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Abstract

From hashing and commitment schemes to Fiat-Shamir and encryption, hash functions are everywhere in
zero-knowledge proofsystems (ZKPs), and minor performance changes in “vanilla” implementations can translate
in major discrepancies when the hash is processed as a circuit within the proofsystem. Protocol designers have
resorted to a number of techniques and custom modes to optimize hash functions for ZKPs settings, but so far
without a single established, well-studied construction. To address this need, we define the Sponge API for Field
Elements (SAFE), a unified framework for permutation-based schemes (including AEAD, Sigma, PRNGs, and
so on). SAFE eliminates the performance overhead, is pluggable in any field-oriented protocol, and is suitable for
any permutation algorithm. SAFE is implemented in Filecoin’s Neptune1 hash framework, which is our reference
implementation (in Rust). SAFE is also being integrated in other prominent ZKP projects. This report specifies
SAFE and describes use cases.

Among other improvements, our construction is among the first to store the protocol metadata in the sponge
inner part in a provably secure way, which may be of independent interest to the sponge use cases outside of
ZKP.

1 Introduction

Sponge functions [BDPV07] are the basis of permutation-based symmetric primitives’ design, as studied by Daemen
et al.: hash functions, MACs, authenticated encryption schemes, PRNGs, and others. When operating in Duplex
mode (Fig. 1) [BDPV11], a sponge can be seen as stateful object that can ingest input (“absorb”) and produce
output (“squeeze”) at any time and in arbitrary order.

The duplex specification sees the input and output as raw bits, and leaves application-specific encoding to the
users. However, in zero-knowledge proofsystems (ZKPs) specifications, hash functions often process field elements
(with respect to some canonical encoding), rather than raw bits. Performance being critical to reduce the proof
generation and verification cost, dedicated “field-friendly”, algebraic hash functions were designed, most of which
are sponges. These include for example Poseidon [GKR+21], Rescue [AAB+20], MiMC [AGR+16], and Reinforced
Concrete [LRG+22].

A typical sponge function makes one call to the inner permutation P per r input bits (or other base units) to be
hashed (absorbed) or outputted (squeezed), with r called rate. Despite its relative simplicity, sponge-like construc-
tions can and have been “misused”, or misimplemented, particularly when working with prime field arithmetic,
for which constructions are less established and specifications not as rigorous as the generic one. Here we outline
the most common misuse patterns we have observed, based on our experience contributing to and auditing ZKP
projects (excluding trivial failures such as overwriting the full state):

• Domain separation: When the input data fills the full rate, no padding or any other length-dependent
separator is applied. A classical example is hashing two field elements inside a Merkle tree with r = 2 field
elements, where only 1 call to P is made to reduce costs.

• Cross-protocol collisions: Two protocols with one being an extension of the other start with the same
state. As a result, they output the same prefix on the same inputs.

1https://github.com/filecoin-project/neptune/tree/master/src/sponge.
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• Superfluous permutations: Making an extra call between squeezing out data and absorbing it.

• Custom constructions: Using nested sponge calls (instead of chaining squeeze-absorb calls) in multi-round
non-interactive protocols obtained via Fiat-Shamir heuristic. This unnecessarily increases the complexity, and
may jeopardize the provable security guarantees.

Whereas the last two issues are just extra work for a caller, the former two may breach not only security proofs but
also the concrete security of real protocols. The API presented below solves all those and offers secure and efficient
usage patterns for many use cases. It also reduces the workload of developers and makes a step towards a unified
cross-platform interface.

Contribution. We propose SAFE, a generic API for sponge functions, as well as a production-ready reference
implementation. SAFE comes with a security proof, which is available as a separate report. As its main features,
SAFE:

• Does not use any padding, thus not wasting an extra call to the sponge permutation in any circumstances.

• Is independent of an underlying permutation and thus can be used with almost every design on the market
(including Poseidon’s).

• Eliminates a number of misuse patterns by limiting the set of operations callable at sponge and by binding a
protocol designer to a specific order of these operations.

• Is provably secure in the random permutation model in a number of settings, including the overlooked but
frequently required cross-protocol security.

• Is among the first constructions to store the protocol’s metadata in the sponge inner part, provably losing no
security.

SAFE is suitable for a variety of use cases encountered in real-world ZK proofsystems, including:

• Hashing with fixed-length input, as found in commitment schemes, Merkle trees, and signatures.

• Fiat-Shamir transforms and other stateful oracle simulations, where the sequence and size of input values
is fixed and known in advance.

• Authenticated encryption (in the ZK setting, also verifiable encryption) of predetermined-length mes-
sages. A classical example is an encryption of a coin secret on recipient’s public key in privacy-preserving
cryptocurrencies [HBHW22].

• Pseudo-random generation of field elements from a seed, with a reseeding mechanism.

SAFE however does not support variable-length hashing when the length of data hashed is unknown in advance.
This sacrifice is inevitable for a drastic performance and simplicity improvement, and did not prove problematic
when we surveyed ZK projects’ engineers.

2 Sponges

A (duplexed) sponge is a stateful object parameterized by a capacity c and a rate r where c + r = n is the inner
state’s width. As Fig. 1 shows, state changes are driven by three operations:

• Permutation of the width-n state by P.
• Injection of input data Mi (“absorption”), by chunks of up to r elements.

• Extraction of output data Zi (“squeezing”), by chunks of up to r elements.

The original sponge was defined for bitstring states, but all the security results carry over to field-element states,
as long these use a sound, fixed-size encoding. When defined over field elements, sponge parameters (c, r, n) are
usually expressed in terms of field elements, which lead to the notion of arithmetic capacity.

A sponge is traditionally initialized to the full-zero state. Input data then overwrites up to r given state elements
at time, whereas the c-wide inner part is never touched nor outputted. This construction provides security up to c/2
bits in the random permutation model in the indifferentiability framework [MRH04, CDMP05]. This result means
that it behaves like a random oracle and, among others, achieves this level of preimage and collision resistance
provided the output size is large enough. It is widely believed that concrete instances such as SHA-3 keep the same
security level.
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Figure 1: Duplex sponge.

3 The SAFE API

3.1 API Overview

We assume a sponge width of n = r+c field elements, where r is the rate and c the capacity. Here F is the finite field
type, thus elements of FL are vectors of L field elements. Length is the length type, an unsigned integer properly
bounded counting the number field elements. State is the type of the internal state, consisting of field elements
and other variables.

A SAFE sponge object should expose the following operations to protocol designers (details appear in Section 3.3
and Section 3.4):

• START(IOPattern, DomainSeparator): This initializes the inner state of the sponge, modifying up to c/2
field elements of the state. It’s done once in the lifetime of a sponge.

• ABSORB(Length : L,FL : X[L]): This injects L field elements to the state from the array X, interleaving
calls to the permutation. It also checks if the current call matches the IO pattern.

• SQUEEZE(Length : L) → FL: This extracts L field elements from the state, interleaving calls to the permu-
tation as defined in Section 3.4. It also checks if the current call matches the IO pattern.

• FINISH(Length) → Result: This marks the end of the sponge life, preventing any further operation. In
particular, the state is erased from memory. The result is ‘OK’, or an error.

The general workflow of a sponge prescribed by SAFE is then as follows:

1. The consumer protocol initializes the sponge: START(IO [], D) where IO is a sequence of future calls and
their respective lengths (what we call “IO pattern”) and D is a domain separator. One can also start from a
precomputed state, but said state must come from a properly initialized sponge.

2. The protocol makes a chain of calls C1, C2, . . . , Cℓ, whose input lengths and types correspond to S. Each Ci

is either an ABSORB or a SQUEEZE call.

3. The protocol closes the sponge with a FINISH() call.

The most important element of the design is IOPattern, which is a compact encoding of the pattern of ABSORB
and SQUEEZE calls during the sponge lifetime. An implementation must forbid to finish the sponge usage if this
pattern is violated (see below). In particular, the output from SQUEEZE calls must not be used if the IO pattern
is not followed.

Remark 1. Several IO patterns can belong to the same equivalence class, and thus leading to identical instances.
This is because consecutive calls of a same type (ABSORB or SQUEEZE) are aggregated to define the initial state.
An application that needs to absorb L > 1 elements in a row can thus do it one by one (with L calls to ABSORB),
or with a single call including the L elements.

Important notes:
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Figure 2: SAFE API as in-between the low-level sponge calls and application layer.

• Dealing with non-field elements: The API assumes that the input is (represented as) field elements,
however applications may need to process other data types. It is the responsibility of users to properly encode
such inputs as field elements. If objects of different types are processed by multiple runs of a same instance,
at the same position, then some signalling of the input type is required to avoid collisions between different
elements of distinct types encoded identically (incurring a performance overhead).

• Precomputed state: Multiple “forks” of a sponge can be created, by storing the state after a given number
of operations, and restarting from it with distinct ABSORB calls in distinct branches. Note that all forks must
do the same calls sequence, as specified to the START call.

3.2 Security

The security of SAFE API is captured by the following theorem, which essentially says that the SAFE outputs are
indistinguishable from that of a random oracle.

Theorem 1. Let P be a cryptographic protocol that employs random oracles R1, R2, . . . , Rk and is secure in the
random oracle model against adversaries that make up to 2λ queries to the oracles. Then, the implementation of
this protocol with oracle Ri instantiated with the SAFE API using a field of size at least 22λ and a domain separator
Di (pairwise distinct) is secure agains adversaries that make up to 2λ queries to underlying hash H and permutation
P .

It implies that whenever SAFE is used in one or multiple (with different IO patterns or domain separators)
protocols, at least c log2 |F| bits of security is guaranteed against collision, preimage, or distinguishing attacks.

Details are provided in a separate report.

3.3 From IO Patterns to Tags to Instances

Let c < n be the number of capacity elements. The SAFE sponge state consists of the following elements:

• Permutation state V ∈ Fn.

• Absorb position absorb pos ≤ n− c.

• Squeeze position squeeze pos ≤ n− c.

• IO pattern expected (as defined by START).
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The sponge updates itself by calling inner permutation P. It is also able to compute parameter tag T using H, a
cryptographic hash function producing 256-bit digests, by default the SHA3-256.

An instance is characterized by a tag derived from an IO pattern, which is a sequence of absorb phases and
squeeze phases and their respective number of field elements. The tag is used as an initial value, to ensure that
distinct instances behave differently. Using distinct tags for different, non-equivalent usage patterns avoids trivial
collisions between input sequences of different length, where a “non-input” element is replaced by a zero element in
the colliding message (this would lead to a collision because of the lack of padding). Furthermore, for applications
that need to distinguish equivalent IO patterns, a domain separator can be set.

A tag is calculated from an IO pattern and a domain separator as follows:

1. Encode the IO pattern as a list of 32-bit words, whose MSB set to 1 for ABSORB calls and to 0 for SQUEEZE
calls. For example, an instance that does 2 ABSORB calls with 3 elements each and then does one SQUEEZE
call with 3 elements is described by the three words [0x80000003, 0x80000003, 0x00000003].

2. Aggregate any contiguous ABSORB or SQUEEZE calls within a single call: in our example, we would replace
[0x80000003, 0x80000003] with a single 0x80000006.

3. Serialize the list of words into a byte string and append to it the domain separator D: for example, if D
is the two-byte sequence 0x4142, then the example above would yield the string (if big-endian convention is
used): 0x80000006000000034142.

4. Hash the string obtained with the hasher H to a 256-bit tag T (truncating the hash if needed).

Given its tag string, an instance admits an arbitrary number of executions, which are in addition characterized
by an input Y ∈ (Fr)⋆. In other words, a tag is not like an execution-specific nonce; it is a characterization of the
expected usage in terms of IO pattern, and of a domain separator (which can be use to create different instances/tags
for a same IO pattern).

Remark 2. The 32-bit encoding restricts the number of elements absorbed or squeezed to 231 − 1 per call. For
applications that need to absorb or squeeze such a large number of elements, the operation must therefore be done
via multiple calls, rather than a single one.

Remark 3. If the hash function used to create the tag received field elements rather than byte strings, and can
directly process calls 32-bit integers as field elements, then the serialization mechanism (incl. endianness aspects)
is not needed.

3.4 Detailed API

Everything begins with START, which computes a tag from the IO pattern and domain separator. This operation is
unique as it writes the tag into the inner part of the state, which makes us to use a new security proof (Section 3.2).

Each call to ABSORB or SQUEEZE both:

• Writes to or read the outer part of the permutation state and calls the permutation P.
• Verifies its own parameters against the initially supplied IO pattern (“early abort” misuse detection).

When all calls are done, the FINISH operation verifies that no call is left undone.
We describe the reference implementation of all the four operations in Algorithms 1 and 2.
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Algorithm 1 START and FINISH operations.
If field elements are 248 bit or more, T is converted to a field element. Otherwise T is parsed as two or more field
elements (but at most c/2 elements, if c is the arithmetic capacity).

START:

1: Given an IO pattern IO (as a list of calls with the
respective number of elements) and a byte string D
used as domain separator, compute the tag T as de-
scribed in Section 3.3.

2: Set the permutation state to all zeros and add T to
the first min(256, log2 |F|) bits of the inner part of
the state (with respect to the field’s addition).

3: Set both absorb and squeeze positions to zero:
absorb pos = squeeze pos = 0.

4: Set the IO count to zero: io count = 0.
5: Set the IO pattern expected to IO [L].

FINISH:

1: Check that io count equals the length of the IO pat-
tern expected. Return an error otherwise.

2: Erase the state and its variables.

Algorithm 2 ABSORB and SQUEEZE operations.

ABSORB:

1: If L == 0, return.
2: For i = 0, 1, .., L− 1

• If absorb pos == (n− c) then

– Set V = P(V ), to permute the state.
– Set absorb pos = 0, to restart writing at the

zero offset.

• Add X[i] to the state element at absorb pos.

• Do absorb pos++.

3: Compute the 32-bit encoding of L to the IO pattern.
4: Verify that the word obtained is equal to the io count-

th word of the IO pattern expected, abort upon mis-
match (and erase the state).

5: Do io count++.
6: Set squeeze pos = (n− c), to force a permute at the

start of the next SQUEEZE.

SQUEEZE:

1: If L == 0, return.
2: For i = 0, 1, .., L− 1

• If squeeze pos == (n− c) then

– Set V = P(V ), to permute the state.
– Set squeeze pos = 0, to restart reading out-

put at the zero offset.
– Set absorb pos = 0, to start writing at the

zero offset in the next ABSORB.

• Set Y [i] to the state element at position
squeeze pos: Y [i] = V [squeeze pos]

• Do squeeze pos++.

3: Compute the 32-bit encoding of L+ 231 with the IO
pattern.

4: Verify that the word obtained is equal to the io count-
th word of the IO pattern expected, abort upon mis-
match (and erase the state).

5: Do io count++.

Remark 4. We do not set absorb pos to (n − c) as in ABSORB as we may want the state to absorb at the same
positions that have been squeezed, for example in example is authenticated encryption.

4 SAFE Applications

SAFE among others supports the following use cases:

• Hashing example of L elements is given in Algorithm 3. Note that if the L elements are absorbed using
more than one call – for example, via ABSORB(1, X1) followed by ABSORB(L− 1, (X2, . . . , XL)) – then the
resulting hash will not change. We stress that no padding is required here.

• Merkle tree (Algorithm 4). Consider a binary tree whose leaves and nodes are field elements, for example
from a 256-bit field F. Again, the two ABSORB calls can be replaced by a single ABSORB(2, (X1, X2)), which
will yield the same result. This construction generalizes to binary trees whose elements are tuples, in some
FL, L > 1. Again, no padding is required.
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• Commitment scheme example with three 2-field elements is given in Algorithm 5. Note that the tag will be
the same for committing six 1-field elements. If this difference matters for an application, a domain separator
should be used.

• An example of a two-round interactive Sigma protocol is given in Algorithm 6. Here Prover sends a
proof of knowledge in three steps while getting Verifier’s challenges in between. Note that the sponge absorbs
exactly those elements that Prover sends to Verifier. Thus a protocol designer can use a simple rule of thumb
just absorb everything that is sent out.

• Authenticated encryption with SAFE is a simplification of the SpongeWrap mode [BDPV11]. The en-
cryption example, where we encrypt b blocks of data of different lengths, is given in Algorithm 7. This
construction is the most efficient when Li ≡ 0 mod r, that is, all blocks fit the rate parameter of the sponge.
This mode can be adapted to supported associated data (authenticated but not encrypted), in the same vein
as the SpongeWrap mode. Note that there is no padding overhead, nor we spend unneeded calls to P.

• Stream cipher and PRNG example is given in Algorithm 8. A stream cipher generates a pseudo-random
stream from a secret key and a not necessarily secret nonce, while a PRNG generates a pseudo-random stream
from a seed.

Algorithm 3 SAFE for fixed-length hashing

Protocol:

1: Select X1, X2, . . . , XL for hashing;
2: Get hash T .

Sponge calls via SAFE:

1: START(IO [2], D) with IO be the encoding of the fol-
lowing calls, and D an arbitrary domain separator;

2: ABSORB(L,X[]);
3: T ← SQUEEZE(1);
4: FINISH().

If the L elements are absorbed using more than one call – for example, via ABSORB(1, X1) followed by
ABSORB(L− 1, (X2, . . . , XL)) – then the resulting hash will not change.

Algorithm 4 SAFE for Merkle tree of arity 2

Pseudocode:

1: Select child node hashes X1, X2;
2: Get parent hash T .

Sponge calls via SAFE:

1: START(IO [2], D);
2: ABSORB(2, X[]);
3: T ← SQUEEZE(1);
4: FINISH().

Algorithm 5 SAFE for Commitment schemes

Pseudocode:

1: Select values for commitment X1, X2, X3 ∈ F2;
2: Get commmitment C.

Sponge calls via SAFE:

1: START(IO [4], D);
2: ABSORB(2, X1[]);
3: ABSORB(2, X2[]);
4: ABSORB(2, X3[]);
5: C ← SQUEEZE(1);
6: FINISH().
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Algorithm 6 SAFE for Sigma protocols

Interactive form:

1: Parties agree on the common input Z ∈ Fz;
2: Prover prepares and sends proof elements π1 ∈ FL1

and π2 ∈ FL2 ;
3: Verifier responds with challenge c1 ∈ F;
4: Prover prepares and sends proof element π3 ∈ FL3 ;
5: Verifier responds with challenges c2, c3 ∈ F;
6: Prover sends final proof π4.

Sponge calls via SAFE:

1: START(IO [6], D) with IO be the encoding of the fol-
lowing calls, and D an arbitrary domain separator;

2: ABSORB(z, Z);
3: ABSORB(L1, π1);
4: ABSORB(L2, π2);
5: c1 ← SQUEEZE(1);
6: ABSORB(L3, π3);
7: c2 ← SQUEEZE(1);
8: c3 ← SQUEEZE(1);
9: FINISH().

Algorithm 7 SAFE for authenticated encryption

Pseudocode:

1: Get key K ∈ Fk;
2: Get nonce N ∈ Fm;
3: Encrypt data blocksD1, D2, . . . , Db, whereDi ∈ FLi ;
4: Get ciphertext C.

Sponge calls via SAFE:

1: START(IO [2b+ 2], D);
2: ABSORB(k,K);
3: ABSORB(m,N);
4: C1 ← SQUEEZE(L1);
5: ABSORB(L1, D1);
6: C2 ← SQUEEZE(L2);
7: ABSORB(L2, D2);
8: · · ·
9: Cb ← SQUEEZE(Lb);

10: ABSORB(Lb, Db);
11: S ← SQUEEZE(1);
12: FINISH(). Upon success of FINISH() and of previ-

ous calls, the string (C1+D1)||(C2+D2)|| · · · ||(Cb+
Db)||S will be the ciphertext, where “+” denotes ad-
dition in F.

Algorithm 8 SAFE for stream cipher and PRNG

Protocol:

1: if PRNG then
2: Get seed S ∈ Fs;
3: elseStream cipher
4: Get key K ∈ Fk;
5: Get nonce N ∈ Fm;
6: end if
7: Generate L stream elements C[];
8: if Stream cipher then
9: Encrypt data D[] with C[].

10: end if

Sponge calls via SAFE:

1: if PRNG then
2: ABSORB(s, S);
3: elseStream cipher
4: ABSORB(k,K);
5: ABSORB(m,N);
6: end if
7: C1 ← SQUEEZE(L1);
8: C2 ← SQUEEZE(L2);
9: · · ·

10: Cb ← SQUEEZE(Lb);
11: FINISH(). For the stream cipher case, the plaintext

D1, . . . , Db with Di consists of Li field elements is
then encrypted to (C1 +D1)||(C2 +D2)|| · · · ||(Cb +
Db).
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