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Abstract. Despite recent breakthrough results in attacking SIDH, the
CSIDH protocol remains a secure post-quantum key exchange protocol
with appealing properties. However, for obtaining efficient CSIDH instan-
tiations one has to resort to small secret keys. In this work, we provide
novel methods to analyze small key CSIDH, thereby introducing the repre-
sentation method —that has been successfully applied for attacking small
secret keys in code- and lattice-based schemes— also to the isogeny-based
world.
We use the recently introduced Restricted Effective Group Actions (REGA)
to illustrate the analogy between CSIDH and Diffie-Hellman key exchange.
This framework allows us to introduce a REGA-DLOG problem as a level
of abstraction to computing isogenies between elliptic curves, analogous
to the classic discrete logarithm problem. This in turn allows us to study
REGA-DLOG with ternary key spaces such as {−1, 0, 1}n, {0, 1, 2}n and
{−2, 0, 2}n, which lead to especially efficient, recently proposed CSIDH
instantiations. The best classic attack on these key spaces is a Meet-in-
the-Middle algorithm that runs in time 30.5n, using also 30.5n memory.
We first show that REGA-DLOG with ternary key spaces {0, 1, 2}n or
{−2, 0, 2}n can be reduced to the ternary key space {−1, 0, 1}n.
We further provide a heuristic time-memory tradeoff for REGA-DLOG
with keyspace {−1, 0, 1}n based on Parallel Collision Search with memory
requirement M that under standard heuristics runs in time 30.75n/M0.5

for all M ≤ 3n/2. We then use the representation technique to heuristically
improve to 30.675n/M0.5 for all M ≤ 30.22n, and further provide more
efficient time-memory tradeoffs for all M ≤ 3n/2.
Although we focus in this work on REGA-DLOG with ternary key spaces
for showing its efficacy in providing attractive time-memory tradeoffs,
we also show how to use our framework to analyze larger key spaces
{−m, . . . , m}n with m = 2, 3.

Keywords: Isogeny · Time-Memory Trade-off · Representation Technique

1 Introduction

In the pre-quantum era the Diffie-Hellman protocol plays a paramount role in
securely exchanging secret keys. Diffie-Hellman shows its outstanding performance
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when instantiated with sufficiently generic elliptic curve groups with prime order
q, since for solving the discrete logarithm in these groups on classical computers
only generic algorithms with square-root time complexity Θ(√q) are known.

Such a complexity allows for extremely efficient instantiations that provide e.g.
128 bit classical security for 256-bit group order q. Since Shor’s algorithm [43]
generically breaks discrete logarithms in every commutative group of order q
in time polynomial in log q, Diffie-Hellman unfortunately becomes completely
insecure in a quantum world.

The current post-quantum substitutes for key exchange primarily stem from
lattice problems, like Kyber [11], or from decoding problems, like McEliece [4, 35].
However, in both cases we have already classical algorithms that are below square
root complexity [6, 40]. As a consequence, lattice- and code-based schemes can
inherently not achieve the efficiency of the Diffie-Hellman protocol. For exploiting
smallness of secret keys, the representation technique has been quite successfully
applied first in the coding world [7, 12,21,32,34], and then subsequently also for
lattice-based schemes [22,26,31,45].

Ideally, in a quantum world we would replace Diffie-Hellman by a protocol for
which

(a) the best classical algorithm achieves square root complexity, while
(b) the best quantum algorithm does not provide a significant speedup.

Within the last decade isogeny-based cryptography developed as a promising
candidate to provide an analogue of Diffie-Hellmann key exchange in the quantum
world.

Its hardness is based on the difficulty of computing isogenies between su-
persingular elliptic curves. If extra information is available, like in the SIDH
proposal [28], then recent breakthrough results [14, 30, 41] show a collapse of the
problem’s complexity, leading to a devastating attack on the SIDH cryptosystem.

In contrast to that, in the CSIDH cryptosystem [15] no extra information is
available to an attacker and the underlying isogeny computation problem remains
hard. The construction is made possible by restricting to the set of supersingular
elliptic curves defined over a prime field Fp. This set has cardinaltity N ≈ √

p, and
the best classical algorithm to recover a secret isogeny is a Meet-in-the-Middle
algorithm with square root complexity O(

√
N). However, the best quantum

algorithm, due to Kuperberg [29], is subexponential in log N , with complexity
2O(

√
log N).

Current CSIDH instantiations. To guard against Kuperberg-style attacks [10, 17,
39], recent CSIDH instantiations recommend to use 512, 1024 or even 2048-bit
field size for Fp. To still retain highly efficient cryptosystems, current proposals [5,
15–18,27,36–38] suggest to use secret keys from (sub-) sets of {−m, . . . , m}n of
constant width m, for highly practical schemes like [17] even restricted to ternary
key spaces

SK1 = {−1, 0, 1}n, SK2 = {0, 1, 2}n, or SK3 = {−2, 0, 2}n.

Ternary keys can be guessed in 3n steps, and the currently best
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(a) classical algorithm for recovering ternary keys is a Meet-in-the-Middle algo-
rithm with square root time and space complexity 3n/2,

(b) whereas the best quantum algorithm [44] is a mere quantum version of Meet-
in-the-Middle, called claw-finding, providing a rather modest speedup to
3n/3.

Our contributions. We use the Restricted Effective Group Action (REGA) frame-
work, recently introduced in [2]. This abstraction can e.g. be instantiated via the
isogeny-based CSIDH group action. Group elements are represented by vectors
v = (v1, . . . , vn) ∈ Zn, efficient implementations require to restrict the vector
entries vi to a small range {−m, . . . , m} for some constant m. Highly efficient
implementations like [17] choose ternary key spaces for v.

For REGAs we introduce a REGA-DLOG problem that denotes the secret key
recovery problem in REGA-based cryptography, and resembles the dlog problem for
the Diffie-Hellman protocol. As a special case, REGA-DLOGm denotes the secret
key recovery problem for secret keys chosen from a small range set {−m, . . . , m}n.

We show that the best CSIDH attacks, such as the Pollard-style algorithm
going back to Galbraith-Hess-Smart [25] for smallish p and Meet-in-the-Middle
(MitM) for small m, generalize to the REGA setting. For ternary key settings we
show that REGA-DLOG for the key spaces SK1 = {−1, 0, 1}n and SK2 = {0, 1, 2}n

is equivalently hard, and at least as hard as for SK3 = {−2, 0, 2}n. Therefore, for
ternary keys it suffices to concentrate on REGA-DLOG1 with keyspace SK1.

Since |SK1| = 3n, our MitM achieves for REGA-DLOG1 run time 30.5n with
memory consumption also 30.5n. We then generalize the best time-memory CSIDH
trade-off [1,8,17,19] based on Parallel Collision Search (PCS), due to van Oorschot
and Wiener [46] to the REGA-DLOG1 setting resulting for memory M ≤ 30.5n in
run time

T = 30.75n/M0.5.

Notice that for maximal memory M = 30.5n we again achieve MitM complexity
T = 30.5n. However for constant M , also called the memory-less setting, we
achieve a T = 30.75n algorithm. See the dotted line (PCS) in Figure 1 for a
visualization of the interpolation between the run time exponents 0.75 and 0.5.
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Fig. 1: Complexities for solving REGA-DLOG1.
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The REGA setting is not only a natural abstraction of isogeny-based group
actions, but it also allows us —analogous to codes [7, 24,32], lattices [26,31,45],
and low weight discrete logarithms [23,33]— to naturally exploit the algebraic-
combinatorial benefits of using small secret keys from Zn.

Namely, by additively splitting a secret key v = v1 + v2 with many representa-
tions v1, v2 ∈ {−1, 0, 1}n we significantly improve the standard PCS time-memory
trade-off for M ≤ 30.22n to

30.675n/M0.5.

Hence for memory M = 30.22n, which is less than the square root of MitM’s
memory 30.5n, we achieve run time 30.565n, only slightly inferior to MitM’s time
30.5n. In the memory-less setting, we obtain a 30.675n-algorithm. The tradeoff is
visualized as a dashed line (Partial Rep.) in Figure 1.

Using more elaborate representations v1, v2 ∈ {−2, . . . , 2}n of the ternary
secret key, we further improve as visualized by the solid green line (Increased Rep.)
in Figure 1. Especially, we obtain a memory-less T = 30.671n-algorithm, and a
natural interpolation to the exponent point (0.5, 0.5) from MitM. For larger values
of m ∈ {2, 3} we observe that the runtime exponent c in T = (2m + 1)cn, actually
improves, we obtain for example memory-less algorithms with time 50.629n (m = 2)
and 70.618n (m = 3).

Limitations of our approach. Since all our algorithms are based on collision
finding techniques, their expected run times are proven under the standard mild
heuristic that the constructed functions behave like random functions with respect
to collision search.

Moreover, we assume throughout the paper for sake of simplicity that a random
ternary secret key v ∈ {−1, 0, 1}n achieves its expected number of n/3 entries for
each of −1, 0, and 1, respectively, i.e., an equal weight distribution.

However, these limitations are no serious restrictions. First, keys with equal
weight distribution have maximal entropy among all ternary keys and thus
constitute the worst-case for the standard MitM algorithm (over which we improve).
Second, it is not hard to see that keys with equal weight distribution amount to a
polynomial fraction of all ternary keys. And last but not least, we show that for
almost all randomly chosen ternary keys one can with sub-exponential overhead
always enforce an equal weight distribution.

Potential Impact of Our Representation-based Results. Current efficient CSIDH-
proposals like [17] define security levels with a memory complexity M significantly
smaller than their run time complexity T . For instance [17] suggests 3 parameters
sets with

(M1, M2, M3) = (280, 2100, 2119) and (T1, T2, T3) = (2128, 2128, 2192)

for achieving NIST security level L1, L2, L3, respectively. The authors of [17]
use a PCS-based approach for their analysis. Assuming that PCS has similar
polynomial overheads as our representation method (which is certainly a complex-
ity underestimation of the latter), for memories M1, M2, M3 our representation
method yields a reduced security level by 4.5, 8 and 13 bit, respectively.
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Whether security bit reductions of these orders can be achieved in practice
has to be validated by experiments, which are out of the scope of this work.

Organisation of our paper. In Section 2 we recall the definition of Restricted Ef-
fective Group Actions (REGA) and present a REGA-based key exchange modelling
CSIDH. Further we define REGA-DLOG, the main hardness problem underly-
ing this scheme, and its small key variant REGA-DLOGm. We also show that
REGA-DLOG1 is hardest with ternary keys from {−1, 0, 1}n.

In Section 3 we generalize known cryptanalytic results such as a Pollard-
style algorithm (Section 3.1), MitM (Section 3.2), and Parallel Collision Search
(Section 3.3) to REGA-DLOGm.

In Sections 4.1 and 4.2 we introduce representation-based algorithms for
REGA-DLOG1, and provide a more elaborate version in Section 4.3 . The case of
keys with non-equal weight distribution is discussed in Section 4.4. Section 4.5
addresses REGA-DLOGm for larger m = 2, 3. Eventually, in Section 4.6 we discuss
the possible practical impact of the attack.

2 Preliminaries

The Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) protocol [15] is a
promising candidate for quantum-secure cryptography. Similar as its predecessor,
the Couveignes-Rostovtsev-Stolbunov (CRS) scheme [20, 42], it is based on a
commutative group action G ×X → X . While the underlying mathematics is quite
involved, there exists a simple abstraction in the framework of cryptographic group
actions. This framework was first introduced by Couveignes [20] under the name
hard homogenous spaces. A more modern treatment is given in [3]. In particular
the latter work also introduces restricted effective group actions (REGA) which
model the properties of the CSIDH-based group action more closely, hence we
use that framework in our analysis.

2.1 Restricted Effective Group Actions

This part follows the description of restricted effective group actions in [3] with
some small modifications explained in Remark 2.2.

Definition 2.1 (Group Action). Let (G, ◦) be a group with identity element
id ∈ G, and X a set. A map

⋆ : G × X → X

is a group action if it satisfies the following properties:

1. Identity: id ⋆x = x for all x ∈ X .
2. Compatibility: (g ◦ h) ⋆ x = g ⋆ (h ⋆ x) for all g, h ∈ G and x ∈ X .

Remark 2.1. In practice, one often requires that a group action is regular. This
means that for any x, y ∈ X there exists precisely one g ∈ G satisfying y = g ⋆ x.
For instance, this is the case for the CSIDH group action which we discuss in
Section 2.3.
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Definition 2.2 (Effective Group Action). Let (G, X , ⋆) be a group action
satisfying the following properties:

1. The group G is finite, commutative, and there exist efficient (PPT) algorithms
for membership and equality testing, (random) sampling, group operation and
inversion.

2. The set X is finite and there exist efficient algorithms for membership testing
and to compute a unique representation.

3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm to evaluate the group action, i.e., to compute

g ⋆ x given g and x.

Then we call x̃ ∈ X the origin and (G, X , ⋆, x̃) an effective group action (EGA).

In practice, the requirements from the definition of EGA are often too strong. The
limitations are reflected in the weaker notion of restricted effective group actions.

Definition 2.3 (Restricted Effective Group Action). Let (G, X , ⋆) be a
group action and let g = (g1, ..., gn) be a set of elements in G and denote H =
⟨g1, . . . , gn⟩ for the subgroup generated by these elements. Assume that the following
properties are satisfied:

1. The group G is finite, commutative, and n = poly(log(#H)).
2. The set X is finite and there exist efficient algorithms for membership testing

and to compute a unique representation.
3. There exists a distinguished element x̃ ∈ X with known representation.
4. There exists an efficient algorithm that given gi ∈ g and x ∈ X , outputs gi ⋆ x

and g−1
i ⋆ x.

Then we call (G, H, X , ⋆, x̃) a restricted effective group action (REGA).

Remark 2.2. Note that our definitions for EGA and REGA slightly differ from
those in [2]. First, we require that the underlying group G is commutative. This
allows us to formulate a group action based Diffie-Hellman protocol and it is the
only relevant case for our analysis. Second, we dropped the condition that the set
(g1, . . . , gn) in the definition of REGA is a generating set for G. This is necessary
to include CSIDH as a possible instantiation of a REGA. In that setting, it is an
open problem to determine a (compact) set of generators for the entire group G.
But heuristically a set of generators for a large subgroup H ⊂ G is known. More
details are provided in Section 2.3.

Vector representation. Let (G, H, X , ⋆, x̃) be a REGA with g = (g1, . . . , gn). Ele-
ments in H can be represented as vectors v ∈ Zn under the mapping ϕ : Zn → H,
where

ϕ : v = (v1, . . . , vn) 7→
n∏

i=1
gi

vi .

Note that this representation depends on the choice of generating set g for H.
And even fixing a set g, the representation is not unique. More precisely, the
kernel of the map ϕ is a lattice in Zn which is in general not known explicitly.
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Via the map ϕ, we define the action of Zn on X . Slightly abusing notation, we
denote v ⋆ x = ϕ(v) ⋆ x. Given a vector v ∈ Zn, the action v ⋆ x can be efficiently
evaluated for any x ∈ X provided that the norm ∥v∥ is polynomial in log(#H).

We highlight the following properties of the group action that will become
important in our analysis. For any u, v, w ∈ Zn and x, y ∈ X it holds that

– v ⋆ (u ⋆ x) = (u + v) ⋆ x = u ⋆ (v ⋆ x),
– y = (u + v) ⋆ x implies v ⋆ x = −u ⋆ y,
– x = v ⋆ (−v ⋆ x),
– if w ⋆ x = (u + v) ⋆ y, then (w − v) ⋆ x = u ⋆ y.

These properties immediately follow from the fact that ⋆ : Zn × X → X is a
commutative group action.

Random sampling. In applications, it is often required to sample elements from H.
If the structure of H (in other words ker(ϕ)) is not known explicitly, then it is not
possible to sample elements uniformly at random. Instead, vectors are sampled
from some finite subset S ⊂ Zn. For a perfect uniform sampling, the map ϕ|S

would need to be bijective. In practice, one often uses S = {−m, . . . , m}n ⊂ Zn

for some positive integer m. Here, m should be chosen small enough so that for
two random vectors v, w ∈ S the probability for v − w ∈ ker(ϕ) is low. Note
that this also requires that the generators g1, . . . , gn are evenly distributed in the
group. On the other hand, if one intends to sample from a large portion of the
whole group H, then m must be large enough so that ϕ|S

is (almost) surjective.
However, in some settings it is sufficient to sample elements only from a small
part of the group. We already note that this is the case for the key spaces studied
in our paper.

2.2 Cryptographic Group Actions and Computational Assumptions

Given an effective group action (G, X , ⋆, x̃) one can construct a Diffie-Hellman
key exchange. The setup chooses a distinguished element x0 ∈ X . Then the
secret keys of Alice and Bob are group elements ga, gb ∈ G respectively, and the
corresponding public keys are xa = ga ⋆ x0 and xb = gb ⋆ x0. Now the shared key
can be computed as xab = ga ⋆ xb = gb ⋆ xa. For this protocol to be secure, the
following two problems need to be hard.

1. GA-DLOG: Given (x, y) ∈ X 2, determine g ∈ G such that y = g ⋆ x.
2. GA-CDH: Given (x, y, z) ∈ X 3, determine w ∈ X such that there exists g ∈ G

with y = g ⋆ x and w = g ⋆ z.

These problems are the natural generalizations of the discrete logarithm problem
and the computational Diffie-Hellman problem in the classical prime-order group
setting. As in [3], we refer to group actions satisfying these hardness assumptions
as cryptographic group actions.

In the REGA setting the random sampling of group elements (i.e. secret keys)
is not straightforward. A variant of the Diffie-Hellman key exchange adapted to
this setting is described in Figure 2. In essence, this is an abstract description of
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the CSIDH protocol introduced in [15], see also Section 2.3. The security of this
key exchange not only relies on the hardness of GA-DLOG and GA-CDH for the
group G,4 but also on the following variant of GA-DLOG which takes into account
the choice of the secret keyspace.

Setup: A REGA (G, H, X , ⋆, x̃) with g = (g1, . . . , gn) and a finite set SK ⊂ Zn.
Key generation: Alice generates a private key a ∈ SK and computes the public key
xa = a ⋆ x̃. Analogously, Bob generates a private key b ∈ SK and computes the public
key xb = b ⋆ x̃.
Key exchange: Upon receiving Bob’s public key, Alice computes Ka = a ⋆ xb and
similarly Bob computes Kb = b ⋆ xa. Note that

a ⋆ xb = a ⋆ (b ⋆ x̃) = (a + b) ⋆ x̃ = (b + a) ⋆ x̃ = b ⋆ (a ⋆ x̃) = b ⋆ xa,

hence Ka = Kb is the shared secret.

Fig. 2: A REGA-based Diffie-Hellman protocol.

Definition 2.4 (REGA-DLOGSK). Let (G, H, X , ⋆, x̃) be a REGA with g =
(g1, . . . , gn) and SK ⊂ Zn a finite subset. Given (x, y) ∈ X 2, determine v ∈ SK
such that y = v ⋆ x if such a vector v exists.

We say that the tuple (G, H, X , ⋆, x̃, g, x, y) is an instance of the
REGA-DLOGSK. In the special case where SK = {−m, . . . , m}n for some m ∈ N,
we write REGA-DLOGm for short.

Remark 2.3. Breaking the REGA-DLOGSK assumption corresponds to recovering
the secret key of the REGA-based Diffie-Hellman scheme described in Figure 2. We
would like to point out that in order to break the scheme, it is sufficient to recover
any (compact) vector representation of the secret key. More precisely, if a ∈ SK is
Alice’s secret key and an attacker finds some â ∈ Zn that satisfies ϕ(â) = ϕ(a) ∈ H,
then he can compute the shared key as Kâ = â ⋆ xb = a ⋆ xb = Ka. Of course,
this further requires that the evaluation â ⋆ xb is efficiently computable.

In the following we compare the keyspace SK = {−m, . . . , m}n to other choices
from the literature of same cardinality. In particular the next lemma shows that
it suffices to focus on the analysis of REGA-DLOGm among these choices.

Lemma 2.1. Let (G, H, X , ⋆, x̃) be a REGA with g = (g1, . . . , gn). Let m ∈ N
and consider SK1 = {−m, . . . , m}n, SK2 = {0, . . . , 2m}n, SK3 = {−2m, −2(m −
1), . . . , 2m}n.

1. Then REGA-DLOGSK1 and REGA-DLOGSK2 are equivalent.

Further let H̃ = {g ◦ g | g ∈ H} ⊂ H, and g̃ = (g̃1 = g1 ◦ g1, . . . , g̃n = gn ◦ gn).
4 More precisely, it relies on slightly modified versions of the problems, where the

adversary additionally knows that there exists a solution with g ∈ H ⊂ G.
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2. An instance (G, H, X , ⋆, x̃, g, x, y) of REGA-DLOGSK3 can be transformed to
an instance

(
G, H̃, X , ⋆, x̃, g̃, x, y

)
of REGA-DLOGSK1 .

3. In particular if #H is odd, then REGA-DLOGSK3 reduces to REGA-DLOGSK1 .

Proof. Let (G, H, X , ⋆, x̃, g, x, y) be an instance of REGA-DLOGSK1 . Define
y′ = m ⋆ y, where m = (m, . . . , m) ∈ Zn. Then w ∈ {0, . . . , 2m}n solves
REGA-DLOGSK2 on input (G, H, X , ⋆, x̃, g, x, y′) if and only if v = w − m solves
REGA-DLOGSK1 on input (G, H, X , ⋆, x̃, g, x, y). In the same way, any instance
of REGA-DLOGSK2 can be transformed to an instance of REGA-DLOGSK1 . This
proves the first part of the lemma.

Now consider an instance (G, H, X , ⋆, x̃, g, x, y) of REGA-DLOGSK3 . Let G̃ and
g̃ as defined in the statement of the lemma. Note that H̃ is a subgroup of H,
and g̃ is a generating set for this group. Moreover if a solution v ∈ SK3 to the
REGA-DLOGSK3 instance exists, then ϕ(v) ∈ H̃. As explained in Section 2.1, the
vector representation of group elements depends on the choice of generators. For a
vector v = (v1, . . . , vn) ∈ SK3, we define ṽ = ( v1

2 , . . . , vn

2 ) ∈ SK1. Then the vectors
v and ṽ represent the same element in H̃ ⊂ H with respect to g and g̃ respectively.
In other words

∏n
i=1 gvi

i =
∏n

i=1 g̃i
ṽi ∈ H̃. In particular v solves REGA-DLOGSK3

on input (G, H, X , ⋆, x̃, g, x, y) if and only if ṽ solves REGA-DLOGSK1 on input(
G, H̃, X , ⋆, x̃, g̃, x, y

)
.

If #H is odd, then H̃ = H and X̃ = X . This observation implies the last part
of the lemma. ⊓⊔

Remark 2.4. Note that in general, REGA-DLOGSK3 and REGA-DLOGSK1 are not
equivalent even if #H is odd. To see this, consider an instance (G, H, X , ⋆, x̃, g, x, y)
of REGA-DLOGSK1 . Theoretically, this can be transformed to the instance
(G, H, X , ⋆, x̃, g̃, x, y) of REGA-DLOGSK3 , where g̃ = (√g1, . . . ,

√
gn). Here √

g
denotes the (unique) element in G satisfying √

g ◦ √
g = g. There are two issues

with this transformation:

– It is not clear how to compute the elements √
gi for i ∈ {1, . . . , n}.

– If the group structure is known, one can compute √
gi = g

(ri+1)/2
i , where

ri = ord(gi). However the integers ri are only bounded by #H, hence the
evaluation of √

gi ⋆ x for some x ∈ X might require exponential time.

2.3 Isogeny-based REGAs

An important instantiation of REGAs is provided by isogeny-based group actions.
Here, we explain the Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)
group action.

Let p be a large prime of the form p = 4 · ℓ1 · · · ℓd − 1, where the ℓi are small
distinct odd primes. Fix the elliptic curve E0 : y2 = x3 + x over Fp. The curve E0
is supersingular and its Fp-rational endomorphism ring is O = Z[π], where π is
the Frobenius endomorphism.5 Let Eℓℓp(O) be the set of Fp-isomorphism classes
5 Note that we later use O also in the context of standard Landau notation for

complexity statements, however, its meaning will be clear from the context.
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of elliptic curves defined over Fp, with endomorphism ring O. In our setting, an
equivalent definition is

Eℓℓp(O) = {EA : y2 = x3 + Ax2 + x | A ∈ Fp and EA is supersingular}.

The ideal class group cl(O) acts on the set Eℓℓp(O), i.e., there is a map

⋆ : cl(O) × Eℓℓp(O) → Eℓℓp(O)
([a], E) 7→ [a] ⋆ E,

satisfying the properties from Definition 2.1 [15, Theorem 7].
The set

g = ([l1], . . . , [ln]) , where li = (ℓi, π − 1) ◁ O, for some n ≤ d

generates a large subgroup H ⊂ cl(O). The analysis in the original CSIDH
paper [15] already implies that under some heuristics (cl(O), H, Eℓℓp(O), ⋆, E0 ) is
a REGA. We summarize the most important properties.

1. # cl(O) ≈ #H ≈ √
p.

2. Elements in Eℓℓp(O) can be efficiently represented by their Montgomery
coefficient A ∈ Fp. Given A ∈ Fp, one can efficiently test whether EA ∈ Eℓℓp(O)
using [15, Algorithm 1].

3. The distinguished element is x̃ = E0.
4. The expressions [li] ⋆ E and [li]−1 ⋆ E may be efficiently evaluated for any

elliptic curve E ∈ Eℓℓp(O) and any i ∈ {1, . . . , n} ( [15, §3]).

Elements of the group H are represented as vectors v ∈ Zn. With this
notation, the CSIDH protocol corresponds precisely to the REGA-based protocol
from Figure 2. As secret keyspace SK, the original paper [15] suggests n = d
and SK = {−m, . . . , m}n, where m is chosen such that n log(2m + 1) ≈ log(√p).
Hence, key recovery in CSIDH corresponds to solving REGA-DLOGm. We note
that here the choice of g = ([l1], . . . , [ln]) guarantees that sampling from this
keyspace heuristically corresponds to a close to uniform sampling in the group H.

For higher security parameters (e.g., a prime field of at least 2048 bits), follow-
up papers [16,17] suggest to sample the vectors from smaller sets. For instance, it
is suggested to use n < d and sample vectors from

SK1 = {−1, 0, 1}n, SK2 = {0, 1, 2}n, or SK3 = {−2, 0, 2}n.

As a consequence, the public key set {v ⋆ x̃ : v ∈ SKj} is only a subset of Eℓℓp(O)
for j := 1, 2, 3. Further, notice that # cl(O) and in particular G are odd, hence
Lemma 2.1 implies that the corresponding REGA-DLOG problems are equivalent
for the keyspaces SK1 and SK2, and as least as hard as for SK3.

3 Adapting Techniques to the REGA-DLOGm Setting

Let (G, H, X , ⋆, x̃, g, x, y) be an instance of the REGA-DLOGm problem. Using
the abstract framework of cryptographic group actions, we present different
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(classical) algorithms to solve this problem. These algorithms are well-known in
the isogeny-based setting and have been used in the cryptanalysis of CSIDH.

In the following, let N = #H (a possibly unknown) integer and Nm = (2m+1)n.
In the most recent proposals for CSIDH, we are in the situation where the secret
keyspace is much smaller than the group, i.e., Nm ≪ N . In this case the best
known attacks are a meet-in-the-middle (Section 3.2), and parallel collision search
(Section 3.3) approach. For completeness, we also mention that there exists a
memory-less Pollard-style algorithm (Section 3.1) with running time in O(

√
N)

which is preferable if Nm ≈ N .

3.1 Pollard-style random walks: A Galbraith-Hess-Smart adaptation

There exists a random walk approach to find a solution v ∈ Zn (of possibly large
norm) in time O(

√
N) using only a polynomial amount of memory.

The random walks will be defined by two deterministic functions

f : X → {1, . . . , n}, σ : X → {−1, +1}.

In the first stage of the algorithm, we set x0 = x and v0 = 0 ∈ Zn. Then a
walk of length T ≈

√
N is iteratively computed as

xi+1 = g
σ(xi)
f(xi) ⋆ xi, vi+1 = vi + σ(xi)ef(xi),

where ei is the i-th canonical vector. The pair (xT , vT ) is stored.
In the second stage, we set y0 = y and w0 = 0 ∈ Zn. Then one computes

yi+1 = g
σ(yi)
f(yi) ⋆ yi, wi+1 = wi + σ(yi)ef(yi)

until yS = xT for some S. Then (vT − wS) ⋆ x = y. Note that most likely
vT − wS /∈ {−m, . . . , m}n, so subject to our definitions it is not a solution to
REGA-DLOG. For the solution to be useful, one additionally needs a reduction
algorithm red which on input v ∈ Zn computes an element red(v) of small norm
so that red(v) ⋆ x can be evaluated efficiently. In isogeny based group action
settings such reduction methods are available. And the corresponding Pollard-style
algorithm was first described by Galbraith, Hess, and Smart [25, Section 3]. Note
that for the runtime analysis it is necessary that sampling vectors of small norm
in Zn corresponds to (close to) uniform sampling of group elements in H as is the
case for CSIDH.

3.2 Meet-in-the-Middle (MitM)

The best known attack on REGA-DLOGm is a meet-in-the-middle-attack with
time and memory complexity in O(

√
Nm). To describe the idea, we introduce the

two sets

Sm,0 := {−m, . . . , m} n
2 × {0} n

2 , Sm,1 := {0} n
2 × {−m, . . . , m} n

2 .

These are disjoint subsets of Sm = {−m, . . . , m}n of size
√

Nm each. Moreover,
any element v ∈ Sm has a unique representation as v0 + v1 with v0 ∈ Sm,0 and
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v1 ∈ Sm,1. So given two set elements x, y ∈ X , the problem of finding v ∈ Sm

with y = v ⋆ x reduces to finding vectors v0 ∈ Sm,0 and v1 ∈ Sm,1 with

v0 ⋆ x = (−v1) ⋆ y. (1)

The time T and memory complexity M of this procedure are linear in the size
of the subsets |Sm,0| = |Sm,1|, and therefore gives T = M = O(

√
Nm). Concretely,

for v being chosen from a ternary alphabet we have T = M = O(3 n
2 ).

In practical applications the memory requirements of the MitM approach
usually render it ineffective and require to resort to time-memory trade-offs. The
naive trade-off for the MitM algorithm given W units of memory processes the
subset Sm,0 in batches of size W . For each batch it iterates through all candidates
x1 ∈ Sm,1 for v1 and checks for a match in the current batch. If no match is found
it continues with the next batch. Straightforward analysis shows that this reduces
the memory to Õ (W ), while increasing the time complexity to Õ (Nm/W ).

However, in the limited memory setting the Parallel Collision Search (PCS)
technique by van Oorschot and Wiener is known to offer a better trade-off behavior.

3.3 Parallel Collision Search (PCS)

PCS is a technique to accelerate the search for multiple collisions between two
functions f0 and f1 by the use of memory. A single collision between functions
f0, f1 with domain D can be found in time Õ

(√
|D|
)

using a polynomial amount
of memory by standard techniques. The PCS algorithm now allows to find W

collisions in time Õ
(√

|D| · W
)

using Õ (W ) memory. This yields a Õ
(√

W
)

speedup over naive repetition of the memory-less procedure. We formalize this in
the following lemma.

Lemma 3.1 (Parallel Collision Search). Let fi : Di → D with |Di| = |D|,
i = 0, 1 be two random functions that can be evaluated in time polynomial in
log D. Then there is an algorithm that returns W collisions between f0 and f1 in
time T = Õ

(√
|D| · W

)
using M = Õ (W ) memory.

Here we do not want to dive into the details on how the technique achieves the
acceleration, for those details the reader is referred to [46]. Instead we want to
focus on its application to the REGA-DLOGm or more specifically to the CSIDH
case. Therefore we first reformulate the search for v0 and v1 as a collision search
procedure. Let S

n/2
m := {−m, . . . , m} n

2 and H : {0, 1}∗ → S
n/2
m be a hash function.

Further, define the functions fi : Sm,i → S
n/2
m , i = 0, 1 as

f0 : v 7→ H(v ⋆ x) and f1 : v 7→ H
(
(−v) ⋆ y

)
. (2)

Now clearly v0 and v1 form a collision between f0 and f1 (compare to Equa-
tion (1)). However, not every collision (x0, x1) between f0 and f1 leads to v, as
the collision might only be a collision in the hash function H, but not necessarily
implying that x0 ⋆ x = (−x1) ⋆ y. In order to find the single distinguished (of-
ten called golden) collision (v0, v1) that leads to v we, therefore, have to find
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all collisions between f0 and f1. Now, instead of naively applying the standard
memory-less collision search multiple times we make use of PCS to find W colli-
sions at a time using W units of memory. We outline this procedure in pseudocode
in Algorithm 1.

Algorithm 1: PCS-Tradeoff to solve REGA-DLOGm

Input : Functions fi : Di → D, i = 0, 1 with |Di| = |D|, W units of memory,
instance (G, H, X , ⋆, x̃, g, x, y) of the REGA-DLOGm

Output : solution v to the REGA-DLOGm instance (x, y) satisfying y = v ⋆ x
1 repeat
2 find W collisions (wi, zi) between f0, f1 using PCS
3 until ∃j : y = (wj + zj) ⋆ x
4 return wj + zj

Analysis. Let us briefly analyze the correctness of the procedure. For the functions
f0, f1 defined in Equation (2), we have already shown that the pair of inputs
(v0, v1), with v = v0 + v1 forms a collision. Therefore the algorithm can succeed
in recovering v = v0 + v1 by finding random collisions between those functions.

Next let us analyze the running time. As already observed, we need to recover all
collisions between the functions to guarantee to find the distinguished collision that
leads to v. Further, we expect a total amount of C = |D| =

√
Nm collisions between

f0 and f1. Therefore after poly(n) ·
√

Nm/W applications of the PCS technique,
each yielding W collisions, we gathered a total of poly(n) ·

√
Nm collisions. Under

a standard assumption that treats those collisions as randomly sampled from the
set of all collisions, we found each collision between f0 and f1 with high probability
using a standard coupon collectors argument. This implies especially that we
found the distinguished collision (v0, v1) and the algorithm terminates. Each of
the Õ

(√
Nm/W

)
comes at a cost of Õ

(√√
Nm · W

)
(compare to Lemma 3.1),

yielding a running time of

TPCS = Õ

(
(Nm) 3

4
√

W

)
,

while the memory complexity is given as M = Õ (W ).

4 A New Time-Memory Trade-Off using Representations

In the following we make use of the representation technique to improve the time-
memory trade-off behavior of the PCS technique in the REGA setting. Therefore
we first re-define the used functions to use larger domains. At first sight, this
comes at the downside of increasing the cost for the collision search procedure.
However, by carefully choosing the new domains we guarantee that there are
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several collisions (xi, yi), i = 1, . . . , N that allow to recover the secret v. In turn
it is not necessary to compute all existing collisions but only a 1/N -fraction to
find one of these distinguished collisions and recover v, which overall results in
a runtime advantage. Motivated by recent proposals to use ternary key spaces
and for didactic reasons we first concentrate on the case of m = 1. Moreover, in
Sections 4.1 to 4.3, we assume that the solution to REGA-DLOG1 has the same
number of (−1)-, 0-, and 1-entries. Generalizations to the case of arbitrary weight
distribution and arbitrary m are given in Section 4.4 and Section 4.5, respectively.

4.1 A First Representation-based Approach

We start with a (slightly) sub-optimal variant of our algorithm for didactic reasons.
In the following sections we then subsequently refine this initial algorithm.

Let the set of ternary vectors of length n with exactly αn ±1 entries each be
defined as

T n(α) := {x ∈ {−1, 0, 1}n | x contains exactly αn (+1) and αn (−1) entries}.

Now we start by redefining the functions over different domains as

f0, f1 : T n(α) → T n(α). (3)

Apart from this the functions remain as specified in Equation (2) , where the hash
function is now defined on H : {0, 1}∗ → T n(α) and α ∈ J0, 1K is an optimization
parameter.

Our algorithm now again searches for collisions between f0, f1 via the PCS
strategy, until a collision (x0, x1) with x0 + x1 = v is found. A pseudocode
description is obtained by using the re-defined functions together with m = 1 as
input for Algorithm 1.

Analysis. Recall that a collision (x0, x1) in f is either caused by a collision in the
hash function, i.e., x0 ⋆ x ̸= (−x1) ⋆ y, but H(x0 ⋆ x) = H

(
(−x1) ⋆ y

)
or we have

x0 ⋆ x = (−x1) ⋆ y ⇔ (x0 + x1) ⋆ x = y,

In the latter case we call the collision real and conclude that x0 + x1 = v, since v
is sufficiently unique. This implies that any real collision leads to recovering v.

Next, let us analyze the amount of real collisions (x0, x1). For this it suffices
to analyze the amount of x0, x1 ∈ T n(α) which satisfy x0 + x1 = v. Those pairs
(x0, x1) are usually called representations of v. Note that the amount of these
representations of v ∈ T n(1/3) is

R =
(

n/3
n/6

)2(
n/3

ε, ε, n/3 − 2ε

)
,

where ε = (α − 1
6 )n. Here the binomial coefficient counts the possibilities how n

6
of the 1 (resp. −1) entries of v can be contributed from x0, while the remaining
n
6 1 (resp. −1) entries have to be present in x1. The multinomial coefficient then
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counts the possibilities how the remaining 1s and −1s can cancel out to represent
the 0s in v. Since our choice of α will ensure R ≥ 1 the algorithm can succeed in
recovering v by sampling random collisions between f0 and f1

Let us now analyze the time complexity. We expect that after computing
C
R random collisions we encounter one that forms a representation of v, where
C is the total amount of existing collisions. Again we expect a total number of
C = |T n(α)| collisions. Further, under the standard assumption that the functions
still behave like random functions with respect to collision search, a single collision
can be found in time

T1 := Õ
(√

|T n(α)|
)

= Õ

((
n

αn, αn, (1 − 2α)n

) 1
2
)

and using Lemma 3.1 we can find W collisions in time TW =
√

W · T1 using
M = Õ (W ) memory. Computing the required C

R collisions using M = Õ (W )
memory therefore takes expected time

T = Õ
(

C

R · W
· TW

)
= Õ

(
|T n(α)| 3

2

R ·
√

W

)
,

as long as C
R ≥ W .

To obtain a running time of the form T = Õ
(
3c(α)n

)
we approximate the

binomial and multinomial coefficients in T using the well known approximation(
n

k

)
= Θ̃

(
2nH(k/n)

)
, (4)

where H(x) := −x log2(x) − (1 − x) log2(1 − x) denotes the binary entropy
function. We then perform a numerical optimization using the python library
scipy to find the optimal α for a given amount of memory W = 3ωn, ω ∈ J0, 0.5K.
We apply this strategy for all our representation based algorithms and provide
our optimization code in the supplementary material. The way we access the
numerical optimization framework is inspired by the code of Bonnetain, Bricout,
Schrottenloher ans Shen [9].

We illustrate the obtained runtime exponent as a function of the available
memory in Figure 3 and give as comparison the standard PCS exponent and the
naive MitM trade-off. For an available memory that is only polynomial in n, i.e.,
ω = 0 we improve the running time from Õ

(
30.75n

)
to 30.675n. In turn this leads

to an improved trade-off with time complexity T = 30.675n/M0.5 for any available
memory M ≤ 30.22n. From there on the optimal choice of α does not fulfill the
constraint C

R ≥ W . However, by slightly adapting the choice of α it is possible
to enforce C

R ≥ W up to W < 30.265n. From there on more memory does not
translate into a runtime advantage, as indicated by the horizontal dotted line.

4.2 Interpolation using Partial Representations

In order to interpolate between the standard PCS technique and our representation
based method from the previous section we adapt in the following the concept of
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Fig. 3: Complexity of PCS, MitM and the representation-based trade-off

partial representations introduced independently in [13,23] to our setting. In turn
this allows us to achieve runtime improvements for W ≥ 30.265n.

So far both methods – standard PCS as well as our representation approach
– split the secret v in the sum of two vectors x0 and x1. For the standard PCS
technique the vectors x0 and x1 have disjoint support, while for the representation
method the support overlaps. Partial representations now combine both cases by
introducing an additional optimization parameter δ ∈ J0, 1K that defines how big
the fraction of overlapping support of both vectors is. More precisely the secret
v ∈ {−1, 0, 1}n is split as

v = (y0, 0, z0)︸ ︷︷ ︸
x0

+ (0, y1, z1)︸ ︷︷ ︸
x1

= (y0, y1, z0 + z1)

with y0, y1 ∈ {−1, 0, 1}
(1−δ)n

2 and z0, z1 ∈ T δn(α), where α is again an optimiza-
tion parameter. That means the vectors x0 and x1 have disjoint support on the
first (1 − δ)n coordinates, while on the last δn their support overlaps.

Let us now re-define the functions f0, f1 according to partial representations.
Therefore we use the following sets as domains

D0 := T
(1−δ)n

2 (1/3)× {0}
(1−δ)n

2 × T δn(α) and

D1 := {0}
(1−δ)n

2 × T
(1−δ)n

2 (1/3) × T δn(α),
(5)

and define the common image space as D := T
(1−δ)n

2 (1/3) × T δn(α). Leading to
the functions

fi : Di → D, i = 0, 1. (6)

Again the concrete definition of the functions remains as given in Equation (2),
where we now require a hash function H : {0, 1}∗ → D.

In the following we use Algorithm 1 with our adapted functions from Equa-
tion (6) and m = 1.

Analysis. The correctness follows from the analysis of the previous section and
the fact that our choice of parameters will ensure that there is at least one real
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collision, i.e. a representation of the solution or following the notation of the
previous section R ≥ 1.

Let us, hence, start by analyzing the, now changed, amount of representations
R. Note, that on the first (1 − δ)n coordinates, where elements from D0 and D1
have disjoint support, we have only a single possible decomposition of any element
in T

(1−δ)n
2 (1/3) × T

(1−δ)n
2 (1/3). Therefore we assume that the solution v lies in

T
(1−δ)n

2 (1/3) × T
(1−δ)n

2 (1/3) × T δn(1/3),

meaning the 1 and −1 entries distribute according to their expectation propor-
tionally onto the three segments of length (1−δ)n

2 , (1−δ)n
2 and δn. However, in the

following we show that ensuring such a distribution of the coordinates causes at
most a polynomial overhead.

Note that the probability over the random choice of v ∈ T n(1/3) for v having
a proportional coordinate distribution over the three segments is( (1−δ)n

2
(1−δ)n

6 ,
(1−δ)n

6 ,
(1−δ)n

6

)2(
δn

δn/3,δn/3,δn/3
)

(
n

n/3,n/3,n/3
) = 1

poly(n) ,

which follows from approximating the binomial coefficients via Equation (4). Note
that by randomly permuting the order of the generators of G we can obtain
independent uniform distributions of the 1 and −1 entries on v, each having
a probability of 1

poly(n) to distribute the coordinates as required. Therefore we
expect poly(n) repetitions of the algorithm with random permutations of the
generators to ensure this distribution in at least one of the executions.

On the last δn coordinates of elements from xi ∈ Di, we obtain multiple
representations of v = x0 + x1 as sum of two elements. Similar to the analysis
in the previous section the amount of such representations of one element from
T δn(1/3) as the sum of two elements from T δn(α) is given as

R =
(

δn/3
δn/6

)2(
δn/3

ε, ε, δn/3 − 2ε

)
,

where ε = (α − 1
6 )δn.

The complexity analysis follows along the lines of the analysis in Section 4.1
with the difference that a single collision search now comes at the cost of

T1 = Õ
(√

|D|
)

= Õ

(( (1−δ)n
2

(1−δ)n
6 , (1−δ)n

6 , (1−δ)n
6

)(
δn

αδn, αδn, (1 − 2α)δn

)) 1
2
 .

The final complexity is then analogously given as T = Õ
(

C
R·W · TW

)
=

Õ
(

|D|
3
2

R·
√

W

)
, as long as C

R ≥ W , where still TW =
√

W ·T1. The memory complexity

is still dominated by the application of the PCS with M = Õ (W ).
In Figure 4 we illustrate the asymptotic running time exponent obtained by

numerical optimization of α, δ as a function of the memory. We observe that
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partial representations enable a smooth interpolation between the representation
method from Section 4.1 and the PCS technique (Section 3.3), while providing
improvements over both methods for any 30.25n ≤ M < 30.4n.
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Fig. 4: Complexity of PCS, the representation trade-off, and partial representations.

4.3 Increasing the Amount of Representations

In the following we again slightly adapt the domains of the functions to include
elements with coordinates in {−2, . . . , 2} rather than {−1, 0, 1}. While, as before,
this increases the size of the domains and, hence, the time for the collision
search, it also yields an increased amount of representations, leading to a runtime
improvement.

Note that in terms of representations any −1 can additionally be represented
as −2 + 1 (resp. 1 + (−2)), accordingly any 1 as −1 + 2 (resp. 2 + (−1)) and any
0 as −2 + 2 (resp. 2 + (−2)). Let the set of vectors with αn ±1 entries each and
β ±2 entries each be denoted as

T n(α, β) := {x ∈ {−2, . . . , 2}n | |x|1 = |x|−1 = αn ∧ |x|2 = |x|−2 = βn}, (7)

where |x|i = |{j ∈ {1, . . . , n} | xj = i}|.
We now adapt the domains of the previous section, i.e., we still use partial

representations, but now also including −2 and 2 entries. Therefore let the new
domains be

D̃0 := T
(1−δ)n

2 (1/3)× {0}
(1−δ)n

2 × T δn(α, β) and

D̃1 := {0}
(1−δ)n

2 × T
(1−δ)n

2 (1/3) × T δn(α, β),
(8)

and re-define the common image space as D̃ := T
(1−δ)n

2 (1/3) × T δn(α, β), where
δ ∈ J0, 1K is subject to optimization and α, β are determined later. The functions
are then defined over

fi : D̃i → D̃, i = 0, 1, (9)
with their precise mapping still as given in Equation (2), requiring now a hash
function H : {0, 1}∗ → D̃.
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We now analyze the complexity of Algorithm 1 with input m = 1 and functions
as specified in Equation (9).

Analysis. The analysis again follows along the lines of the analysis of the previous
section with the main difference lying in the amount of representations R and
the now increased domain size |D̃|. Let us start by examining the amount of
representations R. We, again, assume v to be from T

(1−δ)n
2 (1/3) × T

(1−δ)n
2 (1/3) ×

T δn(1/3), which we ensure by random permutations of the generators leading
to polynomial overhead. In turn there exists exactly one decomposition of v in
the sum of two elements from D̃1 and D̃2 with respect to the the first (1 − δ)n
coordinates. Multiple representations only exist for the last δn coordinates. We
have the following possibilities to represent a −1, 0 and 1 entry in v = x0 + x1

0 : 0 + 0︸ ︷︷ ︸
z0

, 1 − 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2 − 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

,

1 : 1 + 0︸ ︷︷ ︸
δn
6 −o

, 0 + 1︸ ︷︷ ︸
δn
6 −o

, 2 − 1︸ ︷︷ ︸
o

, −1 + 2︸ ︷︷ ︸
o

,

−1 : −1 + 0︸ ︷︷ ︸
δn
6 −o

, 0 − 1︸ ︷︷ ︸
δn
6 −o

, −2 + 1︸ ︷︷ ︸
o

, 1 − 2︸ ︷︷ ︸
o

.

(10)

Here the variable below each of the representations specifies how often we want
to use the corresponding representation to represent a corresponding coordinate
of v. For example we expect z0 many of the 0 entries in v to be represented in
the sum v = x0 + x1 as 0 + 0, z1 as 1 − 1, z1 as −1 + 1, z2 as 2 − 2 and z2 as
−2 + 2. It follows that we need to ensure

z0 + 2z1 + 2z2 = δn

3 ⇔ z0 = δn

3 − 2z1 − 2z2,

as in total we need to represent δn
3 zeros of v. Note that the total amount of

1 (resp. −1) entries sums to δn
6 − o + δn

6 − o + o + o = δn
3 as required (since

there are that many −1 and 1 entries in the last δn coordinates of v). Note that
the parameters z1, z2 and o are optimization parameters of the algorithm. Given
the proportions specified in Equation (10), we can directly derive the amount of
representations as

R =
( δn

3
z0, z1, z1, z2, z2

)( δn
3

δn
6 − o, δn

6 − o, o, o

)2

,

where the first term counts the possibilities to represent 0s and the second the
representations of ±1 entries A simple counting of the representations from
Equation (10) including a ±1 or ±2 yields that the initial domains D̃1, D̃2 need
to satisfy

α = 1
6 + z1

δ
and β = z2 + o

δ
.

From here the analysis is identical to the one from Section 4.2, leading to a time

complexity of T = Õ
(

C
R·W · TW

)
= Õ

(
|D̃|

3
2

R·
√

W

)
, as long as |D̃|

R ≥ W , and memory

complexity M = Õ (W ).
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In Figure 5a we illustrate the obtained runtime exponent. We observe that
the increased amount of representations allows to naturally connect the trade-off
to the (0.5, 0.5) endpoint of MitM.
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Fig. 5: On the left: Comparison of different representation based methods.
On the right: Comparison of representation based methods for different m.

4.4 Enforcing an Equal Weight Distribution

Recall that in previous sections we always assumed for simplicity that we attack
ternary vectors with equally balanced (up to rounding) number of (−1)-, 0-, and
1-entries. We now show that for almost all ternary vectors we can enforce such
an equal weight distribution by increasing the dimension of the REGA-DLOG1-
problem from n to n + O(

√
n). Our argument extends to all REGA-DLOGm with

constant m.
Notice that our algorithms are of complexity T = 3cn for some constant c, and

thus fully exponential in the dimension n. Therefore, our dimension increase only
leads to a subexponential overhead 3O(

√
n), i.e., we achieve asymptotic run time

3c(n+O(
√

n)) = T · 3O(
√

n) = 3cn(1+o(1)).

Idea of Balancing. Let v be a random ternary, and denote by ni, i ∈ {−1, 0, 1}
its numbers of i-entries. Since ni ≤ n, we can guess all ni in polynomial time
O(n2). We show that with high probability all ni are bounded by n/3 ± O(

√
n).

Without loss of generality, let n−1 be the maximal value. We then add n−1 − n0
coordinates for 0-entries, and n−1 − n1 coordinates for 1-entries. These are in
total ℓ = O(

√
n) coordinates.

To this end, let (G, H, X , ⋆, x̃, g, x, y) be an instance of the REGA-DLOG1
problem with g = (g1, . . . , gn) and a ternary solution v satisfying v ⋆ x = y.

Let id be the neutral element in G, and let g′ = (g1, . . . , gn, id, . . . , id) be the
set of generators enhanced by ℓ times id. Then any u = (v, w) with w ∈ Zℓ is a
solution for the dimension-increased instance with g′ iff v is a solution for the
original instance with g. Especially, we obtain a solution for our n-dimensional
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instance by solving the n + ℓ = n + O(
√

n)-dimension instance, and cutting off
the last ℓ coordinates.

Chernoff argument. It remains to show that all ni differ from n/3 by at most
O(

√
n). Since v is a random ternary vector, all ni are binomially distributed

random variables with E[ni] = n/3. We use the Chernoff bound

Pr [|ni − E[ni]| ≥ δE[ni]] ≤ 2e−E[ni]δ2/3 for 0 < δ < 1.

Define δ = 3c√
n

for some constant c. Then Pr[|ni − n/3| ≥ c
√

n] ≤ 2e−c2 . Thus,
for sufficiently large c, almost all ternary vectors reach their expected value n/3
up to an O(

√
n) error term.

4.5 The Case of Arbitrary m

Intuitively it is clear that a similar approach as in Sections 4.1 to 4.3 can be
taken to solve the REGA-DLOGm for an arbitrary integer m. One simply defines
the functions over appropriate domains, which allow for multiple representations
of v ∈ {−m, . . . , m}n and then applies Algorithm 1 with those functions and
the respective choice of m. The main obstacle with this approach lies in the
computation of the representations, which already for m = 1 became quite
technical if applying the technique to its full extend (compare to Section 4.3).

However, for completeness we specify in the following the running time for
the case of general m in dependence on the domain size and the amount of
representations. The result is an immediate implication of our previous analysis.

Let the functions be specified as fi : Si → S, i = 0, 1, with the mapping as
defined in Equation (2), where H : {0, 1}∗ → S and |S0| = |S1| = |S|. Furthermore,
let every element v ∈ {−m, . . . , m}n have R representations as the sum of elements
from S0, S1, i.e., there are R different pairs (x0, x1) ∈ S0 × S1 with v = x0 + x1.

Then v can be found via Algorithm 1 with functions f0, f1 in time T =

Õ
(

|S|
3
2

R·
√

W

)
, as long as |S|

R ≥ W , using memory M = Õ (W ).

We additionally computed the running time of our technique for m ∈ {2, 3}
for an appropriate choice of function domains. We illustrate the corresponding
runtime exponents in Figure 5b.

For obtaining the running times we used in the case of m = 2 addends
x0, x1 ∈ {−2, . . . , 2} (m = 2) and x0, x1 ∈ {−3, . . . , 3} (m = 2 (increased rep.))
to represent the solution v = x0 + x1. In the case of m = 3 we used only addends
x0, x1 ∈ {−3, . . . , 3}. For the full technical details of the analysis the reader is
referred to Appendix A. It can be observed, that for increasing m the runtime
exponent in dependence on search space improves. However, since the improvement
is getting smaller for growing m we conjecture that the exponent converges.

4.6 Potential Impact on Bit Security Level

In this section we approximate the maximal bit security reduction for suggested
parameter sets for CSIDH by the representation method. In our comparison
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we assume that the standard PCS based time-memory trade-off (compare to
Section 3.3) suffers the same same polynomial overhead as the representation
based approach. Since this might underestimate the overhead of the representation
based trade-off, the numbers should be seen as a maximal potential gain. Practical
experiments will have to determine to which extend this gain can be realized in
practice.

In [17] three concrete parameter instantiations for ternary-key CSIDH are
given, respectively aiming at satisfying NIST security level L1, L2 and L3. For
matching the security definition of category Li the authors impose restrictions on
the memory and time complexity of Mi = 2wi and Ti = wti with

(w1, w2, w3) = (80, 100, 119) and (t1, t2, t3) = (128, 128, 192).

In order to match those security definitions a number of generators ni equal to
n1 = 139 for L1, n2 = 148 for L2 and n3 = 210 for L3 is proposed. The security
of those parameter sets is determined via the PCS time-memory trade-off.

In the memory restriction the authors conservatively ignore polynomial factors,
i.e., it holds Mi = 3cini = 2wi , which allows to determine the asymptotic memory
exponent as ci = wi

ni·log2 3 . For example for i = 1 we obtain ci ≈ 0.3631, which
yields an asymptotic running time of the PCS approach of TPCS = 30.5685n.
In comparison our technique improves the running time to TRep = 30.5316n,
corresponding to a gain of

TPCS

TRep
= 30.5685n = 30.0369n,

which for n1 = 139 yields a reduced security level by 0.0369 · n1 · log2 3 ≈ 8.13 bit.
A similar analysis for the cases of i = 2 yields c2 ≈ 0.4263 with TPCS = 30.5369n

and TRep = 30.5174n corresponding to a gain of 4.57 bit. The case of i = 3 yields
c3 ≈ 0.3575 with TPCS = 30.5713n and TRep = 30.5330n reducing the security level
by 12.75 bit.
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A The Case of Larger m

For larger choices of m we still assume that each coordinate is present n
2m+1

times in the solution. For any constant m, this is the case for a polynomial
fraction of all keys, and can be ensure with subexponential overhead similar to the
procedure explained in Section 4.4. Further, we always use partial representations,
i.e., the domains consist, similar to Section 4.2 and Section 4.3 of three parts
of length (1−δ)n

2 , (1−δ)n
2 and δn. Here we assume that each coordinate is present

proportionally to the length of the segment, e.g., that the last segment contains
each coordinate exactly δn

2m+1 times, which again can be ensured at the cost of a
polynomial overhead only.

As outlined in Section 4.5, for each choice of m we now specify the used
function domains and derive the amount representations of the solution. Let us
start with the case of m = 2.

The case of m = 2. We are looking for a solution v ∈ {−2, . . . , 2}. For our
first instantiation we use the same function definitions as in Section 4.3 given in
Equations (8) and (9), where we choose a different α and β, specified later. Let us
again specify the possible representations of each entry (similar to Equation (10))

0 : 0 + 0︸ ︷︷ ︸
z0

, 1 − 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2 − 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

,

1 : 1 + 0︸ ︷︷ ︸
δn
10 −o

, 0 + 1︸ ︷︷ ︸
δn
10 −o

, 2 − 1︸ ︷︷ ︸
o

, −1 + 2︸ ︷︷ ︸
o

,

−1 : −1 + 0︸ ︷︷ ︸
δn
10 −o

, 0 − 1︸ ︷︷ ︸
δn
10 −o

, −2 + 1︸ ︷︷ ︸
o

, 1 − 2︸ ︷︷ ︸
o

.

2 : 2 + 0︸ ︷︷ ︸
δn
10 − t

2

, 0 + 2︸ ︷︷ ︸
δn
10 − t

2

, 1 + 1︸ ︷︷ ︸
t

,

−2 : −2 + 0︸ ︷︷ ︸
δn
10 − t

2

, 0 − 2︸ ︷︷ ︸
δn
10 − t

2

, −1 − 1︸ ︷︷ ︸
t

.

Recall, that we have only representations on the last segment of length δn. As we
expect any coordinate to be present δn/5 times, we need that the numbers below
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the representations in every row sum to δn/5. Therefore we have

z0 + 2z1 + 2z2 = δn/5 ⇔ z0 = δn/5 − 2z1 − 2z2.

Further by counting the respective number of ±1 and ±2 entries in those repre-
sentations we obtain

α = 1
10 + z1 + t

δ
and β = 1

10 + z2 − t/2 + o

δ
,

while the number of representations is given as

R =
( δn

5
z0, z1, z1, z2, z2

)( δn
5

δn
10 − o, δn

10 − o, o, o

)2( δn
5

δn
10 − t

2 , δn
10 − t

2 , t

)2

.

The values of z1, z2, o, t and δ are subject to numerical optimization.

Increased representations for m = 2. In the following we represent v on its last
δn coordinates via the sum of two vectors x0, x1 ∈ {−3, . . . , 3}δn. Similar to
including −2 and 2 entries in the case of m = 1 (Section 4.3), this leads to an
increased amount of representations and in turn a runtime improvement.

First we naturally extend the definition T n(α, β) from Equation (7) to
T n(α, β, γ), where in the latter case included vectors contain exactly γn entries
equal to ±3 each. Then we let the new function domains be defined as

S0 := T
(1−δ)n

2 (1/3)× 0
(1−δ)n

2 × T δn(α, β, γ) and

S1 := 0
(1−δ)n

2 × T
(1−δ)n

2 (1/3) × T δn(α, β, γ),
(11)

Accordingly we let their common image space be S = T
(1−δ)n

2 (1/3) × T δn(α, β, γ).
Now we obtain additional representations of any 0, ±1 and ±2 entry. Let us

again specify all representations and how often they appear in the addition.

0 : 0 + 0︸ ︷︷ ︸
z0

, 1 − 1︸ ︷︷ ︸
z1

, −1 + 1︸ ︷︷ ︸
z1

, 2 − 2︸ ︷︷ ︸
z2

, −2 + 2︸ ︷︷ ︸
z2

, −3 + 3︸ ︷︷ ︸
z3

, −3 + 3︸ ︷︷ ︸
z3

,

1 : 1 + 0,︸ ︷︷ ︸
δn
10 −o−d1

0 + 1,︸ ︷︷ ︸
δn
10 −o−d1

2 − 1︸ ︷︷ ︸
o

, −1 + 2︸ ︷︷ ︸
o

, 3 − 2︸ ︷︷ ︸
d1

, −2 + 3︸ ︷︷ ︸
d1

,

−1 : −1 + 0,︸ ︷︷ ︸
δn
10 −o−d1

0 − 1,︸ ︷︷ ︸
δn
10 −o−d1

−2 + 1︸ ︷︷ ︸
o

, 1 − 2︸ ︷︷ ︸
o

, −3 + 2︸ ︷︷ ︸
d1

, 2 − 3︸ ︷︷ ︸
d1

,

2 : 2 + 0︸ ︷︷ ︸
δn
10 − t

2 −d2

, 0 + 2︸ ︷︷ ︸
δn
10 − t

2 −d2

, 1 + 1︸ ︷︷ ︸
t

, 3 − 1︸ ︷︷ ︸
d2

, −1 + 3︸ ︷︷ ︸
d2

,

−2 : −2 + 0︸ ︷︷ ︸
δn
10 − t

2 −d2

, 0 − 2︸ ︷︷ ︸
δn
10 − t

2 −d2

, −1 − 1︸ ︷︷ ︸
t

−3 + 1︸ ︷︷ ︸
d2

, 1 − 3︸ ︷︷ ︸
d2

.

(12)
Analogously to before we have

z0 + 2z1 + 2z2 + 2z3 = δn/5 ⇔ z0 = δn/5 − 2z1 − 2z2 − 2z3.
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Further by counting we obtain

α = 1
10 + z1 + t − d1 + d2

δ
, β = 1

10 + z2 − t/2 + o − d2 + d1

δ
and

γ = z3 + d1 + d2

γ

while the number of representations increases to

R =
( δn

5
z0, z1, z1, z2, z2, z3, z3

)( δn
5

δn
10 − o − d1, δn

10 − o − d1, o, o, d1, d1

)2

·
( δn

5
δn
10 − t

2 − d2, δn
10 − t

2 − d2, t, d2, d2

)2

.

The values of z1, z2, z3, o, t, d1, d2 and δ are subject to numerical optimization.

Finally let us consider the case of m = 3.

The case of m = 3. We now have a solution v ∈ {−3, . . . , 3}. We represent this
solution by using the same function domains as specified in Equation (11), with
an adapted choice of α, β and γ.

The possible representations stay therefore as specified in Equation (12), by
replacing γn

10 by γn
14 . Since every row has now to add up to γn

7 we obtain

z0 + 2z1 + 2z2 + 2z3 = δn/7 ⇔ z0 = δn/7 − 2z1 − 2z2 − 2z3.

We now get additionally representations for the ±3 entries in v:

3 : 3 + 0︸ ︷︷ ︸
δn
14 −d3

, 0 + 3︸ ︷︷ ︸
δn
14 −d3

, 2 + 1︸ ︷︷ ︸
d3

, 1 + 2︸ ︷︷ ︸
d3

,

−3 : −3 + 0︸ ︷︷ ︸
δn
14 −d3

, 0 − 3︸ ︷︷ ︸
δn
14 −d3

, −2 − 1︸ ︷︷ ︸
d3

−1 − 2︸ ︷︷ ︸
d3

.

This leads to the adapted choices of

α = 1
14 + z1 + t − d1 + d2

δ
, β = 1

14 + z2 − t/2 + o − d2 + d1

δ
and

γ = 1
14 + z3 + d1 + d2 − d3

γ
.

Eventually the amount of representations is given as

R =
( δn

7
z0, z1, z1, z2, z2, z3, z3

)( δn
7

δn
14 − o − d1, δn

14 − o − d1, o, o, d1, d1

)2

·
( δn

7
δn
14 − t

2 − d2, δn
14 − t

2 − d2, t, d2, d2

)2( δn
7

δn
14 − d3, δn

14 − d3, d3, d3

)2

.
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