and AC0[p]-MCSP remain important open problems.6 Apparently, to show that MCSP is NP-
complete, one needs hardness with some “structure.” Can cryptography give such structured
hardness?

1.3 Our Results

We show three main results, each one using a cryptographic construction (i.e. JLS’s indistin-
guishability obfuscation7 [JLS21], GGSW’s witness encryption [GGSW13], or Micali’s CS proofs
[Mic00]) to get either a conditional or an unconditional NP-hardness result in meta-complexity.

5One potential way of doing this is to show that there is a one-way function that is NP-hard to invert. But,
as discussed earlier, constructing such a one-way function remains a major open question.

6Ilango [Ila20b] showed that the formula version of AC0-MCSP is NP-hard under quasi-polynomial-time
randomised Turing reductions, but the circuit versions of AC0-MCSP is not known to be NP-hard [CHI+21].
Prior to these results, the largest circuit class C for which NP-hardness of C -MCSP was known is only DNF ◦
XOR [HOS18].

7More specifically, we use that the JLS construction implies the existence of witness encryption from well-
founded assumptions.

3

Moreover, our results imply NP-hardness of approximation with near-optimal approximation
gaps. In our view, the central conceptual takeaway from our results is a strongly positive answer
to the question above:

Cryptography is indeed a powerful tool for showing black-box NP-hardness of meta-
complexity!

1.3.1 Witness Encryption and Conditional Time-Bounded Kolmogorov Complex-
ity

The t-time-bounded Kolmogorov complexity of a string x ∈ {0, 1}n, denoted Kt(x), is the min-
imum length of any program that outputs x in time at most t [Kol65, Sip83,Ko86]. Similarly,
the conditional t-time-bounded Kolmogorov complexity of a string x ∈ {0, 1}n given a string
y ∈ {0, 1}m, denoted Kt(x | y), is the minimum length of any program that outputs x in time t
when given oracle access to y. (See Section 2.4 for formal definitions of Kt(·) and Kt(· | ·).)

In a recent work, Hirahara [Hir22b] shows that it is NP-hard to approximate Kt(x | y) to a
factor of n1/poly log logn. This improves on prior work, which could only show an O(log n) factor
hardness of approximation for conditional time-bounded Kolmogorov complexity and related
problems [Ila20a,ACM+21,LP22].

In all of the above NP-hardness results, the instances of Kt(x | y) are in the sublinear time
regime, i.e. where t ≪ |y| and thus one does not even have enough time to read all the bits of
y. Intriguingly, Hirahara [Hir22b] shows that if one could improve these NP-hardness results to
show a certain additive hardness of approximation in the superlinear regime where t ≫ |y| (so
one has time to read all of y), then this would eliminate Heuristica!

This strongly motivates understanding the complexity of conditional time-bounded Kol-
mogorov complexity in the superlinear regime. Should we expect this problem to be NP-hard?
Even if it is, is it NP-hard in the rather specific approximation regime Hirahara needs?

We show that, conditioned on a widely believed cryptographic assumption, this problem is
indeed NP-hard with essentially optimal hardness of approximation.

Theorem 1.1 (Informal version of Theorem 3.1). Assume subexponentially-secure witness en-
cryption exists. Then the following promise problem is NP-hard under randomized polynomial-
time (black-box) reductions: given strings (x, y) where |x| = n and |y| = poly(n), output

• Yes if Kpoly(n)(x | y) ≤ n.01;

• No if K2n
2

(x | y) ≥ n−O(1).

We will discuss the notion of witness encryption and its plausibility in a few paragraphs, but
before we do that we make some remarks about this theorem. First, we emphasize that, under
the assumption, we get a standard, black-box, randomized many-one reduction from NP to the
promise problem stated above.

Next, we note that the gap in Theorem 1.1 is essentially maximal NP-hardness of approxi-
mation. The complexity of the Yes instances is at most n.01 and the constant .01 can be made
arbitrarily small (one cannot hope for Yes instances with complexity subpolynomial in n with-
out giving a subexponential time algorithm for SAT). On the other hand, the No instances have
complexity at least n−O(1), which is an additive constant away from the maximum complexity
of any n-bit string. Moreover, the gap in the time bound is extremely large: poly(n) in the Yes
case versus 2n

2 in the No case. (In fact, the n2 in the exponent can be made into an arbitrary
polynomial in n; see Theorem 3.1 for details.)

Finally, we return to Hirahara’s approach to eliminating Heuristica. Despite the strong
hardness of approximation Theorem 1.1 gives, it does not give the hardness of approximation
needed to eliminate Heuristica. The precise reason is somewhat technical (we refer a curious

4

reader to Section 3 for the details). At a high level, the reason is that the specific additive
hardness of approximation Hirahara needs has a somewhat non-standard dependence on the
instance (x | y), in particular on the “computational depth” of y. The upshot of this is that one
needs to give hardness of approximation on instances (x | y), where y has low computational
depth. It is unclear whether the instances produced by the reduction in Theorem 3.1 have this
property.

Nevertheless, we overcome this, under a further assumption. Assuming the existence of
subexponentially secure injective one-way functions, we can modify the reduction in Theo-
rem 1.1 so that with high probability an output (x | y) of the reduction will have a y with
low computational depth.

Theorem 1.2 (Informal version of Corollary 3.7). Assume subexponentially secure injective one-
way functions and subexponentially secure witness encryption exists. Then the promise problem,
whose NP-hardness was shown to exclude Heuristica by Hirahara [Hir22b], is in fact NP-hard
(under randomized polynomial-time many-one reductions).

We find Theorem 1.2 rather surprising. One can interpret this result as saying that, un-
der widely believed assumptions in cryptography, Hirahara’s approach to eliminating Heuristica
provably works! Of course, for the purpose of eliminating Heuristica this Theorem 1.2 by itself
is not so interesting since if subexponentially secure one-way functions exist, then NP is (au-
tomatically) hard on average. Even so, we find this result enlightening, especially because the
“ground truth” of whether this problem was in fact NP-hard was not at all clear.

Before we continue, we discuss the notion of witness encryption informally (see Section 2
for a formal definition). Introduced by Garg, Gentry, Sahai and Waters [GGSW13], witness
encryption is a cryptographic primitive that encrypts a message using a (public) instance of
some NP-complete language. Let φ be a formula (for example, any satisfying assignment of φ is
a proof of Riemann Hypothesis of at most 10,000 pages long). We can encrypt a secret message
m (e.g., a Bitcoin address for a prize awarded to whoever proves Riemann Hypothesis) using φ
such that:

1. If φ is satisfiable, then any party with a satisfying assignment of φ (e.g., any mathematician
with a valid proof of Riemann Hypothesis) can decrypt the message in polynomial time,
and

2. if φ is unsatisfiable, then the encryption of two different messages should be computation-
ally indistinguishable.

Witness encryption turns out to be a very powerful primitive. It was shown in [GGSW13]
that witness encryption can be used to build public-key encryption [DH76, GM84], Identity-
Based Encryption [Sha84, BF03], and Attribute-Based Encryption [SW05] for circuits. The
witness encryption in [GGSW13] also yielded the first candidate for Rudich-type secret sharing
scheme [Bei11,KNY17]. In this work, we show an unexpected application of witness encryption
in complexity theory: it implies the NP-hardness of meta-complexity problems!

Finally, we discuss the plausibility of witness encryption. Subexponentially secure witness
encryption is implied [GGH+16] as a special case by the existence of subexponentially secure in-
distinguishability obfuscators (iO) [BGI+12]. In a recent breakthrough paper, Jain, Lin, and Sa-
hai [JLS21] show that subexponentially secure8 iO exists assuming four standard “well-founded”
assumptions (later work of Jain, Lin, and Sahai reduced this to three assumptions [JLS22b]).
As a result, the existence of the witness encryption used in Theorem 1.1 has now become a
widely-believed assumption.

8We note that the definition of subexponentially secure that we need is slightly different from the one explicitly
used by Jain, Lin, and Sahai [JLS22b], although their result readily generalizes to our definition [JLS22a]. See
Remark 2.5 for a detailed discussion of this.

5

We also remark that witness encryption is a plausibly weaker assumption than iO. However,
the only known constructions (from well-founded assumptions) of subexponentially-secure wit-
ness encryption are from iO (see the recent paper of Vaikuntanathan, Wee, and Wichs [VWW22]
for a discussion of this).

1.3.2 Oracle Witness Encryption and MOCSP

Our second result is about MOCSP, the conditional variant of MCSP. In MOCSP, we are
given a truth table of a function f : {0, 1}n → {0, 1} as well as a truth table of an oracle
O : {0, 1}O(n) → {0, 1}, and we are asked to compute the minimum size of any oracle circuit C :
{0, 1}n → {0, 1} that computes f with oracle access to O. Ilango [Ila20a] showed that MOCSP
is NP-hard to approximate to roughly a logarithmic factor in the input length. Uncertain as
to whether or not current techniques could prove stronger hardness of approximation, Ilango
left as an open question to either show an N ϵ factor hardness of approximation for MOCSP for
some constant ϵ > 0, where N is the length of the input to MOCSP, or to show a barrier against
proving such strong inapproximability results [Ila20a, Open Question 1.5].

We resolve this open question by unconditionally showing that MOCSP is NP-hard to
approximate with a very large approximation factor. In what follows, we denote by CCO(f)9

the size of the minimum O-oracle circuit that computes f .

Theorem 1.3 (Informal version of Corollary 4.8). For any ϵ > 0, the following promise problem
is NP-hard under polynomial-time randomised mapping reductions: given a truth table f of
length ℓ and an oracle truth table O of length poly(ℓ), distinguish between the following two
cases:

(Yes instances) CCO(f) ≤ ℓϵ;

(No instances) CCO(f) ≥ ℓ1−ϵ.

A similar result also holds for GapMINcKT, the problem of approximating conditional time-
bounded Kolmogorov complexity; see Theorem 4.2 for details. (In contrast to Theorem 1.1,
this result only holds in the sublinear time-bounded regime). In addition, we also proved the
NP-hardness of MOCSP where Yes instances are exactly computable by small circuits, but No
instances are average-case hard against larger circuits; see Theorem 4.1 for details.

Before we discuss the proof techniques, we comment a bit more on the problem MOCSP. As
Ilango [Ila20a] suggested, MOCSP is a nice “testing ground” for hardness results we conjecture
for MCSP. Similar to MCSP, MOCSP is also in NP; it is easy to see that MOCSP is no
easier than MCSP. And it is also pointed out by [Ila20a] that, essentially the same proof as
in [MW17] shows that if MOCSP is NP-hard under deterministic polynomial-time reductions,
then EXP ̸= ZPP. We will see another example of MOCSP being a “testing ground” for MCSP
later (Theorem 1.6). We hope that our results shed some light on the complexity of MCSP.

Perhaps surprisingly, the key idea underlying our proof is again witness encryption, despite
our proof being unconditional. In more detail, our proof utilises the notion of witness encryption
in oracle worlds, where both the encryption and decryption algorithms have access to an oracle.
We show that exponentially-secure witness encryption exists, unconditionally, in a carefully
constructed oracle world. We also show that such a secure oracle witness encryption scheme
implies Theorem 1.3: roughly speaking, we map a formula φ to a function f and an oracle
O, where O contains the oracle world as well as a lot of ciphertexts encrypted using φ. If φ
is satisfiable, then a small circuit with a satisfying assignment hardcoded can compute f from
these ciphertexts easily; if φ is unsatisfiable, then any small circuit computing f would violate
the security of witness encryption.

9CC stands for circuit complexity.

6

We now discuss how we construct a witness encryption scheme in oracle worlds. A natural
approach is to consider candidate witness encryption schemes in the literature and build oracles
that make them secure. Fortunately, the original candidate proposed by [GGSW13] already
suffices. As this candidate uses multilinear maps [BS03,GGH12], we replace it with an oracle
implementing the generic multilinear map model (which is the multilinear map version of the
generic group model [Sho97]). It turns out that the security of [GGSW13] construction is
provable in the generic multilinear map model! See Sections 4.3 and 4.4 for details.

A lesson from this result is that unconditional security results in idealised models are not only
heuristic arguments that certain cryptographic protocols “seem secure”; they also have (rigorous)
implications in complexity theory.

One last aspect we find interesting and worth noting is that, unlike previous results (e.g.,
[Ila20a,Hir22a]), our proof of Theorem 1.3 does not rely on the PCP theorem [AS98,ALM+98].
Nevertheless, we obtain much stronger hardness of approximation results! The construction in
[GGSW13] works directly for the NP-complete language Exact-Cover [Kar72], so our result
is also a direct reduction from Exact-Cover to GapMOCSP. This is in contrast to previous
results (e.g., [Ila20a,Hir22a]) that need to start with a hardness-of-approximation result (e.g.,
set cover [DS14] or the Minimum Monotone Satisfying Assignment problem [DS04,ABMP01]),
which relies on the PCP theorem.

1.3.3 CS Proofs and A Multi-Valued Version of MCSP with Random Oracles

Our third result is about a “multi-valued” version of MCSP, which we denote as mvMCSP. In
mvMCSP, we are given the truth table of a “multi-valued” function f ⊆ {0, 1}n×{0, 1}m, where
for each input x ∈ {0, 1}n, any y ∈ {0, 1}m such that (x, y) ∈ f is a valid output. The goal is to
compute the size of the smallest circuit C : {0, 1}n → {0, 1}m that computes f , i.e.,

∀x ∈ {0, 1}n, (x,C(x)) ∈ f.

Let k ≥ 1 be a constant, Gapk-mvMCSP denotes the following promise problem: given the
length-2n+m truth table of a “multi-valued” function f ⊆ {0, 1}n × {0, 1}m and a parameter s,
distinguish between the following two cases:

(Yes instances) there is a circuit C of size s such that

Pr
x←{0,1}n

[(x,C(x)) ∈ f] = 1;

(No instances) for any circuit C of size sk,

Pr
x←{0,1}n

[(x,C(x)) ∈ f] ≤ 1/sk.

Theorem 1.4. For every constant k > 1, with probability 1 over a random oracle O, the problem
Gapk-mvMCSPO is NP-hard under TIME[2polylog(n)]O (deterministic quasi-polynomial time
with an O oracle) mapping reductions.

Perhaps intriguingly, Theorem 1.4 essentially follows from the security of Micali’s CS proofs
[Mic00] in the random oracle model. We think this is the interesting aspect of Theorem 1.4, as
it illustrates the connection between cryptography and NP-hardness of meta-complexity in a
direct and straightforward way.

We now describe this connection in more detail. Let L ∈ NP. An argument system for L

involves a prover and a verifier, where both parties know an instance x
?
∈ L and the prover wants

to convince the verifier that x ∈ L. If x is indeed in L, then an efficient prover (with a witness

7

of x ∈ L) could convince the verifier with certainty; if x ̸∈ L, then any prover of a certain size
could only convince the verifier with small probability.

If one looks carefully at this definition, one realises that this is nothing but a reduction from
L to a “meta-complexity” problem! In particular, this is a “meta-complexity” problem about
the complexity of convincing the verifier. If x ∈ L, then this complexity should be small, while
if x ̸∈ L, then this complexity should be large. Therefore, if every language in NP admits an
argument system (of some kind), then some meta-complexity problem (related to this argument
system) is NP-complete. This is exactly what happens in Theorem 1.4: since every problem in
NP has a SNARG (succinct non-interactive argument) in the random oracle model [Mic00], a
certain meta-complexity problem should be NP-complete. When we work out the definition of
this meta-complexity problem, it becomes exactly mvMCSP.

Moreover, this approach gives us NP-hardness of approximation with “the largest gap possi-
ble”. If x ∈ L, then the complexity of “convincing the verifier” is a fixed polynomial of |x|, since
the prover essentially needs to hardwire a witness for x; if x ̸∈ L, then by the security of the
argument system, the complexity of “convincing the verifier” can be made arbitrarily large (by
adjusting the security parameter).

This idea also shows that if (subexponentially-secure) SNARGs exist (in the unrelativised
world), then mvMCSP is NP-hard to approximate.

Corollary 1.5. Suppose that subexponentially-secure SNARGs exist. Then for every k ∈ N,
Gapk-mvMCSP is NP-hard under deterministic quasi-polynomial time reductions.

1.3.4 Applications

Using the ideas developed in this paper, we also make progress on two other problems: pseudo-
random self-reductions for NP-complete languages and heuristics for Complexity.

Pseudorandom self-reductions for NP-complete languages. In 2017, Hirahara and San-
thanam [HS17] observed that if exponentially-hard one-way functions exist, then MCSP admits
a pseudorandom self-reduction: a self-reduction that maps a worst-case instance to a distribution
that is indistinguishable from the uniform distribution. In contrast, if PH does not collapse,
then NP-complete problems do not admit (non-adaptive) random self-reductions [BT06]. Hi-
rahara and Santhanam viewed this result as a property that “distinguishes the MCSP problem
from natural NP-complete problems” [HS17].

Perhaps surprisingly, Elrazik, Robere, Schuster, and Yehuda [ERSY22] recently gave evidence
against this. They show natural NP-complete problems that also plausibly admit pseudorandom
self-reductions. In particular, under a non-uniform version of the Planted Clique Conjecture, the
Clique problem admits a non-adaptive pseudorandom self-reduction. There might be some prop-
erty that distinguishes MCSP from natural NP-complete problems, but having pseudorandom
self-reductions is not one of them!

One weakness of the results in [ERSY22] is that they need to assume the Planted Clique
Conjecture, which is much stronger than the existence of one-way functions. Moreover, the
Planted Clique problem can be solved in nO(logn) time, which means their distributions are not
pseudorandom against adversaries of quasi-polynomial size.

Our NP-hardness results on MOCSP allow us to achieve the best of both worlds: assuming
the existence of one-way functions, there is an NP-complete problem with pseudorandom self-
reductions.

Theorem 1.6 (Informal Version of Theorem 6.2). If one-way functions exist, then there is an
NP-complete problem (namely GapMOCSP) that admits pseudorandom self-reductions.

We remark that NP-hardness of approximation is crucial for this application, as our self-
reduction blows up the circuit complexity of the input truth tables in MOCSP by a factor of

8

NΩ(1), where N = 2n is the length of the input truth table. (The NP-hardness of approximating
Clique [Hås96,Zuc07] is also crucial to the results in [ERSY22].)

Heuristics for Complexity. The Complexity problem [KKMP21] asks the following:
given the truth table of an oracle O, find a truth table f such that the O-oracle circuit complexity
of f is large. A random truth table is always hard (with high probability) even in the presence
of a fixed oracle O, so there is a trivial randomised algorithm solving Complexity. On the
other hand, a deterministic algorithm for Complexity, even only for the case that O is the
all-zero truth table, implies a circuit lower bound for E. Thus deterministic algorithms solving
Complexity are of great interest.

We consider deterministic heuristics for this problem. We say a deterministic algorithm A
is a heuristic for Complexity under the uniform distribution if

Pr
O
[CCO(f) > 2n/10n | f = A(O)] ≥ 1− o(1),

where f is a truth table of length 2n.
Inspired by the NP-hardness of Gap-mvMCSPO for a random oracle O, we design an un-

conditional heuristic for Complexity:

Theorem 1.7 (Informal Version of Theorem 6.4). There is, unconditionally, a deterministic
heuristic for Complexity in certain parameter regimes.

The idea is simple: if O is a uniformly random input, then solving Complexity means
proving circuit lower bounds in the random oracle model. Therefore, we can take any proof that
E requires large circuits relative to a random oracle, and turn it into a heuristic for Complexity.
In fact, our construction is extremely simple: Suppose O : {0, 1}n×{0, 1}n → {0, 1} is a random
oracle over 2n bits, then the function f : {0, 1}n → {0, 1} is defined as

f(x) =
⊕

y∈{0,1}n
O(x, y).

It is not hard to show that for a random oracle O, the O-oracle circuit complexity of f is
exponential.

1.4 Related Work

For a general survey of meta-complexity, we point the reader to Allender’s recent surveys [All17,
All21] and the references therein. Below we discuss the prior works that are mostly related to
our results.

NP-hardness of meta-complexity problems. Related to Theorems 1.1 and 1.3, several
NP-hardness results have been shown for conditional meta-complexity problems. Ilango [Ila20a]
introduced the problem MOCSP and proved that MOCSP is NP-hard. Allender, Cheraghchi,
Myrisiotis, Tirumula, and Volkovich [ACM+21] proved the NP-hardness of McKTP, the problem
of computing conditional KT-complexity,10 and Liu and Pass [LP22] showed that MINcKT, the
problem of computing conditional time-bounded Kolmogorov complexity, is NP-complete. In all
three aforementioned results, the hardness of approximation given is relatively weak, namely at
most a logarithmic factor. This logarithmic factor arises because the reductions begin from set
cover, where a logarithmic factor is optimal [Fei98,DS14]. A recent exciting work by Hirahara
[Hir22b] greatly improves the hardness of approximation known for MINcKT, showing it is
NP-hard to approximate to a n1/poly log logn factor.

10The KT-complexity is a notion of resource-bounded Kolmogorov complexity defined in [All01,ABK+06].

9

We now discuss work related to Theorem 1.4. Ilango, Loff, and Oliveira [ILO20] showed that
Multi-MCSP is NP-hard under randomised reductions. Here, Multi-MCSP is the problem of
computing the circuit complexity of a multi-output function. It is easy to see that Multi-MCSP
reduces to mvMCSP. In [ILO20], the number of output bits of the function is exponential in
the number of input bits, but the hard function is fixed (i.e., any input corresponds to a unique
output). On the other hand, in mvMCSP, the number of output bits is only polynomially larger
than the number of input bits, but there might be many valid outputs for each input. Thus the
two results are not directly comparable.

Hirahara [Hir22a] proved that MCSP⋆ is NP-hard under randomised reductions. Here,
MCSP⋆ is the problem of computing the circuit complexity of a partial truth table. Since MCSP⋆

reduces to mvMCSP, it follows that mvMCSP is also NP-hard under randomised reductions.
However, we emphasise that our NP-hardness results hold for very large approximation gaps:

the Yes instances are computable in size s, while the No instances are inapproximable by size
2polylog(s). The results in [ILO20] only proved the NP-hardness of approximating Multi-MCSP
within a small additive factor, and the results in [Hir22a] only proved the NP-hardness of
approximating MCSP⋆ within a multiplicative factor of nα for some constant α < 1.

Using cryptography to prove hardness of meta-complexity. It is already known from
Kabanets and Cai [KC00] that we can use an MCSP oracle to invert any candidate one-way
function. By building concrete (auxiliary-input) one-way function candidates, it was shown that
MCSP is hard for discrete logarithm [ABK+06, Rud17], graph isomorphism [AGvM+18], and
actually the whole class SZK [AD17].

Impagliazzo, Kabanets, and Volkovich [IKV18] show that, assuming indistinguishability ob-
fuscation exists, we have that NP = ZPP if and only if MCSP ∈ ZPP. We stress that this is a
logical equivalence, not a black-box reduction. We also note that assuming strong cryptographic
objects like indistinguishability obfuscation exist is very close to assuming MCSP ̸∈ ZPP (since
if one-way functions do exist, then MCSP is not in ZPP).

As we mentioned previously, Hirahara’s recent NP-hardness results for MCSP⋆ [Hir22a]
and MINcKT [Hir22b] utilizes secure secret sharing schemes and one-time encryption schemes,
tools from information theoretic cryptography. In contrast, our results utilize cryptographic
objects, such as witness encryption, that are computationally secure either based on computa-
tional assumptions or relative to a specifically designed oracle. Interestingly, witness encryption
is equivalent to a computational version of secret sharing [KNY17], but it is unclear if there is a
unifying framework behind Hirahara’s results and our results. We leave this intriguing question
for future research.

A concurrent work by Hirahara [Hir23] presents a meta-complexity problem called GapMdKP
whose NP-hardness characterizes one-way functions, giving further connection between cryp-
tography and the NP-hardness of meta-complexity.

Finally, Allender and Hirahara [AH19] showed that under cryptographic assumptions, a gap
version of MCSP is NP-intermediate (i.e., neither in P nor NP-hard). However, the gap they
consider is so large that if their version of GapMCSP were NP-hard, then SAT would be in
subexponential time.

1.5 Discussions on Barriers Results

There are mainly two barriers to showing NP-hardness of meta-complexity problems: relativi-
sation [Ko91] and oracle independence [HW16].

Ko [Ko91] showed that any NP-hardness result for MINLT (which is some meta-complexity
problem that we do not define here) must be non-relativising. This relativisation barrier was
overcome by [Hir22a] using non-relativising techniques such as the PCP theorem. Our results
are also non-relativising:

10

• Due to the use of cryptographic assumptions, Theorem 1.1 could show consequences that
might be impossible to prove unconditionally in a relativising way. However, the proof of
Theorem 1.1 (that witness encryption implies NP-hardness of MINcKT) is relativising.

• Theorem 1.3 uses the non-relativising fact that Exact-Cover is NP-complete. In-
deed, the main technical ingredient of Theorem 1.3 is a witness encryption scheme for
Exact-Cover.

• Theorem 1.4 uses the PCP theorem, which is non-relativising. We also note that Theo-
rem 1.4 does not show that mvMCSPO is NPO-complete, as we could only reduce NP
(instead of NPO) to mvMCSPO.

It was observed in [HW16] that most reductions (at their time) to MCSP are oracle-
independent, i.e., they also work for MCSPA for every oracle A. Then, [HW16] showed that un-
der plausible assumptions, NP-hardness of MCSP cannot be established via oracle-independent
reductions. Hirahara’s results [Hir22a] are subject to this barrier since they showed the NP-
hardness of (MKTP⋆)A for every oracle A.

Unfortunately, Theorems 1.3 and 1.4 are also subject to this barrier.11 In particular, to prove
the soundness of our reduction (i.e., the No instances we generated are indeed No instances), we
proved strong circuit lower bounds in certain oracle worlds O. These lower bounds hold for not
only O-oracle circuits, but also programs of bounded query complexity to O (and possibly un-
bounded time). Therefore, for every fixed (additional) oracle A, these lower bounds also extend
to A-oracle circuits. It is a very intriguing question to obtain NP-hardness of (approximating)
meta-complexity problems via reductions that are not oracle-independent.

2 Preliminaries

We assume the reader is familiar with basic complexity-theoretic and cryptographic notions,
which can be found in e.g. Arora and Barak’s textbook [AB09] and Goldreich’s textbook [Gol01]
respectively.

We use Un to denote the uniform distribution over {0, 1}n.

Oracle circuits. The size of an (oracle) circuit is the number of wires in the circuit. It is
a well-known fact that every oracle circuit of size S (with a single type of oracle gate) can be
described in 3S logS bits, thus there are at most SO(S) many circuits of size S.

For an oracle O and a Boolean function or relation f , CCO(f) is the size of the minimum
O-oracle circuit that computes f , and CCO

δ (f) the size of the minimum O-oracle circuit that
computes f correctly on 1− δ fraction of inputs.

2.1 Witness Encryption

Definition 2.1 (Witness Encryption [GGSW13]). Let L ∈ NP, R be the witness relation for
L. A witness encryption scheme for L consists of polynomial-time algorithms (Encrypt,Decrypt)
with the following syntax:

• Encrypt(1λ, x, b; r) takes as input a security parameter 1λ, an instance x, a message bit
b ∈ {0, 1}, and some randomness r; it outputs a ciphertext c.

• Decrypt(1λ, c, x, w) takes as input a security parameter 1λ, a ciphertext c, an instance x,
and a witness w such that (x,w) ∈ R; it operates deterministically and outputs a message
bit b.

11This barrier does not apply to Theorem 1.1 due to the use of cryptographic assumptions.

11

These algorithms satisfy the following two conditions:

(Correctness) For any security parameter λ, any b ∈ {0, 1}, any x ∈ L and any x,w such that
(x,w) ∈ R, we have that

Pr
r
[Decrypt(Encrypt(1λ, x, b; r), x, w) = b] = 1.

(Security) Let S : N → N and ϵ : N → (0, 1) be functions. We say the witness encryption
scheme is secure against size-S adversaries with advantage ϵ, if for every security parameter
λ, every size-S(λ) circuit A and any x ̸∈ L,∣∣∣Pr

r
[A(Encrypt(1λ, x, 0; r)) = 1]− Pr

r
[A(Encrypt(1λ, x, 1; r)) = 1]

∣∣∣ < ϵ(λ).

We say a witness encryption scheme is subexponentially secure if it secure against S(λ) =

O(2λ
δ
)-sized circuits with advantage ϵ(λ) = O(2−λ

δ
) for some δ > 0.

We will also consider the case where one wants to witness-encrypt strings.

Definition 2.2 (Semantically Secure Multi-bit Witness Encryption). Let L ∈ NP and R be the
witness relation for L. A semantically secure multi-bit witness encryption scheme for L consists
of polynomial-time algorithms (Encrypt,Decrypt) with the following syntax:

• Encrypt(1λ, x,m; r) takes as input a security parameter 1λ, an instance x, a message m ∈
{0, 1}n, and some randomness r; it outputs a ciphertext c.

• Decrypt(1λ, c, x, w) takes as input a security parameter 1λ, a ciphertext c, an instance x,
and a witness w such that (x,w) ∈ R; it operates deterministically and outputs a message
m.

These algorithms satisfy the following two conditions:

(Correctness) For any security parameter λ, any b ∈ {0, 1}, any x ∈ L and any x,w such that
(x,w) ∈ R, we have that

Pr
r
[Decrypt(Encrypt(1λ, x, b; r), x, w) = b] = 1.

(Security) Let S : N → N and ϵ : N → (0, 1) be functions. We say the witness encryption
scheme is semantically secure against size-S adversaries with advantage ϵ, if for every
security parameter λ, every size-S(λ) circuit A, any messages m,m′ ∈ {0, 1}n and any
x ̸∈ L, ∣∣∣Pr

r
[A(Encrypt(1λ, x,m; r)) = 1]− Pr

r
[A(Encrypt(1λ, x,m′; r)) = 1]

∣∣∣ < ϵ(λ).

One can construct witness encryption for strings from witness encryption on bits by simply
encrypting “bit-by-bit.”

Proposition 2.3. If a (one-bit) witness encryption scheme for L exists against S(λ)-sized ad-
versaries with advantage ϵ, then a semantically secure multi-bit witness encryption scheme for
L exists against (S(λ)/poly(λ))-sized adversaries with advantage ϵ · poly(λ).

Since the multi-bit and single-bit variants of witness encryption are equivalent, for the re-
mainder of the paper we do not distinguish between the two objects.

It is known that indistinguishability obfuscation iO implies witness encryption as a special
case [GGH+16]. Thus, by Jain, Lin, and Sahai’s breakthrough construction of iO [JLS21,
JLS22b], subexponentially secure witness encryption exists conditioned on three well-founded
assumptions.

12

Theorem 2.4 (Informal version of [JLS22b, JLS22a]). Assuming three “well-founded” subexpo-
nential security assumptions, subexponentially secure witness encryption exists.

Remark 2.5. We note that Jain-Lin-Sahai [JLS22b] uses a slightly different notion of subexpo-
nentially security than us. Their notion of subexponentially secure says S-sized circuits can get
advantage at most ϵ where S is any polynomial and ϵ is subexponentially small. In contrast, for
our results, we use the (also standard) definition of subexponential security where S and ϵ are
both subexponential. We stress that the Jain-Lin-Sahai [JLS22b] result extends to our notion of
subexponential security when one correspondingly strengthens the three assumptions [JLS22a]
and that these strengthened assumptions are still reasonable and well-founded.

2.2 Cryptographic Commitments

We will make use of the following slightly non-standard notion of a commitment scheme.

Definition 2.6 (Subexponentially Secure Injective Commitment Scheme). A subexponentially
secure, injective, computationally hiding commitment scheme is a probabilistic polynomial-time
algorithm Commit with the following properties:

• Functionality: Commit takes as input a security parameter 1λ, a message m ∈ {0, 1}⋆,
and randomness r ∈ {0, 1}⋆ and outputs a string in {0, 1}⋆. The output is denoted
Commit(1λ,m; r). We write Commit(1λ,m) when the randomness used is implicit.

• Injectivity: For any pair of distinct valid inputs (1λ,m; r) ̸= (1λ
′
,m′; r′) we have that

Commit(1λ,m; r) ̸= Commit(1λ
′
,m′; r′).

• Security: There exists an ϵ > 0 such that for any n, λ and m and m′ ∈ {0, 1}n and every
size O(2λ

ϵ
) circuit adversary A, we have that∣∣∣Pr
r
[A(Commit(1λ,m; r)) = 1]− Pr

r
[A(Commit(1λ,m′; r)) = 1]

∣∣∣ ≤ O(2−λ
ϵ
).

We note that the above notion is slightly stronger than the usual notion of a statistically
binding and computationally hiding commitment scheme as it requires commitments to the same
message to be different when different randomness is used.

The classical construction of a bit commitment scheme from an injective one-way function
yields an injective, computationally hiding commitment scheme. Because the construction is
simple, we sketch the proof below.

Theorem 2.7 (Construction 4.4.2 and Proposition 4.4.3 in Goldreich [Gol01]). If there is a
subexponentially secure injective one-way function, then there is a subexponentially secure, in-
jective, computationally hiding commitment scheme.

Proof Sketch. For each bit b one wants to commit to, pick a uniformly random r ∈ {0, 1}λ and
output (1λ, h, f(r), h(r) ⊕ b) where f is a subexponentially secure injective one-way function
and h is a hardcore predicate given by Goldreich-Levin [GL89]. The security of this scheme
follows from the security of the hardcore predicate. Furthermore, observe that this construction
is injective.

2.3 SNARGs

Definition 2.8 (Succinct Non-interactive Arguments, SNARGs). Let L ∈ NP, R be the witness
relation for L. A SNARG for L consists of polynomial-time algorithms (P, V) with the following
syntax:

• P (1λ, crs, x, w) takes as input a security parameter 1λ, a common random string crs, an
instance x and a witness w such that (x,w) ∈ R; it outputs a short proof π.

13

• V (1λ, crs, x, π) takes as input a security parameter 1λ, a common random string crs, an
instance x, and a proof π; it either accepts or rejects.

Let r denote the length of crs. These algorithms satisfy the following conditions:

(Succinctness) r ≤ poly(λ) and |π| ≤ poly(λ, log n).

(Correctness) For any security parameter λ, any x ∈ L and any w such that (x,w) ∈ R, we
have that

Pr
crs←{0,1}r

[V (1λ, crs, x, π) accepts | π ← P (1λ, crs, x, w)] = 1.

(Security) Let S : N → N and ϵ : N → (0, 1) be functions. We say the SNARG is secure
against size-S adversaries with advantage ϵ, if for every security parameter λ, every S(λ)-
size circuit A (which implements a malicious prover) and any x ̸∈ L,

Pr
crs←{0,1}r

[V (1λ, crs, x, π) accepts | π ← A(1λ, crs)] ≤ ϵ(λ).

There are some additional properties that we want a SNARG to have:

(Laconism) We say the SNARG is laconic if the prover only sends one bit to the verifier, i.e.,
it always holds that |π| = 1.

(Predictability) We say the SNARG is predictable if the following holds. There is a generator
Gen that receives as input a security parameter 1λ and some randomness, and outputs
a common random string crs and a trapdoor τ . The distribution of crs is uniform over
{0, 1}r; the trapdoor τ is known to the verifier but not to the prover (and it is hard to
infer τ from crs). Upon receiving the proof π, the verifier simply checks whether π = τ .

It is known that any predictable SNARG can be made laconic [FNV17]:

Fact 2.9 ([FNV17,GL89]). If there exists a predictable SNARG for a language L ∈ NP, then
there exists a predictable and laconic SNARG for L.

2.4 Kolmogorov Complexity

Informally speaking, the Kolmogorov complexity of a string x is the length of the shortest program
M that prints x in a finite amount of time [LV08].

To formally define Kolmogorov complexity, we need to fix a universal Turing machine U . Let
M be the description of a Turing machine, x be an input, and t be a time bound. The universal
Turing machine U(⟨M⟩, x, 1t) simulates M on input x for t steps, and outputs the output of M .
Moreover, U(⟨M⟩, x, 1t) runs in time poly(|⟨M⟩|, |x|, t).

Definition 2.10 (Kolmogorov Complexity). Fix a universal Turing machine U . Let x, y ∈
{0, 1}⋆ be strings and t ∈ N∪{∞} be a time bound. The t-time-bounded Kolmogorov complexity
of x conditioned on y, denoted as Kt

U (x | y), is the minimum length of any program M that
given y outputs x in t steps. Formally:

Kt
U (x | y) := min{|M | : U(⟨M⟩, y, 1t) = x}.

When t = ∞, we arrive at the definition of (unbounded) Kolmogorov complexity KU (x | y) :=
K∞U (x | y). When y is the empty string ε, we denote Kt

U (x) := Kt
U (x | ε).

Our results hold for any universal Turing machine U , therefore we drop the subscript U and
write Kt(x | y) instead.

In Section 5, we also make use of probabilistic Kolmogorov complexity [GKLO22] to imple-
ment certain compression arguments.

14

Definition 2.11 (Probabilistic Kolmogorov Complexity). Let x, y ∈ {0, 1}⋆ be strings, δ > 0,
and t ∈ N ∪ {∞} be a time bound. The t-time-bounded probabilistic Kolmogorov complexity of
x conditioned on y, denoted as pKt

δ(x | y), is the minimum program length k such that for a δ
fraction of random strings w, there is a program of length k which outputs x given (w, y) in t
steps. Formally:

pKt
δ(x | y) := min

{
k : Pr

w←{0,1}t

[
∃M ∈ {0, 1}k, U(⟨M⟩, (w, y), 1t) = x

]
≥ δ

}
.

The following facts will be useful.

Fact 2.12 ([GKLO22, Lemma 18]). Let t ∈ N, x ∈ {0, 1}n be a string, then

K(x | t) ≤ pKt
2/3(x) +O(log n).

Fact 2.13. For any string y ∈ {0, 1}⋆, time bound t (including t =∞), and positive integer α,
we have

Pr
x←{0,1}n

[Kt(x | y) ≤ n− α] ≤ 1

2α−1
.

Fact 2.14 ([GKLO22, Lemma 20]). For any string y ∈ {0, 1}⋆, time bound t (including t =∞),
δ ∈ (0, 1], and positive integer α, we have

Pr
x←{0,1}n

[pKt
δ(x | y) ≤ n− α] ≤ 1

2α−1 · δ
.

3 Conditional NP-Hardness of Approximating Meta-Complexity

3.1 Witness Encryption Implies NP-Hardness of Approximating Kt(x | y)

We show that subexponentially-secure witness encryption implies essentially optimal NP-hardness
of approximating conditional time-bounded Kolmogorov complexity.

Theorem 3.1. Assume there exists subexponentially-secure witness encryption for NP. Then
for every c ≥ 1, let t2(n) := 2n

c, there are polynomials p and t1 such that the following promise
problem is NP-hard under randomised reductions: given strings (x, y) where |x| = n and |y| =
p(n), output

• Yes if Kt1(n)(x | y) ≤ n1/c;

• No if Kt2(n)(x | y) ≥ n−O(1).

In order to prove Theorem 3.1, we will use an additional security property of witness encryp-
tion that is implied by subexponential semantic security. Essentially, this security property says
that if one encrypts a uniformly random message using a No instance of the language, then no
algorithm running in subexponential time can, given the ciphertext, output a list significantly
smaller than the message domain that contains the plaintext with constant probability.

Definition 3.2 (List Security). We say a witness encryption scheme (Encrypt,Decrypt) for L
is S-list-secure if for all sufficiently large λ, all x ̸∈ L, all positive integers q and all size-S(λ)
adversaries List that output a set of at most 2q/104 binary strings, we have12

Pr
m←{0,1}q ,r

[m ∈ List(Encrypt(1λ, x,m; r))] < 1/3.

12Note that the security condition is vacuous when q becomes greater than S(λ), as in that case the adversary
does not even have time to produce m.

15

We show that list security follows from subexponentially-secure witness encryption.

Lemma 3.3. If a semantically secure witness encryption scheme for L is secure against size-
2O(λδ) adversaries with advantage ϵ = o(1), then it is (2O(λδ))-list-secure.

We defer the proof of Lemma 3.3 to the end of this section. We now show how to use
Lemma 3.3 to prove the NP-hardness of approximating conditional time-bounded Kolmogorov
complexity.

Proof of Theorem 3.1. Let (Encrypt,Decrypt) be a 2λ
ϵ-list-secure witness encryption scheme for

the language SAT, where ϵ > 0 is a constant. The reduction from SAT to the above promise
problem is as follows. Given a formula φ of length N , we set λ := ⌈N4c2/ϵ⌉ and n := ⌈λϵ/2c⌉.
Let m ← {0, 1}n and r be some uniform randomness, we output the instance (x = m | y =
Encrypt(1λ, φ,m; r)). This completes our description of the reduction.

Clearly, this runs in polynomial time. It remains to show that the reduction is correct.
If φ is satisfiable with witness w ∈ {0, 1}N , then x can be recovered from y by running

Decrypt(1λ, y, φ, w). This shows that

Kpoly(λ)(x | Encrypt(1λ, φ, x; r)) ≤ O(N) = O(n1/2c) < n1/c.

Now, suppose φ is unsatisfiable. Let Low denote the set of strings with low conditional
t2(n)-time-bounded Kolmogorov complexity. That is:

Low = {z ∈ {0, 1}n : Kt2(n)(z | Encrypt(1λ, φ, x; r)) ≤ n− 105}.

Observe that given Encrypt(1λ, φ, x; r), the brute-force algorithm can print the elements of Low
in time poly(t2(n) · 2n · λ) ≤ 2λ

ϵ . By the list security of the witness encryption and Fact 2.13,
the probability that x ∈ Low is at most 1/3. Thus, with probability at least 2/3, we have that

Kt2(n)(m | Encrypt(1λ, φ,m; r)) > n− 105.

We note that, on its own, Theorem 3.1 does not give the NP-hardness needed to eliminate
Heuristica using the approach of Hirahara [Hir22b]. This is because for Hirahara’s approach one
needs to show hardness on instances (x | y) where y has low computational depth.

Definition 3.4 (Computational Depth [AFvMV06]). The t-time computational depth of a string
x, denote cdt(x) is defined as

cdt(x) := Kt(x)−K(x).

Formally, in [Hir22b], one needs to show it is NP-hard to approximate Kt(x | y) up to an
additive term13 of cdt(y) + log2(|x| · |y| · t).

We show how to adapt our proof to handle this case, assuming (in addition) the existence of
subexponentially secure injective one-way functions. We do this in a two-step approach. First,
we show that if the Encrypt(·, ·, ·, ·) is an injective function, then with high probability the y in
our reduction will have small computational depth.

Lemma 3.5. Let R be the reduction in the proof of Theorem 3.1 and assume the Encrypt(·, ·, ·, ·)
function is injective. Then for any formula φ, with probability at least 1 − o(1), the instance
(x | y) outputted by R(φ) will satisfy

cdpoly(λ)(y) ≤ n1/c.

13The additive term stated here is sufficient, but Hirahara [Hir22b] actually shows one can get away with
showing NP-hardness of a somewhat smaller additive approximation. We use this bound because it is easier to
state.

16

Proof. Fix any formula φ. Recall that when R is run on φ, the y output is Encrypt(1λ, φ, x; r)
were r and x are chosen uniformly at random. By the efficiency of the Encrypt algorithm, it is
easy to see that

Kpoly(λ)(y) ≤ log λ+ |φ|+ |r|+ |x|+O(log n) ≤ |r|+ |x|+O(n1/2c).

On the other hand, since Encrypt is injective and r and x are chosen uniformly at random,
a standard counting argument shows that

K(y) ≥ |r|+ |x| −O(log n)

with probability at least 1− o(1).
Putting these together, we get that

cdpoly(λ)(y) = Kpoly(λ)(y)−K(y) ≤ O(n1/2c) < n1/c.

Next, we observe that the Encrypt function can always be made injective assuming the
existence of a subexponentially-secure injective one-way functions.

Lemma 3.6. Assume there exists a subexponentially-secure injective one-way function and a
subexponentially-secure witness encryption for NP. Then there is a subexponentially-secure wit-
ness encryption scheme for NP where the Encrypt function is injective.

Proof. Let (Encrypt,Decrypt) be the assumed subexponentially-secure witness encryption scheme
for SAT. Our goal is to append outputs to Encrypt to create a new encryption function Encrypt′

that is injective, while maintaining its security. In one sentence, the idea is to append to the
outputs of Encrypt an injective commitment of the inputs to Encrypt.

In more detail, recall the notion of a subexponentially secure, injective commitment scheme
Commit (Definition 2.6), which exists assuming subexponentially secure injective one-way func-
tions exist (Theorem 2.7).

We consider the function Encrypt′ that given a security parameter λ, a formula φ, a message
m and randomness r and r′, outputs the concatenation of the following two strings:

• Encrypt(1λ, φ,m, r) (i.e., the witness encryption of m using φ with randomness r) and

• Commit(1λ, (φ,m, r), r′) (i.e, a commitment to the string (φ,m, r) using randomness r′).

Since the Commit function is injective, it is easy to see that the Encrypt′ function is also
injective.

It remains to show that Encrypt′ has subexponential security. We do this by a hybrid ar-
gument. The first hybrid we consider is when one encrypts using the output of the Encrypt′

algorithm. That is, one outputs

• Encrypt(1λ, φ,m, r) (i.e., the witness encryption of m using φ with randomness r) and

• Commit(1λ, (φ,m, r), r′) (i.e, a commitment to the string (φ,m, r) using randomness r′).

By the subexponential security of Commit, the output in the first hybrid is subexponentially-
indistinguishable from the hybrid distribution (which we refer to as hybrid two) where one
outputs:

• Encrypt(1λ, φ,m, r) (same as before) and

• Commit(1λ, 0|m|+|r|+|φ|, r′) (i.e, swapping (φ,m, r) with the all zeroes string).

17

Note that in hybrid two, the second output (i.e. Commit(1λ, 0|m|+|r|+|φ|, r′)) does not depend on
m, r, or φ at all (except on their length). Thus, we can appeal to the subexponential security
of Encrypt and conclude that the output of hybrid two is subexponentially secure. Therefore,
the encryption algorithm in the first hybrid (i.e. Encrypt′) is also subexponentially secure (with
some loss in the subexponential, which comes from going from the first hybrid to the second).
Hence, we have that Encrypt′ is subexponentially secure.

Putting together Theorem 1.1, Lemma 3.5, and Lemma 3.6, we can show that the promise
problem that Hirahara [Hir22b] shows would eliminate Heuristica if it is in NP-hard, is indeed
NP-hard under widely believed assumptions.

Corollary 3.7. Assume there exists subexponentially-secure witness encryption for NP and
subexponentially-secure injective one-way functions. Then for every c ≥ 1, let t2(n) := 2n

c, there
are polynomials p and t1 such that the following promise problem is NP-hard under randomised
reductions: given strings (x, y) where |x| = n and |y| = p(n), output

• Yes if Kt1(n)(x | y) ≤ n1/c and cdt1(y) ≤ n1/c;

• No if Kt2(n)(x | y) ≥ n−O(1) and cdt1(y) ≤ n1/c.

We end this subsection by proving Lemma 3.3:

Proof of Lemma 3.3. Let (Encrypt,Decrypt) be a witness encryption scheme for L secure against
size 2Ω(λδ) with advantage ϵ. We will show that (Encrypt,Decrypt) is (S′)-list-secure for S′ :=

2cλ
δ , where c is a small enough universal constant.
Fix any x ̸∈ L, any positive integer t, any sufficiently large λ, and any size-S′(λ) adversary

List. For contradiction, suppose that

Pr
m←{0,1}q ,r

[m ∈ List(Encrypt(1λ, x,m; r))] ≥ 1/3.

We will show that there exists m0,m1 ∈ {0, 1}q and an S-sized adversary A such that∣∣∣Pr
r
[A(Encrypt(1λ, x,m0; r)) = 1]− Pr

r
[A(Encrypt(1λ, x,m1; r)) = 1]

∣∣∣ ≥ Ω(1).

This would violate semantic security, which contradicts the security of the witness encryption
scheme.

It remains to show that there exists such m0,m1, and A. We begin with the following claim.
(We delay its proof, which is by probabilistic method, until later.)

Claim 3.8. There exists m0,m1 ∈ {0, 1}q such that all of the following properties hold:

1. for all i ∈ {0, 1},
Pr
r
[mi ∈ List(Encrypt(1λ, x,mi; r))] ≥ 1/6;

2. for all i ̸= j ∈ {0, 1},

Pr
r
[mi ∈ List(Encrypt(1λ, x,mj ; r))] ≤ 1/20.

Fix any m0 and m1 as in the claim. We now construct the adversary A that works as follows
given a ciphertext e:

• Let L be the set given by List(e).

• If L contains m0 but not m1, then output 0.

• If L contains m1 but not m0, then output 1.

18

• Otherwise output a uniformly random element of {0, 1}.

This completes the description of A.
We observe that for every b ∈ {0, 1}, the probability that A outputs b when e is a random

encryption of mb is at least:

Pr[mb ∈ L ∧m1−b ̸∈ L] +
1

2
(Pr[mb ∈ L ∧m1−b ∈ L] + Pr[mb ̸∈ L ∧m1−b ̸∈ L])

=
1

2
Pr[mb ∈ L] +

1

2
Pr[m1−b ̸∈ L]

≥ 1

2
(1/6 + 19/20) = 1/2 + Ω(1).

Thus, we have that∣∣∣Pr
r
[A(Encrypt(1λ, x,m0; r)) = 1]− Pr

r
[A(Encrypt(1λ, x,m1; r)) = 1]

∣∣∣ ≥ Ω(1),

as desired.
Since S′ = 2cλ

δ for a small enough constant c, and the size of List is at most S′, we know
that A has size at most 2O(λδ). Thus the adversary A breaks semantic security.

It remains to prove Claim 3.8. We argue by the probabilistic method that if two messages
m0 and m1 are chosen uniformly at random, then they have the desired properties with positive
probability.

We begin by making the following subclaim.

Claim 3.9. When m is chosen uniformly at random from {0, 1}q, with probability at least 1/6
we have that

Pr
r
[m ∈ List(Encrypt(1λ, φ,m; r))] ≥ 1/6.

Proof. If the claim is false, we have that

1/3 ≤ Pr
m←{0,1}q ,r

[m ∈ List(Encrypt(1λ, φ,m; r))]

≤ 5/6 · 1/6 + 1/6 · 1
< 1/3,

which is a contradiction. ⋄

The subclaim shows that m0 and m1 will satisfy the first property in Claim 3.8 with proba-
bility at least 1/36 (since the two conditions are independent).

We show another subclaim.

Claim 3.10. Fix any m ∈ {0, 1}q. If m′ is chosen uniformly at random from {0, 1}q, then with
probability at least .99,

Pr
r
[m′ ∈ List(Encrypt(1λ, φ,m; r))] ≤ 1/20.

Proof. Since List contains at most 2q/104 elements, we have

E
m′
[Pr
r
[m′ ∈ List(Encrypt(1λ, φ,m; r))]] ≤ 10−4.

Thus the claim follows by Markov’s inequality. ⋄

This subclaim shows that the probability that m0 and m1 do not satisfy the second property
in Claim 3.8 is at most .01 · 2 = .02.

Putting this together, the probability that m0 and m1 satisfy both properties in Claim 3.8
is at least 1/36 − .02 > 0. This concludes the proof of Claim 3.8, and also concludes the proof
of Lemma 3.3.

19

3.2 SNARGs Imply NP-Hardness of Approximating mvMCSP

In this subsection, we show that, conditioned on SNARGs existing, mvMCSP is NP-hard to
approximate.

Theorem 3.11. Let L ∈ NP, R be the witness relation for L. Let δ > 0 be a constant,
S(λ) = 2λ

δ and ϵ(λ) = 2−λ
δ . Suppose there is a SNARG for L that is secure against size-S

adversaries with advantage ϵ. Then L reduces to mvMCSP via a quasi-polynomial time deter-
ministic mapping reduction.

Moreover, for any constant k ≥ 1, there is some constant δ > 0 such that L reduces to
the following promise problem (ΠYes,ΠNo) via a quasi-polynomial time deterministic mapping
reduction:

ΠYes := {(T, s) : CC(T) ≤ s},

ΠNo := {(T, s) : CC
1/2+1/2− logk s(T) ≥ 2log

k s}.

Proof. Let (Gen, P, V) be the SNARG for L. Let x be an instance of L, ñ := |x|, and
λ := log(k+1)/δ ñ. Let n := poly(λ) be the length of crs that Gen(1λ;−) outputs, and ℓ :=
poly(λ, log ñ) be the length of the proof that P (1λ, crs, x,−) outputs. Given x, we compute the
following table T : {0, 1}n × {0, 1}ℓ → {0, 1}: For every crs ∈ {0, 1}n and every π ∈ {0, 1}ℓ,

T (crs, π) = 1 if and only if V (1λ, crs, x, π) accepts.

Also, let s := poly(s′) ≤ poly(ñ), where s′ is the size of P in the SNARG. It is easy to see that
our reduction runs in time

2n+ℓ · poly(ñ) ≤ 2polylog(ñ).

Now we prove the correctness of this reduction. Suppose x ∈ L, then there is a string w such
that (x,w) ∈ R. Let C be the following circuit

C(crs) = P (1λ, crs, x, w)

with x and w hardwired. The size of C is at most s. For every crs, it follows from the correctness
of SNARG that T (crs, C(crs)) = 1. Therefore, (T, s) ∈ ΠYes.

On the other hand, suppose x ̸∈ L. Let C be any circuit of size at most 2log
k s ≤ S(λ). By

the security of SNARGs, it follows that

Pr
crs←{0,1}n

[T (crs, π) = 1 | π ← C(crs)] ≤ ϵ(λ) ≤ 2− logk s.

Therefore, (T, s) ∈ ΠNo.

If SNARGs with stronger properties exist14, then we show NP-hardness of approximating
MCSP⋆ and MCSP.

Theorem 3.12. In Theorem 3.11:

• If the SNARG is laconic, then L reduces to MCSP⋆ via a quasi-polynomial time determin-
istic reduction.

• If the SNARG is predictable, then L reduces to MCSP via a quasi-polynomial time deter-
ministic reduction.

14Unfortunately, we are not aware of any candidate SNARGs yet with these properties.

20

Proof Sketch. If the SNARG is laconic, then the proof only consists of one bit. Now, the table
T that we construct becomes a partial truth table tt:

tt(crs) =

0 if T (crs, 0) = 1 but T (crs, 1) = 0;

1 if T (crs, 0) = 0 but T (crs, 1) = 1;

⋆ if T (crs, 0) = T (crs, 1) = 1.

(1)

Of course, if for some crs we have both T (crs, 0) = T (crs, 1) = 0, then we know that x ̸∈ L.
Thus x ∈ L if and only if there is a small circuit consistent with tt.

If the SNARG is predictable, then by Fact 2.9, it can be made laconic while maintaining
predictability. As the SNARG is predictable, the third case in Eq. (1) would never happen, and
thus tt is a total truth table and we can reduce L to MCSP.

4 Unconditional NP-Hardness of GapMOCSP

In this section, we show unconditionally that GapMOCSP is NP-hard even with the “largest”
possible approximation factor: The Yes instances are computable by a size-2ϵn circuit for an
arbitrarily small constant15 ϵ > 0, while the complexities of the No instances essentially match
the complexity of random truth tables. We also show a similar result for GapMINcKT: it is
NP-hard to distinguish between strings of conditional time-bounded Kolmogorov complexity at
most N ϵ and at least N1−ϵ.

Theorem 4.1. GapMOCSP is NP-hard under polynomial-time randomised mapping reduc-
tions. More precisely, for every constant ϵ > 0, there is a polynomial-time randomised mapping
reduction from an NP-complete language to the following promise problem:

ΠYes := {(f,O) : CCO(f) ≤ 2ϵn},
ΠNo := {(f,O) : CCO

1/2−2−0.3n(f) > 20.3n}.

Here f is the truth table of a Boolean function f : {0, 1}n → {0, 1} and oracle O has size 2Θ(n).

Theorem 4.2. GapMINcKT is NP-hard under polynomial-time randomised mapping reduc-
tions. More precisely, for every constant ϵ ∈ (0, 1) and γ > 1, there is a polynomial-time
randomised mapping reduction from an NP-complete language to the following promise prob-
lem:

ΠYes := {(x, y) : KN1+ϵ
(x | y) ≤ N ϵ},

ΠNo := {(x, y) : KNγ
(x | y) > N1−ϵ}.

Here x has length N and y has length poly(Nγ).

Overview of this section. In short, our proof consists of two parts. First, we implement
the witness encryption construction of Garg, Gentry, Sahai, and Waters [GGSW13] in a certain
oracle world, and prove its security (unconditionally) in this oracle world; then, we show that such
oracle witness encryption schemes imply the NP-hardness of GapMOCSP and GapMINcKT.

In Section 4.1, we define witness encryption in oracle worlds, and prove that it implies NP-
hardness of GapMOCSP and GapMINcKT. A subtlety is that our NP-hardness results require
“strong” security of oracle witness encryption, while we could only prove “weak” security for

15If one proves NP-hardness in the regime where ϵ = o(1), then this gives a subexponential-time algorithm for
SAT (which is believed to be unlikely). This is why we say our approximation factor is the “largest” possible.

21

the construction in [GGSW13], therefore we bridge this gap in Section 4.2 by showing “weakly-
secure” oracle witness encryption implies “strongly-secure” ones. In Section 4.3, we describe an
oracle witness encryption scheme based on the candidate in [GGSW13], and then in Section 4.4,
we prove the security of this scheme. Finally, in Section 4.5, we put the pieces together and
prove the NP-hardness of GapMOCSP and GapMINcKT.

4.1 From Witness Encryption to NP-Hardness of GapMOCSP

We first define witness encryption in oracle worlds. Roughly speaking, it is a witness encryption
scheme where the encryption and decryption algorithms have access to an oracle. We define
this notion of witness encryption since in a carefully constructed oracle world, we can construct
an unconditionally secure witness encryption scheme, and obtain unconditional NP-hardness of
MOCSP. Also note that we require the oracle to have fan-in at most O(λ), where λ≪ N is the
security parameter.16

Definition 4.3 (Witness Encryption in Oracle Worlds). Let L ∈ NP, R be the witness relation
for L, O = {Oλ}λ∈N be a family of distributions where each Oλ is a distribution over oracles
Oλ : {0, 1}O(λ) → {0, 1}. A witness encryption scheme for L w.r.t. O consists of polynomial-time
oracle algorithms (Encrypt(−),Decrypt(−)) with the following syntax:

• EncryptOλ(1λ, x, b; r) takes as input a security parameter 1λ, an instance x ∈ {0, 1}n, a
message bit b ∈ {0, 1}, and some randomness r; it has oracle access to the oracle Oλ, and
outputs a ciphertext c.

• DecryptOλ(1λ, c, x, w) takes as input a security parameter 1λ, a ciphertext c, an instance
x ∈ {0, 1}n, and a witness w such that (x,w) ∈ R; it has oracle access to the oracle Oλ,
operates deterministically, and outputs a message bit b.

These algorithms satisfy the following correctness condition: For any security parameter λ, any
oracle Oλ in the support of Oλ, any b ∈ {0, 1}, any x ∈ L and any w such that (x,w) ∈ R, it
holds that

Pr
r
[DecryptOλ(1λ,EncryptOλ(1λ, x, b; r), x, w) = b] = 1.

We also define the security of witness encryptions in oracle worlds. We consider security
against programs: every program of a certain description length and query complexity fails
to break our witness encryption except with negligible probability. We consider two types of
security:

• weak security, where for each fixed program A, security holds for a random oracle Oλ ← Oλ;
and

• strong security, where w.h.p. over a random oracle Oλ ← Oλ, security holds for every
resource-bounded program A.

Definition 4.4 (Security of Oracle Witness Encryption). Let L,R,O = {Oλ}λ∈N, and the
witness encryption scheme (Encrypt(−),Decrypt(−)) be defined as in Definition 4.3. Let Q,S :
N → N denote the query complexity and size respectively, and let ϵ : N → (0, 1). We say a
(randomised) program A and an instance x ̸∈ L breaks the oracle Oλ with advantage ϵ(λ), if∣∣∣∣Prr,A

[AOλ(EncryptOλ(1λ, x, 0; r)) = 1]− Pr
r,A

[AOλ(EncryptOλ(1λ, x, 1; r)) = 1]

∣∣∣∣ ≥ ϵ(λ). (2)

16It is trivial to construct an oracle witness encryption scheme where the oracle has fan-in Ω(N) where N is
the size of an instance of L.

22

We say the witness encryption scheme is weakly secure against programs of query complexity
Q(λ) with advantage ϵ(λ), if for every x ̸∈ L and every program A of query complexity at most
Q(λ), w.p. at most ϵ(λ) over the oracle Oλ ← Oλ, (A, x) breaks Oλ with advantage ϵ(λ).

We say the witness encryption scheme is strongly secure against programs of query complexity
Q(λ) and size S(λ) with advantage ϵ(λ), if w.p. at most ϵ(λ) over the oracle Oλ ← Oλ, there is
some instance x ̸∈ L and some adversary program A of query complexity at most Q(λ) and size
at most S(λ) such that (A, x) breaks Oλ with advantage ϵ(λ).

We show that the existence of an oracle witness encryption scheme for a language L ∈ NP
that is strongly secure implies a reduction from L to GapMOCSP.

Theorem 4.5. Let L ∈ NP. Suppose there is a distribution Oλ over oracles O : {0, 1}O(λ) →
{0, 1}, whose truth tables are sampleable in poly(2λ) time, and a witness encryption scheme
for L w.r.t. O that is correct and strongly secure against size-2Ω(λ) adversaries with advantage
2−Ω(λ).

Then, for any constant ϵ > 0, there is a polynomial-time randomised mapping reduction from
L to the following promise problem:

ΠYes := {(f,O) : CCO(f) ≤ 2ϵn},
ΠNo := {(f,O) : CCO

1/2−2−0.3n(f) > 20.3n}.

Proof. Let (Encrypt(−),Decrypt(−)) be the witness encryption scheme for L. Let x be an instance
of L and N := |x|. Let k ∈ N be a large enough constant such that the following holds:

• Oλ is an oracle that receives kλ inputs;

• Encrypt and Decrypt runs in Nk time;

• The witness length for L is at most Nk.

• The security of our witness encryption scheme is against adversaries that make 2λ/k queries
and its advantage is 2−λ/k.

Let n := ⌈(3k logN)/ϵ⌉ and λ := 10kn.

The reduction. The truth table f : {0, 1}n → {0, 1} will be a uniformly random string. To
construct our oracle truth table O, we first construct an oracle world with two oracles Oλ and
Oct (ct for “ciphertext”), and then concatenate them into a single oracle:

• First, we draw an oracle Oλ from Oλ and include it in our oracle world.

• For every i ∈ {0, 1}n, let ci ∈ {0, 1}N
k be an encryption of f(i). In particular, pick some

fresh random bits ri and let ci := EncryptOλ(1λ, x, f(i); ri). We create an oracle Oct that
stores every ci: For i ∈ {0, 1}n and j ∈ {0, 1}⌈k logN⌉, Oct(i, j) is the j-th bit of ci.

• Finally, our oracle O is the concatenation of Oλ and Oct. More precisely, O takes as input
a string y of length 1 + kλ. Let y0 be the first bit of y.

– If y0 = 0, then we parse y = y0 ◦ y1 where |y1| = kλ, and return O(y) = Oλ(y1).

– If y0 = 1, then we parse y = y0 ◦ i ◦ j ◦ ypad where |i| = n and |j| = ⌈k logN⌉, and
return O(y) = Oct(i, j). (Note that n+ ⌈k logN⌉ < kλ.)

The truth tables of f and Oλ have length at most 2O(kλ) ≤ poly(N). It is easy to see that
our reduction runs in (randomised) polynomial time. Now we prove its correctness.

23

Completeness. If x ∈ L, then the following circuit CO computes f :

• The circuit CO receives an advice w such that (x,w) ∈ R, as well as an input i ∈ {0, 1}n.

• The circuit makes Nk queries to Oct to determine the ciphertext ci.

• Then it outputs DecryptOλ(1λ, ci, x, w).

We can see that the size of CO is at most N2k ≤ 2ϵn, therefore CCO(f) ≤ 2ϵn and (f,O) ∈ ΠYes.

Soundness. On the other hand, suppose that x ̸∈ L, we want to show that w.h.p. (f,O) ∈
ΠNo, i.e., for every size-20.3n oracle circuit C,

Pr
i←{0,1}n

[CO(i) = f(i)] ≤ 1/2 + 2−0.3n.

We achieve this by a hybrid argument. We fix the oracle Oλ ← Oλ, and w.p. 1 − o(1),
our witness encryption scheme is secure in this oracle world. We also fix a random truth
table f : {0, 1}n → {0, 1}, and w.p. 1 − o(1) it is “hard” in a sense that will be described
in Claim 4.6. We fix a one-to-one correspondence between strings of length n and numbers in
{0, 1, . . . , 2n− 1}. We consider 2n +1 hybrid games Hyb0,Hyb1, . . . ,Hyb2n , where we also abuse
the notation O ← Hybg to denote that oracle O is drawn from the g-th hybrid game. In Hybg:

• For each i ∈ {0, 1}n, if i < g, then ci is an encryption of a random bit, i.e., ci :=
EncryptOλ(1λ, x, b; ri) for fresh random bits b and ri; if i ≥ g, then ci is an encryption of
f(i), i.e., ci := EncryptOλ(1λ, x, f(i); ri) for fresh random bits ri.

• The oracle O is defined from Oλ and {ci} as above. That is, O(0, y1) = Oλ(y1) and
O(1, i, j, ypad) is the j-th bit of ci.

We can see that Hyb0 corresponds to our reduction, and (if f is “hard” then) Hyb2n is a
secure game. Define

advg := max
C

{
Pr

O←Hybg
[correct(CO, f) ≥ 1/2 + 2−0.3n]

}
,

where C ranges over all oracle circuits of size at most 20.3n, and

correct(CO, f) := Pr
i←{0,1}n

[CO(i) = f(i)].

Think of the oracle circuit C winning the g-th hybrid game if CO and f have a non-trivial
correlation for O ← Hybg. Then, advg is the probability that there is an oracle C of size 20.3n

that wins the g-th hybrid game.

Claim 4.6. With probability ≥ 1− o(1) over the choice of f , we have that adv2n ≤ 2−0.4n.

Proof. Note that in Hyb2n , the oracle O is independent of f , as each ci is an encryption of a
fresh random bit. Now, let γ := 2−0.4n and κ := 2−0.3n. Suppose there is an oracle circuit C of
size at most 20.3n such that

Pr
O←Hyb2n

[correct(CO, f) ≥ 1/2 + κ] > γ.

For any oracle O such that correct(CO, f) ≥ 1/2 + κ, given the oracle circuit C and the set of
(1/2− κ)2n indices where CO is wrong, we can recover the entire truth table f . In other words,
given O, we can describe f in

|C|+ log

(
2n

(1/2− κ)2n

)
+O(1) ≤ |C|+ 2nH(1/2− κ) +O(1)

24

bits, where H(p) = −p log2 p− (1− p) log2(1− p) is the binary entropy function. Since H(1/2−
ϵ) = 1 − (2/ ln 2)ϵ2 + O(ϵ4), the description of f has length at most 2n − D where D :=
2

ln 2κ
22n −O(κ42n)− |C| ≥ Ω(20.4n).

It follows that w.p. at least γ over O ← Hyb2n , there is a machine M of description length
2n −D that outputs f . This means that pKγ(f | Oλ, x) ≤ 2n −D +O(1). By Fact 2.14, there
are at most O(1)

2D·γ ≪ 2−2
0.35n fraction of such f .

Therefore, by a union bound over all oracle circuits of size at most 20.3n, we have that
adv2n ≤ 2−0.4n w.p. 1− o(1) over the choice of f . ⋄

We say a truth table f is hard if it satisfies Claim 4.6.

Claim 4.7. For every 0 ≤ g < 2n, advg ≤ advg+1 + 2−λ/k.

Proof. Let C be the oracle circuit of size at most 20.3n that maximises

Pr
O←Hybg

[correct(CO, f) ≥ 1/2 + 2−0.3n].

We want to show that the above quantity is at most advg+1 + 2−λ/k.
Consider the following (probabilistic) adversary A. Given a ciphertext c, A(c) attempts to

figure out whether c is an encryption of 0 or 1.

• First, we define some ciphertexts {ci}. For each i ∈ {0, 1}n, if i < g then define ci to be
an encryption of a fresh random bit; if i > g then define ci to be an encryption of f(i); if
i = g then ci = c.

• Let O be the oracle defined from Oλ and {ci} as above.

• Use at most O(2n · |C|) oracle queries to compute correct(CO, f). If correct(CO, f) ≥
1/2 + 2−0.3n, return 1; otherwise return 0.

Let b ∈ {0, 1} be a bit, pb be the probability that A(c) = 1 when c is an encryption of b.
More precisely:

pb := Pr[A(c) = 1 | A, r ← {0, 1}Nk
, c← EncryptOλ(1λ, x, b; r)].

Since A only needs to hardcode f , the program length of A is only 2n + O(1) ≤ 2λ/k. The
query complexity of A (to the oracle Oλ) is also at most 2λ/k, since it computes all ci with at
most 2n · Nk < 29n queries, and then computes correct(CO, f) with at most 2n · 20.3n = 21.3n

oracle queries. Thus, by the security of our witness encryption scheme, we have |p0−p1| ≤ 2−λ/k.
Note that advg = pf(g) and advg+1 ≥ (p0 + p1)/2. Therefore

advg ≤ advg+1 + |(p0 − p1)/2| ≤ advg+1 + 2−λ/k. ⋄

Let f be a “hard” function in the sense of Claim 4.6. It follows from Claim 4.7 that adv0 ≤
2−0.4n+2n−λ/k ≤ 2−0.3n. Since the distribution of the oracle O in Hyb0 is exactly the distribution
produced by our reduction, we have that CCO

1/2−2−0.3n(f) > 20.3n w.h.p. The soundness of our
reduction is now established.

Inspecting the above proof, we obtain the following stronger corollary:

Corollary 4.8. Let 0 < δ1, δ2 < 1 be two constants such that δ1 + 2δ2 < 1. Under the same
hypothesis of Theorem 4.5, there is a randomised mapping reduction from L to the following
promise problem:

ΠYes := {(f,O) : CCO(f) ≤ 2ϵn},
ΠNo := {(f,O) : CCO

1/2−2−δ2n
(f) > 2δ1n}.

25

The above corollary is optimal, as for any constants 0 < δ1, δ2 < 1 such that δ1+2δ2 > 1 and
any function f : {0, 1}n → {0, 1}, if n is large enough, then it holds that CC1/2−2−δ2n(f) ≤ 2δ1n.
See Appendix A for details.

Here we state another version of Theorem 4.5, but for Turing machines instead of circuits.
The proof is very similar to that of Theorem 4.5, and we will only give a proof sketch here.

Theorem 4.9. Let L ∈ NP. Suppose there is a distribution Oλ over oracles O : {0, 1}O(λ) →
{0, 1}, whose truth tables are sampleable in poly(2λ) time, and a witness encryption scheme for
L that is correct and strongly secure against 2Ω(λ)-query adversaries with advantage 2−Ω(λ).

Then, for any constants ϵ ∈ (0, 1) and γ > 1, there is a polynomial-time randomised mapping
reduction from L to the following promise problem:

ΠYes := {(f,O) : Kℓ1+ϵ
(f | O) ≤ ℓϵ},

ΠNo := {(f,O) : Kℓγ (f | O) > ℓ1−ϵ},

where |f | = ℓ and |O| = poly(ℓγ).

Proof Sketch. Here we will only cover the difference from the proof of Theorem 4.5. Let x be an
instance of L, N := |x|, k, n be defined in the same way as Theorem 4.5, and λ := (10 + γ)kn.
We also define ℓ := 2n.

The truth table f and the oracle truth table O are sampled in the same way as Theorem 4.5.

Completeness. If x ∈ L, then the following Turing machine MO computes f :

• The machine MO receives an advice w such that (x,w) ∈ R.

• The machine enumerates i ∈ {0, 1}n.

• For every i, the machine makes Nk queries to Oct to determine the ciphertext ci, and then
outputs DecryptOλ(1λ, ci, x, w).

We can see that the description size of MO is at most N2k < 2ϵn = ℓϵ and the running time is
at most N2k · 2n < ℓ1+ϵ.

Soundness. Suppose that x /∈ L, we want to show that w.h.p., for every oracle Turing machine
M that has description length at most 2(1−ϵ)n and makes at most 2γn oracle queries, MO does
not output f . We use the same proof as for Theorem 4.5, but with CO replaced by MO.

The definitions of hybrid games Hybg and ciphertexts ci in each Hybg are the same as in
Theorem 4.5. The advantage of Hybg is

advg := max
M

{
Pr

O←Hybg
[MO outputs f in time 2γn]

}
,

where M ranges over all programs of length 2(1−ϵ)n and query complexity 2γn. Since the oracle
in Hyb2n does not depend on f , the following claim analogous to Claim 4.6 holds:

Claim 4.10. With probability 1− o(1) over the choice of f , we have that adv2n ≤ 2−n.

Proof Sketch. Fix M , then PrO,f [M
O outputs f in time 2γn] ≤ 1/2ℓ. By Markov’s inequality,

Pr
f

[
Pr
O
[MO outputs f in time 2γn] ≤ 2−n

]
≥ 1− 2n−2

n
.

Now by a union bound over all machines M with description length at most 2(1−ϵ)n,

Pr
f
[adv2n ≤ 2−n] ≥ 1− 22

(1−ϵ)n · 2n−2n = 1− o(1). ⋄

26

The following claim analogous to Claim 4.7 also holds:

Claim 4.11. For every 0 ≤ g < 2n, advg ≤ advg+1 + 2−λ/k.

Proof Sketch. The proof intuition is similar to that of Claim 4.7, namely that any machine M
such that PrO[M

O outputs f] for O ← Hybg and O ← Hybg+1 differs by at least 2−λ/k can be
used to break the security of witness encryption.

We still construct an adversary A as in Claim 4.7, and the construction is the same except for
the third step: instead of computing correct(CO, f), here A uses at most 2γn queries to simulate
MO; if MO outputs f in time 2γn, A returns 1, otherwise A returns 0.

By similar arguments as in Claim 4.7, A can be implemented by a machine of description
length 2λ/k that makes at most 2λ/k queries, and by the security of our witness encryption
scheme we have

advg ≤ advg+1 + 2−λ/k. ⋄

Now let f be a “hard” function in the sense of Claim 4.10. It follows from Claim 4.11 that
adv0 ≤ 2−n + 2n−λ/k = o(1). Since the distribution of the oracle O in Hyb0 is exactly the
distribution produced by our reduction, we have that Kℓγ (f | O) > ℓ1−ϵ w.h.p. The soundness
is therefore established.

4.2 From Weak Security to Strong Security

Unfortunately, we can only prove that the GGSW construction is weakly secure (Theorem 4.25),
but Theorem 4.5 requires strong security to conclude NP-hardness of MOCSP. In this section,
we show that the “salted” version of any weakly secure oracle witness encryption is strongly
secure.

AI-ROM, BF-ROM, and salting. Our proof is crucially based on the results in [CDGS18],
so it may be helpful to discuss their ideas before proceeding with our proof. The main motivation
of [CDGS18] was to bridge the gap between the random oracle model (ROM) and the auxiliary-
input random oracle model (AI-ROM). The bit-fixing random oracle model (BF-ROM) will be
a useful proxy between these two models.

• In ROM, a protocol is secure if for every fixed adversary A, w.h.p. over a random oracle
O, AO cannot break the protocol; clearly, this corresponds to weak security in our paper.

• In AI-ROM, the adversary receives (a limited amount of) auxiliary information α := α(O)
(which can be thought of as advice), and the security requirement becomes that for every
fixed adversary A, w.h.p. over a random oracle O, AO with advice α(O) cannot break
the protocol. We can simply think of α(O) as the best adversary circuit for breaking the
protocol w.r.t. O, and A as a universal machine that evaluates the oracle circuit α(O).
Therefore, security in AI-ROM corresponds to strong security in our paper.

• In BF-ROM, before attacking, the adversary chooses a small number of positions in the ran-
dom oracle and fixes (i.e., overrides) them arbitrarily. The protocol is secure if w.h.p. over
the rest parts of the random oracle O, AO cannot break the protocol.

An important technical lemma ([CDGS18, Lemma 1]) allows us to replace the AI-ROM model
with the easier-to-analyze BF-ROM. The lemma states the following: Consider the distribution
O of the random oracle in the AI-ROM model conditioned on the advice string α(O), then this
distribution can always be approximated by a convex combination of bit-fixing random oracles.
It follows that security in BF-ROM implies security in AI-ROM.

Finally, [CDGS18] proposed salting as a generic way of deriving the security in BF-ROM
from the security in the usual ROM. Let O be a distribution of oracles under which a certain

27

protocol is weakly secure, i.e., for every adversary A, w.h.p. over O, AO cannot break the
protocol. Let K be a large enough number, O′ = (O1,O2, . . . ,OK) be K independent copies of
O. (That is, the interface of O′ is as follows: on input salt ∈ [K] and x, the value Osalt(x) is
returned.) Consider the BF-ROM over O′. If the adversary is allowed to fix P bits of O′ where
P ≪ K, then for a random salt← [K], w.h.p. Osalt is a uniformly random oracle (without any
fixed bit), and we can invoke the weak security of Osalt to argue the security of O′ in BF-ROM.
By the above lemma, this also implies the (strong) security of O′ in AI-ROM.

The formal proof. In what follows, we assume every possible oracle in the support of Oλ is
drawn with equal probability. Abusing notation, we also use Oλ to denote the support of Oλ

(which is a set of oracles).17 Let K = 2O(λ) denote the number of salts, we consider random
variables over the support (Oλ)

K .

Definition 4.12. We say a random variable O′ over the range (Oλ)
K is P -fixing18 if it is fixed

on at most P coordinates and uniform on the rest.

Lemma 4.13 ([CDGS18, Lemma 1]). Let X be distributed uniformly over (Oλ)
K and Z :=

f(X), where f : (Oλ)
K → {0, 1}S is an arbitrary function. For every γ > 0 and P ∈ N, there

exists a family {Yz}z∈{0,1}S such that:

• Each Yz is the convex combination of P -fixing random variables over (Oλ)
K .

• For every distinguisher D taking an S-bit input and querying at most T < P coordinates
of its oracle,∣∣Pr[DX(f(X)) = 1]− Pr[DYf(X)(f(X)) = 1]

∣∣ ≤ (S + log(1/γ)) · T
P

+ γ.

In the lemma above, it would be helpful to think of D as a universal Turing machine, and
f as the function that maps the oracle world to the best adversary of description length S for
breaking the protocol. (There is no requirement that f needs to be “efficient”.) The lemma
states that even after the S-bit non-uniformity is fixed, the conditional distribution of the oracle
can be approximated by bit-fixing distributions, thus allowing us to transform security proofs
in BF-ROM into security proofs in AI-ROM.

Theorem 4.14. Let L ∈ NP, R be the witness relation for L.
Let Oλ be a distribution over oracles Oλ : {0, 1}O(λ) → {0, 1} whose truth tables are sam-

pleable in poly(2λ) time, such that there is a witness encryption scheme for L w.r.t. O that is
weakly secure against programs of query complexity 2Ω(λ) with advantage 2−Ω(λ).

Then there is a distributions O′λ over oracles O′λ : {0, 1}O(λ) → {0, 1} whose truth tables
are also sampleable in poly(2λ) time, and a witness encryption scheme for L w.r.t. O′ that is
strongly secure against programs of query complexity 2Ω(λ) and size 2Ω(λ) with advantage 2−Ω(λ).

Proof. Let c ∈ N be a large enough constant such that the following holds:

• The input length of Oλ is c · λ.

• For every program A of query complexity 2λ/c, w.p. at most 2−λ/c over a random oracle
O ← Oλ,∣∣∣Pr

r
[AO(EncryptO(1λ, x, 0; r)) = 1]− Pr

r
[AO(EncryptO(1λ, x, 1; r)) = 1]

∣∣∣ ≥ 2−λ/c.

17This is because the statement of [CDGS18, Lemma 1] requires one to start with the uniform distribution
over a set of oracles.

18Such random variables are called P -bit-fixing in [CDGS18]. We removed the word “bit” because each coor-
dinate of O′ is not a bit, but an oracle of 2O(λ) size.

28

Without loss of generality, we assume that λ ≥ 6c · log n, where n = |x| is the input length of L.
Let k := λ/(2c). We construct a new family of oracles O′ = {O′λ}λ∈N. To sample an oracle

O′ from O′λ, we sample 2k oracles O0k , . . . , Osalt, . . . , O1k independently from Oλ, indexed by
strings salt ∈ {0, 1}k, and then define

O′(salt, x) = Osalt(x) ∀salt ∈ {0, 1}k, x ∈ {0, 1}cλ.

The new witness encryption scheme works as follows:

• EncryptO
′

new(1
λ, x, b) samples a random salt ← {0, 1}k, calculates the ciphertext ct ←

EncryptOsalt(1λ, x, b), and outputs ctnew := (salt, ct) as the final ciphertext.

• DecryptO
′

new(1
λ, ctnew, x, w) parses ctnew as (salt, ct) where salt ∈ {0, 1}k and ct is the

ciphertext for the old witness encryption, and then outputs DecryptOsalt(1λ, ct, x, w).

The correctness of (Encryptnew,Decryptnew) is easy to see, so it remains to prove its (strong)
security. To this end, we invoke Lemma 4.13 where:

• X := Oλ and K := 2k (note that here, Oλ is indeed the uniform distribution over its
support);

• f : (Oλ)
K → {0, 1}2λ/(6c)+n is the function mapping an oracle to its best adversary; that

is, given an oracle O′ ∈ (Oλ)
K , f(O′) is the pair (x,A) that maximizes∣∣∣Pr

r
[AO′

(EncryptO
′

new(1
λ, x, 0; r)) = 1]− Pr

r
[AO′

(EncryptO
′

new(1
λ, x, 1; r)) = 1]

∣∣∣,
where x ∈ {0, 1}n \ L and A is a program of length 2λ/(6c) and query complexity 2λ/(6c);
if there are ties, we let f(O′) be the lexicographically first maximiser (x,A);

• γ := 2−λ/(6c) and P := 2λ/(2c).

It follows from Lemma 4.13 that for every x ∈ {0, 1}n \ L and every adversary program A
of length 2λ/(6c) and query complexity 2λ/(6c), there is a distribution Y(x,A) that is a convex
combination of P -fixing random variables over (Oλ)

K , such that the following holds. For every
bit b ∈ {0, 1}, let DO′

b (x,A) be the distinguisher that receives (x,A) as auxiliary inputs, and
outputs AO′

(EncryptO
′

new(1
λ, x, b; r)). Then∣∣∣∣ Pr

O′,Db

[
DO′

b (f(O′)) = 1
]
− Pr

O,Db

[
D

Yf(O′)
b (f(O′)) = 1

]∣∣∣∣
≤ (2λ/(6c) + n+ log(1/γ)) · 2λ/(6c)

P
+ γ ≤ 4 · 2−λ/(6c).

(Recall that n ≤ 2λ/(6c).) Now, we have:∣∣∣∣ Pr
O′,D0

[
DO′

0 (f(O′)) = 1
]
− Pr

O′,D1

[
DO′

1 (f(O′)) = 1
]∣∣∣∣

≤ 8 · 2−λ/(6c) +
∣∣∣∣ Pr
O′,D0

[
D

Yf(O′)
0 (f(O′)) = 1

]
− Pr

O′,D1

[
D

Yf(O′)
1 (f(O′)) = 1

]∣∣∣∣
≤ 8 · 2−λ/(6c) +

∑
(x,A)

Pr
O′

[
f(O′) = (x,A)

]
·

∣∣∣∣ Pr
O′←O′(x,A),D0

[
D

Y(x,A)

0 (x,A) = 1
]
− Pr

O′←O′(x,A),D1

[
D

Y(x,A)

1 (x,A) = 1
]∣∣∣∣, (3)

where O′(x,A) denotes the distribution of O′ conditioned on f(O′) = (x,A).
Since each Y(x,A) is a convex combination of P -fixing random variables, it suffices to show:

29

Claim 4.15. Fix x,A and let Z be a P -fixing source, then∣∣∣∣ PrZ,D0

[
DZ

0 (x,A) = 1
]
− Pr

Z,D1

[
DZ

1 (x,A) = 1
]∣∣∣∣ ≤ 2−λ/(3c).

Proof. Let (O0k , . . . , O1k) be the random variable representing an oracle sampled from Z. Since
Z is P -fixing, there is an index set I ⊆ {0, 1}k of size at least 2k − P such that the marginal
distribution of {Oi}i∈I is the uniform distribution over OIλ .

Recall that DZ
b (x,A) represents the following experiment:

1. First, sample an oracle Z := (O0k , . . . , O1k).

2. Then, sample salt← {0, 1}k.

3. Then, encrypt the message b using the witness encryption w.r.t. oracle Osalt, and obtain
ct← EncryptOsalt(1λ, x, b).

4. Finally, output AZ(salt, ct).

For every salt′ ∈ I, conditioned on salt = salt′, AZ should fail to distinguish an encryption
of 0 from an encryption of 1. This essentially follows from the weak security of our old witness
encryption scheme: Consider a new adversary A′ that hardcodes salt′ and samples Osalt′′ for
every salt′′ ̸= salt′. (If salt′′ ∈ I then Osalt′′ is sampled independently from Oλ; otherwise
Osalt′′ is a fixed oracle according to Z.) It receives an oracle O ← Oλ and it treats O as the
oracle Osalt′ . Note that the adversary A′ is fixed in advance and does not depend on O = Osalt′ ;
also, the query complexity of the adversary is at most 2λ/(6c) < 2λ/c. Let psalt′,b denote the
probability that A′ outputs 1 when given the encryption of b w.r.t. oracle Osalt′ , then w.p. at
least 2−λ/c over Osalt′ , we have |psalt′,0 − psalt′,1| ≤ 2−λ/c. It follows that∣∣∣∣ PrZ,D0

[
DZ

0 (x,A) = 1
]
− Pr

Z,D1

[
DZ

1 (x,A) = 1
]∣∣∣∣

≤ E
salt

[|psalt,0 − psalt,1|]

≤ (P/2k) + 2 · 2−λ/c ≤ 2−λ/(3c). ⋄

Now we can see that

(3) ≤ 4 · 2−λ/(6c) + 2−λ/(3c) ≤ 2−λ/(7c).

It follows from a standard Markov bound that w.p. at most 2−λ/(14c) over the oracle O′ ← O′λ,
there exists x ∈ {0, 1}n \ L and an adversary program A of length 2λ/(6c) and query complexity
2λ/(6c) such that (A, x) breaks O′ with advantage 2−λ/(14c).

4.3 Description of GGSW

In this subsection, we describe an oracle world with a weakly secure witness encryption scheme
(unconditionally). Roughly speaking, our witness encryption scheme is the one in [GGSW13]
and our oracle world implements the generic multilinear map model [Sho97]. Like in [GGSW13],
the witness encryption scheme works for the NP-complete language Exact-Cover [Kar72],
defined as follows:

Definition 4.16 (Exact-Cover). An Exact-Cover instance consists of a number n and
a collection of subsets X1, X2, . . . , Xm ⊂ [n]. It is a Yes instance if and only if there is a
sub-collection in which every element in [n] appears exactly once. More formally:

• There exists an index set I ⊂ [m], such that
⋃

i∈I Xi = [n] and for all i, j ∈ I, i ̸= j, we
have Xi ∩Xj = ∅.

Such an index set I is a witness for the instance.

30

The generic multilinear map model. The oracle world implements a cryptographic mul-
tilinear map [BS03]. In an n-multilinear group family, we have a sequence of cyclic groups
G1,G2, . . . ,Gn of the same order p. We use addition for the group operation and 0 for the
identity. We also have a set of multilinear maps ei,j : Gi × Gj → Gi+j for every i, j such that
i + j ≤ n. The map is multilinear in the sense that ei,j(gi, gj) = gi + gj , where gi, gj , and
ei,j(gi, gj) are interpreted as elements in Gi, Gj , and Gi+j respectively.

In the generic multilinear map model, we do not have access to the actual group elements,
but receive their labels instead. For each group Gi, there is a bijective label function σi : [p]→ Gi

mapping labels to group elements.19 The adversary operates on labels instead of group elements
and its only access to the group structure is via the multilinear map:

ei,j : [p]× [p]→ [p], ei,j(σ
−1
i (gi), σ

−1
j (gj)) = σ−1i+j(gi + gj). (4)

(That is, the map ei,j receives two labels si, sj , treats si as the labelling of gi ∈ Gi, treats sj as
the labelling of gj ∈ Gj , and returns the labelling of gi + gj ∈ Gi+j .) Intuitively, suppose the
label functions are random, then the adversary has no idea about which actual group elements
are represented by which label.

Construction of the oracle world. Let p ∈ (2λ, 2λ+1) be a prime number, (G,+) be the
cyclic group of order p. We independently sample n + 1 bijections σ1, σ2, . . . , σn+1 : [p] → G
uniformly at random. We identify [p] with the lexicographically smallest p strings of length λ+1.
The groups G1,G2, . . . ,Gn+1 are isomorphic to G, but we use the subscript i to emphasize that
this group is paired with the bijection σi.

We now implement Eq. (4) as a (Boolean) oracle. Let Add : {0, 1}⌈log2 (n+1)⌉ × {0, 1}λ+1 ×
{0, 1}⌈log2 (n+1)⌉ × {0, 1}λ+1 → {0, 1}λ+1 be the following oracle: on input (i, si, j, sj), if si, sj ∈
[p], i+ j ≤ n+ 1, and neither i nor j are zero, then we return

Add(i, si, j, sj) = σ−1i+j(σi(si) + σj(sj)); (5)

otherwise we return 0λ+1 (denoting the query is invalid).
Let Oλ be the set consisting of all Add that will be sampled as above. We also abuse

notation and denote Oλ as the distribution of Add defined from uniformly and independently
random bijections σ1, σ2, . . . , σn+1.

It is easy to see that the oracle world is efficiently sampleable.

Claim 4.17. The oracle world can be sampled in poly(2λ) time.

Proof. Note that sampling a bijection [p] → G can be done in poly(2λ) time, and computing
each entry of Add with that bijection takes poly(2λ) time. Since there are poly(2λ) entries, the
total time is poly(2λ).

Construction of the witness encryption scheme. Now we construct the witness encryp-
tion scheme. Let x = (X1, X2, . . . , Xm) be an Exact-Cover instance. The witness encryption
scheme consists of oracle algorithms (Encrypt(−),Decrypt(−)) defined as the following:

• EncryptAdd(1λ, x, b; r) first uniformly samples s1, s2, . . . , sn ← [p] using the randomness
r. Let gi := σ1(si) be the element in G1 under label si. For every set X ⊆ [n], define
gX :=

∑
j∈X gj , and treat gX as an element in G|X|. Then, let sX := σ−1|X|(gX).

19In the literature, it is more common to write σi : Gi → [p], so σi gives every element in Gi a label in [p].
However, in the security proof later, we will construct hybrids where the map [p] → Gi is not injective and thus
Gi → [p] is not a map (though this happens with negligible probability), so we choose to define σi as [p] → Gi.

31

We sample20 msg0 ← [p] \ {sXi : |Xi| = 1} and then msg1 ← [p] \ ({msg0} ∪ {sXi :
|Xi| = 1}) uniformly using the randomness r. As we are encrypting b ∈ {0, 1}, define
gn+1 := σ1(msgb), and extend the above definition of gX to X ⊆ [n+1]. Finally we output
the ciphertext (

{sXi}i∈[m], s[n+1],msg0,msg1
)
. (6)

Of course, we cannot decode each si in order to compute the ciphertext; we need to use
the oracle Add instead. In particular, for every set X ⊆ [n] where |X| > 1, let x be any
element in X, we have sX = Add(|X| − 1, sX\{x}, 1, sx). Therefore we can compute each
sXi and s[n+1] in polynomial time, only using oracle access to Add.

• DecryptAdd(1λ, c, x, I) first parses the ciphertext c into the form Eq. (6). Suppose the
witness I = {i1, i2, . . . , i|I|}. Then we compute s[n] = sXi1

∪Xi2
∪···∪Xi|I|

with oracle Add by
recursively computing

sXi1
∪Xi2

∪···∪Xij
= Add

(
|Xi1 ∪Xi2 ∪ · · · ∪Xij−1 |, sXi1

∪Xi2
∪···∪Xij−1

, |Xij |, sXij

)
.

Then we use Add again to compute Add(n, s[n], 1,msg0). If Add(n, s[n], 1,msg0) = s[n+1],
then we return 0; otherwise we return 1.

Correctness. Recall that gi = σ1(si) for each i, and gX =
∑

x∈X gi for each X ⊆ [n]. Let
sX be computed as in the encryption algorithm, then it is easy to prove by induction that for
every non-empty X ⊂ [n], it is indeed true that sX = σ−1|X|(gX). Therefore, for every non-empty
X,Y ⊂ [n] such that X ∩ Y = ∅, we have

sX∪Y = σ−1|X|+|Y |(gX + gY) = Add(|X|, sX , |Y |, sY).

It follows that if x ∈ Exact-Cover and I is a correct witness for x, then the algorithm Decrypt
computes s[n] correctly. Then, there are two cases.

• Suppose b = 0, then Add(n, s[n], 1,msg0) = Add(n, s[n], 1,msgb) = s[n+1], thus the algo-
rithm outputs 0.

• Suppose b = 1. Note that msg0 ̸= msg1 and σi is a bijection, thus Add(n, s[n], 1,msg0) ̸=
Add(n, s[n], 1,msg1) = Add(n, s[n], 1,msgb), and the algorithm outputs 1.

4.4 Security of GGSW

In this subsection, we prove the security of the witness encryption scheme: if x ̸∈ Exact-Cover,
then the encryption of 0 and the encryption of 1 are computationally indistinguishable.

4.4.1 Hybrid Games

We use a hybrid argument. In this subsection, we define all hybrid games involved in the
security proof. Each hybrid game has an initialisation phase Init and an interactive phase. The
challenger runs the initialisation phase at the beginning, which generates a secret bit b and a
public encryption of b; then the challenger and the adversary run the interactive phase, during
which the challenger responds to the adversary’s Add oracle queries. Finally, the adversary
succeeds if he guesses b correctly.

In what follows, if a function f is not injective, we will use f−1(x) to denote an arbitrary
element in the preimage (say, the lexicographically smallest one). This definition is not crucial,

20Here we require msg0 and msg1 to be different from any sXi such that |Xi| = 1, so that security proof later
becomes more convenient.

32

since every function in the hybrid games will be injections with high probability. Also, for an
oracle call Add(i, si, j, sj), we always implicitly assume that i, j ̸= 0, i+j ≤ n+1, and si, sj ∈ [p],
since otherwise the oracle query is “invalid” and Add always returns 0λ+1.

To describe the hybrid games, we will need random tapes S, T (1), T (2), . . . , T (n+1). Here:

• Let Q be an upper bound on the number of oracle queries of the adversary, we sample
S ← G2Q+n+2 uniformly at random.

• For each i ∈ [n+1], let T (i) ∈ [p]p be a random permutation. (That is, ∀i ∈ [n+1],∀j1 ̸=
j2, T

(i)
j1
̸= T

(i)
j2

.)

We can treat each S and T (i) as a stream of elements: we access the elements in the order from
the first to the last, and we never access the j-th element before seeing the (j − 1)-st one. Also
note that S and T do not appear in Hyb0, but appear in every subsequent game.

Definition of Hyb0. The game Hyb0 is exactly the security game of our witness encryption
scheme. In the Init phase:

• The challenger samples bijections σ1, σ2, . . . , σn+1 : [p]→ G uniformly at random.
• Then, she samples g1, g2, . . . , gn ← G uniformly at random and computes gX1 , gX2 , . . . , gXm .
• She also uniformly samples msg0 ← [p] \ {σ−11 (gXi) : |Xi| = 1} and then msg1 ← [p] \
({msg0} ∪ {σ−11 (gXi) : |Xi| = 1}).

• Finally, she outputs the ciphertext(
{σ−1|Xi|(gXi)}i∈[m], σ

−1
n+1(g[n] + σ1(msgb)),msg0,msg1

)
.

When the adversary queries Add(i, si, j, sj), the challenger computes gi ← σi(si) and gj ←
σj(sj), and then replies σ−1i+j(gi + gj).

Definition of Hyb′0. The game Hyb′0 is equivalent to Hyb0, but it is defined in a way using the
random tapes S and T (i). This will make it easier to compare Hyb′0 with later hybrid games. In
Hyb′0, the challenger maintains partial functions σ1, σ2, . . . , σn+1 : [p]→ G. In the Init phase:

• The challenger reads S1, . . . , Sn+2 from the tape S and sets gi := Si for every i ∈ [n+ 2].
• Then, for every i = 1, 2, . . . ,m in ascending order, if there is no i′ < i such that |Xi′ | =
|Xi| and gXi′ = gXi ,21 the challenger reads the next entry T

(|Xi|)
new in T (|Xi|), and sets

σ|Xi|(T
(|Xi|)
new) := gXi .

• Then, let msg0 and msg1 be the next two entries in T (1); the challenger sets σ1(msg0) :=
gn+1 and σ1(msg1) := gn+2.

• The challenger also reads the first entry of T (n+1), namely T
(n+1)
1 , and sets σn+1(T

(n+1)
1) :=

g[n] + σ1(msgb).
• Finally, the challenger outputs the ciphertext(

{σ−1|Xi|(gXi)}i∈[m], σ
−1
n+1(g[n] + σ1(msgb)),msg0,msg1

)
.

When the adversary queries Add(i, si, j, sj), the challenger performs the following.
• If σi(si) is not defined, then the challenger reads the next entry Snew in S. If Snew is not

in the image of σi, she sets σi(si) := Snew; otherwise, she samples R from G \ Image(σi)
uniformly at random and sets σi(si) := R.

• If σj(sj) is not defined, then the challenger reads the next entry Snew in S. If Snew is not
in the image of σj , she sets σj(sj) := Snew; otherwise, she samples R from G \ Image(σj)
uniformly at random and sets σj(sj) := R.

21For this moment, the reader can safely ignore the phrase “if there is no i′ < i such that |Xi′ | = |Xi| and
gXi′ = gXi ”, as the probability that this does not happen is negligible.

33

• Let g1 := σi(si) and g2 := σj(sj). If σ−1i+j(g
1+ g2) is not defined, then the challenger reads

the next entry T
(i+j)
new in T (i+j). If T (i+j)

new is already in the domain of σi+j , then she disposes
it and reads a new T

(i+j)
new ; she repeats this until getting a T

(i+j)
new that is not in the domain

of σi+j . Now she sets σi+j(T
(i+j)
new) := g1 + g2.

• Finally, the challenger returns σ−1i+j(g
1 + g2).

After the interactive phase, for every i, σi restricted to its domain is a bijection. To extend
σi to a full bijection between [p] and G, for each s ∈ [p] not yet in the domain of σi, we uniformly
sample g from G \ Image(σi) and sets σi(s) := g. This step does not affect the game; its only
purpose is to assist our proof that Hyb0 and Hyb′0 are equivalent.

Definition of Hyb1. Next, we define a game Hyb1, which is almost the same as Hyb′0 but with
the following difference. When the challenger answers Add(−) queries, she samples Snew from
S. In Hyb′0, if Snew is in the range of σi (or σj), she re-samples an element R and sets σi(si) (or
σj(sj)) to be R. In Hyb1, the challenger always sets σi(si) (or σj(sj)) to be Snew, regardless of
whether this would introduce a collision (making σi or σj not injective any more). However, we
will show that the collision probability is negligible, thus Hyb1 will be close to Hyb′0.

We present a complete description of Hyb1. In this game, the challenger maintains partial
functions σ1, σ2, . . . , σn+1 : [p]→ G. In the Init phase (this is exactly the same as Hyb′0):

• The challenger reads S1, . . . , Sn+2 from the tape S and sets gi := Si for every i ∈ [n+ 2].
• Then, for every i = 1, 2, . . . ,m in ascending order, if there is no i′ < i such that
|Xi′ | = |Xi| and gXi′ = gXi , the challenger reads the next entry T

(|Xi|)
new in T (|Xi|), and

sets σ|Xi|(T
(|Xi|)
new) := gXi .

• Then, let msg0 and msg1 be the next two entries in T (1); the challenger sets σ1(msg0) :=
gn+1 and σ1(msg1) := gn+2.

• The challenger also reads the first entry of T (n+1), namely T
(n+1)
1 , and sets σn+1(T

(n+1)
1) :=

g[n] + σ1(msgb).
• Finally, the challenger outputs the ciphertext(

{σ−1|Xi|(gXi)}i∈[m], σ
−1
n+1(g[n] + σ1(msgb)),msg0,msg1

)
.

When the adversary queries Add(i, si, j, sj), the challenger performs the following.
• If σi(si) is not defined, then the challenger reads the next entry Snew in S and sets σi(si) :=
Snew.

• If σj(sj) is not defined, then the challenger reads the next entry Snew in S and sets
σj(sj) := Snew.

• Let g1 := σi(si) and g2 := σj(sj). If σ−1i+j(g
1+ g2) is not defined, then the challenger reads

the next entry T
(i+j)
new in T (i+j). If T (i+j)

new is already in the domain of σi+j , then she disposes
it and reads a new T

(i+j)
new ; she repeats this until getting a T

(i+j)
new that is not in the domain

of σi+j . Now she sets σi+j(T
(i+j)
new) := g1 + g2.

• Finally, the challenger returns σ−1i+j(g
1 + g2).

Definition of Hyb2. In Hyb2, instead of assigning values to each gi, we treat them as for-
mal variables. Let V := {ĝ1, ĝ2, . . . , ĝn+2, v̂1, v̂2, . . . } be the set of formal variables. (Here,
ĝ1, . . . , ĝn+2 corresponds to g1, . . . , gn+2 in Hyb1, and each v̂i is a new formal variable that might
be created during Add(−).) Let ZV denote the space of Z-linear combinations over V, i.e.,

ZV :=

{
n+2∑
i=1

αiĝi +
n′∑
i=1

βiv̂i : n
′ ∈ N, αi, βi ∈ Z

}
.

For every i ∈ [n+ 2], the challenger maintains a partial function Σi : [p]→ ZV. We still use
the notation that for a set S ⊆ [n+ 1], ĝS :=

∑
i∈S ĝi. (Thus, ĝS is an element in ZV.)

34

In the Init phase:
• For every i = 1, 2, . . . ,m in ascending order, the challenger reads the next entry T

(|Xi|)
new in

T (|Xi|), and sets Σ|Xi|(T
(|Xi|)
new) := ĝXi .

• Then, let msg0 and msg1 be the next two entries in T (1); the challenger sets Σ1(msg0) :=
ĝn+1 and Σ1(msg1) := ĝn+2.

• The challenger also reads the first entry of T (n+1), namely T
(n+1)
1 , and sets Σn+1(T

(n+1)
1) :=

ĝ[n] +Σ1(msgb).
• Finally, she outputs the ciphertext(

{Σ−1|Xi|(ĝXi)}i∈[m],Σ
−1
n+1(ĝ[n] +Σ1(msgb)),msg0,msg1

)
.

When the adversary queries Add(i, si, j, sj), the challenger performs the following.
• If Σi(si) is not defined, then let v̂new denote the first unused formal variable among {v̂k}k∈N

so far, and set Σi(si) := v̂new.
• Then, if Σj(sj) is not defined, then let v̂′new denote the first unused formal variable among
{vk}k∈N so far, and set Σj(sj) := v̂′new.

• Let ℓ̂i := Σi(si) and ℓ̂j := Σj(sj). Then ℓ̂i+ ℓ̂j is also an element in ZV. If Σ−1i+j(ℓ̂i+ ℓ̂j) is

not defined, then the challenger reads the next entry T
(i+j)
new in T (i+j). If T (i+j)

new is already
in the domain of σi+j , then she disposes it and reads a new T

(i+j)
new ; she repeats this until

getting a T
(i+j)
new that is not in the domain of σi+j . Now she sets σi+j(T

(i+j)
new) := ℓ̂i + ℓ̂j .

• Finally, the challenger returns Σ−1i+j(ℓ̂i + ℓ̂j).

4.4.2 Proof of Security

We first show that Hyb0 and Hyb′0 are equivalent.

Lemma 4.18. Suppose S ← G2Q+n+2 and random permutations T (1), T (2), . . . , T (n+1) ∈ [p]p

are uniformly sampled. Then in Hyb′0, the distribution of (σ1, σ2, . . . , σn+1, g1, g2, . . . , gn) is the
uniform distribution over (Bij([p],G))n+1 ×Gn, where Bij([p],G) is the set of all bijections from
[p] to G. Moreover, conditioned on fixed (σ1, σ2, . . . , σn+1, g1, g2, . . . , gn), the distribution of
(msg0,msg1) is the uniform distribution over {(µ, ν) ∈ ([p] \ {σ−11 (gXi) : |Xi| = 1})2 : µ ̸= ν}.

Proof. We fix arbitrary bijections σ′1, σ
′
2, . . . , σ

′
n+1 : [p] → G and g′1, g

′
2, . . . , g

′
n ∈ G. Define

g′X =
∑

j∈X g′j . Let H := {σ−11 (gXi) : |Xi| = 1}, and we fix arbitrary msg′0,msg′1 ∈ [p] \H such
that msg′0 ̸= msg′1. It suffices to prove that

Pr

[
(σ1, σ2, . . . , σn+1, g1, g2, . . . , gn,msg0,msg1)

= (σ′1, σ
′
2, . . . , σ

′
n+1, g

′
1, g
′
2, . . . , g

′
n,msg′0,msg′1)

]
=

1

(p!)n+1pn(p− |H|)(p− |H| − 1)
.

After the challenger sets gi, since each entry of S is uniformly sampled from G, we have

Pr[(g1, g2, . . . , gn) = (g′1, g
′
2, . . . , g

′
n)] =

1

pn
.

Then, after we assign a preimage of gXi in σ|Xi| for every i ∈ [m] (unless already assigned),
suppose the number of (preimage, image) pairs in σi is ri for each i ∈ [n+1]. By the definition of
T (1), T (2), . . . , T (n+1), whenever we assign a preimage in σi, the preimage is uniformly sampled
from all element from [p] not yet in the domain of σi, so we have

Pr

 (σ1, σ2, . . . , σn+1, g1, g2, . . . , gn)

=
(
σ′1

∣∣
Domain(σ1)

, σ′2
∣∣
Domain(σ2)

, . . . , σ′n+1

∣∣
Domain(σn+1)

, g′1, g
′
2, . . . , g

′
n

) =

∏n+1
i=1 (p− ri)!

(p!)n+1pn
.

35

Next, we sample msg0 and msg1. Conditioned on

(σ1, σ2, . . . , σn+1, g1, g2, . . . , gn)

=
(
σ′1

∣∣
Domain(σ1)

, σ′2
∣∣
Domain(σ2)

, . . . , σ′n+1

∣∣
Domain(σn+1)

, g′1, g
′
2, . . . , g

′
n

)
,

msg0 is sampled from [p] \H and msg1 from [p] \ ({msg1}∪H), so after sampling them, we have

Pr

 (σ1, σ2, . . . , σn+1, g1, g2, . . . , gn,msg0,msg1)

=
(
σ′1

∣∣
Domain(σ1)

, σ′2
∣∣
Domain(σ2)

, . . . , σ′n+1

∣∣
Domain(σn+1)

, g′1, g
′
2, . . . , g

′
n,msg′0,msg′1

)
=

∏n+1
i=1 (p− ri)!

(p!)n+1pn(p− |H|)(p− |H| − 1)
.

Later, we are concerned only with the process we add (preimage, image) pairs to σi, and
when we add such a pair, we call it one step. Let σi,j denote the σi when there’s j (preimage,
image) pairs in it. We will prove by induction on the number k of steps that

Pr

 (σ1,j1 , σ2,j2 , . . . , σn+1,jn+1 , g1, g2, . . . , gn,msg0,msg1)

=
(
σ′1

∣∣
Domain(σ1,j1

)
, σ′2

∣∣
Domain(σ2,j2

)
, . . . , σ′n+1

∣∣
Domain(σn+1,jn+1

)
, g′1, g

′
2, . . . , g

′
n,msg′0,msg′1

)
=

∏n+1
i=1 (p− ji)!

(p!)n+1pn(p− |H|)(p− |H| − 1)
,

where for each i, ji denotes the number of (preimage, image) pairs in σi after k steps.
The base case where k = 0 is that ji = ri for every i, and is proved above. Suppose the

statement is true for k, and we prove it for k + 1. Suppose in the (k + 1)-st step, we add a new
(preimage, image) pair to σu. Conditioned on

(σ1,j1 , σ2,j2 , . . . , σn+1,jn+1 , g1, g2, . . . , gn,msg0,msg1)

=
(
σ′1

∣∣
Domain(σ1,j1

)
, σ′2

∣∣
Domain(σ2,j2

)
, . . . , σ′n+1

∣∣
Domain(σn+1,jn+1

)
, g′1, g

′
2, . . . , g

′
n,msg′0,msg′1

)
,

the (k + 1)-st step has the following two possibilities:

• The challenger determines s ∈ [p] \ Domain(σu), uniformly samples g ∈ G \ Image(σu,ju),
and sets σu,ju+1(s) = σu(s) := g. Therefore, since σ′u(s) /∈ Image(σu,ju),

Pr
[
σu,ju+1 = σ′u

∣∣
Domain(σu,ju+1

)

]
=

1

p− ju
.

• The challenger determines g ∈ G\ Image(σu,ju), uniformly samples s ∈ [p]\Domain(σu,ju),
and sets σu,ju+1(s) = σu(s) := g. Therefore, since (σ′u)

−1(g) /∈ Domain(σu,ju),

Pr
[
σu,ju+1 = σ′u

∣∣
Domain(σu,ju+1

)

]
=

1

p− ju
.

So this equation holds in either possibility, and thus

Pr

(σ1,j1 , . . . , σu,ju+1, . . . , σn+1,jn+1 , g1, . . . , gn,msg0,msg1) =(
σ′1

∣∣
Domain(σ1,j1

)
, . . . , σ′u

∣∣
Domain(σu,ju+1)

, . . . , σ′n+1

∣∣
Domain(σn+1,jn+1

)
, g′1, . . . , g

′
n,msg′0,msg′1

)
=

∏n+1
i=1 (p− ji)!

(p!)n+1pn(p− |H|)(p− |H| − 1)
· 1

p− ju
=

(p− j1)! · · · (p− ju − 1)! · · · (p− jn+1)!

(p!)n+1pn(p− |H|)(p− |H| − 1)
.

After the whole process ends, j1 = j2 = · · · = jn+1 = p, and hence

Pr

[
(σ1, σ2, . . . , σn+1, g1, g2, . . . , gn,msg0,msg1)

= (σ′1, σ
′
2, . . . , σ

′
n+1, g

′
1, g
′
2, . . . , g

′
n,msg′0,msg′1)

]
=

1

(p!)n+1pn(p− |H|)(p− |H| − 1)
.

36

Next, we show that Hyb′0 and Hyb1 are indistinguishable by adversaries with limited query
complexity.

Lemma 4.19. Let Q be an upper bound on the number of oracle queries made by the adver-
sary. Let T (1), T (2), . . . , T (n+1) ∈ [p]p be arbitrary permutations as defined before, and let S be
uniformly sampled from G2Q+n+2. Then, with probability at least 1− 2Q(m+ 3+ 3Q)/|G| over
S, the permutations {σi} defined in Hyb′0 and Hyb1 are equal, when the random tapes are S and
T .

Proof. Note that for fixed S and T , Hyb′0 and Hyb1 are the same if the following never happens
whenever the adversary queries Add(i, si, j, sj):

• si is not yet in the domain of σi, and the next entry in S is already in the image of σi;

• sj is not yet in the domain of σj , and the next entry in S is already in the image of σj .

The size of the image of σi is at most m + 3 + 3Q, and there are at most Q rounds, so the
probability over S that the above never happens is at least 1− 2Q(m+ 3 + 3Q)/p.

In what follows, we will show that Hyb1 and Hyb2 are indistinguishable; this is the most
important part of the proof.

For each formal variable ĝi and v̂i, we assign a value val(ĝi) = Si and val(v̂i) = Sn+2+i, where
S is the random tape. For every linear combination ℓ̂ =

∑
i αiĝi +

∑
i βiv̂i, this induces a value

of ℓ̂, namely val(ℓ̂) =
∑

i αival(ĝi) +
∑

i βival(v̂i).
Let Σ1,Σ2, . . . ,Σn+1 : [p]→ ZV be partial functions, we call {val◦Σi} the realisation of {Σi}.

In other words, σi : [p]→ G is the realisation of Σi : [p]→ ZV, if Domain(σi) = Domain(Σi) and
for every s ∈ Domain(σi), σi(s) = val(Σi(s)).

Lemma 4.20. Let ℓ̂, ℓ̂′ ∈ ZV, ℓ̂ ̸= ℓ′. For every x̂ ∈ V, we assign a value val(x̂) ← G indepen-
dently and uniformly at random. Then Pr[val(ℓ̂) = val(ℓ̂′)] = 1/p.

Proof. Suppose ℓ̂ =
∑n+2

i=1 αiĝi+
∑n′

i=1 βiv̂i, ℓ̂
′ =

∑n+2
i=1 α′iĝi+

∑n′

i=1 β
′
iv̂i. Since ℓ̂ ̸= ℓ̂′, without loss

of generality, suppose α1 ̸= α′1. Then for arbitrary val(ĝ2), . . . , val(ĝn+2), val(v̂1), . . . , val(v̂n′),

Pr[val(ℓ̂) = val(ℓ̂′)] = Pr
val(ĝ1)

[
(α1 − α′1)val(ĝ1) =

n+2∑
i=2

(α′i − αi)val(ĝi) +
n′∑
i=1

(β′i − βi)val(v̂i)

]
=

1

p
.

We call ℓ̂, ℓ̂′ ∈ ZV collide if ℓ̂ ̸= ℓ̂′ but val(ℓ̂) = val(ℓ̂′). The following is an immediate
corollary of Lemma 4.20.

Corollary 4.21. Let ℓ̂, ℓ̂′ ∈ ZV, ℓ̂ ̸= ℓ̂′, then Pr[ℓ̂, ℓ̂′ collide] ≤ 1/p.

The following lemma shows that Hyb1 and Hyb2 are indistinguishable by adversaries with
limited query complexity. This is shown by induction over the number of queries:

Lemma 4.22. Let q ∈ {0}∪[Q] where Q is an upper bound on the number of oracle queries made
by the adversary. Let T (1), T (2), . . . , T (n+1) ∈ [p]p be arbitrary permutations as defined before,
and let S be uniformly sampled from G2Q+n+2. Suppose after q rounds, the partial functions as
defined in Hyb1 and Hyb2 are {σi} and {Σi} respectively, when the random tapes are S and T .

Then with probability at least 1 − (m + 3 + 3q)2/p over S, the event Pq = P 0
q ∧ P 1

q ∧ P 2 ∧
P 3
q ∧ P 4

q ∧ P 5
q happens, where P 0

q , P
1
q , P

2, P 3
q , P

4
q , P

5
q are defined as follows.

• P 0
q : for every i, there is no collision among Image(Σi) after the q-th round.

• P 1
q : {σi} is the realisation of {Σi} after the q-th round.

• P 2: the inputs of the adversary in Hyb1 and Hyb2 are equal.

37

• P 3
q : in the first q rounds, the oracle queries and answers of the adversary in Hyb1 and

Hyb2 are equal respectively.
• P 4

q : for every i, σi and Σi are injective (so that σ−1i and Σ−1i are well-defined).
• P 5

q : in Hyb1 and Hyb2, the number of entries in S that have been read are the same.

Proof. We prove the statement by induction on q.

Base case. The base case is when q = 0 (after the Init phase). First note that after the Init
phase, Σi is always an injection; this is because we assumed there are no two sets i ̸= j such
that Xi = Xj in our Exact-Cover instance. By the definitions of Hyb1,Hyb2, and val, we have
gi = Si = val(ĝi) for i ∈ [n+ 2]. It follows that gXi = val(ĝXi) for i ∈ [m].

Next, we show that if P 0
0 happens, then the whole event P0 happens. Assume P 0

0 , i.e. there
is no collision among the set L = {ĝX1 , . . . , ĝXm , ĝn+1, ĝn+2, ĝ[n]∪{n+1+b}}.

1. Since the preimages in {Σi} and {σi} of L and val(L) are both assigned according to the
random tapes T 1, . . . , Tn+1 in the same order, it follows that for every ℓ̂ ∈ L, if ℓ̂ = ĝS ,
then σ|S|(Σ

−1
|S|(ℓ̂)) = val(ℓ̂). In other words, {σi} is the realisation of {Σi}, i.e. P 1

0 happens.

2. It is easy to see that when P 1
0 happens, P2 always happens.

3. P 3
0 always happens trivially.

4. Since Σi is injective and there is no collision among L, it follows that σi is also injective,
i.e. P 4

0 happens.

5. Both hybrid game uses n+ 2 elements from the random tape S, so P 5
0 happens.

Therefore, the whole event P0 happens.
By definition of S, the elements g1, . . . , gn+2 are uniformly distributed in G. So by Corol-

lary 4.21, for any pair in L, the probability that they collide is at most 1/p, so the probability
that there is a collision in L is at most (m+ 3)2/p. It follows that

Pr[P0] = Pr[P 0
0] ≥ 1− (m+ 3)2/p,

thus the statement is true for q = 0.

Induction step. Suppose the statement is true for q oracle queries, and we now prove the
statement for q + 1 oracle queries. In what follows, we assume that Pq happens.

Note that if P 4
q and P 1

q happen, then for every i, there is no collision among Image(Σi) after
the q-th round: if ℓ and ℓ′ collide, then by P 1

q , Σ−1i (ℓ) = σ−1i (val(ℓ)) = σ−1i (val(ℓ′)) = Σ−1i (ℓ′),
which is a contradiction to P 4

q . Also, since P 1
q happens, for each i ∈ [n + 1], Domain(σi) =

Domain(Σi).
Since P 2 and P 3

q happen, after the q-th round, the adversaries in Hyb1 and Hyb2 are in the
same state, so they will make the same query in the (q + 1)-st round. Suppose the query is
Add(j1, sj1 , j2, sj2). Next, the challenger in Hyb1 obtains values σj1(sj1) and σj2(sj2), and the
challenger in Hyb2 obtains values Σj1(sj1) and Σj2(sj2). We can see that σj1(sj1) = val(Σj1(sj1))
and σj2(sj2) = val(Σj2(sj2)), since:

• If sj1 ̸∈ Domain(σj1), then we also have sj1 ̸∈ Domain(Σj1). The challenger will set σj1(sj1)
to be the next unused entry in S in Hyb1, and set val(Σj1(sj1)) to be the next unused entry
in S in Hyb2. Since P 5

q holds, these two entries are the same.

• If sj1 ∈ Domain(σj1), then it is also true that sj1 ∈ Domain(Σj1). Since P 1
q happens, we

also have σj1(sj1) = val(Σj1(sj1)).

38

• The same argument applies to (j2, sj2).

So it still holds at this time that {σi} is the realisation of {Σi}. Also, we have σj1(sj1) +
σj2(sj2) = val(Σj1(sj1)+Σj2(sj2)). In the next step, the challenger in Hyb1 adds σj1(sj1)+σj2(sj2)
to the image of σj1+j2 if it was not in the image before, and the challenger in Hyb2 adds
Σj1(sj1) + Σj2(sj2) to the image of Σj1+j2 if it was not in the image before.

We show that if (Pq and) P 0
q+1 happens, then the whole event Pq+1 happens. To this end,

assume P 0
q+1 happens, i.e. for every i, there is no collision among the image of Σi (after the

(q + 1)-st round).

1. If Σj1(sj1) + Σj2(sj2) is newly added to Image(Σj1+j2) in the Add query, then by P 0
q+1,

val(Σj1(sj1) + Σj2(sj2)) = σj1(sj1) + σj2(sj2) is also newly added to the image of σj1+j2 .
Moreover, they will have the same preimage (namely the next unused element of T (j1+j2)).

If Σj1(sj1) + Σj2(sj2) is not newly added to the image of Σj1+j2 , then clearly, σj1(sj1) +
σj2(sj2) is also not newly added to the image of σj1+j2 .

It follows that {σi} is still the realisation of {Σi}, i.e. P 1
q+1 happens.

2. P 2 happens by the induction hypothesis.

3. The queries made by the adversary in the (q + 1)-st round are the same in both hybrid
games. Since P 1

q+1 happens, σj1+j2 is the realisation of Σj1+j2 , thus the answers are also
the same in both hybrid games. It follows that P 3

q+1 happens.

4. Since Σi is injective, there is no collision among the image of Σi, and {σi} is the realisation
of {Σi}, it follows that σi is also injective, i.e. P 4

q+1 happens.

5. As we have seen before, (if Pq happens then) P q+1
5 always happens.

Therefore, the whole event Pq+1 happens.
Now we bound the probability that Pq+1 happens. Note that if Pq happens but P 0

q+1 does
not, then the at most 3 new linear combinations in the (q + 1)-st round collide with the image
of {Σi} in the q-th round. Since the image in the q-th round has at most m+ 3 + 3q elements,
by Corollary 4.21,

Pr
S
[Pq+1] = Pr

S
[Pq] · Pr

S
[P 0

q+1 | Pq]

≥
(
1− (m+ 3 + 3q)2

p

)
·

2∏
i=0

(
1− (m+ 3 + 3q + i)

p

)
≥ 1− (m+ 3 + 3q + 3)2

p
.

Finally, we show that if our Exact-Cover instance is a No instance, then Hyb2 is uncon-
ditionally hard:

Lemma 4.23. Suppose that (1n, {Xi}i∈[m]) /∈ Exact-Cover. Fix S and T , in Hyb2, the input,
oracle queries, and oracle answers of the adversary are the same for b = 0 and b = 1.

Proof. Without loss of generality, we first assume A never queries (i, si, j, sj) where i or j equals
n + 1, since such a query gives A no information. Then, the answers of the oracle queries
of A are labels of linear combinations of ĝXi ,Σ1(msg0),Σ1(msg1), v̂j . Since (1n, {Xi}i∈[m]) ̸∈
Exact-Cover, we have that for every b1, . . . , bm ∈ Z≥0,

m∑
i=1

biĝXi ̸= ĝ[n].

39

Therefore, the oracle answers are never of the form Σ−1n+1(ĝ[n] +Σ1(msgb′)) for b′ = 0, 1.
Now we prove by induction on q that in the first q rounds, the following are the same for

b = 0 and b = 1:

• the inputs of the adversary;

• the oracle queries and answers;

• the number of used elements in T (i) for each i;

• the domain of Σi, and Σi(s) for any s in the domain of Σi, except when i = n + 1 and
s = T

(n+1)
1 . (Recall that when i = n+1 and s = T

(n+1)
1 , we have Σi(s) = ĝ[n]+Σ1(msgb).)

Suppose q = 0, it suffices to prove that the above are the same after the Init phase for b = 0 or
b = 1. Note that in these two games, the only difference in the Init phase is when the challenger
computes ĝ[n] + Σ1(msgb). Since ĝ[n] + Σ1(msgb) is always a new linear combination not yet in
the image of Σn+1, the challenger will always set Σ1(T

(n+1)
1) = ĝ[n] +Σ1(msgb), regardless of b.

So the input to the adversary, as well as every Σi(s) except for i = n + 1 and s = T
(n+1)
1 , are

the same for b = 0 or b = 1. It is easy to check that for each i, the number of used elements in
T (i) are the same for b = 0 or b = 1.

Now suppose the statement is true for q rounds, we prove it for q+1 rounds. By the induction
hypothesis, the adversary is in the same status after the q-th round for b = 0 and b = 1, and thus
the query in the (q + 1)-st round are the same. Suppose this query is Add(i, si, j, sj), then the
challenger will return the label of Σi(si)+Σj(sj). Note that Σi(si)+Σj(sj) cannot be of the form
of ĝ[n] +Σ1(msgb′) as shown above. Therefore, before the challenger computes Σi(si) + Σj(sj):

• if ∃s such that Σi(si) + Σj(sj) = Σi+j(s) for either b, then it cannot be the case that
i + j = n + 1 and s = T

(n+1)
1 . By our induction hypothesis, for the other b, it also holds

that Σi(si) + Σj(sj) = Σi+j(s);

• if the preimage of Σi(si) + Σj(sj) in Σi+j is not yet defined (for both b), then in both
games, Σ−1i+j(Σi(si) + Σj(sj)) will be assigned as the next element of T (i+j). By our
induction hypothesis, this element is the same for b = 0 or b = 1.

Therefore, the oracle answers, the number of used elements in T (i+j), and the changes made to
Σi+j will be the same in the (q + 1)-st round for b = 0 or b = 1.

A direct corollary is the following.

Corollary 4.24. Suppose that (1n, {Xi}i∈[m]) ̸∈ Exact-Cover. Then any adversary A with
Q queries cannot distinguish between b = 0 and b = 1. That is, for arbitrary S ∈ G2Q+n+2,
T (1), T (2), . . . , T (n+1) ∈ [p]p,

AAdd
(
{Σ−1|Xi|(ĝXi)}i∈[m],Σ

−1
n+1(ĝ[n] +Σ1(msg0)),msg0,msg1

)
=AAdd

(
{Σ−1|Xi|(ĝXi)}i∈[m],Σ

−1
n+1(ĝ[n] +Σ1(msg1)),msg0,msg1

)
.

We now prove the security of the witness encryption scheme in the oracle world.

Theorem 4.25. Let O = {Oλ}λ be the oracle world and Encrypt(−) be the encryption algorithm
of the witness encryption scheme constructed in Section 4.3. Suppose that x := (1n, {Xi}i∈[m]) ̸∈
Exact-Cover. Then, for any adversary A that makes at most Q queries, with probability at
least 1− 100m2/2λ/4 over Add← Oλ,∣∣∣Pr

r
[AAdd(EncryptAdd(1λ, x, 0; r)) = 1]− Pr

r
[AAdd(EncryptAdd(1λ, x, 1; r)) = 1]

∣∣∣ < Q2

23λ/4
. (7)

40

Proof. For Hyb ∈ {Hyb0,Hyb′0,Hyb1,Hyb2}, abusing notation, we denote by Hyb(A; b) the output
of A as adversary in the game Hyb with message b. Note that Hyb(A; b) is a random variable
that depends on Add, r22 (for Hyb = Hyb0) or S, T (for other games Hyb).

The adversary A makes at most Q queries, so by Lemma 4.19, Lemma 4.22, and Corol-
lary 4.24, for any permutations T (1), T (2), . . . , T (n+1) ∈ [p]p, we have

Pr
S
[Hyb′0(A; 0) ̸= Hyb′0(A; 1)]

≤ Pr
S
[Hyb′0(A; 0) ̸= Hyb1(A; 0)] + Pr

S
[Hyb1(A; 0) ̸= Hyb2(A; 0)] + Pr

S
[Hyb2(A; 0) ̸= Hyb2(A; 1)] +

Pr
S
[Hyb2(A; 1) ̸= Hyb1(A; 1)] + Pr

S
[Hyb1(A; 1) ̸= Hyb′0(A; 1)]

≤ 2Q(m+ 3 + 3Q)

p
+

(m+ 3 + 3Q)2

p
+ 0 +

(m+ 3 + 3Q)2

p
+

2Q(m+ 3 + 3Q)

p

≤ 2(m+ 3 + 5Q)(m+ 3 + 3Q)

p
≤ 100Q2m2

2λ
.

By Lemma 4.18, it follows that

Pr
Add,r

[Hyb0(A; 0) ̸= Hyb0(A; 1)] = Pr
S,T

[Hyb′0(A; 0) ̸= Hyb′0(A; 1)] ≤ 100Q2m2

2λ
.

By Markov’s inequality,

Pr
Add

[
Pr
r
[Hyb0(A; 0) ̸= Hyb0(A; 1)] ≤ Q2

23λ/4

]
≥ 1− 100m2

2λ/4
,

which implies the theorem statement.

4.5 NP-Hardness of GapMOCSP and GapMINcKT

We now prove the NP-hardness of GapMOCSP, using our construction of witness encryption
in oracle world and Theorem 4.5.

Theorem 4.1. GapMOCSP is NP-hard under polynomial-time randomised mapping reduc-
tions. More precisely, for every constant ϵ > 0, there is a polynomial-time randomised mapping
reduction from an NP-complete language to the following promise problem:

ΠYes := {(f,O) : CCO(f) ≤ 2ϵn},
ΠNo := {(f,O) : CCO

1/2−2−0.3n(f) > 20.3n}.

Here f is the truth table of a Boolean function f : {0, 1}n → {0, 1} and oracle O has size 2Θ(n).

Proof. First, by Theorem 4.25, there is a distribution OGGSW over oracles O : {0, 1}O(λ) → {0, 1}
with a witness encryption scheme that is weakly secure against programs of query complexity
2λ/4 with advantage 2−λ/4. By Claim 4.17, the oracle world is sampleable in poly(2λ) time.

By Theorem 4.14, there is a distribution O′GGSW over oracles O′ : {0, 1}O(λ) → {0, 1} with
a witness encryption scheme that is strongly secure against programs of size 2Ω(λ) and query
complexity 2Ω(λ) with advantage 2−Ω(λ). This oracle world is also sampleable in poly(2λ) time.

Therefore, it follows from Theorem 4.5 that GapMOCSP is NP-hard under polynomial-time
randomised mapping reduction.

22Recall that Add contains information about {σi} and r is the random string used for sampling
{gi},msg0,msg1.

41

Theorem 4.2. GapMINcKT is NP-hard under polynomial-time randomised mapping reduc-
tions. More precisely, for every constant ϵ ∈ (0, 1) and γ > 1, there is a polynomial-time
randomised mapping reduction from an NP-complete language to the following promise prob-
lem:

ΠYes := {(x, y) : KN1+ϵ
(x | y) ≤ N ϵ},

ΠNo := {(x, y) : KNγ
(x | y) > N1−ϵ}.

Here x has length N and y has length poly(Nγ).

Proof Sketch. Same as above, except that we replace GapMOCSP with GapMINcKT and The-
orem 4.5 with Theorem 4.9.

5 Unconditional NP-Hardness of Gap-mvMCSPO

In this section, we show that with probability 1 over a random oracle O, Gap-mvMCSPO is NP-
hard to approximate under QuasiPO reductions. Perhaps curiously, the core of our reduction
is the CS proofs protocol by Micali [Mic00].

Theorem 5.1. With probability 1 over a random oracle O, Gap-mvMCSPO is NP-hard under
deterministic TIME[2polylog(n)]O reductions.

Moreover, for any language L ∈ NP and any constant t ≥ 1, there is a constant c1 and a
mapping computable in deterministic 2polylog(n) time with an O oracle, that maps an instance
x ∈ {0, 1}n to a table T satisfying the following:

x ∈ L =⇒ CCO(T) ≤ s := O(nc1);

x ̸∈ L =⇒ CCO
2− logt s(T) ≥ 2log

t s.

Roadmap of this section. A large part of this section is devoted to the exposition of CS
proofs and its security; namely, Section 5.1 provides an introduction to CS proofs, Section 5.2
and 5.3 proves the security of CS proofs, and finally we prove Theorem 5.1 in Section 5.4. Like in
Section 4, here we also need the “strong” security of CS proofs; in this section we call it “security
in the common random string model”.23 The security proof for the plain random oracle model is
provided in Section 5.2, and the security proof for the common random string model is provided
in Section 5.3.

5.1 Description of CS Proofs

We first provide a self-contained description of CS proofs. We begin by introducing the two
necessary ingredients: PCPs and Merkle trees.

5.1.1 Probabilistically Checkable Proofs

Theorem 5.2 (PCP theorem [AS98,ALM+98]). For any language L ∈ NP, there exists a PCP
verifier for L, denoted as VPCP, such that the following holds. The verifier takes two inputs
x and r ∈ {0, 1}O(log |x|), runs in poly(|x|) time, makes O(1) oracle queries to a proof string
π ∈ {0, 1}poly(|x|), and either accepts or rejects. The verifier satisfies the following property:

23The common random string model is essentially equivalent to salting (see Section 4.2). Unfortunately, we
became aware of the beautiful work on [CDGS18] only after this section is completed, thus we prove the security
of CS proofs in the common random string model by a somewhat sophisticated compression argument. We believe
that it is possible to invoke [CDGS18] and obtain a simpler proof.

42

• Completeness: For any x ∈ L, there is a proof π such that

Pr
r←{0,1}O(log |x|)

[V π
PCP(x, r) accepts] = 1.

• Soundness: Let r be uniformly random in {0, 1}O(log |x|). For any x /∈ L and any purported
proof π ∈ {0, 1}poly(|x|),

Pr
r←{0,1}O(log |x|)

[V π
PCP(x, r) accepts] ≤ 1/2.

By parallel repetition (i.e., repeatedly executing VPCP on fresh random bits), the soundness
error can be reduced to arbitrarily small. Let c ≥ 1 be a parameter, we obtain the following
PCP by repeating the verifier c times over independent random seeds:

Corollary 5.3. For any language L ∈ NP and any parameter c ≥ 1, there exists a PCP verifier
for L, denoted as VPCP, with the following parameters:

rPCP :=O(c log |x|), (randomness complexity)
qPCP :=O(c), (query complexity)
ℓPCP := poly(|x|), (proof length)
sPCP := 2−c. (soundness parameter)

The verifier takes two inputs x and r ∈ {0, 1}rPCP , runs in poly(|x|) time, makes qPCP oracle
queries to a proof string π ∈ {0, 1}ℓPCP, and either accepts or rejects. The verifier satisfies the
following property:

• Completeness: For any x ∈ L, there is a proof π ∈ {0, 1}ℓPCP such that

Pr
r←{0,1}rPCP

[V π
PCP(x, r) accepts] = 1.

• Soundness: Let r be uniformly random in {0, 1}rPCP . For any x /∈ L and any purported
proof π ∈ {0, 1}ℓPCP ,

Pr
r←{0,1}rPCP

[V π
PCP(x, r) accepts] ≤ sPCP.

5.1.2 Merkle Trees

Another important component of the CS proofs is Merkle trees [Mer89], which allows the prover
to commit to a long string s (e.g., the PCP proof); later, for every index i and b = si, the prover
can generate a short proof that si is indeed equal to b.

The Merkle tree will use a hash function Hash : {0, 1}2λ → {0, 1}λ, and it is computationally
binding as long as Hash is collision resistant, which roughly means it is computationally hard to
find two different strings x, y such that Hash(x) = Hash(y).

Construction 5.4 (Merkle Tree). Let Hash : {0, 1}2λ → {0, 1}λ be an oracle (think of Hash as
a collision-resistant hash function). Let s be a string of length 2tλ; if the length of s is not of
the form 2tλ, we can pad zeros after s. The Merkle tree for s is a depth-t binary tree T defined
as follows.

We index the nodes of T as follows: the root is indexed by the empty string ε and the children
of the node with index α are indexed by α0 and α1 respectively. Each node α is associated with
a value Tα. For a t-bit number l = atat−1 · · · a1 (which corresponds to the (l + 1)-st leaf node),
Ta1a2···at is the λ-bit string slλ+1slλ+2 · · · s(l+1)λ. (That is, the (l + 1)-st part of s if we divide
it into portions of length λ.) For each non-leaf node α, we define Tα to be the hash of the
concatenation of the values associated with its two children, i.e. Tα = Hash(Tα0 ◦ Tα1). We call
Tε the root of the Merkle tree.

43

s1∼λ s(λ+1)∼2λ s(lλ+1)∼(l+1)λ s(2t−1)λ+1∼2tλ

T0000 T0001 Ta1a2a3a4 T1111Ta1a2a3a4

T000 := Hash(T0000, T0001) T111 := Hash(T1110, T1111)Ta1a2a3 := Hash(Ta1a2a30, Ta1a2a31)

s(2t−2)λ+1∼(2t−1)λ

T1110

Ta1a2a3

Hash(Ta1a20, Ta1a21) =: Ta1a2

Ta1 := Hash(Ta10, Ta11)

Ta1a2

Ta1

Tε := Hash(T0, T1)

.

Figure 1: Example of a Merkle tree where t = 4. Grey nodes are nodes in the authentication
path of the leaf node Ta1a2a3a4 .

The prover commits to s by announcing the root value Tε to public. Suppose that the prover
wants to convince the verifier what the value of si is. The prover first finds the corresponding
leaf a1a2 · · · at, where ⌊(i − 1)/λ⌋ = atat−1 · · · a1 (that is, si is in the (atat−1 · · · a1 + 1)-st part
of s). Then the prover sends the verifier all the nodes on the path from the leaf to the root

Ta1a2···at , Ta1a2···at−1 , . . . , Ta1 ,

along with their siblings

Ta1a2···at−1(1−at), Ta1a2···at−2(1−at−1), . . . , T(1−a1);

we call this set of Merkle tree nodes the authentication path. The verifier then checks for any
0 ≤ j ≤ t− 1 whether Ta1a2···aj = Hash(Ta1a2···aj−10 ◦ Ta1a2···aj−11). If all of these equations hold
and the claimed value of si is consistent with Ta1a2···at , then the verifier accepts; otherwise, the
verifier rejects.

The following proposition shows that the Merkle tree is computationally binding. Roughly
speaking, if the prover could find two different strings s1 and s2 with the same root value, then
the prover could also find a collision of Hash.

Proposition 5.5. There exists an algorithm FindCol that satisfies the following.

• The input consists of two strings s1, s2 ∈ {0, 1}λ that are two leaves at the same location
of two Merkle trees, along with their respective authentication path, under the promise that
the authentication paths are valid under an oracle Hash and the two Merkle tree roots are
equal but s1 ̸= s2.

• The output consists of two strings r1, r2 ∈ {0, 1}2λ such that r1 ̸= r2 but Hash(r1) =
Hash(r2).

• FindCol runs in deterministic poly(t, λ) time.

Proof. Let T 1 and T 2 be the Merkle trees of s1 and s2 under the oracle Hash. Let a1a2 · · · at
be the indices of the leaves in the two Merkle trees. From the promise we have T 1

ε = T 2
ε but

T 1
a1a2···at ̸= T 2

a1a2···at .
Then, FindCol computes the smallest positive integer j such that T 1

a1a2···aj ̸= T 2
a1a2···aj . Since

T 1
a1a2···at ̸= T 2

a1a2···at but T 1
ε = T 2

ε , j is well-defined. Also note that the authentication paths for
a1a2 · · · at in both Merkle trees are provided as input, so we can easily compute j. Because of
the minimality of j, T 1

a1a2···aj−1
= T 2

a1a2···aj−1
.

FindCol just outputs r1 := T 1
a1a2···aj−10

◦ T 1
a1a2···aj−11

and r2 := T 2
a1a2···aj−10

◦ T 2
a1a2···aj−11

. It
is easy to see that r1 ̸= r2, Hash(r1) = Hash(r2), and that FindCol runs in poly(2t, λ) time.

44

5.1.3 Kilian’s Protocol

This subsection provides an exposition of Kilian’s protocol [Kil92], a four-message (interactive)
succinct argument for NP. Kilian’s protocol is a crucial ingredient of CS proofs.

Consider a language L ∈ NP and x ∈ L ∩ {0, 1}n. A prover can convince a verifier that
x ∈ L by providing an NP witness w ∈ {0, 1}poly(n), but this requires poly(n) bits of communi-
cation. Using PCPs, an honest prover can convince a verifier that x ∈ L within communication
complexity qPCP (which is typically O(log n)): the verifier runs the PCP verifier VPCP to ob-
tain some query indices i[1], i[2], . . . , i[qPCP], and sends these indices to the prover. Let Π be
the PCP proof, the prover sends Π[i[1]],Π[i[2]], . . . ,Π[i[qPCP]] back to the verifier, which the
verifier checks using the PCP verifier VPCP. However, this naïve protocol cannot prevent ma-
licious provers from cheating: a malicious prover, after seeing the indices i[1], i[2], . . . , i[qPCP],
can simply make up some answer bits that make VPCP accept.

To deal with this problem, Kilian’s protocol [Kil92] requires the prover to commit to a proof
before the prover sees i[1], i[2], . . . , i[qPCP], using a Merkle tree. In the first round, the prover
builds a Merkle tree over the PCP proof π, and sends its root to the verifier (as a commitment to
π). The protocol then continues as above, except that the prover also sends the authentication
paths of each Π[i[j]] to the verifier, and the verifier will also check whether the authentication
path is consistent with both Hash (the oracle used in Merkle tree) and the bits of PCP proof
that the verifier queries.

Formal description. We define a function VerifyO(Root, seed, π) as follows. The function
receives three inputs and an oracle:

• Root ∈ {0, 1}λ is the root of the Merkle tree, committed by the prover;

• seed ∈ {0, 1}rPCP is the PCP randomness;

• π is the succinct proof that the prover produces, which consists of the authentication paths
(auth1, . . . , authqPCP) for the answers of the PCP queries; and

• O is the Hash oracle used in the Merkle tree.

For each j ∈ [qPCP], let i[j] denote the index of the PCP proof such that authj is an
authentication path for the i[j]-th bit, and let Π[i[j]] denote the i[j]-th bit of the PCP proof as
claimed in authj . The function returns 1 if all of the following are true:

• on PCP randomness seed, the PCP verifier indeed reads the (i[1], i[2], . . . , i[qPCP])-th bit
of the PCP proof, and accepts if it receives (Π[i1],Π[i2], . . . ,Π[i[qPCP]]);

• each authentication path is consistent with O and has Root as the Merkle tree root.

Formally, Kilian’s protocol proceeds as follows. Let O : {0, 1}2λ → {0, 1}λ be a (hash) oracle.
Assuming x ∈ L and Π ∈ {0, 1}ℓPCP is the PCP proof for x, we describe the behaviours of both
the verifier and the honest prover. (However, keep in mind that when x ̸∈ L, the malicious
prover could behave arbitrarily.)

1. The prover computes a Merkle tree over Π, using O as the Hash function. Let Root ∈
{0, 1}λ be the root of this Merkle tree, the prover commits to π by sending Root to the
verifier.

2. Then, the verifier randomly samples seed ∈ {0, 1}rPCP and sends it to the prover.

3. The prover executes the PCP verifier to obtain the indices (i[1], i[2], . . . , i[qPCP]). For each
j ∈ [qPCP], the prover sends the authentication path authj to the verifier, which consists
of all the nodes on the path from the leaf containing Π[i[j]] to the root, as well as the
siblings of these nodes. Let π := (auth1, auth2, . . . , authqPCP).

4. Finally, the verifier accepts if and only if VerifyO(Root, seed, π) = 1.

45

5.1.4 Micali’s CS Proofs

By combining PCPs and Merkle trees, Kilian’s protocol allows a potentially malicious prover to
convince the verifier of the membership of an instance x in a language L ∈ NP. However, this
protocol is interactive, and it requires 3 messages between the prover and the verifier.

Fortunately, it is possible to convert it to a non-interactive protocol by applying the Fiat-
Shamir heuristic [FS86]. Recall that Kilian’s protocol is public-coin, i.e., the verifier’s message is
simply a uniformly random string. To apply the Fiat-Shamir heuristic, we replace this random
string with the hash value of the previous prover message, which in our case is Root. Note that we
need to use a different hash function from the one used for the Merkle tree; here we use another
oracle to provide the hash function. If the hash function is “random” enough, the hash value can
be regarded as uniformly random bits (this intuition will be formalised in Theorem 5.9). Now
the prover could simulate the verifier and compute the indices (i[1], i[2], . . . , i[q]). The prover
then continues as in Kilian’s protocol, sending the verifier the corresponding bits of the PCP
proof Π and their authentication paths, and in addition the Merkle tree root and the query
indices. The verifier does the same checks in Kilian’s protocol, and in addition, checks whether
the query indices are consistent with the hash value of the Merkle tree root.

The protocol above is called Micali’s CS proofs [Mic00]. Below is a formal description.

Formal description. As mentioned before, the CS proofs protocol requires two oracles. The
first oracle is used for the Merkle Tree, so we call it OMT : {0, 1}2λ → {0, 1}λ; the second oracle
is used for the Fiat-Shamir heuristic, mapping the first prover message (Root) to the verifier
message (seed), thus we call it OFS : {0, 1}λ → {0, 1}rPCP .

We assume x ∈ L and Π ∈ {0, 1}ℓPCP is the PCP proof of x. We describe the behaviours of
both the verifier and the honest prover. (Again, keep in mind that if x ̸∈ L, then the malicious
prover could behave arbitrarily.)

1. The prover computes a Merkle tree over Π, using OMT as the Hash function. Let Root ∈
{0, 1}λ be the root of this Merkle tree.

2. The prover computes seed := OFS(Root) as the PCP randomness.

3. The prover executes the PCP verifier to obtain the indices (i[1], i[2], . . . , i[qPCP]). Let authj
denote the authentication path corresponding to Π[i[j]], the prover obtains a proof string
π := (auth1, auth2, . . . , authqPCP).

4. The prover sends (Root, π) to the verifier. The verifier computes seed := OFS(Root) and
accepts if and only if VerifyO

MT
(Root, seed, π) = 1.

5.1.5 CS Proofs in the Common Random String Model

Section 5.1.4 describes the CS proofs protocol in the plain random oracle model. The security
of CS proofs in this model states that if x ̸∈ L, then for every size-S circuit C that implements a
malicious prover, w.h.p. over random oracles OMT and OFS, C cannot convince the verifier that
x ∈ L. However, to reduce L to Gap-mvMCSP, we need security in the common random string
(CRS) model.

In the CRS model, before the protocol starts, a common random string crs ← {0, 1}O(λ) is
announced to the public; then the prover sends a proof (Root, π) and the verifier verifies it, as
usual. We aim at the following stronger security requirement: if x ̸∈ L, then the following is
true w.h.p. over random oracles OMT and OFS. For every size-S circuit C that implements a
malicious prover, w.h.p. over crs, C cannot convince the verifier that x ∈ L.

Notice the change of the quantifier here: in the plain model we only require that any malicious
prover fails w.r.t. a random oracle, but for each random oracle there could be a malicious prover

46

that cheats successfully. (For example, this prover could hardcode a pair of collisions of OMT.)
In the CRS model, we require that for most oracles OMT and OFS, every size-S circuit that
implements a malicious prover cannot cheat, where “cheat” here means cheating w.h.p. over crs.

Formal description. Let k = O(λ) denote the length of the crs. In one sentence, the CRS
model consists of 2k copies of the plain model, one for each possible crs. More formally, we have
two random oracles OMT : {0, 1}k ×{0, 1}2λ → {0, 1}λ and OFS : {0, 1}k ×{0, 1}λ → {0, 1}rPCP .
Let x ∈ L and Π ∈ {0, 1}ℓPCP be the PCP proof for x, the behaviours of the honest prover and
the verifier are as follows:

1. The verifier chooses crs← {0, 1}k uniformly at random and sends it to the prover.

2. The prover computes a Merkle tree over Π, using OMT(crs,−) as the Hash function. Let
Root ∈ {0, 1}λ be the root of this Merkle tree.

3. The prover computes seed := OFS(crs,Root) as the PCP randomness.

4. The prover executes the PCP verifier to obtain (i[1], i[2], . . . , i[qPCP]), computes the au-
thentication paths authj (still under the oracle OMT(crs,−)), and obtains the proof string
π := (auth1, auth2, . . . , authqPCP).

5. The prover sends (Root, π) to the verifier. The verifier computes seed := OFS(crs,Root)

and accepts if and only if VerifyO
MT(crs,−)(Root, seed, π) = 1.

From the above description, it is easy to see that if x ∈ L, there is always a small-size prover
that convinces the verifier:

Theorem 5.6. Suppose x ∈ L. For every oracles OMT and OFS, there is an oracle circuit A of
size poly(n, k, λ, ℓPCP, rPCP) such that

Pr
crs←{0,1}k

[
VerifyO

MT(crs,−)(Root, seed, π) = 1

∣∣∣∣ (Root, π)← AOMT,OFS
(crs)

seed← OFS(crs,Root)

]
= 1.

It remains to prove the soundness of CS proofs, i.e., if x ̸∈ L, then any prover of size 2o(λ) fails
to convince the verifier that x ∈ L. It turns out that the CRS model creates some technical dif-
ficulties for proving soundness. If the adversary, on input crs, cannot access oracles OMT(crs′,−)
or OFS(crs′,−) for crs′ ̸= crs, then the 2k plain-model CS proofs will be “independent”. Thus,
we can use Chernoff bound to show that there is only a tiny fraction of crs for which the ma-
licious prover cheats successfully. However, these plain-model CS proofs are not independent,
and we need to handle the case that the malicious prover, on input crs, could query arbitrary
OMT(crs′,−) or OFS(crs′,−).

Intuitively, we need to find a large subset of crs that is “independent”. However, it is unclear
how to find these crs even when given the malicious prover (implemented as a circuit). Our
solution is to use a compression argument: fix OMT and OFS, if the protocol is not secure, then
we can compress OMT and OFS in much less than |OMT|+ |OFS| bits. Therefore, if OMT and OFS

are random oracles, then the protocol should be secure with high probability. After we fixed
OMT and OFS, we could run the prover on each crs and analyse its computational history. Then
we find a significant fraction of crs such that their computational histories are “independent”,
and such that the malicious prover cheats successfully on each crs. If the malicious prover is
successful on crs, then we can compress OMT(crs,−) and OFS(crs,−); since these crs we pick are
“independent”, compressing one crs does not influence the other strings crs′.

To implement this strategy one needs to re-prove the security of CS proofs in the plain model,
using a compression argument. This is executed in Section 5.2; the proof is equivalent to the one
in [Mic00], but this compression argument will make the later proofs in the CRS model cleaner.
Then, in Section 5.3, we prove the security in the CRS model.

47

5.2 Security of CS Proofs in the Plain Model

Collisions. Let O be an oracle and A(−)(x) be an oracle circuit with input x. We say AO(x)
finds a collision for O if there are two queries O(a) and O(b) made by A on input x such that
a ̸= b and O(a) = O(b). A collision of AO(x) is the pair of integers (i, j), where i < j, the
i-th gate of AO(x) is an oracle gate that queries O(a), the j-th gate queries O(b), a ̸= b, and
O(a) = O(b). We will frequently use the notion of the first collision of AO(x), which is defined
as the lexicographically smallest pair (i, j) which is a collision of AO(x).

If we have more than one oracles O1, O2, . . . , then we define AO1,O2,...(x) finds a collision for
O1 and the first collision of AO1,O2,...(x) for O1 analogously.

We need the following result stating that a random oracle is collision-resistant (in the plain
model). This result also serves as a warm-up of the compression method.

Theorem 5.7 (Random Functions are Collision Resistant). There is a polynomial p such that
the following holds. Let O : {0, 1}n → {0, 1}m be an oracle. Let A be an oracle circuit of size
S ≤ o(2m/2) such that AO(1n, 1m) finds a collision of O.

Let ℓ := 2nm and info := (n,m, S). Then

Kp(ℓ)(O | A, info) ≤ ℓ− (m− 2 logS) +O(1).

Proof. We describe our compressed encoding of O. Let (i, j) be the first collision of AO(1n, 1m).
We write down the indices i, j ∈ [S] using 2 logS bits. Then we simulate AO(1n, 1m). Whenever
A makes a query O(x):

• If we have seen this query before, then we have also written down its answer. We do not
need to write down anything.

• If this query is made by the j-th gate, then x = b, we have already recorded O(a) (the
answer of the i-th gate), but we have not recorded O(b) yet. As O(A) = O(b), we do not
need to write down anything.

• Otherwise, we write down the answer to this query.

Suppose A made Q distinct queries to O. Then we wrote down Q− 1 answers in the above
process, costing (Q − 1)m bits. Finally, we write down the rest 2n − Q entries of O, costing
(2n−Q)m bits. It is easy to see that given A, info, and this encoding of O, we can recover O in
poly(ℓ) time.

The length of this encoding is

2 logS + (Q− 1)m+ (2n −Q)m+O(1) ≤ 2nm− (m− 2 logS) +O(1).

Theorem 5.8 (Security of Kilian’s Protocol). Let x ̸∈ L. Let O : {0, 1}2λ → {0, 1}λ be an
oracle. Given oracle circuits P,Q of size at most S such that

Pr
seed←{0,1}rPCP

[
VerifyO(Root, seed, π) = 1

∣∣∣∣ Root← PO(1λ)
π ← QO(1λ, seed)

]
≥ ϵ, (8)

we can compute the description of a randomised oracle circuit FindCol′O(r) of size S·poly(qPCP, λ)
in 2O(λ) time, such that

Pr
r

[
FindCol′O(r) find a collision of O

]
≥ 2(ϵ− sPCP)

2/ℓPCP. (9)

Proof. The first step is to construct a candidate PCP proof Π for x. Since x ̸∈ L, the PCP
verifier accepts Π with probability at most sPCP; the probability of finding a collision will be
related to the probability that Kilian’s protocol accepts but the PCP verifier does not (which is
≥ ϵ− sPCP).

48

Recall that for each j ∈ [q], i[j] is the index of the PCP proof corresponding to authj ,
and Π[i[j]] is the i[j]-th bit of the PCP proof claimed by authj . For every bit i, we say that
QO(1λ, seed) claims Π[i] = 0 (or 1) if there is some j ∈ [q] such that i[j] = i and Π[i[j]] = 0 (or
1). For i ∈ [ℓPCP] and b ∈ {0, 1}, let Pi,b be the probability (over seed) that QO(1λ, seed) claims
Π[i] = b and the verifier accepts. That is,

Pi,b := Pr
seed←{0,1}rPCP

[
VerifyO(Root, seed, π) = 1 ∧QO(1λ, seed) claims Π[i] = b

]
.

We construct a PCP proof Π. For each i ∈ [ℓPCP], if Pi,0 > Pi,1, then we let Π[i] = 0;
otherwise we let Π[i] = 1. If Verify(Root, seed, π) = 1, then there are only two possibilities:

• either the PCP verifier accepts Π when given seed as randomness,

• or there is i ∈ [ℓPCP] and b = 1−Π[i] such that QO(1λ, seed) claims Π[i] = b.

The first bullet happens w.p. at most sPCP, therefore the second bullet happens w.p. at least
ϵ − sPCP. Thus, the LHS of the following equation, which upper bounds the probability that
the second bullet happens, is also at least ϵ− sPCP:∑

i∈[ℓPCP]

min{Pi,0, Pi,1} ≥ ϵ− sPCP. (10)

Now we design a randomised oracle circuit FindCol′ that attempts to find a collision of O.
Consider the following experiment: randomly sample seed1, seed2 ← {0, 1}rPCP , and invoke QO

on both seeds to obtain the authentication paths

π1 = (auth1,1, auth1,2, . . . , auth1,q) :=QO(1λ, seed1),

π2 = (auth2,1, auth2,2, . . . , auth2,q) :=QO(1λ, seed2).

Let C (for “collision”) denote the event that there is some i ∈ [ℓPCP] and b ∈ {0, 1} such that
both the following hold:

• QO(1λ, seed1) claims Π[i] = b and VerifyO(Root, seed1, π1) = 1;

• QO(1λ, seed2) claims Π[i] = 1− b and VerifyO(Root, seed2, π2) = 1.

Let FindCol be the algorithm described in Proposition 5.5, under the oracle Hash = O. Consider
the following circuit FindCol′:

1. The circuit FindCol′ uses seed1 and seed2 as randomness.

2. Then, it invokes QO twice to obtain π1 and π2.

3. Then, it invokes FindCol on each pair of (auth1,i, auth2,j), no matter whether auth1,i and
auth2,j corresponds to Merkle tree leaves at the same location.

Whenever C happens, FindCol′ finds a collision of O. On the other hand,

Pr
seed1,seed2

[C] ≥
∑

i∈[ℓPCP]

2Pi,0Pi,1

≥ 2 ·
∑

i∈[ℓPCP]

min{Pi,0, Pi,1}2

≥ (2/ℓPCP)

 ∑
i∈[ℓPCP]

min{Pi,0, Pi,1}

2

Cauchy-Schwarz Inequality

≥ 2(ϵ− sPCP)
2/ℓPCP. Eq. (10)

Note that FindCol′ is a circuit of size S · poly(qPCP, λ). Thus the lemma is proved.

49

Finally, we prove the soundness of Micali’s CS proofs in the plain model:

Theorem 5.9 (Security of Micali’s CS Proofs). Let OMT : {0, 1}2λ → {0, 1}λ and OFS :
{0, 1}λ → {0, 1}rPCP be two oracles. Let δ > sPCP be any parameter and ρ := 2δ2/ℓPCP.
Let A be an oracle circuit of size S such that

VerifyO
MT
(Root, seed, π) = 1 where

{
(Root, π)← AOMT,OFS

(1λ),
seed← OFS(Root).

(11)

Let ℓMT := 22λ · λ, ℓFS := 2λ · rPCP, and info := (rPCP, ℓPCP, λ, δ, S). Then

either Kp(ℓMT+ℓFS)
(
OMT, OFS |A, info

)
≤ ℓMT + ℓFS − log(1/δ) +O(logS),

or pKp(ℓMT+ℓFS)
ρ

(
OMT, OFS |A, info

)
≤ ℓMT + ℓFS − λ+O(logS).

Proof. Without loss of generality, we assume that A always queries OFS(Root) at the end. We
say an oracle gate in A is the Fiat-Shamir gate if it is the first OFS oracle gate that queries
OFS(Root); the Fiat-Shamir gate always exists. Let i⋆ be the index of the Fiat-Shamir gate. We
say the Fiat-Shamir query is the query OFS(Root) that the i⋆-th gate queries.

The next step is to define the following process ÃOMT,tape(seed), where tape ∈ ({0, 1}rPCP)S

is a long enough tape consisting of random bits. Roughly speaking, in this process, we use tape
and seed to simulate OFS: the Fiat-Shamir query returns seed, while we use tape to answer the
other queries. The intuition behind this process is that among all queries to the OFS oracle,
only the Fiat-Shamir query is useful, and we can replace the answers to the other queries with
truly random bits. More precisely, in the process ÃOMT,tape(seed), we simulate AOMT,OFS

(1λ), and
whenever it queries OFS(x):

• If we have seen this query before during the simulation, we return the same answer.

• If this query is the i⋆-th query, then we return seed.

• Otherwise, we return the next value in tape. That is, suppose this query is the i-th distinct
non-Fiat-Shamir query made by A, we return tapei. (Recall that each element in tape is
a string of length rPCP.)

We say ÃOMT,tape(seed) = 1 if it produces (Root, π) such that VerifyO
MT
(Root, seed, π) = 1.

Let tape⋆ ∈ ({0, 1}rPCP)S denote the “real” list of answers to the OFS queries made by
AOMT,OFS

(1λ). That is, we simulate AOMT,OFS
(1λ), and whenever it queries OFS(x), if we have

not seen this query before and this query is not the Fiat-Shamir query, then we append it to the
end of tape⋆. After this process, suppose that tape⋆ contains S′ elements where S′ ≤ S, then
we add S − S′ dummy elements (say they are the all-zero string of length rPCP) to the end of
tape⋆. We also let seed⋆ := OFS(Root) be the “real” answer of the Fiat-Shamir query. By the
above definition, we have that ÃOMT,tape⋆(seed⋆) = 1.

Now we fix tape := tape⋆ and treat seed as an input. During the process ÃOMT,tape(seed),
we will output some Root that is independent of seed. (This is because Root is the input of the
Fiat-Shamir gate, and we only use seed as the answer of this gate.) Therefore, ÃOMT,tape(seed)
can be treated as a prover for Kilian’s protocol: after it “commits” to some Root, it receives a
random seed from the verifier, and then sends the proof π to the verifier.

We divide our argument into two cases depending on the following quantity

p := Pr
seed←{0,1}rPCP

[
ÃOMT,tape(seed) = 1

]
.

50

Case I: Suppose p < 2δ. Then a random seed makes the verifier reject w.p. 1 − p, but seed⋆
makes the verifier accept. Therefore, we can save log(1/p) bits when we write down seed⋆.

In this case, our description of OMT and OFS is now as follows. We first write down the
oracle OMT in verbatim, costing ℓMT bits. We also write down i⋆ in logS bits. Then we
simulate AOMT,OFS

(1λ) to obtain tape⋆ ∈ ({0, 1}rPCP)S
′ and seed⋆ ∈ {0, 1}rPCP . We write down

S′ and tape⋆ using logS + S′ · rPCP bits. To record seed⋆, we use (rPCP − log 1
2δ) bits to write

down the integer K where seed⋆ is the lexicographically K-th smallest string seed such that
ÃOMT,tape(seed) = 1. Finally, we write down the rest portion of OFS using (2λ−S′−1)rPCP bits.
The total number of bits is thus

ℓMT + 2 logS + S′ · rPCP + (rPCP − log
1

2δ
) + (2λ − S′ − 1)rPCP +O(1)

≤ ℓMT + ℓFS − (log
1

2δ
− 2 logS) +O(1).

Case II: Suppose p ≥ 2δ. Since the size of Ã(−),tape is at most poly(S), by Theorem 5.8, there
is a randomised oracle circuit FindCol′O

MT
(r) of size poly(S) such that

Pr
r
[FindCol′O

MT
(r) finds a collision of OMT] ≥ 2(2δ − sPCP)

2/ℓPCP ≥ 2δ2/ℓPCP = ρ.

By Theorem 5.7, for some polynomial p1, we have

Pr
r

[
Kp1(ℓMT)

(
OMT | A, tape, r, info

)
≤ ℓMT − (λ−O(logS))

]
≥ ρ,

which means
pKp1(ℓMT)

ρ

(
OMT | A, tape, info

)
≤ ℓMT − (λ−O(logS)).

In this case, our compression of OMT and OFS is as follows. We first write down i⋆ using
logS bits. Then we simulate AOMT,OFS

(1λ) to obtain tape⋆ ∈ ({0, 1}rPCP)S
′ . We write down

S′ and tape⋆ using logS + S′ · rPCP bits. We then invoke Theorem 5.7 to compress OMT into
ℓMT − (λ−O(logS)) bits. Finally, we write down the rest portion of OFS using (2λ − S′) · rPCP

bits. The total number of bits is thus

2 logS + S′ · rPCP + ℓMT − (λ−O(logS)) + (2λ − S′) · rPCP +O(1)

≤ ℓMT + ℓFS − (λ−O(logS)).

5.3 Security of CS Proofs in the CRS Model

Theorem 5.10 (Security of CS Proofs in the CRS Model). Suppose that λ ≥ 7 logS + 3k +
log ℓPCP and 2−k−4 > sPCP. Then there is a polynomial p such that the following holds.

Let OMT : {0, 1}k × {0, 1}2λ → {0, 1}λ and OFS : {0, 1}k × {0, 1}λ → {0, 1}rPCP be two
oracles. Let A be an oracle circuit of size S such that

Pr
crs←{0,1}k

[
VerifyO

MT(crs,−)(Root, seed, π) = 1

∣∣∣∣ (Root, π)← AOMT,OFS
(crs)

seed← OFS(crs,Root)

]
≥ ϵ.

Let ℓMT := 2k+2λ · λ, ℓFS := 2k+λ · rPCP, and info = (k, λ, rPCP, S). Then

pK
p(ℓMT+ℓFS)
2/3

(
OMT, OFS | info

)
≤ ℓMT + ℓFS + 3.01S logS − ϵ2k/S4.01.

Proof. First, we choose an index i⋆ so that the i⋆-th gate of A is likely to be the Fiat-Shamir
gate. For a fixed crs, the Fiat-Shamir gate of AOMT,OFS

(crs) is the first OFS gate in A that queries
OFS(crs,Root), where Root is the first output of AOMT,OFS

(crs). Without loss of generality, we

51

may assume that the Fiat-Shamir gate always exists. By averaging, there is an index i⋆ such
that

Pr
crs←{0,1}k

[
VerifyO

MT(crs,−)(Root, seed, π) = 1∧
the i⋆-th gate is the Fiat-Shamir gate

∣∣∣∣ (Root, π)← AOMT,OFS
(crs)

seed← OFS(crs,Root)

]
≥ ϵ/S. (12)

Fix this i⋆, and we say crs ∈ {0, 1}k is good if Eq. (12) holds for crs. Then there are at least
(ϵ/S)2k good strings crs.

MT- and FS-compressibility. We classify each good crs into two categories: MT-compressible
and FS-compressible. Intuitively, a string crs is MT-compressible if when we run the proof of
Theorem 5.9 on this crs, we run into case II; crs is FS-compressible if we run into case I. (Recall
that in case I of the proof of Theorem 5.9, we write down OMT in verbatim and compress OFS

non-trivially; in case II, we write down OFS in verbatim and compress OMT non-trivially.) The
precise definition is a bit involved, as it depends on the proof of Theorem 5.9.

We simulate AOMT,OFS
(crs). Let tape be the list of answers of the OFS oracles, except for

the Fiat-Shamir query. That is, whenever AOMT,OFS
(crs) makes a query to OFS that we have

not seen before and that is not the Fiat-Shamir query, we append its answer to the end of tape.
(Note that we append the answer of every query OFS(crs′, x′), regardless of whether crs′ = crs.)
We also pad tape with dummy entries so that it contains exactly S elements in {0, 1}rPCP .

Next, we define the following process denoted as ÃOMT,tape,crs(seed). First, we hardwire
tape and crs. On input seed, we simulate AOMT,OFS

(crs), but answers the OFS queries in the
same manner as the process ÃOMT,tape(seed) in the proof of Theorem 5.9. That is, whenever
AOMT,OFS

(crs) makes a query to OFS:

1. If we have seen this query before, we return the same answer.

2. If this query is the Fiat-Shamir query, then we return seed (which is our input).

3. Otherwise, we return the next unused element in tape.

Suppose the input of the Fiat-Shamir query is (crs,Root) and the output of the simulated
AOMT,OFS

(crs) is (Root′, π). We discard Root′ and output (Root, π). Note that Root does not
depend on seed, therefore this process can be treated as a prover for (unkeyed) Kilian’s protocol.
We say ÃOMT,tape,crs(seed) = 1 if VerifyO

MT(crs,−)(Root, seed, π) = 1, i.e., the verifier in Kilian’s
protocol accepts.

Let p := Prseed←{0,1}rPCP

[
ÃOMT,tape,crs(seed) = 1

]
and δ := 2−k−4. If p < 2δ, we say crs is

FS-compressible. Otherwise, we say crs is MT-compressible.

The FS-compressible case. Let T := (ϵ/S)2k−1, suppose that there are at least T good
strings crs that are FS-compressible. Our goal is to compress the critical entry of each FS-
compressible crs by at least one bit. Here, for every FS-compressible crs, we define cri(crs), the
critical entry of crs, to be OFS(crs,Root), where Root is the Root input of the Fiat-Shamir gate
of AOMT,OFS

(crs).
Naïvely, one may think that for every FS-compressible crs, one could save log(1/p) ≥

log(1/(2δ)) bits when we write down cri(crs). However, this does not work for the following
reason. Suppose we want to compress cri(crs). Then we need to simulate AOMT,OFS

(crs) and
write down every query to OFS that A makes. The critical query only needs rPCP − log(1/p)
bits to write down, but all other queries need exactly rPCP bits. Suppose that there is a
query OFS(crs′,Root′) that we wrote down verbatim. It might be the case that crs′ is also
FS-compressible and cri(crs′) is exactly OFS(crs′,Root′)! In this case, we have already recorded
OFS(crs′,Root′) in verbatim, so there is nothing to save here.

52

For each crs that is FS-compressible, let Tape(crs) denote the set of OFS queries that AOMT,OFS
(crs)

makes. Now, we pick a large enough subset of FS-compressible strings crs that are “independent”.
We define a dependency graph G = (V,E), where:

• The vertices in G are exactly the set of crs’s that are FS-compressible.

• For every crs, crs′, if cri(crs′) ∈ Tape(crs), then we add a directed edge (crs→ crs′) in G.

Let ≻ be a linear order over V . (Equivalently, choose a permutation over V and let crs ≻ crs′

if and only if crs appears later than crs′ in this permutation.) We say a crs ∈ V is successor-free
if for every outgoing edge (crs → crs′), we have crs ≻ crs′. Let K be the number of successor-
free crs in V , and consider the sequence K = (crs1, crs2, . . . , crsK) of successor-free crs, where
crs1 ≺ crs2 ≺ · · · ≺ crsK . Let out(crs) be the out-degree of crs, then for every crs ∈ V , we have
out(crs) ≤ S. Therefore, over a random permutation ≻, we have

E
≻
[K] =

∑
crs∈V

Pr
≻
[crs is successor-free] =

∑
crs∈V

1

out(crs)
≥ T/S.

Now, we fix a ≻ such that K ≥ T/S, which also fixes the sequence K of successor-free crs. We
will succinctly write down the answers of cri(crs) for every crs ∈ K.

The compression. We start by writing down the oracle OMT in verbatim, which costs
ℓMT bits. Then we record the circuit A using 3S logS bits. We also record the integers (i⋆,K)
which costs logS + k bits. After that, we write down the sequence K using K · k bits.

Now, for i from 1 to K, we write down all answers of queries in Tape(crsi). In particular, we
simulate AOMT,OFS

(crs), and whenever A makes a query OFS(crs′, x′):

• If we have already recorded the answer of OFS(crs′, x′), then we do not need to do anything.

• If this query is the Fiat-Shamir query, we also do nothing (for now).

• Otherwise, we spend rPCP bits to write down the answer of OFS(crs′, x′).

After writing down these entries, we can recover tape and thus simulate ÃOMT,tape,crs(seed). Note
that for any j < i, we have crsj ≺ crsi, and since crsj is successor-free, the edge (crsj → crsi) is
not in E, and thus cri(crsi) ̸∈ Tape(crsj). This means that we have not recorded the answer of
cri(crsi) in the first i − 1 rounds, thus we have the chance to record it (using rPCP − log(1/p)
bits). Let seed⋆ be the answer of cri(crsi), then we record the integer K such that seed⋆ is the
lexicographically K-th smallest string seed such that ÃOMT,tape,crs(seed) = 1.

After we have processed crsi for every i ∈ [K], we write down the rest of OFS in verbatim.
The total number of bits needed to compress OMT and OFS is

ℓMT + 3S logS + logS + k +K · k + ℓFS −K · log(1/p) +O(1)

≤ ℓMT + ℓFS + 3.01S logS − ϵ2k/S4.01,

where the last inequality is because K ≥ 2k−1(ϵ/S2) ≥ ϵ2k/S4.01.

The MT-compressible case. Suppose, on the other hand, that there are at less than T good
strings crs that are FS-compressible. As there are at least 2T good strings crs, there are at least
T strings crs that are MT-compressible.

We need to compress the critical entry of each MT-compressible crs by at least one bit. Here,
the critical entry of crs, denoted as cri(crs), is the collision of OMT(crs,−) found by some circuit
related to ÃOMT,tape,crs.

53

More precisely, we construct a randomised circuit FindCol′crs that finds a collision of OMT(crs,−)
with good probability. As in the proof of Theorem 5.8, this circuit takes seed1, seed2 ← {0, 1}rPCP

as randomness, invokes ÃOMT,tape,crs on both seed1 and seed2 to obtain 2q authentication paths,
and finds collisions of OMT(crs,−) among them. The size of FindCol′crs is O(S3) and the success
probability is at least ρ := 2δ2/ℓPCP.

The next step is to “derandomise” FindCol′crs. Recall that we prove compression upper bounds
w.r.t. the pKt complexity, so we could assume there is a sufficiently long random string π that
helps our compression. We treat π as a random function π : {0, 1}k × [1/ρ] × [2] → {0, 1}rPCP .
For every j ∈ [1/ρ], define the circuit FindCol′crs,j to be the circuit FindCol′crs with randomness
seed1 = π(crs, j, 1) and seed2 = π(crs, j, 2). Consider the first j such that FindCol′crs,j indeed finds
a collision of OMT(crs,−), and let (i′, j′) be the first collision found by FindCol′crs,j . Suppose that
i′ < j′, the i′-th gate of FindCol′crs,j is OMT(crs, a), and the j′-th gate is OMT(crs, b). Then we
define cri(crs) := OMT(crs, b).

For every MT-compressible crs, let Xcrs denote the event (over the random variable π) that
there is some j ∈ [1/ρ] such that FindCol′crs,j finds a collision of OMT(crs,−). (If Xcrs happens,
then cri(crs) is well-defined.) The events Xcrs are independent, and each one happens w.p. at
least 1− (1− ρ)1/ρ ≥ 0.2. Since there are T such events, by Chernoff bound, w.p. at least 2/3,
Xcrs is true for at least 0.1T choices of crs. We say crs is goodπ if Xcrs happens; from now on we
assume there are at least 0.1T goodπ strings crs.

We use the same argument as in the FS-compressible case to select a sequence of “indepen-
dent” strings crs. For each goodπ crs, let j be the smallest number such that FindCol′crs,j finds a
collision of OMT(crs,−). Let Tape(crs) denote the following set of queries:

• every query OMT(crs′, a′) made by AOMT,OFS
(crs);24

• every query OMT(crs′, a′) made by FindCol′crs,j .

By building a dependency graph (as in the FS-compressible case) over the goodπ strings crs,
we can select a sequence K of K goodπ strings (crs1, crs2, . . . , crsK) such that for every i > i′,
we have cri(crsi) ̸∈ Tape(crsi′). Moreover, since each Tape(crs) contains at most S1 ≤ O(S3)
elements, we have

K ≥ 0.1T/S1 ≥ 0.05 · ϵ2k

S · S1
.

The compression. We start by spending ℓFS bits to write down the oracle OFS in verbatim.
Then we record the circuit A using 3S logS bits. We also record the integers (i⋆,K) which costs
logS+k bits. After that, for each i ∈ [K], we write down the string crsi and the smallest integer
ji such that FindCol′crsi,ji finds a collision for OMT(crsi,−). This takes K · (k + log(1/ρ)) bits.

Now, for i from 1 to K, we write down all answers of queries in Tape(crsi). In particular, we
first simulate AOMT,OFS

(crsi), and whenever A makes a query OMT(crs′, a′) that was not recorded,
we record this query. Suppose that the first collision of OMT(crsi,−) found by FindCol′crsi,ji is
the i′-th gate and the j′-th gate of FindCol′crsi,ji . Then we write down these two numbers (i′, j′).
After that, we simulate FindCol′crsi,ji . Whenever it queries OMT(crs′, a′), if we have not recorded
the answer of this query yet, then we record it. The only exception is that we do not need to
record the answer of the j′-th gate.

After we have processed crsi for every i ∈ [K], we write down the rest of OMT in verbatim.
The total number of bits needed to compress OMT and OFS is

ℓFS + 3S logS + logS + k +K · (k + log(1/ρ)) + ℓMT −K · (λ− 2 logS1) +O(1)

24At first look, it may seem that we only need to include the queries made by FindCol′crs,j in Tape(crs). However,
FindCol′crs,j depends on tape, and we need to simulate AOMT,OFS

(crs) in order to recover tape, thus it is important
that we also record the queries needed by AOMT,OFS

(crs).

54

≤ ℓFS + ℓMT + 3.01S logS −K(λ− 6.5 logS − k − log(1/ρ))

≤ ℓFS + ℓMT + 3.01S logS − ϵ2k/S4.01,

where the last equation is because λ−6.5 logS−k− log(1/ρ) ≥ λ−6.9 logS−3k− log ℓPCP ≥ 1
and K ≥ Ω(ϵ2k/SS1) ≥ ϵ2k/S4.01.

5.4 NP-hardness of Gap-mvMCSPO

Theorem 5.1. With probability 1 over a random oracle O, Gap-mvMCSPO is NP-hard under
deterministic TIME[2polylog(n)]O reductions.

Moreover, for any language L ∈ NP and any constant t ≥ 1, there is a constant c1 and a
mapping computable in deterministic 2polylog(n) time with an O oracle, that maps an instance
x ∈ {0, 1}n to a table T satisfying the following:

x ∈ L =⇒ CCO(T) ≤ s := O(nc1);

x ̸∈ L =⇒ CCO
2− logt s(T) ≥ 2log

t s.

Proof. Let ON ∈ {0, 1}2
N denote the truth table of the N -th slice of O, and O≤N ∈ {0, 1}2

N+1−2

denote the concatenation of O1, O2, . . . , ON . With probability 1 over the random oracle O, for
all but finitely many N ∈ N,

K(O≤N) > 2N+1 −O(N).

This fact is easy to see; for completeness, we include a proof in Appendix B.
Let x be an instance of L, n := |x|. Assuming k, rPCP, λ < no(1). By Theorem 5.6, for

some constant c2 ≥ 1 that only depends on L, if x ∈ L then there is an honest prover for x
of size Shonest := O(nc2). We instantiate the CS proof protocol using the following parameters:
S := 2log

t Shonest , ϵ := 1/S, k := 7 logS, c := k + 5, λ := 30 logS + log ℓPCP. It is easy to verify
that the technical conditions of Theorem 5.10 are satisfied.

Let N := 100 logS + 2 log ℓPCP. We define OMT : {0, 1}k × {0, 1}2λ → {0, 1}λ and OFS :
{0, 1}k × {0, 1}λ → {0, 1}rPCP according to the N -th slice of O. That is:

• On input crs ∈ {0, 1}k and a ∈ {0, 1}2λ, let pad := 0N−1−k−2λ−⌈log λ⌉, OMT(crs, a) returns
the concatenation of O(0, crs, a, i, pad) for every i ∈ [λ].

• On input crs ∈ {0, 1}k and Root ∈ {0, 1}λ, let pad := 0N−1−k−λ−⌈log rPCP⌉, OFS(crs,Root)
returns the concatenation of O(1, crs,Root, i, pad) for every i ∈ [rPCP].

We define the following table T . The rows will be indexed by crs ∈ {0, 1}k, and the columns
will be indexed by (Root, π) ∈ {0, 1}ℓproof where ℓproof := O(qPCP · log ℓPCP · λ) ≤ logO(t) n is the
length of the CS proof. Let

T (crs, (Root, π)) = 1 ⇐⇒ VerifyO
MT(crs,−)(Root, seed, π) = 1 where seed = OFS(crs,Root).

Now we prove the correctness of our reduction. Suppose x ∈ L, then by Theorem 5.6, there
is a circuit C of size Shonest such that for every crs ∈ {0, 1}k, T (crs, CO(crs)) = 1. This implies
that CCO(T) ≤ Shonest. On the other hand, suppose x ̸∈ L. By Theorem 5.10, if there is a size-S
oracle circuit C such that

Pr
crs←{0,1}k

[T (crs, CO(crs)) = 1] ≥ ϵ,

then

pK
poly(2N)
2/3 (ON | O1, O2, . . . , ON−1, ON+1, . . .) ≤ 2N + 3.01S logS − ϵ2k/S4.01 ≤ 2N − Ω(S1.5).

55

Moreover, it is implicit in the proof of Theorem 5.10 that the decompression only needs access
to the oracle O up to input length S. Thus we have

pK
poly(2S)
2/3 (O≤S) ≤ 2S+1 − Ω(S1.5).

And by Fact 2.12,
K(O≤S) ≤ 2S+1 − Ω(S1.5).

This could only happen for finitely many input lengths n.
Finally, it is easy to see that our reduction can be computed in deterministic 2polylog(n) time

with an O oracle.

We showed that for some variant of MCSP (namely Gap-mvMCSP), over a random oracle
O, the O-relativised version of this variant is NP-hard (even to approximate) under QuasiPO

reductions. We conjecture that the same is true for the original MCSP (and that this is a
feasible research question). We believe that this conjecture, if true, would give strong evidence
that MCSP is indeed NP-complete.

Conjecture 5.11. With probability 1 over a random oracle O, MCSPO is NP-hard under
QuasiPO reductions.

6 Applications

6.1 Pseudorandom Self-Reductions

In this sub-section, one-way functions are assumed to be secure against non-uniform adversaries.
For simplicity, we only define pseudorandom mapping reduction (as opposed to pseudorandom
non-adaptive reduction in [HS17,ERSY22]).

Definition 6.1 (Pseudorandom Self-Reducibility, [HS17, ERSY22]). Let C be a complexity
class. Let Q = (Π.Yes,Π.No) be a promise problem, where Π.Yes,Π.No ⊆ {0, 1}⋆, and let
L ⊆ {0, 1}⋆ be a language. We say Q is pseudorandomly (mapping-)reducible to L with respect
to C if there is a function g : {0, 1}⋆ × {0, 1}⋆ → {0, 1}⋆ computable in polynomial time such
that the following holds:

(Pseudorandomness) For every input x ∈ {0, 1}n, the distributions g(x,Upoly(n)) is indistin-
guishable from the uniform distribution by C .

(Correctness) For every x ∈ {0, 1}⋆ and every r: if x ∈ Π.Yes then g(x, r) ∈ L, while if
x ∈ Π.No then g(x, r) ̸∈ L.

Let 0 < ϵ < 1 < c be two parameters, Gapϵ,cMOCSP denote the following promise problem:

Input: a truth table f ∈ {0, 1}N and an oracle truth table O ∈ {0, 1}Nc .

YES instances: CCO(f) ≤ N ϵ.

NO instances: CCO(f) > N1−ϵ.

By Corollary 4.8, for every constant ϵ > 0, there is a constant c > 1 such that Gapϵ,cMOCSP is
NP-hard. We show that the same problem admits a pseudorandom self-reduction.

Theorem 6.2. If one-way functions (resp. subexponentially-secure one-way functions) exist,
then for every 0 < ϵ < 1/2 and c > 1, Gapϵ,cMOCSP admits a pseudorandom self-reduction
against polynomial-size (resp. subexponential-size) adversaries.

56

Proof. Suppose that one-way functions exist. Let δ := (1− 2ϵ)/10. By [HILL99,GGM86], there
exists a pseudorandom function family F : {0, 1}Nδ → {0, 1}Nc such that:

• For every seed ∈ {0, 1}Nδ , the circuit complexity of F (seed) is at most N2δ.

• The distribution F (UNδ) is 1/Nω(1)-indistinguishable from the uniform distribution UNc .

(If the underlying one-way function is subexponentially secure, then any adversary of size 2N
o(1)

cannot distinguish F (UNδ) from UNc with advantage 2−N
o(1) .)

Let (f,O) be an instance of Gapϵ,cMOCSP, where f ∈ {0, 1}N and O ∈ {0, 1}Nc . We
randomly sample seed1, seed2 ← {0, 1}N

δ , and let F (seed1)N denote the first N bits of F (seed1).
Then, we reduce (f,O) to the following distribution:

(f ⊕ F (seed1)N , O ⊕ F (seed2)). (13)

Given any adversary that distinguishes Eq. (13) from UN+Nc , by hardwiring seed1 and seed2,
we can construct an adversary that distinguishes F (seed) from UNc . It follows that Eq. (13) is
pseudorandom.

Next, we prove the correctness of the reduction. Let f ′ := f⊕F (seed1)N , O′ := O⊕F (seed2).
Since the circuit complexity of F (seed2) is at most N2δ, we can simulate the oracle O′ by an
O-oracle circuit of size N3δ. Similarly, given a size-s circuit computing f , we can construct a
size-(s+N3δ) circuit that computes f ′. It follows that

CCO′
(f ′) ≤ CCO′

(f) +N3δ ≤ N4δ · CCO(f).

The same argument also shows that

CCO′
(f ′) ≥ CCO(f)/N4δ.

Let L denote the set of strings (f,O) such that CCO(f) ≤ N ϵ+5δ = N1/2. We can see that
L ∈ NP and that Eq. (13) is indeed a reduction from Gapϵ,cMOCSP to L.

6.2 Heuristics for Complexity

We present an unconditional deterministic heuristic for Complexity. We will be able to solve
the problem in the regime where O is much longer than f . For concreteness, assume that we
are given the truth table of O : {0, 1}2n → {0, 1}, and want to find f : {0, 1}n → {0, 1} such
that CCO(f) > 2n/10n.

Definition 6.3 (The Complexity Problem). Let m = m(n) be a function, the problem
Complexitym(n) is the following (total) search problem:

(Input) An oracle truth table O : {0, 1}m(n) → {0, 1}.

(Output) A truth table f : {0, 1}n → {0, 1} such that CCO(f) ≥ 2n/10n.

Theorem 6.4. There is, unconditionally, a deterministic polynomial-time heuristic for Complexity2n

under the uniform distribution.

Proof. Let O : {0, 1}n × {0, 1}n → {0, 1} be a uniformly random function. Let f : {0, 1}n →
{0, 1} be the function given by f(x) =

⊕
y∈{0,1}n O(x, y).

We will show that f has high oracle circuit complexity relative to O with high probability.
We do this by a union bound argument. Fix an arbitrary oracle circuit C of size s = 2n/10n.
We will show that the probability that CO computes f is at most 2−2

n/3. Since there are
2O(s log s) = O(22

n/10) circuits of size at most s, it will follow that with probability 1 − 2−Ω(2n)

that f does not have an O-oracle circuit of size at most s, as desired.
It remains to bound the probability that CO computes f . To do this, we consider the

following equivalent way of sampling O uniformly at random.

57

1. To begin, let O : {0, 1}n × {0, 1}n → {0, 1, ⋆} be completely unset (i.e. O(x, y) = ⋆ for all
x and y).

2. While there exists an x̃ ∈ {0, 1}n such that |{y : O(x̃, y) = ⋆}| ≥ s+ 1:

(a) Simulate running CO(x̃). Whenever an oracle query (x′, y′) is made:

i. if O(x′, y′) = ⋆, then set O(x′, y′) to be a uniformly random value.
ii. Respond with the value of O(x′, y′).

(b) For all y′ with O(x̃, y′) = ⋆, set the value of O(x̃, y′) to be an (independently)
uniformly random bit.

(c) See if CO(x̃) = f(x̃). (This step is not a part of the algorithm. It does not do
anything. It is just useful to reference this step in the analysis.)

3. For all x′, y′ with O(x′, y′) = ⋆, set O(x′, y′) to be an (independently chosen) uniformly
random bit.

We begin by observing some facts about this way of sampling O.

Claim 6.5. The “while loop” runs at least (2n − s)/2 times.

Proof. In each loop iteration, the size of O−1({0, 1}) increases by at most s + 2n (because C
makes at most s oracle queries and at most 2n values are set in step Item 2b). Thus, after t
iterations we have that

Ex←{0,1}n [|{y : O(x, y) = ⋆}|] ≥ 22n − t(2n + s)

2n
= 2n − (1 + s2−n)t ≥ 2n − 2t.

For this value to be less than s + 1 (as it must be for the loop not to run), we must have that
t ≥ (2n − s)/2. ⋄

Next, we show each time the loop iteration runs there is a decent probability that CO fails
to compute f on x̃.

Claim 6.6. In each iteration of the while loop, the probability (over the randomness in step
Item 2b) that at step Item 2c CO(x̃) = f(x̃) is at most 1/2.

Proof. After step Item 2a finishes, the value of b = CO(x̃) is determined. But also immediately
after step Item 2a finishes we know that there is some y′ such that O(x̃, y′) = ⋆. This is because
in step Item 2a at most s inputs to O are set to Boolean values (since C has size at most s) and
when the loop iteration begins |{y : O(x̃, y) = ⋆}| ≥ s+ 1.

Thus, since f(x̃) is the parity of O(x̃, y) over all y, it follows that the probability (over the
uniform randomness used in step Item 2b) that b = f(x̃) is exactly half. ⋄

Putting the two claims together, we have that the probability that CO computes f is at
most 2−(2

n−s)/2 ≤ 2−2
n/3, as desired.

Acknowledgements

We thank Rahul Santhanam for helpful discussions during the initial stage of this research,
Lijie Chen for proving Claim A.1, and anonymous STOC reviewers for their helpful comments.
We also thank Yilei Chen, Aayush Jain, Huijia Lin, Amit Sahai, Neekon Vafa, and Vinod
Vaikuntanathan for answering questions about our cryptographic assumptions.

58

References
[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cam-

bridge University Press, 2009. (cit. on p. 11)

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneb-
urger. Power from random strings. SIAM Journal of Computing, 35(6):1467–1493, 2006.
doi:10.1137/050628994. (cit. on p. 1, 9, 10)

[ABMP01] Michael Alekhnovich, Samuel R. Buss, Shlomo Moran, and Toniann Pitassi. Minimum
propositional proof length is NP-hard to linearly approximate. J. Symb. Log., 66(1):171–
191, 2001. doi:10.2307/2694916. (cit. on p. 7)

[ACM+21] Eric Allender, Mahdi Cheraghchi, Dimitrios Myrisiotis, Harsha Tirumala, and Ilya
Volkovich. One-way functions and a conditional variant of MKTP. In FSTTCS, volume
213 of LIPIcs, pages 7:1–7:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.FSTTCS.2021.7. (cit. on p. 1, 4, 9)

[AD17] Eric Allender and Bireswar Das. Zero knowledge and circuit minimization. Information
and Computation, 256:2–8, 2017. doi:10.1016/j.ic.2017.04.004. (cit. on p. 1, 10)

[AFvMV06] Luis Antunes, Lance Fortnow, Dieter van Melkebeek, and N. V. Vinodchandran. Com-
putational depth: Concept and applications. Theor. Comput. Sci., 354(3):391–404, 2006.
doi:10.1016/j.tcs.2005.11.033. (cit. on p. 16)

[AGvM+18] Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew
Morgan. Minimum circuit size, graph isomorphism, and related problems. SIAM J. Com-
put., 47(4):1339–1372, 2018. doi:10.1137/17M1157970. (cit. on p. 10)

[AH19] Eric Allender and Shuichi Hirahara. New insights on the (non-)hardness of circuit minimiza-
tion and related problems. ACM Transactions on Computation Theory, 11(4):27:1–27:27,
2019. doi:10.1145/3349616. (cit. on p. 1, 10)

[AHK17] Eric Allender, Dhiraj Holden, and Valentine Kabanets. The minimum oracle circuit size
problem. Comput. Complex., 26(2):469–496, 2017. doi:10.1007/s00037-016-0124-0.
(cit. on p. 1)

[AHM+08] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and Michael E. Saks. Min-
imizing disjunctive normal form formulas and AC0 circuits given a truth table. SIAM J.
Comput., 38(1):63–84, 2008. doi:10.1137/060664537. (cit. on p. 1)

[AIV19] Eric Allender, Rahul Ilango, and Neekon Vafa. The non-hardness of approximating cir-
cuit size. In Proc. 14th International Computer Science Symposium in Russia (CSR),
volume 11532 of Lecture Notes in Computer Science, pages 13–24, 2019. doi:10.1007/
978-3-030-19955-5_2. (cit. on p. 1)

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Ann. Pure. Appl. Log., 24(1):1–48, 1983.

doi:10.1016/0168-0072(83)90038-6. (cit. on p. 3)

[All01] Eric Allender. When worlds collide: Derandomization, lower bounds, and Kolmogorov
complexity. In Proc. 21st Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), volume 2245 of Lecture Notes in Computer Science, pages 1–15, 2001.
doi:10.1007/3-540-45294-X_1. (cit. on p. 9)

[All17] Eric Allender. The complexity of complexity. In Computability and Complexity, volume
10010 of Lecture Notes in Computer Science, pages 79–94. Springer, 2017. doi:10.1007/
978-3-319-50062-1_6. (cit. on p. 1, 9)

[All21] Eric Allender. Vaughan Jones, Kolmogorov complexity, and the new complexity landscape
around circuit minimization. New Zealand Journal of Mathematics, 52:585–604, 2021. doi:
10.53733/148. (cit. on p. 9)

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM, 45(3):501–
555, 1998. doi:10.1145/278298.278306. (cit. on p. 7, 42)

59

https://doi.org/10.1137/050628994
https://doi.org/10.2307/2694916
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.7
https://doi.org/10.1016/j.ic.2017.04.004
https://doi.org/10.1016/j.tcs.2005.11.033
https://doi.org/10.1137/17M1157970
https://doi.org/10.1145/3349616
https://doi.org/10.1007/s00037-016-0124-0
https://doi.org/10.1137/060664537
https://doi.org/10.1007/978-3-030-19955-5_2
https://doi.org/10.1007/978-3-030-19955-5_2
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1007/978-3-319-50062-1_6
https://doi.org/10.1007/978-3-319-50062-1_6
https://doi.org/10.53733/148
https://doi.org/10.53733/148
https://doi.org/10.1145/278298.278306

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization
of NP. Journal of the ACM, 45(1):70–122, 1998. doi:10.1145/273865.273901. (cit. on
p. 7, 42)

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989. doi:10.1016/
0022-0000(89)90037-8. (cit. on p. 1)

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In IWCC, volume 6639 of Lecture Notes
in Computer Science, pages 11–46. Springer, 2011. doi:10.1007/978-3-642-20901-7_2.
(cit. on p. 5)

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
SIAM J. Comput., 32(3):586–615, 2003. doi:10.1137/S0097539701398521. (cit. on p. 5)

[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential
time simulations unless EXPTIME has publishable proofs. Computatioanl Complexity,
3:307–318, 1993. doi:10.1007/BF01275486. (cit. on p. 1)

[BGI+12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. Journal of the
ACM, 59(2):6:1–6:48, 2012. doi:10.1145/2160158.2160159. (cit. on p. 5)

[BS03] Dan Boneh and Alice Silverberg. Applications of multilinear forms to cryptography. In
Contemporary Mathematics, volume 324, pages 71–90. American Mathematical Society,
2003. doi:10.1090/conm/324/05731. (cit. on p. 7, 31)

[BT06] Andrej Bogdanov and Luca Trevisan. On worst-case to average-case reductions for
NP problems. SIAM Journal of Computing, 36(4):1119–1159, 2006. doi:10.1137/
S0097539705446974. (cit. on p. 1, 8)

[CDGS18] Sandro Coretti, Yevgeniy Dodis, Siyao Guo, and John P. Steinberger. Random oracles and
non-uniformity. In EUROCRYPT (1), volume 10820 of Lecture Notes in Computer Science,
pages 227–258. Springer, 2018. doi:10.1007/978-3-319-78381-9_9. (cit. on p. 27, 28,
42)

[CHI+21] Marco Carmosino, Kenneth Hoover, Russell Impagliazzo, Valentine Kabanets, and Antonina
Kolokolova. Lifting for constant-depth circuits and applications to MCSP. In ICALP,
volume 198 of LIPIcs, pages 44:1–44:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.44. (cit. on p. 3)

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.1055638. (cit. on
p. 5)

[DS04] Irit Dinur and Shmuel Safra. On the hardness of approximating label-cover. Inf. Process.
Lett., 89(5):247–254, 2004. doi:10.1016/j.ipl.2003.11.007. (cit. on p. 7)

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages
624–633. ACM, 2014. doi:10.1145/2591796.2591884. (cit. on p. 7, 9)

[ERSY22] Reyad Abed Elrazik, Robert Robere, Assaf Schuster, and Gal Yehuda. Pseudorandom
self-reductions for NP-complete problems. In ITCS, volume 215 of LIPIcs, pages 65:1–
65:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
ITCS.2022.65. (cit. on p. 8, 9, 56)

[Fei98] Uriel Feige. A threshold of lnn for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059. (cit. on p. 9)

[Fel09] Vitaly Feldman. Hardness of approximate two-level logic minimization and PAC learning
with membership queries. J. Comput. Syst. Sci., 75(1):13–26, 2009. doi:10.1016/j.jcss.
2008.07.007. (cit. on p. 1)

[FF93] Joan Feigenbaum and Lance Fortnow. Random-self-reducibility of complete sets. SIAM J.
Comput., 22(5):994–1005, 1993. doi:10.1137/0222061. (cit. on p. 1)

60

https://doi.org/10.1145/273865.273901
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1016/0022-0000(89)90037-8
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1137/S0097539701398521
https://doi.org/10.1007/BF01275486
https://doi.org/10.1145/2160158.2160159
https://doi.org/10.1090/conm/324/05731
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1137/S0097539705446974
https://doi.org/10.1007/978-3-319-78381-9_9
https://doi.org/10.4230/LIPIcs.ICALP.2021.44
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1016/j.ipl.2003.11.007
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.4230/LIPIcs.ITCS.2022.65
https://doi.org/10.4230/LIPIcs.ITCS.2022.65
https://doi.org/10.1145/285055.285059
https://doi.org/10.1016/j.jcss.2008.07.007
https://doi.org/10.1016/j.jcss.2008.07.007
https://doi.org/10.1137/0222061

[FM05] Gudmund Skovbjerg Frandsen and Peter Bro Miltersen. Reviewing bounds on the circuit
size of the hardest functions. Information Processing Letters, 95(2):354–357, 2005. doi:
10.1016/j.ipl.2005.03.009. (cit. on p. 65)

[FNV17] Antonio Faonio, Jesper Buus Nielsen, and Daniele Venturi. Predictable arguments of knowl-
edge. In Public Key Cryptography (1), volume 10174 of Lecture Notes in Computer Science,
pages 121–150. Springer, 2017. doi:10.1007/978-3-662-54365-8_6. (cit. on p. 14)

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer, 1986. doi:10.1007/3-540-47721-7_12. (cit. on p. 46)

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Math. Syst. Theory, 17(1):13–27, 1984. doi:10.1007/BF01744431. (cit. on
p. 3)

[GGH12] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices
and applications. IACR Cryptol. ePrint Arch., page 610, 2012. URL: http://eprint.iacr.
org/2012/610. (cit. on p. 7)

[GGH+16] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
J. Comput., 45(3):882–929, 2016. doi:10.1137/14095772X. (cit. on p. 5, 12)

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
Journal of the ACM, 33(4):792–807, 1986. doi:10.1145/6490.6503. (cit. on p. 1, 57)

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its ap-
plications. In STOC, pages 467–476. ACM, 2013. doi:10.1145/2488608.2488667. (cit. on
p. 3, 5, 7, 11, 21, 22, 30)

[GKLO22] Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor Carboni Oliveira. Probabilistic
Kolmogorov complexity with applications to average-case complexity. In CCC, volume
234 of LIPIcs, pages 16:1–16:60. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.CCC.2022.16. (cit. on p. 14, 15)

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In
Proc. 21st Annual ACM Symposium on Theory of Computing (STOC), pages 25–32, 1989.
doi:10.1145/73007.73010. (cit. on p. 13, 14)

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984. doi:10.1016/0022-0000(84)90070-9. (cit. on p. 5)

[Gol01] Oded Goldreich. The Foundations of Cryptography - Volume 1: Basic Techniques. Cam-
bridge University Press, 2001. doi:10.1017/CBO9780511546891. (cit. on p. 11, 13)

[Hås86] Johan Håstad. Almost optimal lower bounds for small depth circuits. In STOC, pages 6–20.
ACM, 1986. doi:10.1145/12130.12132. (cit. on p. 2, 3)

[Hås96] Johan Håstad. Clique is hard to approximate within n1−ϵ. In FOCS, pages 627–636. IEEE
Computer Society, 1996. doi:10.1109/SFCS.1996.548522. (cit. on p. 9)

[HILL99] Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal of Computing, 28(4):1364–1396, 1999.
doi:10.1137/S0097539793244708. (cit. on p. 1, 3, 57)

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
FOCS, pages 247–258, 2018. doi:10.1109/FOCS.2018.00032. (cit. on p. 1, 2)

[Hir20] Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under uniform
reductions. In Proc. 52nd Annual ACM Symposium on Theory of Computing (STOC),
pages 1038–1051, 2020. doi:10.1145/3357713.3384251. (cit. on p. 1)

[Hir22a] Shuichi Hirahara. NP-hardness of learning programs and partial MCSP. In FOCS, pages
968–979. IEEE, 2022. doi:10.1109/FOCS54457.2022.00095. (cit. on p. 1, 3, 7, 10, 11)

61

https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1016/j.ipl.2005.03.009
https://doi.org/10.1007/978-3-662-54365-8_6
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/BF01744431
http://eprint.iacr.org/2012/610
http://eprint.iacr.org/2012/610
https://doi.org/10.1137/14095772X
https://doi.org/10.1145/6490.6503
https://doi.org/10.1145/2488608.2488667
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.1145/73007.73010
https://doi.org/10.1016/0022-0000(84)90070-9
https://doi.org/10.1017/CBO9780511546891
https://doi.org/10.1145/12130.12132
https://doi.org/10.1109/SFCS.1996.548522
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1109/FOCS54457.2022.00095

[Hir22b] Shuichi Hirahara. Symmetry of information from meta-complexity. In CCC, volume 234 of
LIPIcs, pages 26:1–26:41. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.CCC.2022.26. (cit. on p. 1, 2, 4, 5, 9, 10, 16, 18)

[Hir23] Shuichi Hirahara. Capturing one-way functions via NP-hardness of meta-complexity. In
STOC, 2023. to appear. (cit. on p. 10)

[HOS18] Shuichi Hirahara, Igor Carboni Oliveira, and Rahul Santhanam. NP-hardness of minimum
circuit size problem for OR-AND-MOD circuits. In CCC, volume 102 of LIPIcs, pages 5:1–
5:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CCC.
2018.5. (cit. on p. 1, 3)

[HP15] John M. Hitchcock and Aduri Pavan. On the NP-completeness of the minimum circuit
size problem. In Proc. 35th Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 45 of LIPIcs, pages 236–245, 2015.
doi:10.4230/LIPIcs.FSTTCS.2015.236. (cit. on p. 1, 3)

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and its
variants. In CCC, volume 79 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.CCC.2017.7. (cit. on p. 8, 56)

[HW16] Shuichi Hirahara and Osamu Watanabe. Limits of minimum circuit size problem as oracle.
In Proc. 31st Computational Complexity Conference (CCC), volume 50 of LIPIcs, pages
18:1–18:20, 2016. doi:10.4230/LIPIcs.CCC.2016.18. (cit. on p. 1, 10, 11)

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural prop-
erties as oracles. In Proc. 33rd Computational Complexity Conference (CCC), volume 102
of LIPIcs, pages 7:1–7:20, 2018. doi:10.4230/LIPIcs.CCC.2018.7. (cit. on p. 1, 2, 10)

[Ila20a] Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant
and AC0[p]. In Proc. 11th Conference on Innovations in Theoretical Computer Science
(ITCS), volume 151 of LIPIcs, pages 34:1–34:26, 2020. doi:10.4230/LIPIcs.ITCS.2020.
34. (cit. on p. 1, 4, 6, 7, 9)

[Ila20b] Rahul Ilango. Constant depth formula and partial function versions of MCSP are hard. In
Proc. 61st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
424–433, 2020. doi:10.1109/FOCS46700.2020.00047. (cit. on p. 1, 2, 3)

[ILO20] Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit minimization
for multi-output functions. In CCC, volume 169 of LIPIcs, pages 22:1–22:36, 2020. doi:
10.4230/LIPIcs.CCC.2020.22. (cit. on p. 1, 10)

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proc. 10th Annual
Structure in Complexity Theory Conference, pages 134–147, 1995. doi:10.1109/SCT.1995.
514853. (cit. on p. 1)

[IRS22] Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Robustness of average-case meta-
complexity via pseudorandomness. In STOC, pages 1575–1583. ACM, 2022. doi:10.1145/
3519935.3520051. (cit. on p. 1)

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In STOC, pages 60–73. ACM, 2021. doi:10.1145/3406325.3451093. (cit. on
p. 3, 5, 12)

[JLS22a] Aayush Jain, Huijia Lin, and Amit Sahai. Personal Communication, 2022. (cit. on p. 5, 13)

[JLS22b] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over
Fp, DLIN, and PRGs in NC0. In EUROCRYPT (1), volume 13275 of Lecture Notes in
Computer Science, pages 670–699. Springer, 2022. doi:10.1007/978-3-031-06944-4_23.
(cit. on p. 5, 12, 13)

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103, 1972. doi:10.1007/
978-1-4684-2001-2_9. (cit. on p. 7, 30)

62

https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.4230/LIPIcs.CCC.2018.5
https://doi.org/10.4230/LIPIcs.CCC.2018.5
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236
https://doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.4230/LIPIcs.CCC.2016.18
https://doi.org/10.4230/LIPIcs.CCC.2018.7
https://doi.org/10.4230/LIPIcs.ITCS.2020.34
https://doi.org/10.4230/LIPIcs.ITCS.2020.34
https://doi.org/10.1109/FOCS46700.2020.00047
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.4230/LIPIcs.CCC.2020.22
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1145/3519935.3520051
https://doi.org/10.1145/3406325.3451093
https://doi.org/10.1007/978-3-031-06944-4_23
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

[KC00] Valentine Kabanets and Jin-Yi Cai. Circuit minimization problem. In Proc. 32nd Annual
ACM Symposium on Theory of Computing (STOC), pages 73–79, 2000. doi:10.1145/
335305.335314. (cit. on p. 1, 2, 3, 10)

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In STOC, pages 723–732. ACM, 1992. doi:10.1145/129712.129782. (cit. on p. 45)

[KKMP21] Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos H. Papadimitriou. Total
functions in the polynomial hierarchy. In ITCS, volume 185 of LIPIcs, pages 44:1–44:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ITCS.
2021.44. (cit. on p. 9)

[KMN+14] Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev.
One-way functions and (im)perfect obfuscation. In FOCS, pages 374–383. IEEE Computer
Society, 2014. doi:10.1109/FOCS.2014.47. (cit. on p. 3)

[KNY17] Ilan Komargodski, Moni Naor, and Eylon Yogev. Secret-sharing for NP. J. Cryptol.,
30(2):444–469, 2017. doi:10.1007/s00145-015-9226-0. (cit. on p. 5, 10)

[Ko86] Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci., 48(3):9–
33, 1986. doi:10.1016/0304-3975(86)90081-2. (cit. on p. 4)

[Ko91] Ker-I Ko. On the complexity of learning minimum time-bounded Turing machines. SIAM
Journal of Computing, 20(5):962–986, 1991. doi:10.1137/0220059. (cit. on p. 10)

[Kol65] Andrei N Kolmogorov. Three approaches to the quantitative definition of information.
Problems of information transmission, 1965. doi:10.1080/00207166808803030. (cit. on
p. 4)

[KS08] Subhash Khot and Rishi Saket. Hardness of minimizing and learning DNF expressions. In
FOCS, pages 231–240. IEEE Computer Society, 2008. doi:10.1109/FOCS.2008.37. (cit. on
p. 1, 2)

[Lev] Leonid Levin. Hardness of search problems. URL: https://www.cs.bu.edu/fac/lnd/
research/hard.htm. (cit. on p. 1)

[Lev73] Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi infor-
matsii, 9(3):115–116, 1973. (cit. on p. 1)

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In Proc. 61st
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 1243–1254,
2020. doi:10.1109/FOCS46700.2020.00118. (cit. on p. 1, 2)

[LP21a] Yanyi Liu and Rafael Pass. Cryptography from sublinear-time average-case hardness of
time-bounded Kolmogorov complexity. In STOC, pages 722–735. ACM, 2021. doi:10.
1145/3406325.3451121. (cit. on p. 1)

[LP21b] Yanyi Liu and Rafael Pass. On the possibility of basing cryptography on EXP ̸= BPP.
In Proc. 41st Annual International Cryptology Conference (CRYPTO), volume 12825
of Lecture Notes in Computer Science, pages 11–40. Springer, 2021. doi:10.1007/
978-3-030-84242-0_2. (cit. on p. 1)

[LP22] Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. In CCC,
volume 234 of LIPIcs, pages 36:1–36:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.CCC.2022.36. (cit. on p. 1, 4, 9)

[Lup58] Oleg B Lupanov. On the synthesis of switching circuits. Doklady Akademii Nauk SSSR,
119(1):23–26, 1958. (cit. on p. 65)

[LV08] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, Third Edition. Texts in Computer Science. Springer, 2008. doi:10.1007/
978-0-387-49820-1. (cit. on p. 14)

[Mer89] Ralph C. Merkle. A certified digital signature. In CRYPTO, volume 435 of Lecture Notes
in Computer Science, pages 218–238. Springer, 1989. doi:10.1007/0-387-34805-0_21.
(cit. on p. 43)

63

https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/335305.335314
https://doi.org/10.1145/129712.129782
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1109/FOCS.2014.47
https://doi.org/10.1007/s00145-015-9226-0
https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1137/0220059
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1109/FOCS.2008.37
https://www.cs.bu.edu/fac/lnd/research/hard.htm
https://www.cs.bu.edu/fac/lnd/research/hard.htm
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1145/3406325.3451121
https://doi.org/10.1145/3406325.3451121
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.1007/978-3-030-84242-0_2
https://doi.org/10.4230/LIPIcs.CCC.2022.36
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/0-387-34805-0_21

[Mic00] Silvio Micali. Computationally sound proofs. SIAM J. Comput., 30(4):1253–1298, 2000.
doi:10.1137/S0097539795284959. (cit. on p. 3, 7, 8, 42, 46, 47)

[MW17] Cody D. Murray and R. Ryan Williams. On the (non) NP-hardness of computing circuit
complexity. Theory of Computing, 13(1):1–22, 2017. doi:10.4086/toc.2017.v013a004.
(cit. on p. 1, 3, 6)

[Raz87] Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987. (cit. on p. 3)

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and
System Sciences, 55(1):24–35, 1997. doi:10.1006/jcss.1997.1494. (cit. on p. 1, 3)

[RS21] Hanlin Ren and Rahul Santhanam. Hardness of KT characterizes parallel cryptography.
In Proc. 36th Computational Complexity Conference (CCC), volume 200 of LIPIcs, pages
35:1–35:58, 2021. doi:10.4230/LIPIcs.CCC.2021.35. (cit. on p. 1)

[Rud17] Michael Rudow. Discrete logarithm and minimum circuit size. Inf. Process. Lett., 128:1–4,
2017. doi:10.1016/j.ipl.2017.07.005. (cit. on p. 10)

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, volume
196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1984. doi:10.1007/
3-540-39568-7_5. (cit. on p. 5)

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In EURO-
CRYPT, volume 1233 of Lecture Notes in Computer Science, pages 256–266. Springer,
1997. doi:10.1007/3-540-69053-0_18. (cit. on p. 7, 30)

[Sip83] Michael Sipser. A complexity theoretic approach to randomness. In STOC, pages 330–335.
ACM, 1983. doi:10.1145/800061.808762. (cit. on p. 4)

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In STOC, pages 77–82. ACM, 1987. doi:10.1145/28395.28404. (cit. on p. 3)

[Smo93] Roman Smolensky. On representations by low-degree polynomials. In FOCS, pages 130–138.
IEEE Computer Society, 1993. doi:10.1109/SFCS.1993.366874. (cit. on p. 3)

[SS20] Michael Saks and Rahul Santhanam. Circuit lower bounds from NP-hardness of MCSP
under Turing reductions. In Proc. 35th Computational Complexity Conference (CCC),
volume 169 of LIPIcs, pages 26:1–26:13, 2020. doi:10.4230/LIPIcs.CCC.2020.26. (cit. on
p. 1, 3)

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 457–473. Springer, 2005. doi:10.1007/
11426639_27. (cit. on p. 5)

[Tra84] Boris A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches)
algorithms. IEEE Annals of the History of Computing, 6(4):384–400, 1984. doi:10.1109/
MAHC.1984.10036. (cit. on p. 2)

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complex-
ity via uniform reductions. Comput. Complex., 16(4):331–364, 2007. doi:10.1007/
s00037-007-0233-x. (cit. on p. 1)

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and Null-
IO from evasive LWE. In ASIACRYPT (1), volume 13791 of Lecture Notes in Computer
Science, pages 195–221. Springer, 2022. doi:10.1007/978-3-031-22963-3_7. (cit. on
p. 6)

[Yao85] Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles (preliminary
version). In FOCS, pages 1–10. IEEE Computer Society, 1985. doi:10.1109/SFCS.1985.
49. (cit. on p. 3)

[Zuc07] David Zuckerman. Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput., 3(1):103–128, 2007. doi:10.4086/toc.2007.
v003a006. (cit. on p. 9)

64

https://doi.org/10.1137/S0097539795284959
https://doi.org/10.4086/toc.2017.v013a004
https://doi.org/10.1006/jcss.1997.1494
https://doi.org/10.4230/LIPIcs.CCC.2021.35
https://doi.org/10.1016/j.ipl.2017.07.005
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1145/800061.808762
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.4230/LIPIcs.CCC.2020.26
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1109/MAHC.1984.10036
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/978-3-031-22963-3_7
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006

A Optimality of Corollary 4.8

Claim A.1. Let 0 < δ1, δ2 < 1 be two constants such that δ1+2δ2 > 1, and f : {0, 1}n → {0, 1}
be a Boolean function where n is large enough. Then there is a circuit C of size O(2δ1n) that

Pr
x←{0,1}n

[C(x) = f(x)] ≥ 1/2 + 2−δ2n.

The following proof was suggested by Lijie Chen (personal communication).

Proof of Claim A.1. We use the fact that any Boolean function f over n′ inputs has correlation
Ω(2−n

′/2) with some PARITY function. That is, there is a string y ∈ {0, 1}n′ and a bit b such
that

Pr
x←{0,1}n′

[IP(x, y) = f(x)⊕ b] ≥ 1/2 + Ω(2−n
′/2),

where IP denotes the inner product function.
For every input x, we split it into the concatenation of x1 and x2, where |x1| = δ1n and

|x2| = (1 − δ1)n < 2δ2n. (Without loss of generality we assume δ1n is an integer.) For x1 ∈
{0, 1}δ1n, let g : {0, 1}δ1n → {0, 1}(1−δ1)n and h : {0, 1}δ1n → {0, 1} encode the PARITY function
that has non-trivial correlation with the sub-function f(x1,−), i.e.,

Pr
x2←{0,1}(1−δ1)n

[IP(g(x1), x2)) = f(x1, x2)⊕ h(x1)] ≥ 1/2 + Ω(2−(1−δ1)n/2) ≥ 1/2 + 2−δ2n.

Using Lupanov’s construction [Lup58,FM05], the functions g and h can be computed in O(n ·
(2δ1n/n)) ≤ O(2δ1n) size. Let C be the circuit such that C(x1, x2) = IP(g(x1), x2)⊕ h(x1), then
it is easy to see that the size of C is O(2δ1n) and that

Pr
x←{0,1}n

[C(x) = f(x)] ≥ 1/2 + 2−δ2n.

B Random Oracles Are Incompressible

Theorem B.1. Let O ⊆ {0, 1}⋆ be a random oracle, then w.p. 1 there is a constant c ≥ 1 such
that for all but finitely many N ∈ N,

K(O≤N) > 2N+1 − cN.

Proof. First, we show that for all but finitely many N ∈ N,

K(ON | O≤(N−1)) > 2N − 2N. (14)

Suppose that each ON is randomly generated. Then the probability that Eq. (14) holds is at
least 1− 2−2N . Fix N0 ≥ 2, the probability that for every N ≥ N0, Eq. (14) holds is at least∏

N≥N0

(1− 2−2N) ≥
∏

N≥N0

0.12
−2N ≥ 0.12

−2N0+1 ≥ 1− 2−2N0+3.

(We used that for x ∈ (0, 1/2), 1 − x ≥ 0.1x ≥ 1 − 4x.) It follows that for every ϵ > 0, there
is N0 := Θ(log(1/ϵ)) such that w.p. 1 − ϵ over a random oracle O, for every N ≥ N0, Eq. (14)
holds. Thus, w.p. 1 over a random oracle O, Eq. (14) holds for all but finitely many N .

By symmetry of information in Kolmogorov complexity, there is a universal constant c1 ≥ 1
such that K(O≤N) ≥ K(O≤(N−1)) + K(ON | O≤(N−1)) − c1N . It is thus easy to prove, by
induction on N , that there exists a constant c ≥ 1 such that for all but finitely many N ,

K(O≤N) > 2N+1 − cN.

65

	1 Introduction
	1.1 Why Care About NP-Hardness of Meta-Complexity?
	1.2 Can Cryptography Help?
	1.3 Our Results
	1.3.1 Witness Encryption and Conditional Time-Bounded Kolmogorov Complexity
	1.3.2 Oracle Witness Encryption and MOCSP
	1.3.3 CS Proofs and A Multi-Valued Version of MCSP with Random Oracles
	1.3.4 Applications

	1.4 Related Work
	1.5 Discussions on Barriers Results

	2 Preliminaries
	2.1 Witness Encryption
	2.2 Cryptographic Commitments
	2.3 SNARGs
	2.4 Kolmogorov Complexity

	3 Conditional NP-Hardness of Approximating Meta-Complexity
	3.1 Witness Encryption Implies NP-Hardness of Approximating Kt̂(x | y)
	3.2 SNARGs Imply NP-Hardness of Approximating mvMCSP

	4 Unconditional NP-Hardness of GapMOCSP
	4.1 From Witness Encryption to NP-Hardness of GapMOCSP
	4.2 From Weak Security to Strong Security
	4.3 Description of GGSW
	4.4 Security of GGSW
	4.4.1 Hybrid Games
	4.4.2 Proof of Security

	4.5 NP-Hardness of GapMOCSP and GapMINcKT

	5 Unconditional NP-Hardness of GapmvMCSPÔ
	5.1 Description of CS Proofs
	5.1.1 Probabilistically Checkable Proofs
	5.1.2 Merkle Trees
	5.1.3 Kilian's Protocol
	5.1.4 Micali's CS Proofs
	5.1.5 CS Proofs in the Common Random String Model

	5.2 Security of CS Proofs in the Plain Model
	5.3 Security of CS Proofs in the CRS Model
	5.4 NP-hardness of GapmvMCSPÔ

	6 Applications
	6.1 Pseudorandom Self-Reductions
	6.2 Heuristics for Complexity

	References
	A Optimality of Some Corollary
	B Random Oracles Are Incompressible

