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Abstract— Secure computation is of critical importance to not 

only the DoD, but across financial institutions, healthcare, and an-

ywhere personally identifiable information (PII) is accessed.  Tra-

ditional security techniques require data to be decrypted before 

performing any computation.  When processed on untrusted sys-

tems the decrypted data is vulnerable to attacks to extract the sen-

sitive information.  To address these vulnerabilities Fully Homo-

morphic Encryption (FHE) keeps the data encrypted during com-

putation and secures the results, even in these untrusted environ-

ments.  However, FHE requires a significant amount of computa-

tion to perform equivalent unencrypted operations.  To be useful, 

FHE must significantly close the computation gap (within 10x) to 

make encrypted processing practical.   

To accomplish this ambitious goal the TREBUCHET project 

is leading research and development in FHE processing hardware 

to accelerate deep computations on encrypted data, as part of the 

DARPA MTO Data Privacy for Virtual Environments (DPRIVE) 

program.  We accelerate the major secure standardized FHE 

schemes (BGV, BFV, CKKS, FHEW, etc.) at >=128-bit security 

while integrating with the open-source PALISADE and OpenFHE 

libraries currently used in the DoD and in industry.  We utilize a 

novel tile-based chip design with highly parallel ALUs optimized 

for vectorized 128b modulo arithmetic.  The TREBUCHET copro-

cessor design provides a highly modular, flexible, and extensible 

FHE accelerator for easy reconfiguration, deployment, integration 

and application on other hardware form factors, such as System-

on-Chip or alternate chip areas. 

I. INTRODUCTION 

Current digital infrastructure facilitates secure communi-

cation over an insecure communication channel using modern 

encryption schemes. However, the server needs to decrypt the 

data before performing any computation, raising concerns 

about data privacy and security.  Fully homomorphic encryp-

tion (FHE) is a privacy-preserving computation technique that 

addresses this problem by performing computation on en-

crypted data without the need to decrypt the input.  Sensitive 

data is encrypted at the source by its owner, sent to the cloud 

for secure processing, and the encrypted result sent back to par-

ties approved to decrypt it. At no time is the sensitive data avail-

able for decryption by unauthorized parties.  

FHE is currently used by organizations to analyze shared 

sensitive data normally restricted by privacy laws. The over-

head incurred by FHE is tolerable in these cases because there 

is no alternative path.  However, there are three main barriers 

to FHE that restrict its wider use. First, conversion of plaintext 

to ciphertext increases the data size significantly (for example 

4B to > 20KB for an integer). This makes data I/O transfer a 

bottleneck. Second, FHE uses modular arithmetic with a large 

modulus word size, which is not natively supported by most 

off-the-shelf hardware, requiring several clock cycles to per-

form an operation. Third, FHE workloads require extreme 

amounts of computation vs. their plaintext counterparts (often 

several orders of magnitude more).  These overheads result in 

high latency, energy consumption, and memory overhead, 

which limit the applicability of FHE applications.  

 
Figure 1 - TREBUCHET Layered System Architecture 
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Several advances in FHE technology have made operation 

on conventional CPUs more practical, with most schemes sup-

porting encryption of complete vectors, amortizing encrypted 

math across thousands of elements simultaneously. However, 

the complexity required for this is large, requiring the use of 

residue arithmetic to segment the problem into a set of parallel 

operations, and the use of Number Theoretic Transforms (NTT) 

to accelerate the convolution of polynomial coefficients during 

their multiplication. The reader is referred to [1] for detailed 

discussion of CPU based implementation of FHE operations.  

II. TECHNICAL APPROACH 

The fundamental design goal of TREBUCHET is to sup-

port 1) a wide array of complex and deep encrypted computing 

applications, 2) the most important lattice based FHE schemes 

with 3) a modular design that maps to a wide range of chip sizes 

with 4) runtime performance orders of magnitude faster than 

other solutions. We do this by providing basic design blocks 

and a system stack architecture (Figure 1), that is highly adapt-

able and extensible. TREBUCHET provides mix-and-match 

layers for applications, software components and hardware.  

Adjacent layers interface using well-defined APIs to en-

capsulate interactions where our hardware and software inter-

act, allowing each layer to optimize for specific application, 

scheme, and hardware objectives. We optimized our design 

through extensive trade space studies between candidate Large 

Arithmetic Word Size (LAWS) hardware cores, memory, and 

data flow components. The Hardware layer consists of the 

DPRIVE Accelerator ASIC (DA) on an FHE Processing Board 

(FPB). The DA is composed of intrinsically modular compo-

nents easing validation and Formal Verification [2] by reducing 

the combinatorial explosion of circuit state space. Our approach 

includes research into novel architectures and their optimiza-

tions, on-chip memory systems, crypto data/key reuse/manage-

ment and optimizing chip I/O bandwidth. We increase perfor-

mance by maximizing data reuse, limiting communication 

overhead, trading local vs. global memory and processing near 

memory to address scheduling and tiling computation onto ar-

rays of LAWS processing elements. 

The Application Layer consists of C++ implementations 

of user applications implemented with the OpenFHE1 API. The 

Software Layer consists of three distinct subsystems to pro-

vide high-performance instantiations of all major lattice FHE 

schemes over a wide array of parameter settings, including all 

accepted standard security settings [3]. The top layer is the 

OpenFHE [1] library, which implements all the standard secure 

FHE schemes in a modular architecture of ring arithmetic re-

quired for all major lattice-based encryption schemes. The next 

lower layer is the SPIRAL NTTX system, which maps high 

level sequences of OpenFHE lattice crypto function calls into 

automatically generated software microcode functions (ker-

nels) to program the DA. Finally, a microcode compiler gener-

ates firmware instructions for LAWS control sequences.  

 
1 OpenFHE is the successor to the PALISADE library. It shares 

basic similarities but is engineered to support easier hardware integra-

tion using a Hardware Abstraction Layer (HAL). OpenFHE and 

PALISADE are referred to interchangeably in this document. 

The TREBUCHET DA Architecture, Figure 2, takes a 

data-driven approach. A modular parallel, vectorized architec-

ture is used to achieve the highest performance, flexibility, and 

verification objectives. Ring Processing Units (RPU) are on-

chip tiles, that contain multiple ALU lanes for vectorized pro-

cessing of modulo math with shared vector-data SRAM to 

buffer ciphertext(s) and keys. Tiles also facilitate memory man-

agement by scheduling data to be near computational elements. 

RPUs are replicated throughout the device, enabling software 

to minimize data movement and exploit data level parallelism. 

This architecture provides scalability in the native bit width 

supported, the number of multipliers and size memory available 

per tile, and the number of tiles available per chip, enabling sys-

tem wide optimizations. 

III. HARDWARE LAYER 

The Ring Processing Unit (RPU) is designed for general 

ring processing with high performance by taking advantage of 

regularity and data parallelism. The RPU utilizes explicitly 

managed hardware to elide the high costs and complexity of 

caches, dynamic scheduling logic, and prediction, and task the 

compiler with scheduling and data movement at compile time. 

Figure 2 shows an overview of the RPU. Based on the data par-

allel nature of FHE workloads, parallel vector architectures are 

highly amenable for meeting the performance needs. We devel-

oped an efficient RPU Instruction Set Architecture (ISA) to mi-

crocode lattice crypto functions in the RPU. The ISA was co-

designed with NTTX and the RPU hardware to address the 

needs of ring processing while being programmable, as algo-

rithms are still rapidly evolving and to support continued soft-

ware improvements post fabrication. It has a vector length of 

512 elements to maximize work per instruction while providing 

 
Figure 2 – TREBUCHET Hardware/Software Co-Design Tool 

flow and Hardware Architecture Overview 
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flexibility to the programmer, as the minimum size ring is typ-

ically one to two thousand elements. The ISA includes access 

to a large, local scratchpad to (double) buffer vector data, mul-

tiple vector registers, instructions for register-to-register shuf-

fling of data and native support for large word modular arith-

metic. The ISA was designed with simplicity in mind and has 

only 17 instructions to minimize front-end overheads.  

A.  Frontend 

All RPU programs are stored in local instruction memory. 

When a task is to be executed, a controlling RISC-V core issues 

a start command to the frontend with an instruction memory 

pointer to the first instruction of the kernel. To mitigate 

frontend overheads, in order logic and light-weight dependence 

tracking is utilized. The frontend fetches and decodes instruc-

tions in order. Data hazards are checked using a busy board, 

which is used to describe our light-weight score boarding tech-

nique. The busy board is a bit array that tracks all vector regis-

ters being used by all inflight instructions. No renaming is sup-

ported, and whenever a decoded instruction’s register is busy, 

the entire frontend stalls. The design prioritizes efficiency, the 

area overheads are negligible, and is highly sensitive to instruc-

tion scheduling, which is addressed with the use of SPIRAL. 

Once instructions clear all data hazards, they are dis-

patched to one of three decoupled queues: (1) Load/store 

Queue, (2) Compute Queue, and (3) Shuffle Queue. Once an 

instruction is in the queue, it can run in parallel with any other 

instruction as there are no dependencies. The parallel execution 

via the decoupled pipelines is key to achieving high perfor-

mance as it masks much of the data movement time. 

B.  RPU Backend 

The RPU backend provides the high-performance struc-

tures needed for effective ring processing. The major compo-

nents include three decoupled pipelines for compute via High 

Performance LAW engines (HPLEs), register-register data 

shuffling, and Vector Data Memory (VDM). It also includes a 

scalar memory to house the constants needed by HE. 

1) High Performance LAW Engine (HPLE): The HPLE is 

the computational unit in the RPU. Each has a LAWS engine 

and is partition of the Vector Register File (VRF), or a VRF 

slice. The LAWS Engine contains a modular multiplier, a 

modular adder, a modular subtractor, and two comparator units. 

NTT/iNTT is a key kernel in Ring-LWE, and the HPLEs 

support native butterfly computation via a butterfly instruction. 

Each CI command interacts with VRF slice and LAWS En-

gine to perform three tasks: read data from the VRF slice to the 

LAWS engine, start the computation in LAWS Engine, and 

store the output to the VRF slice. Here we use 128b to meet the 

needs of HE precision. The RPU allocates multiple HPLEs as 

lanes in classic vector designs.  

In each HPLE, the LAWS Engine is connected to the VRF 

slice. VRF slice is a part of the VRF that is divided among 

HPLEs. According to our RPU ISA, VRF has 64 vector regis-

ters with 512 elements. Each slice has 64 ×   512/
(𝑛𝑢𝑚_𝐻𝑃𝐿𝐸𝑠 ) elements. If we store each register of VRF in 

different memory, it requires small and efficient memory. To 

increase area efficiency, we stack four registers in one memory. 

The four registers in one memory cannot be accessed simulta-

neously, and SPIRAL handles special scheduling and data 

placement in the VRF. Hence, a VRF slice has 16 single-port 

memory with (512 × 4)/(𝑛𝑢𝑚_𝐻𝑃𝐿𝐸𝑠)words. A VRF slice 

interacts with HPLEs, VBAR, and SBAR. To support these par-

allel connections, each VRF slice has ten ports; five ports (three 

read ports and two write ports) for HPLEs, three ports (two read 

ports and one write port) for SBAR, and two ports (one read 

port and one write port) for VBAR. For computation, each VRF 

slice sends the data from input registers to corresponding 

HPLEs. HPLEs performs the computation. Once HPLE outputs 

the result, VRF slice stores it back to output registers.  

2) Shuffle Crossbar (SBAR): The SBAR transfers the 

data across VRF registers, facilitating efficient implementa-

tions of complex access patterns to maximize NTT efficiency 

by allowing register-register data shuffle. With the SBAR, vec-

tors can be broken up in the VRF, saving round trips through 

the VDM to restructure data in ISA referenced vectors. The 

SBAR supports all four modes of shuffle transfer. 

3) Vector Data Memory (VDM): We instantiate an RPU 

with a 4MiB Vector Data Memory (VDM). Here we find 4MiB 

is sufficient capacity to double buffer off-chip data loading with 

the execution of a kernel. The VDM can be up to 32MiB if more 

space is needed and can be banked to increase bandwidth. The 

large word size and capacity of the VDM necessitates the use 

of large SRAM macros that tend to run at low frequency and 

are currently the bottleneck in a single clock domain design. 

4) Vector Crossbar (VBAR): The VBAR transfers the 

data between VDM and VRF slice of HPLEs. It supports four 

modes of data transfer. When an HPLE reads or write data from 

different VDM banks, VBAR transfers the data in parallel. In 

practice, we find striding data across banks resolves nearly all 

bank collisions. We designed a parameterized VBAR to support 

any number of banks and HPLEs. 

5) Scalar Backend: A Scalar Data Memory (SDM) and 

Scalar Register File (SRF) are included to handle the many con-

stants needed in RLWE processing. The SDM is 32KB and uses 

128b words, which it loads into the SRF. The SRF sends values 

to HPLEs when the RPU executes scalar instruction. To add 

flexibility of operations, a Modulus Register File (MRF) is part 

of the backend. The MRF enables modulus changing at the in-

struction granularity, enabling processing different sets of data 

simultaneously. SRF and MRF data is directly transferred to 

HPLEs. To add flexibility of programming, we include an Ad-

dress Register File (ARF) for indirect memory access. 

C. Implementation 

The Trebuchet design requires rapid Design Space Explo-

ration (DSE) to evaluate the optimal selection of topologies and 

components as circuit-level optimizations for FHE are discov-

ered. To facilitate this, we developed the Fulcrum platform, 

Figure 3, to rapidly explore and implement different architec-

tures. Fulcrum consists of three core features: Architecture 

Modeling, Accelerator Generation, and Physical Design. The 

Architecture Modeling provides a DSE interface to allow de-

signers to rapidly select and explore FHE design parameters 
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specified by the cryptography and algorithms team. The Accel-

erator Generator interface enables different system architec-

tures to be assembled based on processing, memory allocation, 

and interconnection parameters. The Physical Design stage 

takes the design through the standard ASIC tool flow, where 

further DSE over modern ASIC EDA tool optimizations and 

different physical constraints (clock rates, layout etc.) can be 

explored. Fulcrum was used to assess ~1,000 multiplier, inter-

connect and memory designs that were collected during Phase 

1 to generate Pareto Optimal architectures.  

Fulcrum was used to generate and test all low-level com-

ponents, as well as fully integrated RPU tiles with fast simula-

tion test benches in Python leveraging CocoTB and full hard-

ware emulation on a Palladium system with complex kernels 

and test vectors. The Fulcrum EDA tool flow is highly modular 

and given different implementation constraints (i.e. SWAP) can 

generate different designs including FPGA implementations. 

D. Component Optimizations 

In moving from traditional 32- and 64-bit data word archi-

tectures to 128-bit words, critical innovations were required in 

the modulo multipliers and on-chip data movement structures 

(crossbars) to address exponential area scaling. We explored 

over 390 modulo ALU designs, Figure 4, with the selected ALU 

being a pipelined Barrett modulo multiplier that leveraged op-

timizations which eliminated a half-size multiplication during 

computation of the quotient and reduced the cost of calculating 

the product by only calculating the on the least significant N 

bits [4]. These optimizations enabled sub-quadratic complexity 

growth of the multiplier. For crossbar optimizations, we depop-

ulated unused configurations and hierarchical multiplexers, al-

lowing use to achieve an 11.5x area savings, and a design that 

is 128 to 8,192 times faster than conventional bus based designs 

used in FHE accelerators. 

IV. SOFTWARE LAYER 

Several popular, high quality, open-source libraries exist 

for implementing systems based on FHE. SEAL from Mi-

crosoft Research [5], HELib from IBM research [6], 

PALISADE [7] and its successor OpenFHE[1] developed by 

multiple authors including those on this paper from Duality 

Technologies. We chose PALISADE for our initial work, mov-

ing to OpenFHE upon its release. OpenFHE supports all the 

mentioned schemes, is implemented in C++ and is heavily op-

timized for vector operations, using residue arithmetic to reduce 

large bitsize arithmetic into smaller conventional machine 

words, including 128-bit arithmetic support. The OpenFHE li-

brary follows the Homomorphic Encryption Standard by meet-

ing proper bit-security thresholds, given via (semi-)automated 

parameters that can be set by the user to control what security 

and performance they prefer to target. 

We extended SPIRAL [8] to support NTT and batch NTTs. 

Mirroring the structure of FFTW and FFTX, the NTTX pack-

age offers FFTW-style C/C++ API in line with FFTXstyle code 

generation, powered by SPIRAL in the backend. Illustrated by 

Figure 5, NTTX API leverages SPIRAL’s capability of delayed 

execution and just-in-time code generation to implement an in-

spector/executor paradigm for OpenFHE. 

To support general radix NTTs, large vector instructions 

and simple parallelism in SPIRAL, we added both the 

KornLambiotte FFT algorithm [8] and the Pease FFT algorithm 

[10] as breakdown rules to SPIRAL. Using SPIRAL’s Operator 

Language (OL), NTTs of size rk are represented as 

𝑁𝑇𝑇𝑟𝑘 =  𝑅𝑟
𝑟𝑘

(∏ 𝐿
𝑟𝑘−1
𝑟𝑘

𝑘−1

𝑖=0

𝐷𝑖
𝑟𝑘

(𝑁𝑇𝑇𝑟⨂𝐼𝑟𝑘−1)) 

To execute the generated NTT code, NTTX allows various 

data types for long vectors, provides different schemes of reg-

ister allocation (e.g., greedy, naive round robin), and has the 

infrastructure for verification (e.g., functional simulator) and 

low-level optimizations (e.g., instruction scheduler). 
// SPIRAL generated NTT Code for TILE vector architecture 
#include <tile.h> void  

_ntt1024x512_b1() { 

enter(OP_DEFAULT); _vload_512x128i(REG_V60, REG_A1, 0); 
_vload_512x128i(REG_V20, REG_A1, 8192); 

_vbroadcast_512x128i(REG_V19, REG_A3, 1, 1); 

_vimulmod_512x128i(REG_V59, REG_V20, REG_V19, REG_M1); 
_vaddmod_512x128i(REG_V58, REG_V60, REG_V59, REG_M1); 

_vsubmod_512x128i(REG_V57, REG_V60, REG_V59, REG_M1); 

_vunpacklo_512x128i(REG_V56, REG_V58, REG_V57); ... 
_vstores_512x128i(REG_A2, 16, REG_V21, 2); leave(OP_DEFAULT); 

} 
Listing 1: SPIRAL-generated radix-2 1,024-point NTT code using 

shuffle instructions. 

We generated forward and inverse vectorized radix-2 

NTTs with sizes from 1,024 to 65,536 and verified their cor-
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rectness with OpenFHE generated data. Listing 1 shows the ra-

dix-2 1,024-point NTT code generated by SPIRAL. To address 

the interoperation of NTTX to the RPU hardware, we translate 

NTTX calls into our RPU ISA discussed above – this is 

straightforward as there is usually a one-to-one correspondence 

between the two (as they were co-designed with each other in 

mind). 

V. RESULTS 

The goals of the project are to maximize the processing 

within the largest available footprint allowable without waivers 

on a GF12LP Multi-project Wafer (MPW), or 150mm2. The 

first phase of this project documented in this paper focused on 

development of the LAWS computations and the ring pro-

cessing unit. The second phase of this project, which is cur-

rently underway, scales the design to the full device, integrates 

I/O and other peripherals, and fabricates the full device. There-

fore, for the results in this paper, we characterize the perfor-

mance of the RPU using AFRL’s Palladium emulation system, 

and project full device performance based on different device 

level topologies, memory, and I/O interfaces. 

We emulated a single RPU on Palladium, with an ALU 

Size of 113K gates, a Lane size of 137K gates and a total RPU 

Size of 11.83M gates. The ALU operations include 128-bit Sca-

lar and Vector operations across Addition, Subtraction, Com-

parisons, Modular Multiplications. For kernel operations these 

were evaluated across an increasing kernel size of 1024, 16K, 

and finally 64K points for Switch Modulus, Fast Basis Exten-

sion, and RingMul, RingAdd, NTT (all verified in the same 

run). The resulting Palladium trace verifies the number of clock 

cycles needed to execute the kernel. 

A. Application Mapping Considerations 

We developed an approach to characterize the workload 

for a Logistic Regression (LR) training application. We used an 

LR algorithm [9] that was friendly to our BGV Fixed Point 

Packed Encoding [10] and implemented it in the PALISADE 

library to verify correct operation. To estimate runtime perfor-

mance, we accumulated basic vector operation counts, devel-

oping a model of the required software operations and their as-

sociated complexity numbers in the form of accumulated rin-

gAdd, ringMult and NTT/iNTT counts. We modeled functional 

bootstrapping for a sigmoid approximation, sign() determina-

tion and rescaling of the two vectors that are updated in the lo-

gistic regression training loop.  

We selected parameters for the BGV implementation that 

provided sufficient accuracy for the logistic regression training, 

resulting in a ring size of 216. These parameters allow us to pack 

64 SIMD slots per ciphertext. The parameters were chosen such 

that we have 7bits of fractional precision and a maximum data 

range of 127bits. We scaled our input data so that no overflows 

occur during the Logistic Regression training.  

Our Logistic Regression Training required the input Ci-

phertexts (CT) to have a multiplicative depth of 2, or three tow-

ers (each tower is based on a LAWS residue of a large modulus, 

also called a “ring”), except during bootstrapping where they 

are expanded to ~30 towers.  

We determined that the total number of bootstrap opera-

tions per logistic regression iteration loop is 32 for sigmoid 

(compare operation), 16 for rescaling the input to sigmoid + one 

for sign() and two for rescaling the weight vector (b or beta) 

and the residual vector (res) for use in the next iteration, for a 

total of 33 sign/compare bootstraps and 18 rescaling bootstraps 

for a total of 51 functional bootstraps per training epoch. Boot-

strapping is very compute intensive and composed primarily of 

Keyswitching and modulus switching operations. We derived 

approximate runtime estimates based on modeling the number 

of these two functions for each of the forms of functional boot-

strapping required and converting those to base ring operations.  

B. Chip I/O Modeling 

Trebuchet’s I/O bandwidth can scale to available re-

sources, and considers Low Voltage Differential Signaling 

(LVDS) at Single Data Rate (SDR) and Double Data Rate 

(DDR) for between 62.5 GB/s and 250 GB/s bandwidth to the 

chip. We have done backend layout of RPU tiles and have 

budgets for the total chip area estimate using 14 tiles and I/O 

controllers. We also consider HBM and HBM2 memory inter-

faces, which can provide 288 GB/s, and 460.8 GB/s respec-

tively. We developed a model to account for the extra time re-

quired for data to load/unload from the chip depending on the 

interface technology. Our internal tile mesh interconnect is ca-

pable of scaling to any of the above data rates so it will not limit 

the data rate to an RPU. 

The current RPU configuration has 4 MB of Vector Data 

Memory, which is enough storage for four 64k * 128-bit towers. 

There is enough storage in an RPU to buffer two vectors while 

operating on the main data and twiddle memory during NTT 

operation. We use this in our scheduling to hide the data loading 

for NTTs, thus our NTT timing is unaffected by data motion. 

Additional overhead to load data into the chip depends on 

the application and involves complex analysis. We instead use 

a conservative simple data model with some operations throt-

tled by chip I/O data rate. We determined that during Encrypted 

ciphertext multiplication, RPU memory would not be sufficient 

to hold all data vectors for a single tower, requiring a reload of 

some vector data on-chip, stalling our ALUs while a new oper-

and is loaded. Thus, we derated the timing of *all* ring multiply 

operations to the time it takes to load or store one vector of 
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tower data for the various I/O interfaces. This should be taken 

as a conservative worst-case number. 

C. Performance Results 

Our current best values from Palladium emulation of 64k 

point RA and RM are RA = RM = 1.73 uSec. Execution time 

for NTT is a bit more complex. We have two versions of the 

RPU that currently have different NTT execution times. The 

two candidate RPU Tile configurations, RPU version 1 with 

one vector register per data memory unit and RPM Version 2 

with four vector registers per memory unit. The former is bigger 

and easier for SPIRAL to schedule, the latter is smaller and 

more difficult to schedule. Our fully functional and Palladium 

validated 64k NTT running on RPU Tile 1 will run in 18.3k 

clock cycles or 9.15 uSec. We also have a version of NTT cur-

rently running at 24.6k clock cycles or 12.3 uSec. RPU Model 

1 can fit 10 tiles on a chip, while Model 2 can fit 14 on a chip. 

We believe that with additional improvements in the NTT with 

SPIRAL in phase 2 we should be able to schedule the NTT to 

reach an ideal limit of 16k clock cycles or 8 uSec running on 

the smaller RPU Tile Model 2.  

Table 1 shows the resulting run times for the three RPU 

configurations, across the four data models (ideal, LVDS DDR 

2k pins, single HBM2 and two HBM2) allocating the computa-

tional load evenly across all RPUs. The number of RPU tiles is 

reduced by one in the dual HBM2 case to make room on the 

chip. We show the three Level 0 operations as well as the timing 

for single sign and rescale functional bootstraps. We also show 

a derating factor as a % slow-down for a given I/O model rela-

tive to the ideal model. It is part of our phase 2 tasking to better 

balance the compute and I/O. 

One key take away is that when analyzed with a full appli-

cation load, the RPU Model 2 performs better than the RPU 

Model 1, because while it is slower for NTT, it is smaller and 

there are more tiles of the former than the latter. So overall 

runtime is better for the second model.  

It is important to compare the latency of these operations 

vs a single CPU running PALISADE with 128bit arithmetic2. 

Table 2 shows the speedup with one RPU, a full chiplet of 14 

RPU tiles, and a transition ready configuration of four chiplets 

on a multi-chip module. 

VI. CONCLUSIONS 

Our results for the first phase of the DPRIVE project focused 

on the computational aspects of a modular and flexible design 

of a tiled FHE coprocessor, demonstrating large speedups 

(35,500x) over conventional CPU approaches. The next phase 

will focus on the impact of data marshalling and chip I/O band-

width for the overall design under the offered load of larger ML 

applications such as Convolutional Neural Networks. In addi-

tion, we will focus on using the CKKS approximate number 

scheme, which provides more efficient ciphertext packing and 

greatly reduces the number of bootstrap operations. 
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2 Using the PALISADE benchmark bin/benchmark/poly-128-

benchmark-64k set for a single core on a Dell Precision-3630-Tower: 

4700 MHz CPU. CPU Caches:   L1 Data 32 KiB, L1 Instruction 32 

KiB, L2 Unified 256 KiB, L3 Unified 12288 KiB. 

Table 1-Timing summary for one Logistic Regression Training 

Iteration in seconds. 
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RPU Model 1 

Ideal 

0.110  3.650  
RPU Model 2 0.091  2.912  
RPU Phase2  0.074  2.495  

RPU Model 1 

LVDS2k 

0.153 39% 5.370 47% 

RPU Model 2 0.122 34% 4.141 42% 

RPU Phase2  0.105 42% 3.724 49% 

RPU Model 1 
1xHBM

2 

0.125 14% 4.233 16% 

RPU Model 2 0.102 12% 3.329 14% 

RPU Phase2  0.084 14% 2.912 17% 

RPU Model 1 
2xHBM

2 

0.122 11% 4.055 11% 

RPU Model 2 0.098 8% 3.136 8% 

RPU Phase2  0.080 8% 2.687 8% 

 

Table 2 - Comparison of core kernel latency vs. single CPU run-

ning PALISADE 128-bit software 

  

Kernel CPU 
latency (us) 

RPU latency 
(us) 

Single RPU 
Speedup 

Single chiplet 
Speedup 
(14 RPU tiles) 

Quad Chiplet 
Speedup 
(4 chiplets) 

ringAdd 333 1.73 192x 2694x 10779x 

ringMult 1,240 1.73 716x 10034x 40138x 

NTT 7,807 12.3 634x 8886x 35544x 
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