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Abstract

We revisit the problem of reusable non-interactive secure computation (NISC). A standard
NISC protocol for a sender-receiver functionality f enables the receiver to encrypt its input x
such that any sender, on input y, can send back a message revealing only f(x, y). Security should
hold even when either party can be malicious. A reusable NISC protocol has the additional
feature that the receiver’s message can be safely reused for computing multiple outputs f(x, yi).
Here security should hold even when a malicious sender can learn partial information about the
honest receiver’s outputs in each session.

We present the first reusable NISC protocol for general functions f that only makes a black-
box use of any two-message oblivious transfer protocol, along with a random oracle. All previous
reusable NISC protocols either made a non-black-box use of cryptographic primitives (Cachin
et al., ICALP 2002) or alternatively required a stronger arithmetic variant of oblivious transfer
and were restricted to f in NC1 or similar classes (Chase et al., Crypto 2019). Our result is
obtained via a general compiler from standard NISC to reusable NISC that makes use of special
type of honest-majority protocols for secure multiparty computation.

Finally, we extend the above main result to reusable two-sided NISC, in which two parties
can encrypt their inputs in the first round and then reveal different functions of their inputs
in multiple sessions. This extension either requires an additional (black-box) use of additively
homomorphic commitment or alternatively requires the parties to maintain a state between
sessions.

1 Introduction

Consider the following minimal setting for secure computation. There are two parties, a sender
and a receiver, and two rounds of interaction. In the first round, the receiver encrypts its input x
and sends the resulting message π1 to the sender. In the second round, the sender uses the message
π1 and its input y to compute a message π2. Based on π2 and its secret randomness, the receiver
should compute the output f(x, y), for some predetermined f , but should not learn additional
information about the sender’s input y.

When the parties are semi-honest, the problem is relatively easy to solve by using garbled
circuits [Yao86], under the (minimal) assumption that a two-message oblivious transfer (OT) pro-
tocol exists. When security needs to hold against malicious parties, the problem becomes more
challenging, and is referred to as non-interactive secure computation (NISC) [IKO+11].
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NISC is a powerful general-purpose tool for computing on encrypted data. For instance, NISC
enables users (acting as receivers) to safely post their encrypted sensitive data on the internet,
such that any other user (acting as a sender) can perform a secure computation with them, say to
determine whether their profiles match, by sending a single message. However, despite a significant
amount of research, all of the existing solutions to NISC are unsatisfactory in either of the following
ways:

• Non-black-box use of cryptography. The most natural approach for protecting NISC proto-
cols against malicious parties is by using non-interactive zero-knowledge (NIZK) proofs for
enforcing honest behavior [CCKM00, HK07, ASH+20]. However, this NIZK-based approach
is typically quite impractical, resulting in orders of magnitude of slowdown compared to
the semi-honest baseline. A good explanation for this is the fact that such NISC protocols
make a non-black-box use of the underlying cryptographic primitives, requiring their explicit
representation rather than just making oracle use of their input-output relation.

• Limited reusability. Motivated by the inefficiency of non-black-box protocols, several works
obtained practical NISC protocols that make a black-box use of cryptographic primitives, typ-
ically only a two-message OT protocol and a pseudorandom generator1 [IKO+11, AMPR14,
MR17, DILO22]. In fact, when cast in the “OT-hybrid” model, where the parties can make
parallel calls to an ideal OT oracle, these protocols are secure against a computationally un-
bounded malicious sender. Furthermore, they can efficiently achieve full information-theoretic
security for functions f in NC1 and similar classes. A subtle but important vulnerabil-
ity of these protocols is that they are not fully reusable: If the same receiver message is
used in multiple sessions to generate malformed sender messages, supposedly for computing
f(x, y1), f(x, y2), . . ., then even a partial leakage of the receiver’s outputs can lead to a total
break of security. For example, in the case of zero-knowledge proofs, if the sender can learn
whether the receiver accepts several malformed proofs of true statements, it can make the
receiver accept a false statement. This limitation was shown in [CDI+19] to be inherent for
NISC in the OT-hybrid model with a computationally unbounded sender: There are explicit
functions f for which no such NISC protocol can be reusable.

• Restricted functionality. To circumvent the above impossibility, Chase et al. [CDI+19] (with
subsequent efficiency improvement in [DIO21]) suggested the use of an arithmetic variant of
OT, called oblivious linear evaluation (OLE), instead of standard OT. Their main positive
result is an information-theoretic reusable NISC protocol for arithmetic branching programs
in the OLE-hybrid model, efficiently capturing f in NC1 and similar classes. Beyond the
limitation on f , the reusable flavor of OLE required by the protocol of Chase et al. [CDI+19]
is only known from the DCR assumption [Pai99] (or alternatively requires preprocessing)
and is considerably more expensive to realize than OT. While it was shown in [CDI+19] how
to bootstrap from branching programs to circuits, this step requires non-black-box use of a
pseudorandom generator.

The above state of affairs suggests the following open question:

Is there a general-purpose reusable NISC protocol that only makes a black-box use of a
two-message OT protocol?

1Since a pseudorandom generator can be constructed from an OT protocol in a black-box way, OT alone suffices.
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Shouldn’t this be impossible? Recall that the impossibility result from [CDI+19] rules out
protocols that make parallel calls to an ideal OT oracle and achieve reusable security against a
computationally unbounded sender. Then how can we hope to achieve the goals above? Our key
idea for bypassing this impossibility result is to make black-box use of the next-message functions
and receiver output function of a two-message OT protocol. Note that this is different than making
black-box use of an ideal OT functionality because it allows for “explaining” the message produced
by one of the next-message functions of the OT protocol by revealing the inputs and randomness
used to produce that message. Indeed, except for the fact that we have to settle for computational
security against a malicious sender, our protocol achieves security while being able to make black-
box use of any off-the-shelf two-message OT protocol when instantiating our approach.

1.1 Our Contribution

Our main result is an affirmative answer to the above question in the random oracle model. This
gives the first reusable NISC protocol for general functions f that only makes black-box use of
cryptography. In fact, we show the following more general result.

Theorem 1.1 (Reusable NISC from NISC, Informal). There is a reusable NISC protocol for f
in the random oracle model that makes a black-box use of any (non-reusable) NISC protocol for a
related f ′.2

The theorem is proved via a compiler from standard NISC to reusable NISC that makes use
of special type of honest-majority MPC protocols. Note that standard NISC can be constructed
from any two-message malicious OT in a black-box way [IKO+11]. Since two-message malicious
OT can obtained in a black-box way from two-message semi-honest OT in the random oracle
model [IKSS22a], we can base our protocol on semi-honest OT. While in this work we focus on fea-
sibility and do not attempt to optimize concrete efficiency, an optimized variant of our construction
is likely to yield reusable NISC protocols with good concrete efficiency.

Finally, we extend the above main result to a reusable two-sided variant of NISC, in which
two parties can encrypt their inputs (x, y) and then reveal different functions fi of their inputs in
multiple sessions.3 This extension makes black-box use of a “reusable commit-and-prove” primitive
which requires the commitments to the secret input to be reusable across different sessions with
the verifier. We show how to construct such a primitive in the random oracle model by making
black-box use of an additively homomorphic commitment scheme. Alternatively, we can construct
this primitive unconditionally in the random oracle model if the parties can maintain updatable
state between sessions.

Theorem 1.2 (Reusable two-sided NISC from NISC, Informal). Assume black-box access to a
(non-reusable) one-sided NISC protocol and a non-interactive reusable commit-and-prove protocol.
Then, there exists a reusable (two-sided) NISC protocol in the random oracle model.

2 Technical Overview

In this section, we give a high-level overview of the key ideas behind our construction of a black-box
reusable NISC protocol in the random oracle model. Later, we explain the additional challenges in

2We remark that given the description of f , f ′ can be obtained by a polynomial time deterministic procedure.
3In fact, our result applies to a more general notion of two-sided NISC that strictly generalizes both the above

notion and standard (one-sided) NISC.
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extending these ideas to the two-sided setting and discuss our approaches to overcome them.

Reusable NISC Protocol. Recall that a non-interactive secure computation (NISC) protocol
for a two-party functionality f is a two-message protocol between a receiver and a sender that
delivers the output of f to the receiver. A NISC protocol is said to be reusable if the message from
the honest receiver is fixed once and for all, and then the adversarial sender can execute multiple
sessions with the honest receiver. In each such session, the adversarial sender generates a new
second round message in the protocol and is allowed to learn the output computed by the honest
receiver.4 It can then adaptively decide to continue with the next session or stop the execution.
We require the view of the adversarial sender, together with the output of the honest receiver, to
be simulatable in an ideal world where the parties only have access to a trusted functionality that
implements f .

Impossibility in the OT-hybrid Model. Before we explain our solution, let us first recall
the intuition, already discussed in [IKO+11], for why reusable security is challenging for “natural”
NISC protocols. Let’s consider an honest receiver who has generated the first round message by
making several calls to the OT oracle by acting as the OT receiver. We concentrate on one such
call where the receiver’s choice bit is b. A malicious sender who tries to break the security of the
protocol can make a guess b′ for this bit and give two sender messages (m0,m1) such that mb′

is correctly generated as per the protocol specification but m1−b′ is malformed. It provides these
two messages as the sender input to the OT oracle. Now, if the guess b′ was correct, the honest
receiver does not notice this and continues to compute the output. On the other hand, if the
guess was incorrect, then the receiver obtains the malformed sender’s message. For natural NISC
protocols, this makes the receiver abort. Thus, depending on whether the receiver aborts or not,
the sender learns the value of the receiver’s choice bit b in this OT execution. This is not a major
problem in the single-use NISC setting, as there are standard ways to secret-share the receiver’s
input so that the receiver’s abort event is uncorrelated with its actual input. However, this has a
devastating effect in the case of reusable security. Specifically, for each one of the OT executions
with the receiver, the sender can learn its choice bit one-at-a-time by mounting the above attack
across different sessions. Once the sender does this, there is no hope of protecting the privacy of
the receiver’s input. Chase et al. [CDI+19] extended this argument to arbitrary protocols, showing
that information-theoretic reusable NISC in the OT-hybrid model is impossible. This applies even
to simple functionalities, such as the OLE5 functionality, for which efficient information-theoretic
protocols in the OT-hybrid model exist in the non-reusable NISC setting.

Main Goals. Somewhat surprisingly, Chase et al. showed that this impossibility result can be
circumvented if we replace OT-hybrid with the OLE-hybrid model. Specifically, they proved that
even after many sessions with an honest receiver, a malicious sender cannot obtain any advantage
over an ideal execution. Intuitively, unlike the case of OT, each receiver’s input to the OLE (over
a super-polynomially large finite field) can only be guessed with negligible probability. This allows

4In the actual definition, we consider a more general situation where the adversary can learn some partial in-
formation about the output, such as whether the receiver aborts. This makes reusable security nontrivial even for
functionalities such as OLE, where the receiver’s output reveals its input. However, for the sake of this overview, we
make the simplifying assumption that the entire receiver output is given to the adversary.

5OLE is the arithmetic analogue of OT which takes in a field element x from the receiver, and two field elements
(a, b) from the sender and outputs ax+ b to the receiver.
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the receiver to detect every cheating attempt of the sender with overwhelming probability, thereby
preventing the sender from gaining significant information about the OLE inputs. Chase et al. built
on this idea and gave a construction of a reusable NISC in the OLE-hybrid model. This positive
result showed that if we implement the OLE functionality using a two-message OLE protocol with
reusable receiver security6 in either the CRS/RO model, then we have a reusable NISC protocol
with same kind of setup. Unfortunately, such a two-message OLE protocol [CDI+19] is only known
from the DCR assumption [Pai99] and makes heavy use of expensive public-key cryptography.
Furthermore, Chase et al.’s construction for computing circuits (in contrast to the information-
theoretic construction for branching programs) made non-black-box use of a PRG. Given the above
state of the art, the two main goals of our work are:

1. Explore new approaches to bypass the impossibility in the OT-hybrid model without resorting
to the more expensive OLE primitive.

2. Obtain reusable NISC for circuits while only making black-box use of cryptography.

Our Approach: Making Black-Box use of Two-Message OT. The key approach we take
to bypass this impossibility result is to settle for computational security against a malicious sender,
while only making black-box use of a two-message OT protocol. Before we explain the technical
ideas in our construction, let us first explain how black-box use of a two-message OT is different
from treating the OT functionality as an oracle (as it is done in the OT-hybrid model). In the OT-
hybrid model, the receiver and the sender have access to an OT functionality. The OT functionality
takes a choice bit b from the receiver and two messages (m0,m1) from the sender and provides mb

to the receiver. The only interface that this model provides is to receive the private inputs from
the parties and give outputs. In particular, there is no way to “connect” the inputs that the parties
provide to this oracle with the other components in the protocol. On the other hand, in the black-
box two-message OT setting7, we model the oblivious transfer using the cryptographic algorithms
that implement this functionality. Specifically, we model a two-message OT protocol as a tuple
of algorithms (OT1,OT2, outOT)). OT1 is run by the receiver and takes the receiver’s choice bit
b and outputs the first round message otm1. OT2 is run by the sender and takes the receiver’s
message otm1, the sender’s private input (m0,m1) and outputs the second round message otm2.
outOT is run by the receiver and takes otm2 and the receiver’s private random tape and outputs
mb. Note that the interface that is provided by these oracles is to take inputs and randomness
from the parties and provide the protocol messages that they need to send to the other parties.
We model these messages as handles and importantly, these handles can be “opened” to the other
party. Specifically, the parties can send the input and randomness used in generating these handles
to the other party which can then check if this handle was generated correctly by querying the
oracles. In other words, one can treat these handles as commitments to the sender and the receiver
inputs to the OT functionality. As a result, we can use these commitments as a “link” between
the inputs provided by the parties to the OT oracle and the rest of the protocol. In particular,
this opens up new avenues to prove that the messages given to these handles are well-formed and

6In reusable receiver security game, we fix the first round message from the honest receiver and the corrupted
sender could generate multiple second round messages. In each session, the sender could learn partial information
about the receiver’s output (for instance, whether the receiver aborted or not). We require the joint distribution of
the view of the sender and the receiver’s output in each of the sender executions to be indistinguishable to an ideal
world where the parties have access to the ideal OLE functionality.

7We restrict ourselves to the case of a two-message OT protocol as this gives a two-message NISC protocol.
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hence do not give rise to input-dependent abort. Such a mechanism was impossible to achieve in
the OT-hybrid model, but now we can at least hope that this might be possible.

Challenges. Can we use this observation to upgrade any NISC protocol in the black-box OT
model to have security in the reusable setting? Unfortunately, this does not seem to be the case
and let us explain why. Almost all known black-box constructions of NISC use a two-message OT
protocol to implement a mechanism called as watchlists [IPS08]. Roughly, the watchlist mechanism
is a sophisticated cut-and-choose technique that delivers the input and randomness used by one of
the parties in a subset of the executions privately to the other party. Each party then checks if the
other party behaved honestly in the set of watched executions and if any deviation is detected, the
party aborts. If the set of watched executions are chosen randomly and privately, then this check
ensures that a majority of the unwatched executions are emulated honestly. Once this is ensured,
all these works have developed clever approaches to robustly combine the outputs from the rest of
the executions to compute the output of the functionality. For this to succeed, it is important that
watched executions are hidden from the corrupted party before it generates its protocol message.
This is typically done by implementing some version of a k-out-of-m OT functionality where one
party choose a random subset of size k as part of its watchlist and the functionality delivers the
input and randomness of the other party corresponding to each execution in this set. This k-out-
of-m OT functionality is implemented via a black-box access to a 1-out-of-2 OT. Specifically, the
receiver chooses a random subset of size k and computes an encoding of this set. Each bit of the
encoding is used as the choice bit in an execution of an 1-out-of-2 OT protocol. Regrettably, this
technique makes these constructions to again suffer from the same problem as the one described
earlier. In particular, we observe that a malicious sender can mount a similar selective failure
attack (as in the OT-hybrid model) to learn encoding of the random subset of watched executions
sampled by the receiver one bit at a time. Once the sender learns this encoding, it can easily break
the privacy of the receiver’s input and cheat in all the executions that are not watched.

At a high-level what this attack shows is that we cannot hope to achieve reusable security by
relying on any mechanism that hides a part of the receiver’s randomness via an 1-out-of-2 OT. All
such mechanisms are bound to be broken in the reusable setting as a malicious sender can learn
this secret randomness bit-by-bit. In other words, we need a technique where the randomness used
in generating the set of watched executions to come solely from the sender’s side. This is a bit
counter-intuitive as it seems to give the sender the power to fix this secret randomness to any value.
Once the sender knows this value it can trivially cheat in the other unopened executions and break
the security of the protocol.

Random Oracles to the Rescue. We overcome this conundrum by using random oracles to
sample the set of watched executions. Specifically, we pass the sender’s message through a random
oracle and this gives a subset of the executions to be opened. The correlation-intractability of
the random oracle guarantees that the sender does not have the power to fix this set of opened
executions to any value of its choice. Importantly, we can ensure that this property holds even in
the reusable setting as we can treat the output to every (new) query made to the random oracle
as an independently chosen random subset. This idea of using random oracles to sample the set
of watched executions is due to Ishai et al. [IKSS22a]. However, their motivation was to remove
the use of malicious-secure OTs from the watchlist mechanism whereas our motivation is to obtain
a construction in the reusable setting. Coincidentally, the random oracle paradigm used in their
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work lends itself nicely to solve the above mentioned issue in the reusable setting. This leads to a
natural question of whether this idea alone is sufficient to achieve reusability. Unfortunately, this
does not seem to be the case and, specifically, the protocol from [IKSS22a] is not reusable.

Overview of [IKSS22a]. Before we see why the protocol from [IKSS22a] is not reusable, let us
first give a high-level overview of this protocol. The protocol is based on the IPS compiler [IPS08]
which makes use of three main ingredients. The first, called the outer protocol, is a 2-round, 2-client
(namely, the receiver and the sender), m-server MPC protocol for computing the function f . The
outer protocol should be secure against malicious adversaries that corrupt either one of the clients
and t = Ω(m) servers, and has the following interaction pattern. In the first round, the clients send
a message to each one of the servers using their private inputs. The servers perform some local
computation on these messages and send the result of this computation to the receiver in the second
round. The receiver then decodes these messages to learn the output of f . The second ingredient,
called the inner protocol, is a semi-honest secure 2-party protocol for computing the next message
function of the servers in the outer protocol. The third ingredient is the watchlist mechanism that
is implemented using a random oracle. Let now explain how the compiled protocol works.

The sender and the receiver in the compiled protocol generate the first round messages to be
sent to each of the servers in the outer protocol. They then start running m executions of the
inner protocol where the i-th execution is computing the next message function of the i-th server.
The private inputs that the clients use in the i-th inner protocol execution corresponds to the
messages that they send to the i-th server in the outer protocol. The output of the inner protocol
corresponds to the second round messages sent by the servers in the outer protocol and the receiver
decodes these messages to learn the output of the functionality. To ensure that a majority of the
inner protocol executions are performed correctly, the watchlist mechanism is used. Specifically, the
parties after generating their respective messages to each of the m executions pass these messages
to a random oracle that outputs a set K. The parties send their private inputs and randomness for
each inner protocol execution in the set K.8 This is verified by the other party. This ensures that
a malicious adversary cannot cheat in a large fraction of the inner protocol executions as otherwise
the set K that is output by the random oracle will have a non-empty intersection with the cheating
executions. Hence, we can now rely on the security of the outer protocol against a small fraction of
the server corruptions to show that the compiled protocol is secure against malicious adversaries.

Key Challenge. To make the above construction reusable secure, we need each of the components
used in the compiler to be secure in the reusable setting. As discussed earlier, the watchlist
mechanism implemented by the random oracle paradigm is serendipitously suitable for the reusable
setting. The inner protocol which is only required to be semi-honest secure is also trivially secure in
the reusable setting. The key challenge we face is to make the outer protocol secure in the reusable
setting.

2.1 Constructing a Reusable Outer Protocol

Let us first specify the key security property that a reusable outer protocol needs to satisfy.

8To ensure that the corrupt parties are using uniformly sampled randomness as their random tape, the work of
Ishai et al. [IKSS22a] sampled this string as the output of the random oracle. For the purpose of this overview, we
ignore this technical detail.
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Key Security Property. Consider an adversary that corrupts the sender client and a subset of
the servers. The honest receiver generates the first round messages to the servers (using its private
input) and these messages are fixed. The adversary is now allowed to interact with the honest
receiver and the servers in many sessions. In each session, the adversary generates a fresh first
round sender message to the servers. The honest servers use the fixed receiver’s message and the
fresh sender message to compute the second round message in the protocol. The adversary sends
an arbitrary second round message from the corrupted servers. It obtains the output computed
by the honest receiver in this session and adaptively decides whether to continue with one more
session or abort.9 We require the view of the adversary to be simulatable in the ideal world where
the parties have access to the ideal functionality.

The Case of Constant-Degree Polynomials and Branching Programs. Before explaining
our construction of a reusable outer protocol for computing general circuits, let us first start with
a simple case of computing constant degree polynomials. Later, we explain how to extend this
construction to securely evaluate branching programs.

Let (p1, . . . , pℓ) be a set of constant-degree polynomials. For the sake of this overview, let us
assume that all these polynomials have degree 3. The work of Ishai et al. [IKSS22a] noted that
it is not necessary for the outer protocol to satisfy security against stronger malicious adversaries
but it is sufficient to start with an outer protocol that is secure against weaker pairwise verifiable
adversaries. Pairwise verifiable adversaries are constrained to generate the first round message on
behalf of the corrupted clients such that the messages sent to the honest servers pass a pairwise
consistency check. Our first observation is that this also extends to the case of reusable security.
Specifically, it is sufficient to construct an outer protocol that is reusable secure against pairwise
verifiable senders.

Let us first explain the construction of the outer protocol for computing degree-3 polynomials
given in [IKSS22a]. In the first round, the clients generate a secret sharing of their private inputs
using a 3-multiplicative, pairwise verifiable secret sharing scheme10 and send the shares to the
servers. The servers then locally compute the degree-3 polynomials on these shares to compute the
shares of the outputs. This step relies on the fact that the shares are 3-multiplicative. The servers
then send the output shares to the receiver.11 We note that this is protocol is already secure in the
reusable setting. This is because the first round message from the receiver to the servers consists of
a secret sharing of its private input and this secret sharing can be reused across multiple sessions.

To construct a reusable protocol for securely evaluating branching programs, we make use
of randomized encodings [IK00, AIK04]. It is known from these works that branching programs
admit a statistically secure degree-3 randomized encoding. Thus, the task of constructing a reusable
outer protocol for the case of branching programs reduces to constructing a reusable outer protocol
for computing degree-3 polynomials. However, to generate the randomized encoding we need to
additionally secret share the randomness used in computing it. A standard way to do this is for
the clients to sample randomness r1 and r2 respectively and send the shares in the first round. The
servers locally compute the shares of r1 + r2 and use them to generate the randomized encoding.
However, since the first round message from the receiver is fixed once and for all, it means that

9Again, in the formal definition, we only allow the sender to learn partial information about this output but we
ignore this in this overview.

10The standard Shamir secret sharing using bivariate polynomials satisfies this property.
11We note that the servers have to additionally re-randomize these shares but we ignore this step to keep the

exposition simple.
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we need to reuse the receiver’s share of the randomness across multiple sessions. Will this affect
security? Fortunately, this does not affect the security as the shares of the output are revealed to
the receiver and not to the sender. This means that we can fix r1 to be the all zeroes string and the
sender can be tasked with generating a fresh sharing of the randomness in each session to generate
the randomized encoding.

Extending to Circuits. All known constructions of randomized encodings for circuits require a
PRG [Yao86, IK00, AIK04]. Näıvely incorporating the PRG computation inside the functionality
would require non-black-box use of the PRG. Hence, previous NISC protocols for circuits needed
to introduce clever mechanisms to ensure that the overall protocol is making black-box use of a
PRG. An additional property we need from the outer protocol is that the servers cannot perform
any cryptographic operations. This is because the server computations in the IPS compiler are
emulated using the inner protocol and if the server computes any cryptographic operations, then
functionality that is computed by the inner protocol requires the code of this operation. Therefore,
constructions of the outer protocols given in [IPS08, IKSS21, IKSS22a, IKSS22b] required the PRG
computations to be done by the clients and the result of these computations to be secret-shared
between the servers. Once this is done, the servers can perform a constant degree computation on
these shares along with the shares of the input and the randomness to compute a secret sharing
of the randomized encoding. Of course, the clients could cheat and send shares of incorrect PRG
computations. While there are mechanisms to mitigate this in the single-use setting, unfortunately,
this creates serious issues in the reusable setting.

Specifically, consider a malicious adversary that corrupts the sender client and a subset of the
servers. The malicious sender client cannot be forced to evaluate the PRGs correctly and hence,
could send incorrect sharing of the PRG computations. At a high-level, this means that some entries
in the garbled gate table are incorrectly computed. This could force an abort if these particular
entries are decrypted in the garbled circuit evaluation. Hence, we need to make sure that the abort
event is uncorrelated with the receiver’s input. In the single-use setting this was mitigated using a
specific garbled circuit construction due to Beaver et al. [BMR90]. In this construction, the value
that is carried by each wire is masked with a random bit and thus, we only decrypt the garbled
gate entries corresponding to these masked values. This random masking makes it is possible to
argue that the abort event is uncorrelated with the receiver’s private input. Unfortunately, in the
reusable setting, these masks need to be reused as the receiver’s first round message is fixed across
sessions and hence, this offers no security. Thus, we need a brand new approach to prevent such
input-dependent aborts in the reusable setting.

Our Approach: Weakening the Outer Protocol. This problem seems incredibly hard to
solve as there are no black-box mechanisms which can force a malicious client to secret share the
correct PRG evaluations. In hindsight, this was also the main reason for why the work of Chase et
al. [CDI+19] could not provide a black-box construction for the case of circuits. Instead of dealing
with this problem at the outer protocol level, we design new mechanisms to deal with this problem
in the protocol compiler. (These mechanisms will only apply to our random oracle based compiler,
and do not apply to the “plain” OLE-hybrid model considered in [CDI+19].) Specifically, we
consider an outer protocol that is only secure against adversaries that compute the PRGs correctly.
We call such adversaries as verifiable adversaries. Next, we give the details about our new protocol
compiler that uses this weaker outer protocol to construct a reusable NISC.
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2.2 A New Protocol Compiler

Our goal is to design a protocol compiler that starts with an outer protocol satisfying reusable
security against verifiable adversaries and transforms it into a two-message reusable NISC protocol.
In this technical overview, we will only concentrate on proving the reusable security against a
malicious sender. Security against malicious receivers follows via standard techniques.

Let us assume that only the sender client needs to compute the PRG evaluations and secret-share
them in the outer protocol (in fact, our construction will satisfy this property). Of course, we cannot
force the sender client to open all the shares of the PRG computations as this would completely
ruin the security of the randomized encoding. Our goal is to design a black-box mechanism that
forces the sender to generate correct sharing of the PRG computations without compromising on
the randomized encoding security.

We overcome this by adding one more layer of cut-and-choose. Specifically, instead of emulating
one execution of the outer protocol (which consists of m servers), we emulate n (for n = O(λ)) such
executions (each containing m servers). In total, we perform n ·m executions of the inner protocol.
Recall that each message sent by the client to a server in the outer protocol consists of two parts:
the share of the client’s private input and, if the client was the sender, it additionally consists of the
share of the PRG evaluation. In each of the n executions of the outer protocol, we fix the client’s
shares of the private input to be the same. The sender generates independent PRG evaluations
for every execution and generates the shares of these evaluations. If all the emulations are done
correctly, then each execution of the outer protocol would be computing a randomized encoding of
the function on the same private inputs but using independently chosen random strings. We need
to make sure the following two conditions hold: (i) the shares of the private input that the parties
use in each execution of the outer protocol are the same, and (ii) the PRG computations and their
sharing are performed correctly. Instead of requiring these two conditions to hold exactly, we relax
the requirement and ensure that they hold for a large fraction. Specifically, we will make sure that
for a large fraction of the servers, the first round messages sent by the malicious sender are the
same across all executions and for a large fraction of the executions, the PRG computations and
their shares are generated correctly by the sender. We now explain why these two relaxations are
sufficient to argue the security of the compiled protocol. The first relaxation does not create any
problems we can rely on the security of the outer protocol to additionally corrupt these inconsistent
servers (which comprise of a small fraction) and ensure that these inconsistencies do not affect the
output obtained by the honest receiver. The second relaxation is a bit more subtle. Note that if the
PRG computations are correct, then the receiver’s output consists of the evaluation of a properly
generated garbled circuit using the same private inputs but using an arbitrary randomness. It
follows from the perfect correctness of the garbled circuit evaluation that all these evaluations
provide the output of f applied on the private inputs of the clients. Thus, a majority of these
values are going to be the same (corresponding to the correct output) and hence, we can correct
the errors caused due to incorrect PRG evaluations by computing the majority function locally on
all the n outputs.

These two relaxations are ensured via two applications of the random oracle based cut-and-
choose paradigm. Specifically, we ask the sender to pass its second round message (corresponding
to each one of the m · n executions of the inner protocol) to two random oracles. The first random
oracle outputs a subset L1 of the servers [m] and the second random oracle outputs a subset L2

of the executions [n]. For each server in the set L1, the sender client opens up the private input
and randomness used in generating the inner protocol messages for this server in each of the n
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executions. The honest receiver checks if these messages are correctly generated and if the share
of the private input used in each one of the n executions are identical. For each execution in the
set L2, the sender client opens up the shares of the PRG computations sent to all the servers. The
receiver checks if the shares correspond to a correct PRG evaluation. The first check ensures that
for a majority of the servers, the malicious sender client is using the same share of the private
input and these servers are emulated honestly. The second check ensures that except for a small
fraction of the executions, the sender client emulates a verifiable adversary and we can rely on the
security of the outer protocol against this weaker class to argue the security of the overall protocol.
A pictorial representation of the protocol appears in Figure 4.

Additional Requirement from the Outer Protocol. An astute reader who is familiar with
the IPS compiler might have noticed the following major challenge in achieving reusable security.
An adversarial sender could potentially cheat in a small number of server emulations, such that
this number is small enough to escape the watchlist mechanism with non-negligible probability. To
be more concrete, assume that the server only cheats in a single execution. Then, the probability
that this execution is a part of the watchlist (that is generated using the random oracle) is roughly
k/m = O(1) (where k is the number of servers in the watchlist). Though the number of such
cheating sessions are small and are not sufficient to break the privacy of the outer protocol, they
could decide if the honest receiver outputs ⊥ or obtains the correct output. Hence, in the simulation,
it is important to compute the same output that an honest receiver obtains in these cheating server
emulations. To achieve this, we corrupt those cheating servers and learn the share that an honest
receiver sent to these cheating servers. We then use this share to compute the output that an
honest receiver would have obtained by decrypting the cheating sender message. This is possible if
the inner protocol satisfied a special property called output equivocation [IKSS22b]. It was recently
shown in [IKSS22b] that any NISC protocol with security against malicious senders satisfies output
equivocation.

The above simulation technique does not create an issue in the single-use setting. In particular,
we can corrupt the servers corresponding to these cheating executions in the outer protocol and
obtain the private share sent by the honest receiver and continue with the simulation. However,
this causes a serious problem in the reusable setting. Specifically, in each one of the reuse sessions,
the adversarial sender client could cheat in a different set of the server executions and cumulatively
learn all the private shares of the honest receiver. If this happens, the malicious sender can learn
the private input of the receiver in its entirety.

To deal with this issue, we require the outer protocol to satisfy a stronger property called as
error correction [IKSS22a]. Informally, this property requires that the output of the receiver’s
decoding function depends only on the messages sent from the honest servers and is independent of
the messages sent by the corrupt servers. If this property holds, then in each reuse session, we can
replace the output of the inner protocol in those cheating executions with a default value and apply
the receiver’s decoding function on these outputs. It follows from the error correction property that
the output of the honest receiver remains the same after we perform this replacement. This helps
in proving that an adversarial sender cannot break receiver privacy by cheating in a different set of
executions in each reuse session. We use similar techniques as in [IKSS22a] to add this extra error
correction property. We note that this property was added to the outer protocol in [IKSS22a] to
construct a protocol compiler that only makes use of a semi-honest secure inner protocol. However,
in our work, we crucially rely on the error correction property to obtain security in the reusable
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setting.

2.3 Extension to the Two-Sided Setting

Let us first state the requirements from a two-sided NISC protocol.

Two-Sided Reusable NISC. We say that a NISC protocol is two-sided if the communication
channel is bi-directional and the output of f is delivered to both the parties at the end. In
a bit more detail, we model f as (f0, f1). For each β ∈ {0, 1}, fβ takes in offline inputs xoff0
from P0, xoff1 from P1, a common public online input xonpub, and an online private input xon1−β

from P1−β and delivers fβ((x
off
0 , xoff1 ), xonpub, x

on
1−β) to Pβ. The first round message of the protocol

depends only on the offline private inputs and the second round message is generated depending
on the online inputs. A two-sided NISC protocol is said to be reusable if an adversary corrupts
either one of the parties and fixes the first round of interaction once and for all. It then interacts
with the other party in multiple sessions. In every session, the honest party generates a second
round message using (adaptively chosen) online private inputs and the adversary generates an
arbitrary second round message. The adversary learns the output computed by the honest party
in this session and adaptively decides whether to continue with one more session or stop.12 We
require the view of the adversary in the real world to be simulatable in an ideal world with access
to a trusted functionality that does the following. The parties send their offline inputs to the
functionality in the beginning and interact with the functionality in multiple sessions. In every
session, the parties send their online inputs to the functionality and it computes the output of f
and delivers the result. We note that this way of modelling the two-sided functionality strictly
generalizes the one-sided NISC setting. It also generalizes the prior works on reusable two-round
secure computation [BGMM20, BL20, AJJM20, BJKL21, AJJM21, BGSZ22] where the parties
commit to their private inputs in the first round and can compute a sequence of functions fi on the
committed inputs by sending different second round messages. We also note that a stricter model
where the functionality takes in private online inputs from both the parties (instead of just one as
in our case) is impossible to achieve against rushing adversaries as one can mount resetting attacks.

Additional Challenges. In the two-sided setting, we face some additional challenges. Specifi-
cally, we cannot hope to run two instances of the one-sided protocol in the opposite directions to
get a two-sided variant. This is because an adversarial client could use two different offline private
inputs when acting as the sender and the receiver and learn two different outputs. This will break
the security of the two-sided NISC protocol. Therefore, we need an additional mechanism to ensure
that the malicious parties are forced to use the same input in those two executions.

Problem with the Standard Approach. A standard approach to do this is to give a zero-
knowledge proof that the adversary is using the same input in both the sessions, one where it is
acting as the sender and the other where it is acting as the receiver. However, as we are interested
in giving a black-box construction, we must be careful with the exact zero-knowledge proof that is
used.

A black-box way to prove that the adversary used the same offline private input in both the
executions is to commit to these two inputs and then prove that the committed values are equal

12Again, the formal definition allows the adversary to only learn partial information about the outputs.
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using a black-box commit-and-prove protocol. Such a non-interactive black-box commit-and-prove
protocol can be constructed in the random oracle model based on the “MPC-in-the-head” approach
of Ishai et al. [IKOS07]. In this approach, the prover generates a secret sharing of the committed
values and runs an MPC protocol in its head that reconstructs these two values from the shares and
checks equality. It generates the view of each party in the MPC protocol and commits to the view
of these virtual parties. The prover then passes these commitments through a random oracle to
obtain a set of executions to be opened. The verifier checks if the opened views are consistent and
if yes, accepts the proof if the output of the MPC protocol is 1. However, this approach does not
directly translate to the reusable setting. This is because the commitments to the offline private
input when the honest party acts as the receiver are generated in the first round. In particular,
the honest party generates a secret sharing of this private input in the commit-and-prove protocol
once and commits to these shares in the first round. For every new second round message in the
protocol, we need to generate a fresh secret sharing of the sender offline inputs and prove that
these shares correspond to the same value that was used in the receiver side. This means that for
such reuse session, we need to generate a fresh proof of consistency and this could imply opening
a different subset of the shares of the commitment generated in the first round. After a certain
number of reuse sessions, we could open all the shares and this affects the privacy of the honest
receiver’s input.

A Reusable Black-Box Commit-and-Prove. To deal with this issue, we need a reusable
variant of the commit-and-prove protocol. In this variant, the commitments to the secret values
are generated once and fixed across multiple sessions. These fixed set of commitments allow a
prover to prove in zero-knowledge that these secret values satisfy potentially different predicates in
each session. The standard commit-and-prove protocols may not satisfy this reusability property.
In this work, we give a construction of a reusable commit-and-prove protocol using additively
homomorphic commitments. Specifically, we generate a commitment to the secret values using
these homomorphic commitments. For each proof, we use the homomorphism property to generate
a fresh secret sharing of the committed values. That is, we generate commitments to randomness
and use the additive homomorphism to generate a linear secret sharing of the committed values
using the committed randomness. Using these fresh sharings, we can now run an MPC protocol
in the head to show that the reconstruction of the newly generated shares satisfy the predicate of
interest. Specifically, for each reuse session, we generate a fresh set of secret shares and the problem
mentioned above does not arise. In Appendix B, we give a construction such a commit-and-prove
in the random oracle model (without any additional assumptions) in a weaker setting where the
prover and verifier maintain a state that is updated at the end of every proof execution. This
construction is based on proactive MPC protocols which allow an adversary to corrupt a different
subset of the parties across different time epochs.

3 Standard Cryptographic Definitions

Let λ denote the cryptographic security parameter. We assume that all cryptographic algorithms
implicitly take 1λ as input. A function µ(·) : N→ R+ is said to be negligible if for any polynomial
poly(·), there exists λ0 such that for all λ > λ0, we have µ(λ) < 1

poly(λ) . We will use negl(·) to

denote an unspecified negligible function and poly(·) to denote an unspecified polynomial function.
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We say that two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are computationally indistin-
guishable if for every non-uniform PPT distinguisher D there exists a negligible function negl(·)
such that |Pr[D(1λ, Xλ) = 1]|−Pr[D(1λ, Yλ) = 1]| ≤ negl(λ). If the above guarantee holds for even
unbounded distinguishers D, we say that the two ensembles are statistically indistinguishable. We
use ≈c to denote computational indistinguishability and ≈s to denote statistical indistinguishability.

3.1 Extractable Commitments in ROM

In our constructions, we make use of non-interactive, straight-line extractable commitments (Com,Open)
in the random oracle model. Namely, the commitments are computationally hiding, statistically
binding, and straight-line extractable by observing the queries that the adversary makes to the
random oracle. Such commitments were constructed in [Pas03].

3.2 Pairwise Verifiable Secret Sharing

We now recall the definition of pairwise verifiable secret sharing from [IKSS22a]. This subsection
is taken verbatim from [IKSS22a].

Consider a linear t-out-of-m threshold secret sharing scheme where the secrets are over a finite
field F and the shares are over another finite field F′. We use + and · to denote the addition and
multiplication operations over both the fields.

Definition 3.1 (Pairwise Verifiable Predicate). A predicate P is a pairwise verifiable predicate if
it takes a threshold t, two indices j, k ∈ [m] and the purported j-th and k-th shares xj and xk and
outputs 1/0. Further, if P (t, j, k, (xj , xk)) = 1, P (t, j, k, (x′j , x

′
k)) = 1 and P (k.t, j, k, (x′′j , x

′′
k)) = 1

(where k ∈ N), then P (t, j, k, (xj + x′j , xk + x′k)) = 1 and P ((k + 1)t, j, k, (xj · x′′j , xk · x′′k)) = 1.

In the main body, we also extend the definition of the pairwise verifiable predicate P to take in
a vector of pair of shares and apply the above pairwise check for each pair.

Definition 3.2 (Pairwise Verifiable and Error Correctable Secret Sharing). A t-out-of-m thresh-
old linear secret sharing scheme (Share(t,m),Rec(t,m)) is said to be k-multiplicative and ℓ-error-
correctable w.r.t. pairwise predicate P if:

1. k-Multiplicative: Given m shares of elements x1, . . . , xk arranged as a matrix M of k rows
and m columns, the row vector obtained by computing the product of each column of M is a
kt-out-of-m secret sharing of x1 · x2 . . . · xk.

2. Pairwise Verifiable Error Correction: Let T be a subset of [m] of size at most ℓ.
Let (x1, . . . , xm) be arbitrary elements such that for any threshold t′ ≤ kt and for any
j, k ∈ [m] \ T , P (t′, j, k, xj , xk) = 1. Then, for any {xi}i∈T , Rec(t′,m)({xi}i∈T , {xi}i ̸∈T ) =
Rec(t′,m)({xi}i∈T , {xi}i ̸∈T ) = x. Furthermore, there exists an efficient procedure Extrapolate
that on input t′, {xi}i ̸∈T outputs the unique {x′i}i∈T such that ({xi}i ̸∈T , {x′i}i∈T ) ∈ supp(Share(t′,m)(x)).

The above definition of pairwise verifiable secret sharing is the same as the one given in [IKP10]
except that we additionally need error correction property as well. We note that bivariate Shamir
secret sharing is a t-out-of-m secret sharing scheme that is k-multiplicative and ℓ-error correctable
as long as m ≥ kt+ 2ℓ+ 1. The pairwise predicate corresponds to equality checking of polynomial
evaluations.
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3.3 Reusable NISC Protocol

Let f be a two-party functionality between a receiver and a sender. Let x be the private input of
the receiver and y be the private input of the sender. A NISC protocol13 (Π1,Π2, outΠ) between
the receiver and the sender is a two-message, malicious-secure protocol that securely computes the
ideal functionality f and delivers the output to the receiver. Specifically, in this protocol, Π1 is
run by the receiver using its private input x to generate the first round message. Π2 is run by the
sender on its private input y and the receiver’s first round message to compute the second round
message in the protocol. outΠ is run by the receiver on the sender’s message and its private random
tape to compute the output of f . The security is modelled using the standard real-ideal paradigm.
For completeness, we provide this definition in Appendix A.

A reusable NISC protocol is one where the first round message from the receiver is fixed once
and for all and the sender can send multiple second round messages (potentially using different
inputs). The receiver computes the output of f on its fixed input and the fresh sender input for
each execution. For security, we require this protocol to satisfy standard security against malicious
receivers (see Appendix A) and reusable security against malicious senders. In the reusable security
game, the adversarial sender is allowed to generate an a priori unbounded polynomial number of
second round messages (in an adaptive manner). We now give the formal definition of a reusable
NISC protocol.

Definition 3.3 (Reusable NISC Protocol). A NISC protocol (Π1,Π2, outΠ) for computing a two-
party function f is a reusable NISC protocol if it satisfies standard security against malicious
receivers and the following reusable sender security. For any PPT adversary A that corrupts the
sender, there exists a PPT simulator SimΠ,S such that for all non-uniform PPT (stateful) environ-
ments Z and for all non-uniform PPT distinguishers D, we have:∣∣∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]

∣∣∣ ≤ negl(λ)

where Real and Ideal experiments are defined below.

• Real Execution: Real. The environment Z on input 1λ provides the private input x to
the honest receiver and auxiliary input z to A. The honest receiver generates the first round
message in the protocol using x and this message is delivered to A. Repeat the following until
A outputs a special command stop:

1. Z provides an input y to the adversary and A generates an arbitrary second round
message in the protocol.

2. The honest receiver computes the output of the protocol using outΠ on the adversarial
sender message and its private random tape.

3. This output is forwarded to Z which sends some auxiliary information to A.
4. A either outputs stop or continues to the next iteration.

We call each iteration where the adversary generates a second round message as a session.
The output of the real execution corresponds to the output of D on the output of the honest
party in each session and the output of A at the end of all sessions.

13As our main results are in the random oracle model, we can avoid an explicit setup phase that samples the CRS
uniformly and instead use the random oracle’s output on some default input as the CRS.
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• Ideal Execution: Ideal. This corresponds to the ideal world interaction where SimΠ,S and
the honest receiver have access a trusted functionality that implements f . The environment
Z on input 1λ delivers the private input x to the honest receiver and auxiliary input z to
SimΠ,S. The receiver forwards x to the ideal functionality. SimΠ,S can interact with the ideal
functionality in an a priori unbounded polynomial number of sessions. In each session,

1. Z sends a private input y to SimΠ,S and SimΠ,S sends an arbitrary input to the ideal
functionality or a special instruction to the ideal functionality to deliver ⊥ to the honest
receiver.

2. The trusted functionality returns the output to the receiver depending on SimΠ,S’s in-
struction and this is forwarded to Z.

3. Z sends some auxiliary information to SimΠ,S.

4. SimΠ,S decides whether to continue with one more session or stop.

The output of the ideal execution corresponds to the output of D on the output of the honest
party in each session and the output of SimΠ,S at the end of all sessions.

3.4 Reusable Two-Sided NISC

A two-sided NISC protocol for computing a function f = (f0, f1) is two-round protocol between P0

and P1 such that P0 gets the output of f0 and P1 gets the output of f1. For each β ∈ {0, 1}, fβ
takes in (xoff0 , xoff1 ) which are the offline inputs of the parties, a common public online input xonpub,
and a private online input xon1−β and delivers the output to Pβ.

A two-sided NISC protocol is given by a tuple of algorithms (Π1,Π2, outΠ). Π1 takes the index
β ∈ {0, 1} of the party, its offline private input xoffβ and produces the first round message sent by Pβ

which is given by π
(β)
1 . Π2 takes the index β ∈ {0, 1} of the party, the public online input xonpub, the

online private input xonβ , the first round message generated by the other party π
(1−β)
1 and produces

the second round message π
(β)
2 of Pβ. outΠ takes in the index β ∈ {0, 1} of the party, its private

random tape, and the second round message π
(1−β)
2 generated by P1−β and produces the output of

fβ applied on ((xoff0 , xoff1 ), xonpub, x
on
1−β). As in the one-sided setting, the security is modelled using

the standard real-ideal security paradigm.

We say that a two-sided NISC is reusable if the parties can fix the first round message once and
for all and send fresh second round message that depends only on the online private input. The
parties use outΠ to learn the output of the function computed on their fixed offline private inputs
and the new online inputs. We require this protocol to satisfy the following security property.

Definition 3.4 (Reusable Two-Sided NISC Protocol). A two-sided NISC protocol (Π1,Π2, outΠ)
is a reusable NISC protocol for computing f = (f0, f1) if for any PPT adversary A that corrupts
P1−β for some β ∈ {0, 1}, there exists a PPT simulator SimΠ such that for all non-uniform PPT
(stateful) environments Z and non-uniform PPT distinguishers D, we have:∣∣∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]

∣∣∣ ≤ negl(λ)

where Real and Ideal experiments are defined below.
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• Real Execution: Real. For each b ∈ {0, 1}, the environment Z on input 1λ delivers the
private offline input xoffb to Pb and auxiliary input to A. Pβ uses this to generate the first
round message in the protocol. The adversary A receives this first round message and sends
the first round message on behalf of corrupt P1−β. Repeat the following until A outputs a
special command stop:

1. The environment Z provides an online input (xonpub, x
on
b ) to Pb for each b ∈ {0, 1}.

2. Pβ generates the second round message using the online inputs and this is delivered to
A. Pβ then receives the second round message sent by A.

3. The honest Pβ computes the output of the protocol using outΠ on the adversarial second
round message and its private random tape.

4. The output computed by the receiver is delivered to Z who sends some auxiliary infor-
mation to A.

5. A either outputs stop or continues to the next iteration.

We call each iteration described above as a session. The output of the real execution corre-
sponds to the output of D on the output of honest Pβ in each session and the output of A at
the end of all sessions.

• Ideal Execution: Ideal. This corresponds to the ideal world interaction where SimΠ (cor-
rupting P1−β) and the honest Pβ have access a trusted functionality that implements f . For
each b ∈ {0, 1}, the environment Z on input 1λ delivers the private offline input xoffb to Pb

and auxiliary input to SimΠ. Pβ sends this to the ideal functionality. SimΠ sends an arbitrary
offline input on behalf of P1−β. SimΠ interacts with the ideal functionality in an a priori
unbounded polynomial number of sessions. In each session,

1. The environment delivers an online input (xonpub, x
on
b ) to Pb for each b ∈ {0, 1}. Pβ

forwards this to the ideal functionality.

2. The ideal functionality computes f1−β on the fixed offline inputs and the new online
input and delivers this output to SimΠ.

3. SimΠ can send a special instruction to the ideal functionality to deliver ⊥ to the honest
receiver or sends an online input (xonpub, x

on
1−β). If xonpub ̸= xonpub, then the trusted function-

ality delivers ⊥ to the receiver. Else, the trusted functionality returns either the output
of fβ or ⊥ to the honest receiver depending on the instruction from SimΠ.

4. The output delivered to the receiver is forwarded to Z. Z sends some auxiliary informa-
tion SimΠ.

5. SimΠ then decides to continue with one more execution or stop.

The output of the ideal execution corresponds to the output of D on the output of honest Pβ

in each session and the output of SimΠ at the end of all sessions.

4 Reusable Verifiable Client-Server Protocol

In this section, we define and construct a reusable verifiable client-server protocol. This protocol
will be used as the main building block in the subsequent sections to construct a black-box reusable
(two-sided) NISC. We require this protocol to satisfy the following properties.
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• Reusability: This property requires that the first round message sent by the receiver to be
reusable. To be more precise, the receiver sends a single first round message (depending on
its private input) to each of the servers and this message is fixed once and for all. The sender
can generate multiple (a priori unbounded polynomial number of) first round messages for
different choices of its private input. The servers use the fixed first round message from the
receiver and the fresh first round message from the sender to compute a second round message
in the protocol. This second round message is sent to the receiver. The receiver uses this
second round message to compute the output of the functionality on its fixed private input
and the (fresh) sender input.

• Error Correction: Consider an adversary that corrupts the sender and certain number
of servers. This property requires that the output of the receiver’s decoding algorithm to
remain the same for any choice of second round message sent by the corrupted servers. In
other words, the output computed by the receiver is uniquely determined by the messages
sent by the honest servers. This property also implies that we can substitute the second
round message sent by the adversarial servers with some default values without affecting the
receiver’s output.

• Security against Verifiable Adversaries. As noted in [IKSS22a], there are barriers
in obtaining the error correction property against standard malicious adversaries. Hence,
[IKSS22a] defined a weaker class of adversaries called pairwise verifiable adversaries. Pair-
wise verifiable adversaries generate the first round message on behalf of the adversarial client
to the honest servers such that it passes some pairwise consistency check. They constructed
a protocol that had this error correction property against this weaker class. However, we are
unable to construct a protocol that satisfies both reusability as well as error correction against
pairwise verifiable adversaries. Hence, we further weaken the pairwise verifiable adversaries
to verifiable adversaries which generate the first round message in the protocol in a much
more restricted way. Specifically, if the adversary corrupts a sender client then there is a
predicate P ′ such that the first round messages sent to all the honest servers by the adversary
satisfy this predicate.14. In other words, there is some global predicate P ′ (instead of pairwise
local predicate) that the adversarial sender messages must satisfy. On the other hand, if the
adversary corrupts the receiver client then the first round messages sent by the receiver should
satisfy some pairwise consistency check w.r.t. to a predicate P (this property is identical to
the pairwise verifiable case). It is clear that verifiability restricts the adversarial power even
more than pairwise verifiability.

Organization. This section is organized as follows. In Section 4.1, we give the syntax and
the security properties of a reusable verifiable client-server protocol. In Section 4.2, we give a
construction of such a protocol for computing branching programs. In Section 4.3, we show how to
extend this construction to compute arbitrary circuits.

4.1 Definition

We start by describing the syntax of a reusable verifiable client-server protocol.

14We are little imprecise here and this global predicate acts only on a part of the sender’s message and not on the
whole message. To be more specific, the sender’s message consists of two parts. We want the first part to satisfy
local consistency and the second part to satisfy global consistency.
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Syntax. A reusable verifiable client-server protocol between two clients, the receiver R and a
sender S and a set ofm servers is given by a tuple of algorithms (ShareR, ShareInpS ,ShareRandS ,Eval,Dec)
with the following syntax.15

• ShareR takes the private input x of the receiver and outputs the first round message {msgR,inp,i}i∈[m]

to be sent to each of the m servers. Recall that this algorithm is only run once and the mes-
sages sent to the servers are reused across different iterations with the sender.

• ShareInpS takes the private input y of the sender and generates {msgS,inp,i}i∈[m]. ShareRandS
takes a uniform random string from the sender and generates {msgS,rand,i}i∈[m]. The first
round message from the sender to the i-th server consists of {msgS,inp,i,msgS,rand,i}. We
could have included msgS,rand,i as part of msgS,inp,i instead of computing it as an output of
ShareRandS . However, we choose to split it into two separate algorithms as this presentation
is more suitable to be used in our reusable (two-sided) NISC constructions. Looking ahead,
we would require the first part of the sender message {msgS,inp,i}i∈[m] to satisfy local con-
sistency check and the second part {msgS,rand,i}i∈[m] to satisfy global consistency check (see
Footnote 14).

• The Eval algorithm takes in the identity i of the server, the first round messages sent by the
clients to this server and outputs the second round message msg2,i to be sent to the receiver.

• The Dec algorithm takes in {msg2,i}i∈[m] and computes the output.

Verifiable Adversary. Before stating the security properties, we start with the definition of a
verifiable adversary. A verifiable adversary A corrupts either one of the clients and a set T of the
servers. If the adversary corrupts a client k ∈ {R,S}, then {msgk,inp,i}i∈[m]\T satisfies a pairwise
consistency predicate P . If k = S, then we additionally require {msgk,rand,i}i∈[m]\T to satisfy a global
consistency predicate P ′. We note that only the randomness part {msgS,rand,i}i∈[m]\T is required
to satisfy the global consistency predicate and it is sufficient for the input part {msgS,inp,i}i∈[m]\T
to only satisfy a pairwise consistency check. This property will again be crucially used in the
construction of a reusable (two-sided) NISC protocol.

Definition 4.1 (Pairwise vs Global Predicate). We now define pairwise and global predicates.

• Let P be a pairwise predicate that takes a client index k ∈ {R,S}, two server indices i, j ∈ [m],
the first round message (msgk,inp,i,msgk,inp,j) sent by the client k to the servers i and j and
outputs 1/0.

• Let P ′ be a global predicate that takes a set H ⊆ [m], and the second part of the first round
message {msgS,rand,i}i∈H sent by the sender S to the servers in H and outputs 1/0.

Definition 4.2 (Verifiable Adversary). An adversary A corrupting the client k and the set T of the
servers is said to be verifiable w.r.t. the pairwise predicate P and global predicate P ′ if it satisfies
the following:

• If k ∈ {R,S}, then for any two honest servers i, j ∈ [m]\T , P (k, i, j,msgk,inp,i,msgk,inp,j) = 1
where msgk,inp,i and msgk,inp,j are generated by A in the protocol execution.

15We implicitly assume that all the algorithms take in the unary encoding of the security parameter 1λ as part of
their inputs.
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• If k = S, then the output of the predicate P ′([m]\T, {msgS,rand,i}i∈[m]\T ) = 1 where {msgS,rand,i}i∈[m]\T
is generated by A in the protocol execution.

Security Definition. We are now ready to state the security properties that a reusable verifiable
client-server protocol needs to satisfy.

Definition 4.3 (Reusable Verifiable Client-Server Protocol). Let f be a two-party functionality. A
protocol Φ = (ShareR,ShareInpS , ShareRandS ,Eval,Dec) is a reusable verifiable client-server protocol
for computing f against t server corruptions if there exists a pairwise predicate P and a global
predicate P ′ such that:

1. Error Correction: Informally, this requires that the output of Dec to be uniquely determined
by the messages sent by the honest servers. Formally, for any verifiable adversary A (see
Definition 4.2) w.r.t. P and P ′ corrupting the sender client S and a subset T (where |T | ≤ t)
of the servers and for any two sets of second round messages {msg2,j}j∈T and {msg2,j}j∈T ,
we have:

Dec({msg2,j}j ̸∈T , {msg2,j}j∈T ) = Dec({msg2,j}j ̸∈T , {msg2,j}j∈T )
where {msg2,j}j ̸∈T consists of the second round messages generated by the honest servers (i.e.,
[m] \ T ) in the interaction with A. In other words, the output of Dec remains the same for
any choice of second round messages sent by the corrupted servers.

Furthermore, consider a setting where the verifiable adversary A generates multiple first round
sender messages that all have the same {msgS,inp,j}j ̸∈T but potentially different {msgS,rand,j}j ̸∈T .
Consider the second round messages generated by the servers for each of these sender mes-
sages. For each set of these second round server messages (corresponding to each new sender
message), we require the output of Dec to be the same. In other words, if a verifiable adver-
sary generates multiple sender messages using the same {msgS,inp,i}i ̸∈T , then the output of
Dec remains the same.

2. Security against Verifiable Receivers: For any (PPT) verifiable adversary A (see Defini-
tion 4.2) w.r.t. P and P ′ corrupting the receiver client and (adaptively) corrupting a set T of
upto t servers, there exists an (PPT) ideal world simulator SimΦ,R such that for any choice of
private input y of the honest sender client, the following two distributions are computationally
indistinguishable:

• Real Execution. The verifiable adversary A interacts with the honest parties (the
honest sender client and set of uncorrupted servers) in the protocol. The output of the
real execution consists of the output of the verifiable adversary A.

• Ideal Execution. This corresponds to the ideal world interaction where SimΦ,R and the
honest sender client have access to the trusted party implementing f . The honest sender
client sends its input y to f and SimΦ,R sends an arbitrary input. The trusted function-
ality returns the output of f to SimΦ,R. The output of the ideal execution corresponds to
the output of SimΦ,R.

3. Reusable Security against Verifiable Senders: For any (PPT) verifiable adversary A
(see Definition 4.2) w.r.t. P and P ′ corrupting the sender client and a set of servers defined
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as below, there exists an ideal world (PPT) simulator SimΦ,S such that for all non-uniform
PPT (stateful) environments Z and non-uniform PPT distinguisher D, we have:∣∣∣Pr[Real(1λ) = 1]− Pr[Ideal(1λ) = 1]

∣∣∣ ≤ negl(λ)

where Real and Ideal experiments are given below.

• Real Execution: Real. Z on input 1λ delivers the private input x to the honest receiver
and auxiliary input z to A. The receiver uses this private input to generate the first
round message in the protocol. The adversary A corrupts a set T1 of the servers and
gets the first round messages sent by the honest receiver to T1. Repeat the following until
adversary A outputs a special command stop:

(a) Z delivers y to A. A adaptively corrupts a set T of the servers and sends the first
round message to the servers [m]\ (T ∪T1). Note that adversary does not receive the
first round messages sent by the honest receiver to the servers indexed by T . Further,
this set T could be different across each execution but we require that |T ∪ T1| ≤ t.
We additionally require the adversary to be verifiable w.r.t. to the predicates P and
P ′ where the set of corrupted servers is given by T ∪ T1.

(b) For each server in [m]\ (T ∪T1), we run Eval on the first round message sent by the
honest receiver and the first round message sent by the adversary in the previous step.
The adversary sends arbitrary second round messages from the corrupted servers
given by T ∪ T1.

(c) We run Dec on the second round messages sent by the servers (both honest and the
corrupt) and send this output to Z.

(d) Z sends some auxiliary information to A.
(e) A outputs the special symbol stop or decides to continue to the next iteration.

We call each iteration described above as a session. The output of the real execution
corresponds to the output of D on the output of the receiver in each session and the
output of A at the end of all the executions.

• Ideal Execution: Ideal. This corresponds to the ideal world interaction where SimΦ,S

and the honest receiver client have access to the trusted party that implements f . The
environment Z on input 1λ delivers an input x to the receiver and auxiliary input z to
SimΠ,S. The receiver sends this to f . SimΦ,S interacts with the ideal functionality in an
a priori unbounded polynomial number of sessions. In each session,

(a) Z sends y to SimΦ,S. SimΦ,S sends an arbitrary input to the ideal functionality.

(b) The trusted functionality returns the output delivered to the receiver to Z.
(c) Z sends some auxiliary information to SimΦ,S.

(d) SimΦ,S decides whether to continue with one more execution or stop.

The output of the ideal execution corresponds to the output of D on the output of the
receiver in each session and the output of SimΦ,S at the end of all executions.

4.2 Protocol for Computing Branching Programs

In this section, we give a construction of a reusable verifiable client-server protocol for computing
branching programs (more generally, the class of functions in SREN ). The construction is a
simplification of the one given in [IKSS22a] (which only satisfies error correction but not reusability).
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4.2.1 Construction

Building Block. The construction uses:

1. A t-out-of-m, 3-multiplicative, t-error-correctable secret sharing scheme (Share(t,m),Rec(t,m))
w.r.t. pairwise predicate P (see Definition 3.2). Let the shares be elements of a finite field F
where the size of the field is poly(m).

Notation. Let f be the functionality that is computed using a branching program. Let x be the
private input of the receiver and let y be the private input of the sender. Let f̂ be the randomized
encoding [IK00, AIK04] of f that takes (x, y) and a random tape r and outputs f̂((x, y); r). [IK00,
AIK04] showed that f̂ can be expressed as a sequence of degree-3 polynomials p1, . . . , pℓ in (x, y, r).16

Description of the Protocol. We give the formal description of the protocol in Figure 1. The
protocol is same as a two-round client-server, semi-honest secure protocol for computing degree-3
polynomials except that we use the special secret sharing scheme that is given by (Share(t,m),Rec(t,m)).

4.2.2 Proof of Security

The pairwise consistency predicate P is the same as that of the underlying secret sharing scheme.
Let P ′ be the global predicate that on input (H, {msgS,rand,i}i∈H) does the following:

1. It parses msgS,rand,i as (ri, {zj,i}j∈[ℓ]).

2. It checks if for each k, k′ ∈ H, P (t, k, k′, rk, rk′) = 1. It also checks if for each j ∈ [ℓ], if
P ′(3t, k, k′, zj,k, zj,k′) = 1.

3. It checks if Rec(3t,m)({zj,i}i∈H , {⊥}i ̸∈H) = 0 for each j ∈ [ℓ].

Error Correction. Let A be any verifiable adversary corrupting a subset T of the servers of size
at most t. This implies that each of the input shares sent by A to every pair of honest servers pass
the pairwise verifiability check. Since γi,j for each i ∈ [m] and j ∈ [ℓ] is computed as a degree-3
polynomial, it follows from Definition 3.1 that for each pair of honest servers u, v, γu,j and γv,j for
every j ∈ [ℓ] pass the pairwise verifiability check. Thus, the fact that the output of Dec depends
only on the messages sent by the honest servers follows directly from the pairwise verifiable error
correction property of the underlying secret sharing scheme. To prove the furthermore part, notice
that if the adversary is verifiable then in each of the sender messages, {zj,i}j∈[ℓ],i∈H reconstruct to
0. Hence, for each sender message, γi,j correspond to a 3t-out-of-m secret sharing of the outputs
of p1, . . . , pm computed on the same x, y but with potentially a different r. It now follows from the
perfect correctness of the decoding algorithm of the randomized encoding that for each one of the
sender messages, the output of Dec remains the same.

16We note that the randomized encodings take inputs in {0, 1}. As noted in [IKSS22a], to convert them into
functions that takes elements from a finite field F (of size p = poly(m)), we take each field element a and compute
ap−1 mod p. This gives a 0/1 value and it can be computed by a branching program of length polynomial in p.
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• ShareR(x) : On input the receiver’s private input x, it does the following:

1. It generates (x1, . . . , xm)← Share(t,m)(x).

2. It sets msgR,inp,i = xi for each i ∈ [m].

• ShareInpS(y) : On input the sender’s private input y, it does the following:

1. It generates (y1, . . . , ym)← Share(t,m)(y).

2. It sets msgS,inp,i = yi.

• ShareRand(·) :

1. It samples a uniform random tape r for computing the randomized encoding f̂ .

2. It generates (r1, . . . , rm)← Share(t,m)(r).

3. It generates (zj,1, . . . , zj,m)← Share(3t,m)(0) for each j ∈ [ℓ].

4. It sets msgS,rand,i = (ri, {zj,i}j∈[ℓ]).

• Eval(i,msgR,inp,i, (msgS,inp,i,msgS,rand,i)) : It does the following:

1. It parses msgR,inp,i as xi, msgS,inp,i as yi, and msgS,rand,i as (ri, {zj,i}j∈[ℓ]).

2. For each j ∈ [ℓ], it computes γi,j = pj(xi, yi, ri) + zj,i.

3. It sets msg2,i = {γi,j}j∈[ℓ].

• Dec({msg2,i}i∈[m]): It does the following:

1. It parses msg2,i as {γi,j}j∈[ℓ] for each i ∈ [m].

2. For each j ∈ [ℓ], it computes αj ← Rec(3t,m)(γ1,j , . . . , γm,j).

3. It runs the decoding algorithm of f̂ on (α1, . . . , αℓ) and outputs the result of the decoding.

Figure 1: Reusable Verifiable Client-Server Protocol for Computing Branching Programs

Security against Verifiable Receivers. Let A be a verifiable adversary that corrupts the
receiver client and (adaptively) corrupts a set of T servers for |T | ≤ t. We now show that the
protocol described in Figure 1 satisfies security against verifiable receivers (see Definition 4.3). We
start with the description of SimΦ,R.

Description of SimΦ,R. SimΦ,R uses a dummy private input for the honest sender client and a
dummy random tape r and generates the first round messages sent to the corrupted servers and
sends them to A. On input the first round message sent by A to the honest servers on behalf of
the corrupted receiver, SimΦ,R reconstructs x using Rec(t,m) as these messages are guaranteed to
be pairwise verifiable. It sends x to the ideal functionality and receives the output f(x, y). It uses
this output to run the simulator for the randomized encoding and obtains the simulated outputs
of p1, . . . , pℓ. It runs the Extrapolate algorithm to compute the purported shares that a verifiable
receiver client would have sent to the corrupted servers using the shares received by the honest
servers. Using these input shares and the shares sent on behalf of the honest sender client, it
computes γi,j for each i ∈ T and j ∈ [ℓ] using the honest evaluation algorithm. Conditioned on
fixing these values of γi,j , it generates a uniform 3t-out-of-m secret sharing of the output of pj
for each j ∈ [ℓ] and sends the shares of the honest servers to the adversary as the second round

23



messages.

Proof of Indistinguishability. We show that the real execution and the ideal execution are
indistinguishable using an hybrid argument. This argument is almost identical to the one given in
[IKSS22a] and many parts are taken verbatim from [IKSS22a].

• Hyb0 : This corresponds to the output of the real execution.

• Hyb1 : In this hybrid, we do the following:

– Based on the shares sent to the honest servers, we extract x.

– We compute the output p1, . . . , pℓ using the honest sender input.

– We compute the purported shares that the verifiable receiver clients sent to the cor-
rupted servers based on the shares received by the honest servers (using the Extrapolate
algorithm). Using these input shares, we compute γi,j for each i ∈ T and j ∈ [ℓ] using
the honest evaluation algorithm.

– Conditioned on the fixing the above computed values, we sample the second round
message from the honest servers as fresh 3t-out-of-m secret sharing of the output of
p1, . . . , pℓ.

This hybrid is identical to the previous hybrid since the adversary A is verifiable and the
honest sender client sends a 3t-out-of-m secret sharing of 0 for each j ∈ [ℓ].

• Hyb2 : In this hybrid, we replace the first round message sent by honest sender client to the
corrupted servers to be shares of default value. This hybrid is identically distributed to the
previous one from the perfect privacy of the underlying secret sharing scheme.

• Hyb3 : In this hybrid, we compute the output f(x, y) and use this as input to the simulator
for randomized encoding simulator to compute the outputs of p1, . . . , pℓ. It follows from the
security of randomized encoding that this hybrid is statistically close to Hyb2. This hybrid is
identical to the output of the ideal execution.

Reusable Security against Verifiable Senders. Let A be a verifiable adversary that corrupts
the sender client and the set of servers as described in Definition 4.3. We now show that the protocol
described in Figure 1 satisfies reusable security against verifiable senders (given in Definition 4.3).
We start with the description of SimΦ,S .

Description of SimΦ,S. A gives the description of the set T1 and SimΦ,S uses a dummy private
input for the honest receiver client and generates the messages corresponding to T1 and sends them
to A. For each execution initiated by the adversary,

• SimΦ,S receives the first round message sent by A to the honest servers [m] \ (T ∪ T1).

• SimΦ,S reconstructs (y, r) using Rec(t,m) as these messages are guaranteed to be pairwise
verifiable.

• SimΦ,S sends y to the ideal functionality and forwards whatever it receives from the environ-
ment to A.
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Proof of Indistinguishability. We show that the real execution and the ideal execution are
statistically close using a hybrid argument. This is again similar to the argument given in [IKSS22a]
and many parts of the proof given below are taken verbatim from [IKSS22a].

• Hyb0 : This corresponds to the output of the real execution.

• Hyb1 : In this hybrid, we do the following:

– In each execution, based on the shares sent to the honest servers, we extract (y, r) using
Rec(t,m).

This hybrid is identical to the previous hybrid since the adversary A is verifiable and we are
not making any changes to the distribution of the messages sent by the honest party.

• Hyb2 : In this hybrid, for every execution, we replace the output shares from the corrupted
servers in T ∪ T1 to be some arbitrary values. We run the Dec algorithm on these replaced
shares and compute the output of the honest receiver. It follows from the error correction
property and the fact that A is verifiable that Hyb1 and Hyb2 are identical.

• Hyb3 : In this hybrid, we replace the first round message sent by honest receiver client to the
corrupted servers in T1 to be shares of default value. This hybrid is identically distributed to
the previous one from the perfect privacy of the underlying secret sharing scheme as |T1| ≤ t.

• Hyb4 : In this hybrid, instead of computing the receiver’s output using the decoding pro-
cedure of the randomized encoding, we output f(x, y). Note that since A is verifiable,
{zj,i}j∈[ℓ],i ̸∈(T∪T1) is a secret sharing of 0. Hence, this hybrid is identically distributed to
the previous hybrid from the perfect correctness of the decoding procedure of randomized
encoding. Note that Hyb4 is identically distributed to the ideal execution.

4.3 Protocol for Computing Circuits

In this subsection, we give a construction of a reusable verifiable client-server protocol for computing
arbitrary circuits by making black-box use of a PRG.

4.3.1 Construction

Building Block. The construction uses:

1. A t-out-of-m, 3-multiplicative, t-error-correctable secret sharing scheme (Share(t,m),Rec(t,m))
w.r.t. pairwise predicate P (see Definition 3.2). Let the shares be elements of a finite field F
where the size of the field is poly(m).

2. A pseudorandom function PRFk : {0, 1}λ → {0, 1}λ where the secret key k is a uniform bit
string of length λ.

Notation. Let f be the functionality that is computed using a circuit. Let x be the private input
of the receiver and let y be the private input of the sender. Let f̂ be the garbled circuit of f that
takes (x, y) and a random tape r and outputs f̂((x, y); r). We note that f̂ uses a part of the random
tape r as PRF keys and evaluates the PRF using these keys on certain input values (which depends
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only on the description of the function f). It then uses these PRF evaluations to compute the
garbling f̂ . We note that the garbled circuit construction is such that given these PRF evaluations
on the appropriate inputs (which we will collectively denote by s), f̂ can be expressed as a sequence
of degree-3 polynomials p1, . . . , pℓ in (x, y, r, s).

Description of the Protocol. We give the formal description of the reusable verifiable client-
server protocol for computing circuits in Figure 2. This protocol is nearly identical to the one
given in Figure 1 except for the following changes. In ShareRand protocol, we pre-compute the
PRF evaluations (collectively denoted as s) used in generation of the garbled circuit and share
these PRF evaluations using Share(t,m). The Eval algorithm will use the shares of (xi, yi, ri, si) to
compute a 3t-out-of-m sharing of the outputs of p1, . . . , pℓ.

• ShareR(x) : On input the receiver’s private input x, it does the following:

1. It generates (x1, . . . , xm)← Share(t,m)(x).

2. It sets msgR,inp,i = xi for each i ∈ [m].

• ShareInpS(y) : On input the sender’s private input y, it does the following:

1. It generates (y1, . . . , ym)← Share(t,m)(y).

2. It sets msgS,inp,i = yi.

• ShareRand(·) : It does the following:

1. It samples a uniform random tape r for computing the randomized encoding f̂ .

2. It computes the PRF evaluations using the keys derived from r on inputs which depend on the
description of the function f . Let us use s to denote the collection of all such PRF evaluations.

3. It generates (r1, . . . , rm)← Share(t,m)(r) and (s1, . . . , sm)← Share(t,m)(s).

4. It generates (zj,1, . . . , zj,m)← Share(3t,m)(0) for each j ∈ [ℓ].

5. It sets msgS,rand,i = (ri, si, {zj,i}j∈[ℓ]).

• Eval(i,msgR,inp,i,msgS,inp,i,msgS,rand,i) : It does the following:

1. It parses msgR,inp,i as xi, msgS,inp,i as yi, and msgS,rand,i as (ri, si, {zj,i}j∈[ℓ]).

2. For each j ∈ [ℓ], it computes γi,j = pj(xi, yi, ri, si) + zj,i.

3. It sets msg2,i = {γi,j}j∈[ℓ].

• Dec({msg2,i}i∈[m], {kj}j∈[ℓ]): It does the following:

1. It parses msg2,i = {γi,j}j∈[ℓ] for each i ∈ [m].

2. For each j ∈ [ℓ], it computes αj ← Rec(3t,m)(γ1,j , . . . , γm,j).

3. It runs the garbled circuit evaluation algorithm on (α1, . . . , αℓ) and outputs the result of the eval-
uation.

Figure 2: Reusable Verifiable Client-Server Protocol for Computing Circuits

Remark 4.4. We note that the Eval algorithm described in Figure 2 is information-theoretic and
does not use any cryptographic operations. This property will be crucially used in the construction
of a black-box reusable (two-sided) NISC.
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4.3.2 Proof of Security

The pairwise consistency predicate P is the same as that of the underlying secret sharing scheme.
Let P ′ be the global predicate that on input (H, {msgS,rand,i}i∈H) does the following:

1. It parses msgS,rand,i as (ri, si, {zj,i}j∈[ℓ]).

2. It checks if for each k, k′ ∈ H, P (t, k, k′, rk, rk′) = 1 and P (t, k, k′, sk, sk′) = 1. It also checks
if for each j ∈ [ℓ], if P ′(3t, k, k′, zj,k, zj,k′) = 1.

3. It checks if Rec(3t,m)({zj,i}i∈H , {⊥}i ̸∈H) = 0 for each j ∈ [ℓ].

4. It computes r = Rec(t,m)({ri}i∈H , , {⊥}i ̸∈H) and s = Rec(t,m)({si}i∈H , , {⊥}i ̸∈H) and checks
if s is correctly computed from r using the PRF evaluations on the appropriate inputs using
the correct keys derived from r.

Error Correction. The error correction property follows via an identical argument to the pre-
vious case. Let A be any verifiable adversary corrupting a subset T of the servers of size at most
t. This implies that each of the input shares sent by A to every pair of honest servers pass the
pairwise verifiability check. Since γi,j for each i ∈ [m] and j ∈ [ℓ] is computed as a degree-3 polyno-
mial, it follows from Definition 3.1 that for each pair of honest servers u, v, γu,j and γv,j for every
j ∈ [ℓ] pass the pairwise verifiability check. Hence, it follows from the pairwise verifiable error
correction property of secret sharing scheme that for any choice of corrupted server messages, the
output of Dec remains the same. Also, since the messages pass the global consistency predicate P ′,
we infer that s is correctly derived from r by computing the PRF in appropriate inputs and each
(zj,1, . . . , zj,m) is a 3t-out-of-m secret sharing of 0. Hence, γi,j correspond to a 3t-out-of-m secret
sharing of the outputs of p1, . . . , pm computed on the same x, y but with potentially a different r.
It now follows from the perfect correctness of the garbled circuit evaluation that for each one of
the sender messages, the output of Dec remains the same and this proves the furthermore part.

Security against Verifiable Receivers. Let A be a verifiable adversary that corrupts the
receiver client and (adaptively) corrupts a set of T servers for |T | ≤ t. The proof that the protocol
in Figure 2 satisfies security against verifiable receivers (see Definition 4.3) follows identically to the
case of branching programs. The only difference being that we rely on the computational security
of the garbled circuits simulator in Hyb3 rather than the statistical security in the case of branching
programs.

Remark 4.5. Consider a setting where in the interaction with a verifiable receiver, the honest
sender runs ShareInp(·) once on its private input y but generates k independent sharing of the
randomness using ShareRand. For each of these independent runs of ShareRand, the servers run the
Eval algorithm (on fixed input sharing of the sender) and fresh sharing generated by ShareRandS
and send the second round message to the receiver. The proof given above can be extended in
a straightforward way to show that in this setting, the receiver learns no information beyond the
output of the functionality.

Reusable Security against Verifiable Senders. Let A be a verifiable adversary that corrupts
the sender client and the set of servers as described in Definition 4.3. This proof is again identical
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to the one given in the case of branching programs except in the last hybrid (i.e., in Hyb4). Here,
we additionally use the fact that the adversarial sender messages satisfy the global predicate P ′ to
ensure that the garbled circuit f̂ is correctly constructed. We can now use the perfect correctness
of garbled circuit evaluation to show that Hyb3 and Hyb4 are identically distributed.

5 Black-Box Reusable NISC

In this section, we give a construction of a black-box resusable NISC protocol. Specifically, we give
a black-box transformation from a (non-reusable) NISC protocol to a reusable NISC protocol in
the random oracle model. The main theorem we will prove in this section is:

Theorem 5.1. Assume black-box access to a (non-reusable) NISC protocol. Then, there exists a
reusable NISC protocol in the random oracle model.

5.1 Construction

We first define a weaker variant of reusable security. In this variant, the resuable security needs
to hold only against a weaker class of adversarial senders called as explainable senders [HIK+11].
Intuitively, an explainable sender is required to give an explanation on how it generates the second
round message in the protocol. This explanation consists of its private input and the random tape.
If this explanation is invalid, we replace the output of the honest receiver with ⊥. We give the
formal definition of this variant below.

Definition 5.2 (Reusable Security against Explainable Senders). This requirement is the same
as the one given in Definition 3.3 except that in the real execution, the malicious adversary that
corrupts the sender has to output an explanation of how it generated the second round message
in each iteration. This explanation comprises of its input y and a random tape r that it used
to generate the second round message. If this explanation is valid, we run the receiver’s output
decoding algorithm on the adversarial sender message and provide the output to the adversary. If
the explanation is invalid, we replace the output of the receiver in that particular iteration with ⊥.

We observe that any (non-reusable) NISC protocol satisfies reusable security against explainable
senders. This follows directly from the correctness of the evaluation algorithm and indistinguishability-
based security of the receiver’s message against semi-malicious senders (which is implied by security
against malicious senders).

Proposition 5.3. Any NISC protocol satisfies standard security against malicious receivers and
reusable security against explainable senders.

We are now ready to describe our construction.

Building Blocks. The construction uses the following building blocks:

1. A reusable verifiable client-server protocol (ShareR, ShareInpS ,ShareRandS ,Eval,Dec) w.r.t.
pairwise predicate P and global predicate P ′ for computing f against t = 4λ server corrup-
tions (see Definition 4.3). Let m = 20λ+ 1 be the number of servers in this protocol (which
follows the bounds on the pairwise verifiable 3-multiplicative, t-error-correctable secret shar-
ing). Our construction given in Section 4.3 ensures that Eval algorithm does not compute
any cryptographic operations (see Remark 4.4)
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2. A NISC protocol (Πi,1,Πi,2, outΠi) for computing Eval(i, ·, ·) (i.e., the computation done by
the i-th server) for each i ∈ [m]. As we are working in the random oracle model, the CRS can
be sampled as the output of the random oracle on some default value. From observation 5.3,
we infer that this protocol satisfies reusable security against explainable senders and standard
security against malicious receivers.

3. A straight-line extractable non-interactive commitment (Com,Open) in the random oracle
model (see [Pas03]). We require this commitment to be computationally hiding and statisti-
cally binding.

4. Let n = 4λ. Two hash functions H1 : {0, 1}∗ → ({0, 1}km)m and H2 : {0, 1}∗ → ({0, 1}kn)n
that are modelled as random oracles. Here, km and kn are the number of random bits to
needed to toss a biased coin that outputs 1 with probability pm = λ

2m and pn = λ
2n respectively.

We model the output of hash functions H1 and H2 as subsets of [m] and [n] respectively where
each element of the set is included independently with probability pm and pn respectively.

Description of Protocol. The formal description of the protocol is given in Figure 3. A pictorial
representation of our construction is given in Figure 4.

5.2 Proof of Security

In this section, we show that the protocol given in Figure 3 is a reusable NISC protocol (see
Definition 3.3). Specifically, in Section 5.2.1, we show that it satisfies standard security against
malicious receivers and in Section 5.2.2, we show that it satisfies reusable security against corrupted
senders.

5.2.1 Security against Malicious Receivers

Let A be a non-uniform PPT adversary that corrupts the receiver. For simplicity, we give our
proofs in the standalone setting but all our proofs extend to the UC setting in a straightforward
manner as our simulators and reductions are straight-line. We first give the description of the
simulator SimR.

Description of SimR.

1. SimR answers all the random oracle queries of the adversary using uniformly chosen random
values from the co-domain. It chooses a random tagS ← {0, 1}λ and if the adversary makes
any query to H1 or H2 that starts with tagS before receiving the second-round message from
SimR, it aborts.

2. It samples sets L1 and L2 as subsets of [m] and [n] respectively where each element is inde-
pendently included in L1 and L2 with probability pm and pm respectively. If |L1| ≥ 2pmm
or |L2| ≥ 2pnn, then it aborts. It programs the random oracles H1 and H2 to produce the
output L1 and L2 respectively when queried on the messages it generates on behalf of the
honest sender.
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• Round-1: The receiver on private input x does the following:

1. It computes (msgR,inp,1, . . . ,msgR,inp,m)← ShareR(x).

2. For each i ∈ [m] and j ∈ [n],

(a) It samples a uniform random tape ri,j to be used in the protocol Πi.

(b) It computes πi,j,1 := Πi,1(msgR,inp,i; ri,j), ai ← Com(msgR,inp,i) and bi,j ← Com(ri,j).

3. It computes K1 = H1(tagR, {πi,j,1, ai, bi,j}i∈[m],j∈[n]) where tagR ← {0, 1}λ and interprets K1 as a
subset of [m].

4. It sends ({πi,j,1, ai, bi,j}i∈[m],j∈[n], tagR, {Open(ai),Open(bi,j)}i∈K1,j∈[n]) as the first round message.

• Round-2: The sender on private input y does the following:

1. Check Phase:

(a) It recomputes K1 as in step-3 of round-1 and checks if the openings are valid.

(b) For each i ∈ K1 and for each j ∈ [n], it checks if πi,j,1 = Πi,1(msgR,inp,i; ri,j).

(c) For each i, i′ ∈ K1, it checks if msgR,inp,i and msgR,inp,i′ pass the pairwise consistency check P .

2. If any of the above checks fail, it aborts.

3. Else, it computes (msgS,inp,1, . . . ,msgS,inp,m)← ShareInpS(x).

4. For each j ∈ [n], it independently runs ShareRandS to obtain (msgS,rand,1,j , . . . ,msgS,rand,m,j).

5. For each i ∈ [m] and j ∈ [n],

(a) It samples a uniform random tape si,j to be used in the protocol Πi.

(b) It computes πi,j,2 := Πi,2(πi,j,1, (msgS,inp,i,msgS,rand,i,j); si,j) and comi,j ← Com(πi,j,2).

(c) It computes ci ← Com(msgS,inp,i), di,j ← Com(si,j), and ei,j ← Com(msgS,rand,i,j).

6. It computes L1 = H1(tagS , {comi,j , ci, di,j , ei,j}i∈[m],j∈[n]) and L2 =
H2(tagS , {comi,j , ci, di,j , ei,j}i∈[m],j∈[n]) where tagS ← {0, 1}λ and interprets L1 as a subset
of [m] and L2 as a subset of [n].

7. It sends

(a) {comi,j , ci, di,j , ei,j}i∈[m],j∈[n], tagS .

(b) {Open(comi,j),Open(ci),Open(di,j),Open(ei,j)}i∈L1,j∈[n].

(c) {Open(ei,j)}i∈[m],j∈L2
and {Open(comi,j)}i∈[m],j ̸∈L2

.

• Output Computation: The receiver does the following:

1. Check Phase:

(a) It recomputes L1 and L2 as in Step-6 of round-2 and checks if all the openings are valid.

(b) Using the openings to the commitments comi,j , ci, di,j and ei,j given by the sender,

i. It checks if for each i ∈ L1 and j ∈ [n] that πi,j,2 = Πi,2(πi,j,1, (msgS,inp,i,msgS,rand,i,j); si,j).

ii. For each i, i′ ∈ L1, it checks if msgS,inp,i and msgS,inp,i′ pass the pairwise consistency check
P .

iii. For each j ∈ L2, it checks if {msgS,rand,i,j}i∈[m] pass the global predicate check P ′.

2. If any of the above checks fail, it aborts.

3. Else, for each j ∈ [n] \ L2,

(a) It computes msg2,i,j ← outΠi(πi,j,2, ri,j) for each i ∈ [m].

(b) It computes αj = Dec({msg2,i,j}i∈[m]).

4. It outputs Majority({αj}j∈[n]\L2
).

Figure 3: Construction of Reusable Black-Box NISC Protocol
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Figure 4: Pictorial Representation of the Protocol. Here, {msgR,inp,i}i∈[m] denotes the shares of the receiver’s
private input, {msgS,inp,i}i∈[m] denotes the shares of the sender’s private input, and {msgS,rand,i,j}i∈[m],j∈[n]

denotes the shares of the sender’s randomness. For each i ∈ K1, the receiver opens (msgR,inp,i, {ri,j}j∈[n]).
Similarly, for each i ∈ L1, the sender opens (msgS,inp,i, {msgS,rand,i,j , si,j}j∈[n]). For each j ∈ L2, the sender
opens (msgS,rand,1,j , . . . ,msgS,rand,m,j).

3. First Round Message from A. It receives the first round message from A and runs the ex-
tractor of the commitment scheme on {ai}i∈[m] and {bi,j}i∈[m],j∈[n] to obtain {msgR,inp,i}i∈[m]

and {ri,j}i∈[m],j∈[n] respectively.

4. Check Phase. It performs the same checks that an honest sender does and if any of these
checks fail, it aborts. Else,

(a) It initiates an empty set I1. For each i ∈ [m], it checks if for all j ∈ [n], πi,j,1 =
Πi,1(msgR,inp,i; ri,j). If there is some j ∈ [n] for which this check fails, it adds i to I1.

(b) It then constructs an inconsistency graph G on m vertices and it adds an edge between
(i, i′) in G if msgR,inp,i and msgR,inp,i′ do not pass the pairwise consistency check P . It
runs a 2-approximation algorithm for the minimum vertex cover for this graph G and
calls this set as I2.

(c) If |I1| ≥ λ or |I2| ≥ λ, it aborts.

5. Simulated Second Round Message. To generate the second round message on behalf of
the honest sender, SimR does the following:

(a) It starts running the simulator SimΦ,R by corrupting the receiver client and the set of
servers indexed by L1∪I1∪I2. It requests for |[n]\L2| independent shares of randomness
generated using ShareRand (see Remark 4.5). SimΦ,R provides {msgS,inp,i,
msgS,rand,i,j}i∈L1∪I1∪I2,j ̸∈L2 .
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(b) SimΠ sends {msgR,inp,i}i ̸∈L1∪I1∪I2 as the first round messages sent from the corrupt re-
ceiver to the honest servers. SimΦ,R queries the ideal functionality on the malicious
receiver input x which we forward it to our trusted party. On receiving f(x, y) from the
functionality, we forward it to SimΦ,R. SimΦ,R returns {msg2,i,j}i ̸∈L1∪I1∪I2,j ̸∈L2 as the
second round messages from the honest servers.

(c) For each i ̸∈ (L1 ∪ I1 ∪ I2) and j ̸∈ L2, it generates πi,j,2 using the simulator SimΠi,R

on input πi,j,1 as the receiver message and msg2,i,j as the output of the computation. It
generates {comi,j}i ̸∈(L1∪I1∪I2),j ̸∈L2

using these values. For each i ̸∈ (L1 ∪ I1 ∪ I2) and
j ∈ L2, it generates comi,j as a commitment to a dummy value.

(d) For each i ∈ I1∪I2∪L1 and j ∈ [n], it samples a uniform random tape si,j and computes
πi,j,2 := Πi,2(πi,j,1, (msgS,inp,i,msgS,rand,i,j); si,j). It generates {comi,j}i∈(L1∪I1∪I2),j∈[n]
using these values.

(e) For each i ̸∈ L1 and each j ∈ [n], it replaces the message inside ci and di,j with a dummy
value.

(f) For each i ̸∈ L1 and each j ∈ [n] \ L2, it replaces the message inside ei,j with a dummy
value. For each j ∈ [L2], sample {msgS,rand,i,j}i∈[m] and use this to generate {ei,j}i∈[m].

(g) It generates the rest of the second round messages as per the protocol description and
sends it to the adversary.

6. SimR finally outputs whatever the adversary A outputs.

Proof of Indistinguishability. We show that the real world and the ideal world executions are
computationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the real world execution of the protocol.

• Hyb1 : In this hybrid, we answer all the random oracle queries to H1 and H2 made by the
adversary using uniformly chosen random values from the co-domain. Furthermore, we choose
a random tagS ← {0, 1}λ and if the adversary makes any query to H1 or H2 that starts with
tagS before the honest sender sends its message, we abort.

Since tagS is a uniformly chosen string of length λ, the probability that we abort is at most
q · 2−λ where q is the total number of queries made by the adversary. Therefore, Hyb1 is
statistically close to Hyb0.

• Hyb2 : We make the following changes in this hybrid.

1. On receiving the first round message from A, for each i ∈ [m] and j ∈ [n], we run the
extractor of the commitment scheme on ai to extract msgR,inp,i,j and on bi,j to extract
ri,j .

2. We initiate empty sets I1 and I2.

3. For each i ∈ [m], we check if for all j ∈ [n], πi,j,1 = Πi,1(msgR,inp,i; ri,j). If not, we add i
to I1.

4. We construct an inconsistency graph G on m vertices where we add an edge between
(i, i′) in G if msgR,inp,i and msgR,inp,i′ do not pass the pairwise consistency check P . We
run a 2-approximation algorithm for the minimum vertex cover for this graph G and call
this set as I2.
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5. If |I1| ≥ λ or |I2| ≥ λ, we abort.

We prove in Lemma 5.4 that Hyb2 and Hyb1 are statistically close.

• Hyb3 : We make the following changes in this hybrid.

1. We sample sets L1 and L2 as subsets of [m] and [n] respectively where each element
is independently included in L1 and L2 with probability pm and pm respectively. We
program the outputs of the random oracles H1 and H2 to output L1 and L2 when the
honest sender makes its query.

2. If |L1| ≥ 2pmm or |L2| ≥ 2pnn, we abort.

This hybrid is statistically close to Hyb2 using standard Chernoff bounds.

• Hyb4 : We make the following changes in this hybrid.

1. For each j ∈ L2 and i ∈ [m] \ (L1 ∪ I1 ∪ I2), we change the message inside comi,j to be
a dummy value.

2. For each i ̸∈ L1 and each j ∈ [n], we replace the message inside ci and di,j with a dummy
value.

3. For each i ̸∈ L1 and each j ∈ [n] \ L2, we replace the message inside ei,j with a dummy
value.

The computational indistinguishability between Hyb3 and Hyb4 directly reduces to the com-
putational hiding property of Com.

• Hyb5 : We make the following changes in this hybrid.

1. We compute the sets I1 and I2 as before.

2. For each i ̸∈ (L1 ∪ I1 ∪ I2) and j ̸∈ L2, we generate πi,j,2 using the simulator SimΠi,R

on input πi,j,1 and msg2,i,j (which is computed using the honest sender shares). We
generate commitments {comi,j}i ̸∈(L1∪I1∪I2),j ̸∈L2

using the above generated values.

In Lemma 5.5, we prove that Hyb4 and Hyb5 are computationally indistinguishable using the
security of the NISC protocol against malicious receivers.

• Hyb6 : We make the following changes in this hybrid.

1. We receive the first round message from the receiver and compute the sets I1 and I2
respectively.

2. We run the simulator SimΦ,R for the protocol Φ by corrupting the receiver client and
the set of servers given by L1 ∪ I1 ∪ I2. We request |[n] \ L2| number of instances of
the random shares that are output by ShareRandS for a fixed set of input shares of the
sender (see Remark 4.5). SimΦ,R returns {msgS,inp,i,msgS,rand,i,j}i∈L1∪I1∪I2,j ̸∈L2 .

3. For each j ∈ L2, we run independent instances of ShareRandS to generate {msgS,rand,i,j}i∈[m].

4. We return {msgR,inp,i}i ̸∈(L1∪I1∪I2) as the first round message sent by the corrupt re-
ceiver to the honest senders. SimΦ,R queries the ideal functionality on the malicious
receiver input x which we forward it to our trusted party. On receiving f(x, y) from the
functionality, we forward it to SimΦ,R.
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5. The simulator SimΦ,R returns the second round messages {msg2,i,j}i ̸∈(L1∪I1∪I2),j ̸∈L2
from

the honest servers to the corrupt receiver. We give this as the output of the server
emulations to SimΠi,R to generate the second round messages πi,j,2.

In Lemma 5.6, we show that Hyb5 and Hyb6 using the security of Φ against verifiable receivers.
We note that Hyb6 is identically distributed to the output of the ideal execution using SimR.

Lemma 5.4. Hyb2 ≈s Hyb1.

Proof. We note that the only difference in Hyb2 and Hyb1 is that in Hyb2 if |I1| or |I2| is greater
than or equal to λ, we abort. We show that if this event happens, then we abort in Hyb1 as well
except with negligible probability.

• Case-I: |I1| ≥ λ: Consider any query that the adversary makes to the random oracle H1

where |I1| ≥ λ. We show that the output K1 sampled by the random oracle has the property
that K1 ∩ I1 ̸= ∅ except with negligible probability. If this happens, then the honest sender
client aborts in Hyb2.We now argue that the probability that |K1 ∩ I1| = 0 is exp(−λ).

Pr[|K1 ∩ I1| = 0] = (1− pm)|I1|

≤ (1− pm)λ

= (1− λ

2m
)λ

≤ exp(−λ)

as m = O(λ).

• Case-II: |I2| ≥ λ: Consider any query that the adversary makes to the random oracle H1

where |I2| ≥ λ. Since |I2| is the output of a 2-approximation algorithm for the minimum
vertex cover, the size of the minimum vertex cover is at least |I2|/2 ≥ λ/2. By a standard
connection between minimum vertex cover and maximum matching, we infer that there is a
matching in G of size at least λ/4. If any edge in this matching is present in K1, then the
honest sender client in Hyb2 will also abort. Let p be the probability that no edge of this
matching is present in K1.

p ≤ (1− p2m)λ/4

= (1− (
λ

2m
)2)λ/4

≤ exp(−λ).

as m = O(λ).

By a standard union bound, the probability that adversary makes any query to the random oracle
oracle H1 such that |I1| or |I2| is greater than or equal to λ but the output K1 does not force
an honest sender client to abort in Hyb1 is at most q · exp(−λ) where q is the total number of
queries that the adversary makes. Since q is polynomial in λ, this proves that Hyb2 and Hyb1 are
statistically close.

Lemma 5.5. Assuming the security against malicious receivers of the NISC protocol Πi for each
i ∈ [n], we have Hyb4 ≈c Hyb5.
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Proof. Assume for the sake of contradiction that Hyb4 and Hyb5 are distinguishable with non-
negligible advantage. We now give a reduction that breaks the security of one of {Πi}i∈[m]\(L1∪I1∪I2).

Via a standard averaging argument, there exists two hybrids Hyb′4 and Hyb′5 and an i ∈ [m] \
(L1∪I1∪I2) and j ̸∈ L2 such that Hyb′4 and Hyb′5 are distinguishable with non-negligible advantage
and these two hybrids only differ in how πi,j,2 is generated.17 Let us assume w.l.o.g. that in Hyb′4,
πi,j,2 is generated using the honest sender algorithm whereas in Hyb′5, it is generated using SimΠi .
We now give a reduction that contradicts the security of Πi against malicious senders.

We start interacting with the challenger and provide (msgS,inp,i,msgS,rand,i,j) as the private
sender input. On receiving the first round message from the adversarial receiver, we forward πi,j,1
to the external challenger and receive πi,j,2. We generate the rest of the second round messages in
the protocol exactly as in Hyb′4 and forward this to the adversary. We finally output whatever the
adversary outputs.

We note that if πi,j,2 is generated using the honest sender algorithm then the output of the
above reduction is identically distributed to Hyb′4. Else, if it was generated as the output of the
simulator SimΠi,R, then the output of the reduction is identically distributed to Hyb′5. Thus, if
Hyb′4 and Hyb′5 are computationally distinguishable, then the above reduction breaks the security
of Πi against malicious receivers and this is a contradiction.

Lemma 5.6. Assuming the security of Φ against verifiable receiver, we have Hyb5 ≈c Hyb6.

Proof. Assume for the sake of contradiction that Hyb5 and Hyb6 are computationally distinguishable
with non-negligible advantage. We will show that this contradicts the security of Φ against a
verifiable receiver. To be a bit more precise, we will consider the modified security experiment as
described in Remark 4.5 and show that if Hyb5 and Hyb6 are computationally distinguishable then
this contradicts the security against verifiable receiver in the modified setting.

We start interacting with the challenger and provide y as the challenge sender input and re-
quest |[n] \ L2| number of independent shares generated using ShareRand (see Remark 4.5). We
receive the first round message from the adversarial receiver and corrupt the set of servers indexed
by L1 ∪ I1 ∪ I2. We receive the sender messages {msgS,inp,i,msgS,rand,i,j}i∈L1∪I1∪I2,j∈[n]\L2

. We
send {msgR,inp,i}i ̸∈L1∪I1∪I2 extracted from the commitments as the first round message sent by the
adversarial receiver to the honest servers. The challenger replies with {msg2,i,j}i ̸∈L1∪I1∪I2,j∈[n]\L2

.
We use this to generate the second round messages πi,j,2 by giving them as inputs to SimΠi,R. We
generate the rest of the second round sender message as before and finally output whatever the
adversary outputs.

We note that if the messages generated by the challenger were using the honest receiver and
server algorithms then the output of the above reduction is identically distributed to Hyb5. This
follows from the definition of I1 which ensures that for each i ̸∈ I1, the value msgR,inp,i that is
extracted by SimΠi is the same as the one obtained from the extractable commitment. Else, if
the messages are generated by the challenger using the simulated algorithm then the output of the
reduction is identically distributed to Hyb6. Further, the total number of corrupted servers |L1∪I1∪
I2| ≤ 3λ is less than the threshold t and the reduction emulates a verifiable adversary (which follows
from the definition of I2). Since we assumed that Hyb5 and Hyb6 are computationally distinguishable
with non-negligible advantage, the above reduction breaks the security of the protocol Φ against
verifiable receivers and this is a contradiction.

17Recall that in the previous hybrid, we have stopped generating πi,j,2 for each i ∈ [m] \ (L1 ∪ I1 ∪ I2) and j ∈ L2.
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5.2.2 Reusable Security against Malicious Senders

Let A be a non-uniform PPT adversary that corrupts the sender client. We first give the description
of the simulator SimS .

Description of SimS.

1. In each session, SimS initializes A with the private input provided by Z. SimS answers all the
random oracle queries to H1 and H2 by the adversary using uniformly chosen random values
from the co-domain. Furthermore, it chooses a random tagR ← {0, 1}λ and if the adversary
makes any query to H1 or H2 that starts with tagR before it receives the first round message,
it aborts.

2. It samples a set K1 as a subset of [m] where each element is independently included in K1

with probability pm. It programs the output of the random oracle H1 to output K1 when
queried on the messages it generates on behalf of the honest receiver. If |K1| ≥ 2pmm, it
aborts.

3. Simulated First Round Message from the Receiver.

(a) It starts running the simulator SimΦ,S by corrupting the sender client and sets K1 to
be the initial set of server corruptions (which is given by T1 in the definition). SimΦ,S

returns {msgR,inp,i}i∈K1 and it uses this to generate the messages πi,j,1 for each i ∈ K1

and j ∈ [n] as described in the protocol.

(b) For each i ̸∈ K1 and each j ∈ [n], it replaces the messages inside the commitments ai
and bi,j to be dummy values and generates πi,j,1 using SimΠi,S . It generates the rest of
components in the first round message as per the protocol specification and sends this
message to A.

4. Second Round Message from A and Output Computation.

(a) On receiving the second round message from the adversarial sender in each execution, it
runs the extractor for Com on {Comi,j , ci, di,j , ei,j}i∈[m],j∈[n] to obtain {πi,j,2,msgS,inp,i, si,j ,
msgS,rand,i,j}i∈[m],j∈[n].

(b) Check Phase. It performs the same checks that an honest receiver performs and if any
of these checks fail, it instructs the ideal functionality to deliver ⊥ to the receiver. In
addition to these checks, Sim performs the following checks:

i. It initializes an empty set I1. For each i ∈ [m] and j ∈ [n], it checks if πi,j,2 =
Πi,2(πi,j,1, (msgS,inp,i,msgS,rand,i,j); si,j). If there is some j ∈ [n] such that the above
check does not pass, it adds i to I1.

ii. It constructs an inconsistency graph G on m vertices where it adds an edge between
(i, i′) in G if msgS,inp,i and msgS,inp,i′ do not pass the pairwise consistency check
P . It then runs a 2-approximation algorithm for the minimum vertex cover for this
graph G and calls this set as I2.

iii. It initializes another empty set J1. For each j ∈ [n], if (msgS,rand,1,j , . . . ,msgS,rand,m,j)
do not pass the global predicate check P ′, it adds j to J1.
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iv. If |I1| ≥ λ, or |I2| ≥ λ, or |J1| ≥ λ, it aborts and instructs the ideal functionality to
deliver ⊥ to the honest receiver.

v. It sends I1∪I2 as the second set of server corruptions to SimΦ,S (which is given by T
in the definition) and provides {msgS,inp,i,msgS,rand,i,j}i ̸∈(K1∪I1∪I2),j ̸∈J1∪L2

as the first
round messages to the honest servers from the corrupted sender. SimΦ,S extracts
the adversarial sender input y and sends this input to the ideal functionality.18 SimS

intercepts this query and forwards this to its own ideal functionality along with the
instruction to deliver this output to the honest receiver. SimS forwards whatever it
receives from the environment to SimΦ,S and A.

Proof of Indistinguishability. We show that the real execution and the ideal world execution
are computationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the real execution described in Definition 3.3.

• Hyb1 : In this hybrid, we answer all the random oracle queries to H1 and H2 by the adversary
using uniformly chosen random values from the co-domain. Furthermore, we choose a random
tagR ← {0, 1}λ and if the adversary makes any query to H1 or H2 that starts with tagR before
receiving the message from the honest receiver, we abort. Since tagR is a uniformly chosen
string of length λ, the probability that we abort is at most q ·2−λ where q is the total number
of queries made by the adversary. Since q is polynomial in λ, we infer that Hyb1 is statistically
close to Hyb0.

• Hyb2 : We make the following changes in this hybrid.

1. We sample a set K1 as a subset of [m] where each element is independently included in
K1 with probability pm. We program the output of the random oracle H1 to output K1

when the honest receiver makes its query.

2. If |K1| ≥ 2pmm, we abort.

This hybrid is statistically close to Hyb1 using standard Chernoff bounds.

• Hyb3 : We make the following changes in this hybrid.

1. On receiving the second round message from the adversarial sender in each execution, we
run the extractor for Com on {Comi,j , ci, di,j , ei,j}i∈[m],j∈[n] to obtain {πi,j,2,msgS,inp,i, si,j ,
msgS,rand,i,j}i∈[m],j∈[n].

2. We initialize an empty set I1. For each i ∈ [m] and j ∈ [n], we check if πi,j,2 =
Πi,2(πi,j,1, (msgS,inp,i,msgS,rand,i,j); si,j). If there is some j ∈ [n] such that the above
check does not pass, we add i to I1.

3. We construct an inconsistency graph G on m vertices where we add an edge between
(i, i′) in G if msgS,inp,i and msgS,inp,i′ do not pass the pairwise consistency check P . We
run a 2-approximation algorithm for the minimum vertex cover for this graph G and call
this set as I2.

18Note that the adversarial sender input is solely determined by the messages {msgS,inp,i}.
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4. We initialize another empty set J1. For each j ∈ [n], if (msgS,rand,1,j , . . . ,
msgS,rand,m,j) do not pass the global predicate check P ′, we add j to J1.

5. If |I1| ≥ λ, or |I2| ≥ λ, or |J1| ≥ λ, we abort.

In Lemma 5.7, we show that Hyb2 and Hyb3 are statistically close.

• Hyb4 : We make the following changes in this hybrid.

1. For each i ̸∈ K1 and each j ∈ [n], we replace the messages inside the commitments ai
and bi,j to be dummy values.

It follows from the computational hiding property of the commitment scheme Com that Hyb4
and Hyb5 are computationally indistinguishable.

• Hyb5 : We make the following changes in this hybrid for each execution initiated by the
adversarial sender.

1. On receiving the second round message from the sender, we compute the sets I1, I2, J1
as before.

2. In the output computation step performed by the honest receiver,

(a) For each j ̸∈ L2 ∪ J1 and for each i ∈ K1 ∪ I1 ∪ I2, we replace the output of
outΠi(πi,j,2, ri,j) with a default value ⊥.

(b) For each j ∈ J1, we replace αj while computing the Majority function with ⊥.

In Lemma 5.8, we show that Hyb4 and Hyb5 are identically distributed.

• Hyb6 : We make the following changes in this hybrid.

1. For each i ̸∈ K1 and j ∈ [n], we compute πi,j,1 using the simulator SimΠi,S . We use this
to generate the first round message from the receiver.

2. On receiving the second round message from the sender, we compute the sets I1, I2, and
J1 as above.

3. For each i ̸∈ K1 ∪ I1 ∪ I2 and for each j ̸∈ J1 ∪ L2, we send πi,j,2 to SimΠi,S along with
the explanation (msgS,inp,i,msgS,rand,i,j , si,j) and if this instructs the ideal functionality
to deliver the output to the receiver. If yes, we compute the output using the honest
receiver shares.

In Lemma 5.9, we prove that Hyb5 ≈c Hyb6 based on the reusable security of {Πi}i∈[n] against
explainable senders.

• Hyb7 : We make the following changes in this hybrid.

1. We run the simulator SimΦ,S for the protocol Φ by corrupting the receiver client and
provide the first set of server corruptions given by T1 = K1. The simulator provides
with {msgR,inp,i}i∈K1 . We use this to generate the first round message in the protocol.

2. On receiving the second round message from A for each execution, we compute the sets
I1, I2 and J1 as before.
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3. We continue our interaction with SimΦ,S and corrupt the set of servers given by T =
I1 ∪ I2. We extract {msgS,inp,i,msgS,rand,i,j}i ̸∈(K1∪I1∪I2),j ̸∈L2∪J1 and provide them as the
first round messages from the malicious sender to the honest servers.

4. SimΦ,S extracts the adversarial sender input y and we forward this to the ideal function-
ality. We compute the output of f using the honest receiver input x.

5. For each j ̸∈ J1 ∪ L2, we set αj = f(x, y) and use this to compute the output of the
protocol as before.

In Lemma 5.10, we use the reusable security against verifiable senders property of the protocol
Φ to show that Hyb6 ≈c Hyb7. We note that Hyb7 is identical to the output of the ideal
execution as Majority({αj}j ̸∈L2) is guaranteed to output f(x, y).

Lemma 5.7. Hyb2 ≈s Hyb3.

Proof. We note that the only difference in Hyb2 and Hyb3 is that in Hyb3 if |I1| or |I2| or |J1| is
greater than or equal to λ, we abort. We show that if this event happens, then we abort in Hyb2 as
well except with negligible probability. The proof of this claim when |I1| ≥ λ or |I2| ≥ λ is identical
to the proof of Lemma 5.4. We only consider the case that |J1| ≥ λ.

Consider any query made by the adversary to the random oracle H2. If for that particular
query, |J1| ≥ λ, then we show that L2 ∩ J1 ̸= ∅ with overwhelming probability. If this happens,
then we infer that the honest receiver client in Hyb2 also aborts.

Pr[|J1 ∩ L2| = 0] = (1− pn)
|J1|

≤ (1− pn)
λ

= (1− λ

2n
)λ

≤ exp(−λ)

as n = 4λ. By a standard union bound over all the queries made by A to the random oracle H2, we
get that the probability that adversary makes a query to H2 such that |J1 ∩ L2| = 0 is q · exp(−λ)
where q is the total number of queries made by A to the random oracle. Since q is polynomial in
λ, we infer that Hyb2 and Hyb3 are statistically close.

Lemma 5.8. Hyb4 ≡ Hyb5

Proof. Note that for each j ̸∈ L2∪J1, (msgS,rand,1,j , . . . ,msgS,rand,m,j) satisfy the global consistency
predicate P ′. Further, for each such j, and for any i, i′ ∈ [m] \K1 ∪ I1 ∪ I2, msgS,inp,i and msgS,inp,i′
satisfy the local consistency predicate P ′. Further, |K1 ∪ I1 ∪ I2| ≤ t. Thus, these messages have
the same properties as that of the messages generated by a verifiable adversary (see Definition 4.2).
Hence, it follows from the error correction property of Φ that the changes made in Step-2.(a) of
this hybrid does not affect the output. To see why the changes described in step-2.(b) does not
affect the output, notice that for each j ̸∈ J1 ∪L2, it follows from the furthermore part of the error
correction property of Φ that the output of Dec remains the same and hence, all {αj}j ̸∈J1∪L2 are
equal to the same value α. Since, |J1| < λ, |L2| ≤ λ (with overwhelming probability from Chernoff
bounds) and n = 4λ, it follows that Majority({αj}j ̸∈L2) is equal to α. This shows that Hyb4 and
Hyb5 are identically distributed.
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Lemma 5.9. Assuming the reusable security of {Πi}i∈[n] against explainable senders, we have
Hyb5 ≈c Hyb6.

Proof. Assume for the sake of contradiction that Hyb5 and Hyb6 are computationally distinguishable
with non-negligible advantage.

Via a standard averaging argument, there exists two hybrids Hyb′5 and Hyb′6 and an i ∈ [m]\K1

and j ∈ [n] such that Hyb′5 and Hyb′6 are distinguishable with non-negligible advantage and these
two hybrids only differ in how πi,j,1 is generated and the output of Πi is computed. In Hyb′5, it is
generated using the honest receiver algorithms whereas in Hyb′6, it is generated using the simulator.

We start interacting with the external challenger and provide msgR,inp,i as the honest receiver
input. The challenger responds with πi,j,1 and we use it to generate the first round message in the
protocol. On receiving the second round message from the adversary for a execution, we compute
the sets I1, I2, J1 as before. If j ̸∈ L2 ∪ J1 and if i ̸∈ (K1 ∪ I1 ∪ I2), we forward the message πi,j,2 to
the external challenger along with the explanation (msgS,inp,i,msgS,rand,i,j , si,j). This explanation is
guaranteed to be valid from the definition of the set I1. The challenger responds with the output.
We use this output to compute the output of the honest receiver for this execution. We finally
output whatever the adversary outputs at the end of all executions.

If the challenger interacted with the above reduction using the honest receiver algorithms, then
the output of the above reduction is identical to Hyb′5. Else, it is identically distributed to Hyb′6.
Since we assumed that Hyb′5 and Hyb′6 are computationally distinguishable with non-negligible
advantage, the above reduction breaks the reusable security of Πi against explainable senders and
this is a contradiction.

Lemma 5.10. Assuming the reusable security against verifiable senders property of Φ, we have
Hyb6 ≈c Hyb7.

Proof. Assume for the sake of contradiction that Hyb6 and Hyb7 are computationally distinguishable
with non-negligible advantage. We show that this contradicts the reusable security against verifiable
senders property of Φ.

We start interacting with the external challenger and provide x as the honest sender input.
We corrupt the sender client and output K1 to be the initial set of servers to be corrupted. The
challenger responds with {msgR,inp,i}i∈K1 . We use this to generate the first round message in the
protocol. On receiving the second round message for each execution from the adversarial sender,
we compute the sets I1, I2 and J1 as before. We set I1 ∪ I2 as the second set of corrupted servers
for this execution. We extract {msgS,inp,i,msgS,rand,i,j}i ̸∈(K1∪I1∪I2),j ̸∈L2∪J1 and provide them as the
first round messages from the malicious sender to the honest servers. The challenger responds with
the output {αj}j ̸∈L2∪J1 . We use this compute the receiver’s output in this execution. We finally
output whatever the adversary outputs at the end of all executions.

If the messages generated by the challenger are as per the honest protocol execution then the
output of the above reduction is identically distributed to Hyb6. Else, it is identically distributed to
Hyb7 (note that the furthermore part of error correction property ensures that the value of all αj ’s
are the same). Furthermore, the adversary that is emulated by the above reduction is verifiable
(this follows from the definition of I2 and J1) and |K1 ∪ I1 ∪ I2| ≤ t. Thus, if Hyb6 and Hyb7 are
computationally distinguishable with non-negligible advantage, then the above reduction breaks
the reusable security of the protocol Φ against verifiable senders and this is a contradiction.
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6 Non-Interactive Reusable Commit-and-Prove

In this section, we define and construct a non-interactive reusable commit-and-prove protocol. This
protocol will be used as a key building block in the next section to construct a two-sided reusable
NISC protocol.

6.1 Definition

Syntax. A non-interactive reusable commit-and-prove protocol is given by a tuple of algorithms
(Com,Open,Extract,Prove,Verify) with the following syntax.19

• Com : It takes a message x as input and outputs a commitment com to this message. We
require this commitment to be computationally hiding and statistically binding.

• Open : It comprises of the openings to the commitments.

• Extract : It takes as input a commitment com and outputs the message inside this commitment.

• Prove : It takes as input a sequence of commitments (com1, . . . , comn), a function f and their
openings (Open(com1), . . . ,Open(comn)) as input and outputs a proof π.

• Verify : It takes a sequence of commitments (com1, . . . , comn), a function f and a proof π as
input and outputs 1/0 indicating whether the proof is accepting or rejecting.

We now state the properties that such a commit-and-prove protocol must satisfy.

Definition 6.1 (Non-Interactive Reusable Commit-and-Prove). A tuple of algorithms (Com,Open,
Extract,Prove,Verify) is said to be a non-interactive reusable commit-and-prove protocol if it satisfies
the following properties:

• (Com,Open) is a computationally hiding and statistical binding commitment scheme. Extract
is a straight-line extractor for the commitment scheme.

• Completeness. We require that:

Pr[Verify(X,Prove(X,Open(com1), . . . ,Open(comn))) = 1] = 1

where (com1, . . . , comn) be a sequence of commitments to the messages (x1, . . . , xn), f be a
function such that f(x1, . . . , xn) = 1 and X = (com1, . . . , comn, f).

• Soundness. Let P ∗ be a non-uniform PPT prover. We require the probability that P ∗ wins
the following soundness game to be negligible.

– (com1, . . . , comn, f, π)← P ∗(1λ).

– Let (x1, . . . , xn) be the output of Extract on inputs com1, . . . , comn respectively.

– If f(x1, . . . , xn) = 0 and Verify(com1, . . . , comn, f, π) = 1, then the prover wins this
game.

19We implicitly assume that all these algorithms have access to a random oracle and hence, do not include an
explicit setup phase. We also assume that all the algorithms take 1λ as an additional input.
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• Resuable Zero-Knowledge. There exists a PPT simulator Sim such that for every non-
uniform PPT verifier V ∗, we have:

Real(V ∗) ≈c Ideal(Sim, V ∗)

where Real and Ideal experiments are described in Figure 5.

Real(V ∗)

1. (x1, . . . , xℓ, n)← V ∗(1λ).

2. comi ← Com(xi) for all i ∈ [ℓ].

3. Set comi = ⊥ for all i ∈ [ℓ+ 1, n] and π = ⊥.
4. Run until V ∗ outputs a special symbol stop :

(a) (n′, xℓ+1, . . . , xn′ , f)← V ∗(com1, . . . ,
comn, π).

(b) Update the value of n with n′.

(c) Compute comi ← Com(xi) for all i ∈ [ℓ +
1, n].

(d) Set X = (com1, . . . , comn, f) and w =
(Open(com1), . . . ,Open(comn)).

(e) If f(x1, . . . , xn) = 1, compute π ←
Prove(X,w).

5. Output the final view of V ∗.

Ideal(Sim, V ∗)

1. (x1, . . . , xℓ, n)← V ∗(1λ).

2. comi ← Com(xi) for all i ∈ [ℓ].

3. Set comi = ⊥ for all i ∈ [ℓ+ 1, n] and π = ⊥.
4. Run until V ∗ outputs a special symbol stop :

(a) (n′, xℓ+1, . . . , xn′ , f)← V ∗(com1, . . . ,
comn, π).

(b) Update the value of n with n′.

(c) Compute comi ← Com(xi) for all i ∈ [ℓ +
1, n].

(d) Set X = (com1, . . . , comn, f) and w =
(Open(com1), . . . ,Open(comn)).

(e) If f(x1, . . . , xn) = 1, compute π ←
Sim(1λ, X).

5. Output the final view of V ∗.

Figure 5: Descriptions of Real and Ideal experiments.

6.2 Construction

Building Blocks. The construction makes use of the following building blocks:

• A straight-line extractable commitment (Com,Open,Extract) that is additively homomorphic.
We require the commitment to be computationally hiding and statistically binding. Further-
more, the message space M forms a group with operation “ + ” and the randomness space
forms a group R with group operation “+” and the commitment space C forms a group with
operation “ · ”. If com1 = Com(m1; r1) and com2 = Com(m2; r2), then we have:

com1 · com2 = Com(m1 +m2; r1 + r2)

Such additively homomorphic commitments are known from standard cryptographic assump-
tions such as DDH [ElG86], QR [GM82], and LWE [Reg05].

• A t-out-of-m Shamir secret sharing scheme (Share,Rec) that can corrupt up to t errors. We
set t = 2λ and m = O(t).

• A m-party MPC protocol Φ that is secure against t malicious corruptions for computing a
function f ′ that takes {xi,j}j∈[n] from party Pi and does the following:
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– It computes xj = Rec(x1,j , . . . , xm,j) for each j ∈ [n].

– It outputs f(x1, . . . , xn) to every party.

We say that two views viewi and viewi′ of parties Pi and Pi′ in this MPC protocol are pairwise
consistent if the messages sent by party Pi (resp. Pi′) to Pi′ (resp. Pi) in viewi (resp. viewi′)
are correctly represented as incoming messages in viewi′ (resp. viewi).

• A hash function H : {0, 1}∗ → ({0, 1}km)m that is modelled as a random oracle. Here, km is
the number of random bits to needed to toss a biased coin that outputs 1 with probability
pm = λ

2m . We model the output of hash functions H as subset of [m] where each element of
the set is included independently with probability pm.

Description of the Protocol. The formal description of the protocol appears in Figure 6.
(Com,Open,Extract) for this construction are identical to the corresponding algorithms in the ad-
ditively homomorphic commitment scheme.

• Prove : On input (com1, . . . , comn), a function f and (Open(com1), . . . ,Open(comn)), Prove does the
following:

1. Let x1, . . . , xn be the messages committed inside com1, . . . , comn.

2. For each j ∈ [n],

(a) It chooses random elements r1,j , . . . , rt,j from M and computes com
(r)
i,j ← Com(ri,j) for each

i ∈ [t].

(b) For each i ∈ [m], it computes the commitment to the i-th share comi,j by homomorphically

applying the Share operation on (comj , {com(r)
i,j }i∈[t]). Let this share be denoted by xi,j .

3. It runs the MPC protocol Φ “in its head” with the private input of Pi being {xi,j}j∈[n]. Let
view1, . . . , viewm be the view of the parties.

4. It generates comi ← Com(viewi) for each i ∈ [m].

5. It computes K := H(tag, {comj , {com(r)

i′,j , comi, comi,j}i′∈[t],i∈[m]}j∈[n]) where tag ← {0, 1}λ and
interprets K as a subset of [m].

6. It sets π = (tag, {comi, {com(r)

i′,j , comi,j}j∈[n]}i′∈[t],i∈[m], {Open(comi),
{Open(comi,j)}j∈[n]}i∈K).

• Verify : On input (com1, . . . , comn), a function f and the proof π, Verify does the following:

1. It checks if comi,j is obtained as a result of homomorphically applying Share on comj , {com(r)
i,j }i∈[t].

2. It recomputes K as described in Step 5 of Prove and checks if all the openings are correct.

3. For each i ∈ K, it checks if viewi in comi is correctly computed as per the protocol specification
when starting with the private inputs {xi,j}j∈[n] that is committed in {comi,j}j∈[n]. It also checks
if output of the party Pi in viewi is 1.

4. For each i, i′ ∈ K, it checks if viewi and viewi′ are pairwise consistent.

5. If any of the above checks fail, it outputs 0. Else, it outputs 1.

Figure 6: Construction of Non-Interactive Reusable Commit-and-Prove Protocol
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6.3 Proof of Security

The completeness of the protocol can be easily verified and we now show soundness and reusable
zero-knowledge property.

6.3.1 Soundness

Let P ∗ be a malicious prover that wins the soundness game described in Definition 6.1 with non-
negligible probability µ(λ). Consider the following sequence of hybrids.

• Hyb0 : This corresponds to the soundness game with the prover P ∗ and by assumption, P ∗

wins the game with probability at least µ(λ).

• Hyb1 : We make the following changes in this hybrid.

1. On receiving the proof π, we run the extractor Extract for Com on {comi, {comi,j}j∈[n]}i∈[m]

to obtain view1, . . . , viewm and {xi,j}i∈[m],j∈[n].

2. We initialize two empty sets I1 and I2.

3. For each i ∈ [m], we check if viewi is generated honestly as per the protocol specification
when starting with the private inputs {xi,j}j∈[n]. If not, we add i to I1.

4. We construct an inconsistency graph G on m vertices where we add an edge between
(i, i′) in G if viewi and viewi′ are not pairwise consistent. We run a 2-approximation
algorithm for the minimum vertex cover for this graph G and call this set as I2.

5. If |I1| ≥ λ or |I2| ≥ λ, we instruct the verifier to output 0.

Via an identical argument to Lemma 5.4, we note that the probability that P ∗ wins the game
in Hyb1 is at least µ(λ)− negl(λ).

• Hyb2 : We make the following changes in this hybrid.

1. On receiving the proof π, we compute the sets I1 and I2 as described before.

2. We instruct the verifier to output 0 if K ̸⊆ I1 ∪ I2.

Let E be the event that P ∗ wins the soundness game in Hyb1. Observe that every party outside
I1 ∪ I2 behaves honestly in the protocol Φ. Note that since |I1 ∪ I2| ≤ t, and (Share,Rec) can
corrupt up to t errors, we infer that for any choice of inputs of the parties in I1∪I2, the output
of the function f ′ is going to be 0 if E happens. Since, we assumed that the MPC protocol Φ
is perfectly secure against t-malicious corruptions, it follows that the output of each honest
party (i.e., the set of parties not in I1 ∪ I2) is going to be 0. Thus, if K ̸⊆ I1 ∪ I2, then
the verifier in Hyb1 outputs 0 as well. Therefore, the probability that P ∗ wins the soundness
game in Hyb2 is at least µ(λ)− negl(λ).

We now argue that the probability that K ⊆ I1 ∪ I2 is negligible and this contradicts the
assumption that µ(λ) is non-negligible as the probability that P ∗ wins the game in Hyb2 is
upper bounded by the probability that K ⊆ I1 ∪ I2. Consider any query that P ∗ makes to
the random oracle such that |I1| ≤ λ and |I2| ≤ λ. Note that in this case, the probability
that K ⊆ I1 ∪ I2, is at most by (1− pm)m−2λ ≤ exp(−λ) as m = O(t), t = 2λ, and pm = λ

2m .
From a standard union bound, the probability that P ∗ makes any query to the random oracle
such that K ⊆ I1 ∪ I2 is at most q · exp(−λ) and this completeness the proof of soundness.
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6.3.2 Reusable Zero-Knowledge

Let V ∗ be an adversarial verifier. We start with the description of Sim.

Description of Sim.

1. Sim answers all the random oracle queries of the adversary using uniformly chosen random
values from the co-domain. For each execution started by A, it chooses a random tag ←
{0, 1}λ and if the adversary makes any query to H that starts with tag before receiving the
proof, then it aborts.

2. For each execution the adversary starts, it samples a set K as a subset of [m] where each
element is independently included in K with probability pm. It programs the output of the
random oracle H to output K when queried on the proof it generates. If |K| ≥ 2pmm, it
aborts.

3. For each i ∈ K and for each j ∈ [n], it chooses a random element xi,j from the message space
and generates comi,j as a commitment to this element. Sim starts running the (semi-honest)
simulator SimΦ by corrupting the subset of the parties given by K and provides {xi,j}i∈K,j∈[n]
as their private inputs and 1 as the output. It generates {comi,j}i∈K,j∈[n] using these values

4. SimΦ returns {viewi}i∈K and Sim uses this to generate {comi}i∈K . For each i ̸∈ K, it generates
comi as a commitment to a dummy value.

5. Let T be a superset of K of size t. Sim generates comi,j for each i ∈ T \ K, j ∈ [n] as
commitments to dummy values.

6. For each i ̸∈ T , j ∈ [n], Sim generates comi,j homomorphically from comj by fixing the shares

in the set T to be the values inside {comi,j}i∈T,j∈[n]. It also computes {com(r)
i′,j}i′∈[t],j∈[n]

homomorphically from {comi,j}i∈T,j∈[n] and comj .

7. It computes the rest of the components in the proof as per the protocol specification.

Proof of Indistinguishability. We now argue that the real and the ideal experiments are com-
putationally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the output of the real experiment described in Definition 6.1.

• Hyb1 : In this hybrid, we answer all the random oracle queries of the adversary using uniformly
chosen random values from the co-domain. For each execution started by A, we choose a
random tag← {0, 1}λ and if the adversary makes any query to H that starts with tag before
receiving the proof, then we abort. Since tag is uniformly chosen, the probability that we
abort in this hybrid is at most q ·2λ where q is the total number of queries that the adversary
makes.

• Hyb2 : We make the following changes in this hybrid. For each execution that the adversary
starts,
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1. We sample a set K as a subset of [m] where each element is independently included in
K with probability pm. We program the output of the random oracle H to output K
when the honest receiver makes its query.

2. If |K| ≥ 2pmm, we abort.

This hybrid is statistically close to Hyb1 using standard Chernoff bounds.

• Hyb3 : In this hybrid, we make the following changes.

1. Let T be a superset of K of size t.

2. For each i ̸∈ T , j ∈ [n], we generate comi,j homomorphically from comj by fixing
the shares in the set T to be the values inside {comi,j}i∈T,j∈[n]. We also compute

{com(r)
i′,j}i′∈[t],j∈[n] homomorphically from {comi,j}i∈T,j∈[n] and comj .

This hybrid is identically distributed to Hyb2 from the additive homomorphism property of
the commitments.

• Hyb4 : In this hybrid, we make the following changes for each execution that the adversary
starts.

1. For each i ∈ T \K, j ∈ [n], we generate comi,j as commitments to a dummy value.

2. For each i ̸∈ K, we generate comi as a commitment to a dummy value.

This hybrid is computationally indistinguishable from the previous hybrid from the hiding
property of Com.

• Hyb5 : We make the following changes in this hybrid. For each execution that the adversary
starts,

1. We start running the semi-honest simulator SimΦ by corrupting the set K of the parties
and provide {xi,j}i∈K,j∈[n] as the set of private inputs of the corrupt parties and the
output to be 1.

2. SimΦ provides with {viewi}i∈K and we use this to generate {comi}i∈K .

We note that Hyb4 and Hyb5 are identically distributed from the semi-honest security of the
protocol Φ.

• Hyb6 : In this hybrid, for each i ∈ K, j ∈ [n], we generate comi,j as commitments to random
values. We note that Hyb5 and Hyb6 are identically distributed from the perfect privacy of
Shamir secret sharing scheme. Observe that Hyb6 is identically distributed to the output of
the ideal experiment in Definition 6.1.

Reusable Commit-and-Prove with Updateable State. In Appendix B, we give a construc-
tion of a non-interactive commit-and-prove protocol in the random oracle model (without the
additional assumption of additively homomorphic commitments) in a weaker setting where the
prover and the verifier maintain a state that is updated at the end of each execution.
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7 Black-Box Reusable Two-Sided NISC

In this section, we give a construction of a black-box reusable two-sided NISC. The main theorem
we show here is:

Theorem 7.1. Assume black-box access to:

1. A (non-reusable) one-sided NISC protocol.

2. A non-interactive reusable commit-and-prove protocol satisfying Definition 6.1.

Then, there exists a reusable (two-sided) NISC protocol in the random oracle model.

7.1 Construction

Let f = (f0, f1) be a two-party functionality. For each β ∈ {0, 1}, fβ takes (i) the offline inputs xoff0
and xoff1 from P0 and P1 respectively, (ii) a common public online input xonpub, (iii) and an online

private input xon1−β from P1−β and delivers fβ((x
off
0 , xoff1 ), xonpub, x

on
1−β) to Pβ.

Building Blocks. The protocol makes use of the following building blocks.

1. For each β ∈ {0, 1}, a reusable verifiable client-server protocol Φ(β) = (Share
(β)
R , ShareInp

(β)
S ,

ShareRand
(β)
S , Eval(β),Dec(β)) w.r.t. pairwise predicate P and global predicate P ′ for com-

puting the function fβ. We require this protocol to be secure against against t = 4λ server
corruptions (see Definition 4.3). Let m = 20λ + 1 be the number of servers in this protocol
(which follows the bounds on the pairwise verifiable 3-multiplicative, t-error-correctable secret
sharing (Share(t,m),Rec(t,m))). Some remarks are in order.

(a) We note that ShareR and ShareInpS take the private input of the receiver and sender
respectively and run Share(t,m). Hence, we assume that there is a reconstruction algo-
rithm Rec that takes the shares output by either ShareR or ShareInpS and runs Rec(t,m)

on these shares.

(b) Recall from Remark 4.4 that Eval algorithm does not compute any cryptographic oper-
ations.

2. For each β ∈ {0, 1}, a NISC protocol (Π
(β)
i,1 ,Π

(β)
i,2 , out

(β)
Πi

) for computing Eval(β)(i, ·, ·) (i.e., the
computation done by the i-th server) for each i ∈ [m]. As we are working in the random
oracle model, the CRS can be sampled as the output of the random oracle on some default
value. From observation 5.3, we infer that this protocol satisfies reusable security against
explainable senders and standard security against malicious receivers.

3. A non-interactive reusable commit-and-prove protocol (Com,Open,Extract,Prove,Verify) that
satisfies Definition 6.1.

4. Let n = 4λ. Two hash functions H1 : {0, 1}∗ → ({0, 1}km)m and H2 : {0, 1}∗ → ({0, 1}kn)n
that are modelled as random oracles. Here, km and kn are the number of random bits to
needed to toss a biased coin that outputs 1 with probability pm = λ

2m and pn = λ
2n respectively.

We model the output of hash functions H1 and H2 as subsets of [m] and [n] respectively where
each element of the set is included independently with probability pm and pn respectively.

47



Description of the Protocol. The formal description of the first two rounds of the protocol
appears in Figure 7 and the output computation is given in Figure 8. At a high-level, the two-
sided protocol runs the one-sided NISC protocol given in Section 5 in both directions and uses the
commit-and-prove protocol to show the consistency of the offline inputs across these two executions.

7.2 Proof of Security

Let A be a malicious adversary that corrupts the party P1−β for some β ∈ {0, 1}. We start with
the description of the simulator Sim.

Description of Sim. Sim runs SimS of the one-sided NISC protocol to generate all the messages
when Pβ acts as the receiver and runs SimR to generate all the messages on when Pβ acts as the
sender. Additionally, it uses the simulator for the commit-and-prove protocol to generate the proof
π(β) and checks if gzk[x

on
pub] predicate holds on the commitments generated by P1−β (by extracting

the committed values) and if does not hold, it aborts.

Proof of Indistinguishability. We show that the real and the ideal executions are computa-
tionally indistinguishable via a hybrid argument.

• Hyb0 : This corresponds to the real execution generate with respect to the adversary A that
corrupts P1−β.

• Hyb1 : In this hybrid, we answer all the random oracle queries made to H1 and H2 by the
adversary using uniformly chosen random values from the co-domain. Furthermore, we choose

a random tag
(β)
R , tag

(β)
S ← {0, 1}λ and if the adversary makes any query to H1 or H2 that

starts with tag
(β)
R or tag

(β)
S before receiving the first or second round message from the honest

Pβ respectively, we abort. Since tag
(β)
R , tag

(β)
S are uniformly chosen strings of length λ, the

probability that we abort is at most 2q · 2−λ where q is the total number of queries made by
the adversary. Therefore, Hyb1 is statistically close to Hyb0.

• Hyb2 : We make the following changes to this hybrid.

1. We sample a set K
(β)
1 as a subset of [m] where each element is independently included

in K
(β)
1 with probability pm. We program the output of the random oracle H1 to output

K
(β)
1 when queried on the first round message generated by Pβ.

2. For each session with A, we sample sets L
(β)
1 and L

(β)
2 as subsets of [m] and [n] respec-

tively where each element is independently included in L
(β)
1 and L

(β)
2 with probability

pm and pm respectively. We program the outputs of the random oracles H1 and H2 to

output L
(β)
1 and L

(β)
2 when the queried on the second round message generated by Pβ.

3. If |K(β)
1 | ≥ 2pmm, or |L(β)

1 | ≥ 2pmm. or |L(β)
2 | ≥ 2pnn, we abort.

This hybrid is statistically close to Hyb1 using standard Chernoff bounds.

• Hyb3 : We make the following changes in this hybrid.
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• Round-1: To generate the first round message using the offline private input xoff
β , Pβ does the following:

1. It computes (msg
(β)
R,inp,1, . . . ,msg

(β)
R,inp,m)← Share

(β)
R (xoff

β ).

2. For each i ∈ [m] and j ∈ [n],

(a) It samples a uniform random tape r
(β)
i,j to be used in the protocol Π

(β)
i .

(b) It computes π
(β)
i,j,1 := Π

(β)
i,1 (msg

(β)
R,inp,i; r

(β)
i,j ), a

(β)
i ← Com(msg

(β)
R,inp,i) and b

(β)
i,j ← Com(r

(β)
i,j ).

3. It computes K
(β)
1 = H1(tag

(β)
R , {π(β)

i,j,1, a
(β)
i , b

(β)
i,j }i∈[m],j∈[n]) where tag

(β)
R ← {0, 1}λ and interprets

K
(β)
1 as a subset of [m].

4. It sends ({π(β)
i,j,1, a

(β)
i , b

(β)
i,j }i∈[m],j∈[n], tag

(β)
R , {Open(a

(β)
i ),Open(b

(β)
i,j )}i∈K

(β)
1 ,j∈[n]

) as the first round
message.

• Round-2: To generate the second round message using the online inputs (xon
pub, x

on
1−β), P1−β does the

following:

1. Check Phase:

(a) It recomputes K
(β)
1 as in step-3 of round-1 and checks if the openings are valid.

(b) For each i ∈ K
(β)
1 and for each j ∈ [n], it checks if π

(β)
i,j,1 = Π

(β)
i,1 (msg

(β)
R,inp,i; r

(β)
i,j ).

(c) For each i, i′ ∈ K
(β)
1 , it checks if msg

(β)
R,inp,i and msg

(β)

R,inp,i′ pass the pairwise consistency check
P .

2. If any of the above checks fail, it aborts.

3. Else, it computes (msg
(1−β)
S,inp,1, . . . ,msg

(1−β)
S,inp,m)← ShareInp

(β)
S ((xoff

1−β , x
on
pub, x

on
1−β)).

4. For each j ∈ [n], it independently runs ShareRand
(β)
S to obtain (msg

(1−β)
S,rand,1,j , . . . ,msg

(1−β)
S,rand,m,j).

5. For each i ∈ [m] and j ∈ [n],

(a) It samples a uniform random tape s
(1−β)
i,j to be used in the protocol Π

(β)
i .

(b) It computes π
(1−β)
i,j,2 := Π

(β)
i,2 (π

(β)
i,j,1, (msg

(1−β)
S,inp,i,msg

(1−β)
S,rand,i,j); s

(1−β)
i,j ) and com

(1−β)
i,j ←

Com(π
(1−β)
i,j,2 ).

(c) It computes c
(1−β)
i ← Com(msg

(1−β)
S,inp,i), d

(1−β)
i,j ← Com(s

(1−β)
i,j ), and e

(1−β)
i,j ← Com(msg

(1−β)
S,rand,i,j).

6. It computes L
(1−β)
1 = H1(tag

(1−β)
S , {com(1−β)

i,j , c
(1−β)
i , d

(1−β)
i,j , e

(1−β)
i,j }i∈[m],j∈[n]) and L

(1−β)
2 =

H2(tag
(1−β)
S , {com(1−β)

i,j , c
(1−β)
i , d

(1−β)
i,j , e

(1−β)
i,j }i∈[m],j∈[n]) where tag

(1−β)
S ← {0, 1}λ and interprets

L
(1−β)
1 as a subset of [m] and L

(1−β)
2 as a subset of [n].

7. It computes π(1−β) ← Prove({a(1−β)
i }

i ̸∈K
(1−β)
1

, {c(1−β)
i }

i ̸∈L
(1−β)
1

, {Open(a
(1−β)
i )}

i ̸∈K
(1−β)
1

,

{Open(c
(1−β)
i )}

i̸∈L
(1−β)
1

, gzk[x
on
pub]) where gzk[x

on
pub](t1, . . . , tk, t

′
1, . . . , t

′
k′) does the following:

(a) xoff = Rec(t1, . . . , tk).

(b) (xoff , xon
pub, x

on) = Rec(t′1, . . . , t
′
k′).

(c) Output 1 iff xoff = xoff and xon
pub = xon

pub.

8. It sends

(a) {com(1−β)
i,j , c

(1−β)
i , d

(1−β)
i,j , e

(1−β)
i,j }i∈[m],j∈[n], tag

(1−β)
S , π(1−β).

(b) {Open(com
(1−β)
i,j ),Open(c

(1−β)
i ),Open(d

(1−β)
i,j ),Open(e

(1−β)
i,j )}

i∈L
(1−β)
1 ,j∈[n]

.

(c) {Open(e
(1−β)
i,j )}

i∈[m],j∈L
(1−β)
2

and {Open(com
(1−β)
i,j )}

i∈[m],j ̸∈L
(1−β)
2

.

Figure 7: First Two Rounds of Reusable Black-Box Two-Sided NISC Protocol
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• Output Computation: To compute the output, Pβ does the following:

1. Check Phase:

(a) It recomputes L
(1−β)
1 and L

(1−β)
2 as in Step-6 of round-2 and checks if all the openings are

valid.

(b) It checks if Verify({a(1−β)
i }

i ̸∈K
(1−β)
1

, {c(1−β)
i }

i ̸∈L
(1−β)
1

, gzk[x
on
pub], π

(1−β)) = 1.

(c) Using the openings to the commitments com
(1−β)
i,j , c

(1−β)
i , d

(1−β)
i,j and e

(1−β)
i,j given by P1−β ,

i. It checks if for each i ∈ L
(1−β)
1 and j ∈ [n] that π

(1−β)
i,j,2 =

Π
(β)
i,2 (π

(β)
i,j,1, (msg

(1−β)
S,inp,i,msg

(1−β)
S,rand,i,j); s

(1−β)
i,j ).

ii. For each i, i′ ∈ L
(1−β)
1 , it checks if msg

(1−β)
S,inp,i and msg

(1−β)

S,inp,i′ pass the pairwise consistency
check P .

iii. For each j ∈ L
(1−β)
2 , it checks if {msg

(1−β)
S,rand,i,j}i∈[m] pass the global predicate check P ′.

2. If any of the above checks fail, it aborts.

3. Else, for each j ∈ [n] \ L(1−β)
2 ,

(a) It computes msg
(β)
2,i,j ← out

(β)
Πi

(π
(1−β)
i,j,2 , r

(β)
i,j ) for each i ∈ [m].

(b) It computes α
(β)
j = Dec(β)({msg

(β)
2,i,j}i∈[m]).

4. It outputs Majority({α(β)
j }j∈[n]\L(1−β)

2

).

Figure 8: Output Computation in Our Two-sided NISC

1. On receiving the first round message from P1−β, for each i ∈ [m] and j ∈ [n], we run

the extractor Extract of the commitment scheme on a
(1−β)
i to extract msg

(1−β)
R,inp,i and on

b
(1−β)
i,j to extract r

(1−β)
i,j .

2. We initiate empty sets I
(1−β)
1 and I

(1−β)
2 .

3. For each i ∈ [m], we check if for all j ∈ [n], π
(1−β)
i,j,1 = Π

(β)
i,1 (msg

(1−β)
R,inp,i; r

(1−β)
i,j ). If not, we

add i to I
(1−β)
1 .

4. We construct an inconsistency graph G on m vertices where we add an edge between

(i, i′) in G if msg
(1−β)
R,inp,i and msg

(1−β)
R,inp,i′ do not pass the pairwise consistency check P . We

run a 2-approximation algorithm for the minimum vertex cover for this graph G and call

this set as I
(1−β)
2 .

5. If |I(1−β)
1 | ≥ λ or |I(1−β)

2 | ≥ λ, we abort.

Via an identical argument to the one made in Lemma 5.4, we infer that Hyb2 and Hyb3 are
statistically close.

• Hyb4 : We make the following changes in this hybrid.

1. On receiving the second round message from P1−β in each session, we run the extractor

for Com on {Com(1−β)
i,j , c

(1−β)
i , d

(1−β)
i,j , e

(1−β)
i,j }i∈[m],j∈[n] to obtain {π

(1−β)
i,j,2 ,msg

(1−β)
S,inp,i, s

(1−β)
i,j ,

msg
(1−β)
S,rand,i,j}i∈[m],j∈[n].
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2. We initialize an empty set I
(1−β)
1 . For each i ∈ [m] and j ∈ [n], we check if π

(1−β)
i,j,2 =

Π
(β)
i,2 (π

(β)
i,j,1, (msg

(1−β)
S,inp,i,msg

(1−β)
S,rand,i,j); s

(1−β)
i,j ). If not, we add i to I

(1−β)
1 .

3. We construct an inconsistency graph G on m vertices where we add an edge between

(i, i′) in G if msg
(1−β)
S,inp,i and msg

(1−β)
S,inp,i′ do not pass the pairwise consistency check P . We

run a 2-approximation algorithm for the minimum vertex cover for this graph G and call

this set as I
(1−β)
2 .

4. We initialize another empty set J
(1−β)
1 . For each j ∈ [n], if (msg

(1−β)
S,rand,1,j , . . . ,msg

(1−β)
S,rand,m,j)

do not pass the global predicate check, we add j to J
(1−β)
1 .

5. If |I(1−β)
1 | ≥ λ, or |I(1−β)

2 | ≥ λ, or |J (1−β)
1 | ≥ λ, we abort.

Using an identical argument to Lemma 5.7, we can show that Hyb3 and Hyb4 are statistically
close.

• Hyb5 : We make the following changes in this hybrid. For each session with adversarial P1−β,

1. We generate π(β) as SimZK(1
λ, {a(β)i }i ̸∈K(β)

1

, {c(β)i }i ̸∈L(β)
1

, gzk[x
on
pub]).

In Lemma 7.2, we rely on the reusable zero-knowledge property of the commit-and-prove
protocol to prove that Hyb5 ≈c Hyb4.

• Hyb6 : We make the following changes in this hybrid for each session with A.

1. For each j ∈ L
(β)
2 and i ∈ [m] \ (L(β)

1 ∪ I
(β)
1 ∪ I(β)2 ), we change the message inside com

(β)
i,j

to be a dummy value.

2. For each i ̸∈ L
(β)
1 and each j ∈ [n], we replace the message inside c

(β)
i and d

(β)
i,j with a

dummy value.

3. For each i ̸∈ L
(β)
1 and each j ∈ [n] \ L(β)

2 , we replace the message inside e
(β)
i,j with a

dummy value.

The computational indistinguishability between Hyb5 and Hyb6 directly reduces to the hiding
property of Com.

• Hyb7 : We make the following changes in this hybrid for each session with A.

1. For each i ̸∈ K
(β)
1 and each j ∈ [n], we replace the messages inside the commitments

a
(β)
i and b

(β)
i,j to be dummy values.

It follows from the hiding property of the commitment scheme Com that Hyb6 and Hyb7 are
computationally indistinguishable.

• Hyb8 : We make the following changes in this hybrid.

1. We compute the sets I
(1−β)
1 and I

(1−β)
2 as before.
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2. For each i ̸∈ (L
(β)
1 ∪ I

(1−β)
1 ∪ I

(1−β)
2 ) and j ̸∈ L

(β)
2 , we generate π

(β)
i,j,2 using the simulator

Sim
Π

(1−β)
i ,R

on input π
(1−β)
i,j,1 and msg

(1−β)
2,i,j (which is computed using the honest sender

shares). We generate commitments {com(β)
i,j }i ̸∈(L(β)

1 ∪I(1−β)
1 ∪I(1−β)

2 ),j ̸∈L(β)
2

using these val-
ues.

Via an identical argument to the proof of Lemma 5.5, we can show that Hyb7 and Hyb8
are computationally indistinguishable from the security of {Π(1−β)

i }i∈[m] against malicious
receivers.

• Hyb9 : We make the following changes in this hybrid for each session initiated by A.

1. On receiving the second round message from P1−β, we compute the sets I
(1−β)
1 , I

(1−β)
2 , J

(1−β)
1

as before.

2. For each j ̸∈ L
(1−β)
2 ∪ J

(1−β)
1 and for each i ∈ K

(β)
1 ∪ I

(1−β)
1 ∪ I

(1−β)
2 , we replace the

output of outΠi(π
(1−β)
i,j,2 , r

(β)
i,j ) with a default value ⊥.

3. For each j ∈ J
(1−β)
1 , we replace α

(β)
j in the output computation of Pβ with ⊥.

Using a similar proof to Lemma 5.8, we can prove that Hyb9 and Hyb8 are identically dis-
tributed.

• Hyb10 : We make the following changes in this hybrid.

1. For each i ̸∈ K
(β)
1 and j ∈ [n], we compute π

(β)
i,j,1 using the simulator Sim

Π
(β)
i ,S

. We use

this to generate the first round message from Pβ.

2. On receiving the second round message from P1−β in each session, we compute the sets

I
(1−β)
1 , I

(1−β)
2 , and J

(1−β)
1 as above.

3. For each i ̸∈ K
(β)
1 ∪I

(1−β)
1 ∪I(1−β)

2 and for each j ̸∈ J
(1−β)
1 ∪L(1−β)

2 , we send π
(1−β)
i,j,2 along

with the explanation (msg
(1−β)
S,inp,i,msg

(1−β)
S,rand,i,j , s

(1−β)
i,j ) to Sim

Π
(β)
i ,S

and if this instructs the

ideal functionality to deliver the output to the receiver, we compute the output using
the honest receiver shares.

A similar argument as given in Lemma 5.9 shows that Hyb9 ≈c Hyb10 assuming the reusable

security of {Π(β)
i }i∈[n] against explainable senders.

• Hyb11 : We make the following changes in this hybrid.

1. On receiving the second round message from P1−β, we check if Verify({a(1−β)
i }

i ̸∈K(1−β)
1

,

{c(1−β)
i }

i ̸∈L(1−β)
1

, gzk[x
on
pub], π

(1−β)) = 1.

2. We extract {msg
(1−β)
R,inp,i}i ̸∈K(1−β)

1

and {msg
(1−β)
S,inp,i}i ̸∈L(1−β)

1

as before.

3. If yes, we check if gzk(({msg
(1−β)
R,inp,i}i ̸∈K(1−β)

1

), ({msg
(1−β)
S,inp,i}i ̸∈L(1−β)

1

)) = 1. If not, we abort.

We note that Hyb10 ≈c Hyb11 from the soundness of the commit-and-prove protocol.
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• Hyb12 : We make the following changes in this hybrid.

1. We receive the first round message from the receiver and compute the sets I
(β)
1 and I

(β)
2

respectively.

2. For each session with A, we run the simulator SimΦ(1−β),R for the protocol Φ(1−β) by

corrupting the receiver client and the set of servers given by L
(β)
1 ∪I

(β)
1 ∪I

(β)
2 . We request

|[n] \L(β)
2 | number of instances of the random shares that are output by ShareRand

(1−β)
S

for a fixed set of input shares of the sender (see Remark 4.5). SimΦ(1−β),R returns

{msg
(β)
S,inp,i,msg

(β)
S,rand,i,j}i∈L1∪I(β)1 ∪I(β)2 ,j ̸∈L(β)

2

.

3. For each j ∈ L
(β)
2 , we run independent instances of ShareRand

(1−β)
S to generate {msg

(β)
S,rand,i,j}i∈[m].

4. We return {msg
(1−β)
R,inp,i}i ̸∈(L(β)

1 ∪I(β)1 ∪I(β)2 )
as the first round message sent by the corrupt

receiver to the honest senders. SimΦ(1−β),R queries the ideal functionality on the malicious

receiver input xoff1−β which we forward it to our trusted party. On receiving the output
of f1−β from the functionality, we forward it to SimΦ(1−β),R.

5. The simulator SimΦ(1−β),R returns the second round messages

{msg
(1−β)
2,i,j }i ̸∈(L(β)

1 ∪I(β)1 ∪I(β)2 ),j ̸∈L(β)
2

from the honest servers to the corrupt receiver. We

give this as the output of the server emulations to Sim
Π

(1−β)
i ,R

to generate the second

round messages π
(β)
i,j,2.

Using an identical argument to Lemma 5.6, we can show that Hyb11 and Hyb12 are computa-
tionally indistinguishable from the security of Φ against verifiable receivers.

• Hyb13 : We make the following changes in this hybrid.

1. We run the simulator SimΦ(β),S for the protocol Φ by corrupting the sender client and

provide the first set of server corruptions given by T1 = K
(β)
1 . The simulator provides

with {msg
(β)
R,inp,i}i∈K(β)

1

. We use this to generate the first round message in the protocol.

2. On receiving the second round message from A for each session, we compute the sets

I
(1−β)
1 , I

(1−β)
2 and J

(1−β)
1 as before.

3. We continue our interaction with SimΦ(β),S and corrupt the set of servers given by T =

I
(1−β)
1 ∪ I

(1−β)
2 . We extract {msg

(1−β)
S,inp,i,msg

(1−β)
S,rand,i,j}i ̸∈(K(β)

1 ∪I(1−β)
1 ∪I(1−β)

2 ),j ̸∈L(1−β)
2 ∪J(1−β)

1

and provide them as the first round messages from the malicious sender to the honest
servers.

4. SimΦ(β),S extracts the adversarial sender input (xoff1−β, x
on
pub, x

on
1−β) and we forward (xonpub, x

on
1−β)

to the ideal functionality. We compute the output of fβ using the honest receiver input
xoffβ .

5. For each j ̸∈ J
(1−β)
1 ∪ L

(1−β)
2 , we set αj to be equal to the output of fβ and use this to

compute the output of the protocol as before.

Using a similar proof as in Lemma 5.10, we can rely on the reusable security against verifiable
senders property of the protocol Φ(β) to show that Hyb12 ≈c Hyb13. We note that Hyb13 is
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identical to the output of the ideal execution as Majority({α(β)
j }j ̸∈L(β)

2

) is guaranteed to output

to be the output of fβ and furthermore, it follows that xoff1−β that is extracted by simulators
in Hyb12 and Hyb13 and the value of xonpub used by P0 and P1 are identical due to the error
correction property of (Share(t,m),Rec(t,m)) and the fact that the output of gzk[x

on
pub] is 1.

Lemma 7.2. Assuming the reusable zero-knowledge property of the commit-and-prove protocol, we
have that Hyb4 ≈c Hyb5.

Proof. Assume for the sake of contradiction that Hyb4 and Hyb5 are computationally distinguish-
able. We show that this contradicts the reusable zero-knowledge property.

We start interacting with the challenger and produce {msg
(β)
R,inp,i}i∈[m]\K(β)

1

as the first set of chal-

lenge messages. The challenger returns {a(β)i }i ̸∈K(β)
1

and we use it to generate the first round mes-

sage in the protocol. For each execution initiated with the adversary, we generate {msg
(β)
S,inp,i}i ̸∈L(β)

1

as the second set of challenge messages. We set the functionality f to be gzk[x
on
pub]. We obtain

{c(β)i }i ̸∈L(β)
i

and the proof π(β) and use it to generate the final round message. We finally output

the view of the adversary at the end of all executions.
If the challenger generated the proofs as per the real experiment, then the output of the reduction

is identically distributed to Hyb4. Else, it is distributed identically to Hyb5. Since we assumed that
Hyb4 and Hyb5 are computationally distinguishable, the above reduction breaks the reusable zero-
knowledge property and this is a contradiction.
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A Definition of NISC

This section is mostly taken verbatim from [IKSS22b].

Let A be a malicious adversary corrupting either the sender or the receiver in the real protocol
execution. In the following, we use Real(1λ,Π,A, x) to denote the joint distribution of the output
of the adversary and the output of the honest party (when its input is x) in the real execution of
the protocol.

Let Sim be a malicious adversary that is corrupting either the sender or the receiver in the
ideal protocol execution. Recall that in the ideal execution, the parties have access to a trusted
functionality for computing f that delivers the output to the receiver. The honest party sends its
inputs to this trusted functionality, whereas the adversarial party can send an arbitrary value. The
functionality computes the output and sends it to Sim. If Sim corrupts the sender, then it can
send the instruction to the trusted party whether to deliver this output to the honest receiver or
abort. In the latter case, the output of the honest party is abort and in the former, the honest
party outputs whatever it receives from the trusted party. We use Ideal(1λ,Π, Sim, x) to denote the
joint distribution of the output of Sim and the output of the honest party when its input is x in
the ideal execution of the protocol.

Definition A.1. A NISC protocol (Π1,Π2, outΠ) is said to compute a function f with security
against malicious adversaries if for any non-uniform PPT real world adversary A that is corrupting
either the sender or the receiver, there exists a non-uniform PPT ideal world adversary Sim that is
corrupting the same party as that of A such that for any input x of the uncorrupted party, we have:

Real(1λ,Π,A, x) ≈c Ideal(1
λ,Π,Sim, x)

We can modify the above definition in the UC-style setting where an environment Z provides
the inputs to the parties and is provided with the outputs of all the parties.
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B Commit-and-Prove with Updatable State

In this section, we give a construction of a commit-and-prove protocol satisfying Definition 6.1 in
a setting where the prover and the verifier maintain a state that is updated at the end of every
execution. This setting is weaker than the one previously considered. The syntax for this setting
is almost the same as the previous one except that the Prove algorithm now outputs a public state
stpub and a private state stpriv in addition to the proof π. The prover updates its stored state with
stpriv and sends stpub to the verifier along with the proof π. The verifier updates its previously
stored state with stpub if the proof is correct. Else, it does not make any changes to its stored state.
We require this updatable state model commit-and-prove to satisfy the following notion of reusable
soundness.

Definition B.1 (Reusable Soundness). Let P ∗ be a non-uniform PPT prover. We require the
probability that P ∗ wins the following reusable soundness game to be negligible.

• (com1, . . . , comℓ)← P ∗(1λ).

• Set verifier’s current state stpub to be com1, . . . , comℓ.

• Repeat the following until P ∗ outputs the special symbol stop:

1. (comℓ+1, . . . , comn, f, π, st
′
pub)← P ∗(1λ).

2. Let (x1, . . . , xn) be the output of Extract on inputs com1, . . . , comn respectively.

3. If f(x1, . . . , xn) = 0 and Verify(stpub, comℓ+1, . . . , comn, f, π) = 1, then the prover wins
this game.

4. Else, if Verify(stpub, comℓ+1, . . . , comn, f, π) = 1, we update the current value of verifier’s
public state stpub with st′pub.

The main theorem we show here is:

Theorem B.2. Assume black-box access to a straight-line extractable commitment scheme (Com,Open,
Extract) that is computationally hiding and statistically binding. Then, in the random oracle model,
there exists a non-interactive reusable commit-and-prove protocol in the updatable state model.

As such commitments can be constructed unconditionally in the random oracle model, the above
theorem gives a random oracle based construction of a non-interactive reusable commit-and-prove
protocol in the updatable state model.

Building Blocks. The construction makes use of the following building blocks. Let us fix n to
be the maximum arity of the predicate functions f that can provided as inputs to Prove.20

1. A straight-line extractable commitment (Com,Open,Extract) that is computationally hiding
and statistically binding. We assume that the message spaceM forms a group with operation
‘+′.

2. A pairwise verifiable t-out-of-m secret sharing scheme (Sharet,m,Rec(t,m)) that can correct up
to t errors. Let P be the corresponding pairwise predicate.

20Unlike the previous construction, here we need to fix the maximum arity of the predicate functions during the
setup phase.
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3. A m-party MPC protocol Φ that is secure against t-malicious corruptions for computing a
function f ′ that takes {xi,j}j∈[n] from party Pi and does the following:

(a) For each j ∈ [m], it computes Rec(t,m)(x1,j , . . . , xm,j).

(b) It computes z = f(x1, . . . , xn).

(c) For each j ∈ [n], it computes (y1,j , . . . , ym,j)← Share(t,m)(xj).

(d) It outputs (z, {yi,j}j∈[n]) to Pi.

We set t = 6n2λ and m = O(t).

4. A hash function H : {0, 1}∗ → ({0, 1}km)m that is modelled as a random oracle. Here, km is
the number of random bits to needed to toss a biased coin that outputs 1 with probability
pm = λn

2m . We model the output of hash functions H as subset of [m] where each element of
the set is included independently with probability pm.

Description of the Protocol. The formal description of the protocol appears in Figure 9.

Completeness. This can be easily observed from the construction.

Reusable Soundness. Let P ∗ be a malicious prover that interacts with the honest verifier in
multiple rounds of interaction. We say that P ∗ wins the reusable soundness game if there exists
some round of interaction such that P ∗ produces an accepting proof but the statement is false.
We show that for any non-uniform PPT prover P ∗, the probability that P ∗ can win the reusable
soundness game is negligible.

Let (com1, . . . , comℓ) be the initial commitments that the prover sends. Let comℓ+1, . . . , comn be
the new commitments that the prover sent in this particular round. Parse comj as (tag, com1,j , . . . ,
comm,j ,Open(comi,j)i∈Ki) and let xi,j = Extract(comi,j) for each i ∈ [m] and j ∈ [n]. If the proof is
accepting, then we prove that:

1. f(x1, . . . , xn) = 1.

2. Let stpub be equal to {c̃omi,j}i∈[m],j∈[ℓ] and let yi,j = Extract(c̃omi,j). Then, Rec(t,m)(y1,j , . . . , ym,j) =
xj for each j ∈ [ℓ].

except with negligible probability. This is sufficient to show reusable soundness.
Let P ∗ be a prover such that the above invariant does not hold with non-negligible probability

µ(λ). Consider the following sequence of hybrids.

• Hyb0 : This corresponds to the actual reusable soundness game where the prover P ∗ breaks
the above invariant with non-negligible probability µ(λ).

• Hyb1 : We make the following changes in this hybrid.

1. Parse the current value of stpub as com1, . . . , comℓ.

2. On receiving the proof π and the commitments {comj}j∈[ℓ+1,n], we parse comj as (tag, com1,j ,
. . . , comm,j ,Open(comi,j)i∈Ki).

3. For each j ∈ [n],
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• Commitment Com′: To commit to a message x ∈M, we do the following:

1. We compute (x1, . . . , xm)← Share(t,m)(x).

2. We compute comi ← Com(xi) for each i ∈ [m].

3. We choose a random tag← {0, 1}λ.
4. We compute K = H(tag, {comi}i∈[m]).

5. We set com = (tag, {comi}i∈[m], {Open(comi)}i∈K).

• Commitment Validity: On input com = (tag, {comi}i∈[m], {Open(comi)}i∈K), we do the following:

1. We recompute the set K as given in Step-4 of the commitment algorithm.

2. For each i ∈ K, we check if the openings provided are correct. Let {xi}i∈K be the messages inside
the openings to the commitments {comi}i∈K .

3. For each i, i′ ∈ K, we check if xi and xi′ satisfy the pairwise predicate check P .

4. If all the above checks pass, we say that the commitment is valid.

• Opening Open′: It consists of (Open(com1), . . . ,Open(comm)).

• Extraction Extract′: It checks if the commitment is valid and if yes, it outputs
Rec(t,m)(Extract(com1), . . . ,Extract(comm))

• Prove : On input (com1, . . . , comn) (which are outputs of Com′), a function f and
(Open(com1), . . . ,Open(comn)), Prove does the following:

1. For each j ∈ [m], it parses comj as (tag, com1,j , . . . , comm,j ,Open(comi,j)i∈Ki).

2. It runs the MPC protocol Φ “in its head” with the private input of Pi being {xi,j}j∈[n] where
xi,j is the message inside comi,j . Let view1, . . . , viewm be the view of the parties and let outi =
(z, {yi,j}j∈[n]) be the output of Pi in the protocol.

3. It generates comi ← Com(viewi) for each i ∈ [m], comz ← Com(z).

4. For each j ∈ [n], it computes c̃omi,j = Com(yi,j) for each i ∈ [m]. It then chooses a

random string t̃agj ← {0, 1}λ and computes K̃j = H(t̃agj , {c̃omi,j}i∈[m]). It sets c̃omj =

(t̃agj , {c̃omi,j}i∈[m], {Open(c̃omi,j)}i∈K̃j
).

5. It computes K := H(tag, {comj , c̃omj , comz, {comi}i∈[m]}j∈[n]) where tag ← {0, 1}λ and interprets
K as a subset of [m].

6. It sets

(a) π = (tag, {comi, comz, {c̃omj}j∈[n]}i∈[m],Open(com(z)), {Open(comi),
{Open(comi,j),Open(c̃omi,j)}j∈[n]}i∈K).

(b) stpub = {c̃omj}j∈[n].

(c) stpriv = {Open′(c̃omj)}j∈[n].

• Verify : On input (com1, . . . , comn), a function f , the proof π and stpub, Verify does the following:

1. It checks if (com1, . . . , comn) is equal to the current value of stpub and if c̃omj is valid for each j ∈ [n].

2. It recomputes K as described in Step 5 of Prove and checks if all the openings are correct.

3. For each i ∈ K, it checks if viewi in comi is correctly computed as per the protocol specification
when starting with the private inputs {xi,j}j∈[n] that is committed in {comi,j}j∈[n]. It also checks
if output z and {yi,j}j∈[n] are correctly computed form viewi. It finally checks if z = 1.

4. For each i, i′ ∈ K, it checks if viewi and viewi′ are pairwise consistent.

5. If any of the above checks fail, it outputs 0. Else, it outputs 1. If the output is 1, it updates
stpub = {c̃om1, . . . , c̃omn}.

Figure 9: Construction of Non-Interactive Reusable Commit-and-Prove Protocol with Updatable State
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(a) We run Extract(comi,j) for each i ∈ [m] to obtain {xi,j}i∈[m].

(b) We construct an inconsistency graph Gj on [m] vertices and we add an edge between
i, i′ ∈ [m] if xi,j and xi′,j do not pass the pairwise consistency predicate. We run a
2-approximation algorithm for the vertex cover on Gj and call the resultant vertex
cover to be I2,j .

(c) If |I2,j | ≥ nλ, we abort.

Using an identical argument to Lemma 5.4, we can show that the probability that the invariant
does not hold in Hyb1 is at least µ(λ)− negl(λ).

• Hyb2 : We make the following changes in this hybrid.

1. Let the current value of stpub be com1, . . . , comℓ.

2. On receiving the proof π, we run the extractor Extract for Com on {comi, {comi,j , c̃omi,j}j∈[n]}i∈[m],
comz to obtain view1, . . . , viewm, {xi,j , yi,j}i∈[m],j∈[n], and z.

3. We initialize two empty sets I1 and I2.

4. For each i ∈ [m], we check if viewi is generated honestly as per the protocol specification
when starting with the private inputs {xi,j}j∈[n]. We also check if the output z and
{yi,j}j∈[n] are correctly computed form viewi. We finally check if z = 1. If any of these
checks fail, we add i to I1.

5. We construct an inconsistency graph G on m vertices where we add an edge between
(i, i′) in G if viewi and viewi′ are not pairwise consistent. We run a 2-approximation
algorithm for the minimum vertex cover for this graph G and call this set as I2.

6. If |I1| ≥ λn2 or |I2| ≥ λn2, we instruct the verifier to output 0.

Via an identical argument to Lemma 5.4, we note that the probability that the invariant does
not hold in Hyb2 is at least µ(λ)− negl(λ).

• Hyb2 : We make the following changes in this hybrid.

1. On receiving the proof π, we compute the sets I1, I2 and {I2,j}j∈[n] as described before.

2. Let I = I1 ∪ I2 ∪ {I2,j}j∈[n]. Note that |I| ≤ 3n2λ.

3. If K ⊆ I, we abort.

We now argue that the probability that K ⊆ I is negligible. Consider any query that P ∗

makes to the random oracle such that |I| ≤ 3n2λ. Note that in this case, the probability that
K ⊆ I, is at most by (1− pm)m−|I| ≤ exp(−λ) as m = O(t), t = 6λn2 and pm = λn

2m . From a
standard union bound, the probability that P ∗ makes any query to the random oracle such
that K ⊆ I is at most q exp(−λ). Hence, the invariant does not hold in Hyb2 with probability
at least µ(λ).

We now argue that this contradicts the security of Φ. Note that since |I| ≤ t, we infer that
from the security of Φ, every party outside the set I correctly computes the output of f ′. If
the first part of the invariant does not hold, then since (Share(t,m),Rec(t,m)) can corrupt up to
t errors, we infer that for any choice of inputs of the parties in I, the output z of the function
f ′ is going to be 0. Since K ̸⊆ I, the verifier is going to reject the proof. Furthermore, since
the output of f ′ is correctly computed by every party outside I, it follows from the error
correction property of (Share(t,m),Rec(t,m)) that the second part of the invariant holds.
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Reusable Zero-Knowledge. To prove zero-knowledge, we consider a slightly weaker definition
where the simulator obtains some more information about the commitments com1, . . . , comn that
are output by Com′. Specifically, instead of only obtaining the openings to the set K1, . . . ,Kn

respectively, we allow the simulator to obtain the openings to a larger set K such that |K| ≤ t.
Specifically, the simulator specifies this set K before hand, and the challenger provides the openings
to the shares indexed by this set K. Hence, this does not induce selective opening issues. We note
that since |K| ≤ t, this does not affect the computational hiding property of the commitment Com′.
Note that this weaker definition is sufficient for reusable two-sided NISC protocol.

We provide a sequence of hybrids and the description of the simulator is identical to the final
hybrid in this sequence.

• Hyb0 : This corresponds to the output of the real experiment described in Definition 6.1.

• Hyb1 : In this hybrid, we answer all the random oracle queries of the adversary using uni-
formly chosen random values from the co-domain. At the beginning of the adversarial
execution, we choose random tags tag1, . . . , tagℓ ← {0, 1}λ which are used in generating
the commitments to x1, . . . , xℓ. For the i-th execution started by A, we retrieve the tag
tag(i) ← {0, 1}λ to be used in this execution (which was sampled in the (i − 1)-th exe-
cution) and sample tag(i+1) ← {0, 1}λ to be used in the next execution. We also sample

tag
(k)
ℓ+1, . . . , tag

(k)
n , t̃ag

(k)
1 , . . . , t̃ag

(k)
ℓ ← {0, 1}λ for k ∈ {i + 1} and retrieve the previous sam-

pled values for k = i. These tags are used in generating the commitments to xℓ+1, . . . , xn and
{(y1,j , . . . , ym,j)}j∈[ℓ] in the i-th and (i+1)-th executions. If the adversary makes any query to

H that starts with tag(i), tag(i+1), tag1, . . . , tagℓ, {tag
(k)
ℓ+1, . . . , tag

(k)
n , t̃ag

(k)
1 , . . . , t̃ag

(k)
ℓ }k∈{i,i+1}

before receiving this information from the prover, then we abort. Since these tags are uni-
formly chosen, the probability that we abort in this hybrid is at most 6nq · 2λ where q is the
total number of queries that the adversary makes.

• Hyb2 : We make the following changes in this hybrid. At the beginning of the execution,
we sample sets K1, . . . ,Kℓ as subsets of [m] where each element of [m] is independently
included in these sets with probability pm. We program the output of the random oracle H
to output these sets when the honest prover makes its query to generate the commitments
com1, . . . , comℓ. For the i-th execution that the adversary starts,

1. We retrieve the sets corresponding to i-th execution and sample sets for the (i + 1)-th

execution. We thus obtain K(i),K(i+1), {K(k)
ℓ+1, . . . ,K

(k)
n ,

K̃
(k)
1 , . . . , K̃

(k)
ℓ }k∈{i,i+1} as a subset of [m] where each element is independently included

in these sets with probability pm. We program the output of the random oracle to
output K(i) when generating the proof for the i-th execution and K(i+1) when gener-
ating the proof for the (i + 1)-th execution. We program the output of the random

oracle H to output K
(k)
ℓ+1, . . . ,K

(k)
n , K̃

(k)
1 , . . . , K̃

(k)
ℓ when generating the commitments to

xℓ+1, . . . , xn, (y1,1, . . . , ym,1), . . . , (y1,ℓ, . . . , ym,ℓ) in k-th execution (where k ∈ {i, i + 1})
respectively.

If the size of any of the above sampled sets is ≥ 2pmm, we abort. This hybrid is statistically
close to Hyb1 using standard Chernoff bounds.
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• Hyb3 : In this hybrid, we make the following changes in each execution started by the adver-
sarial verifier V ∗. For the i-th execution that the adversary starts,

1. Let Ki = K(i) ∪K1 ∪ . . .Kℓ ∪ {K
(k)
ℓ+1 ∪ . . . ∪K

(k)
n ∪ K̃

(k)
1 ∪ . . . ∪ K̃

(k)
ℓ }k∈{i} and Ki+1 =

K(i+1) ∪K1 ∪ . . .Kℓ ∪{K
(k)
ℓ+1 ∪ . . .∪K

(k)
n ∪ K̃(k)

1 ∪ . . .∪ K̃
(k)
ℓ }k∈{i+1}. Set K = Ki ∪Ki+1

Note that the |K| ≤ 5n2λ < t.

2. For each i ̸∈ K, j′ ∈ [ℓ], we generate c̃omi,j′ as commitments to dummy values.

3. For each i ̸∈ Ki, we generate comi as a commitment to a dummy value.

This hybrid is computationally indistinguishable from the previous hybrid from the hiding
property of Com.

• Hyb4 : We make the following changes in this hybrid for each execution that the adversary
starts. Specifically, in the i-th execution that the adversary starts,

1. We start running the semi-honest simulator SimΦ by corrupting the set Ki of the parties
and provide {xi,j}i∈Ki,j∈[n] as the set of private inputs of the corrupt parties and provide
the output z to be 1 and {yi,j}i∈Ki,j∈[ℓ] computed honestly.

2. SimΦ provides with {viewi}i∈Ki and we use this to generate {comi}i∈Ki . We generate
the rest of the components in the proof as before.

We note that Hyb4 and Hyb3 are identically distributed from the semi-honest security of the
protocol Φ. In the reduction, we use the output of the honest parties that is provided by the
challenger to compute {c̃omi,j′}i∈K,j′∈[ℓ].

• Hyb5 : In this hybrid, we replace {yi,j′}i∈K,j′∈[ℓ] with uniformly chosen random values. We note
that Hyb4 and Hyb5 are identically distributed from the perfect privacy of (Share(t,m),Rec(t,m)).
The output of Hyb5 corresponds to the view of the adversarial verifier V ∗ in the ideal exper-
iment.
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