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Abstract. The wave of attacks by Castryck and Decru (Eurocrypt, 2023),
Maino, Martindale, Panny, Pope and Wesolowski (Eurocrypt, 2023) and
Robert (Eurocrypt, 2023), highlight the destructive facet of calculating
power-smooth degree isogenies between higher-dimensional abelian varieties
in isogeny-based cryptography. Despite those recent attacks, there is still
interest in using isogenies but for building protocols on top of higher-
dimensional abelian varieties. Examples of such protocols are Public-Key
Encryption, Key Encapsulation Mechanism, Verifiable Delay Function,
Verifiable Random Function, and Digital Signatures.
This work abstracts and proposes a generalization of the strategy technique
by Jao, De Feo and Plût (Journal of Mathematical Cryptology, 2014) to
give an efficient generic algorithm for computing isogenies between higher-
dimensional abelian varieties with kernels being maximal isotropic of
power-smooth degree.
To illustrate the impact of using such strategy technique, we draft our
experiments on the computation of isogenies over two-dimensional abelian
varieties determined by a maximal isotropic subgroup of torsion with a
power of two or three. Our experiments illustrate a speed-up of 1.25x faster
than the state-of-the-art (about 20% of savings).

Keywords: Higher-Dimensional Abelian Varieties · Isogenies · Maximal
Isotropic Subgroups · Strategies

1 Introduction

The devastating attacks on SIDH, started by Castryck and Decru [7] and subse-
quently improved by Maino, Martindale, Panny, Pope and Wesolowski [24] and
Robert [30], have as the most demanding calculations the isogenies of power-smooth
degree between higher-dimensional abelian varieties. The key ingredient of those
attacks is the Kani’s theorem, which connects isogenies between supersingular
curves and isogenies between product of curves (passing through Jacobian of

https://orcid.org/0000-0002-9753-7263
https://orcid.org/0000-0001-9244-4300
https://orcid.org/0009-0000-6243-980X


genus-two curves). In fact, Kani’s theorem plays an interesting role for buinding
protocols on top of higher-dimensional abelian varieties.

Decru and Kunzweiler [15] described a genus-two hash function based on the
Charles-Goren-Lauter hash function by employing kernels generators of torsion
3n. Dartois, Leroux, Robert and Wesolowski [13] proposed a higher-dimensional
SQISign construction, namely SQISignHD, to reduce sizes. Basso, Maino and
Pope [3] presented an efficient isogeny-based Public Key Encryption, called FESTA,
based on a trapdoor function that uses some improved techniques analyzed in the
SIDH attacks. Subsequently, Nakagawa and Onuki [28] described QFESTA as a
Quaternion variant of FESTA with one-third of key and ciphertext sizes than the
original FESTA proposal. Decru, Maino and Sanso [16] detailed a weak Verifiable
Delay Function with delay-based computation on large-degree isogeny between
elliptic curves and verification on the computation of isogenies between products of
elliptic curves. Leroux [21] suggested a Verifiable Random Function that requires
isogenies over higher-dimensional varieties. Moriya [26] recently proposed a Key
Encapsulation Mechanism, called IS-CUBE, that requires isogenies between the
product of elliptic curves.

It is worth highlighting that all the above constructions over higher-dimensional
abelian varieties require kernel generators either of torsion 2n or 3n.

Our contributions. We wholly center on the task of computing separable
(ℓn, . . . , ℓn)-isogenies from (ℓn, . . . , ℓn)-subgroups. In particular, we focus on the
scenario where ϕ splits as the composition of n (ℓ, . . . , ℓ)-isogenies. Moreover,
we extend and formalize the strategies for calculating isogenies of power-smooth
degree between supersingular elliptic curves to the higher-dimensional PPAVs
context 4. In a nutshell, we give a polynomial-time algorithm for performing the
two below tasks efficiently:

– Calculate the codomain of (ℓn, . . . , ℓn)-isogenies.
– Push points through (ℓn, . . . , ℓn)-isogenies.

We additionally provide two proof-of-concept implementations using the Magma
Computer Algebra System and the SageMath library. Our experiments land on
(2n, 2n)-isogenies and (3n, 3n)-isogenies between PPAVs of dimension two. Our
local experiments illustrate a speed-up of about 1.25x compared with state-of-
the-art techniques 5. Additionally, our SageMath code is currently used in the
implementation of FESTA [3] and implicitly integrated into QFESTA [28] and
IS-CUBE [26].

2 Preliminaries

This section gives an overview description concerning principal polarized abelian va-
rieties of dimension g ≥ 1 and isogenies between them. For a deeper understanding,
we suggest reading [12,25,27].
4 PPAVs stands for principally polarized abelian varieties
5 Our code is freely available at this GitHub repository
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An abelian variety is a smooth projective algebraic variety which is an algebraic
group. The dual abelian variety of an abelian variety A is denoted by Â and is
isomorphic to the group Pic0(A) of divisor classes of degree zero on A.

We use the additive group law notation for clarity when operating points on
the abelian varieties. We denote the neutral element in A by 0A, and the ℓ-torsion
subgroup {P ∈ A | [ℓ]P = 0A} of A by A[ℓ] where

[ℓ]P := P + · · · + P︸ ︷︷ ︸
ℓ times

.

An isogeny between abelian varieties is a surjective morphism ϕ : A → A′ with
a finite kernel such that ϕ(0A) = 0A′ . An ample divisor of A defines an isogeny
λ : A → Â, which is called a polarization of A. A polarization is principal if it is
an isomorphism. We call A a principally polarized abelian variety (PPAV) if A is
endowed with a principal polarization λ. See [25, Page 53] for more details.

Theorem 2.1. ( [27, Page 72, Theorem 4]) Let A be an abelian variety. There is
a 1-1 correspondence between

1. finite subgroups G of A and
2. separable isogenies ϕ : A → Y .

Two isogenies ϕ1 : A → Y1 and ϕ2 : A → Y2 with ker ϕ1 = ker ϕ2 = G are
equal if there is an isomorphism ι : Y1 → Y2 such that ϕ2 = ι ◦ ϕ1. In other words,
separable isogenies between PPAVs are uniquely determined by their kernels.

Definition 2.1. Let p be a prime integer. Let A/Fp be a PPAV and ℓ be an integer
relatively prime to p. The m-Weil pairing is a nondegenerate, skew-symmetric,
bilinear, and alternating form

em : A[m](Fp) × A[m](Fp) → µm,

where µm is the group of m-th roots of unity.

Definition 2.2. Let p be a prime integer. Let A/Fp be a PPAV and ℓ be an integer
relatively prime to p. A proper subgroup G of A[ℓ] is a maximal ℓ-isotropic subgroup
if

1. the ℓ-Weil pairing on A[ℓ] restricts trivially to G; and
2. G is a maximal subgroup concerning the first property.

Definition 2.3. Let p be a prime integer and ℓ be an integer relatively prime to p.
Let A/Fp be a g-dimensional PPAV. A proper subgroup G of A[ℓ] is an (ℓ, . . . , ℓ)-
subgroup if G is a maximal ℓ-isotropic subgroup of A[ℓ] such that A[n] ̸⊆ G for any
1 < n ≤ ℓ.
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For any prime number ℓ relatively prime to p, and a positive integer n, we have
A[ℓn] ∼= (Zℓ)2g. Any (ℓ, . . . , ℓ)-subgroup G ⊂ A[ℓ] is isomorphic to (Zℓ)g while for
(ℓn, . . . , ℓn)-subgroups G ⊂ A[ℓn] we have

G ∼= Zℓn1 × · · · × Zℓng for some n1 ≥ . . . ≥ ng with
n∑

i=1
ni = gn.

Definition 2.4. An (ℓ, . . . , ℓ)-isogeny ϕ : A → A′ is an isogeny with kernel ker ϕ ⊂
A[ℓ] being an (ℓ, . . . , ℓ)-subgroup.

Remark 2.1. It is worth highlighting that (ℓ, . . . , ℓ)-isogenies preserve polarizations.
Also, (ℓn, . . . , ℓn)-isogenies can be decomposed as n (ℓ, . . . , ℓ)-isogenies [13, Lemma
5.5.1].

Notation. Let n be a positive integer. We use the notation JnK to refer the list (in
decreasing order) [n, n − 1, . . . , 1]. We denote the list of one repeated n times by
J1Kn. We represent vectors by bold letters (e.g., v) and lists by sans serif letters
(e.g., L). Sub-indexes label each entry of vectors and lists (e.g., vk and Lk).

3 Strategies framework over PPAVs

This section proposes a strategy-based technique for solving the following problem.

Problem 3.1. Let p be a prime integer and ℓ be an integer relatively prime to
p. Let n ∈ Z be a positive integer. Given a g-dimensional PPAV A/Fp, a list H
of points on A, and an (ℓn, . . . , ℓn)-subgroup G ⊂ A[ℓn]: calculate the codomain
of the (ℓn, . . . , ℓn)-isogeny ϕ : A → A′ with kernel ker ϕ = G along with the list
[ϕ(h) | h ∈ H] of points on A′.

Consider a g-dimensional PPAV A/Fp, and ϕ the (ℓn, . . . , ℓn)-isogeny with
domain A and kernel G = ⟨g1, . . . , gg⟩ ∼= (Zℓn)g. Let i ∈ Jn − 1K and let ∆n be a
discrete rectangular triangular labeled as DRT and illustrated in Figure 1, with

– Point pt0,0 = (g1, . . . , gg) at the right angle.
– Points pt0,i = ([ℓi]g1, . . . , [ℓi]gg) at the left cathetus.
– Points pt0,n−1 and

pti,n−1−i = (ϕi−1 ◦ · · · ◦ ϕ1(g′
1), . . . , ϕi−1 ◦ · · · ◦ ϕ1(g′

g))

at the hypotenuse, where g′ := (g′
1, . . . , g′

g) = pti,n−2−i, ϕi−1 : Ai−1 → Ai

is the (ℓ, . . . , ℓ)-isogeny with kernel the (ℓ, . . . , ℓ)-subgroup ⟨pti−1,n−i⟩ and
A0 = A.

– Points pti,0 = (ϕi(g′
1), . . . , ϕi(g′

g)) at the upper cathetus with g′ :=
(g′

1, . . . , g′
g) = pti−1,0.
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pt0,0 ptn−1,0

pt0,n−1

pti,0

pt0,i
pti,n−1−i

∆n

Fig. 1: Discrete rectangular triangular (DRT).

Any other point in ∆n corresponds with scalar multiplications and evaluations
of the cathetuses. Notice that the hypotenuse implicitly describes a path between
A and the codomain A′ = An of the (ℓn, . . . , ℓn)-isogeny ϕ = ϕn ◦ · · · ϕ2 ◦ ϕ1 with
kernel the (ℓn, . . . , ℓn)-subgroup G,

A0 = A ϕ1−→ A1
ϕ2−→ A2

ϕ3−→ · · · ϕn−−→ A′ = An.

Definition 3.1. A g-tuple g = (g1, . . . , gg) has order (ℓ, . . . , ℓ) if each gi has
order ℓ.

Definition 3.2. Given a g-dimensional PPAV A, and an (ℓ, . . . , ℓ)-subgroup G =
⟨g1, . . . , gg⟩ ∼= (Zℓn)g on A, let ∆n be the DRT as described above. A strategy is a
weighted binary tree Stn inside ∆n, with the root being the point at the right angle
of ∆n and the tree leaves being the points at the hypotenuse of ∆n.

One crucial remark is that any strategy, as defined in Definition 3.2, can be
recursively decomposed into two binary sub-trees [14], one contained in ∆n−h and
another in ∆h. Such decomposition permits representing any strategy as a positive
integer list of n − 1 elements, where each entry determines the height n − h (resp.
h) of the left-side (resp. right-side) sub-tree. Moreover, one needs to compute h
multiplications-by-ℓ (resp. n − h (ℓ, . . . , ℓ)-isogeny evaluations) to move into the
left-side (resp. right-side) sub-tree. Figure 2 illustrates the general idea behind a
strategy. Since ∆n has (n−1)n

2 points, the maximum number of multiplications-by-ℓ
and isogeny evaluations is then (n−1)n

2 .

Definition 3.3. An (n − 1)-length encoded strategy is a strategy but represented
as a list of n − 1 positive integers smaller than n.

Definition 3.4 (Multiplicative strategy). An (n − 1)-length encoded strategy
Stn of the form Jn − 1K is called a multiplicative strategy.

Definition 3.5 (Evaluative strategy). An (n − 1)-length encoded strategy Stn

of the form J1Kn−1 is called an evaluative strategy.

5
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Fig. 2: The strategy technique reduces the computations from ∆n into two binary sub-
trees, one contained in ∆n−h and another in ∆h.

Definition 3.6 (Balanced strategy). An (n − 1)-length encoded strategy Stn

that recursively splits ∆n into two sub-triangles ∆⌊n/2⌋ and ∆⌈n/2⌉ is called a
balanced strategy.

Definition 3.7. An isogeny construction refers to computing the codomain of the
isogeny itself. In contrast, an isogeny evaluation refers to pushing points through
the isogeny itself.

Remark 3.1. As pointed out above, the hypothenuse of a DRT ∆n implicitly de-
scribes the (ℓn, . . . , ℓn)-isogeny ϕ : A → A′ with kernel G as the composition of
n (ℓ, . . . , ℓ)-isogenies ϕi’s. Therefore, a strategy outlines a procedure for passing
through all those (ℓ, . . . , ℓ)-isogenies ϕi’s with less running time than when com-
puting the full DRT ∆n. Consequently, a strategy allows us to solve Problem 3.1
efficiently; that is, it enables us to push a list of points H through each isogeny ϕi

and thus to get [ϕ(h) | h ∈ H] along with the codomain A′ of ϕ.

If µ and η denote the cost concerning the multiplication-by-ℓ and (ℓ, . . . , ℓ)-
isogeny evaluation, respectively. Then, the associated cost of an (n − 1)-length
enconded strategy Stn is

Cost (Stn) = Cost (Stn−h) + Cost (Sth) + hµ + (n − h)η,

A multiplicative strategy performs n (ℓ, . . . , ℓ)-isogeny constructions, n − 1
(ℓ, . . . , ℓ)-isogeny evaluations, and a quadratic number of multiplications-by-ℓ
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(n−1)n
2 . While an evaluative strategy performs n (ℓ, . . . , ℓ)-isogeny constructions,

n−1 multiplications-by-ℓ, and a quadratic number of (ℓ, . . . , ℓ)-isogeny evaluations
(n−1)n

2 . Conversely, a balanced strategy still performs n constructions but n log2(n)
multiplications and evaluations. Therefore, a balanced strategy requires fewer
operations than any multiplicative (and evaluative) strategy.

Definition 3.8 (Optimal strategy). An (n − 1)-length encoded strategy Stn

with minimal associated cost Cost (Stn) is called an optimal strategy. In other
words, any other different strategy has an associated cost greater than or equal to
Cost (Stn).

Remark 3.2. The term of optimal strategy was initially proposed in [14] but in
the context of elliptic curves (i.e., one-dimensional PPAVs).

If κ denotes the cost of an (ℓ, . . . , ℓ)-isogeny construction, then the cost of com-
puting the codomain of the (ℓn, . . . , ℓn)-isogeny ϕ : A → A′ becomes Cost (Stn)+nκ.
Furthermore, pushing an m-length list of points on A through ϕ adds another
linear factor to the associated cost, which gives the below cost.

τ = Cost (Stn) + nκ + nm.

Algorithm 1 describes a dynamic programming technique for finding an optimal
strategy given µ and η, which has a quadratic polynomial running time in n.
While Algorithm 2 presents the strategy-based procedure to calculate the codomain
A′ and push a list of points on A through ϕ.

Algorithm 1 Procedure to compute an optimal strategy for a Stn

Inputs: A prime integer number ℓ, a positive integer n, and the costs µ and η of the
multiplication-by-ℓ and the (ℓ, . . . , ℓ)-isogeny evaluation.

Output: Optimal strategy Stn concerning µ and η
1: Set as optimal strategy St1 = []
2: for i = 2 to n do
3: Solve

s = arg min
h∈Ji−1K

{Cost (Sti−h) + Cost (Sth) + hµ + (i− h)η}

4: Set as the optimal strategy Sti = [s] ∪ Sti−s ∪ Sts

5: end for
6: return Stn

Lemma 3.1. Let ℓ be a small prime number. Algorithm 2 provides a method for
solving Problem 3.1 in polynomial time in the variables ℓ log2 ℓ and n.
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Algorithm 2 Strategy technique to construct (ℓn, . . . , ℓn)-isogenies between g-
dimensional PPAVs
Inputs: A PPAV g-dimensional A, an (ℓn, . . . , ℓn)-subgroup G = ⟨g1, . . . , gg⟩ ∼= (Zℓn )g

on A, a list H of points on A, and an (n− 1)-length strategy St.
Output: Codomain PPAV of the (ℓn, . . . , ℓn)-isogeny ϕ : A → A′ with kernel the

(ℓn, . . . , ℓn)-subgroup G, and the list [ϕ(h) | h ∈ H] of points on A′

1: k ← 1
2: A′ ← A
3: g′ ← (g1, . . . , gg)
4: K← [g′]
5: H′ ← H
6: for i = 1 to n− 1 do
7: g′ ← last element of K
8: while g′ does not have order (ℓ, . . . , ℓ) do
9: sk ← k-th element of Stn

10: g′ ← ([ℓsk ]g′
1, . . . , [ℓsk ]g′

g)
11: Append g′ to the last element of K
12: k ← k + 1
13: end while
14: assert g′ has order (ℓ, . . . , ℓ)
15: Remove the last element g′ of K
16: A′ ← codomain of the (ℓ, . . . , ℓ)-isogeny ϕ with kernel ⟨g′

1, . . . , g′
g⟩

17: K← [(ϕ(k1), . . . , ϕ(kg)) | k ∈ K]
18: H′ ← [ϕ(h′) | h′ ∈ H′]
19: end for
20: Extract and remove the last element g′ of K
21: assert g′ has order (ℓ, . . . , ℓ)
22: A′ ← codomain of the (ℓ, . . . , ℓ)-isogeny ϕ with kernel ⟨g′

1, . . . , g′
g⟩

23: H′ ← [ϕ(h′) | h′ ∈ H′]
24: return A′, H′

Proof. Notice that a multiplication-by-ℓ over g-dimensional PPAVs runs in time
log2 ℓ (e.g., using Right-to-left algorithm, Montgomery Ladders, wNAF-based
algorithms, etc.). On the other hand, Lubicz and Robert provide in [22, 23]
algorithms for computing (ℓ, . . . , ℓ)-isogenies between higher-dimensional abelian
varieties with (ℓ, . . . , ℓ)-subgroups as kernels in polynomial time in ℓ log2 ℓ. On
that basis, our Algorithm 2 gives a method to compute (and push points through)
(ℓn, . . . , ℓn)-isogenies in polynomial time in the variables ℓ log2 ℓ and n.

Remark 3.3 (one-dimensional PPAVs). The case of one-dimensional PPAVs lands
in the well-known elliptic curve case. Our Algorithm 2 coincides with the technique
from [14]. For small primes ℓ ≤ 89, the traditional Vélu formulas give a poly-
nomial time complexity of ℓ operations for computing ℓ-isogenies, which implies
that Algorithm 2 runs in polynomial time in the variables ℓ and n. For larger
primes ℓ > 89, the square-root Vélu formulas from [4] reduce the running time of
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computing ℓ-isogenies to Õ(
√

ℓ) operations 6, which implies that Algorithm 2 runs
in polynomial time in the variables

√
ℓ log2 ℓ and n when ℓ ≥ 89.

Remark 3.4 (two-dimensional PPAVs). Cosset and Robert give in [10] a method
to compute (ℓ, ℓ)-isogenies in polynomial time in ℓ on Jacobians of genus-two
curves. Consequently, our Algorithm 2 gives a method to compute (and push
points through) (ℓn, ℓn)-isogenies in polynomial time in the variables ℓ and n.

4 Experiments on two-dimensional PPAVs

For a deeper definition of Jacobians of genus-two curves, we recommend reading [10,
17,19,31]. Let C be a genus-two hyperelliptic curves given by Equation 1,

C : y2 = f(x), f(x) ∈ Fp2 [x] with deg f = 6. (1)

The Jacobian J of C is a two-dimensional abelian variety. Elements in J are
represented as pair of polynomials (u, v) where u is monic degree-two polynomial,
and v2 − f mod u ≡ 0, namely Mumford representation [9, Chapter 14]. The roots
of u(x) determine two points P and Q on the curve C over Fp2 . When the points
P and Q are known, we write the element (u, v) ∈ J as [P + Q].

If A is a two-dimensional PPAV over Fp, then A is isomorphinc to the product
of two elliptic curves E × F or the Jacobian J of a genus-two curve C.

4.1 Computing (2n, 2n)-isogenies

This section summarizes how to compute codomains of (2, 2)-isogenies and push
points through (2, 2)-isogenies. For simplicity, we swap (when needed) between
Mumford’s representation and formal sums representations to land the general idea
behind (2, 2)-isogenies. We suggest reading [7, 8, 20] for a better understanding.

Consider a genus-two curve C determined Equation (1). Let us assume f(x) =
F1(x)F2(x)F3(x), where Ft(x) = gt2x2 + gt1x + gt0 for each i := 1, 2, 3, such that

G = ⟨(F1(x), 0), (F2(x), 0)⟩ = {0J , (F1(x), 0), (F2(x), 0), (F3(x), 0)}

is a (2, 2)-subgroup. Let

δ = det

g10 g11 g12
g20 g21 g22
g30 g31 g32

 .

Then, the codomain curve of the (2, 2)-isogeny ϕ : J → J ′ with ker ϕ = G is
isomorphic to
6 For cryptographic sizes of ℓ, the square-roof Vélu formulas are tailored to a Karatsuba-

like polynomial multiplication [1], slightly “increasing” the complexity from Õ(
√

ℓ)
to O(ℓlog2 3)
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C′ : y2 = H1(x)H2(x)H3(x)

where

Hi(x) = δ−1
(

dFj(x)
dx

Fk(x) − dFk(x)
dx

Fj(x)
)

with (ijk) a cyclic permutation of 1,2,3. On the other hand, pushing an element
D ∈ J through ϕ summarizes as follows.

1. Decompose D ∈ J as D = [P + Q] where P = (xP , yP ) and Q = (xQ, yQ) are
points on the curve C.

2. Find four points P ′, Q′, P ′′, Q′′ on C such that ϕ(D) = [P ′ + P ′′] + [Q′ + Q′′]
as follows.

– Calculate the abscissa of P ′ (resp. P ′′) by solving the following quadratic
equation in x2:

F1(xP )H1(x2) + F2(xP )G2(x2) = 0.

– Calculate the ordinate of P ′ (resp. P ′′) by solving the following equation
in y2:

ypy2 = F1(xP )H1(xP ′)(xP − xP ′).

– Repeat the same as above but for Q′ (resp. Q′′).
3. Compute ϕ(D) = [P ′ + P ′′] + [Q′ + Q′′].

The authors from [7] propose and describe an efficient Gröbner basis approach
for computing (and evaluating under) (2, 2)-isogenies. Conversely, the authors
from [20] present explicit formulas for pushing points through (2, 2)-isogenies with
a kernel of the form G = ⟨(x, 0), (x2 −Ax+1, 0)⟩. They also characterize the family
of genus-two curves given by

C : y2 = Ex(x2 − Ax + 1)(x2 − Bx + C),

and prove that any genus-two curves can be transformed into such a shape 7.
Consequently, any (2, 2)-subgroup over J maps into a suitable G.

7 The isomorphism could be defined over a quartic field extension of Fp
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Speedups concerning the Magma-public code from [20]. The technique
from [20, Section 5.3] suggests splitting the isogeny computation into m isogeny
chunks of (2ki , 2ki)-isogenies ϕi’s with

∑m
i=1 ki = n. The author in [20] manages

to reduce the running time in their approach from O(n2) to O(n
√

n). Indeed, the
technique from [20] falls into our strategy definition and relies on a multiplicative-
like nature. However, the latest code version from [20] uses a balanced strategy
technique based on [14]. We compare our implementation of Algorithm 2 with the
given in [20]. First, following the suggestion of [14] we use Algorithm 1 for computing
the balanced strategy, and we notice such a strategy differs from the approach
in [20]. Second, to identify the main difference, we include counters for the number
of multiplications-by-two and (2, 2)-isogeny evaluations. All our experiments use
the balanced strategy and the parameters with a 171-bit prime proposed in [20].
Our code implementation is about 1.3x faster than [20] (see Tables 1 and 2).

Technique #[Multiplications by 2] #[(2, 2)-isogeny evaluations] Runtime

(287, 287)-isogeny with 4 evaluations of extra points
Balanced strategy from [20] 1033 874 1907
Balanced strategy 768 874 1642

(287, 287)-isogeny (only codomain curve calculation)
Balanced strategy from [20] 1033 526 1559
Balanced strategy 768 526 1294

Table 1: Number of multiplications-by-two and (2, 2)-isogeny evaluations required to
compute a (287, 287)-isogeny, the runtime column corresponds with the sum of both
numbers. The field characteristic is p171 as defined in [20].

Procedure Baseline [20] This work Speedup

(287, 287)-isogeny with 4 evaluations of extra points 0.1779 0.1336 1.332x
(287, 287)-isogeny (only codomain curve calculation) 0.1659 0.1229 1.335x

Table 2: Our experiments were executed on a 2.3 GHz 8-Core Intel Core i9 machine
with 16GB of RAM. The measures correspond with the average time (in seconds) of
computing 100 random (287, 287)-isogenies. The field characteristic is p171 as defined
in [20].

Speedups concerning the SageMath-public code from [29]. To illustrate
the impact of our results, we point out that our results directly apply to the attacks
in [7,24,30]. For example, the most demanding computations in the Castryck-Decru
attack are the (2i, 2i)-isogenies for each i ∈ JnK. However, [29] shows that it is
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enough to compute few (2i, 2i)-isogenies for some integer i ∈ JnK close to n; such
a shortcut splits the computations into two parts: the (2i, 2i)-isogeny computation
and some discrete logarithm computations. In any case, the isogenies still play an
essential role in the Castryck-Decru attack, and at most, we expect a speedup of
1.3x when using the strategy technique.

We plug our Algorithm 2 into the public SageMath language code from [29]
and present our results in Figure 3. Our experiments focus on the quadratic field
extensions of Fp2 with prime characteristic pXXX for each XXX ∈ {182, 217, 434}
as defined in [2,11]. In particular, our experiments show a speedup of 1.19x—1.26x
in the Castryck-Decru attack (see Table 3).

p182 p217 p434
0

20

40

Field characteristic

T
im

e
(s
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d
s)

Fig. 3: Our experiments were executed on a 2.3 GHz 8-Core Intel Core i9 machine with
16GB of RAM. The measures correspond with the key-recovery timings (in seconds) of
100 random SIDH keys. The data in blue ink correspond with this work, while the gray
ink is the baseline code from [29].

Field characteristic Baseline [29] This work Speedup

p182 7.90 6.30 1.25x
p217 10.41 8.25 1.26x
p434 26.90 22.67 1.19x

Table 3: Our experiments were executed on a 2.3 GHz 8-Core Intel Core i9 machine
with 16GB of RAM. The measures correspond with the key-recovery average timings (in
seconds) of 100 random SIDH keys.
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4.2 Computing (3n, 3n)-isogenies
This section summarizes the (3, 3)-isogenies formulas by Bruin, Flynn and Testa [5].
Consider a (3, 3)-subgroup G = ⟨T1, T2⟩ ⊂ J [3] of a genus-two curve D given
by Equation (1). In [5], the authors provide a parametrization of the genus-two
curve D determined by the 3-tuple (D, T1, T2), namely (r, s, t)-parametrization. In
particular, they show that the curve D is isomorphic to

C : y2 = Frst(x) = G1(x)2 + λ1H1(x)3 = G2(x)2 + λ2H2(x)3,

where

H1 = x2 + rx + t,

λ1 = 4s,

G1 = (s − st − 1)x3 + 3s(r − t)x2 + 3sr(r − t)x − st2 + sr3 + t,

H2 = x2 + x + r,

λ2 = 4st, and
G2 = (s − st + 1)x3 + 3s(r − t)x2 + 3sr(r − t)x − st2 + sr3 − t.

Additionally, the order-3 element Ti coincides with (Hi(x), Gi(x)) for each i ∈
{1, 2}. The authors in [5] suggest working with the associated Kummer surface
K := J /⟨−1⟩ instead of the Jacobian J . They propose mapping the divisor
from J to K by some relation ξ : D 7→ (ξ0 : ξ1, : ξ2, : ξ3). More precisely, if
f = f6x6 + f5x5 + f4x4 + f3x3 + f2x2 + f1x + f0, and D ∈ J is equal to
[(x1, y1) + (x2, y2)], then

ξ0 = 1, ξ1 = x1 + x2, ξ2 = x1x2, ξ3 = Φ(ξ0, ξ1, ξ2) − 2y1y2

ξ2
1 − 4ξ0ξ2

,

where

Φ(ξ0, ξ1, ξ2) = 2f0ξ3
0 + f1ξ2

0ξ1 + 2f2ξ2
0ξ2 + f3ξ0ξ1ξ2 + 2f4ξ0ξ2

2 + f5ξ2
2ξ1 + 2f6ξ3

2 .

The Kummer surface K admits the following quartic equation model

K : (ξ2
1 − 4ξ0ξ2)ξ2

3 + Φ(ξ0, ξ1, ξ2)ξ3 + Ψ(ξ0, ξ1, ξ2) = 0,

where Ψ(ξ0, ξ1, ξ2) is a homogeneous degree-4 polynomial. The isogeny ϕ : J → J ′

with kernel G induces an isogeny between the Kummer surfaces K and K′. The
authors from [5] give explicit formulas for computing the codomain curve and the
induced map. While the authors from [15] provide better formulas for the (3, 3)-
isogenies. They simplify formulas and reduce the number of required multiplications
in [5]. They propose to use a Gröbner basis approach [6, 15], to compute the
coordinate transformation to a given (r, s, t)-parametrization that allows us to
apply the isogeny formulas. They also provide explicit formulas for the induced
transformation on the Kummer surface.
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Speedups concerning the Magma-public code from [15]. The authors
from [15] provide a Magma code implementation that uses a balanced strategy
technique based on [14]. We use their code and implement Algorithm 2 in the
context of (3, 3)-isogenies. Our implementation allows us to test different kinds of
strategies. In particular, we compare our strategy technique with the given in [15].
Similarly to Section 4.1, the balanced strategy as suggested in [15] differs from
the balanced strategy computed by employing Algorithm 1. So, to identify the
main difference, we include counters for the number of multiplications-by-three
and (3, 3)-isogeny evaluations. Table 4 lists those operation numbers concerning
different strategy techniques (balanced and optimal balanced) and compares them
against the algorithm from [15]. Our experiments compare [15] against the following
two different strategies:

1. Balanced strategy just as suggested in [15] but employing Algorithm 2; and
2. Optimal balanced strategy calculated as in Section 3 with µ = η and using Al-

gorithm 2.

Technique #[Multiplications by 3] #[(3, 3)-isogeny evaluations] Runtime

Balanced strategy from [15] 2884 2380 5264
Balanced strategy 1936 2290 4226
Optimal balanced strategy 1818 2408 4226

Table 4: Number of multiplications-by-three and (3, 3)-isogeny evaluations required to
compute a (3236, 3236)-isogeny, the runtime column corresponds with the sum of both
numbers. The field characteristic is p751 as defined in [2]. All the experiments assume the
same number of extra points to be evaluated under each (3, 3)-isogeny (just as required
for attacking SIKEp751).

From Table 4, we expect our implementation of Algorithm 2 to be 1.25x faster
than [15], which is about 20% of savings.

On the other hand, we point out that our results directly apply to the attacks
in [7,24,30]. For example, the most demanding computations in the Castryck-Decru
attack are the (3i, 3i)-isogenies for some integer i ∈ JnK close to n; such a shortcut
splits the computations into two parts: the (3i, 3i)-isogeny computation and some
discrete logarithm computations. In any case, the isogenies still play an essential
role in the Castryck-Decru attack. We additionally plug our Algorithm 2 into
the public Magma language code of [15] and present our results in Figure 4. Our
experiments focus on the quadratic field extensions of Fp2 with prime characteristic
p751 as defined in [2].

It is worth highlighting that the nature of Algorithm 2 allows isolating the
mappings of points from the Kummer Surface into the Jacobian, which are only
needed when computing the codomain of the isogeny. Consequently, our implemen-
tation of Algorithm 2 isolates the calls to Points(J, h)[1] into the isogeny codomain
calculation (i.e., in steps 16 and 22 of Algorithm 2).
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Fig. 4: Our experiments were executed on a 2.3 GHz 8-Core Intel Core i9 machine with
16GB of RAM. The measures correspond with the key-recovery timings (in seconds) of
100 random SIDH keys. The data in blue ink correspond with this work, while the gray
ink is the baseline code from [15]. The field characteristic is p751 as defined in [2].

We notice from the experiments that the bottleneck in the current imple-
mentations in [15] and ours is the calculation of the codomain curve along with
the data required for evaluating the (3, 3)-isogeny 8, which takes on average 0.04
seconds 9. Both methods perform exactly 236 use of Points(J, h)[1], which gives
9.44 seconds (about 89.06% of the total running time [in average] of 10.6). For
instance, according to the discussion in Section 4.2, we expect a 1.25x speedup
in the (3n, 3n)-isogeny computation, giving a runtime of 1.15964/1.25 = 0.927712
seconds instead of 1.15964 seconds (the 1.15964% of 10.6). Overall, the expected
running time would be (0.927712 + 9.44) = 10.367712 seconds on average, and our
experiments from Figure 4 illustrate such savings.

Consequently, any improvement in computing the codomain curve along with
the calculation of the data required for evaluating the (3, 3)-isogeny should speed
up the (3n, 3n)-isogeny computation and make the optimal strategies the most
efficient technique (about 1.25x faster).

8 We highlight that the data required for evaluating the (3, 3)-isogenies are only
computed once, and thus we can view such computations as part of the calculation
of the codomain curve

9 We include the cost concerning Points(J, h)[1]
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5 Discussion on the applications of our results.

Constructive applications. The authors in [15] propose a genus-two variant
of the Charles-Goren-Lauter hash function by employing isogenies over curves
with torsion 3n. In particular, [15] suggests constructing isogenies with (3n, 3n)-
subgroups as kernels defined over Fp2 . Now, our experiments from Section 4.2
illustrate a theoretical savings of 20% (see Table 4) when computing isogenies as
required in [15]. Therefore, our results should speedup the hash function from [15]
by at most 1.25x.

The presented strategy techniques also applies to the recent work [13]. That
work discusses the need of strategies for computing higher-dimensional isogeny.
More precisely, Algorithm 2 describes an efficient algorithm to perform the
KernelToIsogeny procedure from [13]. The recent work by Leroux [21] also re-
quires isogenies between higher-dimensional abelian varieties, and thus our results
also apply to the Verifiable Random Function proposal from [21].

The most demanding computations in the Public-Key Encryption FESTA [3]
(resp. QFESTA [28]) are the isogenies between products of elliptic curves (passing
through Jacobian of genus-two curves). The authors from [3] include a public
SageMath code that integrates our implementation of Algorithm 2. Additionally,
the public SageMath implementations of QFESTA [28] and the Key Encapsulation
Mechanism from [26] use the FESTA code for computing the (2n, 2n)-isogenies,
which currently (and implicitly) employs our implementation of Algorithm 2.

Lastly, the weak Verifiable Delay Function proposal from [16] also requires
(2n, 2n)-isogenies as the central core. Therefore, our Algorithm 2 should improve
their running time by at most 1.25x faster.

Better optimal strategies. The authors from [18] suggest computing 22k+1-
isogenies by calculating at first one 2-isogeny, and next k 4-isogenies (with a
different weight than 2-isogenies). More precisely, [18] proposes optimal strategies
by assuming that the first isogeny (which is a 2-isogeny) has a lower cost than
the subsequent isogenies (which are 4-isogenies); [18] shows that such optimal
strategies lead to 15% savings. When the domain of the (2n, 2n)-isogeny is the
product of elliptic curves, then the optimal strategy falls into a similar case as
in [18]: the first isogeny corresponds with a (2, 2)-isogeny going from a product of
elliptic curves to the Jacobian of a genus-two curve, while the remaining (2, 2)-
isogenies (probably except for the last one) are between Jacobian of genus-two
curves. Since the point arithmetic and isogenies over products of elliptic curves cost
less than over Jacobian of genus-two curves, then there is still room for improving
higher-dimension isogenies with domain (and maybe also with codomain) being a
product of elliptic curves. However, further analysis is required.
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