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Abstract. Secure computation enables mutually distrusting parties to jointly compute a func-
tion on their secret inputs, while revealing nothing beyond the function output. A long-running
challenge is understanding the required communication complexity of such protocols—in par-
ticular, when communication can be sublinear in the circuit representation size of the desired
function. For certain functions, such as Private Information Retrieval (PIR), this question ex-
tends to even sublinearity in the input size.
We develop new techniques expanding the set of computational assumptions for sublinear com-
munication in both settings:
– Circuit size. We present sublinear-communication protocols for secure evaluation of gen-

eral layered circuits, given any 2-round rate-1 batch oblivious transfer (OT) protocol with
a particular “decomposability” property. In particular, this condition can be shown to hold
for the recent batch OT protocols of (Brakerski et al. Eurocrypt 2022), in turn yielding
a new sublinear secure computation feasibility result: from Quadratic Residuosity (QR)
together with polynomial-noise-rate Learning Parity with Noise (LPN).
Our approach constitutes a departure from existing paths toward sublinear secure compu-
tation, all based on fully homomorphic encryption or homomorphic secret sharing.

– Input size. We construct single-server PIR based on the Computational Diffie-Hellman
(CDH) assumption, with polylogarithmic communication in the database input size n. Pre-
vious constructions from CDH required communication Ω(n). In hindsight, our construction
comprises of a relatively simple combination of existing tools from the literature.
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1 Introduction

Secure computation enables mutually distrusting parties to jointly compute a function on their
secret inputs, while revealing nothing beyond the function output. We focus on the case of two-
party computation with semi-honest (passive) security. Since the seminal feasibility results of the
1980s [Yao86, GMW87, BGW88, CCD88], a major challenge in the area of secure computation has
been if and when it is possible to break the “circuit-size barrier.” This barrier refers to the fact that
all classical techniques for secure computation required a larger amount of communication than the
size of a boolean circuit representing the function to be computed. In contrast, insecure computation
only requires exchanging the inputs, which are usually considerably smaller than the entire circuit.

Early positive results with sublinear communication either required exponential computation
[BFKR91, NN01], or (as discussed later) were limited to very simple functions such as point func-
tions [CGKS95,KO97,CG97] or constant-depth circuits [BI05].

Beyond the circuit-size barrier. This situation changed with the breakthrough result of Gentry [Gen09]
on fully homomorphic encryption (FHE). FHE is a powerful primitive supporting computation on
encrypted data, which can be used to build optimal-communication protocols in the computational
setting [DFH12, AJL+12], by having parties perform the desired computation locally on encrypted
inputs without additional communication. However, despite significant efforts, the set of assumptions



under which we know how to build FHE is very narrow. Standard approaches are restricted to
lattice-based assumptions, such as Learning With Errors (LWE), and in particular do not include
any of the traditional assumptions which were used in the 20th century. Very recent developments
in indistinguishability obfuscation imply results based on an alternative (relatively exotic) bundle of
assumptions [CLTV15,JLS22].4

The work of [BGI16] first showed that secure computation with communication sublinear in the
circuit size could also be based on assumptions not known to imply FHE, via a new primitive of
homomorphic secret sharing (HSS). HSS can be viewed as a relaxation of FHE, where homomorphic
evaluation can be distributed among two parties who do not interact with each other. More con-
cretely, from the Decisional Diffie-Hellman (DDH) assumption, [BGI16] constructed a form of HSS
for branching programs (including NC1), implying secure computation for the corresponding function
class with asymptotically optimal communication. In turn, this was shown to yield secure computa-
tion for general layered circuits5 of size s with sublinear communication O(s/ log s), by evaluating in
(log s)-depth blocks, and communicating only between blocks.

Since then, the HSS-based approach and variations have resulted in sublinear-communication se-
cure protocols from an additional assortment of assumptions. Following the [BGI16] blueprint, the
works of [FGJI17,OSY21,RS21] were able to replace the DDH assumption with Decision Composite
Residuosity (DCR). The framework was recently abstracted and extended to further algebraic struc-
tures, including a class of assumptions based on class groups of imaginary quadratic fields [ADOS22].
In addition, the work of [CM21] built HSS for log log-depth circuits (yielding O(s/ log log s) commu-
nication secure computation for layered circuits) based on a strong flavor of the Learning Parity with
Noise (LPN) assumption: with a small number of samples, but assuming super-polynomial hardness,
with inverse-superpolynomial noise rate.

To date, these two approaches—FHE and HSS—still comprise the only known paths to sublinear-
communication secure computation for general circuit classes, without resorting to superpolynomial
computation or setup assumptions such as correlated randomness [IKM+13, DNNR17, Cou19]. It
remains a motivated research agenda not only to continue expanding the set of distinct computational
assumptions upon which sublinear secure computation can be built, but additionally of exploring new
types of approaches toward this goal.

Private Information Retrieval. As mentioned, one exception to the above treatment is the special
case of specific simple functionalities: most prominently, the task of private information retrieval
(PIR) [CGKS95, KO97]. A (single-server) PIR protocol roughly amounts to a secure computation
protocol (with one-sided privacy) for the specific function f(x, i) = xi with x ∈ {0, 1}n and i ∈ [n].
Unlike the case of general computation (where the communication complexity of the underlying
function may be Ω(n) even without security), PIR can admit secure protocols with communication
sublinear (even polylogarithmic) in the input size.

For many years, protocols for PIR with polylogarithmic communication in n were known only from
the Decisional Composite Residuosity (DCR), Learning with Errors (LWE), or Phi-hiding assump-
tions [CMS99,Cha04,Lip05,OS07]. More recently, such constructions were achieved from Quadratic
Residuosity (QR), or Decisional Diffie-Hellman (DDH) [DGI+19].

1.1 Our Results

We present new approaches and techniques for both of the above settings, ultimately extending
the set of computational assumptions under which we can achieve sublinear-communication secure
computation protocols.

Our results fall within two primary categories:

– We obtain (slightly) sublinear secure two-party computation for general layered circuits, through
a new path of low-communication batch oblivious transfer.

– We explore the specific goal of Private Information Retrieval (PIR), and provide a new construc-
tion with polylogarithmic communication based on Computational Diffie-Hellman (CDH).

4 Namely, subexponential security of the combination of: Learning Parity with Noise, plus polynomial-stretch
pseudorandom generators in NC0, plus the Decision Linear assumption on symmetric bilinear groups of
prime order [JLS22].

5 A depth-d circuit is layered if it can be divided into d layers such that any wire connects adjacent layers.
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We emphasize that our protocols execute in polynomial runtime, and do not rely on any correlated
randomness assumptions.

Sublinear 2PC for layered circuits. We present a new approach toward secure two-party computation
protocols for general layered circuits, with communication complexity that scales sublinearly in the
circuit size. As opposed to building FHE or HSS, our approach begins with protocols for “batch
Oblivious Transfer” with low communication.

Oblivious Transfer (OT) is an atomic functionality in which sender and receiver parties begin
with inputs m0,m1 ∈ {0, 1} and b ∈ {0, 1}, respectively; at the conclusion the receiver learns the
selected message mb; and neither party learns further information about one another’s inputs. OT
was shown to be a complete functionality for general secure computation [Kil00], where OT protocol
execution(s) take place for each nonlinear gate of the corresponding circuit.

OT protocols are known from a number of standard assumptions, in just two rounds of communi-
cation (i.e., one message from receiver to sender, and one message in return); but, the communication
complexity for all such solutions is (inherently) significantly larger than the input size. Very recently,
it was shown by Brakerski et al. [BBDP22] how to achieve a batched version of OT, still in two
rounds, and with rate-1 communication. That is, for a collection of message pairs ({m(i)

0 ,m
(i)
1 })i∈[`]

and selection bits (b(i))i∈[`], a sender and receiver could perform ` parallel batched executions of OT
in communication roughly `.

We prove that any such protocol which satisfies an additional decomposability property suffices
to imply secure computation protocols for general layered circuits with sublinear communication
complexity. To define decomposability, consider the communication structure of any 2-round rate-1
batch OT protocol. In the first round, the receiver sends `+o(`) bits to the sender,6 somehow encoding
its selection bits b(i). In response, the sender performs some computation as a function of its message
pairs {m(i)

0 ,m
(i)
1 }, and returns `+ o(`) bits in response, somehow encoding the k selected messages,

m
(i)

b(i)
. For the constructions of [BBDP22], the sender’s message size is just `+ polylog(`).

We say that the (2-round, rate-1) batch OT protocol is decomposable if for any agreed subset
S ⊂ [`] of indices, the sender can choose a corresponding subset of |S| + polylog(`) of its return
message bits, such that sending this partial sender response reveals exactly the corresponding subset
of selected messages (m(i)

b(i)
)i∈S to the receiver. Namely, given the partial response, these |S| messages

can be recovered, and no information is revealed about m(i)

b(i)
for i /∈ S.

Theorem 1 (Sublinear 2PC from Decomposable Batch OT - informal). Assume existence of
2-round rate-1 batch OT with the above “decomposability” property. Then for any k, we can securely
compute layered (synchronous) circuits of depth d and size s using poly(22

k

, s) computation and
O(22

k · d · poly(λ) + s/k) communication.
In particular, for k = O(log log s), we obtain communication O(s/ log log s + d1/3 · s2(1+ε)/3 ·

poly(λ)), for an arbitrary small constant ε. The latter is sublinear in s whenever d = o(s1−ε/poly(λ)),
i.e., the circuit is not too “tall and skinny”.

This decomposability property is not simply hypothetical, but rather was inspired by the batch-OT
protocols of Brakerski et al. [BBDP22], which we show to satisfy the requirement. At a high level, the
sender’s message in their protocols consists of an encryption of the selected message bits (computed
homomorphically as a function of receiver-sent ciphertexts of its selection bits, together with the
message pairs {m(i)

0 ,m
(i)
1 }), compressed à la [DGI+19] to rate 1. The resulting rate-1 ciphertexts

have the structure of a polylog(`)-size “header” string, independent of the messages, together with
a single bit of information for each encrypted message bit. Decomposability thus follows (almost)
directly, by simply omitting those information bits corresponding to encrypted messages the sender
wishes to drop (i.e., [`] \ S).7

In turn, we obtain the following corollary.

Corollary 2 (Sublinear 2PC from QR+LPN - informal). The conclusion of Theorem 1 holds
based on Quadratic Residuosity (QR) and Learning Parity with Noise (LPN) for any inverse-polynomial
noise rate.
6 Our construction can actually handle arbitrary constant client-to-server upload rate, as long as the sender-
to-receiver download rate is 1.

7 We are of course sweeping details under the rug here, and refer the reader to the main body for a more
complete treatment.

4



Our result is summarized on Table 1, where we also recall the state of the art in sublinear secure
computation. We remark that while sublinear O(s/ log log s)-communication protocols were known
from a variant of LPN from [CM21], their result must assume superpolynomial hardness of LPN with
a small inverse-superpolynomial error rate. In contrast, our result requires only polynomial hardness
of LPN, with any inverse-polynomial error rate (as inherited by the construction of [BBDP22]).

We finally mention that this result is also not implied by the constructions of pseudorandom cor-
relation functions (PCF) [BCG+20] from QR+LPN of [OSY21] (or in fact any of the line of work on
pseudorandom correlation generators (PCG) [BCG+19b]). While PCG/PCFs enable the generation
of large quantities of random instances of OT with sublinear communication, the best known ap-
proaches for utilizing these random correlations within an actual secure computation protocol require
communication that scales linearly with the circuit size.

Table 1: Existing protocols for secure computation with sublinear communication under various
assumptions, in the computational setting.

Assumptions Circuit class Sublinearity1

[Gen09] LWE P/poly O(n+m) + poly(λ)

[BGI16] DDH Layered circuits O(n+m+ s/ log s)

[OSY21,RS21] DCR Layered circuits O(n+m+ s/ log s)

[CM21] superpoly LPN2 Layered circuits O(n+m+ s/ log log s)

[ADOS22] Class groups Layered circuits O(n+m+ s/ log s)

This work LPN + QR3 Layered circuits O
(
n+m+ d1/3 · s2(1+ε)/3 · poly(λ) + s

log log s

)
1 We use n for input size, m for output size, s for circuit size, and d for circuit depth.
2 [CM21] assumes the superpolynomial hardness of the LPN assumption with dimension N , O(N) samples,
and noise rate No(1)−1.

3 We assume the polynomial hardness of LPN with dimension N , poly(N) samples, and inverse-polynomial
noise rate.

Private Information Retrieval. Motivated by the goal of building decomposable rate-1 batch OT from
new assumptions, we then turn to a deeper exploration of one of the required underlying components
from the [BBDP22] batch OT construction: (single-server) Private Information Retrieval (PIR).

We succeed in constructing PIR with polylogarithmic communication from the Computational
Diffie-Hellman assumption. While this is only one sub-component required to obtain the necessary
batch OT from LPN+CDH,8 this provides one step toward this direction. But, more importantly,
it constitutes a new feasibility result of its own right. From CDH, previously no PIR protocol was
known with communication o(n).

Theorem 3 (PIR from CDH - informal). Based on the Computational Diffie-Hellman (CDH)
assumption, there exists single-server PIR on n-bit databases with communication polylog(n) and
O(log(n)) rounds.

In hindsight, our construction forms a surprisingly simple and clean combination of two existing
tools from the literature. Along the way, we identify an improved procedure for converting between a
weak form of “semi-PIR” as considered in [BIP18], which reveals the client’s queried index with some
probability, to full-blown secure PIR. We refer the reader to the Technical Overview for more details.

2 Preliminaries

Throughout the paper, [~v]I denotes the subvector of ~v induced by set of indices I.

8 Indeed, the approach of [BBDP22] requires also a form of homomorphic encryption compressible to rate 1.
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2.1 Quadratic Residuosity Assumption (QR)

We say that N is a Blum integer if N = p · q for some primes p and q such that p (mod 4) ≡ q
(mod 4) ≡ 3. We denote by JN the multiplicative group of the elements in Z?N with Jacobi symbol
+1 and by QRN the multiplicative group of quadratic residues modulo N with generator g. Note that
QRN is a subgroup of JN , and that QRN and JN have order φ(N)

4 and φ(N)
2 respectively, where φ(·)

is Euler’s totient function. It is useful to write JN : H × QRN , where H is the multiplicative group
(±1, ·) of order 2. Note that is N is a Blum integer then gcd(2, φ(N)

4 ) = 1 and −1 ∈ JN \QRN .

Definition 4 (Quadratic Residuosity Assumption, [GM82]). Let N be a uniformly sampled
Blum integer and let QRN be the multiplicative group of quadratic residues modulo N with generator
g. We say the QR assumption holds with respect to QRN if for any p.p.t. adversary A

| Pr
a

$←QRN
[A(N, g, a) = 1]− Pr

a
$←QRN

[A(N, g, (−1) · a) = 1]| ≤ negl(λ).

2.2 Learning Parity with Noise (LPN)

Our constructions rely on the Learning Parity with Noise assumption [BFKL94] (LPN) over F2 (which
is the most standard variant of LPN, but other fields can be considered). Unlike the LWE assumption,
in LPN the noise is assumed to have a small Hamming weight. Concretely, the noise is 1 in a small
fraction of the coordinates and 0 elsewhere. Berr(F2) denote the distribution which outputs 1 with
probability r, and 0 with probability 1− r.

Definition 5 (LPN). For dimension k = k(λ), number of samples (or block length) q = q(λ), noise
rate r = r(λ), the F2-LPN(k, q, r) assumption states that

{(A,~b) | A $← Fq×k, ~e $← Berr(F2)
q, ~s

$← Fk2 ,~b← A · ~s+ ~e}
c
≈{(A,~b) | A $← Fq×k2 ,~b

$← Fq2}

Here and in the following, all parameters are functions of the security parameter λ and computa-
tional indistinguishability is defined with respect to λ. Note that the search LPN problem, of finding
the vector can be reduced to the decisional LPN assumption [BFKL94,AIK09].

2.3 Diffie-Hellman (DDH and CDH)

Definition 6 (Computational Diffie-Hellman). Let G(λ) be an algorithm that outputs (G, p, g)
where G is a group of prime order p and g is a generator of the group. The CDH assumption holds for
generator G if there exists a negligible function ε such that for all PPT adversaries A the following
holds:

Pr

[
gab

$← A(G, p, g, ga, gb) : (G, p, g) $← G(λ)
a, b

$← Zp

]
≤ ε(λ).

Definition 7 (Decisional Diffie-Hellman). We say that the Decisional Diffie-Hellman assumption
(DDH) holds if there exists a PPT group generator IG with the following properties. The output of
IG(1λ) is a pair (G, g) where G describes a cyclic group of a prime order q (where we use multiplicative
notations for the group operation) and g describes a group generator. We assume that q is included
in the group description G. We also assume the existence of an efficient algorithm that given G and
descriptions of group elements h1, h2 outputs a description of h1h2. Finally, we require that for every
nonuniform polynomial-time algorithm A there is a negligible function ε such that:

|Pr[A(G, g, ga, gb, gab) = 1: (G, g) $← IG; (a, b) $← Z2
q]−

Pr[A(G, g, ga, gb, gc) = 1: (G, g) $← IG; (a, b, c) $← Z3
q]| ≤ ε(λ).
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3 Technical Overview

3.1 Sublinear 2PC for Layered Circuits from Decomposable Batch OT

We consider Boolean circuits over any base of gates with fan-in two.
Toward our sublinear 2PC result for layered circuits, we begin by focusing on circuits of low depth k

(e.g., think of k = log log log s), and devise a secure protocol with communication n+m+(22
k ·poly(λ)),

for input size n, output size m, circuit size s, and security parameter λ. Given such a tool, we
can appropriately divide a larger layered circuit into depth-k blocks where the sum of all block
input and output sizes is s/k, and then iteratively compute (secret shares of) each layer output via
the sub-protocol. Combined, this yields a secure computation for the layered circuit with overall
communication O(s/k + 22

k · d · poly(λ)), as desired.

Starting point: An SPIR viewpoint. Consider a circuit with input size n, output size m, and low
depth k. Given fan-in 2, each output bit is computed as a function of at most 2k input bits. We may
thus view the circuit output as dictated by m separate truth tables, each of size 22

k

, indexed by the
values of the corresponding relevant 2k input bits. More concretely, think of one party as holding the
(partially collapsed) truth tables incorporating its known inputs, and the second party as holding its
own input string, dictating the relevant position of each truth table. We will refer to the first party
as “sender” and second as “receiver.”

Given this perspective, protocols for (Symmetric) Private Information Retrieval (SPIR) immedi-
ately come to mind. An SPIR protocol is a strengthened version of PIR, where the client additionally
learns nothing beyond its queried value of the database. Secure computation of our circuit precisely
amounts to m instances of SPIR, where the receiver party learns exactly the desired indexed values
of the m truth tables.

However, the situation is not so simple: Even the best known (S)PIR protocols have communication
polylogarithmic in the database size. Applying m instances of SPIR for the m outputs would thus
yield communication polylog(2k) ·m ∈ Ω(km), killing sublinearity.

In order to obtain sublinear communication, we must somehow leverage that them SPIR instances
are not completely independent, but rather are made with correlated queries. That is, although there
are m instances each with (2k)-bit index values, the m · 2k selection bits have several repeats, collec-
tively coming from different subsets of only n < m · 2k input bits.

Toward batch SPIR with correlated queries. Our task becomes precisely to construct such an object:
m-instance batch SPIR, with significantly lower communication complexity given correlated queries.

For purposes of discussion, suppose there existed a 2-round rate-1 protocol for oblivious trans-
fer, where each sender and receiver (magically) sends only a single bit. Given access to such a tool,
then by leveraging ideas from the literature (e.g., achieving PIR from linearly homomorphic encryp-
tion [KO97]), we would be set. Indeed, the receiver would simply send 1 bit for each input bit,
corresponding to the first OT message using this value as a selector bit. These first messages could
then be reused by the sender in multiple, recursive executions.

More concretely, suppose the server holds a database of N bits and that the receiver wants to
retrieve the element stored at index x = (x1, . . . , xlogN ). If the receiver sends a message otr1 generated
as its first-round OT-receiver message for the first bit x1 of the desired index, the server can take
the database, pair up elements whose indices differ only on the first bit, then apply the OT-server
computation with respect to otr1 on each pair in order to retrieve a single-bit response for each,
creating a new “database” of half the number of elements, each corresponding to a 1-bit sender
answer message. If instead the receiver sends messages (otr1, . . . , otrlogN ), one for each bit of the
desired index, the server can now iteratively compress the database down to a single bit by building a
“Merkle tree” where in each recursive iteration corresponding to input index bit xi, the new “database”
is split into pairs of messages whose indices differ only in this index, and performing the OT-server
computation on each pair produces a new list of 1-bit sender answer messages of again half the length.
At the conclusion, the server will be left with a single message value remaining, which by construction
precisely enables the receiver to recover the target value stored at index x. This approach extends
directly for m distinct databases with the same total receiver message (otr1, . . . , otrlogN ), since the
corresponding OT-receiver messages can be used independently in any mix and match format across
databases. In turn, the sender would need to send onlym total bits response, one bit for each database
query.
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Of course, unfortunately, we do not have such a strong rate-1 OT. We thus turn to the next
closest alternative which does exist: 2-round rate-1 batch OT, as recently achieved by Brakerski et
al. [BBDP22]. Batch OT considers a collection of ` message pairs ({m(i)

0 ,m
(i)
1 })i∈[`] and selection bits

(b(i))i∈[`], and enables a sender and receiver to perform ` parallel batched executions of OT with
communication roughly `. Attempting to apply the above strategy with rate-1 batch OT, however,
poses significant challenges.

– The batching structure restricts the “mix and match” abilities of the sender when using the
receiver’s OT message. The sender must respond to the entire batched vector of receiver’s selection
bits at any stage, without freely accessing subsets of selection bits. Instead, the above approach
involves using each selection bit b(i) within a different number (N/2i) of message pairs.

– Even worse, the sender’s (batch) response in general is only defined given all ` pairs of messages
to be selected by the bits b(1), . . . , b(`). In contrast, the above approach crucially relies on the
ability to choose the message pairs for selection bit b(i) dynamically as a function of the server’s
responses given the previous selection bits b(1), . . . , b(i−1).

– Finally, it is no longer the case that for each selected message the sender has a single corresponding
response bit. In fact, rate 1 here does not even mean that for ` instances that exactly ` bits are
sent in each direction, but rather just asymptotically `+ o(`). This means that in each recursive
OT execution, the sender’s messages (and thus “database entry” size) may grow, leading to large
growth and ultimately large communication upon further recursions.

Decomposable batch OT. With this motivation, we introduce the notion of decomposable (2-round,
rate-1) batch oblivious transfer, which can be seen as a strengthening of two-round batch OT with
constant upload-rate (i.e. the size of the receiver message is linear in the batch size `) and download-
rate asymptotically one (i.e. the size of the sender message is `+ o(`)). The differences boil down to
a notion of decomposability which we impose on the sender message.

At a high level, what we want to capture is the fact that the receiver should be able to retrieve
the ith selected message in the batch if and only it also has access to the ith bit of the sender message
(using its own internal state saved from generating the receiver message). More generally, given only a
subset of the bits of the sender message, the receiver should able to retrieve the corresponding subset
of selected messages in the batch.

Slightly more formally, we say that the (2-round, rate-1) batch OT protocol is decomposable if for
any agreed subset S ⊂ [`] of indices, the sender can choose a corresponding subset of |S|+polylog(`) of
its return message bits, such that sending this partial sender response reveals exactly the corresponding
subset of selected messages (m

(i)

b(i)
)i∈S to the receiver. Namely, given the partial response, these |S|

messages can be recovered, and no information is revealed about m(i)

b(i)
for i /∈ S.

For our purposes, it will suffice to consider a relaxation of the notion we just described, and allow
the sender message to have some small overhead rather than having a one-to-one correspondence
between the bits on the sender message and the ` selected messages. In this relaxed form, we require
that the sender message be comprised of two parts: a “reusable” part (of size o(`)), and a “decompos-
able” part (of size `). On its own, the reusable part should reveal nothing about the messages, but
can be used to “decode” each bit of the decomposable part so as to retrieve (exactly) the correspond-
ing selected message in the batch. Among other benefits of this relaxation, it allows us to consider
constructions whose download-rate is only asymptotically one.

This decomposability property is not only enough for our needs, but perhaps more importantly, is
achievable, in fact achieved by the batch OT constructions of [BBDP22]. Roughly speaking, the sender
message in their construction is composed of a rate-1 encryption of the vector of requested message
bits, with structure consisting of a short “header” independent of the message bits, together with a
single ciphertext bit encoding each message bit separately. Decomposability can then be achieved by
sending only those ciphertext bits encoding the desired subset of messages.

Slightly more accurately, this describes the situation for all but an inverse-polynomial fraction of
message bits (corresponding to noisy coordinates of an LPN ciphertext sent by the receiver), which
actually encode the incorrect messages. In order to separately address these values, they employ a
“co-PIR” (or “punctured OT” [BGI17]) to efficiently mask out the undesired values from the receiver,
and a separate PIR to learn the correct values for these positions. The separate PIR query responses
appear as part of the short “header” information of the server’s response, which may sound like an
issue, as this portion should not reveal information directly about any message bits. However, this
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problem does not occur, because the extra PIR queries are set up to actually reveal the difference
between the masked-out incorrect message (ri ⊕m1−b) and the target message mb. Because of the
mask, this difference value (revealed in the header) provides no information about any message in
the absence of the corresponding value (ri ⊕ m1−b) from the payload portion of the ciphertext, as
required by decomposability. We refer the reader to Section 4.2 for further details.

Sublinear 2PC from decomposable batch OT. This decomposability property directly allows us to
address one of the above challenges of batch OT: we will not have issues with exponential growth
of the database entry size in the recursive OT executions. Instead, the result of one iteration of the
batch OT on n inputs will result in a short o(n)-size header together with n bits that each provide
information about a distinct queried message. The header string we will put to the side (ultimately
we will send the collection of all the headers, which is still sufficiently short). The remaining n bits
induce the recursive sender-message database that, as desired, consists of exactly 1 bit per message.

In fact, if we temporarily suppose that the assignment graph structure of n input bits to m = n
output bits can be decomposed as the disjoint union of 2k matchings, then we have a solution. Each
disjoint matching will correspond directly to a different instance of n-input batch OT, where each
of the n inputs is simultaneously used to index a different database. Applying the recursive solution
as above, the sender will ultimately compute a single bit for each output, as well as a collection of
header strings from each of the batch OT executions.

The remaining challenge is that general circuits do not have such nice regular structure, instead
with inputs appearing in different numbers of output computations, with inconvenient correlations,
demanding a stronger form of “mix and match” of batched OT queries beyond a direct approach.

To address this issue, we modify the structure of batch OT receiver queries, effectively extending
the batch size (say from n to 2n), and employing a careful choice of how to pack extra copies of
more highly influential input bits into the queried vector, so that the overall total number of batch
OT instances remains sufficiently small that the overhead of extra header strings does not negatively
impact the final communication complexity. We refer the reader to the technical body for a detailed
treatment of this procedure.

3.2 Polylogarithmic PIR from CDH

We now turn our attention to our second contribution: private information retrieval with polylog-
arithmic communication from the computational Diffie-Hellman assumption. A private information
retrieval (PIR) is a two party protocol between a server S holding a string z (the database) and a
client C holding an integer i. At the end of the interaction, the client should learn zi, without reveal-
ing i to the server. A polylogarithmic PIR is a PIR where the total communication is poly(λ, log |z|),
where λ is the security parameter.

Below, we sketch our approach to building polylogarithmic PIR from CDH. In hindsight, our
construction is in fact relatively straightforward, and follows from an elegant combination of two
recent results. We outline the sequence of implications below.

CDH Laconic PSI Half-PIR Random-index
PIR PIR=⇒ =⇒ =⇒ =⇒

[ABD+21] Lemma 27 Lemma 30 [GHM+21]

Laconic PSI. A private set intersection protocol is a two-party protocol allowing a receiver to securely
compute the intersection of its input set SR with the set SS of a sender: at the end of the protocol,
the receiver learns SR ∩ SS and nothing more. A laconic PSI protocol, introduced in [ABD+21],
additionally enforces that the protocol is two-round (receiver to sender, then sender to receiver), and
both the total communication and the sender runtime are bounded by poly(λ, log |SR|, |SS |). The
work of [ABD+21] showed that laconic PSI can be constructed from anonymous hash encryption, a
primitive that can be constructed (in particular) from the CDH assumption [DG17b,DG17a,BLSV18].
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From Laconic PSI to Half-PIR. Given a laconic PSI protocol, we exhibit a construction of poly-
logarithmic-communication PIR, using in addition a pseudorandom function. However, our construc-
tion only achieves a very weak form of security: it only guarantees that the index i is kept hidden from
the server with probability 1/2. This notion, which we call half-PIR, has been introduced in [BIP18]
(under the name Rand 1

2PIR). It was shown in [BIP18] that polylogarithmic half-PIR already suffices to
construct slightly sublinear PIR (with communication O(|z|/ log |z|)); looking ahead, we will provide
a stronger reduction and show that it actually implies polylogarithmic PIR.

Our construction of half-PIR proceeds as follows: the client and the server agree on a PRF key
K. The server with input z builds the set SR = {FK(1||z1), · · · , FK(|z|||z|z|)}, and the client with
input i builds the set SS = {FK(i||b)}, where b is a uniformly random bit. The core properties that
this achieves are:

– If b = zi, then |SR ∩ SS | = 1 (note that |SS | = 1), and
– If b 6= zi, then |SR ∩ SS | = 0 with high probability.

To show the second property, we rely on the security of the PRF to argue that a collision between
PRF evaluations on distinct inputs is highly unlikely (provided the PRF outputs are large enough).
Note, therefore, that we rely on the PRF security to argue the correctness of the construction (while
this is slightly unusual, this kind of arguments has been used a few times in the literature).

Now, the server and the client execute a laconic PSI, which has total communication poly(λ, log |z|)
(since |SS | = 1). At the end of the protocol, the server, who plays the role of the receiver, sends
|SR ∩ SS | to the client. Note that |SR ∩ SS | = (1 − b) ⊕ zi, hence the client can decode zi from
this information. Yet, whenever |SR ∩ SS | = 0, the security of the laconic PSI implies that the
server actually learns nothing about i: this guarantees client security with probability 1/2. When
|SR ∩ SS | = 1, however, the server learns the intersection SR ∩ SS = FK(i||zi), and can in particular
retrieve i easily.

From Half-PIR to PIR. We now turn to constructing a polylogarithmic PIR from a polylogarithmic
half-PIR. Here, our construction is mostly a simple observation: half-PIR implies random-index PIR
via a straightforward construction. A random-index PIR, introduced in [GHM+21], is a PIR protocol
where the client has no input, and receives (i, zi) where the index i is picked uniformly at random
between 1 and |z|. Given a half-PIR, building a random-index PIR is almost immediate: the client
and the server execute λ parallel instances of a half-PIR protocol, where the client uses uniformly
random independent indices in each instance. With overwhelming probability, at least one of these
instances will be secure (in the sense that the server does not learn the index); the client simply
outputs (i∗, zi∗) where i∗ is the index used in the first such execution.

Eventually, random-index PIR was recently shown in [GHM+21] to imply full-fledged PIR, with a
log |z| blowup in communication and round complexity. The key observation underlying this reduction
is that a single invocation of a random-index PIR, together with sending log |z| bits, allows to reduce
the task of executing a PIR on a size-|z| database to that of executing a PIR on a size-|z|/2 database.
The construction follows by recursively invoking this construction (we provide a more detailed de-
scription of this construction in Section 5.3). Combining all these building blocks together leads to a
logarithmic-round, polylogarithmic-communication PIR from the CDH assumption.

4 Sublinear Computation for loglog-Depth Circuits

4.1 Decomposable Two-Round Batch Oblivious Transfer

In this section, definition 8 defines the notion of decomposable two-round batch oblivious transfer
(dec-OT).
We introduce the notion of decomposable two-round batch oblivious transfer, which can be seen as a
strengthening of two-round batch OT with constant upload-rate (i.e. the size of the receiver message
is linear in the batch size k) and download-rate asymptotically one (i.e. the size of the sender message
is k+ o(k)). The differences boil down to a notion of decomposability which we impose on the sender
message. At a high level, what we want to capture is the fact that the receiver should be able to retrieve
the ith selected message in the batch if and only it also has access to the ith bit of the sender message
(using its own internal state saved from generating the receiver message). More generally, given only a
subset of the bits of the sender message, the receiver should able to retrieve the corresponding subset
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of selected messages in the batch. For our purposes, it will suffice to consider a relaxation of the notion
we just described, and allow the sender message to have some small overhead rather than having a
one-to-one correspondence between the bits on the sender message and the k selected messages. In
this relaxed form, we require that the sender message be comprised of two parts: a “reusable” one (of
size o(k)), and a “decomposable” one (of size k). On its own, the reusable part should reveal nothing
about the messages, but can be used to “decode” each bit of the decomposable part so as to retrieve
(exactly) the corresponding selected message in the batch. Among other benefits of this relaxation, it
allows us to consider constructions whose download-rate is only asymptotically, and not necessarily
exactly, optimal. We now formalize this notion in definition 8.

Definition 8 (Decomposable Two-Round Batch Oblivious Transfer). Let k ∈ N? and let
α(·) be a sublinear function ( i.e. α(n) = o(n)). A semi-honest two-round decomposable batch OT
protocol with α(·)-overhead between a sender and a receiver is defined as a triple of PPT algorithms
dec-OT = (dec-OTR, dec-OTS, dec-OTD) with the following syntax and properties:

– Syntax.
dec-OTR : On input the security parameter 1λ and a vector of selection bits ~b = (b1, . . . , bk) ∈

{0, 1}k, dec-OTR outputs a receiver message otr ∈ {0, 1}O(k) and an internal state
st; without loss of generality we assume that st contains all the random coins used by
dec-OTR as well as ~b.

dec-OTS : On input the security parameter 1λ, a receiver message otr, and a database of k
pairs of bits ((m

(i)
0 ,m

(i)
1 ))i∈[k] ∈ {0, 1}2k, dec-OTS outputs a sender message ots =

(ots?, otsdec), which is comprised of a reusable part ots? ∈ {0, 1}α(k) and a decompos-
able part otsdec ∈ {0, 1}k.

dec-OTD : On input a batch subset K ⊆ [k], a partial sender message ots′ ∈ {0, 1}α(k)+|K|, and
an internal state st, dec-OTD outputs a vector of messages (m̃i)i∈K ∈ {0, 1}|K|.

– Decomposable Correctness. For every λ ∈ N?, K ⊆ [k], every ~b = (b1, . . . , bk) ∈ {0, 1}k, and
every ~m = ((m

(i)
0 ,m

(i)
1 ))i∈[k] ∈ {0, 1}2k,

Pr

(m̃1, . . . , m̃|K|) = (m
(i)
bi
)i∈K :

(otr, st)
$← dec-OTR(1λ,~b)

(ots?, otsDB)
$← dec-OTS(1λ, otr, ~m)

(m̃1, . . . , m̃|K|)
$← dec-OTD(K, (ots?, [otsdec]K), st)

 = 1 .

– Receiver Security (against Semi-Honest Sender). There exists an expected polynomial time
simulator SimS such that for every λ ∈ N? and every ~b = (b1, . . . , bk) ∈ {0, 1}k,{

otr : (otr, st)
$← dec-OTR(1λ,~b)

}
c
≈
{
SimS(1

λ)
}
.

– Decomposable Sender Security (against Semi-Honest Receiver). There exists an ex-
pected polynomial time simulator SimR such that for every λ ∈ N?, every K ⊆ [k], every
~b = (b1, . . . , bk) ∈ {0, 1}k, and every ~m = ((m

(i)
0 ,m

(i)
1 ))i∈[k] ∈ {0, 1}2k,{

(ots?, [otsdec]K , otr, st) :
(otr, st)

$← dec-OTR(1λ,~b)

(ots?, otsBD)
$← dec-OTS(1λ, otr, ~m)

}
c
≈{

(sim?, simdec, otr, st) :
(otr, st)

$← dec-OTR(1λ,~b)

(sim?, simdec)
$← SimR(1

λ,K, (m
(i)
bi
)i∈K ,~b, otr, st)

}
.

Note that in definition 8 the rate is baked into the syntax: dec-OTR outputs a receiver message
of size O(k) and dec-OTS outputs a sender message of size α(k) + k.

4.2 Instantiation under QR + LPN, Adapted from [BBDP22]

As noted previously, two-round decomposable batch oblivious transfer can be seen as a strengthening
of two-round batch OT with constant upload-rate and download-rate asymptotically one. As a matter
of fact, the construction of batch OT with optimal rate from [BBDP22] natively satisfies the extra
requirements and can be cast as two-round decomposable batch OT with sublinear overhead.
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Theorem 9 (Corollary of [BBDP22, Section 7]). Assume the QR assumption and the binary
LPN assumption LPN(dim, num, ρ) with dimension dim = poly(λ), number of samples num = dimc

(for any constant c > 1), and noise rate ρ = numε−1 (for some constant ε < 1). Then for any
` = `(λ), there exists a decomposable two-round batch oblivious transfer for batch size k = ` · num
where

– The receiver message otr has size (`2 · dim+ ` · numε) · poly(λ) + k
– The sender message ots = (ots?, otsdec) has size |ots?| = (num+ ` ·numε) ·poly(λ) and |otsdec| = k.

In particular, for appropriate parameters (sufficiently large `, and num sufficiently larger than `),
|otr| = k + o(k), and |ots?| = o(k).

What follows is a sketch of how to cast the constructions of two-round rate-one batch OT from
[BBDP22] as decomposable, thereby proving theorem 9. We refer to appendix A for more details.

Sketch. The size of the OT messages can be directly read from the analysis of the communication
complexity of the construction in [BBDP22, Section 7.1] (we let the poly(λ) term absorb a polylog(num)
term). Receiver security is directly proven in [BBDP22, Section 7.2].

To show decomposable correctness, we must prove that given a subset K ⊆ [k] of the bits of
otsdec, it is still possible to recover the messages (mi

bi
)i∈K . Abstracting out the unecessary details,

the output algorithm dec-OTD will decrypt a matrix W̃ ∈ F`×dim2 from ciphertexts contained in ots.
The entries of this matrix are ` · dim outputs m̃(i)

bi
, each masked with some pseudorandom value.

The intuition is that for most entries, m̃(i)
bi

is just the right output m(i)
bi
. However, for some entries,

m̃
(i)
bi

is incorrect (i.e., noisy): this is a consequence of the imperfect correctness of the LPN-based
encoding used in the construction. Then, a second matrix Z will be obtained, which allows to unmask
the correct entries of W̃ , and correct the noisy entries. The final output is given by the matrix
W̃ + Z. This matrix Z is obtained using a combination of a private information retrieval scheme
with polylogarithmic communication (which allows to recover the small subset of noisy entries) with
a co-PIR, a primitive which allows to recover all pseudorandom masks except for a small subset of
them, using small communication. Summing up, there are two components:

1. The matrix Z is extracted from ots? using the state information stored after dec-OTR. Crucially,
Z is entirely obtained from ots?: otsdec is not required at this stage.

2. The matrix W̃ is extracted from ots by decrypting a ciphertext contained in the OT message.
The output is W̃ + Z.

The second part is the only one that requires otsdec. In the construction of [BBDP22], otsdec
contains the shrinked components of a rate-1 linearly homomorphic encryption scheme. Using the
QR-based construction of rate-1 linearly homomorphic encryption from [BBDP22, Section 5.3], which
is itself taken from [DGI+19]. In this scheme, an encryption of b1, · · · , b` is of the form

ct = (gr, (−1)b1hr1, · · · , (−1)b`hr`),

where g, h1, · · · , h` are random quadratic residues in an RSA group, and r is a random exponent.
The shrinking procedure maps ci = (−1)bihri to b′i = 1 if ci < −ci (given some order over Jn, the
set of elements with Jacobi symbol 1), and 0 otherwise. The crucial observation is that given gr

(which, for us, will be in the ots? part) and any given individual shrinked component b′i, it is possible
to “decompress” b′i into ci, by computing hri from gr (using the secret key) and checking whether
hri < −hri . This implies, in our setting, that the i-th entry of W̃ can be individually decrypted (using
the secret key, stored as part of the state), given ots? and the i-th bit of otsdec. This guarantees
decomposable correctness.

Eventually, it remains to show why decomposable sender security holds; again, it follows almost
immediatly from the sender security of the construction in [BBDP22]. The only thing to show is that
the simulator Sim can still simulate the partial OT messages (ots?, [otsdec]K) when it is given only
the subset (mi

bi
)i∈K of the sender messages. But this is completely straightforward, since (as implied

by the discussion on correctness above) the distribution of (ots?, [otsdec]K) is essentially identical to
the distribution of (ots?, otsdec) obtained given a size-|K| sender input (mi

0,m
i
1)i∈K and a size-|K|

receiver input (bi)i∈K (the only –minor– distinction being that the ots? contains some “dummy” gr
components which are not used anywhere, but this has no influence on the simulation). This concludes
the sketch.
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4.3 Bounded Query Repetitions

At a high level the goal of this section is to show how a receiver message of dec-OT can be re-
used, possibly with imbalances in how many times each selection bit in the batch is re-used, while
asymptotically preserving upload- and download-rate. definition 10 defines the notion of decomposable
two-round batch oblivious transfer with bounded query repetitions (rep-OT), and lemma 11 establishes
a generic reduction from dec-OT to rep-OT, with an explicit transformation in fig. 3.
A central property of two-round OT protocols is that the receiver message can be re-used multiple
times by the sender on different (and even adaptively crafted) databases. If the receiver were to
prepare messages for different selection bits, the sender could use each one a different number of
times and still only have to send an answer whose size is proportional to the number of “useful”
messages. When using two-round batch OT, the sender cannot freely re-use some of the selection bits
more than the others: if the receiver sends a message corresponding to the selection vector (b1, . . . , bk),
and the sender wishes to use each selection bit bi a number ti of times then it has little choice but to
pad their database up to size (maxi∈[k] ti)×k using dummy messages then send (maxi∈[k] ti) different
sender messages. However, if the two-round batch OT is decomposable, then the sender can drop the
bits corresponding to the dummy messages before sending them to the receiver. More specifically,
if the two-round decomposable batch OT has α-overhead, then the size of the sender message is
(maxi∈[k] ti) · α +

∑k
i=1 ti . Since the amount of “useful” bits is

∑k
i=1 ti, the download rate is still

asymptotically one provided α is sufficiently small. This informal discussion is illustrated in fig. 1.

ots? otsdec

(a) The reusable part ots? is monolithic, while the
decomposable part otsdec can be decomposed.

ots?

ots?1

. . .

ots?T

otsdec

T

(b) Having invoked T parallel instances of
dec-OT, the reusable part is now T times larger,
but each selection bit can be used up to T times
without the size of the decomposable part blow-
ing up by a factor of T .

Fig. 1: Using decomposability to achieve ‖ · ‖∞-bounded query repetitions.

We introduce a stronger notion of two-round decomposable batch OT in definition 10, one which
allows each selection bit to be used a different but bounded number of times while preserving the
asymptotic rate. We provide in fig. 3 a black-box transformation which allows any two-round decom-
posable batch OT to gain this property. Before we proceed, let us observe that this transformation
has an inherent limitation: because the size of the sender message grows with (maxi∈[k] ti) × α the
number of repetitions must be bounded by ‖t‖∞ = o(k/α). In particular, none of the ti’s can be
linear in k (and skipping ahead, our application to sublinear computation will require us to bypass
this restriction). In other words, while we can tolerate ‖ · ‖∞-bounded repetitions, we cannot tolerate
‖ · ‖1-bounded repetitions; the difference boils down to the fact that we require the repetitions to be
somewhat “balanced” in that no selection bit is solicited too much (e.g. a linear number of times).
This can be addressed by having the receiver replicate the selection bits proportionally to the number
of times the sender will want to use it. This way, we are reduced to the case where the repetitions are
balanced: if each selection bit bi is replicated across dti/T e copies, then each copy of each selection
bits is only used ≤ T times, which means the repetition vector is ‖·‖1-bounded by T . In the parameter
range of our application, T can be chosen so that T × α is sublinear but the total number of copies
sent by the receiver, which is

∑w
i=1dti/T e ≤

1
T ‖t‖1+w, is less than 2w. What this achieves is keeping

the sender message small by making the receiver message only slightly larger. This transformation is
illustrated in fig. 2 and implicitly used in the construction of fig. 7.

Definition 10 (Decomposable Two-Round Batch Oblivious Transfer with Bounded Query
Repetitions). Let k ∈ N? and α = o(n). A semi-honest two-round decomposable batch OT protocol
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x1 x2 x3 . . . . . . xw x1 x1 x1 x2 x2 . . . . . . xw xw

dt1/T e dt2/T e dtw/T e

(a) The overall size of the receiver message with duplicated queries Σw
i=1dti/T e ≤ 2w.

x1 x1 x1 x2 x2 . . . . . . xw xw

dt1/T e dt2/T e dtw/T e

T

ots? otsdec

otr

(b) If ‖t‖1 = w we now have |otr| = O(w) and |ots| = w · (1 + o(1)).

Fig. 2: Going from ‖ · ‖∞-bounded repetitions to ‖ · ‖1-bounded repetitions by doubling the size of the
receiver message.

with α(·)-overhead and T -bounded query repetitions between a sender and a receiver can be defined
as a triple of PPT algorithms rep-OT = (rep-OTR, rep-OTS, rep-OTD) with the following syntax and
properties:

– Syntax.

rep-OTR : On input the security parameter 1λ and a vector of selection bits ~b = (b1, . . . , bk) ∈
{0, 1}k, rep-OTR outputs a receiver message otr ∈ {0, 1}O(k) and an internal state
st; without loss of generality we assume that st contains all the random coins used
by rep-OTR as well as ~b.

rep-OTS : On input the security parameter 1λ, a query otr, a database ((m
(i)
0 ,m

(i)
1 ))i∈[k′] ∈

{0, 1}2k′ (where k ≤ k′ ≤ k · T ), and a vector of repetitions rep = (rep1, . . . , repk) ∈
[0, T ]k such that

∑k
i=1 repi = k′, rep-OTS outputs a sender message ots = (ots?, otsdec),

which is comprised of a reusable part ots? ∈ {0, 1}α(k) and a decomposable part
otsdec ∈ {0, 1}k′ , as well as rep.

rep-OTD : On input a batch subset K ⊆ [k′], a partial sender message ots′ ∈ {0, 1}α(k)+|K|, a
vector of repetitions rep = (rep1, . . . , repk) ∈ [0, T ]k such that

∑k
i=1 repi = k′, and

an internal state st, rep-OTD outputs a vector of messages (m̃i)i∈K ∈ {0, 1}|K|.

– Decomposable Correctness. For every λ ∈ N?, K ⊆ [k′], every ~b = (b1, . . . , bk) ∈ {0, 1}k, and
every ~m = ((m

(i)
0 ,m

(i)
1 ))i∈[k′] ∈ {0, 1}2k

′
,

Pr

(m̃1, . . . , m̃|K|) = (m
(i)
σi )i∈K :

(otr, st)
$← rep-OTR(1λ,~b)

((ots?, otsdec), rep)
$← rep-OTS(1λ, otr, ~m, rep)

(m̃1, . . . , m̃|K|)
$← rep-OTD(K, (ots?, [otsdec]K), rep, st)

 = 1 ,

where σi := bmax{j : (
∑
j′<j repj′ )≤i} .

– Receiver Security (against Semi-Honest Sender). There exists an expected polynomial time
simulator SimS such that for every λ ∈ N? and every ~b = (b1, . . . , bk) ∈ {0, 1}k,{

otr : (otr, st)
$← rep-OTR(1λ,~b)

}
c
≈
{
SimS(1

λ)
}
.

– Decomposable Sender Security (against Semi-Honest Receiver). There exists an expected
polynomial time simulator SimR such that for every λ ∈ N?, every rep = (rep1, . . . , repk) ∈
[0, T ]k such that ‖rep‖1 = k′, every K ⊆ [k′], every ~b = (b1, . . . , bk) ∈ {0, 1}k, and every ~m =
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((m
(i)
0 ,m

(i)
1 ))i∈[k′] ∈ {0, 1}2k

′
,{

(ots?, [otsdec]K , otr, st) :
(otr, st)

$← rep-OTR(1λ,~b)

(ots?, otsdec)
$← rep-OTS(1λ, otr, ~m, rep)

}
c
≈{

(sim?, simdec, otr, st) :
(otr, st)

$← rep-OTR(1λ,~b)

(sim?, simdec)
$← SimR(1

λ,K, (m
(i)
σi )i∈K ,~b, rep, otr, st)

}
where σi := bmax{j : (

∑
j′<j repj′ )≤i} .

Decomposable Two-Round Batch Oblivious Transfer with Bounded Query Repetition

Parameters: Batch number k, Repetition bound T .
Requires: A two-round decomposable batch dec-OT protocol dec-OT =
(dec-OTR, dec-OTS, dec-OTD) with α-overhead such that α(k) = o(k/T ).

rep-OTR: On input the security parameter 1λ and a vector of selection bits ~b = (b1, . . . , bk) ∈
{0, 1}k:

1. Compute (otr, st)
$← dec-OTR(1λ,~b).

2. Output (otr, st).

rep-OTS: On input the security parameter 1λ, a receiver message otr, a database ~m ∈ {0, 1}2k′ ,
and a vector of repetitions rep = (rep1, . . . , repk) ∈ [0, T ]k such that ||rep||1 = k′:

1. Parse ~m as ((m(j,i)
0 ,m

(j,i)
1 ))j∈[k],i∈[repj ] .

// The first rep1 pairs are indexed by j = 1, the next rep2 by j = 2, and so on.
2. For j ∈ [k] and i ∈ [repj + 1, T ], set (m(j,i)

0 ,m
(j,i)
1 )← (0, 0).

// The database is padded with “dummy” elements so there are exactly T pairs associated
with each j ∈ [k].

3. For i ∈ [T ] set ~mi := ((m
(j,i)
0 ,m

(j,i)
1 ))j∈[k].

// Each “sub-database” ~mi contains the ith pair associated with each j ∈ [k].
4. For j = 1 . . . T :

Compute (ot?S,j , ot
dec
S,j)

$← dec-OTS(1λ, otr, ~mj).
5. Set ots? ← ot?S,1‖ . . . ‖ot?S,T and otdecS ← ([otdecS,1]1‖ . . . ‖[otdecS,rep1 ]1)‖ . . . ‖([ot

dec
S,1]k‖ . . . ‖[otdecS,repk ]k).

// Filter out the bits of the decomposable parts associated with dummy elements, and
reorder the remaining bits according to the original database.

6. Output (ot?S , ot
dec
S ).

rep-OTD: On input a sender message ots, a vector of repetitions rep = (rep1, . . . , repk) ∈ [0, T ]k

such that ||rep||1 = k′, and an internal state st:

1. Parse ots as (ot?S , ot
dec
S ).

2. Parse ot?S as ot?S,1‖ . . . ‖ot?S,T .
3. Parse otdecS as ([otdecS,1]1‖ . . . ‖[otdecS,rep1 ]1)‖ . . . ‖([ot

dec
S,1]k‖ . . . ‖[otdecS,repk ]k).

4. For i = 1 . . . T :
(a) Set Ki := {j : j ∈ [k], repj ≤ i}, ordered according to the natural order on N.
(b) Set ~vi ←

∥∥
j∈Ki

[otdecS,i ]j .

(c) Compute (m̃i,j)j∈Ki
$← dec-OTD(Ki, (ot

?
S,i, vi), st).

//Note that the size-|Kj | vector output by dec-OTD is indexed here by elements of Ki,
not by 1, . . . , |Ki|.

5. Output (m̃1,1, . . . , m̃rep1,1, m̃1,2, . . . , m̃rep2,2, . . . , m̃repk,k).

Fig. 3: From dec-OT with α overhead to rep-OT with α · T overhead.
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Lemma 11 (From dec-OT to rep-OT). If dec-OT is a semi-honest two-round decomposable batch
OT protocol with α overhead, then the construction rep-OT from fig. 3 is a semi-honest two-round
decomposable batch OT protocol with α · T overhead and T -bounded repetitions.

Proof.

– Syntax, Size, and Correctness: The fact that rep-OT fulfills the syntactic requirements as well
as correctness follows from inspection. In particular, note that the receiver message output by
rep-OTR has indeed size O(k) and that the sender message output by rep-OTS is indeed comprised
of a reusable part of size T · α(k) and a decomposable part of size k′.

– Receiver Security: By receiver security of dec-OT there exists an expected polynomial time sim-
ulator SimS such that for every λ ∈ N? and every ~b = (b1, . . . , bk) ∈ {0, 1}k,{

otr : (otr, st)
$← dec-OTR(1λ,~b)

}
c
≈ SimS(1

λ) .

By construction rep-OTR = dec-OTR, so we also have that{
otr : (otr, st)

$← rep-OTR(1λ,~b)
}

c
≈ SimS(1

λ) ,

which concludes this part of the proof.

– Sender Security: By sender security of dec-OT there exists an expected polynomial time simulator
Simdec

R such that for every λ ∈ N?, every K ⊆ [k], every ~b = (b1, . . . , bk) ∈ {0, 1}k, and every
~m = ((m

(i)
0 ,m

(i)
1 ))i∈[k] ∈ {0, 1}2k,{

(ots?, [otsdec]K , otr, st) :
(otr, st)

$← dec-OTR(1λ,~b)

(ots?, otsBD)
$← dec-OTS(1λ, otr, ~m)

}
c
≈{

(sim?, simdec, otr, st) :
(otr, st)

$← dec-OTR(1λ,~b)

(sim?, simdec)
$← Simdec

R (1λ,K, (m
(i)
bi
)i∈K ,~b, otr, st)

}
. (1)

The construction of rep-OTS makes T parallel calls to dec-OTS. Sender security follows from a
straightforward hybrid argument, replacing these calls one by one with Simdec

R ; indistinguishability
of these hybrids follows by invoking eq. (1) once at each step (and therefore a polynomial number
overall).

In a bit more detail, let rep = (rep1, . . . , repk) ∈ [0, T ]k such that
∑k
i=1 repi = k′, and consider

the following family of simulators (Simrep
R,t)t∈[0,T ] (fig. 4).

Simulator Simrep
R,t

Parameters: For j ∈ [k], ind(j) :=
∑
j′<j repj′ . We define Firstt :=

⋃k
j=1[ind(j), ind(j) +

min(repj , t− 1)]. For i ∈ [k′], σi := bmax{j : (
∑
j′<j repj′ )≤i} .

On input (1λ,K ⊆ [k′], (m
(i)
σi )i∈K∩Firstt , (m

(i)
0 ,m

(i)
1 )i∈[k′]\Firstt , otr, st) where :

// The datase is comprised of repj pairs “to be selected according to bj”, for each j ∈ [k].
For each j, the simulator is only given the selected message from the first min(repj , t) pairs,
but is given both messages (a “complete pair”) from the other min(repj , t)− t pairs.

1. Parse the family (m
(i)
σi )i∈K∩Firstt as (m

(j,i)
σj,i )(j,i)∈K′ where K ′ is the subset of {(j, i) : j ∈

[k], i ∈ [repj ]} defined by (j, i) ∈ K ′ ⇔ ((
∑
j′<j repj) + i) ∈ K ∩ Firstt.

// Each i ∈ [k′] can uniquely be associated with a pair (j, i) where j ∈ [k] and i ∈ [repj ].
The simulator computes this re-indexing for the database elements for which it does not
have a complete pair. . .
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2. Parse the family (m
(i)
0 ,m

(i)
1 )i∈[k′]\Firstt as ((m

(j,i)
0 ,m

(j,i)
1 ))j∈[k],i∈[t+1,repj ] where m

(j,i)
b :=

m
(ind(j)+i)
b .

// . . . and for those where he is given a complete pair.
3. Complete the family (m

(j,i)
σj,i )(j,i)∈K′ as ((m

(j,i)
0 ,m

(j,i)
1 ))j∈[k],i∈[1,t], where m

(j,i)
1−σj,i := 0 for

(j, i) ∈ K ′ and (m
(i)
0 ,m

(i)
1 ) := (0, 0) for (j, i) /∈ K ′.

4. For j ∈ [k] and i ∈ [repj + 1, T ], set (m(j,i)
0 ,m

(j,i)
1 )← (0, 0).

// This “padding” of the database is also performed in the real execution and is not due
to the simulator not being given the entire database.

5. For i ∈ [T ] set ~mi := ((m
(j,i)
0 ,m

(j,i)
1 ))j∈[k].

6. For i = 1 . . . t:
Compute (sim?

i , sim
dec
i )

$← Simdec
R (1λ, [T ], ~mi,~b, otr, st)

7. For i = (t+ 1) . . . T :
Compute (ot?S,i, ot

dec
S,i)

$← dec-OTS(1λ, otr, ~mi).
8. Set ots? ← sim?

1‖ . . . ‖sim?
t ‖ot?S,t+1‖ . . . ‖ot?S,T .

9. Set otdecS ←
∥∥k
j=1

(
[simdec

1 ]j‖ . . . ‖[simdec
min(t,repj)

]j‖[otdecS,min(t,repj)+1]j‖ . . . ‖[ot
dec
S,repj

]j

)
.

10. Output (ot?S , [ot
dec
S ]K).

Fig. 4: Simulator Simrep
R,t replacing the first t calls to dec-OTS by calls to Simdec

S .

Consider the following distributions:

∆real :=

{
(ots?, [otsdec]K , otr, st) :

(otr, st)
$← rep-OTR(1λ,~b)

(ots?, otsdec)
$← rep-OTS(1λ, otr, ~m, rep)

}

∀t ∈ [T ], ∆Sim
t :=

(sim?, simdec, otr, st) :

(otr, st)
$← rep-OTR(1λ,~b)

(sim?, simdec)
$← Simrep

R,t( 1
λ,K, (m

(i)
σi )i∈K∩Firstt ,

(m
(i)
0 ,m

(i)
1 )i∈[k′]\Firstt ,

~b, rep, otr, st)


where σi := bmax{j : (

∑
j′<j repj′ )≤i} .

For all t ∈ [T ], it holds that ∆Sim
t−1

c
≈ ∆Sim

t by decomposable sender security of dec-OT. Indeed, if
a PPT D could distinguish ∆Sim

t−1
c
≈ ∆Sim

t with probability ε then it could distinguish the following
distributions with the same probability:{

(ots?, [otsdec]K , otr, st) :
(otr, st)

$← dec-OTR(1λ,~b)

(ots?, otsBD)
$← dec-OTS(1λ, otr, ~mt)

}
where ~mt is defined in line 6. of Simrep

R,t

and

{
(sim?, simdec, otr, st) :

(otr, st)
$← dec-OTR(1λ,~b)

(sim?, simdec)
$← Simdec

R (1λ,K, (m
(i)
σi )i∈K∩[ind(j),ind(j)+min(t−1,repj)],

~b, otr, st)

}
.

But by eq. (1), they are computationally indistinguishable and therefore ε must be negligible.

Observe that ∆real = ∆Sim
0

c
≈ . . .

c
≈ ∆Sim

T . Since [k′] \ FirstT = ∅, Simrep
R,T only takes as input

(1λ,K, (m
(i)
σi )i∈K ,~b, rep, otr, st) and therefore we have shown our construction has decomposable sender

security.

17



4.4 Two-Round Batch SPIR with Correlated Queries from Two-Round Decomposable
Batch OT (with Bounded Query Repetitions)

In this section, definition 12 defines “mix-and-match functions” and lemma 13 shows how they can
be built. Definition 14 introduces the notion of two-round batch SPIR protocol with correlated “mix
and match” queries (corrSPIR), and theorem 15 provides a reduction from rep-OT to corrSPIR, with
an explicit transformation in fig. 7.

We next introduce and achieve a notion of batch symmetric PIR with correlated queries. This
corresponds to batch SPIR where the queries are not independent; rather, the total entropy w used
to describe the queries is small, and the queried indices can be reconstructed via a public function
that “mixes and matches” the individual bits of entropy in a public manner. In more detail, if the
w bits of entropy are α1, . . . , αw, “mixing and matching” means that each of the (n = logN)-bit
queries to a single database can be obtained by concatenating n of the bits αi, possibly permuted.
In the notation below, the jth query is given by vector (αsj,1 , . . . , αsj,n) (in other words, the jth
query is associated with the ordered subset Sj = {sj,1, . . . , sj,n} of the bits of entropy). This notion
is tailor-made for our application to sublinear computation, but may be of independent interest. Let
us now sketch the construction, and highlight both the need for decomposability and why we need
the queries to be correlated.

Our starting point is the observation originally present in [KO97] (and later re-used explicitly
in [IP07, DGI+19]) using the following Merkle tree abstraction that a rate-1 two-round 1-out-of-2
string OT can be seen as a hash function with a compression factor of two, and can be used to
build (block) symmetric PIR. Let us sketch the construction under the (idealised) assumption
that we have access to a rate-1 two-round 1-out-of-2 bit OT primitive, which is better suited to
our purposes than its string variant. Suppose the server holds a database of N = 2n bits and
that the client wants to retrieve the element stored at index x = (x1, . . . , xn). If the client sends
a receiver message otr1 ← OTR(x1) for the first bit of the desired index, the server can take
the database, pair up elements whose indices differ only on the first bit, then apply the “hash
function” OTS(otr1, ·) in order to retrieve a single-bit “hashed value” for each pair. If the server
were to send all N/2 “hashes”, the client could retrieve exactly the elements of the database whose
indices start with x1 by applying OTD(st1, ·) (st1 was generated alongside otr1). If instead the
client sends receiver messages (otr1, . . . , otrn), one for each bit of the desired index, the server
can now iteratively compress the database down to a single bit by building a “Merkle tree”
using OTS(otrd, ·) at every node of depth n − d. If the server sends this single-bit root of the
tree, the client can retrieve the element at index x1 . . . xn by iteratively applying OTD(std, ·)
for d = n, . . . , 1. In fact, this is the only element of the database which the client can recover
from the root of the Merkle tree (intuitively, when the server applied OTS(otrd, ·) they removed
the client’s ability to retrieve any information about elements whose indices have 1−xd in position d).

The above construction achieves SPIR with optimal communication, from the idealised primitive of
rate-1 two-round 1-out-of-2 bit OT. We may ask whether we can replace this primitive with a more
realistic batched version, and have the client send BatchOTR(x1, . . . , xn) for instance in the hopes
the client can batch the OT sender messages it has to compute. Unfortunately, while the server has
to compute N OT sender messages with a first selection bit, then N/2 OT sender messages with
a second, and so on, the messages at each layer are crafted adaptively and therefore cannot be batched.

Now consider the setting where the server holds a batch of k databases. If the sender is to compress
each database down to a single bit using the “Merkle tree” approach, it has to compute N/2d OT
sender messages for each layer of d = 1, . . . , n of each of the k Merkle trees. While messages across
layers cannot be batched, OTs from the same layer of different trees can! The main challenge is that
we can only afford (in order to keep communication low) to use a single batched receiver message in
order to compute all of the sender messages. This requires a special assumption on the queries, which
need to be highly correlated for this approach to work. We will be interested in how many times a
given αi appears within the k queries (counted by the occurrence function ti below), as well as how
many times it appears in specific position j′ ∈ [n] within the k queries (denoted below by ti,j′). If all
ti,j′ are bounded by T , then for each level j′ ∈ [n] in the “Merkle forest” we can achieve the desired
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length-halving compression by using at most T batch OT sender computations on the original batch
OT selection vector ~α.

Definition 12 (“Mix and Match” Functions). A “mix and match” function
MixAndMatch : {0, 1}w → [N ]k is one parameterised by k ordered subsets of n := logN elements of
[w], Sj = (sj,1, . . . , sj,n) ∈ [w]n for j ∈ [k] such that:

∀~α = (α1, . . . , αw) ∈ {0, 1}w,MixAndMatch(α1, . . . , αw) := (x1, . . . , xk),

with xj := αsj,1 · · ·αsj,n ∈ [N ].

Such a function is associated with an occurrence function, which counts the occurrences of each input
position in the outputs:

t· : [w]→ [k]

i 7→ ti =
k∑
j=1

1i∈Sj

Each ti (i ∈ [w]) can be decomposed as ti = ti,1+ · · ·+ ti,n, where ti,j′ is equal to the number of values
of j ∈ [k] such that sj,j′ = i.

– MixAndMatch is said to be T -balanced if ∀i ∈ [w],∀j′ ∈ [n], ti,j′ ≤ T .
– MixAndMatch is said to be T -balanceable if it can be expressed as the function MixAndMatch =

(MixAndMatch′ ◦ replicate), where MixAndMatch : {0, 1}w′ → [N ]k is a T -balanced mix-and-match
function and replicate is defined as:

replicate : {0, 1}w → {0, 1}w′

(b1, . . . , bw) 7→ (b
‖dt1/Te
1 ‖ . . . ‖b‖dtw/Tew )

where w′ :=
∑
i∈[w]

dti/T e.

Lemma 13. Let w, n ∈ N be a sufficiently large integers. For any family of unordered subsets
S1, . . . , Sk ∈

(
[w]
n

)
there exists an ordering of each subset Sj such that the mix-and-match function

induced by the resulting (S̃j)j∈[k] is polylog(w)-balanceable.
Furthermore, such orderings can be found in expected constant time.

Proof. Let us prove, via a Chernoff bound, that reordering (after replication) each subset inde-
pendently and uniformly at random, yields a polylog(w)-balanced mix-and-match function with
high probability. It follows that any family of subsets characterises a T balanceable mix-and-match
function.

Preliminary Notations. Let S1 = {s1,1, . . . , s1,n}, . . . , Sk = {sk,1, . . . , sk,n} ∈
(
[w]
n

)
be a family of

unordered sets, and consider the associated occurrence function, which counts the occurrences of
each input position in each subset:

t· : [w]→ [k]

i 7→ ti =
k∑
j=1

1i∈Sj

Define w′ :=
∑
i∈[w]dti/T e.

Analysis of Randomized Construction. Consider the i.i.d. random variables π1, . . . , πk ←↩ U(Sw′)
(where U(S[w′]) is the uniform distribution on all permutations of [w′]). Define the random variables
S̃1, . . . S̃k as the following deterministic functions of the random variables π1, . . . , πk: for each j ∈ [k],
S̃j := (sj,πj(1), . . . , sj,πj(w′)). Finally, define the indicator random variables (ti,j,d)i∈[w′],j∈[k],d∈[n] as
the following deterministic functions of the (πj)j∈[k]: for each i ∈ [w′], j ∈ [k], d ∈ [n], ti,j,d := 1i==sj,d .

Observe that the event “S̃1, . . . S̃k characterizes a T -balanced mix-and-match function” (for any T ) is
equivalent to the event “∀d ∈ [n],∀i ∈ [w′],

∑
j∈k ti,j,d ≤ T ”. Since the (πj)j∈[k] are independent, so

are the (ti,j,d)j∈[k],i∈[w′] for any fixed d ∈ [k]. Further note that ∀d ∈ [k], µd := E(
∑
j∈k,i∈[w′] ti,j,d) =∑

j∈k,i∈[w′] E(ti,j,d) = k ·
∑
i∈[w] ti

d . Therefore, by a Chernoff bound9, for every d ∈ [n], Pr(
∑
j∈k ti,j,d >

T ) < 1/λω(1). By union-bound, Pr[∀d ∈ [n],∀i ∈ [w′],
∑
j∈k ti,j,d ≤ T ] ≤ n · w′/λω(1) = 1/λω(1).

9 Specifically, we are using the Chernoff bound in the form which is standardly denoted “Pr[X > (1+ δ)µ] <
exp(−δ2µ(2 + δ))”.
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Definition 14 (Two-Round Batch Computational Batch SPIR with Correlated “Mix and
Match” Queries). A semi-honest two-round batch SPIR protocol with correlated “mix and match”
queries between a sender and a receiver can be defined as a triple of PPT algorithms corrSPIR =
(corrSPIRR, corrSPIRS , corrSPIRD) parameterised by a public T -balanceable “mix and match” function
(definition 12) MixAndMatch : {0, 1}w → [N ]k with the following syntax and properties:

– Syntax.
corrSPIRR : On input the security parameter 1λ and a vector of selection bits ~b = (b1, . . . , bw) ∈

{0, 1}w, corrSPIRR outputs a receiver message spirR ∈ {0, 1}O(w) and an internal
state st; without loss of generality, we assume st contains all the coins used by
corrSPIRR as well as ~b.

corrSPIRS : On input the security parameter 1λ, a receiver message spirR, and k N -bit databases
~m1, . . . , ~mk ∈ {0, 1}N , corrSPIRS outputs a sender message spirS ∈ {0, 1}O(k).

corrSPIRD : On input a sender message spirS and an internal state st, corrSPIRD outputs a vector
of messages (m̃1, . . . , m̃k) ∈ {0, 1}k.

– Correctness.

∀~b = (b1, . . . , bw) ∈ {0, 1}w,∀ ~M = (~m1, . . . , ~mk) ∈ {0, 1}N ·k,

Pr

(m̃1, . . . , m̃k) = (~m1[x1], . . . , ~mk[xk]) :

(spirR, st)
$← corrSPIRR(1

λ,~b)

spirS
$← corrSPIRS(1

λ, spirR, ~M)

(m̃1, . . . , m̃k)
$← corrSPIRD(spirS , st)

 = 1

where (x1, . . . , xk) := MixAndMatch(~b).

– Security. The following protocol, ΠcorrSPIR (fig. 5), securely realises FcorrSPIR (fig. 6) in the pres-
ence of a semi-honest adversary. The receiver computes (spirR, st)

$← corrSPIRR(1
λ,~b) and sends

spirR to the sender, who in turn computes spirS
$← corrSPIRS(1

λ, spirR, ~M) and returns spirS;
finally, the receiver computes and outputs (m̃1, . . . , m̃k)

$← corrSPIRD(spirS , st).

Receiver Sender

Input: ~b ∈ {0, 1}w Input: ~M ∈ {0, 1}N·k

(spirR, st)
$← corrSPIRR(1

λ,~b)

spirR

spirS
$← corrSPIRS(1

λ, spirR, ~M)

spirS

(m̃1, . . . , m̃k)
$← corrSPIRD(spirS , st)

Output: (m̃1, . . . , m̃k)

Fig. 5: Two-Round corrSPIR Protocol ΠcorrSPIR.

Functionality FcorrSPIR

The functionality FcorrSPIR is parameterised by the number k of SPIRs in the batch, the size N of
each database, and the number w of selection bits. Furthermore, it is parameterised by a public
T -balanceable “mix and match” function (definition 12) MixAndMatch : {0, 1}w → [N ]k. FcorrSPIR

interacts with an ideal sender S and an ideal receiver R via the following queries.

1. On input (sender, ~M = (~mi)i∈[k]) from S, with ~mi = (mi,j)j∈[N ] ∈ {0, 1}N store ~M .

20



2. On input (receiver, (bj)j∈[w]) from R, check if a tuple of inputs ~M has already been
recorded; if so, compute (x1, . . . , xk) := MixAndMatch(b1, . . . , bw) ∈ [N ]k, send (mi,xi)i∈[k]
to R, and halt.

If the functionality receives an incorrectly formatted input, it aborts.

Fig. 6: Ideal Functionality FcorrSPIR for Batch SPIR with Correlated “Mix and Match” Queries

Batch SPIR with Correlated “Mix and Match” Queries

Parameters: k, N , n := logN , w, T , a T -balanceable MixAndMatch : {0, 1}w → [N ]k

(parameterised by subsets Sj = (sj,1, . . . , sj,n) ∈ [w]n for j ∈ [k]) and an associated list of
number of occurrences (t1, . . . , tw) with ti = ti,1 + · · ·+ ti,n, a two-round batch rep-OT protocol
rep-OT = (rep-OTR, rep-OTS, rep-OTD).

corrSPIRR: On input the security parameter 1λ and a vector of selection bits ~b = (b1, . . . , bw) ∈
{0, 1}w :

1. Set ~b′ ← b
‖dt1/Te
1 ‖ . . . ‖b‖dtw/Tew .

// ~b′ is the vector whose first dt1/T e coordinates are equal to b1, followed by dt2/T e co-
ordinates equal to b2, and so on. Note that the total size of this “selection vector with
redundancies” is

∑w
i=1dti/T e.

2. Compute (spirR, st)
$← OTR(1λ,~b′), and output (spirR, st‖~b).

corrSPIRS: On input the security parameter 1λ, a receiver message spirR, and k databases
~m1, . . . , ~mk ∈ [N ]:

1. Set (DB1,1, . . . , DB1,k) := (~m1, . . . , ~mk).
// Throughout, DBd,k will correspond to the values of the dth layer of the kth Merkle tree.

2. For d = 1, . . . , n:
(a) For i = 1, . . . , w:

Set repd,i ←

{
T ‖dti,d/Te‖0‖dti/Te−dti,d/Te if T |ti,d
T ‖bti,d/Tc‖ti,d%T‖0‖dti/Te−dti,d/Te if T 6 |ti,d

(b) Set repd ← repd,1‖ . . . ‖repd,w .
// Note that repd is a vector of size

∑w
i=1dti/T e with elements in [0, T ], and such that

||repd||1 =
∑w
i=1 ti,d .

(c) Initialise Xd ← ∅ .
(d) For j = 1, . . . , k:

For x = 0, . . . , N/2d − 1:
Xd.append(((DBd,j [2x], DBd,j [2x+ 1]), sj,d, x, j)) .
// Note that Xd now contains k · N/2d elements. For each i ∈ [w], exactly
ti,d·N/2d of the form ((·, ·), ·, i, ·). Indeed, by definition, ti,d = |{j ∈ [k] : sj,d = i}|.

(e) SortXd according to the lexicographic order which first sorts by increasing fourth element
(the “j ∈ [k]”) and then, in case of equality, by increasing third element (the “x ∈
[0, N/2d − 1]”).

(f) Greedily partition Xd as Xd = Xd,1 t · · · tXd,(N/2d) such that for each ` ∈ [N/2d] and
each i ∈ [w], Xd,` contains (up to) ti,d elements of the form ((·, ·), i, ·, ·); “greedily” is here
taken to mean that the first ti,d elements of the form ((·, ·), i, ·, ·) are placed in Xd,1, the
next ti,d in Xd,2, and so on.
// Note that each Xd,` can contain up to ti,d elements of the form ((·, ·), i, ·, ·), of which
there are a total of (N/2d) · ti,d. Therefore Xd can indeed be decomposed into (N/2d)
such partitions.
// Further note that each Xd,` (` ∈ [N/2d]) is a set of size

∑w
i=1 t

′
i .

(g) For ` = 1, . . . , N/2d:
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– Sort Xd,` according to the second element in increasing order, breaking ties with the
fourth, and then if necessary the third element of the 4-tuples.
// After this re-ordering, the first t1 tuples are of the form ((·, ·), 1, ·, ·), followed by
t2 tuples of the form ((·, ·), 2, ·, ·), and so on.

– Set DB′d,` ← (Sd,`[0].first, . . . , Sd,`[(
∑w
i=1 ti,d)− 1].first) ∈ {0, 1}2|Sd,`|.

// DB′d,` is obtained by only considering the first of the four entries (which is a pair
of bits from some DBd,j) of every element of Xd,`.

– Set (ots?d,`, ots
dec
d,`)

$← rep-OTS(1λ, spirR, DB
′
d,`, repd) .

(h) If d < n:
– For j = 1, . . . , k:

Initialise DBd+1,j ← 0‖N/2
d

.
– For ` = 1, . . . , N/2d:

For `′ = 0, . . . , (
∑w
i=1 ti,d)− 1:

Parse Xd,`[`
′] as ((·, ·), ·, x, j), with x ∈ [N/2d] and j ∈ [k].

Set DBd+1,j [x]← otsdecd,` [`
′] .

(i) Set ots?d ← (ots?d,1, . . . , ots
?
d,N/2d) .

3. Set spirS := ((ots?1, . . . , ots
?
n), ots

dec
n ), and output spirS .

corrSPIRD: On input a sender message spirS and an internal state st:

1. Parse spirS as spirS = ((ots?1, . . . , ots
?
n), ots

dec
n ), and parse st as st′‖~b .

2. Set (y1, . . . , yk)← MixAndMatch(~b) (i.e. yj ← bsj,1 . . . bsj,n for j ∈ [n]).
3. Initialise (m̃1, . . . , m̃k)← otsdecn .
4. For d = 1, . . . , n :

// The goal of this step is to identify which intermediary nodes of the Merkle tree can be
recovered.
(a) Initialise Xd ← ((⊥, sj,d, x, j))j∈[k],x∈[0,N/2d−1]
(b) SortXd according to the lexicographic order which first sorts by increasing fourth element

(the “j ∈ [k]”) and then, in case of equality, by increasing third element (the “x ∈
[0, N/2d − 1]”).

(c) Greedily partition Xd as Xd = Xd,1 t · · · t Xd,N/2d such that for each ` ∈ [N/2d] and
each i ∈ [w], Xd,` contains exactly ti,d elements of the form (·, i, ·, ·); “greedily” is here
taken to mean that the first ti,d elements of the form (·, i, ·, ·) are placed in Xd,1, the
next ti,d in Xd,2, and so on.

(d) For ` = 1, . . . , N/2d:
Sort Xd,` according to the second element in increasing order, breaking ties with the
fourth, and then if necessary the third element of the 4-tuples.

(e) Parse ots?d as ots?d = (ots?d,1, . . . , ots
?
d,N/2d)

(f) For j = 1, . . . , k:
– Set `j,d to be the unique ` ∈ [N/2d] such that (⊥, sj,d, (bsj,n . . . bsj,d), j) ∈ Xd,` .
– Set indj,d to be the index of (⊥, sj,d, (bsj,n . . . bsj,d), j) in Xd,` .
– Update m̃j ← rep-OTD({indj,d}, (ots?d,`j,d , m̃j), rep, st)

5. Output (m̃1, . . . , m̃k) .

Fig. 7: corrSPIR from rep-OT.

Theorem 15. Assume that rep-OT is a semi-honest two-round decomposable batch OT protocol with
α(·)-overhead and T -bounded query repetitions. Then construction (corrSPIRR, corrSPIRS , corrSPIRD)
from fig. 7 is a two-round batch SPIR protocol with correlated “mix and match” queries. Furthermore
the size of the receiver message is linear in w + k · n/T and the size of the sender message is upper
bounded by k + (logN) · (N − 1) · α(w + k · n/T ) (where k is the batch number and N is the size of
each of the k databases).

Proof.

– Size: The receiver message is a rep-OT receiver message with
∑w
i=1dti/T e ≤

∑w
i=1(1 + ti/T ) ≤

w+(
∑w
i=1 ti)/T = w+ k ·n/T selection bits Since rep-OT has upload rate asymptotically one by
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definition, the receiver message is indeed linear in w + k · n/T . The sender message is comprised
a single bit per database, as well as

∑n
d=1N/2

d = N − 1 different “reusable parts” of size α(w +
k · n/T ). The sender message is therefore of size k + (logN) · (N − 1) · α(w + k · n/T ).

– Correctness: Correctness mostly follows from inspection, keeping in mind the following descrip-
tion of the instructions (alongside the comments in the pseudocode). Let d ∈ [n]. The pair
(DBd,j [x′0], DBd,j [x

′
1]) corresponds to a pair of elements of DBd,j whose indices only differ in bit sj,d,

wish we wish to “hash” down to a single bit using rate-1 OT. Because we only have access to a
batched version the OT primitive, the pair will need to be batched with others (in fact, taken from
different databases) in such a way that it corresponds to the sthj,d selection bit. We therefore tag
the pair with sj,d. Furthermore, we will need to place the “hashed value” (which can be extracted
by sender-message decomposability of the batched OT) thus obtained at the correct place in the
Merkle tree, i.e. in the next level database. For this reason, we additionally tag the pair with
(x, j), so as to remember whence it came, and be able to deduce where it should be placed.

– Security (Standalone Simulation): We need to show that ΠcorrSPIR from fig. 5, when instantiated
with corrSPIR = (corrSPIRR, corrSPIRS , corrSPIRD) as defined in fig. 7 securely computes the
functionality f((~mi)i∈[k], ~b) = (⊥, (~mi[xi])i∈[k]) where (x1, . . . , xk) := MixAndMatch(~b) in the
presence of static semi-honest adversaries.
• Corrupted Sender and Honest Receiver. Because the functionality is deterministic, it suffices

to show that there exist a PPT simulator SimcorrSPIR
S such that:

{viewΠcorrSPIR

S (1λ, (~mi)i∈[k],~b)}
c
≈ {SimcorrSPIR

S (1λ, (~mi)i∈[k],⊥)} .

The sender’s view in ΠcorrSPIR consists of its input, internal random tape, and the messages
it receives from the receiver. Note that the sender receives a single message, before it sends
anything, and therefore its view can be split into two independent parts: the input and coins
on one side, and the incoming transcript on the other. Therefore it suffices to show that
we can simulate the incoming message given the security parameter and the sender’s input.
Since rep-OT is secure against a semi-honest sender, by definition there exists an expected
polynomial time simulator Simrep

S such that for every λ ∈ N? and every ~b = (b1, . . . , bk) ∈
{0, 1}k, and if further we define ~b′ ← b

‖dt1/Te
1 ‖ . . . ‖b‖dtw/Tew ,{

otr : (otr, st)
$← rep-OTR(1λ,~b′)

}
c
≈
{
Simrep

S (1λ)
}
.

Since the left hand side is exactly the distribution of the unique message received by the
sender, it follows that the view of a semi-honest sender can be simulated.

• Corrupted Receiver and Honest Sender. Because the functionality is deterministic, it suffices
to show that there exists a PPT simulator SimcorrSPIR

R such that:

{viewΠcorrSPIR

R (1λ, (~mj)j∈[k],~b)}
c
≈ {SimcorrSPIR

R (1λ,~b, (~mj [xj ])j∈[k])},

where (x1, . . . , xk) := MixAndMatch(~b) .

Note that the view of the corrupted receiver in ΠcorrSPIR consists of its input (the vector of
selection bits ~b), its internal coins, and the single message spirS it receives from the sender.
Consider the simulator SimcorrSPIR

R which acts as follows:
1. SimcorrSPIR

R starts by running the protocol as the receiver would, sampling random coins
~rR and crafting spirR ← corrSPIRR(1

λ,~b;~rR);
2. SimcorrSPIR

R builds k databases ~m′1, . . . , ~m′k of size N each, containing 0 everywhere except
for one position each: the jth database has ~m[xj ] in position xj (recall that with the
knowledge of ~b, SimcorrSPIR

R is able to compute (x1, . . . , xk) = MixAndMatch(~b));
3. SimcorrSPIR

R runs spirS
$← corrSPIRR(1

λ, spirR, (~m
′
j)j∈[k]).

4. SimcorrSPIR
R outputs (~rR,~b, spirS).

In other words, SimcorrSPIR
R runs in its head an instance of the protocol of fig. 5, but replacing

all of the unknown values (i.e. all except the (~mj [xj ])j∈[k]) in the databases (~mj)j∈[k] with
zeroes.
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We will now prove that the view of the corrupted receiver in ΠcorrSPIR is indistinguishable
from the output of the above simulator SimcorrSPIR

R via a hybrid argument.

For j ∈ [k] and d ∈ [n], let Yj,d := {x = x1 . . . xn
(2) ∈ [N ] : (∀d′ < d, xd′ = bsj,d′ )∧(xd 6= bsj,d)}

(in other words, Yj,d is the set of all elements of [N ] whose first d−1 digits in base two, but not
the dth, are the same as those of bsj,1 . . . bsj,d

(2)
). Observe that for each j ∈ [k], the (Yj,d)d∈[n]

form a partition of [N ] \ {bsj,1 . . . bsj,d
(2)}. Now, for d ∈ [n] consider the simulator SimcorrSPIR

R,d

which acts as follows:
1. SimcorrSPIR

R,d starts by running the protocol as the receiver would, sampling random coins
~rR and crafting spirR ← corrSPIRR(1

λ,~b;~rR);
2. SimcorrSPIR

R,d builds k databases ~m′1, . . . , ~m′k of size N each, as follows:

∀j ∈ [k],∀x ∈ [N ], ~m′j [x] :=

{
~mj [x] if x ∈ Yj,d
0 otherwise

(recall that with the knowledge of ~b, SimcorrSPIR
R,d is able to compute (x1, . . . , xk) =

MixAndMatch(~b), and therefore also Yj,d);
3. SimcorrSPIR

R,d runs spirS
$← corrSPIRR(1

λ, spirR, (~m
′
j)j∈[k]).

4. SimcorrSPIR
R,d outputs (~rR,~b, spirS).

In other words, SimcorrSPIR
R,d runs in its head an instance of the protocol of fig. 5, but replacing

all of the unknown values (i.e. all except the (~mj [xj ])j∈Yj,d) in the databases (~mj)j∈[k] with
zeroes.
Observe that for all j ∈ [k] we have that Yj,1 = [N ] and Yj,n = {xj}, and that SimcorrSPIR

R,1

perfectly simulates the real world, while SimcorrSPIR
R,n = SimcorrSPIR

R lives in the ideal world. For
j ∈ [1, n− 1], indistinguishability of the distributions of outputs of SimcorrSPIR

R,j and SimcorrSPIR
R,j+1

holds by invoking sender security of rep-OT k times.

4.5 Sublinear Computation of log log-Depth Circuits from corrSPIR

In this section theorem 16 shows how to build sublinear secure computation for shallow (roughly
log log-depth) circuits from corrSPIR, with an explicit protocol provided in fig. 8. Main theorem 1
combines all of the previous theorems and shows that sublinear secure computation for shallow circuits
can be based on QR+ LPN.

Protocol Π2PC

Functionality:

– Parameters: C : {0, 1}n → {0, 1}m is a boolean circuit of depth k. For j ∈ [m], Sj =
{sj,1, . . . , sj,2k} is the subseta of the inputs on which depends the jth output of f , and
for i ∈ [n] we denote ti the number of outputs of C on which the ith variable depends.
(πj)j∈[m] ∈ (S2k)

m is a family of m permutations on [2k], such that the following is a
(T = polylog(n))-balanced “mix and match” function:

MixAndMatchC : {0, 1}w → [2k]m

(x1, . . . , xw) 7→ (xsj,πj(1)‖ . . . ‖xsj,πj(2k)
)j∈[m]

– Inputs: Parties P0 and P1 hold additive shares (~x0, ~x1) of an input ~x ∈ {0, 1}n.
– Outputs: The parties output C(~x).
– Requires: corrSPIR = (corrSPIRR, corrSPIRS , corrSPIRD) is a two-round batch SPIR proto-

col with correlated “mix and match” queries.

Protocol:
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1. P0 samples ~y0
$← {0, 1}m and for j ∈ [m] sets DBj ∈ {0, 1}2

2k

to be the truth table of the
following function:

gj : {0, 1}2k → {0, 1}
(X1, . . . , X2k) 7→ Cj((Xπj(1) ⊕ ~x0[πj(1)]‖ . . . ‖Xπj(2k) ⊕ ~x0[πj(2k)]))⊕ ~y0[j]

where Cj is the jth output of C.

2. P1 sets ~x′1 ← (~x1[1])
‖dt′1/Te‖ . . . ‖b‖dt

′
w/Te

w .
// ~b′ is the vector whose first dt′1/T e coordinates are equal to b1, followed by dt′2/T e co-
ordinates equal to b2, and so on. Note that the total size of this “selection vector with
redundancies” is

∑w
i=1dt′i/T e.

3. P1 samples (spirR, st)
$← corrSPIRR(1

λ, ~x1) and sends spirR to P0.
4. P0 samples spirS

$← corrSPIRS(1
λ, spirR, (DBj)j∈[m]) and sends (spirS , ~y0) to P1.

5. P1 recovers ~y1 ← corrSPIRD(spirS , st).
6. P1 sets ~y ← ~y0 ⊕ ~y1, and sends ~y to P0.
7. Each party Pσ outputs ~y.
a Because C has depth k and each of its gate has fan-in at most 2, each output value only depends on
at most 2k inputs. Without loss of generality we can assume each output depends on exactly 2k (by
allowing for trivial “dependencies”).

Fig. 8: Secure Computation of Low-Depth Circuits from corrSPIR

Theorem 16. If corrSPIR is a two-round batch SPIR protocol with correlated “mix and match” queries,
then Π2PC from fig. 8 securely computes the randomized functionality (~x0, ~x1) 7→ {(~r, C(~x0 ⊕ ~x1) ⊕
~r) : ~r

$← {0, 1}m} in the presence of a semi-honest adversary corrupting (at most) one of the two
parties.

Proof. First note that by lemma 13, there indeed exists a family of permutations (πj)j∈[k] such
as the one required by Π2PC (and that such a family can be found in expected constant time by
simply sampling random permutations and testing for the “T -balanced” property). Therefore the
protocol is well-defined. Correctness follows from correctness of corrSPIR, with the observation that
if (α1, . . . , αk) := MixAndMatchC(~x1) then by construction DBj [αj ] = Cj(~x1 ⊕ ~x0) ⊕ ~y0[j]. It follows
that (DB1[α1], . . . , DBm[αm])⊕ ~y0 = C(~x1 ⊕ ~x0). Π2PC essentially consists in a single call to ΠcorrSPIR,
and security follows from the security of corrSPIR via a standard hybrid argument.

Our first main theorem follows from the combination of theorem 9 (which instantiates dec-OT from
QR+LPN), lemma 11 (which provides a construction of rep-OT from dec-OT), theorem 15 (which pro-
vides a construction of corrSPIR from rep-OT), and theorem 16 (which provides a secure computation
protocol from corrSPIR).

Main Theorem 1 (Sublinear Secure Computation from QR + LPN). Assume the QR assumption
and the binary LPN assumption LPN(dim, num, ρ) with dimension dim = poly(λ), number of samples
num = (n + m)1/3 · poly(λ), and noise rate ρ = numε−1 (for some constant ε < 1). Then for any
n-input m-output boolean circuit C of size s and depth k, there is a two-party protocol for securely
computing C using only O(n+m+ 2k+2k · polylog(n) · poly(λ) · ((n+m)2/3 + (n+m)(1+2ε)/3)) bits
of communication, and computation poly(λ, 22

k

).

The numbers are obtained by setting dim = poly(λ), ` = (n + m)1/3, and num = `2 · dim in the
statement of Theorem 9. The polylog(n) term stems from the bounded query repetition property
(Section 4.4) and the 22

k+k stems from the fact that the batch computational SPIR does, in essence,
apply ≈ 22

k

instances of the sender OT function in each interative compression step, and there are
2k such steps. For example, absorbing the polylog(n) term in the poly(λ) term and setting ε = 1/2,
and k = (log log s)/4 (implying 2k+2k �

√
s), we get corollary 17:
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Corollary 17 (Sublinear Secure Computation of log log-Depth Circuits). Assume the QR
assumption and the binary LPN assumption LPN(dim, num, ρ) with dimension dim = poly(λ), number
of samples num = (n+m)1/3 · poly(λ), and noise rate ρ = num−1/2. Then for any n-input m-output
boolean circuit C of polynomial size s and depth log log s/4, there is a two-party protocol for securely
computing C using only O(n+m+

√
s · poly(λ) · (n+m)2/3) bits of communication, and polynomial

computation.

4.6 Extension to Layered Circuits

Layered circuits are boolean circuits whose gates can be arranged into layers such that any wire
connects adjacent layers. It is well-known from previous works [BGI16,Cou19,CM21] that sublinear
protocols for low-depth circuits translate to sublinear protocols for general layered circuits: the parties
simply cut the layered circuit into low-depth “chunks”, and securely evaluate it chunk-by-chunk. For
each chunk, a sublinear secure protocol is invoked to compute the low-depth function which maps
shares of the values on the first layer to shares of the values on the first layer of the next chunk. In
particular, we get as a corollary from Theorem 1:

Corollary 18 (Sublinear Secure Computation of Layered Circuits). Assume the QR or DDH
assumption. Then for any n-input m-output layered boolean circuit C of polynomial size s and depth
d, and any k, assuming the binary LPN assumption LPN(dim, num, ρ) with dimension dim = poly(λ),
number of samples num = ((s/d)2/22

k

)1/3 · poly(λ), and noise rate ρ = num−1/2, there is a two-party
protocol for securely computing C using communication

O
(
n+m+

d

k
·
(
22
k

· s
d

)2/3
· poly(λ) + s

k

)
,

and computation poly(λ, 22
k

).

In the above corollary, “layered” refers to layered circuits whose inputs are on the first layer; this type
of layered circuit is sometimes called synchronous in the literature. Furthermore, the corollary also
uses a slightly optimized choice of parameters (compared to a naive application of Theorem 1): we
set ` such that `2 = 22

k+k · num and num = ((s/d)2/22
k

)1/3 · poly(λ) in the statement of Theorem 9.
The above leads to a sublinear secure computation protocol for layered circuit whenever the circuit
is not too “tall and skinny”, i.e., d is not too close to s. For example:

Corollary 19 (s/ log log s-Secure Computation of Layered Circuits). Assume the QR or DDH
assumption. Then for any n-input m-output layered boolean circuit C of polynomial size s and depth
d, for any constant ε ∈ (0, 1), assuming the binary LPN assumption LPN(dim, num, ρ) with dimension
dim = poly(λ), number of samples num = ((s/d)2/sε)1/3 · poly(λ), and noise rate ρ = num−1/2, there
is a two-party protocol for securely computing C using communication

O
(
n+m+ d1/3 · s2(1+ε)/3 · poly(λ) + s

log log s

)
,

and computation poly(λ).

The above is sublinear in s as soon as d = o(s1−ε/poly(λ)).

5 Polylogarithmic PIR from CDH

A private information retrieval is a two-party protocol between a server S holding a string z (the
database) and a client C holding an integer i, where only the client receives an output. The security
parameter λ and the length n(λ) = poly(λ) = |z| of the server database are a common (public) input.
We let ViewS(λ, z, i) denote the view of S during its interaction with C on respective inputs (z, i)
with common input (λ, n = |z|), and by OutC(λ, z, i) the output of C after the interaction.

Definition 20 (Private Information Retrieval). A private information retrieval for database
size n = n(λ) (n-PIR) is an interactive protocol between a PPT server S holding a string z ∈ {0, 1}n
and a PPT client C holding an index i ≤ n which satisfies the following properties:
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– Correctness: there exists a negligible function µ such that for every λ ∈ N, z ∈ {0, 1}n, i ∈ [n]:

Pr[OutC(λ, z, i) = zi] ≥ 1− µ(λ).
– Security: there exists a negligible function µ such that for every PPT adversary A, large enough
λ ∈ N, (i, j) ∈ [n]2, and z ∈ {0, 1}n:

|Pr[A(1λ+n,ViewS(λ, z, i)) = 1]− Pr[A(1λ+n,ViewS(λ, z, j)) = 1]| ≤ µ(λ, n).
– Efficiency: A PIR is polylogarithmic if its communication complexity c(λ, n), measured as the

worst-case number of bits exchanged between S and C (over their inputs (z, i) and their random
coins), satisfies c(λ, n) = poly(λ, log n).

Remark 21. In the above definition, the adversary runtime is allowed to depend polynomially on n,
while the parameter λ controls the strength of the cryptographic assumption upon which the protocol
relies. Therefore, whenever n = n(λ) is subexponentially large in λ, we have to assume subexponential
hardness of the underlying assumption. Furthermore, when n can be as large as 2λ, the underlying
cryptographic assumptions cannot be satisfied anymore, hence we always assume in particular that
n < 2λ. This implies that log n is always bounded above by λ, hence technically c(λ, n) = poly(λ, log n)
is always just poly(λ) (which can be equal to poly(log n) when λ is polylogarithmic in n, i.e., in the
subexponential security regime). This technicality is present in all previous works on sublinear PIR
and related primitives (including e.g. laconic PSI [ABD+21], which we will use in our construction)
and is usually ignored. In line with this, we stick to the terminology “polylogarithmic PIR” which is
standard.

In this section, we prove the following result:

Main Theorem 2. Assuming the hardness of the computational Diffie-Hellman assumption against
poly(n)-time adversaries, there exists a polylogarithmic n-PIR protocol, with polylogarithmic client
computation, and O(log n) rounds.

5.1 Laconic Private Set Intersection

Definition 22 (Laconic PSI [ABD+21]). An `PSI scheme LPSI = (Setup,R1,S,R2) is defined as
follows:
– Setup(1λ): Take as input a security parameter 1λ and outputs a common reference string crs.
– R1(crs, SR): takes as input a crs and a receiver set SR. Outputs a first PSI message psi1 and a

state st.
– S(crs, SS , psi1): takes as input a crs, a sender set SS, and a first PSI message psi1. Outputs a

second PSI message psi2.
– R2(crs, st, psi2): takes as input a crs, a state st, and a second PSI message psi2. Outputs a set X .

An `PSI protocol satisfies the following properties:
– Correctness: for every sets (SR, SS), given crs

$← Setup(1λ), (psi1, st)
$← R1(crs, SR), psi2

$←
S(crs, SS , psi1), and X

$← R2(crs, st, psi2), it holds that X = SR ∩ SS with probability 1.
– Security: the two-round protocol defined by LPSI = (Setup,R1,S,R2) implements the PSI func-

tionality given on Figure 9 in the semi-honest model.
– Efficiency: there exists a fixed polynomial poly such that both the length of psi1 and the running

time of S are bounded by poly(λ, log |SR|).

Functionality Fpsi

Parameters: The PSI functionality Fpsi is parameterised with a universe U .
Setup Phase: The functionality waits until it receives SR with SR ⊆ U from R. Ignores subse-
quent messages from R.
Send Phase: The functionality waits until it receives SS with SS ⊆ U from S. Sends SR ∩ SS
to R. Ignores subsequent messages from R.

Fig. 9: PSI functionality Fpsi
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Lemma 23 (`PSI from CDH [ABD+21]). Assuming the security of the computational Diffie-
Hellman assumption against poly(n)-time adversaries, there exists an `PSI protocol for receiver sets
of size n with statistical receiver security and computational (semi-honest) sender security.

Remark 24. Lemma 23 is a simplified version of the result of [ABD+21]: the work of [ABD+21]
actually achieves the stronger functionality of reusable PSI (where the setup phase is associated to
a session id sid, the send phase is associated to an sid and a subsession id ssid, and the functionality
can be reused indefinitely), and securely realizes this functionality in the UC model.

5.2 From Laconic PSI to Half-PIR

We define the notion of half-PIR, first introduced in [BIP18] (under the name Rand 1
2PIR). Informally,

a half-PIR behaves as a regular PIR with probability 1/2; otherwise, correctness and security might
not hold. The receiver gets notified when the scheme successfully worked as intended.

Definition 25 (Half-PIR). A half-PIR protocol is defined as an n-PIR (Definition 20) where the
correctness and security properties are modified as follows:

– Correctness: there exists a negligible function µ such that for every λ ∈ N, z ∈ {0, 1}n, i ∈ [n]:

Pr[OutC(λ, z, i) = (zi, success)] ≥ 1/2− µ(λ).

– Security: there exists a negligible function µ such that for every PPT adversary A, large enough
λ ∈ N, (i, j) ∈ [n]2, and z ∈ {0, 1}n, it holds that |pi− pj | ≤ µ(n, λ), where for an integer k ∈ [n],
pk denotes the conditional probability Pr[A(1λ+n,ViewS(λ, z, k)) = 1 | OutC(λ, z, k)2 = success].

Below, we recall the definition of pseudorandom functions (PRFs), first introduced in the seminal
work of [GGM84]. For simplicity, we restrict our attention to PRFs with key length and output
length equal to the security parameter λ.

Definition 26 (Pseudorandom function [GGM84,NR95]). A pseudorandom function with in-
put size m is syntactically defined by a function family F = {FK : {0, 1}m(λ) 7→ {0, 1}λ}λ∈N,K∈{0,1}λ ,
where the output FK(x) can be computed from (K,x) in polynomial time, and which satisfies the
following security property: for every λ ∈ N and every oracle PPT attacker A, it holds that∣∣∣Pr

K
[A(1λ)FK(·) = 1]− Pr

R
[A(1λ)R(·) = 1]

∣∣∣ ≤ negl(λ),

where K $← {0, 1}λ, and R : {0, 1}m 7→ {0, 1}λ is a truly random function. Furthermore, we say that
the PRF is T (λ)-secure if the above inequality still holds when A is additionally given 1T as input.

Protocol description. The high level intuition of the protocol is relatively simple: the client and the
server agree on a PRF key K. Then, for each entry zi of its database z, the server adds FK(i||zi)
to a set SR. Now, the client with input i will randomly pick a bit b, and use a laconic PSI protocol
(playing the role of the sender) to let the server (playing the receiver) learn whether y = FK(i||b)
belongs to SR. Eventually, the server tells the client whether the intersection size was 1 or 0. Observe
that:

– If b = zi, the server learns y, and can recover i. This corresponds to a failure of the protocol.
– If b 6= zi, however, it holds with high probability that y /∈ SR. In this case, the server only learns

that SR∩{y} = ∅, but does not learn the value of y. However, learning this information still tells
the client that b 6= zi, allowing him to recover zi.

By the above, correctness and security fail either when b = zi, which happens with probability exactly
1/2, or if a collision happens in ther database (i.e. FK(i||b) is equal to FK(j||zj) for some j 6= i).
Under the security of the PRF, the latter can be shown to happen at most with negligible probability.
The full protocol is represented in fig. 10.
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Half-PIR from Laconic PSI and PRF.

Parameters: The protocol is parameterised with a security parameter λ, and a database
size n = n(λ) ≤ 2λ · negl(λ). {FK}K∈{0,1}λ is a family of n(λ)-secure PRFs with input size
m = log n + 1. The protocol operates in the Fpsi-hybrid model, where the universe U is de-
fined as {0, 1}λ. The server holds an input string z ∈ {0, 1}n and a the client holds an index i ≤ n.

Protocol: The protocol operates in three steps.

1. The server picks a random PRF key K
$← {0, 1}λ and sends it to the client. The client

samples a uniformly random bit b $← {0, 1}, and sets y ← FK(i||b).
2. The server constructs the set SR = {FK(1||z1), · · · , FK(n||zn)}, and queries (sid, SR) to Fpsi,

playing the role of the receiver. The client constructs the set SS = {y} and queries SS to
Fpsi, playing the role of the sender. The server receives SR ∩ SS .

3. The server indicates whether SR ∩ SS is empty by sending a bit to the client. If SR ∩ SS is
empty, the client outputs (1− b, success); otherwise, the client outputs (b, fail).

Fig. 10: Half-PIR from Laconic PSI and PRF.

Security analysis. We prove that the above protocol satisfies computational correctness and perfect
security in the Fpsi-hybrid model, as defined in Definition 25. For computational correctness,

Pr[OutC(λ, z, i) = (zi, success)] ≤ Pr[SR ∩ SS is empty]
= Pr[b 6= zi ∧ FK(i||b) /∈ SR]
= (1/2) · Pr[FK(i||1− zi) /∈ {FK(j||zj)}j∈[n]],

where the last equality follows from the fact that b is an independent random bit, hence Pr[b 6= zi] =
1/2. Since i||1 − zi is not equal to any of the j||zj for j = 1 to n, the last probability is just the
probability of a PRF evaluation not colliding with n other PRF evaluations. Now, for any fixed list
of n + 1 distinct inputs (x0, · · · , xn), it holds by a straightforward union bound that Pr[R(x0) ∈
{R(x1), · · · , R(xn)}] ≤ n/2λ, where the probability is taken over the choice of a uniformly random
function R : {0, 1}m 7→ {0, 1}λ. Since n/2λ = negl(λ), it must therefore also hold that for any fixed list
of n+ 1 distinct inputs (x0, · · · , xn), Pr[FK(x0) ∈ {FK(x1), · · · , FK(xn)}] ≤ negl(λ) as well. Indeed,
assume for the sake of contradiction that this does not hold, and let us denote p this probability. We
get the following contradiction to the assumption that {FK}K is an n(λ)-secure PRF: the adversary
A has the list (x0, · · · , xn) hardcoded in its description, queries the oracle on x0 to xn, obtaining
answers y0 · · · yn, and outputs 1 if y0 ∈ {y1, · · · , yn}. It is straightforward to see that the advantage
of this adversary is (p− n/2λ)/2, which is nonnegligible whenever p is nonnegligible. Therefore,

Pr[OutC(λ, z, i) = (zi, success)] =
1

2
· (1− negl(λ)) ,

which concludes the proof of correctness. We now prove security: fix any two distinct client inputs
(i, j). Then, for any k ∈ {i, j},

Pr[A(1λ+n,ViewS(λ, z, k)) = 1 | OutC(λ, z, k)2 = success]

=Pr[A(1λ+n,K, SR ∩ SS) = 1 | OutC(λ, z, k)2 = success]

=Pr[A(1λ+n,K,∅) = 1 | OutC(λ, z, k)2 = success],

since the client output success only when learning that SR ∩ SS = ∅. Since (K,∅) is independent of
k, we therefore have

pi = Pr[A(1λ+n,K,∅) = 1 | OutC(λ, z, i)2 = success]

=Pr[A(1λ+n,K,∅) = 1 | OutC(λ, z, j)2 = success] = pj ,

hence |pi − pj | = 0. This concludes the analysis.
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Instantiating the functionalities. Pseudorandom functions can be constructed from one-way func-
tions [GGM84]. Instantiating the functionality Fpsi with the CDH-based laconic PSI protocol
of [ABD+21] involves communication and client computation poly(λ, log |SR|) = poly(λ, log n) (since
|SR| = n). Summing up, we have:

Lemma 27. Assuming the hardness of the computational Diffie-Hellman assumption against poly(n)-
time adversaries, there exists a (constant-round) polylogarithmic half-PIR protocol for databases of
size n (where the client computation is also polylogarithmic).

5.3 From Polylogarithmic Half-PIR to Polylogarithmic PIR

We now describe a simple generic transformation from Half-PIR to PIR.

Random-index PIR. First, we recall the definition of random-index PIR from [GHM+21]:

Definition 28 (Random-Index PIR). A random-index PIR for database of size n is a two-party
protocol between a server and a client which implements the random-index PIR functionality given
on Figure 11 in the semi-honest model.

Functionality Frpir

Parameters: The functionality is parameterised with a database size n.
Server Message: The functionality waits until it receives z ∈ {0, 1}n from the server.
Output: If the client is honest, sample i $← [n] and output (i, zi) to the client. Otherwise, output
z to the client.

Fig. 11: Random-index PIR functionality Frpir.

Interestingly, random-index PIR was recently shown to imply full-fledged PIR, with only a logarithmic
(in n) blowup in communication and rounds, in [GHM+21]:

Lemma 29. If there exists a random-index PIR protocol for databases of size n with communication
complexity c(λ, n) and round complexity r(λ, n), then there exists an n-PIR protocol with communi-
cation complexity O(c(λ, n) · log n) and round complexity O(r(λ, n) · log n).

The elegant construction proceeds recursively: the client with input i and the server with input z first
execute a random-index PIR, where the client receices (i∗, zi∗). Then, the client sends α← i⊕ i∗ to
the server. The server divides z into n/2 (unordered) pairs {zj , zj⊕α}, and computes for each pair the
value z′{j,j⊕α} = zj ⊕ zj⊕α. Note that |z′| = n/2. Furthermore, the client knows zi∗ = zi⊕α; therefore,
given z′{i,i⊕α}, the client can retrieve zi as z′{i,i⊕α} ⊕ zi∗ . The server updates its input to z′ and the
client updates its input to be the index i′ of the pair {i, i⊕α}. The above procedure reduces the task
of performing an n-PIR to that of performing an n/2-PIR, using a single invocation of a random-index
PIR, and an additional client-to-server message of length log n. After a logarithmic number of such
steps, the database size |z| is reduced to O(1), and can be sent directly to the client with constant
communication. We refer to [GHM+21] for a formal proof of Lemma 29.

From half-PIR to random-index PIR. By the above, constructing PIR from half-PIR is reduced to
constructing random-index PIR from half-PIR. The latter, however, is straightforward: the client and
the server can simply execute a half-PIR, where the client picks its input uniformly at random. At
the end of the protocol, if the client receives fail, both parties simply restart the protocol. By the
correctness of the half-PIR, a successful execution will happen after an expected O(1) number of
restarts. Below, we describe a slight variant of this where the client runs λ half-PIRs in parallel, and
outputs the lexicographically first successful output.
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Random-Index PIR from Half-PIR.

Parameters: The protocol is parameterised with a security parameter λ, and a database
size n = n(λ) ≤ 2λ ·negl(λ). The server holds an input string z ∈ {0, 1}n; the client has no input.

Protocol: The client samples λ uniformly random integers (i1, · · · , iλ) $← [n]λ. The client and
the server run in parallel λ instances of a half-PIR protocol with respective client inputs ij and
server input z. The client receives outputs OutC(λ, z, ij).

Output: The client sets j∗ to be the lexicographically first j such that OutC(λ, z, ij) =
(zj , success) for some bit zj . The client outputs (zj∗ , success). If there is no such j, the client
outputs ⊥ instead.

The security analysis of the protocol is straightforward: if the client is corrupted, the simulator Sim
queries Frpir on its behalf, gets the full server input z, and emulates the server honestly. If the server
is corrupted, Sim gets (i, zi) from the functionality, picks (i1, · · · , iλ) $← [n]λ, and emulates honestly
the client in λ parallel runs of the half-PIR protocol. Then, it outputs (i, zi).
Assume that one of the runs is successful, and let j∗ be the lexicographically first such run. By the se-
curity of the half-PIR, the views of the server in this run with client input i or j∗ are indistinguishable.
Since i is uniformly random by the functionality of Frpir, the simulation is therefore indistinguishable
from an honest run of the protocol. If no run is successful, however, the simulation fails. However,
since a run is successful with probability at least 1/2 − negl(λ) by the correctness of half-PIR, the
probability of this event is (1/2 + negl(λ))λ, which is negligible. This concludes the analysis.
Combining this protocol with Lemma 29, we get:

Lemma 30. If there exists a half-PIR protocol for databases of size n with communication complex-
ity c(λ, n) and round complexity r(λ, n), then there exists an n-PIR protocol with communication
complexity O(λ · c(λ, n) · log n) and round complexity O(r(λ, n) · log n).

Remark 31. The work of [BIP18] also showed that sublinear half-PIR implies sublinear PIR. However,
the end result was much weaker: their result showed that polylogarithmic half-PIR implies slightly
sublinear (i.e., O(n/poly(log n))) n-PIR, using much more involved tools, namely, query-efficient
locally decodable codes. Our simple reduction, combined with the result of [GHM+21], strongly
strengthens their result, which has independent applications to the study of the limits of practical
sublinear secure computation.

Putting together Lemmata 27 and 30 finishes the proof of Theorem 2.
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A Rate-1 Batch OT Construction, Adapted from [BBDP22]

For completeness, we provide a full description of the 2-round rate-1 batch OT construction
from [BBDP22, Section 7], which we cast as decomposable. Their construction is centered around
packed linearly homomorphic encryption, whose definition we recall in definition 32. Our contribu-
tion is to observe that if this packed LHE satisfies an additional property of “shrunken ciphertext
decomposability”, which we define in definition 33 and show in lemma 35 to be a property held by
many concrete instantiations, then this two-round batch oblivious transfer is in fact decomposable.

A.1 Decomposable Packed Linearly Homomorphic Encryption

We recall in definition 32 the definition of packed linearly homomorphic encryption, and introduce in
definition 33 the notion of decomposability for such an encryption scheme.

Definition 32 ((Packed) Linearly Homomorphic Encryption, [BBDP22]). A packed lin-
early homomorphic encryption (LHE) scheme LHE over a finite group G is a tuple of p.p.t. algorithms
LHE = (LHE .KeyGen,LHE .Enc,LHE .Shrink,LHE .DecShrink) with the following syntax and properties:

– KeyGen(1λ, k): On input a security parameter 1λ and a plaintext length k ∈ N?, KeyGen outputs
a public key pk and a secret key sk. The size of the public key output by KeyGen(1λ, k) is bounded
by k · poly(λ).

– Enc(pk, ~m = (m1, . . . ,mk)): On input a public key pk and a message ~m = (m1, . . . ,mk) ∈ Gk,
Enc outputs a ciphertext ct.

– Eval(pk, f, (ct1, . . . , ct`)): On input a public key pk, a linear function f : (Gk)` → Gk, and a batch
of ` ciphertexts (ct1, . . . , ct`), Eval outputs a ciphertext c̃t.

– Shrink(pk, ct): On input a public key pk and a ciphertext ct, Shrink outputs a shrunken ciphertext
ct′.

– DecShrink(sk, ct): On input a secret key sk and a shrunken ciphertext ct, DecShrink outputs a
message ~m.

– Correctness. For any ` ∈ N, any messages ~m1, . . . , ~m` ∈ Gk, and any linear function f : (Gk)` →
Gk,

Pr

f(~m1, . . . , ~m`) = m̃ :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, ~mi) for i ∈ [`]

c̃t
$← Eval&Shrink(pk, f, (ct1, . . . , ct`))

m̃
$← DecShrink(sk, c̃t)

 = 1

where Eval&Shrink is an additional algorithm defined for convenience: On input a public key
pk, a linear function f , and a batch of ` ciphertexts (ct1, . . . , ct`), Eval&Shrink runs c̃t

$←
Shrink(pk,Eval(pk, f, (ct1, . . . , ct`))) and outputs the ciphertext c̃t.

– Semantic Security. For all λ ∈ N, k = poly(λ), and p.p.t. adversaries A = (A0,A1),

Pr

b′ = b :

(pk, sk)
$← KeyGen(1λ, k)

(~m0, ~m1, st)
$← A0(pk)

b
$← {0, 1}

ct
$← Enc(pk, ~mb)

b′
$← A1(st, ct)

 ≤ negl(λ) .

– Compactness.
• For sufficiently large k ∈ N, any (pk, sk) ∈ Supp(KeyGen(1λ, k)), the size of the public key,

i.e. |pk|, is upper bounded by k · poly(n).
• Rate-1. For sufficiently large k ∈ N, any linear function f : (Gk)` → Gk, and any
(~m1, . . . , ~m`) ∈ (Gk)`, for all (pk, sk) ∈ Supp(KeyGen(1λ, k)) and cti ∈ Supp(Enc(pk, ~mi)), i ∈
[`]:

|Eval&Shrink(pk, f, (ct1, . . . , ct`))| = |f(~m1, . . . , ~m`)| · (1 + o(1)) = (k · log |G|) · (1 + o(1)) .

When convenient, we will parse a rate-1 shrunken ciphertext as ct = (ct0, ct1), where |ct0| =
o(k) and |ct1| = k.
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– Function Privacy. There exists a simulator Simfn-priv
LHE such that for all messages (~m1, . . . , ~m`) ∈

(Gk)` and all linear functions f : (Gk)` → Gk, for all adversaries A,∣∣∣∣∣∣∣∣∣Pr
b = 1 :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, ~mi) for i ∈ [`]

c̃t
$← Eval&Shrink(pk, f, (cti)i∈[`])

b
$← A(pk, sk, c̃t)

− Pr

b = 1 :

(pk, sk)
$← KeyGen(1λ, k)

c̃t
$← Simfn-priv

LHE (pk, f((~mi)i∈[`]))

b
$← A(pk, sk, c̃t)


∣∣∣∣∣∣∣∣∣ ≤ negl(λ) .

In other words, since Simfn-priv
LHE does not use the function f to compute c̃t, no non-trivial informa-

tion about it is leaked from c̃t.

Informally, a packed LHE scheme is decomposable if, given the secret key and a shrunken ciphertext
(which has size k+ o(k)) missing some or all of the last k bits (note that the set of erased positions is
assumed to be known), there is a way to recover the corresponding subset of the (homomorphically
evaluated) plaintext vector but no information about the rest of the plaintext. Note that if any bit of
the shrunken ciphertext is dropped other than the last k, then there is no correctness guarantee on
recovering any information about the plaintext. We formalise this notion in definition 33.

Definition 33 (Decomposable Linearly Homomorphic Encryption, LHE).
A packed linearly homomorphic encryption (LHE) scheme (definition 32) LHE =
(LHE .KeyGen,LHE .Enc,LHE .Shrink,LHE .DecShrink) over a finite group G is said to be decom-
posable if there exists a probabilistic polynomial time partial decryption algorithm LHE .pDecShrink
with the following syntax and properties:

– Decomposability – Syntax. On input a batch subset S ⊆ [k], a secret key sk, a partial shrunken
ciphertext c̃ = (c̃0, c̃1) where |c̃0| = o(k · log |G|) and |c̃1| = |S| · log |G|, LHE .pDecShrink outputs a
partial message m̃ ∈ G|S|.

– Decomposability – Correctness. For any ` ∈ N, any batch size k ∈ N?, any messages ~m1, . . . , ~m` ∈
Gk, any linear function f : (Gk)` → Gk, and any batch subset S ⊆ [k],

Pr

(f(~m1, . . . , ~m`))[S] = m̃ :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, ~mi) for i ∈ [`]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ct`))

m̃
$← pDecShrink(S, sk, (c̃t0, c̃t1[IS ]))

 = 1 ,

where IS :=
⋃
i∈S

[(i− 1)|G|, i|G|] .

– Decomposability – Security. There exists an expected polynomial time simulator Simdec
LHE such that

for every λ ∈ N?, any ` ∈ N, any batch size k ∈ N?, any messages ~m1, . . . , ~m` ∈ Gk, any linear
function f : (Gk)` → Gk, and any batch subset S ⊆ [k],(pk, sk, c̃t0, c̃t1[IS ]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, ~mi) for i ∈ [`]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ct`))

 c
≈

{
(pk, sk, sim0, sim1) :

(pk, sk)
$← KeyGen(1λ, k)

(sim0, sim1)
$← Simdec

LHE(1
λ, pk, k, S, f, (f(~m1, . . . , ~m`))[S])

}
,

where IS :=
⋃
i∈S

[(i− 1)|G|, i|G|] .

At a high level, function-privacy guarantees that, even given the secret key, a post-homomorphism
shrunken ciphertext does not leak the function while decomposability guarantees that dropping se-
lected parts of this ciphertext conceals information about the corresponding (post-homomorphism)
plaintext. It makes intuitive sense that these properties should be achievable simultaneously, however
this may not be clear a priori from the formalism since the simulator Simdec

LHE in definition 33 is given
as input the function. We nevertheless establish this fact in lemma 34.
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Lemma 34 (Function-Private Decomposability). If LHE = (KeyGen,Enc,Shrink,DecShrink) is
a decomposable packed linearly homomorphic encryption scheme over G, then there exists an expected
polynomial time simulator Simpriv-dec

LHE such that for every λ ∈ N?, any ` ∈ N, any batch size k ∈ N?,
any messages ~m1, . . . , ~m` ∈ Gk, any linear function f : (Gk)` → Gk, and any batch subset S ⊆ [k],

(pk, sk, c̃t0, c̃t1[IS ]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, ~mi) for i ∈ [`]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ct`))

 c
≈

{
(pk, sk, sim0, sim1) :

(pk, sk)
$← KeyGen(1λ, k)

(sim0, sim1)
$← Simpriv-dec

LHE (1λ, pk, k, S, (f(~m1, . . . , ~m`))[S])

}
,

where IS :=
⋃
i∈S

[(i− 1)|G|, i|G|] . (2)

In particular, note that f is not given as input to the simulator.

Proof. Let Simdec
LHE be defined as in definition 33 and consider the following algorithm

Simpriv-dec
LHE : On input (1λ, pk, k, S, y), parse pk so as to retrieve `, define y′ ∈ Gk as

y′[x] := (y[x] if x ∈ S, and 0 otherwise), run (ct0, ct1)
$← Simdec

LHE(1
λ, pk, k, S, csty′ , y) where csty′ is

the constant function on (Gk)` equal to y′, and output (ct0, ct1[IS ]) where IS :=
⋃
i∈S [(i−1)|G|, i|G|].

Let us now show that it satisfies the required property for lemma 34.

Let Simfn-priv
LHE be defined as in definition 32. Before we proceed, note that:

∀f : (Gk)` → Gk linear,∀~m1, . . . , ~m` ∈ Gk,∀S ⊆ [k],(pk, sk, c̃t0, c̃t1[IS ]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, ~mi) for i ∈ [`]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ct`))


c
≈

{
(pk, sk, c̃t0, c̃t1[IS ]) :

(pk, sk)
$← KeyGen(1λ, k)

c̃t = (c̃t0, c̃t1)
$← Simfn-priv

LHE (pk, f(~m1, . . . , ~m`))

}
,

where IS :=
⋃
i∈S

[(i− 1)|G|, i|G|] . (3)

Indeed, should there exist f, ~m1, . . . , ~m`, S such that there existed a p.p.t. adversary A with
non-negligeable advantage in distinguishing the two above distributions, then A′ defined as
A′(x1, x2, x3, x4) $← A(x1, x2, x3, x4[IS ]) (where IS :=

⋃
i∈S [(i − 1)|G|, i|G|]) would distinguish the

following two distributions with non-negligeable probability, thereby contradicting function-privacy:

(pk, sk, c̃t0, c̃t1) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, ~mi) for i ∈ [`]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ct`))


and

{
(pk, sk, c̃t0, c̃t1) :

(pk, sk)
$← KeyGen(1λ, k)

c̃t = (c̃t0, c̃t1)
$← Simfn-priv

LHE (pk, f(~m1, . . . , ~m`))

}
.

We are now ready to prove that our candidate Simpriv-dec
LHE indeed satisfies the requirements of eq. (2).

Let λ ∈ N?, ` ∈ N, k ∈ N?, ~m1, . . . , ~m` ∈ Gk, and S ⊆ [k]. Let f : (Gk)` → Gk be a linear function.
Define y := (f(~m1, . . . , ~m`))[S], and y′ ∈ Gk as y′[x] := (y[x] if x ∈ S, and 0 otherwise). Let csty′
denote the constant function on (Gk)` equal to y′.
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Observe that, if we define IS :=
⋃
i∈S [(i− 1)|G|, i|G|]:(pk, sk, c̃t0, c̃t1[IS ]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, ~mi) for i ∈ [`]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, f, (ct1, . . . , ct`))


c
≈

{
(pk, sk, c̃t0, c̃t1[IS ]) :

(pk, sk)
$← KeyGen(1λ, k)

c̃t = (c̃t0, c̃t1)
$← Simfn-priv

LHE (pk, f(~m1, . . . , ~m`))

}
c
≈

(pk, sk, c̃t0, c̃t1[IS ]) :

(pk, sk)
$← KeyGen(1λ, k)

cti
$← Enc(pk, f(~mi)) for i ∈ [`]

c̃t = (c̃t0, c̃t1)
$← Eval&Shrink(pk, g, (ct1, . . . , ct`))


c
≈

{
(pk, sk, sim0, sim1) :

(pk, sk)
$← KeyGen(1λ, k)

(sim0, sim1)
$← Simdec

LHE(1
λ, pk, k, S, g, (f(~m1, . . . , ~m`))[S])

}

≡

{
(pk, sk, sim0, sim1) :

(pk, sk)
$← KeyGen(1λ, k)

(sim0, sim1)
$← Simpriv-dec

LHE (1λ, pk, k, S, (f(~m1, . . . , ~m`))[S])

}
.

The first two steps follow from eq. (3), the third from the definition of Simdec
LHE , and the fourth by how

we defined Simpriv-dec
LHE .

We recall in fig. 12 the construction of packed LHE under QR from [DGI+19,BBDP22] and note that
it is decomposable.

dec-LHE, Adapted from [DGI+19,BBDP22]

KeyGen: On input the security parameter 1λ and a batch size k:

1. Choose two safe primes p = 2p′ + 1 and q = 2q′ + 1 where p′, q′ are primes and compute
N = pq. Choose a generator g of QRN .

2. Sample s $← Zkφ(N)/2 and compute ~h← gs.
3. Output pk← (N, g,~h) and sk← s.

Enc: On input the public key pk and a batch of k messages ~m = (m1, . . . ,mk):

1. Parse pk as pk = (N, g,~h = (h1, . . . , hk))

2. Sample r $← Z(N−1)/2. Compute c1 ← gr and c2,i ← (−1)mihri for i ∈ [k].
3. Output ct = (ct1, ct2 = (c2,1, . . . , c2,k)).

Eval: On input a public key pk, an `-input linear function f , and ` ciphertexts (ct1, . . . , ct`):

1. Parse pk as pk = (N, g,~h = (h1, . . . , hk)), f as f(X1, . . . , X`) =
∑`
j=1 aj · Xj + ~b where

a1, . . . , a` ∈ {0, 1} and ~b ∈ {0, 1}k; For j ∈ [`], parse ctj as (c1,j ,~c2,j = (c2,1,j , . . . , c2,k,j)).
2. Sample t $← Z(N−1)/2 and compute c̃1 ← gt ·

∏`
j=1 c

aj
1,j and c̃2,i ← hti · (−1)bi ·

∏`
j=1 c

aj
2,i,j ,

then set c̃t = (c̃1, c̃2 = (c̃2,1, . . . , c̃2,k)).
3. Output c̃t.

Shrink: On input a public key pk and a packed ciphertext ct:

1. Parse pk as pk = (N, g,~h = (h1, . . . , hk)) and ct as ct = (c1, c2 = (c2,1, . . . , c2,k)).
2. For i ∈ [k], set ei ← 0 if c2,i <JN −c2,i and ei ← 1 otherwise.
3. Output (c1, (e1, . . . , ek)).

DecShrink: On input a secret key sk and a shrunken ciphertext ct:

1. Parse ct as ct = (c1, (e1, . . . , ek)) where ∀i ∈ [k], ei ∈ G.
2. Parse sk as sk = (sk1, . . . , skk).
3. For i ∈ [k], set m̃i ← LEq(cski1 , (−1) · cski1 ).
4. Output (m̃1, . . . , m̃k).

pDecShrink: On input a batch subset S ⊆ [k], a secret key sk, a partial shrunken ciphertext c̃:
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1. Parse c̃ as c̃ = (c̃0, (ei)i∈S) where ∀i ∈ S, ei ∈ G.
2. Parse sk as sk = (sk1, . . . , skk).
3. For i ∈ S, set m̃i ← LEq(cski1 , (−1) · cski1 ).
4. Output (m̃1, . . . , m̃k).

Fig. 12: Decomposable Packed Linearly Homomorphic Encryption from QR.

Lemma 35. Assuming the Quadratic Residuosity assumption, the construction of fig. 12 is a decom-
posable packed linearly homomorphic encryption scheme.

Proof. The above scheme was shown to be a circuit-private LHE by [DGI+19,BBDP22], so it only
remains to show it is decomposable. Decomposable security follows from the fact that (with the
notations of fig. 12) a partial ciphertext for batch subset S is of the form ct = (c1, (ei)i∈S), which can
be observed to information-theoretically contain no information about (mi)i∈[N ]\S . Decomposable
correctness follows from inspection of the “locality” of DecShrink.

A.2 Two-Round co-PIR

We now recall the notion of co-PIR from [BBDP22, Section 6.1] (or punctured OT [BGI17]), which
allows a receiver holding as input a set of indices S to interact with an input-free server in such a way
that the sender obtains a pseudorandom string ~y ∈ Zmq while the receiver gets ~y[[N ] \ S] (all entries
of ~y which are not in S).

Definition 36 (Two-Round co-PIR, [BBDP22]). A two-round co-PIR scheme over Zq (with
poly-logarithmic communication complexity) is parameterised by an integer m where m = poly(λ), and
is composed by a tuple of algorithms copir = (copir.Query, copir.Send, copir.Receive) with the following
syntax and properties:

– Query(1λ, S) : On input the security parameter 1λ and a set of indices S ⊆ [m], Query outputs a
receiver message copirR and a private state st.

– Send(copirR) : On input a receiver message copirR, Send outputs a sender message copirS and a
string y ∈ Zmq .

– Dec(copirS , st) : On input a sender message copirS and a state st, Dec outputs a string ỹ ∈ Zmq .
– Correctness. A co-pir scheme copir is said to be correct if for any m = poly(λ) and S ⊆ [m],

Pr

y[S] = ỹ[S] :

(copirR, st)
$← Query(1λ, S)

(copirS ,y)
$← Send(copirR)

ỹ
$← Receive(copirS , st)

 = 1 ,

where S = [m] \ S .

– Receiver Security. For all m = poly(λ), any subsets S1, S2 ⊆ [m], any p.p.t. adversary A,∣∣∣∣Pr [A(k, copirR) = 1: (copirR, st)
$← Query(1λ, S1)

]
− Pr

[
A(k, copirR) = 1: (copirR, st)

$← Query(1λ, S2)
] ∣∣∣∣ ≤ negl(λ) .

– Sender Security. For all m = poly(λ), any subset S ⊆ [m], any p.p.t. adversary A,

∣∣∣∣Pr
[
A(k, st, copirS ,yS) = 1:

(copirR, st)
$← Query(1λ, S)

(copirS ,y)
$← Send(copirR,x)

]

− Pr

A(k, st, copirS ,y′S) = 1:

(copirR, st)
$← Query(1λ, S)

(copirS ,y)
$← Send(copirR,x)

y′S
$← Z|S|q

 ∣∣∣∣ ≤ negl(λ) .
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– Compactness (“Polylogarithmic Communication”). For all m = poly(λ), any subset S ⊆ [m],
any (copirR, st) ∈ Supp(Query(1λ, S)), and any (copirS ,y) ∈ Supp(Send(copirR)), it holds that
|copirR|, |copirS | = |S| · polylog(m) · poly(λ).

Lemma 37 (Instantiation of co-PIR [BBDP22]). Assuming the Quadratic Residuosity assump-
tion, there exists two-round polylogarithmic co-PIR over {0, 1}.

A.3 Decomposable OT from Decomposable LHE

For the sake of more unified notations with the construction of rate-1 OT from [BBDP22, Sec-
tion 7], we depart in this section from definition 20, and take two-round single-server private
information retrieval with (polylogarithmic communication) to be a tuple of algorithms PIR =
(PIR.Query,PIR.Send,PIR.Receive).

dec-OT

Parameters: Batch number k = ` · t; Exact LPN error τ ; A constant ε ∈ (0, 1) tied to the
hardness of one of the underlying LPN assumptions.
Requires:

– LHE = (LHE .KeyGen,LHE .Enc,LHE .Eval,LHE .Shrink,LHE .DecShrink) is a decomposable
packed linearly homomorphic encryption scheme (with partial decryption algorithm
pDecShrink) with plaintext space {0, 1}` and equipped with a post-homomorphism shrinking
procedure LHE .Shrink which converts ciphertexts into a rate 1 representation.

– copir = (copir.Query, copir.Send, copir.Receive) is a two-round polylogarithmic co-PIR scheme
over {0, 1} and parameterised by a database size of t.

– PIR = (PIR.Query,PIR.Send,PIR.Receive) is a two-round polylogarithmic PIR scheme over
{0, 1}.

dec-OTR: On input the security parameter 1λ and a vector of selection bits ~b = (b1, . . . , bk) ∈
{0, 1}k:

1. Parse ~b as ~b = (~b1, . . . ,~b`) where each ~bi ∈ {0, 1}t is a block of size t .
2. Choose A

$← {0, 1}n×t uniformly at random, and sample (pk, sk)
$← LHE .KeyGen(1λ, `) .

3. For i = 1, . . . , `:
(a) Sample ~si

$← {0, 1}n, and ~ei $← HWτ ({0, 1}t) (Uniformly random τ -sparse length-t vec-
tor)

(b) Compute ~ci ← ~si ·A+ ~ei +~bi
(c) Set Si ← SingleRowMatrix(`, n, i, ~si)
(d) Compute a matrix-ciphertext cti

$← LHE .Enc(pk,Si)
(e) Set Ji = supp(~ei)
(f) Compute (copirR,i, sti)← coPIR.Query(Ji)

4. Set otr← (pk,A, {cti,~ci, copirR,i}i∈[`], {qi,j}i∈[`],j∈[t])
5. Set st← (sk, {sti, Ji}i∈[`], {ŝti,j}i∈[`],j∈[t])
6. Output (otr, st)

dec-OTS: On input the security parameter 1λ, a receiver message otr, a database ~m ∈ {0, 1}2k:

1. Parse otr as otr = (pk,A, {cti,~ci, copirR,i}i∈[`], {qi,j}i∈[`],j∈[t])
2. Parse ~m as ~m = ((m0,i,j ,m1,i,j))i∈[`],j∈[t] and set ~mb,i ← (mb,i,1, . . . ,mb,i,t) ∈ {0, 1}t.
3. For i = 1, . . . , `:

(a) (~yi, copirS)
$← coPIR.Send(copirR,i) where ~yi ← (yi,1, . . . , yi,t)

(b) Set ~zi ← ~m0,i + ~yi
4. Set Z ← RowMatrix(`, t, ~z1, . . . , ~z`)
5. For i = 1, . . . , `:

(a) Set Ci ← SingleRowMatrix(`, t, i,~ci)
(b) Set Di ← Diag(t, ~m1,i − ~m0,i)
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6. Define the Z2-linear function

f : ({0, 1}`×n)` → {0, 1}`×t

(X1, . . . ,X`) 7→
(∑̀
i=1

(−XiA+Ci) ·Di

)
+Z

7. Compute ĉt
$← LHE .Eval&Shrink(pk, f, ct1, . . . , ct`).

8. For i = 1, . . . , `:
(a) Set DBi ← (yi,1 + (m1,i,1 −m0,i,1), . . . , yi,t + (m1,i,t −m0,i,t))
(b) For j = 1, . . . , t:

Compute ~ri,j ← PIR.Send(DBi, ~qi,j)
9. Set ots? ← ({copirS,i}i∈[`], {ri,j}i∈[`],j∈[t])
10. Set otsdec ← ĉt
11. Output (ots?, otsdec)

dec-OTD: On input a batch subset K ⊆ [k], a partial sender message ots′ and an state st:

1. Parse ots as ots = (ots?, ots′dec) = (({copirS,i}i∈[`], {ri,j}i∈[`],j∈[t]), ĉt
′
)

2. Parse st as st = (sk, {sti, Ji}i∈[`], {ŝti,j}i∈[`],j∈[t])
3. For i = 1, . . . , ` :

(a) Compute yi ← (yi,1, . . . , yi,t)← coPIR.Retrieve(copirS,i, sti)
(b) For j = 1, . . . , t:

Compute zi,j ← PIR.Retrieve(copirS,i, ŝti,j)
(c) Set ~zi ← (zi,1, . . . , zi,t) where

zi,l =

{
zi,j if l = Ji[j]

yi,` otherwise
.

4. Set Z ← RowMatrix(`, t, ~z1, . . . , ~z`)
5. Set SK := {(j mod `, j quo `) : j ∈ K} ⊆ [`]× [t]

6. Compute Ŵ ′ ← LHE .pDecShrink(K, sk, ĉt′), Ŵ as

Ŵ [i, j] :=

{
Ŵ ′[i, j] if (i, j) ∈ SK
0 if (i, j) ∈ [`]× [t]r SK

and W ← Ŵ −Z .
7. Let ~w1, . . . , ~w` be the rows of W .
8. Output (~wi[j])(i,j)∈SK ∈ {0, 1}|K| .

Fig. 13: Decomposable Batch OT from Decomposable LHE, PIR, and co-PIR

Theorem 38 (Decomposable Batch OT from Decomposable LHE, PIR, and co-PIR).
Under the binary LPN assumption LPN(dim, num, ρ) with dimension dim = poly(λ), number of
samples num = dimc (for any constant c > 1), and noise rate ρ = numε−1 (for some constant ε < 1),
if the following conditions are met:

– The batch size is of the form k = ` · t, where `, t ∈ N.
– LHE is a rate-1 decomposable packed linearly homomorphic encryption scheme (definition 33) with

plaintext space {0, 1}`, whose post-homomorphism shrunken ciphertexts have size k+α(k), where
α = o(1) is some sublinear function;

– coPIR is a two-round co-PIR scheme over {0, 1} with poly-logarithmic communication complexity
and parameterised by database size t,

– PIR is a two-round PIR scheme with poly-logarithmic communication complexity and sender pri-
vacy for database size t,
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then construction dec-OT = (dec-OTR, dec-OTS, dec-OTD) from fig. 13 is a two-round decomposable
batch OT with α+ polylog overhead.

Proof.

– Decomposable Correctness: Observe that dec-OTR and dec-OTS are defined exactly as OTR
and OTS in [BBDP22, Section 7], and furthermore that dec-OTD([k], ·, ·) is in fact the same
algorithm (with the observation that, by decomposable correctness of LHE , DecShrink(·, ·) ≡
pDecShrink([k], ·, ·)) as OTD(·, ·). Correctness therefore follows from [BBDP22, Theorem 1].

– Receiver Security (Against Semi-Honest Sender): Observe that dec-OTR is the same as the OTR
from [BBDP22, Section 7], and therefore sender security follows from [BBDP22, Theorem 2].

– Decomposable Sender Security (Against Semi-Honest Receiver): Observe that dec-OTS is the same
as the OTS from [BBDP22, Section 7], and that dec-OTD is only slightly modified from OTD.
As such, the proof will closely follow that of [BBDP22, Theorem 3]. Let Simdec

LHE be a simulator
as defined in the decomposable security of LHE , and consider the following simulator Simdec-OT

which, on input (1λ,K, (mi)i∈K ,~b, otr, st), acts as follows:
1. Parse otr as otr = (pk,A, {cti,~ci, copirR,i}i∈[`], {qi,j}i∈[`],j∈[t])
2. Parse st as st = (sk, {sti, Ji}i∈[`], {ŝti,j}i∈[`],j∈[t])
3. For i = 0, . . . , `t:
• If i ∈ K: Set mbi,i ← mi and m1−bi,i ← 0
• If i /∈ K: Set m0,i ← 0 and m1i,i ← 0

4. Set ~m0 ← (m0,1, . . . ,m0,`t) and ~m1 ← (m1,1, . . . ,m1,`t).
5. Compute (copirS,i, ~yi = (yi,1, . . . , yi,m))

$← coPIR.Send(copirR,i).
6. For i ∈ [`] and j ∈ [t]: Set y′i,Ji[j] ← yi,Ji[j] + (m1,i,Ji[j] − m0,i,Ji[j]), set DBi,j =

(0, . . . , 0, y′i,Ji[j], 0, . . . , 0), and compute ~ri,j
$← PIR.Send(DBi,j , qi,j).

7. Compute c̃t
$← LHE .Simpriv-dec

LHE (1λ, pk, k,K, (ms + z′s)s∈K), where

z′j′ :=

{
y′i·`+j if j′ = Ji[j] (where (i, j) ∈ [`]× [t])
yi·`+j′ otherwise

.

8. Output ots = (c̃t, {copirS,i}i∈[`], {~ri,j}i∈[`],j∈[t]) .

The sequence of hybrids used to show indistinguishability between the real and the ideal worlds
is the same as in the proof of [BBDP22, Theorem 3]:
1. Start with the real experiment.
2. For each (i, j) ∈ [`] × [t], by sender security of PIR we can set DBi,j to 0 everywhere except

for Ji[j].
3. For each i = 1, . . . , `, by sender security of coPIR we can replace y′i,Ji[j] ← yi,Ji[j]+(m1,i,Ji[j]−
m0,i,Ji[j]) (in such a way that DBi,j = (0, . . . , 0, y′i,Ji[j], 0, . . . , 0)).

4. We can replace ĉt with c̃t
$← Simpriv-dec

LHE (1λ, pk, k,K, (mi)i∈K) by applying lemma 34.

By combining lemmas 35 and 37 and theorem 38 we obtain corollary 39.

Corollary 39. Assume the QR assumption and the binary LPN assumption LPN(dim, num, ρ) with
dimension dim = poly(λ), number of samples num = dimc (for any constant c > 1), and noise rate
ρ = numε−1 (for some constant ε < 1). Then for any ` = `(λ), there exists a decomposable two-round
batch oblivious transfer for batch size k = ` · num where

– The receiver message otr has size (`2 · dim+ ` · numε) · poly(λ) + k
– The sender message ots = (ots?, otsdec) has size |ots?| = (num+ ` ·numε) ·poly(λ) and |otsdec| = k.

In particular, for appropriate parameters (sufficiently large `, and num sufficiently larger than `),
|otr| = k + o(k), and |ots?| = o(k).
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