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Abstract. The global supply chain involves multiple independent entities, and potential adversaries
can exploit different attack vectors to steal proprietary designs and information. As a result, intellectual
property (IP) owners and consumers have reasons to keep their designs private. Without a trusted third
party, this mutual mistrust can lead to a deadlock where IP owners are unwilling to disclose their IP core
before a financial agreement is reached, while consumers need assurance that the proprietary design will
meet their integration needs without compromising the confidentiality of their test vectors. To address
this challenge, we introduce an efficient framework called MPℓ◦C that resolves this deadlock by allowing
owners and consumers to jointly evaluate the target design with consumer-supplied test vectors while
preserving the privacy of both the IP core and the inputs. MPℓ◦C is the first work that combines secure
multiparty computation (MPC) and logic-locking techniques to accomplish these goals. Our approach
supports both semi-honest and malicious security models to allow users to balance stronger security
guarantees with performance. We compare our approach to existing state-of-the-art works that utilize
homomorphic encryption across several benchmarks and report runtime improvements of more than
two orders of magnitude.

Keywords: Applied Cryptography · Hardware security · Intellectual Property (IP) Verification · IP Piracy
· Logic Locking · Secure Multiparty Computation (MPC)

1 Introduction

In the modern integrated circuit (IC) design industry, System on Chip (SoC) solutions have become increas-
ingly popular due to their ability to meet customer design requirements while maintaining a low time-to-
market timeline. As a result, the number of IP core vendors and users has increased significantly. To increase
profit potential, hardware Intellectual Property (IP) vendors make their IPs reusable by providing design
standards and guidelines for use in multiple design layouts to drive sales, leading to a vast array of IP cores
being developed across the world.

Collaboration between IP vendors and users is crucial for IP core verification, which is a critical aspect of
System on Chip (SoC) design. The IP consumers provide functional requirements to IP vendors, who then
design circuits that meet these specifications [1]. The primary objective of IP core verification is to ensure
that the IP core operates correctly and satisfies the required specifications. Formal logic verification [2],
simulation-based methods [3], and application-specific instruction-set processors [4] are among the most
commonly used solutions for IP core verification. While various verification tools such as satisfiability (SAT)
solvers [5] are available, simulation methods remain the preferred method.

Unfortunately, trust issues between the parties can arise during the verification process which creates a
deadlock. IP vendors are unwilling to disclose their IP until a consumer purchases the netlist as the consumer
could manufacture and sell counterfeit devices. Similarly, consumers are hesitant to purchase an IP unless
they know it will work for their specific use cases. In some cases, the inputs that consumers want to employ
to test the IP may be proprietary and they are unwilling to share this information with IP vendors. For
instance, a healthcare provider may want to purchase an IP to be used in hardware for health diagnostics
and be sure that the IP will function properly for real patient data, but is unwilling to disclose these test
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vectors as medical information is highly regulated [6]. Similarly, a company operating a nuclear power plant
may want to integrate a third-party IP core into a control system that takes actions based on the uranium
enrichment levels. The company will be unwilling to disclose real measurements related to the uranium
enrichment process, as this leaks information about the efficiency of the plant. Even if this is not a concern,
IP consumers may be wary that the vendor will attempt to forge a correct result with their provided inputs
without running the inputs on the actual IP.

The globalized nature of the IP market has also led to an ecosystem consisting of both trusted and
untrusted IP owners as well as legitimate and malicious users, making IP theft a significant concern. With
vendors prioritizing the functionality of their IPs over security, the problem of IP theft is further exacerbated.
As a result, attacks against IPs, such as system-level analysis and reverse engineering, have become very
popular. Instead of solely focusing on functionality and runtime performance, it is crucial for the IC supply
chain to address security concerns.

Interestingly, recent research has not only focused on traditional security measures but also on using
cryptographic techniques like homomorphic encryption (HE) [7, 8] and zero-knowledge proofs (ZKP) [9–11]
to enhance the security of transactions in the globalized IC supply chain. For instance, Konstantinou et
al. [12] and Gouert et al. [13] securely outsource the evaluation of public IP netlists to third parties to
ensure the confidentiality of the circuit inputs. However, these solutions only protect the input test vectors
as homomorphic encryption fails to provide functional privacy; as a result, the actual netlist remains visible
to the party that evaluates it. On the other hand, [14–16] preserve the privacy of the netlist using ZKPs and
focus both on functional verification and on proving that IPs are free of hardware Trojans. Unfortunately,
both HE and ZKP-based solutions are very expensive and impractical for realistic IP cores.

Inspired by recent cryptographic advancements and the efforts for privacy-preserving IP core verification,
we propose a practical solution to address the trust issues between IP owners and IP users during the IP
core functional verification. Our solution is based on logic locking, a methodology to protect IPs, and secure
multiparty computation (MPC), a cryptographic technique that enables multiple parties to jointly compute
a function f without revealing their private inputs [17, 18]. In more detail, logic locking protects the circuit
by “encrypting” the design using a key, which prevents unauthorized copying or modification of the netlist
by adversaries [19]. The encrypted design can only be decrypted using the correct key, which is typically
kept secret by the IP owner. Logic locking adds modest overhead in terms of area and latency as new logic
must be added to the circuit to enforce correct operation only in the presence of the correct locking key. Our
observation is that IP users and IP owners can collaborate and evaluate an IP core while keeping private both
the IP (owned by the IP vendor) and the proprietary test vectors (owned by the IP user). Additionally, MPC
encompasses a wide range of techniques to ensure that a computation is performed correctly and securely.
This technology can be applied to solve a diverse range of problems, from secure data analytics to voting
and privacy-preserving machine learning.

1.1 Our Contributions

In this paper, we adopt MPC and logic-locking techniques to create MPℓ◦C: a framework that enables
collaboration between IP vendors and users for private evaluation of proprietary test vectors on IPs. Our
core idea is to have the IP vendor lock the netlist of the IP and then jointly evaluate the locked IP with
the IP user, while keeping both the key and the test vectors private. More specifically, the function f that
the two parties evaluate comprises the gates of the locked IP, while the parties’ secret inputs are the logic
locking key in the case of the IP vendor and the test vectors in the case of the IP consumer. After evaluation,
both parties compare the encrypted outputs with the expected outputs and reveal the final pass/fail result.

In this work, we introduce a bespoke compiler from Verilog netlists to “Bristol fashion” MPC circuits [20],
which is a serialized format that consists of one gate in each line and guarantees that there are no inter-
dependencies between the gate inputs and the outputs from previous gates. Specifically, our compiler ensures
that the transformed netlist can be evaluated sequentially. Based on this transformation, our proposed
framework wields state-of-the-art semi-honest and maliciously secure MPC protocols to evaluate the logic-
locked circuit with private inputs without the use of a trusted third party (TTP). For our analysis, we conduct
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Fig. 1. Strawman Approach. The IP vendor engages in secure computation with a trusted third party (TTP)
and they jointly evaluate the IP on the proprietary test vectors of the IP consumer. The test vectors remain private
throughout the computation but the IP core is leaked to the TTP.

experiments with ISCAS’85 benchmarks [21] and compare MPℓ◦C against existing solutions that use fully
homomorphic encryption as well as a strawman technique that involves integrating a TTP.

1.2 Related Works

Before delving into our framework, we first discuss several recent works for protecting and verifying IP cores.

A recent research direction has focused on outsourcing and evaluating IP designs with encrypted input
vectors using homomorphic encryption (HE), which allows performing operations on encrypted data [12].
The authors discuss both a two-party and a three-party case: In the former, the IP user encrypts their vectors
and sends them to the IP vendor for homomorphic evaluation. In the latter, the verification is outsourced
to a trusted third party that acquires knowledge of the IP. Similarly, [13] converts Verilog netlists into
homomorphic circuits and uses encrypted inputs to evaluate them. However, these techniques only protect
the privacy of the input test vectors, not the IP itself. Additionally, due to the inherent computational
overheads of the underlying cryptographic technique (i.e., HE) these methodologies still remain limited for
real-world IP cores. Contrary, as we show in our evaluations, MPℓ◦C protects both the IP and the proprietary
test vectors, while achieving scalable evaluation of large IP cores.

A related line of work is based on zero-knowledge proofs (ZKP) and allows IP vendors to prove to IP
users various functional and security properties about their IP without revealing any details about it [15,16].
Specifically, these methods can verify that the IP satisfies particular functional properties, meets certain
constraints related to the area, performance, and power consumption, as well as security properties (e.g.,
the IP is free of rarely-activated hardware Trojans [22]). These results are achieved by creating simulators
that parse the circuit and examine its behavior based on multiple public input-output test vectors, which
are supplied by the IP consumers. However, in this case, the IP consumer has to disclose their test vectors,
which is against the objectives of this work. Lastly, similarly to HE-based solutions, ZKP methodologies
suffer from high computational overheads.

Garbled circuits [17] enable secure computation between two parties, so that each party does not reveal
their inputs to the other party; this is possible by allowing one party to encrypt the circuit and the other
party to securely evaluate it. The original garbled circuit scheme can hide the gate types and circuit topology
and could be used in our scenario; however, this approach would not be scalable due to high communication
overheads [6]. State-of-the-art garbled circuit-based protocols [23] treat different gate types differently, re-
sulting in leakage of the circuit topology. Likewose, existing solutions for private function evaluation can hide
the gates of the circuits [6, 24, 25], these works mostly focus on theoretical advancements without concrete
implementations.
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2 Preliminaries

2.1 Secure Multiparty Computation (MPC)

MPC enables multiple entities to jointly perform a computation without disclosing any individual’s private
inputs [17, 18, 26–28]. There are many MPC protocols that consider various threat assumptions about how
the participants are behaving, resulting in security/performance trade-offs. Most practical protocols assume
semi-honest adversaries, meaning that they will follow the protocol specification, as opposed to malicious
adversaries. Another consideration is the number of honest participants and how privacy and correctness
can be maintained when parties collude. MPC protocols that assume the majority of the parties behave
honestly (i.e., honest-majority) typically utilize secret sharing as their basic primitive [29,30]. A (t, n)-secret
sharing scheme allows splitting a secret amongst n parties, so that t or more parties can reconstruct the
secret while having less than t shares does not reveal anything about the secret. In this case, the parties
first represent a target function f as a Boolean or arithmetic circuit and then each party shares its input
with the other parties using secret sharing. The parties can now jointly evaluate the circuit gate by gate
and finally reconstruct the shares on the output wires, which represent the output of the function f that
was encoded as the circuit. On the other hand, assuming a dishonest majority MPC is significantly more
challenging and requires specialized solutions such as garbled circuits [17,31], GMW oblivious transfer [27],
cut-and-choose [32], SPDZ [33], MPC in the head [34], and others [35].

2.2 Logic Locking

This method is one of the most popular ways to protect netlists, as it ensures that the intended functionality
of the original circuit can only be derived with knowledge of a secret logic locking key [19]. For example, this
can be achieved by introducing special key gates in the existing circuit that take as input an internal wire
and one bit of the logic locking key, as shown in Figure 2 (XOR gates highlighted in green). Typically these
gates take the form of XOR/XNOR gates [36], multiplexers [37], or lookup tables [38]. For every wrong bit of
the logic locking key, the value of an intermediate wire in the circuit will be flipped, which can result in
erroneous outputs. When the correct logic locking key is loaded on the fabricated chip, it is typically stored
in tamper-evident memory to protect against malicious attacks [39].

Unfortunately, many earlier logic locking techniques can be broken using oracle-less machine learning
attacks [40]. Conversely, provably secure logic locking techniques provide guaranteed security against an
attacker with only black-box access [41]. The state-of-the-art ALMOST framework uses security-aware syn-
thesis and ensures that locked designs remain resilient post-synthesis [42]. Although logic-locking techniques
protect against overproduction, they typically solve a different problem than the one in this work, as they
do not allow vendors to evaluate their IPs on proprietary test vectors (e.g., inputs provided by users). Our
goal is to protect both the IP and the test vectors while enabling verification of the IP on the proprietary
input-output pairs.

Fig. 2. Logic Locking Example. This circuit illustrates a toy example of a locked circuit with a 2-bit locking key
using XOR as the key gate type.
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Fig. 3. MPℓ◦C Overview. The IP vendor first locks their IP and then engages in secure computation with the IP
consumer. They jointly evaluate the locked IP on their private data; the IP vendor inputs the logic locking key and
the IP consumer inputs their proprietary test vectors. Both the logic locking key and the test vectors remain secret
throughout the whole computation.

2.3 Threat Model

To formalize our methodology, we now discuss the powers of potential adversaries. MPℓ◦C operates in the
two-party computation setting with a dishonest majority, meaning that an adversary can corrupt either the
IP vendor or the IP consumer, but not both. We assume two distinct threat models that introduce a trade-off
between security and performance.

Semi-honest Security Model In this case, we assume that the adversary passively corrupts one of the
parties, meaning the corrupt party will faithfully follow the protocol specification but has incentives to
eavesdrop the data.

Malicious Security Model In the malicious security model, we assume that the adversary can corrupt
one of the parties actively, i.e., the corrupt party may arbitrarily deviate from the protocol specification.

3 Technical Overview

In this work, we combine applied cryptography with hardware security techniques to enable IP vendors and
consumers to jointly evaluate a netlist owned by the IP vendor with proprietary test vectors owned by the
consumer. More specifically, we adopt logic locking to protect the netlist and secure multiparty computation
to jointly evaluate the IP between the consumer and owner, as shown in Figure 3. Next, we offer a technical
overview of our MPℓ◦C methodology.

3.1 A Strawman Approach

One way to offer assurance to a consumer that an IP will work for their use case is for the IP owner to share
the netlist with the consumer. However, this is only feasible for open-hardware projects as the consumer can
plausibly integrate the IP without financial obligations. Alternatively, the consumer can provide the owner
with custom test vectors, but these constitute IP on their own as they are often costly to develop or cannot
be shared due to the presence of sensitive data.

Both approaches can be strengthened with the use of a third party that is trusted by both the consumer
and the owner. In this case, the IP owner will send the netlist to the trusted third-party (TTP) and the
consumer will also upload their test vectors. Then, the TTP can directly evaluate the netlist on the provided
inputs and share the outputs with the consumer for verification. However, if the third party is not trustworthy,
a key concern with this strawman approach involves potential collusion; the third party can easily leak the
test vectors to the IP owner or the IP itself to the consumer.
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With state-of-the-art cryptographic techniques such as secure MPC, the previously outlined scenario can
be further strengthened. Now, the IP owner can share the netlist with the TTP and the consumer generates
secret shares of the test vectors to distribute to both the TTP and the owner. The owner and TTP jointly
evaluate the IP and send the outputs back to the owner for verification. In this setting, the TTP does not
learn the test vectors (unless they actively colludes with the IP owner). This approach is depicted in Figure 1.

3.2 MPℓ◦C: Combining Logic Locking with MPC

MPℓ◦C eliminates the need for a TTP entirely while preserving the confidentiality of both the owner’s IP
core and the consumer’s test vectors. In our proposed methodology, the IP owner relies on provably-secure
logic locking techniques to secure their IP and then jointly evaluates the IP with the client using zn MPC
scheme. Both the logic locking key, which is owned by the IP owner, as well as the consumer’s test vectors
are secret-shared with the other party.

In our concrete implementation, we employ the state-of-the-art ALMOST logic locking framework [42],
which outputs synthesized Verilog using a 45-nanometer tech library.1 We emphasize that MPℓ◦C can readily
support any other logic locking based methodology that uses standard logic gates as the key gate mechanism.
However, it can also extend to lookup table-based methods [38] by exploiting the fact that all lookup tables
can be replaced with a subcircuit consisting solely of standard logic cells. In this case, the logic synthesis tool
can perform the necessary conversions optimally with a synthesis script. Our MPℓ◦C instantiation employs
the Yosys logic synthesis library, so this conversion can be done principally with the abc -g AND, XOR

command, which instructs the underlying ABC toolchain to map all cells to standard 2-input logic gates and
inverters where possible.

Modern MPC implementations that support binary encodings, such as MP-SPDZ [43], typically expect
netlists to be defined using Bristol-style circuits. This specification is well-suited for privacy-preserving
technologies such as MPC and HE because all logic gates appear in an order that prevents any unresolved
dependencies. The preamble of a Bristol-style circuit outlines the number of gates and wires in the circuit,
as well as the number of inputs and outputs along with the sizes of each. Each proceeding line describes a
single logic gate, specifying the gate type (constrained to AND, XOR, and INV), and wire IDs corresponding to
the inputs and outputs.

To convert the synthesized Verilog format to Bristol-style, we first use the Yosys synthesis tool [44] to
perform a few necessary transformations. Specifically, MPℓ◦C instructs Yosys to map all cells to the 2-input
XOR and AND gates and the single input INV gate in accordance with the supported Bristol gate types. Then,
Yosys writes the transformed circuit as an EDIF netlist.

Next, we employ our parser to read the EDIF file and perform a topological sort on the circuit (which
is represented as a directed acyclic graph). This is a necessary step as a logic gate can not be evaluated
until all input wires have been resolved. Then, MPℓ◦C’s compiler traverses the sorted graph and writes each
node in the circuit to the output netlist. At last, all net identifiers are converted to be compliant with the
Bristol-fashion specification, where the smallest IDs represent input values, the largest IDs represent output
wires, and the remaining IDs represent intermediate wires in the circuit.

4 Experimental Results

We report a series of experiments for different logic-locked circuits from the ISCAS’85 benchmark suite [21].
During synthesis, we used the proc, flatten, synth, and abc -g AND, XOR flags in Yosys [44] to generate
circuits with standard 2-input AND and XOR logic gates. For logic locking, we utilized the provably secure logic
locking ALMOST framework [42] and acquire ALMOST-protected netlists. Table 1 depicts the overhead in
terms of the number of gates for all ISCAS’85 circuits. For small circuits, we observe that ALMOST results in
a high overhead, adding over 4× more logic gates to the circuit compared to the unlocked baseline. However,
for the larger ISCAS circuits, we observe comparatively lower overheads. Specifically, the locked c5315 circuit

1 Our framework is universal and can work with any logic-locking technique.
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Fig. 4. Total server runtime for selected benchmarks from the ISCAS-85 suite. For the experiments of our framework,
we locked the circuits with provably secure logic locking, while for the homomorphic encryption based solution (i.e.,
Romeo) we used unlocked circuits (since the sole computing party is the IP owner).

is 19% larger than the unlocked version while the locked c6288 and c7552 variants have approximately 40%
more logic gates. We note that the majority of the added logic consists of XOR and NOT gates, which run very
efficiently with MPC due to optimizations such as free-XOR [45].
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Fig. 5. Total server communication in MB for selected benchmarks from the ISCAS-85 suite. As mentioned, for our
experiments, we locked the circuits with provably secure logic locking, while for the homomorphic encryption based
solution (i.e., Romeo) we used unlocked circuits (since the sole computing party is the IP owner).

MPℓ◦C relies on the widely used MP-SPDZ [43] framework that implements multiple MPC protocols.
We used the default security parameters of MP-SPDZ, namely, a computational security parameter of 128
bits and a statistical security parameter of 40 bits. MPℓ◦C assumes the two-party dishonest majority model,
and we experiment with both semi-honest and malicious adversaries. For malicious security, we use the
implementation of the MASCOT protocol [46] of MP-SPDZ that allows for secure computation of general
arithmetic circuits. For semi-honest security, MP-SPDZ strips out all steps required for malicious security
from the MASCOT protocol, resulting in a more efficient protocol. In our analysis, we report both the
runtime and the communication overheads for these different security models. Finally, we compare with
closely related work in Romeo [13]), which uses homomorphic encryption to protect the test vectors and
enable evaluation by the IP owner (or a trusted cloud server). As with our framework, Romeo uses 128 bits
of security and also utilizes unlocked circuits as the IP consumer does not need to take part in the circuit
evaluation (and therefore does not need the IP to be shared before purchase).
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Experimental Setup. We evaluate our framework on two AWS EC2 machines (c5.9xlarge) in the same
region, each with 36 vCPUs at 3.60 GHz, while for Romeo, we used one of these instances. Our compiler
from EDIF to Bristol-style format [20] is implemented in Python 3.

Table 1. Circuit sizes of unlocked versus ALMOST-protected netlists using a 128-bit locking key.

Circuit c1355 c1908 c2670 c3540 c5315 c6288 c7552

Unlocked 214 293 864 1386 2083 2423 1852
Locked 935 1003 1020 1770 2472 3390 2602

4.1 Runtime Experiments

First, we focus on the runtime of MPℓ◦C and compare it with Romeo in Figure 4 for the ISCAS’85 circuits.
MPℓ◦C runs in less than 0.2 seconds for both semi-honest and malicious security for all circuits, achieving
almost a constant runtime. We observe that MPℓ◦C in the semi-honest threat model is 4× faster than the
malicious case, running all circuits in less than 0.05 seconds. Contrary, Romeo is two orders of magnitude
slower and scales linearly with the number of gates of each circuit. For reference, it takesRomeo 10.1 and 45.2
seconds to evaluate c1355 and c7552, respectively. Finally, as reported in [13], an AES circuit is evaluated
in approximately 13.5 minutes using Romeo. Nevertheless, our experimental server Romeo requires 20.7
minutes for the AES circuit, which is attributed to a slower processor and adopting larger parameters for
128 bits of security (as opposed to 80 bits in [13]). Conversely, MPℓ◦C evaluates AES with semi-honest
security in 0.67 seconds and with malicious security in 53.8 seconds, for a circuit comprising approximately
250 thousand gates. This yields a 1849× improvement for the semi-honest setting and a 23× for malicious.

As a baseline, we also evaluated the unlocked variants of our ISCAS’85 circuits and observe that MPℓ◦C
can evaluate them in nearly identical runtime compared to their locked equivalents. This can be mostly
attributed to two factors: first, the ALMOST framework does not cause a substantial increase in the circuit
size (especially for larger circuits). Second, the underlying MPC library in MPℓ◦C is very efficient and a
small increase in the number of gates has a negligible impact on runtime. Even in cases where the circuit
becomes considerably larger, the runtime impact remains minimal. For example, the locked c1908 circuit
requires an additional 2 milliseconds while being nearly 4× larger.

4.2 Communication Experiments

Next, we evaluate MPℓ◦C and Romeo in terms of communication overhead and show empirical results in
Figure 5. Our framework requires communication between the two parties for evaluation, but for semi-honest
security, this is minimal. One of the advantages of using an FHE-based solution like Romeo is that the only
communication between the IP consumer and the IP owner is transmitting the encrypted test vectors and
getting back the encrypted results. However, we note that FHE solutions also incur additional communication
overheads because public key material must be transmitted to the IP owner to facilitate important HE
operations. For example, the key-switching operation used during most FHE logic gate evaluations requires
a large matrix (referred to as the key-switching key); likewise, FHE noise reduction operations require a
bootstrapping key, which is composed of a bit-by-bit encryption of the consumer’s secret key.

In total, such FHE public key material consists of approximately 100 MB of data for Romeo. We omit
this from Figure 5 as it is a one-time cost, albeit a substantial one. Overall, we observe that both Romeo
and the semi-honest MPℓ◦C incur less than 1.2 MBs of communication, while the malicious MPℓ◦C incurs
close to 23 MBs.
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5 Discussion

MPℓ◦C addresses important considerations related to trust in the global IP supply chain, but the same
methodology can be generalized to other fields and address similar privacy issues. Cloud computing is widely
used in many industries as it allows organizations to avoid maintaining costly computing infrastructure and
instead outsource data to third-party servers that can perform proprietary computations over the inputs.
For instance, a cloud service may offer image classification using a proprietary machine learning model and
allow users to have their own images classified for a fee [6]. Here, a similar deadlock occurs that mimics
those between an IP owner and consumer: an end-user seeks assurances that a cloud service will process
their data, yet the cloud service provider is unwilling to share their proprietary algorithms. At the same
time, the customer is unwilling to share their sensitive data with the cloud. In this scenario, MPℓ◦C can
be used to jointly compute the cloud’s proprietary algorithm between the cloud and a user, while ensuring
the confidentiality of both the algorithm itself and the user’s inputs. If the algorithm is not expressed as a
Boolean circuit, high-level synthesis can be used to generate the Verilog input that MPℓ◦C expects.

While our evaluations employ strictly combinational circuits, we note that MPℓ◦C can readily extend to
arbitrary sequential circuit evaluations as well. While the Bristol specification does not inherently support
sequential circuit elements (such as flip-flops and latches) and has no notion of a clock, sequential behavior can
still be emulated with this format. Specifically, unrolling techniques (such as those employed in Romeo [13])
can be adopted to evaluate the combinational parts of the circuit for each clock cycle. For Romeo, a key
limitation is that neither computing party can check termination conditions (e.g., the status of a ready
signal since it is encrypted), so the circuit must be simulated cycle by cycle for the maximum number of
iterations required to successfully generate the outputs. Conversely, our MPC techniques can easily allow for
intermediate results to be revealed to both parties (such as a termination condition or a ready signal). This
would allow for greater efficiency relative to the FHE approach as the sequential evaluation can terminate
early if a ready signal is asserted.

6 Concluding Remarks

In this paper, we present MPℓ◦C, the first work that combines secure MPC and logic-locking to allow IP
vendors and consumers to jointly evaluate an IP core with proprietary test vectors without revealing either
the IP or the test vectors to the other party. Our unique observation is that we can use logic locking to
protect a target circuit that is evaluated by both parties and treat both the logic locking key and the test
vectors as private inputs for MPC computation. This way, both the IP and the test vectors are protected,
enabling privacy-preserving evaluation on proprietary inputs. Notably, MPℓ◦C is flexible and agnostic to
the underlying logic locking technique or MPC library. For our evaluations, we employed state-of-the-art
logic locking and secure multiparty computation methods to demonstrate the benefits of MPℓ◦C over several
combinational benchmarks from the ISCAS’85 suite. Overall, MPℓ◦C offers high scalability and outperforms
a state-of-the-art solution based on homomorphic encryption by more than two orders of magnitude.
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