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Abstract
Gradient Boosting Decision Tree (GBDT) and its variants are
widely used in industry, due to their strong interpretability.
Secure multi-party computation allows multiple data owners
to compute a function jointly while keeping their input pri-
vate. In this work, we present Squirrel, a two-party GBDT
training framework on a vertically split dataset, where two
data owners each hold different features of the same data
samples. Squirrel is private against semi-honest adversaries,
and no sensitive intermediate information is revealed during
the training process. Squirrel is also scalable to datasets with
millions of samples even under a Wide Area Network (WAN).

Squirrel achieves its high performance via several novel
co-designs of the GBDT algorithms and advanced cryptogra-
phy. Especially, 1) we propose a new and efficient mechanism
to hide the sample distribution on each node using oblivious
transfer. 2) We propose a highly optimized method for gradi-
ent aggregation using lattice-based homomorphic encryption
(HE). Our empirical results show that our method can be three
orders of magnitude faster than the existing HE approaches.
3) We propose a novel protocol to evaluate the sigmoid func-
tion on secretly shared values, showing 19×-200×-fold im-
provements over two existing methods. Combining all these
improvements, Squirrel costs less than 6 seconds per tree
on a dataset with 50 thousands samples which outperforms
Pivot (VLDB 2020) by more than 28×. We also show that
Squirrel can scale up to datasets with more than one million
samples, e.g., about 170 seconds per tree over a WAN.

1 Introduction

Gradient Boosting Decision Tree (GBDT) [25] and its variants
such as LightGBM [38] and XGBoost [15] are widely used
tree-based machine learning algorithms. Due to their high
performances as well as strong interpretability, the GBDT
algorithms have been regarded as a standard recipe for many

∗We have updated our USENIX’23 paper and this is the latest version.
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industrial tasks such as fraud detection [11, 52], financial risk
management [1,56] and online advertisement [30,43]. In such
tasks, a GBDT model owner could improve the prediction
performance of his model by integrating more data of differ-
ent features. For example, an insurance company might want
to improve its risk assessment model by integrating more fea-
tures of its customers from a hospital. However, with privacy
concerns and regulations (e.g., HIPPA and GDPR) coming
into force, it might be unsuitable to send the plain data for a
cross-enterprise collaborative GBDT training.

Secure multi-party computation (MPC) [31, 61] is a power-
ful tool that allows multiple data owners to jointly compute a
function without revealing anything beyond the function re-
sult. The recent works of Pivot [59] and HEP-XGB [22] have
demonstrated the possibility to train GBDT models collabora-
tively using MPC techniques. However, there are still many
obstacles to deploying their works in practice. For instance,
Pivot requires a communication-intensive pre-processing
phase, e.g., generating Beaver’s triples [8], which can be hun-
dreds of times more expensive than its online training phase.
On the other hand, HEP-XGB heavily relies on a semi-honest
third party (STP) [51], e.g., a Trusted Execution Environment,
to improve their performance. In a word, the performance of
HEP-XGB might drop significantly without a STP. Even un-
der their sweet-spot setting, the running times of Pivot and
HEP-XGB are still long due to the massive number of expen-
sive cryptographic operations, such as encrypting millions of
message using the Paillier cryptosystem [48].

The reason why it is difficult to design a scalable MPC solu-
tion for the GBDT training might be three-fold: 1) We require
oblivious algorithms to prevent intermediate information from
leaking. For example, when we are choosing a split point for
a tree node, in the context of plaintext, it suffices to scan the
samples belonging to that node only. However, in the context
of MPC, we need a full scan of the whole dataset, because
the sample distribution (i.e., which samples belong to which
node) is sensitive, and thus should be kept private. 2) GBDT
algorithms involve both complicated non-linear operations
(e.g., sigmoid and division) and a vast number of linear op-



erations (e.g., large matrix multiplications), requiring efforts
on both sides to improve the scalability. 3) MPC techniques
usually introduce a high communication cost. However, a
high-speed bandwidth (e.g., 10Gbps) is barely available for
cross-enterprise collaborative learning in practice.

All the above bring up a rigorous challenge for designing a
secure GBDT training protocol that is computationally fast
and communication-friendly.

1.1 Related Work

The first MPC-based privacy-preserving decision tree training
protocol is proposed by Lindell et al. [42], where they assume
secret-shared data over two parties. Their protocol is based
on oblivious transfer and Yao’s garbled circuit. After that,
Hoogh et al. [19] propose secret sharing-based protocols for
any number of parties. Moreover Abspoel et al. [3] propose an
oblivious sorting network for training decision trees privately.
The recent MPC-based frameworks Pivot [59] and HEP-
XGB [22] have made considerable improvements, and demon-
strate the ability to privately train gradient boosting trees
on vertically partitioned datasets. Particularly, both Pivot

and HEP-XGB suggest using mixed cryptographic primitives
to achieve a better performance. More specifically, Pivot
is communication intensive and thus it prefers the parties to
be interconnected with a high-speed bandwidth. HEP-XGB de-
pends on a STP to generate correlated randomness efficiently
in a pre-processing phase.

The most computationally expensive step in the existing
privacy-preserving GBDT [16, 22, 27, 59] is gradient aggrega-
tion. These methods depend on an additive homomorphic
encryption (HE) such as the Paillier cryptosystem. For a
Paillier-like HE, however, both encryption and decryption
involve multiple modular exponentiation operations with big
integers, making them extremely expensive to compute. [53]
improves the encryption performance of Paillier by about 3×
using a specialized hardware. Unfortunately, even with these
optimizations, the operations of Paillier-like HEs are still too
expensive for GBDT training. As a result, most of the existing
approaches resort to a short key for efficiency at the cost of
a legacy security level. For instance, Pivot uses a 1024-bit
key while the recommendation from NIST [47] for long term
security is to use a 3072-bit key.

Federated learning (FL) [16, 17, 27, 45] is paradigm that
transfers the intermediate values (e.g., gradients) instead of
the raw data itself. However, when the number of participants
is small (e.g., only two parties), one can hardly protect his
private information by “hiding a tree in the forest”. Revealing
intermediate results, e.g., statistics or model updates, produces
a potential leakage about the training data. Take the sample
distribution as an example. Suppose a sample x0 is categorized
to the left child due to its feature say age on one node, and the
other sample x1 is categorized to the right child on the same
node. Then the adversary can infer that the age of x0 is less

than the age of x1. Many works have shown that FL-based
solutions that leak intermediate values are vulnerable to the
attacks [26, 28, 37].

Differential privacy [21] can be used as an orthogonal prim-
itive to enhance the security of the existing privacy-preserving
GBDT. However, the GBDT prediction performance might
drop significantly. [23] reports a accuracy drop of more than
20% when applying differential privacy techniques to GBDT.

We refer to the excellent survey by Chatel et al. [13] for
a more comprehensive discussion on the privacy-preserving
tree-based model learning. To the best of our knowledge,
a scalable MPC framework for the GBDT training without
a heavy dependency on a high-speed network and trusted
hardware is still missing.

1.2 Our Contributions
In this manuscript, we present Squirrel, a two-party frame-
work for privately training GBDT models on a distributed
dataset among two parties. Squirrel is private and no sensi-
tive intermediate information is revealed during the training.
Squirrel is also scalable to datasets with millions of samples
even under a Wide Area Network. Squirrel achieves its good
performance via a careful co-design of GBDT, lattice-based
cryptography, oblivious transfer, and secret sharing. Our con-
tributions can be summarized as follows.

1. New mechanism for securing the sample distribution.
Both [59] and [22] have their own mechanism to keep the
sample distribution secret for each tree node. In Squirrel,
we propose a new mechanism that is significantly faster
than the HE-based mechanism in [59], and renders a
lower communication overhead (more than 50% off)
than the Beaver’s triple -based mechanism used by [22].

2. Orders of magnitude faster and less communication gra-
dient aggregation. We propose an efficient gradient
aggregation protocol. We design special primitives to
fully leverage the algebraic properties of the underlying
lattice-based HEs. Our approach is up to 3 orders of
magnitude faster than the existing methods that rely on
Paillier-like HEs.

3. Efficient and accurate sigmoid. To train GBDT for a
binary classification task, we propose an efficient and ef-
fective two-party protocol Seg3Sigmoid for the sigmoid
function. Seg3Sigmoid is about 9× faster (under WAN)
than the existing OT-based protocol used by Pivot. With
about 1.4×more communication, Seg3Sigmoid is about
200× faster than the recent approach [4] based on Func-
tion Secret Sharing. Seg3Sigmoid is also accurate, in-
troducing less than 3.0% F1-score drop on 6 real-word
datasets, comparing to a plain GBDT baseline.

4. Extensive evaluations. We implement the proposed pro-
tocols and optimizations. With all our optimizations,



GBDT(Ik,X,state,pp).

1. If 1≤ k < 2D−1 is not reaching the maximum depth,

(a) Find the feature z(k)∗ ∈ [m] and the threshold u(k)∗ ∈ R
that best split the samples in Ik.

(b) Let I2k ⊂ Ik and I2k+1 = Ik/I2k be the partition of Ik

according to the split (z(k)∗ ,u(k)∗ ). That is the z(k)∗ -th
feature of the samples in I2k (resp. I2k+1) has a smaller
(resp. larger) value than the threshold u(k)∗ .

(c) Return a tree whose root is attached with (z(k)∗ ,u(k)∗ )
and has edges to trees GBDT(I2k,X,state,pp) and
GBDT(I2k+1,X,state,pp).

2. Otherwise, compute a weight w(k) =− ∑i∈Ik
g[i]

∑i∈Ik
h[i]+ γ

and up-

date the prediction score of samples ỹ[i] = ỹ[i]+w(k) for all
i ∈ Ik. Return a leaf node attached with the weight w(k).

Figure 1: The GBDT algorithm for training one full tree.

Squirrel outperforms the state of the art. The total run-
ning time of Squirrel is 28× faster than Pivot’s online
time1. Squirrel is about 3× faster than the TEE-aided
HEP-XGB over a WAN. We also show the scalability of
Squirrel on a dataset with one million samples. The train-
ing time is about 90 seconds per tree under the WAN.

2 Preliminaries

2.1 Notations
We denote by [n] the set {0, · · · ,n−1} for n ∈N. For a set D ,
x ∈R D means x is sampled from D uniformly at random. We
use ⌈·⌉, ⌊·⌋ and ⌊·⌉ to denote the ceiling, flooring, and round-
ing function, respectively. We denote Zq =Z∩ [0,q) for q≥ 2.
The logical AND and XOR is ∧ and⊕, respectively. Let 1{P}
denote the indicator function that is 1 when the predicate P is
true and 0 when P is false. We use lower-case letters with a
“hat” symbol such as â to represent a polynomial, and â[ j] to
denote the j-th coefficient of â. We use the dot symbol · such
as â · b̂ to represent the multiplication of polynomials. For a
2-power number N, and q > 0, we write AN,q to denote the
set of integer polynomials AN,q = Zq[X ]/(XN +1). We use
bold letters such as a,M to represent vectors and matrix, and
use a[ j] to denote the j-th component of a and use M[ j, i] to
denote the ( j, i) entry of M. The Hadamard product of vectors
is written as a⊙b.

Other notations related to GBDT are summarized as fol-
lows. n and m denote number of samples and features, respec-
tively. D is the maximum depth of a tree. The node index in a
full and balanced tree iterates in k ∈ {1,2, · · · ,2D−1}.

1The pre-processing costs of Pivot were not reported in their paper.

2.2 Gradient Boosting Decision Tree
GBDT trains a sequence of T > 0 decision trees Tt : Rm 7→R
in an additive manner. On the input x ∈ Rm, each tree Tt will
classify it to one leaf node and results at a weight. The final
prediction is given as the sum of T weights ỹ = ∑

T
t=1 Tt(x).

A GBDT tree is constructed top-down in a recursive man-
ner. At the root, each feature is tested to determine how well
it alone classifies the current samples. The “best” feature and
threshold (to be discussed below) are then chosen and we
split the current samples into two partitions by them. We then
recursively call GBDT on the two partitions. See Fig. 1 for
a description of the GBDT training algorithm for one deci-
sion tree. The matrix X ∈ Rn×m indicates the training dataset.
The state parameter state contains stateful values, including
ỹ the prediction of all the samples, g and h, the first- and
second-order gradient of all the samples. These values will
be updated along the training process. The public parameter
pp contains some fixed values such as the maximum depth D
and a regularizer γ > 0.

What remains is to explain how to choose the best predict-
ing feature and the threshold. However, this is intractable to
test all possible thresholds in practice. Most GBDT frame-
works [15, 38] thus accelerate the training process by dis-
cretizing the numeric features. For instance, the ‘Age’ fea-
ture can be discretized into 2 sorted bins like Age < 18
and Age ≥ 18. To ease the presentation, we assume all fea-
tures are discretized into B sorted bins in this work. Given
a sample set Ik, we can move the subset to the left child
I(z,u)2k = {i|X[i,z]≤ bin(z,u)∧ i∈ Ik} and bin(z,u) ∈R is a thresh-
old defined by the u-th bin of the z-th feature. The samples in
I2k+1 = Ik/I2k are moved to the right child. The score under
this partition is then given by

G (k,z,u) =
(∑i∈I(z,u)2k

g[i])2

γ+∑i∈I(z,u)2k
h[i]

+
(∑i∈I(z,u)2k+1

g[i])2

γ+∑i∈I(z,u)2k+1
h[i]
−

(∑i∈Ik g[i])2

γ+∑i∈Ik h[i]
.

(1)

The idea is therefore to iterate all (z,u) pairs and find the one
that gives the maximum score. We designate it as the ‘split
identifier’ on the node k.

The prediction vector ỹ is usually initialized randomly for
the 1st tree. Once a GBDT tree is built, we update the gradient
vectors before moving to the next tree. For instance, for a
binary classification task using the cross-entropy loss, the
gradients are computed as g = p− y and h = p⊙ (1− p)
where y is the sample label vector and p = 1/(1+ exp(−ỹ)).

2.3 Cryptographic Primitives
2.3.1 Additive Secret Sharing

Throughout this manuscript, we use 2-out-of-2 additive secret
sharing schemes over the ring Z2ℓ . An ℓ-bit (ℓ ≥ 2) value x



is additively shared as ⟨x⟩0 and ⟨x⟩1 where ⟨x⟩l is a random
share of x held by Pl . To reconstruct the value x, we com-
pute the modulo addition, i.e., x ≡ ⟨x⟩0 + ⟨x⟩1 mod 2ℓ. For
a real value x̃ ∈ R, we first encode it as a fixed-point value
x = ⌊x̃2 f ⌋ ∈ [−2ℓ−1,2ℓ−1) under a specified precision f > 0
before secretly sharing it. For a boolean value z ∈ {0,1},
we use ⟨z⟩B0 and ⟨z⟩B1 to denote the shares of z such that
z = ⟨z⟩B0 ⊕⟨z⟩

B
1 . Also we omit the subscript and only write ⟨x⟩

or ⟨z⟩B when the ownership is irrelevant from the context.

2.3.2 Oblivious Transfer

We rely on oblivious transfer (OT) for the non-linear compu-
tation in GBDT. In a general 1-out-of-2 OT, a sender inputs
two messages m0 and m1 of length ℓ bits and a receiver in-
puts a choice bit c ∈ {0,1}. At the end of the protocol, the
receiver learns mc, whereas the sender learns nothing. When
sender messages are correlated, the Correlated OT (COT) is
more efficient in communication [7]. In our additive COT,
a sender inputs a function f (x) = x+∆ for some ∆ ∈ Z2ℓ ,
and a receiver inputs a choice bit c. At the end of the pro-
tocol, the sender learns x ∈ Z2ℓ whereas the receiver learns
x+c ·∆ ∈ Z2ℓ . In this work, we use the Ferret [60] protocol
for a lower communication COT. Ferret exchanges about
O(ℓ) bits for each choice on ℓ-bit strings.

2.3.3 Lattice-based Additive Homomorphic Encryption

A homomorphic encryption (HE) of x enables computing the
encryption of F(x) without the knowledge of the decryption
key. In this work, we use two lattice-based HEs, i.e., learning
with errors (LWE) HE and its ring variant (RLWE). These
two HEs share a set of public parameters HE.pp= {N,q, p}.
Particularly, we set the plaintext modulus p = 2ℓ in this work.
We leverage the following functions.

• KeyGen. Generate the RLWE key pair (sk,pk) where
the secret key sk ∈ AN,q and the public key pk ∈ A2

N,q.
We identify the LWE secret key s ∈ ZN

q as the coefficient
vector of sk, i.e., s[ j] = sk[ j] for all j ∈ [N].

• Encryption. We write RLWE
N,q,p
pk (m̂) to denote the

RLWE ciphertext of m̂ ∈ AN,p under the key pk. An
RLWE ciphertext is given as polynomials tuple (b̂, â) ∈
A2

N,q. We write LWE
N,q,p
s (m) to denote the LWE cipher-

text of of m ∈ Zq under the key s. An LWE ciphertext is
given as a vector (b,a) ∈ ZN+1

p .

• Addition (⊞). Given two LWE ciphertexts ct0 =(b0,a0)
and ct1 = (b1,a1) that encrypts m0 ∈ Zp and m1 ∈ Zp
respectively, the operation ct0 ⊞ ct1 computes the LWE
tuple (b0 +b1 mod q,a0 +a1 mod q) which can be de-
crypted to m0 +m1 mod p. The RLWE homomorphic
addition is computed similarly but over the ring AN,q.

• PackLWEs. Given LWE ciphertexts {LWE
N,q,p
sk (mi)}i

for i ∈ [2n] (2n ≤ N), we can homomorphically merge
them into one RLWE ciphertext that decrypts to a poly-
nomial m̂ ∈ AN,p under the secret key sk satisfying
m̂[(N/2n) · i] = mi for all i ∈ [2n]. We defer the details of
PackLWEs to Chen et al.’s paper [14].

2.3.4 Mixed Primitives System

The oblivious GBDT algorithm involves both a large number
of linear operations and complicated non-linear operations.
We use the lattice-based HEs to utilize the players’ local
computation power as much as possible, and switch to se-
cret sharing where HE is unsuitable in terms of functionality.
Specifically, we use the following conversions to safely switch
forth-and-back between secret sharing and HE.
Arithmetic Share to HE A2H. We write ⟨a⟩Hl to denote
RLWE ciphertext(s) that held by Pl but encrypted under P1−l’s
key. Converting the arithmetic share of N-sized vector ⟨a⟩ to
homomorphic encryption form can be done by evaluating the
modulo addition homomorphically. Specifically, Pl arranges
his shares into a polynomial âl = ∑

N−1
i=0 ⟨a[i]⟩l X i, and then

sends a ciphertext RLWE
N,q,2ℓ
pkl

(âl) to P1−l using his key pkl .

Then P1−l computes ⟨a⟩H1−l = RLWE
N,q,2ℓ
pkl

(âl)⊞ â1−l .
HE to Arithmetic Share H2A ( [34]). A conversion from
⟨a⟩Hl to the arithmetic share ⟨a⟩ is done as follows: Pl sam-
ples r̂ ∈R AN,q, and sends the sum ct = ⟨a⟩Hl ⊞ r̂ to the op-
posite. Then P1−l decrypts ct and outputs the coefficients
vector as the share ⟨a⟩1−l . On the other hand, Pl sets ⟨a[i]⟩l =
−⌈2ℓ · r̂[i]/q⌋ mod 2ℓ for all i ∈ [N].

3 Problem Statement

3.1 Threat Model and Privacy
Similar to previous work [3, 42, 59], we target privacy against
a static and semi-honest probabilistic polynomial time (PPT)
adversary following the simulation paradigm [10, 32]. We
recap the privacy definition from [32, 42]. Let F : {0,1}∗×
{0,1}∗ 7→ {0,1}∗×{0,1}∗ be a deterministic functionality
where F0(x0,x1) (resp. F1(x0,x1)) denotes the 1st element
(resp. the 2nd) of F(x0,x1) and let Π be a two-party protocol
for computing F . The view of P0 (resp. P1) during an execu-
tion of Π on (x0,x1) is denoted V Π

0 (x0,x1) (resp. V Π
1 (x0,x1)).

Definition 1 (Privacy ( [32, 42])) For a function F, we say
that Π privately computes F if there exist PPT algorithms,
denoted S0 and S1, such that

{S0(x0,F0(x0,x1))}x0,x1∈{0,1}∗
c≡ {V Π

0 (x0,x1)}x0,x1∈{0,1}∗

{S1(x1,F1(x0,x1))}x0,x1∈{0,1}∗
c≡ {V Π

1 (x0,x1)}x0,x1∈{0,1}∗

where
c≡ denotes computational indistinguishability.



FGBDT(Input
Π
0 = {X0}, InputΠ

1 = {X1,y},pp).

• OutputΠ
0 =

{
C0,
{〈

w(k)
〉

0

}
k≥2D−1

}
where C0[k] =

(z(k)∗ ,u(k)∗ ) if u(k)∗ < m0 otherwise C0[k] =⊥.

• OutputΠ
1 =

{
C1,
{〈

w(k)
〉

1

}
k≥2D−1

}
where C1[k] =

(z(k)∗ ,u(k)∗ ) if u(k)∗ ≥ m0 otherwise C1[k] =⊥.

Figure 2: Target GBDT functionality FGBDT. ⊥ denotes a
special error symbol such that ⊥ ̸= {0,1}∗.

Definition 1 states that the views of the parties can be
properly constructed by a polynomial time algorithm given
the party’s input and output solely. Also, the parties here are
semi-honest and the view is therefore exactly according to
the protocol specification.
Composition of Private Protocols. Our Squirrel framework
is composed of many sub-protocols of smaller private com-
putations. We describe Squirrel using the hybrid model to
simplify our protocol description and the security proofs. A
protocol invoking a functionality F is said to be in “F -hybrid
model”. This is similar to a real protocol, except that some
sub-protocols are replaced by the invocations of instances
of corresponding functionalities. One can consider there is
an oracle who computes the corresponding functionalities
faithfully in the ideal world. This follows the composition
theorem of the semi-honest model [10].

3.2 Private GBDT Training

We focus on a vertical setting where the two parties P0 and
P1 share a different feature space for the same samples. They
run a two-party protocol Π to privately implement the GBDT
function described in Fig. 1 on the joint dataset. We assume
the joint dataset X contains n samples and m features. We
write Xl ∈ Rn×ml to denote the data owned by the player
Pl . The features are vertically distributed between the two
parties. We assume P0’s features come before P1’s features,
and we also assume the two datasets are already aligned via
the common private set intersection technique [20, 24]. That
is X = X0∥X1. Without loss of generality, we let P1 hold the
whole label vector y.

We note that encrypted computation does not automati-
cally make GBDT private. We now define our private GBDT
functionality in Fig. 2. Specifically, the split identifier is only
opened to the party who holds the corresponding feature. All
the leaf weights are kept in the secret share form. The inter-
mediate values (e.g,. Ik and state in Fig. 1) during the training
process are not revealed.

Most of the existing approaches such as [22, 42, 59] also
open the split identifiers as part of the output. We reveal no
more information than these approaches. The split identifiers

may be exploited by attackers. For instance, Zhu et al. [62]
quantify the privacy risks associated with publishing decision
trees. We think it is an orthogonal problem and could be
studied in a separated work.

4 Proposed Squirrel Framework

4.1 Overview

The plain GBDT algorithm described in Fig 1 involves many
data-dependent branches, which are not MPC-friendly. We
need to convert the plain GBDT algorithm to an oblivious
counterpart where the GBDT execution flow is independent
with the input data. Specifically, we additionally maintain a
(secret) indicator vector b(k) ∈ {0,1}n between the two parties
P0 and P1, for each tree node. That is ∀i ∈ [n], b(k)[i] = 1
indicates the i-th sample is available on the k-th node, and
b(k)[i] = 0 otherwise. We will show how to obliviously update
the indicator vector b(k) between the parties later. The core
idea for our private GBDT is to use the following invariant

g(k) = b(k)⊙g, h(k) = b(k)⊙h. (2)

Then we can aggregate the gradients statistics in (1) using a
binary matrix–vector multiplications M(z) ·g(k). The binary
matrix M(z) ∈ {0,1}B×n and M(z)[u, i] = 1 means that the i-th
sample is categorized into the u-th bin of the z-th feature. The
statistics in (1) now can be given as

∑
i∈I(z,u)2k

g[i] = ∑
j≤u

(M(z) ·g(k))[ j], ∑
i∈I(z,u)2k+1

g[i] = ∑
j>u

(M(z) ·g(k))[ j].

A similar computation translates to the 2nd order statistics us-
ing M(z) ·h(k). We write q(k,z) ∈ RB and p(k,z) ∈ RB to denote
product vector M(z) ·g(k) and M(z) ·h(k), respectively. Then
the score of (1) can be rewritten as

G (k,z,u) =
(∑ j≤u q(k,z)[ j])2

γ+∑ j≤u p(k,z)[ j]
+

(∑ j>u q(k,z)[ j])2

γ+∑ j>u p(k,z)[ j]
−

(∑ j q(k,z)[ j])2

γ+∑ j p(k,z)[ j]
(3)

There are two kinds of sub-protocols needed to implement
our private GBDT algorithm. The ones whose costs grow
considerably with the sample size n, and the ones whose
costs increase mildly with n. For the latter, we re-use existing
protocols for the following functionalities.

• ⟨z⟩ ← Fmul(⟨x⟩ ,⟨y⟩) [8]. On receiving the shares ⟨x⟩l
and ⟨y⟩l from each player, outputs ⟨z⟩l to Pl such that
z≡ x · y mod 2ℓ.

• ⟨z⟩ ← Frecip(
〈
x̃ ·2 f

〉
; f ) [12]. On receiving the share〈

x̃ ·2 f
〉

with f -bit fixed-point precision from both play-
ers, outputs ⟨z⟩l to Pl such that z≡ ⌊2 f /x̃⌋ mod 2ℓ.



• ⟨b⟩B ← Fgreater(⟨x⟩ ,⟨y⟩) [34]. On receiving the shares
⟨x⟩l and ⟨y⟩l from each player, outputs ⟨b⟩Bl to Pl such
that b = 1{x > y}.

• ⟨z⟩ ← Fargmax({⟨xi⟩}i) [41]. On receiving the shares
{⟨xi⟩l}i from each player, outputs ⟨z⟩l to Pl such that
xz = max(x0,x1,x2, · · ·).

On the other hand, we design efficient protocols for the more
expensive functions needed by GBDT. Specifically, the com-
putation of the first order gradients (e.g., g = σ(ỹ)− y for
the cross-entropy loss) and gradient statistics aggregation
(e.g., Mz · g(k)) are two of the “hot spot” of private GBDT
protocols. For example, the sigmoid function and gradient
statistics aggregation can respectively take up more than 15%
and 63% of the total training time in HEP-XGB. Also, we need
an efficient method to maintain the invariant of (2) since we
need to compute it for each tree node. Unfortunately, Pivot
uses a Paillier-like HE for (2), rendering about O(n ·2D) HE
operations which is extremely expensive.

In the following sections, we present three private proto-
cols for these “hot spot” functions, including a lightweight
protocol (§4.2) for (2) using COT, an efficient Seg3Sigmoid
protocol (§4.3) for the (approximated) sigmoid function, and a
highly optimized protocol BinMatVec (§4.4) for the gradient
statistics aggregation using lattice-based HEs.

4.2 To Maintain the Invariant (2) While Keep-
ing the Sample Indicator Secret

In Squirrel, the sample indicator vector b(k) is kept private
from P0 and P1. To maintain the invariant (2), we let Pl to
hold one more vector b(k)

l ∈ {0,1}n on each node k. Then

we maintain the relation b(k)
0 ∧b(k)

1 = b(k) for each node. We
observe three advantages of this AND-style relation.

1. Pl can locally compute the corresponding b(2k)
l and

b(2k+1)
l for the two child nodes from b(k)

l .

2. Only one call of FCOT is needed to compute (2).

3. The gradient statistics aggregation can be accelerated
using the AND property. We discuss this later in §4.5.

For the root node, we have b(1)
0 = b(1)

1 = 1n since all the
samples are available on the root node. We now show how to
update the indicator b(k) for its child nodes. The key point
for Squirrel here is that once the best split identifier (z(k)∗ ,u(k)∗ )
on the node k has been opened to a party (say Pc), then Pc
can update b(k) locally. To do so, Pc first constructs a vector
b(k)
∗ ∈ {0,1}n where b(k)

∗ [i] = 0 means the z(k)∗ -th feature of
the i-th sample has a larger value than a threshold defined
by the u(k)∗ -th bin. Thus, from the view of Pc, this sample is
definitely not in the left child. Other positions of b(k)

∗ are set

ID Age

<30

Age

>=30

Weight

< 60kg

Weight 

>= 60kg

1 1 1

2 1 1

3 1 1

4 1 1

ID Education  
< 12y

Education   
>=12y

Income

< $5000

Income

>= $5000

1 1 1

2 1 1

3 1 1

4 1 1

M0 M1

(z (2)
* = 2,u(2)

* = 0) ⇔ is Education < 12 years

1 1 1 0
0 0 1 0
0 0 0 1
1 1 1 0

b(5)b(5)
0 b(2)

*b(5)
1

1 1 1
1 1 1
1 1 1
1 1 1

b(1)b(1)
0 b(1)

1

1 1 1 1
0 0 0 1
0 0 0 1
1 1 1 1

b(2)b(2)
0b(1)

* b(2)
1

1 0 0 0
0 0 0 0
0 0 1 1
1 0 0 0

b(4)b(4)
0 b(2)

*b(4)
1

(z (3)
* = 3,u(3)

* = 1) ⇔ is Income < $5000

0 0 0 1
1 0 0 1
1 1 1 0
0 0 1 0

b(7)b(7)
0 b(3)

*b(7)
1

1 0 0 1
0 1 1 1
0 1 1 1
1 0 0 1

b(3)b(3)
0b(1)

* b(3)
1

0 0 1 1
1 1 1 1
1 0 0 0
0 0 0 0

b(6)b(6)
0 b(3)

*b(6)
1

X0 = {x1 = [28,71.2kg], x2 = [41,82.7kg],
x3 = [21,77.0kg], x4 = [30,50.0kg] } X1 = {x1 = [15y, $4500], x2 = [12y, $3600],

x3 = [10y, $6000], x4 = [18y, $9500] }

Yes No

(z (1)
* = 0,u(1)

* = 0) ⇔ is Age < 30 

Yes No Yes No

Figure 3: Toy example for indicator update on n = 4,m0 =

m1 = 2 and B = 2. P0 splits the node k = 1 on the z(1)∗ = 0 bin
of his u(1)∗ = 0 feature. P1 splits the nodes k = 2 and k = 3.
Cells painted in red are known locally by P0 and cells painted
in purple are known locally by P1.

to 1. The ground sample indicator is b(2k) = b(k)∧b(k)
∗ for the

left child, and b(2k+1) = b(k)⊕b(2k) for the right child.
Pc then locally updates the indicators for child nodes as

b(2k)
c = b(k)

c ∧b(k)
∗ and b(2k+1)

c = b(k)
c ⊕b(2k)

c . On the opposite
side, P1−c has no information about the split and thus he keeps
the indicators unchanged, i.e., b(2k)

1−c = b(2k+1)
1−c = b(k)

1−c. To see
the correctness, we let c = 0 without loss of generality. The
correctness for the two child indicators is given as

b(2k)
0 ∧b(2k)

1 = (b(k)
0 ∧b(k)

∗ )∧b(k)
1 = b(k)∧b(k)

∗ = b(2k),

b(2k+1)
0 ∧b(2k+1)

1 = (b(k)
0 ⊕b(2k)

0 )∧b(2k+1)
1

= (b(k)
0 ∧b(2k+1)

1 )⊕ (b(2k)
0 ∧b(2k+1)

1 ) = b(2k+1).

In Fig. 3, we present a toy example for the indicator update.
The invariant (2) now can be viewed as the product between

a private choice vector b(k)
∗ and secretly shared vectors as

g(2k) = b(2k)⊙g = (b(k)∧b(k)
∗ )⊙g = b(k)

∗ ⊙g(k). This can be
computed using one instance of FCOT (see Appendix B.1). A
similar computation translates to h(2k) as h(2k) = b(k)

∗ ⊙h(k).
Privacy. We note that the information b(k)

∗ [i] = 0 can be di-
rectly derived from the split identifier (z(k)∗ ,u(k)∗ ) which is a
part of the protocol output of Pc. Also, the update of child
indicators involves local computation only. As a result, the
privacy for the indicator update follows trivially in the FCOT
hybrid.
Complexity. The Ferret COT [60] sends about O(ℓ) bits per
choice on ℓ-bit messages. Thus to maintain the invariant of
(2), we need to send about O(2nℓ) bits. To compare, HEP-XGB
uses the Beaver’s triples [8] to compute the multiplications
in (2), and thus about O(4nℓ) bits are exchanged in their
method. On the other hand, Pivot uses Paillier HE for (2) by



Figure 4: Left: We approximate σ(·) using three segments.
Right: We use fixed activation on the margins.

keeping the indicator in the encryption form all the time. As
a result, their method sends O(2n) Paillier ciphertexts which
is a significantly larger communication than ours.

4.3 Private Two-party Sigmoid Protocol

The exact (or highly accurate) evaluation of the sigmoid func-
tion in MPC can be significantly expensive. For example,
the OT-based sigmoid protocol used by Pivot requires to
exchange of about 15.3KB messages per input. For the sake
of a lower communication overhead, many approximations
for the sigmoid are considered [22, 39, 44]. In Squirrel, we
approximate the sigmoid function by delicately combining
numeric approximation with multiple segments. In detail, we
numerically approximate the sigmoid function over a limited
range, and use two linear pieces to cover the margins. Our
approximated sigmoid function is given by three segments:

σ(x)≈ Seg3Sigmoid(x) =


σ(−τ) if x <−τ

F(x) if x ∈ [−τ,τ]

σ(τ) if x > τ

. (4)

The middle segment is a degree-J Fourier series

F(x) = ω0 +
J

∑
j=1

ω j sin(
2π · j · x

2L+1 ), (5)

where L = ⌈log2 τ⌉ and ωk ∈ [−1,1] are some fixed Fourier
coefficients. By choosing the proper τ and J parameters, we
can approximate the sigmoid within a relatively small error.

In Fig 4, we plot out the absolute difference between the
ground truth σ(x) and F(x) which is bounded by 2.2×10−2

when τ = 5.6 and J = 9. One might wonder that the private
evaluation of the sine function should be more expensive than
the numeric methods [22, 39]. Fortunately, we observe a nice
property of the sine function that allows us to evaluate the
scaled sine sin(2πx/2δ) on the share of x ∈ [0,2δ) using the
Fmul functionality only. We first introduce a fraction function
Frδ(a) = (a mod 2δ)/2δ ∈ [0,1) to ease the presentation. By
the definition of arithmetic share, we know x = ⟨x⟩0 + ⟨x⟩1 +
ε2ℓ (without modulo) for some ε ∈ {0,1}. Then we have the

Require: ⟨x⟩ with f -bit fixed-point precision that is x = ⌊x̃2 f ⌋.
Fixed Fourier coefficients ω0,ω1, · · · ,ωJ−1 ∈ R and interval
parameters τ ∈ R+ and L ∈ Z+.

Ensure: The approximated sigmoid ⟨g(x̃)⟩.

1: Pl computes the fraction ũl = Fr2L+1+ f (⟨x⟩l) ∈ R.
2: Pl computes fixed-point values sl, j = ⌊ωk · sin(2π · j · ũl) ·

2 f ⌋ ∈ Z2ℓ and cl, j = ⌊cos(2π · j · ũl) · 2 f ⌋ ∈ Z2ℓ for j =
1, · · · ,J−1.

3: For j = 1, · · · ,J−1, jointly compute〈
s j
〉
← Fmul(s0, j,c1, j) ▷ s j ≡ s0, j · c1, j mod 2ℓ〈

c j
〉
← Fmul(c0, j,s1, j) ▷ c j ≡ c0, j · s1, j mod 2ℓ

4: P0 computes ⟨F(x̃)⟩0 = ⌊ω0 ·22 f ⌋+∑
J−1
j=1(

〈
s j
〉

0 +
〈
c j
〉

0).

5: P1 computes ⟨F(x̃)⟩1 = ∑
J−1
j=1(

〈
s j
〉

1 +
〈
c j
〉

1).
6: Jointly compute two greater-than bits

⟨bleft⟩B← Fgreater(−τ ·22 f ,⟨x⟩) ▷bleft = 1{−τ > x̃}〈
bright

〉B← Fgreater(⟨x⟩ ,τ ·22 f ) ▷bright = 1{x̃ > τ}

P0 then locally sets ⟨bmid⟩B0 = ⟨bleft⟩B0 ⊕
〈
bright

〉B
0 ⊕1, and P1

locally sets ⟨bmid⟩B1 = ⟨bleft⟩B1 ⊕
〈
bright

〉B
1 .

7: Jointly compute the multiplixers using FCOT.

⟨bleft ·σ(−τ)⟩ ← ⟨bleft⟩B ,σ(−τ)

⟨bmid ·F(x̃)⟩ ← ⟨bmid⟩B ,⟨F(x̃)⟩〈
bright ·σ(τ)

〉
←
〈
bright

〉B
,σ(τ)

Pl then aggregates them and outputs as the share of ⟨g(x̃)⟩l .

Figure 5: Seg3Sigmoid Private sigmoid protocol under the
Fmul-, Fgreater- and FCOT hybrid.

following equations.

sin(2πx/2δ) =sin(2π(⟨x⟩0 + ⟨x⟩1 + ε2ℓ)/2δ)

=sin(2πFrδ(⟨x⟩0)+2πFrδ(⟨x⟩1))
=sin(2πFrδ(⟨x⟩0))cos(2πFrδ(⟨x⟩1))
+ cos(2πFrδ(⟨x⟩0))sin(2πFrδ(⟨x⟩1)). (6)

The last line comes from the double-angle formula sin(x+
y) = sin(x)cos(y)+ sin(y)cos(x). The insight in (6) is that
the values sin(2πFrδ(⟨x⟩l)) and cos(2πFrδ(⟨x⟩l)) can be com-
puted locally by each party. Also, we can merge the multipli-
cation with the Fourier coefficients {ω j} j into (6) since they
are known by both parties. In other words, for each shared
input ⟨x⟩, we can privately evaluate (5) by invoking 2(J−1)
concurrent calls to Fmul.

We now present our private sigmoid protocol Seg3Sigmoid
in Fig. 5. To privately select the activate segment in (4), we
access to Fgreater. Particularly, given the shares of two greater-
than bits bleft = 1{−τ > x̃} and bright = 1{x̃ > τ}, we can
obtain the boolean share of bmid = 1{x̃ ∈ [−τ,τ]} locally via



bmid = 1⊕bleft⊕bright. Finally, we complete the evaluation as
bleft ·σ(−τ)+bmid ·F(x)+bright ·σ(τ) using two COTs (see
Appendix B.2). Finally, we need one truncation to bring down
the fixed-point precision. In practices, when 2 f ≪ ℓ, we prefer
to use the local truncation [46] to avoid extra interactions
between the parties. Otherwise, when 2 f ≈ ℓ, we need to use
a faithful truncation protocols such as [34].

Theorem 1 Seg3Sigmoid in Fig. 5 is a private protocol that
implements (4) following the Definition 1 under the Fmul-,
Fgreater- and FCOT hybrid.

We defer the proof to Appendix C due to space limit.
Complexity. The evaluation of Seg3Sigmoid on one input
will exchange about O(8J log2 q) bits for Fmul, O(22ℓ) bits
for two Fgreater and O(6ℓ) bits for FCOT.
Compared with the existing private sigmoid protocols. To
compute the sigmoid, MP-SPDZ [39] uses a Taylor series
polynomials to approximate the exponential exp(x) followed
by a division. HEP-XGB [22] uses a numeric approximation
σ(x) ≈ 0.5+ 0.5 · x/(1+ |x|). These numeric methods can
communicate more messages than Seg3Sigmoid (as shown
later in Table 2).

Other private protocols [33, 40] use least-square polyno-
mials to approximate the sigmoid in a limited range. How-
ever, these methods are tend to be numerically unstable in
the context of MPC computation. For instance, the degree-7
least-square polynomials in [40] contains a coefficient value
1.196× 10−6 ≈ 2−20 which is expensive to represent using
fixed-point values. A lower degree approximation polyno-
mial (e.g., degree-3) can alleviate this issue but will introduce
larger errors.

Besides the numeric approximation, piece-wise approxima-
tions are also commonly considered in literature. Mohassel et
al. [46] use 3 linear segments to approximate the sigmoid at a
cost of accuracy loss due to the rough granularity. To avoid
a such accuracy loss, Liu et al. [44] suggest using more than
12 linear segments for the sigmoid function which thus needs
more calls to Fgreater than ours.

4.4 Efficient Gradient Aggregation Protocol
The gradient aggregation in GBDT involves matrix-vector
multiplication where the (data) matrices are binary and lo-
cally held in plaintext by the parties in our vertical setting.
The multiplication M ·g given a binary matrix can be achieved
via a “pick-then-sum” manner, i.e., (M ·g)[ j] = ∑i|M[ j,i]=1 g[i]
for each row j. In most of the existing approaches, each ele-
ment of the gradient vector g is encrypted separately using
HE scheme so that the multiplication M ·g can be done via
homomorphic additions performed by the holder of M. How-
ever, the encryption of a long vector using a Paillier-like HE
can be extremely expensive.

On the other hand, the RLWE encryption can provide
a significantly faster encryption throughput than a Paillier-

Require: P1−l : ⟨g⟩1−l ∈ Zn
2ℓ , key pair (sk1−l ,pk1−l).

Pl : ⟨g⟩l ∈ Zn
2ℓ and binary matrix M ∈ {0,1}B·m×n.

A lifting key LK for LWE dimension lifting.

Ensure: ⟨M ·g⟩ ∈ ZB·m
2ℓ .

1: Jointly run A2H where P1−l acts as sender with input ⟨g⟩1−l
and Pl act as receiver with input ⟨g⟩l . After the execution, Pl

obtains ⟨g⟩Hl while P1−l obtains nothing.
2: Pl initializes a (B ·m)-sized array of LWE encryption of 0,

denoted as ct j for j ∈ [B ·m].
3: for all position ( j, i) such that M[ j, i] = 1 do
4: [Pick.] Pl extracts an LWE c̃t j,i from ⟨g⟩H1 that decrypts to

g[i] under P1−l’s secret key.
5: [Sum.] Pl updates the j-th entry using LWE homomorphic

addition: ct j = ct j ⊞ c̃t j,i.
6: end for
7: ct j← LWEDimLift(ct j,LK)∀ j ∈ [m] ▷ opt. from §4.5
8: Pl locally merges the LWE ciphertexts as RLWE ciphertexts

by ⟨M ·g⟩Hl ← PackLWEs(ct0,ct1, · · · ,ctB·m−1).
9: Run H2A jointly where Pl acts as sender with input ⟨M ·g⟩Hl

and P1−l act as receiver with input sk1−l . Both party Pl outputs
what he recevied from H2A as his arithmetic share ⟨M ·g⟩l .

Figure 6: BinMatVec Private binary matrix-vector multiplica-
tion using the H2A and A2H conversions. NOTE: The framed
parts are run in the optimized version.

like HE. In Squirrel, the gradient vector g is first encoded
as the coefficients of polynomials before the encryption,
e.g., RLWE

N,q,2ℓ
pk (g[0]+g[1]X + · · ·+g[N−1]XN−1). When

n > N, we can use multiple RLWE ciphertext to hold the
n coefficients. Then the problem becomes to select a spe-
cific encrypted coefficient from RLWE ciphertexts. Indeed,
we can extract (or “pick”) a specific encrypted coefficient
from RLWE while the extracted ciphertext is a valid LWE
ciphertext under the same secret key. More specifically, given
(b̂, â) = RLWE

N,q,p
pk (m̂) of m̂, we use the function Extract :

A2
N,q× [N] 7→ ZN+1

q to obtain

(b,a) ∈ ZN+1
q ← Extract((b̂, â),k)

such that b = b̂[k] and a = [â[k], â[k− 1], · · · , â[0],−â[N −
1], · · · ,−â[k+1]]. We argue that (b,a) is a valid LWE cipher-
text of the k-th coefficient of m̂ that is m̂[k] under the key
sk. Extract is cheap in terms of computation, e.g., simply re-
ordering the coefficients of â. We can accelerate Extract using
the AVX256 instruction at the cost of 4× RAM consumption.

Fig. 6 depicts our protocol BinMatVec for matrix-vector
multiplication protocol on binary matrix. In Step 1, we first
convert the secret shares of the vector g to RLWE cipher-
texts using the A2H function (see §2.3.4). Recall that ⟨g⟩Hl
is RLWE ciphertext(s) of g held by the party Pl but under
P1−l’s key. Then the “pick step” is achieved by extracting the
corresponding entry g[i] from RLWE as an LWE ciphertext



using Extract. For instance, the i-th entry g[i] is encoded as
the (i mod N)-th coefficient of the (⌊i/N⌋)-th RLWE cipher-
text. Then the “sum step” is done using LWE homomorphic
additions over dimension N. The PackLWEs in Step 8 aims to
reduce the ciphertext volume by merging multiple LWEs into
a single RLWE, at the cost of some local RLWE computation.

Theorem 2 If the RLWE scheme provides semantic security,
then BinMatVec in Fig. 6 is a private binary matrix–vector
multiplication protocol following the Definition 1.

We defer the proof to Appendix C due to space limit.
Complexity. For the gradient aggregation step in GBDT, the
binary matrix M consists of at most n ·m non-zero entries.
Thus, we need about O(nm) LWE additions in BinMatVec
which translates to O(nmN) machine-word operations. The
PackLWEs on B · m LWEs needs about O(BmN log2 N)
machine-word operations. In terms of communication costs,
P1−l sends about O(n log2 q) bits in A2H, and Pl sends about
O(2Bm log2 q) bits in H2A.
Compared with SIMD- and COT- based methods. Besides
the coefficient encoding used in Squirrel, the homomorphic
Single-Instruction-Multiple-Data (SIMD) technique [55] is
another common encoding to transform vectors as the ele-
ments of the ring AN,p. However, for SIMD, the “pick” step
requires a homomorphic multiplication with a binary vector
(i.e., only one non-zero in the selected position), followed
by an expensive homomorphic rotation (e.g., 500× more ex-
pensive than the LWE addition) to align the position of the
selected slot before doing the “sum” step.

We can also use COT to compute the matrix multiplica-
tion on binary matrix via [5]. However, the communication
complexity of the COT-based method is quadratic on the
matrix size, i.e., O(Bmnℓ) bits of communication. This is a
significantly larger overhead than that of BinMatVec protocol,
particularly when millions of samples n are considered.

4.5 Further Optimizations
We now propose two orthogonal optimizations to further ac-
celerate BinMatVec. One can reduce the number of LWE
additions needed in BinMatVec. The other can lower down
the concrete cost of each LWE addition. Indeed, the end-to-
end Squirrel training time can be reduced by about 60% –
70% when using the optimized BinMatVec. We also present
an optimization for the Seg3Sigmoid implementation.

4.5.1 To Use the Indicator Sparsity

The computation cost of BinMatVec in Fig. 6 majorly de-
pends on the number of non-zero entries of the matrix M.
We can leverage the sparsity of the indicator b(k) to reduce
the number LWE additions. In stead of M ·g(k), we prefer to
compute the identical (M ·b(k)

l ) ·g(k). That is because we have

b(k)
l [i] = 0⇒ g(k)[i] = 0 ∀i ∈ [n] according to our definition

of the sample indicator b(k) = b(k)
0 ∧b(k)

1 .

4.5.2 To Use a Smaller Lattice Dimension

For the case that the number of samples n≫ B ·m, the ‘pick-
then-sum’ step will dominate the running time of Fig. 6. This
motivates us to have a cheaper ‘pick-then-sum’ by instan-
tiating A2H with a smaller lattice dimension N. However,
the following PackLWEs step (usually) requires a moderate
dimension, e.g., N ≥ 8192. One might consider to skip the
PackLWEs step, and use LWE ciphertexts for the H2A conver-
sion. However, the PackLWEs is crucial for a small commu-
nication overhead. For example, to convert 104 shares using
LWE, Pl might need to send about 532MB LWE ciphertexts
to P1−l for our RLWE parameters. On the other hand, Pl sends
only 436KB of RLWE ciphertexts if he apply PackLWEs to
merge the LWEs into the RLWE form first.

To take advantage of the low communication overhead
from PackLWEs while keeping a cheap LWE addition, we
propose a specific LWE-to-LWE conversion that inspired
by [14]. Indeed, our LWE-to-LWE conversion can help to
reduce about half of the running time of Fig. 6 when n≫
B ·m. . Intuitively, we instantiate A2H using a small lattice
dimension N (e.g., N ≤ 4096) and then perform the “pick-
then-sum” under this dimension. Before doing PackLWEs,
we first apply an LWEDimLift procedure to convert a given
LWE ciphertext of dimension N to a larger lattice dimension
(e.g., N ≥ 8192) without changing the encrypted message
(i.e., Step 7 of Fig. 6). Then the following PackLWEs and
H2A are still performed over the larger dimension N.

We first define two helper functions for the following de-
scriptions. The first one is a lifting function lift : AN,q 7→
AN,q, lift(ŝ) = q′ · (ŝ[0]−∑

N−1
i=1 ŝ[i]XN−i) mod q, where q′ =

q/q ∈ Z. The other one is a gadget decomposition g−1
gdt :

Zq 7→ ZW , parameterized by a vector ggdt ∈ ZW , satisfying〈
g−1

gdt(a),ggdt

〉
≡ a mod q for all a∈Zq. To achieve the LWE

dimension lifting, we need a lifting key LKsk→sk which is
given as an array of W RLWE ciphertexts. Specially, the d-th
entry is given as (ggdt[d] · lift(sk)− α̂d · sk+ êd , α̂d) ∈ A2

N,q,
where the coefficients of α̂d , êd ∈ AN,q are sampled using the
same distributions in the public key generation.

We now present our LWE dimension lifting procedure
LWEDimLift in Fig. 8. The computation in Fig. 8 can be
seen as a Key-Switching in many RLWE schemes [14,18,54]
with an extra factor q′. Most of the computation lies on the in-
ner product between the vector of polynomials g−1

gdt(â) and the
lifting key, requiring about O(WN log2 N) machine-word op-
erations. The correctness of Fig. 8 is deferred to Appendix A.



Require: Input0 = {X0 ∈ Rn×m0} and Input1 = {X1 ∈ Rn×m1 ,y}. Secretly shared stateful values state= {⟨g⟩l ,⟨h⟩l ,⟨ỹ⟩l}. Publicly
known values pp= {D > 0, B > 0, γ > 0, (skl ,pkl) for A2H, (skl ,pkl) for H2A, and the LWE lifting key LKskl→skl }.

Ensure: OutputΠ
0 and OutputΠ

1 (See the definition in § 3.2)

1: Pl locally partitions his data Xl into bins, written as Ml ∈ {0,1}B·ml×n where Ml [B · z+u, i] = 1 indicates that the i-th sample is
categorized into the u-th bin according to its z-th feature for i ∈ [n], z ∈ [ml ] and u ∈ [B].

2: Pl sets the indicator b(1)
l = 1n with all 1s, and set

〈
g(1)
〉

l
= ⟨g⟩l and

〈
h(1)

〉
l
= ⟨h⟩l . ▷ All samples are on the root node.

3: for internal nodes k = 1,2, · · · ,2D−1−1 do
4: [Computing Partition Scores.] Jointly and concurrently run two optimized BinMatVec where P1 acts as the matrix holder.〈

p(k,1)
〉
← BinMatVec

({〈
g(k)
〉

0
,sk0

}
,
{〈

g(k)
〉

1
,M1 ·diag(b(k)

1 )
})

,
〈

q(k,1)
〉
← BinMatVec

({〈
h(k)
〉

0
,sk0

}
,
{〈

h(k)
〉

1
,M1 ·diag(b(k)

1 )
})

5: Flip the role of matrix holder, and run two more BinMatVec simultaneously to obtain
〈

p(k,0)
〉

and
〈

q(k,0)
〉

.

6: Locally concatenate the shares
〈

p(k)
〉
=
〈

p(k,0)
〉
∥
〈

p(k,1)
〉

and
〈

q(k)
〉
=
〈

q(k,0)
〉
∥
〈

q(k,1)
〉

.

7: Jointly compute the all the partition scores
〈

G (k,z,u)
〉

for z ∈ [m0 +m1] and u ∈ [B], according to (3) using Frecip and Fmul.

8: [Find the Best Split with Maximum Score.] Jointly compute
〈

z(k)∗
〉
,
〈

u(k)∗
〉
← F z,u

argmax({
〈

G (k,z,u)
〉
}z,u).

9: Open a bit ⟨c⟩B← Fgreater(
〈

z(k)∗
〉
,m0−1) to both players.

10: Open the split identifier (z(k)∗ ,u(k)∗ ) to Pc who then writes them into Cc[k] while P1−c writes ⊥ to C1−c[k].
11: [Locally Update Sample Indicator.] P1−c keeps the indicators unchanged b(2k)

1−c = b(2k+1)
1−c = b(k)

1−c.

12: Pc locally updates b(2k)
c = b(k)

c ∧b(k)
∗ and b(2k+1)

c = b(k)
c ⊕b(2k)

c where b(k)
∗ [i] = 1

{
∑u≤u(k)∗

Ml [z
(k)
∗ ·B+u, i]> 0

}
for i ∈ [n].

13: [Maintain the Invariant of (2).] Jointly compute
〈

g(2k)
〉
=
〈

b(k)
∗ ⊙g(k)

〉
and

〈
h(2k)

〉
=
〈

b(k)
∗ ⊙h(k)

〉
using two FCOT

instances where Pc acts as the receiver with choice bits b∗, and P1−c provides the correlations x+
〈

g(k)
〉

1−c
and x+

〈
h(k)
〉

1−c
.

14: Locally sets
〈

g(2k+1)
〉
=
〈

g(k)
〉
−
〈

g(2k)
〉

and
〈

h(2k+1)
〉
=
〈

h(k)
〉
−
〈

h(2k)
〉

.
15: end for
16: for leaf nodes k = 2D−1, · · · ,2D−1 do
17: Jointly compute the weight

〈
w(k) =−∑i g(k)[i]/(λ+∑i h(k)[i]

〉
) using Frecip and Fmul.

18: Update the prediction scores in the state list ⟨ỹ⟩ ←
〈

∑
2D−1
k=2D−1 (b

(k)
0 ∧b(k)

1 ) ·w(k)
〉
+ ⟨ỹ⟩ using two concurrent FCOT instances.

19: Pl writes his share
〈

w(k)
〉

l
into OutputΠ

l .
20: end for

Figure 7: Squirrel Private GBDT Training Framework under Fmul-, Frecip-, Fargmax-, Fgreater-, and FCOT hybrid.

4.5.3 To Use a Smaller Ring (Updated from the confer-
ence version)

We propose an implementation optimization for Seg3Sigmoid
in Fig. 5. We have observed that the multiplication operands
in Step 3 are significantly smaller than the length of secret
sharing, specifically, 0 ≤ sl, j,cl, j ≪ 2ℓ. Therefore, we can
instantiate Fmul in a smaller ring Z2ℓ′ such that 2 f < ℓ′ < ℓ,
which reduces the communication and computation cost of
the multiplications. Subsequently, we can execute Step 4 to
Step 7 over the smaller ring Z2ℓ′ and obtain a share of the
approximated sigmoid ⟨g(x̃)⟩l ∈ Z2ℓ′ . Finally, we can use the
ring extension protocol [49] to convert a share of g(x̃) over
the ring Z2ℓ′ to the same message in the larger ring Z2ℓ . It is
important to note that the output range of our approximated
sigmoid protocol is always positive. Thus the communication
cost of the ring extension protocol is about 1-bit per share

when we instantiated [49] using the Ferret OT protocol [60].

4.6 Putting Everything Together
We describe how the actual Squirrel work for building one
GBDT tree in Fig. 7. Here we prefer a full and balanced tree
for the sake of simplicity. That is a tree node with an index
k≥ 2D−1 is a leaf. We assume the 1st and 2nd order gradients
have been computed privately and given as an input in Fig. 7.
This allows us to directly reuse the specification of Fig. 7
for both classification and regression tasks. For instance, for
a binary classification task using the cross-entropy loss, we
can use our Seg3Sigmoid protocol to privately compute the
1st order gradient like ⟨g⟩← Seg3Sigmoid(⟨ỹ⟩)−y, and then
compute the 2nd order gradient ⟨h⟩ using Fmul. For a linear
regression task using the least squares loss, the gradients are
g = ỹ−y.



Require: LWE ciphertext (b,a) ∈ ZN+1
q which decrypts to m ∈

Zp under a secret key sk. A lifting key LKsk→sk consists of
W -many RLWEN,q ciphertexts under under another key sk.
Also q is divisible by q and let q′ = q/q.

Ensure: LWE ciphertext (b,a) ∈ ZN+1
q that decrypts to the iden-

tical message m under the key sk.

1: Convert a as a polynomial â = ∑
N−1
i=0 a[i]X i ∈ AN,q.

2: Compute CT= (q′ ·b,0)+
〈

g−1
gdt(â),LKsk→sk

〉
∈A2

N,q where

g−1
gdt is carried out to each coefficient of â.

3: Output an LWE via Extract(CT,0).

Figure 8: LWE Dimension Lifting Procedure LWEDimLift

To use the optimizations of §4.5, we require each player
to generate two key pairs (skl ,pkl) and (skl ,pkl) for two sets
of HE parameters (N,q) and (N,q), respectively. Also, each
player needs to provide the corresponding lifting key. All of
these HE materials are already stored into the public list pp.

In Step 1, each party Pl first locally converts his data Xl
to a binary matrix Ml ∈ {0,1}B·ml×n. The gradient statistics
p(k) =M0 ·g(k)∥M1 ·g(k) now are computed by two concurrent
executions of BinMatVec in Step 4. Another two BinMatVec
for the 2nd order gradient statistics q(k) can be run concur-
rently. Also, we apply the histogram subtraction trick in Step
6, e.g., p(k) = p(2k)+p(2k+1), which is commonly used in the
plain GBDT training. Then the two parties jointly compute
the all the partition scores {G(k,z,u)}z∈[m],u∈[B] from the shared

statistics
〈

p(k)
〉

and
〈

q(k)
〉

according to (3) using Frecip and
Fmul. Finally the split identifier is determined using Fargmax.

We do not open the split identifier (z(k)∗ ,u(k)∗ ) to both parties
which will invalidate our definition in Fig. 2. We first invoke
Fgreater to compute the bit c = 1(z(k)∗ ≥m0) where it indicates
that the chosen feature z(k)∗ belongs to the party Pc. We then
let P1−c send his share of the split identifier to Pc for opening.
Step 11 to Step 13 follow the descriptions in §4.2. Briefly,
Pc updates the gradient vectors for the left child according to
the revealed split identifier (z(k)∗ ,u(k)∗ ) and his private data Mc
using FCOT. Finally, leaf weight is privately computing and
the prediction vector ỹ is privately updated using the ideal
functionalities in Step 17 and Step 18.

Theorem 3 The protocol of Fig 7 is a private GBDT of Fig. 1
under Fmul- Frecip- Fargmax-, Fgreater-, and FCOT- hybrid, and
assuming the RLWE scheme providing semantic security.

We defer the proof to Appendix C due to space limit.
Secure Inference. Once the GBDT model is trained, the
secure inference can also be done using COTs. On a new
input sample, each player can locally prepare a binary vector
βl for each tree. Specially, βl [k] = 0 means the input will not
be classified to the k-th leaf according to the split identifier(s)

Table 1: Microbenchmarks of Squirrel (single thread).

Interactive
End-to-End Time Commu.
LAN WAN (MB)

A2H (106 inputs) 0.5s 0.9s 14.5
H2A (213 inputs) 16.9ms 87.2ms 0.22
Seg3Sigmoid (104 inputs) 0.42s 0.9s 15.9
Frecip (105 inputs) 3.8s 9.2s 178.9
FCOT (106 inputs) 85.3ms 370.6ms 7.7
Fmul (106 inputs) 1.4s 5.1s 106.1
Fgreater (106 inputs) 2.2s 4.1s 86.4

Local Throughput (#op. per second)

pick-then-sum (N = 4096) 6.17×105

pick-then-sum (N = 8192) 3.14×105

LWEDimLift 1176.5
PackLWEs (128 inputs) 43.1 (8 threads)
PackLWEs (512 inputs) 14.3 (8 threads)

held by Pl . That is, from the view of Pl , the new sample
invalidates at least one split identifier along the prediction
path to the k-th leaf. Also βl [k] = 1 means the new sample
might be classified to the leaf k. At the end, there is only
one non-zero entry in β0∧β1. Then the inference on the t-th
tree is to compute ∑k(β0[k]∧β1[k]) ·w(k) given the shares of
the leaf weights. This can be evaluated using two COTs (see
Appendix B.3).

5 Evaluations

5.1 Evaluations Setup

Concrete Parameters. We use ℓ = 64 bits arithmetic shar-
ing and f = 16 for fixed-point values. For our GBDT train-
ing, we fix γ = 0.001. We use the Ferret implementation
from the EMP toolkit [58]. Our RLWE/LWE implemen-
tation is built on top of the SEAL library [54] with the
AVX acceleration [36]. We instantiate two SEAL parameters
HE.pp= {p = 2ℓ,(N = 4096,q≈ 2109),(N = 8192,q = q)}.
The security levels under these parameters are at least 128-bit
security according to [6]. Under these parameters, we can run
Squirrel for more than 5×1016 samples without a decryption
failure w.h.p. (see the noise analysis in Appendix). We im-
plement [50] for Fmul using RLWE, and [12] for Frecip using
OT. We also reuse the OT-based implementation from [35]
for Fargmax and Fgreater. Our lifting key LKskl→skl is about
0.37 MB. The public key pkl , including the materials for
PackLWEs is about 5.06 MB.
Testbed Environment. Our programs are implemented in
C++ and compiled by gcc-8.5.0. All the following experi-
ments are performed on commercial cloud instances with a
2.7GHz processor and 32GB of RAM. The bandwidth be-
tween the cloud instances is manipulated with the traffic con-



Table 2: Compare ours A2H to the existing methods used in
Pivot and HEP-XGB. Paillier and OU are instantiated using
1024-bit keys. We also compare to a recent FSS-based secure
sigmoid [4]. Single thread is used for the comparisons.

A2H (106 inputs) [59] (Paillier) [22] (OU) Ours

Time (LAN) ≈ 2000s ≈ 800s 0.5s
Commu. 244MB 122MB 14.5MB

Sigmoid (104 inputs) [39] (OT) [4] (FSS) Ours

Time (WAN) 8.9s 176.8s 0.9s
Commu. 150MB 11.5MB 15.9MB

trol command of Linux. We run the benchmarks mainly in
two network settings including a LAN (1Gbps with 2ms ping
time) and a WAN (200Mbps with 20ms ping time).
Metrics. We measure the end-to-end running time including
the time of transferring HE/OT ciphertexts through the net-
work. We measure the total communication including all the
messages sent by the two parties.

5.2 Microbenchmarks
In Table 1, we present the performance of the underlying
primitives used by Squirrel. Particularly, we categorize the
primitives into interactive primitives that require to exchange
of messages through the network, and local primitives that
are performed locally by one party.

Our RLWE-based share conversions are very efficient in
terms of computation time and communication size, handling
millions of shared values in seconds. To compare, we also
benchmark the A2H conversions in Pivot and HEP-XGB in
Table 2 using the public libraries [9, 57] for the Paillier and
OU scheme. In brief, our share conversions can be about 3
orders of magnitude faster than their approaches.

For the sigmoid function, the numeric approximated sig-
moid in HEP-XGB computes σ(x) ≈ 0.5+ 0.5x/(1+ |x|), re-
quiring to invoke Frecip on each input point. Thus, their nu-
meric method will be less efficient than Seg3Sigmoid when
we implement their method using 2PC without the aid of TEE.
Also from Table 2, we can see that the communication over-
head of Seg3Sigmoid is significantly smaller than the method
used in Pivot, i.e., the MP-SPDZ library [39]. The very re-
cent work from Agarwal et al. [4] present a secure sigmoid
protocol using Function Secret Sharing (FSS) as the building
block. Their method transfers about 27% less messages than
Seg3Sigmoid but takes about 200× more computation time.

We can also see that the COT is an efficient choice for
(2), in terms of communication costs. Recall that HEP-XGB
maintains (2) using an TEE-based Fmul which will double the
communication than our COT-based solution.
Prediction Efficiency. We can derive the prediction efficiency
of Squirrel from Table 1. Assuming there are 1600 leaves (e.g.,

Table 3: Performance comparison of Squirrel with the exist-
ing privacy-preserving GBDT approaches. For each run, we
measure the end-to-end running time per tree.

Approach Parameters Settings Time

Ours n = 5×104,D = 4 LAN 6.0s
[59]† m0 = 8, m1 = 7, B = 8 6 threads 168s (28×)

Ours n = 2×105, D = 4 LAN 11.1s
[59] m0 = 8,m1 = 7,B = 8 6 threads 448s (40×)

Ours n = 1.4×105, D = 5 LAN 11.4s
[22]‡ m0 = 7,m1 = 16,B = 10 32 threads 47.6s (4×)

Ours n = 1.4×105,D = 5 100 Mbps 40.0s
[22] m0 = 7,m1 = 16,B = 10 32 threads 151s (3.7×)

†Pivot [59] did not report the pre-processing time.
‡HEP-XGB [22] have used TEE to accelerate their computation.

Table 4: F1-score comparison with (simulated) Pivot and
HEP-XGB on 6 datasets, using T = 10 trees of depth D = 5.

Dataset (n/m) Squirrel Pivot HEP-XGB

breast-cancer 683/9 0.917 0.918 0.889
phishing 11055/ 67 0.957 0.957 0.951

a9a 32561/122 0.651 0.653 0.643
cod-rna 59535/7 0.402 0.408 0.403

skin_nonskin 245057/2 0.742 0.743 0.741
covtype 581012/53 0.556 0.572 0.552

100 trees with D = 5 depth) in the trained GBDT model, we
need two COTs on 1600 inputs for the inferences. Thus we
estimate the inferences throughput of Squirrel over LAN is
about 1000ms/(2 ·85.3ms) ·106/1600≈ 3.6×103 inferences
per second. To compare, Pivot reports about 100 inferences
per second [59, Figure 4g].

To demonstrate the effectiveness of our LWE dimension
lifting optimization, we also benchmark the throughput of
“pick-then-sum” under N = 8192. For any (n,m) pair, the
time for the gradient aggregation under the parameter N =
8192 is about timeN = 2nm/3.14×105 seconds without LWE
lifting. When applying LWE lifting, the time becomes about
timeN = 2nm/6.17×105 +2m/1176.5 seconds. With some
simple calculations, we know that the LWE dimension lifting
optimization can reduce the aggregation time, i.e., timeN <
timeN , when we have n≥ 544 samples.

5.3 Compare with the Existing Frameworks
5.3.1 Efficiency Comparison

In Table 3, we compare the performance of Squirrel with
two existing MPC frameworks for GBDT training. The tim-
ing numbers in the table are taken or derived from the cited
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Figure 9: Effect of parameters in Squirrel. By default, we set n = 105, m0 = m1 = 10, D = 5, B = 16 and use 8 threads.

papers. For example, Pivot reports 11.2 minutes for train-
ing 4 boosting trees between two parties. Then we compare
with the average time 168 seconds for Pivot in Table 3. The
performance of these existing frameworks are measured on
different parameters and network settings. We run Squirrel
on a similar setting with best efforts for the comparison. For
example, [22] use more than 32 cores for the computation
while our testbed can provide only 8 cores. The authors of
Pivot claim to use a LAN but the specific bandwidth and
latency were missing in their paper. It is worthy to note that
all these existing approaches use short HE keys, resulting a
lower security level than the 128-bit security level of Squirrel.

Squirrel is still 28× – 40× faster than Pivot even we
have omitted the heavy pre-processing time in Pivot. Under
the LAN setting, most of the running time of Pivot due
to the expensive Paillier operations. It is no doubt that the
performance advantages of Squirrel over Pivot can be even
larger if we align the security level of Pivot’s HE parameters
to a 3072-bit public key.
HEP-XGB [22] depends on a trusted hardware to accelerate

some parts of their building blocks. For instance, the Fmul,
Fargmax and Frecip operations in HEP-XGB are “almost free” in
the LAN setting while Squirrel evaluates 2PC protocols for
these operations. The computation overheads of their HE are
still too large, even they replace the Paillier scheme with a
faster Okamoto-Uchiyama scheme as the alternative.

5.3.2 Effectiveness Comparison

We empirically show the effectiveness of Squirrel on 6 real-
world datasets taken from [2]. All of them have two classes
to classify, and contain more samples n than features m, with-
out missing value. For each dataset, we apply 5-fold cross
validation and report the average F1-scores on the validation

sets. Specifically, we train T = 10 trees of depth D = 5. The
results are given in Table 4.

To compare, we simulate the training using Pivot and HEP-
XGB. Particularly, we use the exact sigmoid in our simulation
for Pivot, and use the approximation 0.5+0.5x/(1+ |x|) for
the sigmoid function in the simulation of HEP-XGB. The hyper-
parameters and initialization (e.g., ỹ(0)) are kept identical for
Squirrel and the simulated Pivot and HEP-XGB. We can see
that the GBDT model trained by Squirrel is effective, giving
a comparable prediction accuracy to Pivot which is identical
to the GBDT training on the plain fixed-point values.

5.4 Scalability Test on Synthetic Data

To demonstrate the scalability of Squirrel, we train one boost-
ing tree on various sets of parameters. Specifically, we con-
duct experiments by varying the number of samples (n), the
maximum tree depth (D) and the number of features of held
by each player (m0,m1). We apply all the proposed optimiza-
tions, and use multi-threading as much as possible.

The efficiency evaluation is given in Figure 9. The running
time and communication of Squirrel increases linearly with n
and D. We observe, by doubling n (or increasing D by 1), the
running time of Squirrel will not be doubled. The reason is
that, we leverage the sparsity of the AND-style sharing for the
indicator vector to reduce the number of LWE additions. On
the other hand, the total communication increases more gently
with the number of features by the virtue of the low commu-
nication overheads from the Ferret OT and PackLWEs. For
example, by increasing the number of features from 10 to
100, the communication only increases by 67% from about
300MB to 500MB.



Conclusion

We have proposed Squirrel, a scalable secure two-party com-
putation framework for training Gradient Boosting Decision
Tree. Squirrel guarantees that no intermediate information
is disclosed during the training without any dependency on
trusted hardware. Squirrel is accurate, achieving accuracy
comparable to the non-private baseline. Also, our empirical
results demonstrate that Squirrel is scalable to large-scale
datasets with millions of samples even under WAN.
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A Correctness of Fig. 8

Proof 1 For the correctness, we argue that the RLWE cipher-
text CT in Step 2 encrypts a polynomial q′ ·b+ â · lift(sk) ∈
AN,q from the multiplicative property of RLWE and the defini-
tion the gadget decomposition. Writing out q′ ·b+ â · lift(sk)
gives:

q′ ·b+ â · lift(sk)

≡ q′ ·

(
b+(

N−1

∑
i=0

a[i]X i) · (sk[0]−
N−1

∑
i=1

sk[i]XN−i)

)
≡ q′ · (b+ ⟨a,sk⟩+ r0 ·q)+ ∑

i>0
riX i for some {ri}

≡ q′ · ⌈q/p ·m⌋+ r0 ·q+ ∑
i>0

riX i

≡ q′ · (q/p ·m+ eround)+ ∑
i>0

riX i mod (XN +1,q).

In other words, if the term q′ ·eround is bounded within q/(2p)
then Extract(CT,0) can give a valid LWE ciphertext that
decrypts to m under the longer key sk.

B Computations call FCOT

B.1 Private choice and shared message
P0 inputs a private choice c ∈ {0,1} and his shared mes-
sage ⟨z⟩0 ∈ Z2ℓ . P1 inputs his share ⟨z⟩1 ∈ Z2ℓ . At the end,
they obtain their corresponding share of ⟨c · z⟩. P1 sends
(Send, f (x) = x+ ⟨z⟩1) to FCOT and then receives x1 ∈ Z2ℓ .
P0 sends (Recv,c) to FCOT and then receives x0 ∈ Z2ℓ . P0
then sets ⟨c · z⟩0 ≡ c · ⟨z⟩0 + x0 mod 2ℓ, and P1 sets ⟨c · z⟩1 ≡
−x1 mod 2ℓ.

B.2 Shared choice and shared message
Each player Pl inptus a shared choice ⟨c⟩Bl ∈ {0,1} and a
shared message ⟨w⟩l ∈ Z2ℓ . At the end, they obtain their cor-
responding share of ⟨c ·w⟩. We need two FCOT instances for
this computation. For one instance, P0 sends (Send, f (x) =
x + (1− 2 · ⟨c⟩B0 ) · ⟨w⟩0) to FCOT and then receives x0. P1

sends (Recv,⟨c⟩B1 ) to FCOT and receives y1. For the other, P1

sends (Send, f (x) = x+(1−2 · ⟨c⟩B1 ) · ⟨w⟩1) to FCOT and then
receives x1. P0 sends (Recv,⟨c⟩B0 ) to FCOT and receives y0.
According to the COT property, we have y1 ≡ x0 + ⟨c⟩B1 · (1−
2 · ⟨c⟩B0 ) · ⟨w⟩0 and y0 ≡ x1+⟨c⟩B0 ·(1−2 · ⟨c⟩B1 ) · ⟨w⟩1. Finally,
Pl sets ⟨c ·w⟩l ≡ ⟨c⟩

B
l · ⟨w⟩l + yl− xl mod 2ℓ.
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B.3 AND-style choice and shared message

Each player Pl inptus a choice βl ∈ {0,1} and a shared
message ⟨w⟩l ∈ Z2ℓ . At the end, they obtain their corre-
sponding share of ⟨(β0∧β1) ·w⟩. We also need two FCOT
instances for this computation. For one FCOT instance, P0
sends (Send, f (x) = x+β0 · ⟨w⟩0) to FCOT and then receives
x0. P1 sends (Recv,β1) to FCOT and receives y1. For the other
instance, P1 sends (Send, f (x) = x+β1 · ⟨w⟩1) to FCOT and
then receives x1. P0 sends (Recv,β0) to FCOT and receives y0.
According to the COT property, we have

y1 ≡ x0 +β1 · (β0 · ⟨w⟩0), y0 ≡ x1 +β0 · (β1 · ⟨w⟩1).

Finally, Pl sets ⟨(β0∧β1) ·w⟩l ≡ yl− xl mod 2ℓ.

C Security Proofs

Proof 2 (Theorem 1 (Sketch)) The correctness follows triv-
ially in the Fmul-, Fgreater- and FCOT hybrid. For privacy, the
view of Pl during the execution of Seg3Sigmoid only consists
of the messages received from Fmul, Fgreater and FCOT, and
no message is revealed. Thus the privacy follows by simply
invoking the corresponding simulators of Fmul, Fgreater and
FCOT on uniform random values.

Proof 3 (Theorem 2 (Sketch)) The correctness follows triv-
ially by the additive homomorphic property of (R)LWE
HEs. For privacy, the view of Pl during the execution of
BinMatVec consists of the ⌈n/N⌉ RLWE ciphertexts (under
P1−l’s key) received in Step 1 only. We construct the simulator
Sl(⟨M ·g⟩l ,pk1−l) as follows:

1. On A2H in Step 1, writes ⌈n/N⌉ ciphertexts of zero

RLWE
N,q,2ℓ
pk1−l

(0) to V Π
l using the public key pk1−l .

2. On Output in Step 9, sends the shares ⟨M ·g⟩l ot Pl .

The privacy against an adversary Pl is directly reduced to the
semantic security of RLWE.

On the other hand, the view of P1−l consists of RLWE ci-
phertexts of uniformly randomized polynomials from H2A. We
construct the simulator S1−l(⟨M ·g⟩1−l ,pk1−l) as follows:

1. On H2A in Step 9, writes {(b̂ j + r̂ j, â j)} j∈[⌈n/N⌉] to V Π
1−l

where the tuple (b̂ j, â j)← RLWE
N,q,2ℓ
pk1−l

(0), and the poly-
nomial r̂ j is sampled from AN,q uniformly at random.

2. On Output in Step 9, sends the shares ⟨M ·g⟩1−l to P1−l .

The privacy against an adversary P1−l follows a similar ar-
gument in [34] that the uniform polynomial r̂ hides the noise
term in RLWE. As a result, even P1−l can decrypt the cipher-
texts, what he can see are all uniformly distributed.

Proof 4 (Theorem 3 (Sketch)) We construct a simulator Sl
for Pl’s view V Π

l . Remind that Sl takes as input of Inputl
and Outputl . The main issue in the proof involves showing
that the control flow can be predicted from Sl’s input. It is
easily to see all the steps, excluding from Step 9 to Step 13,
of Fig. 7 are predictable with Inputl . The control flow from
Step 9 to Step 13 are also predictable from Outputl . For the
simulator Sl , on receiving a Open command in Step 9, Sl
checks, by looking at Outputl , if Cl [k] ̸=⊥, then Sl writes the
bit l to V Π

l . Otherwise, Sl writes 1− l to V Π
−l . In Step 10, if

Cl [k] ̸= ⊥, Sl writes Cl [k] to V Π
l . Step 11 and Step 12 are

local computations. Finally, on receiving the COT command
in Step 13, Sl checks if Cl [k] ̸=⊥, then Sl sends (b(k)

∗ ,Recv)
to the FCOT as the receiver and writes what it has received
from FCOT into V Π

l . Otherwise, Sl sends (x,Send) to FCOT
as the sender on a uniform random x ∈ Zn

2ℓ , and writes what
it has received from FCOT into V Π

l . The computation then
continues to the next node. This completes the proof.

D Noise Analysis

A2H introduces an initial noise e0 whose variance V (e0) = σ2.
After performing n′ LWE additions, the noise becomes e1 with
the variance V (e1) = n′σ2. In SEAL, we apply the special
prime technique [29] for key-switching (KS). Specifically,
given an RLWE ciphertext with a noise variance v, after the
KS the noise variance becomes Vks(v) = 1

12P2 Nv∑i q2
i +

N
24 ,

where P is the special prime. LWEDimLift is also a kind of
KS. Thus, the noise after LWEDimLift becomes e2 with a
variance V (e2) = Vks(V (e1)). According to [14], the noise
after PackLWEs is e3 with a variance 1

3 (N
2−1)Vks(v′) where

v′ is the input noise variance i.e., v′ =V (e2) in Squirrel. To
have a correct decryption in H2A, we need the noise e3 is
bounded by q/2ℓ+1. The value 6

√
V (e3) is usually used as

the heuristic upper bound of e3. Putting in our parameters
q0 ≈ 255, q1 ≈ 254, P≈ 260, N = 8192, ℓ= 64, and σ = 3.2
we know n′ < 5×1016. In other words, our HE parameters
can support a lossless gradient aggregation up to 5× 1016

samples which is fairly enough for any practical application.

E Fourier Coefficients

The specific Fourier coefficients in (5) are given as follows.

ω0 = 0.5
ω1 = 0.6172949043536653, ω2 =−0.0341990021261339
ω3 = 0.1693788502244572, ω4 =−0.0460333847898619
ω5 = 0.0816712796122188, ω6 =−0.0433475059227459
ω7 = 0.0507073237098216, ω8 =−0.0369643373243371

Under these coefficients, the range of (5) is bounded by 1
within the interval [−5.6,5.6] (see Fig. 4).



F A Potential Risk in the Previous H2A

Both Pivot [59] and HEP-XGB [22] use a Paillier-like HE for
the H2A conversion. Briefly, they compute HE(x)+ r using a
random mask r ∈ Z to “re-share” the value x ∈ Z to ⟨x⟩. The
secure range of r is a function of x, e.g., |r|= |x| ·240. For the
GBDT statistic aggregation, the upper bound of x is O(|x|) =

n ·2ℓ. However, Pivot and HEP-XGB assume |x|< 2ℓ which
is not the case becase a Paillier-like HE is not supporting
modulo 2ℓ homomorphically. Using a such small random
mask r might leak the most significant bits of x. For example,
this might give the adversary a hint that how many samples
are added on that tree node.
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